
.AS! CI:- A I F D Of I I, -VA•~ o fFr

REPORI DOMUM[PN1A11ON PAGE ,- .'.1., -I
1. e 'o . 12. &D-' ACCSSIDOh M,:. 3 aL[lC " C* IAO bj ;.u ,

4. 1|1IL! D,. 1YPL O S *1' ' A PLA ,C COVERL;

Ada Compiler Validation Suirar)y Report: New York 2" May 1989 to 22 May 1990
NYU Ada/Ed, Version 1.10, Sun-3/60 (Host & Target), * pLb;Oftlh'-r; niDo -

890523W1 .10085

7. AU1NO,) I. COhAA. d 01o &mAA: hik j;

Wrigrt!-Patterson AFB

C Dayton, OH, USA

9. PFtfOft%10&C OrAh:zAIzON Ak:, AD:)RLSS 1C. P~A .Uh .P:~:.lS

Wright-Pa:terson AFB
AfLA & wDR& u R

Dayton, OH, USA

11. COo4RC.L0I% OFIC[NUwA" Ak:, ADDRUSS 12. R[POR' o&I
Ada Joint Program Of hce
United States Department of Defense .
Washington, DC 2 301-3061

14. "k! TOA;h AL% T NA. & ADD$LSS(il ol er from Controng O ,ce) 15. £. 'E r.0i CLASS (0' tls reponj

UNCLASSIFIED
Wright-Patterson AFB 5. piCtiSrICIoo.Dv &-.h-

Dayton, OH, USA Cris. N/A

It. D:S T .5XI|O% SIAILMNI h (ofth,sRepo')

Approved for public release; distribution unlimited.

17. S.2$'.I:,,l $1A:Li:.j (04 1h, eS~,C.,fltCmfe,ef,8.oc*2C gt#e,,n: l,om~e~O,)

DTIC
ll. S1l;;gEvh*A~ NOTES S EE

IS. IL'm;S (Co's:'nve on reverse sdc if r aesl noidentII by block n~ornbcr

Ada Procra-.ing lan.uage, Ada Compiler Validation Summary Rep:rt, Ada
Conpiler Validation Capability, A:VC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANS1/ML-STD-
1815A, Ada Joint Program Office, AJPO

20. AIS7IA:1 (Conitne On revese side of ceZJd', t .. Oenl,f) b, blocl number)

New York University, NYU Ada/Ed, Version 1.10, Wright-Patterson AFB, Sun-3/60 under

Sun UNIX, Version 4.2, Release 3.4 (Host & Target), ACVC 1.10.

89905 006
DD 10 1473 tO]1lOk Of I 13 1 IS OSSOAIL

I JAA 13 SI 0102-L-014-01 UNCLASSIFIED
SICU'2"', CLASS11ICAUI,1 Of IMIS PA;[(FA ,EsO tr'Cd

AVF Control Number: AVF-VSR-298.0689
89-01-24-NYU

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890523W1.10085
New York University

NYU Ada/Ed, Version 1.10
Sun-3/60

Completion of On-Site Testing:
22 May 1989

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: NYU Ada/Ed, Version 1.10

Certificate Number: 890523W1.10085

Host: Sun-3/60 under
Sun UNIX, Version 4.2 Release 3.4

Target: Sun-3/60 under
Sun UNIX, Version 4.2 Release 3.4

Testing Completed 22 May 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validation OYgadiztion
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office Acoession 1o0

Dr. John Solomond
ATi r

Acting, Director
NTIS GRA&I

Department of Defense DTIC TAB 0

Washington DC 20301 unanouaced 0
ju3tifiloatio

By
Dlstrlbiltion/

Availability CodesAvail-a
rd/or

Dist

- .• ,, . .m,.m _ Il mmmmm I
m m mm

ll llm |!
!m W O

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
t

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWNTESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS. . 3-5
3.7 ADDITIONAL TESTING INFORMATION3-6
3.7.1 Prevalidation3-6
3.7.2 Test Method3-7
3.7.3 Test Site3-8

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report '(VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of IA£ting this compiler using the Ada Compiler
Validation Capability '(-ACVC),--- An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
&even in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

" To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by the AVF according to procedures
established by the Ada Joint Program Office and administered by the Ada
Validation Organization (AVO). On-site testing was completed 22 May 1989
at New York NY.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rn 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regardiAg this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. ReferenceManual for the Ada Programming Language,
ANSI/MIL-STD- 5A-,-F-ry 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 Januar7y 987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December9

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

1-3

INTRODUCTION

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

1-4

INTRODUCTION

Class B tests chetk that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

1-5

INTRODUCTION

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by shoving that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: NYU Ada/Ed, Version 1.10

ACVC Version: 1.10

Certificate Number: 890523WI.10085

Host Computer:

Machine: Sun-3/60

Operating System: Sun UNIX
Version 4.2 Release 3.4

Memory Size: 16 Megabytes

Target Computer:

Machine: Sun-3/60

Operating System: Sun UNIX
Version 4.2 Release 3.4

Memory Size: 16 Megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to six
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additionFl predefined type
LONG FLOAT in the package STANDARD. (See tests B86001T..Z (7
tests).'

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) Some of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses no extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) Sometimes CONSTRAINTERROR is raised when an integer literal
operaAd in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range of the base
type. (See test C45252A.)

(6) Underflow is not gradual. (See tests C45524A..Z.)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round away
from zero. (See tests C46012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH thit exceeds
STANDARD.I TEGER'LAST and/or SYSTEM.MAX INT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception. (See test
C36003A.)

(2) No exception is raised when 'LENGTH is applied to a null array
type with INTEGER'LAST + 2 components. (See test C36202A.)

(3) No exception is raised when 'LENGTH is applied to a null array
type with SYSTEM.MAX INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises STORAGE ERROR when the array objects are declared.
,'ee test C52103X.)

2-3

CONFIGURATION INFORMATION

(5) A pAcked two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises STORAGE ERROR when the array
objects are declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, index
subtype checks are made as choices are evaluated. (See tests
C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is not supported for functions or
procedures. (See tests LA3004A..B, EA3004C..D, and
CA3004E..F.)

2-4

CONFIGURATION INFORMATION

i. Generics

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3O11A.)

j. Input and output

(1) The package SEQUENTIAL 10 can be instantiated with
unconstrained array types-and record types with discriminants
without defaults. (See tests AE2101C, EE220D, and EE2201E.)

(2) The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

(3) Modes IN FILE and OUT FILE are supported for SEQUENTIAL IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes IN FILE, OUTFILE, and INOUT FILE are supported for
DIRECT 10. (See tests CE2102F, CE210 I..J, CE2102R, CE2102T,
and CE10O2V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE'102E and CE3102I..K.)

(6) RESET and DELETE operations are supported for SEOUENTIAL IO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECTIO. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

(9) Overwriting to a sequential file truncates to the last element
written. (See test CE2208B.)

(10) Temporary sequential files are given names and not deleted
when closed. (See test CE2108A.)

(11) Temporary direct files are given names and not deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and not deleted when
closed. (See test CE3112A.)

2-5

CONFIGURATION INFORMATION

(13) Only one internal file can be associated with each external
file 'for sequential files. (See tests CE2107A..E, CE2102L,
CE2110B, and CE2111D.)

(14) Only one internal file can be associated with each external
file for direct files. (See tests CE2107F..H (3 tests),
CE2110D and CE2111H.)

(15) Only one internal file can be associated with each external
file for text files. (See tests CE3111A..E, CE3114B, and
CE3115A.)

2-6

II

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 195 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing. Modifications
to the code, processing, or grading for 19 tests were required to
successfully demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
-- A B C D E L

Passed 129 1128 2136 15 26 44 3478

Inapplicable 0 10 179 2 2 2 195

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 194 648 645 242 170 99 160 331 131 36 252 289 281 3478

Inappl 18 1 35 6 2 0 6 1 6 0 0 80 40 195

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84M CD2A84N CD2B15C CD2D11B CD5007B CD50110
ED7004B ED7005C ED7005D ED7006C ED7006D CD7105A
CD7203B CD7204B CD7205C CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 195 tests were inapplicable for the
reasons indicated:

a. C24113H..Y (18 tests) are not applicable because the source line
exceeds the maximum of 120 characters.

b. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT FLOAT.

3-2

TEST INFORMATION

c. The following 16 tests are not applicable because this
implementation does not support a predefined type SHORTINTEGER:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D B86001V
CD7101E

d. The following 16 tests are not applicable because this
implementation does not support a predefined type LONG INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD7101F

e. C45231D, B86001X, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG-INTEGER, or SHORT-INTEGER.

f. C45531K..L (2 tests) and C45532K..L (2 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 32.

g. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 47.

h. D64005F and D64005G are not applicable because this implementation
does not support nesting 10 levels of recursive procedure calls.

i. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

j. B8600IZ is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

k. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

1. LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma
INLINE.

m. CD2B15B is not applicable because collection size allocated is
larger than size specified.

n. The following 76 tests are not applicable because, for this
implementation, address clauses are not supported.

CD5003B..I CD5011A..I CD5O11K..N CD5011Q..S
CD5012A..J CD5012L..M CD5013A..I CD5013K..0
CD5013R..S CD5O14A..O CD5014R..Z

3-3

TEST INFORMATION

o. CE2102D is inapplicable because this implementation supports
CREATE with IN-FILE mode for SEQUENTIAL IO.

p. CE2102E is inapplicable because this implementation supports
CREATE with OUT FILE mode for SEQUENTIAL IO.

q. CE2102F is inapplicable because this implementation supports
CREATE with INOUTFILE mode for DIRECTIO.

r. CE21021 is inapplicable because this implementation supports
CREATE with INFILE mode for DIRECT IO.

s. CE2102J is inapplicable because this implementation supports
CREATE with OUT FILE mode for DIRECTIO.

t. CE2102N is inapplicable because this implementation supports OPEN
with INFILE mode for SEQUENTIALIO.

u. CE21020 is inapplicable because this implementation supports RESET
with INFILE mode for SEQUENTIALIO.

v. CE2102P is inapplicable because this implementation supports OPEN
with OUTFILE mode for SEQUENTIALIO.

w. CE2102Q is inapplicable because this implementation supports RESET
with OUTFILE mode for SEQUENTIALIO.

x. CE2102R is inapplicable because this implementation supports OPEN
with INOUT FILE mode for DIRECT IO.

y. CE2102S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIRECT IO.

z. CE2102T is inapplicable because this implementation supports OPEN
with INFILE mode for DIRECT_10.

aa. CE2102U is inapplicable because this implementation supports RESET
with INFILE mode for DIRECTI0.

ab. CE2102V is inapplicable because this implementation supports open
with OUTFILE mode for DIRECT IO.

ac. CE2102V is inapplicable because this implementation supports RESET
with OUTFILE mode for DIRECT IO.

ad. CE2107A..E (5 tests), CE2107L, CE2110B, and CE2111D are not
applicable because multiple internal files cannot be associated
with the same external file for sequential files. The proper
exception is raised when multiple access is attempted.

3-4

TEST INFORMATION

ae. CE21O7F..h (3 tests), CE2110D, and CE2111H are not applicable
because multiple internal files cannot be associated with the same
external file for direct files. The proper exception is raised
when multiple access is attempted.

af. CE3102E is inapplicable because this implementation supports
CREATE with INFILE mode for text files.

ag. CE3102F is inapplicable because this implementation supports RESET
for text files.

ah. CE3102G is inapplicable because this implementation supports
deletion of an external file for text files.

ai. CE3102I is inapplicable because this implementation supports
CREATE with OUTFILE mode for text files.

aj. CE3102J is inapplicable because this implementation supports OPEN
with IN FILE mode for text files.

ak. CE3102K is inapplicable because this implementation supports OPEN
with OUTFILE mode for text files.

al. CE3111A..B (2 tests), CE3111D..E (2 tests), CE3114B, and CE3115A
are not applicable because multiple internal files cannot be
associated with the same external file for text files. The proper
exception is raised when multiple access is attempted.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 19 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B49003A B49005A B84004A B91003A B91003C BD5005B
BE3001A BE3002A

3-5

TEST INFORMATION

The following modifications were made to compensate for legitimate
implementation behavior.

B22005I, B25002A, B26005A, and B27005A (4 tests) were modified to
remove the nul character, because the UNIX SETL system ignores a nul
character and the remainder of the line containing it.

C45651A was modified because membership test uses an upper bound that
may be greater than DECIMALM4'BASE'LAST. On line 256, the value
1024.0 was replaced by 979.0.

CC3126A was modified because an uninitialized string variable raises
PROGRAM ERROR. The initializing expression ":= (OTHERS .> 'H')" was
inserteU into variable H's declaration on line 117.

CD2A31A, CD2A32A, and CD2A32E (3 tests) were modified to reduce the
number of iterations in each of four "for loops" from 201 to 2 so as
to compensate for the SETL implementation's extraordinary consumption
of space and time in the execution of these tests. The AVO approved
these modifications in preference to effectively forcing the
implementation to be changed so that SIZE length clauses were not
supported at all. Other tests in these two series contain a single,
similar loop; they were successfully processed in approximately an
hour each.

CD2C11A..B (2 tests) were modified because this implementation raises
PROGRAM ERROR when procedure TEST TASK is called with an uninitialized
actual -parameter, W. The initializing expression ":= 5.0" was
inserted into variable W's declaration on line 41 and 44 respectively.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the NYU Ada/Ed was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected
behavior on all inapplicable tests.

3-6

TEST INFORMATION

3.7.2 Test Method

Testing of the NYU Ada/Ed compiler using ACVC Version 1.10 was conducted
on-site by a validation team from the AVF. The configuration in which the
testing was performed is described by the following designations of
hardware and software components:

Host computer: Sun-3/60
Host operating system: Sun UNIX, Version 4.2 Release 3.4
Target computer: Sun-3/60
Target operating system: Sun UNIX, Version 4.2 Release 3.4
Compiler: NYU Ada/Ed, Version 1.10

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the Sun-3/60.
Results were transferred to a workstation and printed directly onto the
host computer.

The compiler was tested using command scripts provided by New York
University and reviewed by the validation team. The compiler was tested
using all default option settings except for the following:

OPTION EFFECT

A Specifies the source file.
L Specifies the listing file.
LIBFILE Specifies the program library.
NEWLIB Specifies that a new program library is to

be used.
AISFILE Specifies the name of the intermediate files.
MAIN Specifies the name of the main program unit

if there can be more than one.
MEMORY SIZE Specifies the maximum memory to be used.

Tests were compiled, linked, and executed (as appropriate) using 3
computers. Test output, compilation listings, and job logs were captured
on magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-7

TEST INFORMATION

I

3.7.3 Test Site

Testing was conducted at New York NY and was completed on 22 May 1989.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

New York University has submitted the following
Declaration of Conformance concerning the NYU Ada/Ed
Compiler.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: New York University
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: NYU Ada/Ed Version: 1.10
Host Architecture ISA: Sun-3/60 OS&VER: Sun UNIX 4.2 Rel 3.4
Target Architecture ISA: Sun-3/60 OS&VER: Sun UNIX 4.2 Rel 3.4

Implementor's Declaration

I, the undersigned, representing New York University, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler listed in this declaration. I declare that New York Univesity is the owner of
record of the Ada language compiler listed above and, as such, is responsible for
maintaining said compiler in conformance to ANSI!MIL-STD-1815A. All certificates
and registrations for Ada language compilers listed in this declaration shall be made

only in owner's corporate name.

_ __ &,__-, __ Date: 0I12./°9

New York University

Bernard Banner, Asst Research Scientist

Owner's Declaration

I, the undersigned, representing New York University, take full responsibilty for
implementation and maintenance of the Ada compiler listed above, and agree to the

public disclosure of the final Validation Summary Report. I dLclare that all of the
Ada language compilers listed, and their host/target performance are in compliance
with the Ada Language Standard ANSIMIL-STD-1815A.

? -Va-Aek E ,,9 Date:_ _______
New York University
Bernard.Banner, Asst Research Scientist

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the NYU Ada/Ed, Version 1.10, as described in this
Appendix, are provided by New York University. Unless specifically noted
otherwise, references in this Appendix are to compiler documentation and
not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -1073741823 .. 1073741823;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;
type LONG FLOAT is digits 33

range -6.70390396497129854978701249910292E+153
6.70390396497129854978701249910292E+153;

type DURATION is delta 0.01 range -86400.00 .. 86400.00;

end STANDARD;

B-1

APPENDIX F OF THE Ada STANDARD

Appendix F: Implementation Dependent Characteristics
I

(1) The form, allowed places, and effect of implementation
dependent pragmas.

NYU Ada/Ed does not recognize any implementation dependent
pragmas. The language defined pragmas are correctly
recognized and their legality is checked, but, with the
exception of LIST and PRIORITY, they have no effect on the
execution of the program. A warning message is generated to
indicate that the pragma is ignored by NYU Ada/Ed.

(2) The name and the type of every implementation dependent
attribute.

There are no implementation dependent attributes in NYU
Ada/Ed.

(3) The specification of the package system.

package SYSTEM is
type NAME i (ADA ED);
type ADDRESS is new INTEGER;
SYSTEM NAME : constant NAME :- ADAED;
STORAGE UNIT : constant :- 32;
MEMORY SIZE : constant :- 2**30 - 1;
-- System Dependent Named Numbers:
MIN INT : constant : --(2**30 - 1);
MAXINT : constant := 2**30 - 1;
MAXDIGITS : constant := 33;
MAX-MANTISSA : constant := 31;
FINE DELTA : constant := 2.0 ** (-31);
TICK- : constant := 0.01;
-- Other System Dependent Declarations
subtype PRIORITY is INTEGER range 0 .. 9;
SYSTEM-ERROR : exception;

-- raised if internal check fails
end SYSTEM;

(4) The list of all restrictions on representation clauses.

NYU Ada/Ed does not support any address clauses.

(5) The conventions used for system generated names.

NYU Ada/Ed does not provide any system generated names
denoting system dependent entities, since in any case,
representation specifications are not permitted.

B-2

APPENDIX F OF THE Ada STANDARD

(6) The interpretation of expressions that appear in address
clauses.

Address expressions in NYU/AdaEd are meaningless, since the
model used for interpretation does not use addresses. The
ADDRESS type defined in SYSTEM is present only for
completeness, and to be able to recognize semantically legal
uses of the attribute ADDRESS.

(7) Restrictions on unchecked conversion.

NYU Ada/Ed will correctly recognize and check the validity of
any use of unchecked conversion. However, any program which
executes an unchecked conversion is considered to be
erroneous, and the exception PROGRAM ERROR will be raised.

(8) Implementation dependent characteristics of the input-output
package.

A) Temporary files are fully supported. The naming
convention used is as follows:

XHHMMSS.TMP
X stands for the file accessing method
S - SEQUENTIAL 10
D - DIRECT 10
T - TEXT _1

HH - hour of file creation
MM - minute of file creation
SS - second of file creation

B) Deletion of files is fully supported.

C) Only one internal file may be associated with the same
external file (No multiple accessing of files allowed).

D) File names used in the CREATE and OPEN procedures are
standard UNIX file names. The function FORM returns the
string given as FORM parameter when a file is created. No
system-dependent characteristics are associated with that
parameter.

E) A maximum of 17 files can be open at any given time during
program execution.

B-3

APPENDIX F OF THE Ada STANDARD

F) The standard default input file may be specified using the
DATA parameter of the ADA commands. If a file is specified
it must be possible to open it at the beginning of program
execution, otherwise the exception PROGRAM ERROR will be
raised. If no file is specified stdin will be used. The
standard output file is stdout.

G) SEOUENTIAL 10 and DIRECT 10 support constrained array
types, recorU types withoul discriminants and record types
with discriminants with defaults.

H) I/0 on access types is possible, but usage of access
values read in another program execution is erroneous.

I) Normal termination of the main program causes all open
files to be closed, and all temporary files to be deleted.

J) LOWLEVELIO is not supported.

K) The form feed character (CTRL L - ascii 12) is used as the
page terminator indicator. Its use as a data element of a
file is therefore undefined.

B-4

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$ACC SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG ID1 (1..119 => 'A', 120 f> '1')
in identifier the size of the
maximum input line length which
is identical to $BIG ID2 except
for the last character.

$BIG ID2 (l..119 -> 'A', 120 => '2')
in identifier the size of the
maximum input line length which
is identical to $BIG IDi except
for the last character.

$BIG ID3 (l..59 => 'A', 60 -> '3',
in identifier the size of the 61..120 .> 'A')
maximum input line length which
is identical to $BIG ID4 except
for a character near the middle.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 (1.59 => 'A', 60 => '4',
An identifier the size of the 61..120 => 'A')

maximum input line length which
is identical to $BIG ID3 except
for a character near the middle.

$BIG INT LIT (1.-117 => '0',
An integer literal of value 298 118..120 => "298")

with enough leading zeroes so
that it is the size of the
maximum line length.

SBIG REAL LIT (1..115 => '0',
W universal real literal of 116..120 -> "690.0")
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 (1 => '"', 2..61 => 'A',

A string literal which when 62 -> "')

catenated with $BIG STRING2
yields the image of $BIG ID1.

$BIG STRING2 (1 => '"', 2..60 f> 'A',

1 string literal which when 61..62 => "i"")
catenated to the end of
$BIG STRINGI yields the image of
$BIGID1.

$BLANKS (1..100 => '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 32_767
A universal integer
literal whose value is
TEXT IO.COUNT'LAST.

$DEFAULT MEM SIZE 1_073_741_823
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULT STOR UNIT 32
An integei literal whose value
is SYSTEM.STORAGE UNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME ADA ED
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC (1..18 => "0.000 000 000 465 ",
A real literal whose value is 19..35 -> "661 87 307_739_v",
SYSTEM.FINE DELTA. 36..43 -> "57 _12_3")

$FIELDLAST 100
A universal integer
literal whose value is
TEXT IO.FIELD'LAST.

$FIXED NAME NO SUCH TYPE AVAILABLE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NO SUCH TYPE AVAILABLE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONG FLOAT.

$GREATER THAN DURATION 75_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THAN DURATION BASE LAST 131073.0
A un1versal real literal that is

greater than DURATION'BASE'LAST.

$HIGH PRIORITY 9
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAMEl (l..256 => 'A')
An -external- file name which
is too long.

$ILLEGAL EXTERNAL FILE NAME2 "/junk/junk"
An external fili name which
contains invalid characters.

$INTEGER FIRST -1_073_741_823
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

$INTEGER LAST 1_073_741_823
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS1 i _073_741_824
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHAN DURATION -75_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS THAN DURATION BASE FIRST -131_073.0
A-universal real literal that is
less than DURATION'BASE'FIRST.

SLOW PRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA DOC 31
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX DIGITS 33
Maximum digits supported for
floating-point types.

$MAX IN LEN 120
Maximum input line length
permitted by the implementation.

$MAX INT 1073741823
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAX INT PLUS 1 1_073_741_824
1 universal integer literal
whose value is SYSTEM.MAXINT+1.

$MAX LEN INT BASED LITERAL (1.2 => "2:", 3..117 => '0',

K universal - integer based 118..120 => "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX IN LEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value
I

SMAX LEN REAL BASED LITERAL (1.-3 => "16:", 4..116 => '0',
1 universal real based literal 117..120 => "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAX STRING LITERAL (1 => "", 2..119 => 'A',
; strTing literal of size 120 => '"')
MAX IN LEN, including the quote
characters.

$MIN INT -1073741823
; universal integer literal
whose value is SYSTEM.MININT.

SMIN TASK SIZE 128
An inieger literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NO SUCHTYPEAVAILABLE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG_FLOAT, or LONGINTEGER.

$NAME LIST ADAED
A-list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG BASED INT 16#FFFFFFFE#
1 based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

SNEW HEM SIZE 1 073_741_823
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT HEM SIZE. If there is
no othir -value, then use
$DEFAULTMEMSIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

$NEW STOR UNIT 32
An integer literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEW SYS NAME ADA ED
; value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If
there is only one value-of that
type, then use that value.

$TASK SIZE 128
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 0.01
A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --631" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lines 50 and 54 and the execution of task CHANGING OF THE GUARD
results in a call to REPORT.FAILED at one of lines 52 or 36.- -

e. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be 40
(line 137).

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These

D-1

WITHDRAWN TESTS

tests wrongly attempt to check the size of objects of a derived type
(for which A 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

h. CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

i. CD2B15C and CD7205C: These tests expect that a 'STORAGESIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

j. CD2DllB: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

k. CD5007B: This test wrongly expects an imnlicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

1. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

n. CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

o. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

p. CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object- as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

D-2

VITHDRAVN TESTS

q. CE311IC: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

r. CE3301A: This test contains several calls to END OF LINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARDINPUT (lines 103, 107, 118,
132, and 136).

s. CE3411B: This test requires that a text file's column number be set to
COUNT'LAST in order to check that LAYOUT ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

