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1. INTRODUCTION

The present study is concerned with the calculation of fluid flow, heat transfer, and
combustion in two configurations generic to the propulsion of airbreathing missiles, shown
in Fig. 1.1. In the first configuration, of a coaxial dump combustor, the combustion process
is stabilized in the recirculation zone created by a sudden area expansion. The fuel is either
gaseous or liquid and is premixed/prevaporized in the inlet section. A nozzle at the exit
provides the thrust. In the second configuration, the air enters through two side arms, and
the fuel is injected either in the dome region or in the arms. The flow patterns in this
configuration are much more complex than in the coaxial case and are three-dimensional.
Experimental studies concerning the flow and combustion processes in these configurations
(and their variants) were reported earlier [1-4].

A number of analytical approaches of varying complexity exist for calculating the
detailed flow and combustion processes inside these ramjet combustor configurations. A
simple method can utilize correlations for the fuel residence time and fuel burnup as
functions of axial distance, fuel/air equivalence ratio, inlet temperature, etc. Such relations
are usually obtained from experiments on actual or prototypical hardware. A more detailed
approach is the modular concept of Edelman et al. [5], in which the various regions of the
flow are handled individually and coupled at the boundaries. The recirculating-flow regions
are handled as well-stirred reactors, and the downstream region is treated as a boundary
layer. The modular approach accounts for the multidimensional variations but suffers from
the difficulties of a priori identification of the various regions and the consistency
requirements at the boundaries of the regions. The next level of complex models involves the
solution of the ensemble-averaged equations of a turbulent flow with the appropriate
boundary conditions of the geometry. Here, the entire domain is treated as a single entity
with appropriate inflow, outflow, and wall boundary conditions. The turbulence model can
vary from the zero-equation mixing-length type to a more elaborate Reynolds stress model
involving the solution of several additional partial differential equations. The popular two-
equation k-e model requires solution of transport equations for the kinetic energy of
turbulence and its rate of dissipation. At the finest level of modeling, the time-dependent
simulation of turbulence is possible, but the computational requirements are very great and
are beyond the capacities of currently available machines. Currently the Reynolds-averaged
approach is the only feasible alternative to calculate multidimensional reacting flows in
engineering systems. In the Reynolds-averaged approach, the time-dependent Navier-Stokes
equations are averaged over an ensemble of states, and equations for the mean quantities are
obtained. During this averaging process, additional terms containing products of the
fluctuations arise and need to be related to the resolved quantities. This closure problem [6]
is a major research area, and extensive literature exists [7]. The turbulence models need to
be supplemented with models for reaction, spray dynamics, heat transfer, radiation, etc. A
simultaneous solution of all the governing equations presents a complicated task [8,9],
especially in three-dimensional situations.

This report is organized as follows. In Section 2, calculations of the flow and
temperature distributions in a prototypical ducted rocket are presented. These calculations
were made with a computer program developed earlier and based on the SIMPLE algorithm
[10]. In Sections 3 and 4, a new solution algorithm based on a coupled solution of the
momentum and continuity equations is described. The algorithm has been applied to calculate
two- and three-dimensional turbulent and reacting flows in confined geometries. In
Section 5, an iterative algorithm based on the coupled solution and multigrid techniques is
presented. This algorithm has been developed for both two- and three-dimensional flows.
Section 6 describes calculations of isothermal and reacting flows using the block-implicit
multigrid algorithm. Section 7 describes extensions of the algorithm to handle sprays,
nonorthogonal coordinates, and multistep kinetics. Section 8 describes a computer code,

.. ....... .
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FLANELS, developed during the course of this investigation. Section 9 describes the input
data for this code and Section 10 provides some sample data sets for FLANELS.

2. ANALYSIS OF MULTIDIMENSIONAL FLOW FIELDS IN

DUCTED ROCKETS

2.1 Introduction

A ducted rocket is a ramjet variant with a configuration like that shown in Fig. 2.1.
Gaseous fuel from a gas generator is injected through the dome plate, and the air is supplied
through two side arms attached to the combustor periphery. The side arms are inclined with
the duct axis and are located symmetrically in the azimuthal direction. The mixing of the fuel
and air streams occurs in a complex flow field formed by the two flow streams. The complex
flow recirculation patterns in the dome region and behind the air stream aid in stabilizing
the combustion process. A detailed understanding of the aerodynamics and fuel-air mixing
processes in such a configuration is necessary for improving the combustion efficiency and
the thrust produced by the ducted rocket. The geometric variables (such as the angle of the
side arms, the length of the combustor, the distance between the dome plate and the side
arms, and the location of the fuel injector) may then be optimized for maximum efficiency
and thrust.

Numerous flow complexities exist in the ducted rocket configuration. The side entry
of the air stream sets up a complex three-dimensional flow pattern consisting of a pair of
vortices in the cross-sectional plane and a complex recirculation pattern in the dome region.
The flow often is at high speed, with a choked-fuel jet at the dome. The shear layers and the
regions of impingement of the air streams are characterized by intense turbulence and
mixing, and currently very little is known of the turbulence-chemistry interactions in such
a complex three-dimensional flow field. In addition, in a practical ducted rocket, the gas
generator effluent has a complex composition that could significantly influence the transient
processes such as ignition and flame blowout.

There have been very few studies, experimental or analytical, of the detailed
combustion processes inside the ducted rocket. In a continuing investigation, flow
visualization studies at the Wright Patterson AFB are characterizing the isothermal flow
fields. Studies so far 141 have indicated the presence of complex vortex patterns and
multiple recirculation regions, especially in the dome. Vanka, Stull, and Craig [11] have
reproduced some of these flow patterns in an analytical study by numerically solving the
partial differential equations governing the steady three-dimensional isothermal fluid flow.
Calculations were made for different angles of the side arms and for different dome heights.
This preliminary study demonstrated the utility of a computational tool in understanding the
ducted rocket combustion processes.

The combustion efficiency for a ducted rocket configuration with gaseous ethylene
injected from the dome was measured in a thrust stand by Stull et al. 112] for different fuel
air ratios and combustor lengths. These tests were aimed primarily at investigating the
gross features and so did not provide the complete details of the combustion processes and
flow fields. Recently, Chen and Tao [13] simplified the ducted rocket geometry to be
axisymmetric and numerically solved the two-dimensional reacting flow equations. Because
of the axisymmetric approximation, the study of Chen and Tao [131 did not reveal the vortex
structures observed in the water tunnel experiments [4]. In addition, their study neglected
the circumferential nonuniformities and transport and therefore inaccurately represented
the flow and combustion processes.
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In our study, equations governing the fully elliptic three-dimensional reacting flow
are solved numerically by an iterative finite-difference algorithm. For simplicity, the
combustion process is assumed to occur in a one-step fast chemical reaction, represented as

1 kg fuel + i kg oxidant - (1 + i) kg products, (2.1)

where i is the stoichiometric oxidant-to-fuel ratio. The chemical reaction is taken to be
mixing-limited, and fuel and oxidant are assumed to react instantaneously. The effects of
turbulence are represented through a turbulence model in which a scalar eddy viscosity is
calculated from two local turbulence variables. In the current work, the k-E turbulence
model [6] is used, and partial differential equations are solved for the transport of the
kinetic energy of turbulence, k, and its dissipation rate, e. Radiation is neglected. These
simplifications are made primarily to capture the important features of the flow without
extensive computation. Calculations also are made for different geometric parameters to
study their influence on flow field development and mixing efficiency.

The following sections describe the details of the current calculations. The governing
equations are given in Section 2.2, and the solution algorithm is described briefly in Section
2.3. The results of the calculations for a base case of a dome position of 0.058 m (2 in.) and
a side arm angle of 450, corresponding to the experiments of Stull et al. [121, are given in
Section 2.4. In Section 2.5, the effects of varying the side arm angle, dome height, and
location of the fuel injector are investigated.

2.2 Governing Equations

The ducted rocket geometry is conveniently described in the cylindrical polar
coordinate system. The air flow from the side arms is prescribed as a boundary condition to
the flow domain; consequently, the flow in the side arms is not analyzed. Because of flow
recirculation in all three space directions, the fully elliptic three-dimensional steady-state
Navier-Stokes equations, given below, are solved.

Mass continuity

' (pu) + --L(rp v) + -L (pw) = 0
ax r ar rae (2.2)

x-momentum

a (puu) + -L(rpv u) + -L pwu)= - + !- (ru au
a x r ar rae ax ax a x1

+ a(rru !+ r aa (u+ SU (2.3)

r-momentum

a (uvj+ -L (rpvv)+ _L (pwv) + 1 rV Li
ax r ar rae ar ax( x

+ Lrvar! a vv' + v (2.4

rar ar rae ra
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0-momentum

a(puw) + .- (rpv w)a+ (pww)-- a r aw
TX rar rae rao ax I x~

+ i..rrw r- (rw )+ Sw (2.5)

The turbulent diffusional fluxes are calculated from a two-equation k- turbulence model.
The additional equations solved are the following:

Kinetic energy of turbulence (k)

a (puk) + (prvk)+ -L k(pwk) A

+ a(~k A +P-
rae Fk+aeI (2.6)

Rate of dissipation of k

a T pue + -L (p rve)+ -- pw (re Tt + ±(r r.
ax r ar rae ax~ a art T

+ r l r/ CtPs')- C2pe Jk
rae ra "I+k(2.7)

The turbulent viscosity It is calculated from the relation

2
it = C pk /. (2.8)

The chemical reaction is assumed to be fast and to occur in one step. The combustion process
therefore is limited by the mixing of the fuel and air streams. The mixing of the two streams
is calculated by solving an equation for a conserved scalar, defined as

f (= (2.9)

where eb = mfu - mox/i (also a conserved scalar) and the subscripts F and A denote fuel and
air streams, respectively. The statistical nature of the mixing is represented through an a
priori probability density function. Transport equations for the mean (f) and variance (g)
of the conserved scalar are solved (141. These equations are
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-(pul)+ _-L (rp vf) + -L(pwf) ±rf a. I + 1±(r rf.i
x r ar rae I x I ar Tr Iar

+ a (2.10)

-a(pug) + ..±(rp vg) + -L jpV + L (r r gC

ax r ar rao a x 51 a' r ar)

+ ( ) CglPg- Cg2 .rae 'r e/k "(2 .1 1 )

The various constants in the turbulence models are given the following values [61:

C1 = 0.09, C1 = 1.47, C2 = 1.92, Cgi = 2.8, Cg2 =2.0,

O=1.3 , a k =1. 0 , f=0.6, ag =0.6 . (2.12)

The expressions for the additional source terms and the exchange coefficients are given in
Table 2.1.

The fluid properties such as density and specific heat are evaluated from the
temperature field, which is calculated from the distribution of the mixture fraction and its
variance. A battlement-shaped probability density function is assumed, and the maximum
and minimum values of f at any point, f+ and f., are represented by

f+ f + g1/ 2  (2.13)

f. = f - g1/ 2  (2.14)

except where the value of f+ exceeds unity and where the value of f- is less than zero. In
regions where f+ exceeds unity and f- is less than zero, a factor, 0, is defined by

f = ftf+ + (1 - O)f_ , (2.15)

where 5 represents the proportion of time spent in the f+ state. Values of temperature and
the mass fractions of fuel and oxygen are calculated to correspond to f+ and f., and the mean
quantities are obtained from the corresponding T+, T-, mfu+ , mfu., mox+ , and mox.
together with 13. The density of the mixture of air, the combusting gas, and the combustion
products is represented by the equation for a perfect gas,

= RT (2.16)

where M is the mixture molecular weight and is calculated from the relation

1 , mfu + mox+ mpr
M Mfu Mox Mpr (2.17)
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The mixture specific heat is calculated from a linear combination of the component specific
heats. Thus,

Cp= ,mi Cpi
(2.18)

and

2
Cpi ai + bi T + ci (2.19)

The stagnation enthalpy is defined as

h= mfuHfu+ CPT+ lu2+ v + w ),(2.20)

where Hfu is the heat of reaction. The values currently assigned to the constants in specific
heat relations, molecular weights, etc., are given in Table 2.2 and correspond to those for
gaseous ethylene (C2 H4 ).

2.3 Solution Algorithm

The set of partial differential equations in Section 2.2 is solved by an iterative finite-
difference algorithm, SIMPLE 110]. The partial differential equations are integrated over
small discrete regions and are converted to a set of nonlinear algebraic equations. The
nonlinear algebraic equations are derived for the primitive variables u, v, w, and p. A
staggered-mesh system is employed in locating the flow variables on the finite-difference
grid, and an exponential internode variation of the variable is assumed for the purpose of
evaluating the fluxes from the faces of the control volumes.

The nonlinear algebraic equations are solved in a decoupled manner. The momentum
equations are first solved by using an estimated pressure field. The estimated pressure field
is then updated by solving a pressure correction equation, derived by combining the
momentum and continuity equations. To prevent numerical instability, the successive
changes of the flow variables are underrelaxed with their old values. The new value of a
general variable, 4, is taken to be

* = a n+ (1 - a) 00, (2.21)

where on is the value computed with no underrelaxation and 400 is the old iterate value. a is
the underrelaxation factor, which has a value between 0 and 1. The general structure of the
final finite-difference equation is

ApOp=TAnOn+SU+SPOP,
n (2.22)

where Ap and An are the finite-difference coefficients for point P and its six neighbors. Su

and SP are the integrated source terms, SP being the linearized part. Equation (2.22) is
solved by repeated alternate line sweeps in the three coordinate directions. At each line, a
line Gaussian elimination algorithm is used.
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Table 2.2 Fuel Properties Useda

Stoichiometric ratio (i) 15.58

Heat of reaction (Hfu) 4.895 x 104 kJ/kg

Molecular weights:

Air 25.36

C2 4  28.0

Products 25.55

Specific heat constants (kJ/deg/kg): ai  bi Cj

Air 0.927 2.580 x 10- 3  3.820 x 10- 8

Fuel 0.404 4.360 x 10- 3  -1.353 x 10- 6

Products 0.918 8.415 x 10- 4  -2.12 x 10- 7

a-The fuel properties correspond to those of gaseous ethylene (C2H4 ).
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2.4 Calculated Flow and Scalar Fields

2.4.1 Computational Aspects

Because of the complexity of the flow field, the rate of convergence of the calculations
was slow. For this reason, the present calculations were made only with a coarse finite-
difference mesh consisting of a modest number (11 x 11 x 24) of grid nodes. Because of the
symmetric flow, the equations were solved for only half of the cross section. The computer
time required for these calculations was 25 minutes on an IBM 3033 computer. Typically,
450 iterations were necessary to decrease the residuals to the 10- 4 level. Because of the
large computational times, finer finite-difference meshes could not be used. Nevertheless,
the accuracy of the present calculations is sufficient to understand the flow processes in
detail and to draw conclusions about the trends of the influences of the various geometric
parameters.

The conditions for the base configuration, given in Table 2.3, correspond to the
experiments of Stull et al. [12]. Perturbations have been made in the base configuration to
investigate the influence of the geometric parameters. The results of the calculations are
described in subsequent sections of this chapter.

2.4.2 Flow Field

The azimuthal location of the side arms and their inclination with the duct axis create
a complex vortex pattern. In the cross stream, the flow consists of two symmetrical pairs of
vortices. Figure 2.2 shows the development of these cross-sectional vortex structures at
several axial distances of the base flow configuration. The vortex structures are more
clearly formed downstream of the air entry, although some form of vortex structure is also
observed in the dome region. The cross-stream vortex pattern observed in the reacting flow
situation is similar to the isothermal flow pattern calculated earlier by Vanka et al. t111.

The flow structure in planes of constant azimuthal angle (0) is shown in Fig. 2.3. The
axial length is scaled down by a factor of four. The flow field in these planes comprises two
regions. In the dome region, i.e., between the air inlets and the dome plate, the flow consists
of low-velocity recirculating eddies. These eddies are formed when part of the air flow
bifurcates into the dome region and interacts with the fuel stream. The flow in this region is
truly three-dimensional. In the region downstream of the air inlet, the flow is helical, being
a superposition of a vortex pattern on an almost unidirectional flow. This flow structure of
the azimuthal planes also is similar to the isothermal flow field described by Vanka et al.
1111, but some differences exist. In the isothermal calculations, regions of flow
recirculation were also observed downstream of the air inlet. These regions are absent in the
reacting case. The probable cause for this is the expansion of the gases due to combustion,
and the resulting higher flow velocities. Although the flow in the region downstream of the
air inlets is unidirectional, there can be significant flow ellipticities because of the
nonuniformities in the pressure field.

2.4.3 Temperature and Fuel Fraction Contours

Figure 2.4 shows the contours of temperature at selected cross-sectional planes.
Because of the diffusion flame assumption, the temperature patterns are linked closely to the
fuel-air mixing patterns. The location where the fuel-air ratio is stoichiometric can be
interpreted as being on the flame front. For the temperature contours, this corresponds to
regions of steep temperature gradients.
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Table 2.3 Conditions for ]ase Calculations

Diameter of combustor 0.1524 m (6 in.)

Length of combustor 0.8636 m (34 in.)

Dome height 0.0508 m (2 in.)

Angle of side arms 450

Temperature of inlet air 556 K (1000- R)

Air flow rate (both arms) 1.814 kg/s (4 Ib/s)

Fuel flow rate (F/A - 0.06) 0.1088 kg/s (0.24 Ib/s)
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Figure 2.4(a) corresponds to a location in the dome region. Here, the fuel jet is
expanding, and fuel-air mixing occurs at the boundary of the fuel jet. Further downstream
[Fig. 2.4(b)], the hot products are transported by the cross-sectional vortex flow field, and
a more uniform temperature field is generated. The higher temperatures are at the left side
of the circumference and in the cross-sectional eddy. The location x . 0.0889 m
[Fig. 2.4(c)] corresponds to the downstream edge of the air inlet. The air entry is from the
right quadrant of the figure and is reflected In lower (-650 K) temperatures. The
penetration of the air stream into the combusting mixture can be seen in Figs. 2.4(d) and
2.4(e), characterized by lower temperatures. Figure 2.4(f) shows the tc.nperature pattern
that is formed after these complex mixing and reaction processes. The largest temperatures
occur on the wall opposite the air stream closer to the central plane and near the fuel
injection port. This behavior is in agreement with observed surface heating patterns [12].

Figure 2.5 shows the contours of the unburnt fuel fraction at various cross-sectional
planes. The location of the fuel jet and its dispersal can be observed easily from these plots.
The region in the right quadrant of Figure 2.5(c) corresponds to the air jet and has a low fuel
fraction. The gradual mixing and dimunition of fuel along the ducted rocket can be seen from
Figs. 2.5(a)-2.5(f). The fuel fractions are higher in the dome region because only a part of
the airstream is bifurcated into the dome and mixed with the fuel. For complete fuel-air
mixing and no combustion, the fuel fraction would be 0.0566. Under conditions of complete
combustion, no fuel will be at the exit of the ducted rocket. In the present situation, some
fuel is still present at x = 0.2540 m, and even beyond (not shown).

Figure 2.6 shows the cross-sectional average of the unburnt fuel fraction plotted
against the axial distance. (The curves for other dome heights are discussed later.) The fuel
fraction decreases very rapidly in the initial length of the ducted rocket. This region (up to
x - 0.3 m) is characterized by intense turbulence and mixing. Beyond x - 0.3 m, the
fuel-air mixing and reaction is slow, as reflected in the slow dimunition of the fuel. This low
rate of mixing is attributed to the nearly unidirectional flow shown in Fig. 2.3. The
combustion efficiency for this configuration is shown in Fig. 2.7. The combustion efficiency
is defined as the ratio of actual enthalpy rise to the ideal value for complete combustion. The
combustion efficiency for the present calculations is directly related to the mixing efficiency
because of the diffusion flame assumption. The value calculated for this configuration is
84%, which is very close to the value of 84.5% measured by Stull et al. [12].

A few important conclusions can be drawn from the above plots. First, the flow field
in the ducted rocket is very complex, consisting of several recirculation eddies. These
recirculation regions help to produce efficient fuel-air mixing. The flow in the downstream
region, however, is almost unidirectional. Second, the temperature distribution in the cross
section is severely nonuniform. When temperature-dependent finite chemical reaction rates
are important, these nonuniformities can significantly influence the overall combustion
efficiency. Third, about 60% of the efficiency is obtained in one-third of the length, while
the other 24% is recovered in the remaining two-thirds of the length. It is therefore
desirable to investigate alternative configurations that will disturb the strong unidirectional
flow. This might require major changes to the base configuration.

2.5 Influence of Geometric Parameters

Several geometric and flow parameters could influence the efficiency and the thrust
produced by a ducted rocket. These include the dome height, angle of side arms, location of the
fuel injector, fuel/air ratio, combustor pressure, and combustor dimensions. In this section
the influence of the first three parameters is considered.
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The location and angle of the side arms significantly alter the flow patterns in the
dome region. Vanka, Stull, and Craig [111 studied the effect of these parameters for the
isothermal flow situation. They observed that shifting the side arms toward the dome plate
compresses the eddy in the dome region, and steepening the angle of the arm modifies the
recirculation pattern downstream of the air flow and in the dome region. The present study
includes calculations that examine the effect of these parameters in a reacting flow and also
calculations with the fuel injector located at the center of the dome plate. The air and fuel
flow rates and the inlet temperatures are held fixed. The average unburnt fraction, plotted
against axial distance, is compared for the different cases.

2.5.1 Effect of Dome Height

The dome height influences the mixing process through changes to the recirculation
flow in the dome region. At 0 m dome height (i.e., with the side arms flush with the dome
plate), the recirculating flow in the dome region Is markedly decreased, and most of the air
flows directly to the exit nozzle. The mixing is therefore significantly reduced. The cross-
stream patterns are similar to those in the base case; therefore, only the calculated flow
patterns in the constant-0 planes are shown (Fig. 2.8), which reveals that the recirculation
in the dome region is markedly decreased. The temperature contours at selected locations for
this case are shown in Fig. 2.9.

Figure 2.10 shows the flow pattern for a larger dome height of 0.116 m (4 in.). In
this case, the recirculation region of the dome is increased, although it is not clear whether
more flow has been bifurcated into the dome. The flow pattern is, however, similar to that in
the base configuration.

The average unburnt fuel fraction and the combustion efficiency for the various dome
heights are shown in Figs. 2.6 and 2.7. Decreasing the dome height decreases combustion
efficiency very little, except for the 0 m position. The decrease in combustion efficiency is
related directly to the decrease in the recirculation eddy in the dome. Quite surprisingly, the
combustion efficiency is slightly lower for the dome height of 0.116 m (4 in.). Apparently
the increased length of the dome region does not increase the bifurcating flow but decreases
overall mixing because of the smaller combustor length available downstream of the air
inlet. It is interesting to observe that the base configuration has the optimum dome height.

2.5.2 Effect of Side Arm Angle

The inclination of the side arm with the duct axis influences the amount of fuel
bifurcated into the dome region. The larger this bifurcation flow, the better the mixing.
Steepening the side arm angle increases the flow into the dome, thereby increasing the
mixing.

This section examines the quantitative differences in mixing efficiency for three side
arm angles--600, 450 (base case), and 300. Figs. 2.11 and 2.12 show flow patterns in
selected constant-O planes for the 30 °and 600 side arm inclinations. The dome position and
other parameters were held at the base values. The changes in the dome eddy because of
changes in side arm angle are clearly evident in Figs. 2.11 and 2.12. The cross-stream
plots of velocities and concentration and temperature contours are similar to those for the
base calculations but differ somewhat quantitatively.

Figures 2.13 and 2.14 summarize the effect of the side arm angle through the plots of
unburnt average fuel fraction and combustion efficiency along the combustor length. As
expected, there is some improvement in the mixing efficiency when the angle of inclination is
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made steeper to 600, but flattening the angle to 300 lowers the efficiency considerably.

These changes are purely the result of the modified flow paths.

2.5.3 Effect of Injector Location

The location of the injector alters the interface between the fuel and air streams. We
have compared the fuel dispersal patterns for the cases of concentric and eccentric injection
of the fuel. In the concentric case, the fuel injector is located at the center of the dome plate,
and the other parameters are the same as for the base case. Figure 2.15 shows the flow
patterns in the azimuthal planes for the concentric injection case. The qualitative
differences between thp two flow patterns in the dome region are clearly evident. In the
concentric case, the fuel jet is in the region of the air impingement and directly interacts
with the air stream. The location of the flame front is therefore also different in this case.
The temperature contours for the concentric injection case are shown in Fig. 2.16.

Figures 2.17 and 2.18 show the unburnt fuel fraction and combustion efficiency for
the concentric injection case. The overall mixing efficiency has dropped to 70% from the
base value of 84%. Although we expected that the mixing efficiency might improve when the
injector was located in the region of air impingement, the fuel jet apparently created a
central adverse pressure gradient, thus decreasing the bifurcating air flow into the dome
region. In the case of the eccentric injection, the fuel jet is not directly in the region where
the air flow bifurcates, so more flow enters the dome, increasing the fuel-air mixing. This
is an interesting observation, pointing out the importance of the bifurcating flow in
improving combustion efficiency.

3. COUPLED SOLUTION USING DIRECT SOLVERS

3.1 Introduction

In view of the slow convergence of the SIMPLE-based algorithms, further research
was directed to the improvement of the numerical procedure employed for the solution of the
governing equations. These efforts were necessary to ensure that grid-independent solutions
of the differential equations can be obtained at affordable computing costs. 'n this section,
efforts related to a coupled solution of the equations using sparse matrix inversion
algorithms are described. The coupled solution of the momentum and continuity equations
eliminates the use of the pressure or pressure correction equations and preserves
simultaneity between the pressure and velocity fields. This approach is also known as block
solution or block relaxation. The block inversion in conjunction with a direct solver was
rapidly convergent but needed large amounts of computer storage. The storage problem was
resolvable in two-dimensional flows, but it became very critical in three dimensions. The
direct inversion procedure was applied to the calculation of two-dimensional turbulent
reacting flows with recirculation and three-dimensional isothermal flows with a
predominant flow direction. In this and the next section, this work relating to direct
inversion techniques is described, and the results are presented.

3.2 General Concept

In the direct inversion procedure, the finite-difference equations for momentum and
continuity are solved simultaneously with a sparse matrix algorithm. Because the equations
are nonlinear, several inversions are necessary, during which the convective coefficients
and other nonlinearities such as density and viscosity are updated. However, the number of
iterations is much smaller than when a decoupled iterative procedure is used. Therefore,
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direct inversion of the coupled equations can be faster than algorithms such as SIMPLE, even
though the time per iteration is higher.

Consider the two-dimensional Navier-Stokes equations governing laminar elliptic
flows in a planar (x,y) geometry and written as follows:

a (pu) + (pv)= 0 (3.a)x cly(31
aipuu)+ a(Pvu)= - R + A a + a A au)+SU (3.2)
x ay ax x ax) ay (.ay)

, (Puvj + 1.- (pvv) = - ap+ 1-Aa + (3.3)v+ S
ax ay ay ax - Lax ay ayj (3.3)

In the above equations u and v are the two velocity components, p is the pressure, and p is the
density. The symbol ii represents dynamic viscosity of the fluid and Su and Sv represent
other source terms such as flow resistances. For turbulent flows and with heat transfer,
solution of additional equations is necessary.

The above equations must first be expressed as discrete equations. Several
differencing schemes are possible. The most popular scheme is the hybrid differencing
scheme [15] that combines the upwind scheme with a central difference formula. When the
cell Peclet number is greater than or equal to two, the upwind difference scheme is used. The
set of difference equations is the same as that obtained in the previous section for the
calculation of ducted rocket flows. The nonlinear finite-difference equations can be written
as

u{
Fi, (ui,j, uij 1, ui l, j , uij+l, ... = 0 (3.4)

vl
Fi,j (vi,j ,vi,j-1, Vi+ , j , vi,j+l, ...) .0 (3.5)

Fi,j(uri,, ui-,j, viJ vi,j-1)= 0 (3.6)

where i = 2, m - 1 and j = 2, n - 1 for a (m x n) grid. The total number of equations in the
system is 3 x (m - 2) x (n - 2). The functions Fu and Fv are nonlinear functions of the
velocities listed as arguments. In reacting and turbulent flows, additional equations must be
solved. These equations need not be coupled with the fluid flow equations but can be solved
separately, interacting with the flow field only through updates of density and turbulent
viscosity.

The first step in the coupled solution of the equations is to arrange all the relevant
equations into one large set. If F(X) represents this large set, the solution to

F(X) = (Fu, Fv , Fc)T = 0 (3.7)

is desired, where
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X = (u,v,p)T (3.8)

is the column vector of unknown discrete velocities and pressures. The number of unknowns
for a two-dimensional problem is 3 x (m - 2) x (n - 2) .

Starting from a given initial guess for the unknown solution vector X and the proper
conditions at the flow domain boundaries, we first evaluate the residuals in Eq. (3.7). The
next approximation to the solution vector is then calculated by using Newton's method, i.e.,

X, = XO- (aF/aX)o F o , (3.9)

where (aF/aX)n is the Jacobian matrix evaluated by using values in XO. For a general
iteration index R, Eq. (3.9) can be written as

-1
Xk+1 - X k - (aF/a) kFk, (3.10)

-1

where Xk+1, Xk, and Fk are column vectors and (aF/ax~k is a sparse matrig.1 Iterative
updates using Eq. (3.10) are obtained through reevaluation of Fk and OF/aX)k at every
iteration. Equation (3.10) may be rewritten as

aF/aX)k(AXk= - Fk, (3.11)

where AXk is the update vector to Xk.

The solution of the above set of linear equations can be achieved in several ways. Both
iterative and direct methods can be employed. However, because of the asymmetric nature of
the coefficient matrix, iterative methods can be unreliable and slow to converge. In the
present study, therefore, a direct matrix inversion procedure [16] has been employed.
Direct methods have the advantage of robustness and convergence in a known number of
operations, although they need more storage for retaining the inverse (LU factors) of the
matrix. The coefficient matrix of the present equation set has a block structure, as shown in
Fig. 3.1. The matrix has a symmetric structure but asymmetric values of coefficients. For
incompressible flows, the matrix contains zeros on diagonals, corresponding to the absence of
pressure in the continuity equation. The equations however, can be preordered so that all
diagonals are nonzero by placing the continuity equation second in the block at each node. The
blocks are further preordered on alternate diagonals (Fig. 3.2) in order to reduce "fill in"
caused during the LU factorization. The LU factorization transforms the problem to

LU AXk - - Fk, (3.12)

which can be written as

LY =-Fk (3.13)

and

U tXk = Y, (3.14)

where Y is an intermediate vector in the solution process. Equations (3.13) and (3.14) are
solved by forward and backward substitutions, respectively.
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3.3 Results for Laminar Flows

Initial tests of the algorithm were performed in laminar flows; the results are
described in this section. Extensions to turbulent, reacting and three-dimensional flows are
described in Section 4. For two-dimensional laminar flows, two representative
recirculating flows were considered, namely flow in a square cavity with a moving top wall
and flow in a two-dimensional planar sudden expansion.

3.3.1 Laminar Flow In a Driven Square Cavity

The driven cavity flow (Fig. 3.3) has been the subject of much study [17] and is
commonly considered a good test case for any numerical algorithm or finite-differencing
scheme. The cavity flow is a shear-driven vortex (or set of vortices) that exhibits a strong
coupling between the momentum and continuity equations. We have performed calculations
with 11 x 11, 21 x 21, and 41 x 41 finite-difference grids for Reynolds numbers
ranging up to 2000. The converged flow fields were compared against the results from a
SIMPLE-based code [10] by using the same finite-differencing practices; thus, agreement
between the two sets of calculations was ensured. Hence we limit our discussion to the
observed rates of convergence rather than to the accuracy of the results. Tables 3.1, 3.2,
and 3.3 summarize the convergence characteristics of the algorithm for the square cavity
flow.

Table 3.1 presents the rate of convergence at a typical Reynolds number (based on
cavity depth and top wall velocity) of 1000. The initial guess for the internal flow field is
zero velocities and pressures. Table 3.1 presents the successive nondimensional changes in
velocities and pressures in the iteration sequence; the convergence is rapid and monotonic.
Since the flow field converges to a reasonable accuracy in the first few iterations, the
Jacobian matrix and its LU factors are frozen after the first few iterations and used
unchanged for the remaining iterations. Table 3.2 shows the behavior of the scheme with
increase in the Reynolds number. Calculations were made up to Re = 2000, starting from a
Reynolds number of 100. The number of iterations required to achieve a convergence
criterion of max (8u/uw, 8v/uw, 8P/Uw 2 ) less than 1.0 x 10- 5 have been tabulated. The
calculations were made with single precision storage on an IBM 3033 machine. We observed
a slight increase in solution time when the Reynolds number is increased. This can be
attributed to the increased nonlinearity of the equations (because of the predominance of
convection terms) at higher Reynolds numbers. We also observed that at higher Reynolds
numbers it is beneficial to perform one or two additional LU factorizations. Table 3.3 shows
the rates of convergence for different nonuniform mesh sizes. In these calculations, the
dimensions of the square cavity were kept the same, but the number of grid nodes in the y
direction was progressively increased. Several Reynolds numbers were considered for each
grid size. Table 3.3 presents the number of iterations required to reach a convergence
criterion of max (Bu/uw, 8v/uw, 8p/Uw 2 ) less than 1.0 x 10 - . The convergence behavior
is not degraded significantly when the grid aspect ratio is increased. This is a significant
aspect of the algorithm because in many practical geometries of industrial importance the
grids used are required to be of nonunity aspect ratio.

3.3.2 Flow In a Sudden Expansion

The second flow geometry (Fig. 3.4) considered is a plane sudden expansion with an
expansion ratio of 2.0. Geometries with a sudden expansion are frequently encountered in
heat exchangers, flow-metering devices, and gas turbine combustors. Several experimental,
analytical, and numerical studies of sudden-expansion flows have been reported [e.g.,
18,191. Table 3.4 shows the rates of convergence of the present algorithm for two different
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Table 3.2(b) Convergence Behavior with Increase in Reynolds Number
for Driven Square Cavity Flow with 41 x 41 Grid

No. of Iterations No. of LU CPU Time (secs)'

Re for Convergence Decompositions Time for Coeffs. Time for Soln.

100 7 5 2.52 62.11

400 8 8 2.88 95.45

800 10 8 3.60 95.90

1000 10 8 3.60 96.10

1200 10 8 3.60 96.04

1600 10 8 3.60 95.5

2000 11 8 3.96 95.8

a - IBM 3033 Computer

Table 3.3 Number of Iterations for Convergence with Grid
Nonuniformity for Square Cavity Flow

Grid Size

Re 6 x 6 6 x 11 6 x 21 6 x 41

100 6 9 8 8

400 8 10 10 10

800 9 10 10 10

1600 11 10 11 11

2000 11 10 12 13
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finite-difference grids at a Reynolds number of 400. Rapid and monotonic convergence is
also observed (Table 3.5) for other Reynolds numbers. In most cases, performing three LU
decompositions of the Jacobian was sufficient, although at high Reynolds number an extra LU
factorization was helpful in reducing total time. An extra iteration consists of the solve stage
and the calculation of the residuals in the equations; this is faster than factorization of the
matrix. Therefore, the tradeoff of performing an extra LU decomposition and minimizing
outer iterations has value.

3.4 Storage Requirements

The main disadvantage of the direct inversion procedure is the requirement of
excessive amounts of storage for the LU decomposition. The requirements for storage have
been reduced somewhat by preordering the nodes and by a domain decomposition technique
(described in Section 4.2.2). Nevertheless, the matrix inversion is expensive in storage and
not affordable in three dimensions. To give a perspective of storage requirements, the array
dimensions for the two problems are given in Table 3.6. The last column gives the storage
for both the pointers and the nonzero coefficients. Table 3.7 compares the computing times
with those for the SIMPLE algorithm.

4. EXTENSION OF DIRECT SOLUTION TO COMPLEX FLOWS

The fully coupled concept is applicable also to turbulent and reacting flows; in this
section, these extensions are described. Also described are a domain decomposition procedure
developed to reduce the storage demands and a plane-by-plane inversion procedure for
calculating three-dimensional flows. Finally, the technique has been applied to calculate
benchmark experiments of turbulent isothermal and reacting flows. The comparisons
between the calculated and measured quantities are also provided.

4.1 Extension to Turbulent Flows

In the present study, turbulent flows are calculated by the Reynolds-averaged
approach. That is, equations are solved for an ensemble average of the instantaneous states.
The averaging process gives rise to additional terms that involve products of the fluctuations
of velocities, densities, and scalars. These additional items must be related to the resolved
quantities through some hypotheses. The most popularly used model is the eddy-viscosity-
based k-E two-equation model, which defines an isotropic turbulent viscosity, gt, as

2Igt = c.pPk2/ E (4.1)

and calculates the shear stresses as

u u =9IV +ai (4.2)(axj ax,,

Here k stands for the kinetic energy of turbulence, and E is its rate of dissipation. The values
of k and E are calculated from the solution of two additional partial differential equations
representing transport, generation, and dissipation of the turbulence quantities. An
extensive literature exists on the performance of the k-e model in complex flows 17].
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Table 3.6 Storage Details for Various Grids Used

No. of No. of Total Storage

No. of Nonzeros Nonzeros (words) for

Grid Equations in Jacobian after Fill-in Pointers & Elements

Square Cavity

11XI 243 1,627 5,045 14,560

21x21 1,083 7,987 38,810 99,010

41x41 4,563 35,107 289,040 671,110

Sudden Expansion

24x12 660 4,711 17,272 47,926

40x20 2,052 15,415 82,864 208,870
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Table 3.7 Representative Comparison of Computing Times
with the SIMPLE Algorithma

No. of Iterationsb  Total Computing Time (sec)

Representative Coupled Coupled
Calculation SIMPLE Solution SIMPLE Solution

Square Cavity
1Ixl1 Grid

Re = 100 68 6 1.82 0.38
Re = 1000 78 9 2.10 0.58

21x21 Grid

Re = 100 208 6 24.40 3.49
Re = 1000 198 9 23.45 5.32

41x41 Grid

Re = 100 8 0 0c 7 340.0 64.93
Re = 1000 800 10 336.0 99.70

Sudden Expansion
24x12 Grid

Re = 100 116 13 8.36 2.07
Re = 400 2 50d 12 18.26 2.25

40x20 Grid

Re = 100 231 23 64.43 13.93
Re = 400 2 5 0e 21 70.80 13.33

a- Reference [103
b- Convergence limit of 1.OE-5
c- Converged to only 1.OE-4 level
d- Converged to only 1.OE-3 level
e- Converged to only 2.5E-3 level
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The source terms in the turbulence equations representing the generation and
dissipation of k and e are highly nonlinear and dominate the equations. The source terms have
the form

Sk = P- Pg, (4.3)

..= CI-e- peSe - C2.P

k k (4.4)

where P is the production of turbulence energy and C1 , C2 are constants. Sk and Se are
tightly linked, and the relationship of 1/k in S. makes the terms highly nonlinear.

Initially, a coupled solution was attempted of all the transport equations including u,
v, p, k, e, and the algebraic relation for Pt. The Jacobian of the entire set was derived by
appropriate differentiation of the coefficients and the source terms. The flow in a sudden
expansion was considered as a test case. However, this solution scheme was nonconvergent
and quickly led to negative, nonphysical values of k and e. The cause for this divergence was
found to be the stiff nonlinear source terms in the e, which led to inaccurate values of , and k.
After several alternative attempts to rectify this problem, the coupled solution of the k-e and
the rest of the equations was abandoned in favor of a dficoupled, two-stage solution.

In the two-stage strategy, the momentum and continuity equations are solved first in
a coupled manner for a given distribution of turbulent viscosity. One iteration on the
velocities is followed by the solution of the turbulence equations. The k- turbulence
equations are then solved coupled, typically with three sweeps over the flow domain. In each
of these sweeps, the nonlinear source terms are updated with the latest values of k. Thus, the
nonlinearities of the source terms are resolved accurately before the turbulent viscosity is
updated. The momentum and continuity equations are then solved with the updated viscosity.
The iterations are continued until the residuals in the momentum equations have decreased to
acceptable values.

The two-stage strategy has been applied to calculate five isothermal turbulent flows.
The geometries considered are (a) turbulent flow in a pipe; (b) flow in a sudden expansion;
(c) coaxial jets in a sudden expansion. For the flow in a sudden expansion, the geometries
simulated are those considered in the experiments of Craig et al. [201 and of Moon and
Rudinger [21 ]. For the case of coaxial jets, experiments of Habib and Whitelaw [221 and
Johnson and Bennett [231 have been simulated. The calculated velocity profiles are compared
with published experimental data.

4.1.1 Experiments of Craig et al. [20]

The configuration considered by Craig et al. has an area ratio of 3.6 and a flow
Reynolds number based on inlet pipe diameter of 8.2 x 104 . The computations for this
configuration were performed with two different grid distributions. The first grid contained
40 nodes in the axial direction and 20 in the radial direction. The second grid contained 50
nodes in the axial direction and 30 nodes in the radial direction. The grid nodes were
nonuniformly distributed, with more nodes in high-shear regions. The initial guess for the
flow field was a plug distribution of axial velocity and zero radial velocities and pressures.
The k and e fields were initiated from constant values for turbulence intensity and length
scale. The values of u and k were prescribed from measured data, and E was calculated from a
constant length scale of 0.3 rin; thus E = k3 /2/(0.3 rin).
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Table 4.1 shows the rate of convergence of the algorithm as depicted by the successive
changes in flow variables between two Newton's iterations. The changes in velocity and
pressure are normalized with the inlet velocity and dynamic head (pu), respectively. The
changes printed for k- and s-equations are small because these equations are solved to a high
accuracy at each iteration. Table 4.1 shows that the current algorithm achieves high
accuracy in typically 20 iterations. The convergence is both monotonic and rapid. The
convergence rates for both the coarse and fine grids are good, indicating equal efficiencies on
finer grids. The rate of convergence over a range of Reynolds numbers from 5.0 x 104 to
1.0 x 106 has also been studied; the results are summarized In Table 4.2, where the
normalized residuals in the momentum and continuity equations at the 20th iteration are
presented.

4.1.2 Experiments of Moon and Rudinger [21]

Moon and Rudinger's experiments were performed in a test channel with an area ratio
of 2.04 and a Reynolds number, based on inlet tube diameter, of 2.8 x 105. The inlet pipe
was long enough to achieve fully developed turbulent flow profiles at the inlet; the
computations were therefore prescribed fully developed turbulent flow values of u, v, k, and
e from a prior run for a pipe geometry. Calculations for this experiment were made for two
grids consisting of 40 x 20 and 50 x 30 nodes. The axial length of the calculation domain
was choser to be long enough to permit the imposition of zero-derivative boundary conditions
at the exit ot the domain. The initial guess to the flow field was again plug axial velocities and
zero radial velocities and pressures. The rates of convergence for two grids are shown in
Table 4.3.

4.1.3 Comparison with Experimental Data

The calculated radial profiles of mean axial velocity for the experiments of Craig et
al. 1201 are plotted in Figs. 4.1-4.7. The velocities are normalized with the inlet centerline
velocity for the 50 x 30 grid. The agreement between the calculated and measured values is
good up to x/H = 7.8. Beyond this point, the calculations deviate somewhat from the
experimental data. The disagreement is most pronounced in the region near the axis, where
the calculations predict higher values. A similar trend is seen at x/H - 16.87, with higher
calculated values for the central region. A similar disagreement between measurements and
predictions was observed in other calculations of this study.

Figures 4.8-4.12 compare the calculated mean velocities with the experiments of
Moon and Rudinger [21]. In this case the inlet conditions were those of fully developed pipe
flow, and the calculations were prescribed appropriate values from prior calculations of a
fully developed pipe flow. The k-e model is reasonably accurate in pipe flows, so the current
inlet conditions may be considered not to be in error.

The agreement between calculations and experimental data is satisfactory up to
x/D o = 1.5, and the reattachment point is well predicted (x/D o - 1.2). Farther
downstream, however, the calculations differ from the measured values. The calculated
values of mean velocity for x/D o - 3.0 are shown in Fig. 4.12. At this station, as in the case
of Craig et al., the central velocities are overpredicted. The same observation can be made
for Fig. 4.13, in which the centerline axial velocity is compared with experiments. The
discrepancy here is similar to that observed in the calculations of Craig et al.; however,

. In subsequent calculations, we observed that the agreement can be improved by a more
accurate prescription of the inlet dissipation.
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Table 4.1(a) Convergence Rate for Craig's Sudden-Expansion low,

Re - 8.2 x 104, 40 x 20 Grid

Iteration Unv/Uin 6p/u2n  6k 6C

I 7.363E-1 1.509E-1 3.1lOE-2 2.819E-4 2.031E-3
2 2.797E-I 1.338E-1 1.812E-1 5.124E-5 1.364E-4
3 2.338E-1 1.066E-I 5.339E-2 1.555E-4 3.481E-4
4 1.636E-1 9.107E-2 3.919E-2 4.267E-5 2.405E-4
5 1.462E-1 5.056E-2 1.817E-2 3.083E-6 1.305E-4

6 5.216E-2 4.062E-2 2.590E-2 8.678E-6 I.229E-5
7 3.340E-2 1.915E-2 4.994E-3 5.583E-6 3.612E-5
8 1.347E-2 1.339E-2 6.047E-3 5.996E-5 9.423E-5
9 8.253E-3 5.455E-3 1.591E-3 5.006E-3 8.130E-5
10 4.702E-3 4.024E-3 1.854E-3 2.445E-5 4.417E-5

11 2.264E-3 1.937E-3 8.004E-4 6.024E-5 1.860E-5
12 1.152E-3 1.00E-3 3.370E-4 2.033E-5 3.636E-6
13 5.792E-4 5.058E-2 1.708E-4 1.094E-6 5.007E-6
14 2.935E-4 2.568E-4 9.391E-5 1.227E-5 7.033E-6
15 1.555E-4 1.330E-4 5.307E-5 2.848E-6 5.007E-6

16 5.744E-4 5.759E-5 2.475E-5 6.345E-6 1.958E-6
17 2.409E-4 1.908E-5 3.631E-6 1.0IOE-5 5.305E-6
18 3.198E-5 1.469E-5 7.077E-6 9.308E-6 2.544E-6
19 1.801E-5 7.935E-6 3.656E-6 6.222E-6 2.742E-6
20 7.547E-6 1.535E-6 2.204E-6 8.465E-6 8.698E-7
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Table 4.1(b) Convergence Rate for Craig's Sudden-Expansion Flow,

R- 8.2 x 10,50 x 30 Grid

Iteration 6uu vuh 6p/t42 6k 6

I 7.357E-1 1.394E-1 3.507E-2 2.351E-4 1.594E-3
2 3.548E-1 1.255E-1 1.802E-1 1.383E-5 9.280E-5
3 3.146E-1 1.046E-1 5.929E-2 2.555E-4 5.757E-4
4 1.642E-1 1.043E-1 4.780E-2 3.053E-5 2.041E-4
5 1.600E-1 7.433E-2 2.054E-2 1.670E-5 5.901E-5

6 8.404E-2 5.974E-2 3.072E-2 3.549E-5 1.803E-4
7 7.428E-2 4.136E-2 1.493E-2 3.933E-5 1.674E-4
8 4.286E-2 3.186E-2 1.469E-2 9.852E-6 4.554E-5
9 3.043E-2 1.699E-2 5.713E-3 9.312E-6 4.11.3E-5

10 1.605E-2 1.142E-2 3.813E-4 1.582E-3 6.938E-5

11 1.050E-2 5.680E-3 1.209E-3 7.798E-6 3.445E-5
12 6.581E-3 4.155E-3 9.466E-4 6.910E-6 8.345E-6
13 3.902E-3 2.388E-3 7.181E-4 2.159E-5 8.166E-5
14 2.466E-3 1.499E-3 6.049E-4 1.686E-5 6.217E-5
15 1.458E-3 9.071E-4 3.578E-4 9.266E-6 3.576E-5

16 8.351E-4 5.070E-4 1.591E-4 3.364E-6 3.338E-6
17 4.527E-4 2.759E-4 5.492E-5 3.095E-5 1.654E-6
18 2.417E-4 1.455E-4 3.247E-5 4.921E-6 1.132E-6
19 1.339E-4 7.991E-5 2.046E-5 1.037E-6 2.082E-6
20 7.795E-5 4.725E-5 1.243E-5 2.020E-6 1.848E-6
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Table 4.2 Normalized Residuals in the Finite-Difference Equations

after 20 Iterations (Craig's Geometry)

(40 x 20) Grid (50 x 30) Grid

Re u/uin Sv/uin in u/ui Sv/uin i

5 x 104~ 6.350E-6 1.706E-6 1.372E-5 5. 138E-5 3.030E-5 8.788E-6

8.2x10 4  6.831E-6 1. 831IE-6 1.751E-6 7.795E-5 4.725E-4 1. 243E-5

I x 105 7.547E-6 1. 535E-6 2.204E-6 9.102E-5 5.498E-5 1.420E-5

2 x 105 7.940E-6 1.710E-6 2. 262E-6 2.810E-5a 5. 232E-6a 4.349E-6a

5 x 105 9.535E-6 2.279E-6 2.426E-6 1.022E-5a 5.128E-5a 3.172E-6a

IO061. 176E- 5 2.982E-6 3.452E-6 3.9O0E-5a I.467E-5a 3.891E-6a

a- These values are at the 25th iteration.
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Table 4 .3(a) Convergence Rate tar Mogn and Rudinger's Sudden-Expansion
Geometry, Re - 2.8 x 10 ,40 x 20 Grid

Iteration Su/~ vu ~ 'p/Uj 6k 6E

I 6.125E-1 1.899E-1 4.458E-2 1.928E-4 4.309E-3
2 4.272E-1 2.739E-1 2.880E-1 1.470E-3 8.712E-3
3 3.039E-1 9.511E-2 8.012E-2 1.173E-4 3.901E-4
4 2.243E-1 5.110E-2 5.215E-2 1.398E-5 6.676E-5
5 1.468E-1 1.730E-2 1.114E-2 7.383E-6 3.754E-5

6 7.124E-2 2.782E-2 2.099E-2 3.762E-6 1.249E-5
7 4.321E-2 1.780E-2 8.631E-3 3.783E-6 1.563E-5
8 2.402E-2 1.237E-2 6.822E-3 1.738E-5 8.011E-5
9 1.375E-2 6.683E-3 3.066E-3 1.284E-5 6.390E-5

10 6.951E-3 3.866E-3 1.864E-3 5.569E-6 2.766E-5

11 3.713E-3 1.880E-3 8.652E-4 3.115E-5 6.522E-6
12 2.079E-3 1.038E-3 4.955E-4 1.140E-5 2.575E-5
13 1.133E-3 5.414E-4 2.568E-4 2.484E-5 9.215E-6
14 6.228E-4 2.812E-4 1.35SE-4 3.657E-6 1.886E-6
15 3.485E-4 1.469E-4 7.162E-5 1.996E-6 7.698E-6

16 1.956E'-4 7.326E-5 3.662E-5 1.426E-5 6.735E-6
17 1.068E-4 3.534E-5 1.667E-5 6.486E-6 2.170E-6
18 6.339E-5 1.926E-5 8.109E-6 2.551E-6 9.908E-7
19 3.549E-5 1.124E-5 3.262E-6 1.476E-6 4.537E-7
20 2.043E-5 6.534E-6 2.040E-6 4.049E-6 5.154E-7
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Table 4.3(b) Convergence Rate for Moon and Rudinger's Sudden-Expansion
Geometry, Re = 2.8 x 10,50 x 30 Grid

Iteration 6uu vun 6p/U2 Sk6E

I 6.159E-1 1.997E-1 4.552E-2 5.433E-5 1.949E-3
2 4.152E-1 2.718E-1 2.774E-1 3.461E-4 1.911E-3
3 3.721E-1 9.740E-2 6.061E-2 1.595E-4 6.669E-4
4 1.998E-1 8.047E-2 4.763E-2 4.820E-6 3.815E-5
5 1.642E-1 3.731E-2 2.249E-2 5.698E-6 2.575E-5

6 9.982E-1 4.258L 1.670E-2 9.790E-6 4.196E-5
7 7.467E-2 3.102E-2 8.039E-3 1.083E-5 5.627E-5
8 3.325E-2 2.041E-2 7.035E-3 2.066E-6 1.062E-5
9 1.578E-2 8.950E-3 2.086E-3 2.932E-6 5.904E-6

10 5.142E-3 4.686E-3 1.649E-3 7.148E-6 1.335E-5

11 1.486E-3 1.231E-3 2.866E-4 1.482E-6 7.629E-6
12 6.688E-4 3.528E-4 1.364E-4 2.155E-6 2.480E-5
13 5.418E-4 1.311E-4 3.029E-5 3.651E-6 1.812E-5
14 3.748E-4 1.483E-4 3.635E-5 5.983E-6 9.537E-6
15 2.269E-4 1.070E-4 3.199E-5 7.783E-6 4.152E-6

16 1.241E-4 6..470E-5 1.997E-5 4.394E-6 2.372E-6
17 6.202E-5 3.469E-5 1.146E-5 4.115E-6 2.092E-6
18 2.793E-5 1.709E-5 4.762E-6 1.524E-6 7.754E-7
19 1.103E-5 7.639E-5 2.091E-6 2.494E-6 1.504E-6
20 4.472E-6 2.818E-5 9.868E-7 1.269E-6 9.814E-7
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because the expansion ratio and the Reynolds numbers have been different in the two cases,
the locations and magnitudes of the disagreements are different. Modifications to the current
turbulence model therefore appear to be necessary.

4.1.4 Flow In a Sudden Expansion with Coaxial Jets

The flow of two coaxial jet streams into a sudden-expansion geometry is an idealized
representation of the gas turbine combustor, with the two streams representing fuel and
oxidant flows. The two streams have different velocities, and usually one or both of them
have an inlet swirl velocity component. The mixing of the two streams is important to the
efficient burning of the fuel for both combustion efficiency and pollutant formation. The flow
geometry is akin to the simple sudden-expansion geometry except for the inlet conditions.
The mixing of the two coaxial streams has been studied both experimentally and through
numerical modeling [22-25].

To test the behavior of the numerical scheme at different parameter values, we have
again considered two experimental configurations-those of Johnson and Bennett [23] and
Habib and Whitelaw [22]. The differences in the two sets are the dimensions of the geometry
and the flow rates of the two streams. In the following subsections the results of these
computations and their comparison with experimental data are presented.

Experiments of Johnson and Bennett [23]

The geometry of the experiments of Johnson and Bennett is shown in Fig. 4.14. The
two coaxial jets discharging into the enlarged chamber have ratios of annular jet diameter to
inner jet diameter of approximately two and ratios of annular jet diameter to outer wall
diameter of approximately four. The measurements were made with an average velocity in
the inner supply pipe of 0.591 m/s and an average velocity of 1.74 m/s in the annular jet.
The inlet conditions were reported for a plane 12.7 mm downstream of the inlet of the
central pipe and 19.0 mm upstream of the inlet for the annulus. The development of the
velocity field and the transport of a scalar chemical species (dye) were measured by using
laser Doppler velocimetry and laser fluorescent techniques. Predictions of this
configuration have also been reported [24,25].

The current calculations were made with a 40 x 40 finite-difference grid with
nonuniform packing of the grid nodes. More nodes were placed in high-shear regions. The
inlet was modeled with a knife edge separation of the two streams and with fully developed
turbulent pipe and annulus flow fields. We recognize that the inlet conditions can
appreciably affect the downstream flow development. However, in the absence of complete
information at the inlet, the present prescription is felt appropriate for the purpose of
algorithm validation. The initial guess for the flow field was a plug velocity distribution
with no radial velocities, and the turbulence variables were given simplistic distributions
based on constant turbulence intensity and constant length scale. Table 4.4 shows the rate of
convergence of the algorithm through the maximum successive changes in the flow variables.
The changes in the velocities are normalized with the average velocity in the inner stream,
and the pressure changes are divided by the inner stream dynamic head. These changes are
closely related to the residuals in the finite-difference equations. The algorithm converges
rapidly to a high accuracy, in about 20 iterations. For this case, parametric calculations
with changes in flow Reynolds number have not been made, but we believe that the
convergence rate will be equally satisfactory at other Reynolds numbers and velocity ratios
of the two jets.
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R4

U1 R3

Johnson Habib
Bennett Whitelaw

R1  15.3 mm 8.05 mm

R2  15.3 mm 10.8 mm

R3  29.5 mm 22.5 mm

R4  61.0 mm 62.5 mm

Ul/U 2  2.95 3.0

Fig. 4.14 Geometry of Coaxial Jets in a Sudden Expansion
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Table 4.4 Convergence Rate for Johnson & Bennett's Coaxial

Jet Sudden-Expansion Flaw

Iteration 6u/ua 6V/ua ap/u2  6k rav avav

1 5.308E+0 7.156E-1 3.709E-1 4.916F-5 7.721E-5
2 2.356E+0 9.428E-1 4.558E+C 5.049E-5 9.716E-5
3 2.322E+0 8.160E-1l 2.714E+0 1.655E-4 2.202E-4
4 9.293E-1 6.058E-1 1.536E+0 2.259E-5 3.842E-5
5 9.395E-1 2.621E-1 8.746E-1 8.966E-6 5.893E-6

6 4.390E-1 2.105E-1 5.304E-1 5.484E-6 1.848E-6
7 4.087E-1 1.665E-1 2.747E-1 1.620E-5 2.500E-6
8 1.916E-1 1.179E-1 2.164E-1 2.590E-5 4.634E-6
9 1.367E-1 6.038E-2 9.027E-2 1.754E-5 4.560E-6

10 6.836E-2 4.060E-2 6.296E-2 3.617E-5 4.958E-6

11 4.273E-2 2.045E-2 2.588E-2 1.841E-5 3.200E-6
12 2.450E-2 1.413E-2 1.565E-2 7.703E-6 1.315E-6
13 1.193E-2 7.145E-3 7.249E-3 3.939E-6 3.569E-6
14 5.868E-3 3.382E-3 3.253E-3 4.004E-6 1.509E-6
15 2'.547E-3 1.611E-3 1.415E-3 1.611E-6 2.697E-7

16 1.014E-3 6.665E-4 5.561E-4 4.569E-7 8.903E-7
17 3.653E-4 2.629E-4 1.783E-4 2.115E-6 9.313E-7
18 1.173E-4 9.463E-5 7.757E-5 6.587E-7 2.831E-7
19 5.135E-5 2.551E-5 4.915E-5 6.559E-7 7.078E-8
20 5.255E-* ).968E-6 3.624E-5 4.733E-7 1.069E-7
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Experiments of Habib and Whitelaw [22]

The final configuration considered in this study is that of Habib and Whitelaw (22).
This experimental study preceded slightly the measurements of Johnson and Bennett [231.
The test configuration is the same, but the velocity ratio and the geometric dimensions are
different; these are listed in Fig. 4.14.

For the current calculations, we assumed that the two streams were partially
developed turbulent flows. The inlet conditions at the central pipe and the annulus were
generated by separate calculations at the given Reynolds numbers and geometric dimensions.
The initial guess for the flow field was a plug velocity distribution with no radial velocities,
and the turbulence variables were given simplistic distributions based on constant
turbulence intensity and constant length scale. The calculations were started with these
guessed values and converged to good accuracy in 20 iterations. Table 4.5 shows the
convergence behavior for this case, which is similar to the earlier ones. Interestingly, the
algorithm is equally efficient in all the cases studied so far.

Comparison of Calculations with Experimental Data

The case of sudden expansion with coaxial inlets is similar to the single-inlet sudden-
expansion flow except for the nonuniformities in the inlet values of flow variables.
Therefore we anticipated that the discrepancies observed earlier in a sudden-expansion flow
might also appear in the calculations with coaxial jets. Figures 4.15-4.21 show the
calculated radial profiles of axial velocity at different axial stations for Johnson and
Bennett's configuration. The axial locations plotted are x/R o = 0.833, 1.67, 2.5, 3.33,
5.(, 6.25, and 8.33. Because of the layout of the finite-difference grid, exact locations of
experiments and calculations could not be matched. The predictions are at the nearest
possibie locations. In the initial region of the flow, the calculations overpredict somewhat
the velc. ty peak of the outer annular jet, but the agreement in the enlargement section is
better. At larger distances from the inlet, however, the agreement again tends to worsen.
The central region again is overpredicted, and the wall velocities are underpredicted. The
calculations produce velocity profiles that flatten more slowly than those from the
experiments. Figure 4.22 shows the calculated decay of centerline axial veiocity compared
with experiments. The disagreement observed is similar to that reported by Syed and
Sturgess [24]. The centerline velocities are underpredicted in the initial region and
overpredicted farther downstream.

Figures 4.23-4.26 show the results for Habib and Whitelaw's [22] coaxial jet
sudden-expansion flow. Here the area ratios and jet velocity ratio are different from the
Johnson and Bennett case. Because the details of the inlet conditions were not given in Habib
and Whitelaw's paper, we have taken them to be partially developed turbulent pipe and
annulus flows. Such a prescription may introduce errors in the initial regions of the
predictions. However, as seen in Figs. 4.23-4.26, the calculated values agree satisfactorily
with the data in the initial region. At x/De of 3.67, however, we predicted lower axial
velocities toward the wall than in experiments. Because the duct was short, we are
suspicious of the validity of the exit boundary conditions (of -ero derivatives) prescribed in
the calculations. Figure 4.27 shows the decay of the centerline velocity with axial distance.
The predicted centerline compares well with experiments in the initial region, but in the
downstream region the predicted values are higher than the measured values. This
observation is again in concurrence with observed velocity decay for the sudden-expansion
cases. The comparison in Fig. 4.27, however, is different from that of Fig. 4.22 for the
Johnson and Bennett [23] case. Table 4.6 gives the CPU times and storage required for
above calculations.
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Table 4.5 Convergence Rate for Habib and Whitelaw's Coaxial

Jet Sudden-Expansion Flow

Iteration &u/Uin 6v/U6n kE

1 2.923E+0 2.383E-1 2.020E-2 1.555E-4 1.146E-4
2 1.950E+O 3.597E-1 6.866E-1 2.164E-1 3.888E-1
3 1.910E+O 2.518E-1 1.130E+0 6.505E-2 1.619E-1
4 1.014E+0 1.984E-1 5.642E-1 1.082E-1 4.100E-2
5 7.588E-1 1.162E-1 4.193E-1 2.439E-3 4.969F-4

6 5.568E-1 6.513E-2 2.824E-1 4.347E-3 4.998E-4
7 4.870E-1 1.092E-1 1.029E-1 3.364E-3 2.029E-3
8 1.755E-1 7.129E-1 7.191E-2 2.020E-5 3.975E-6
9 1.439E-1 3.039E-2 2.188E-2 4.446E-5 1.370E-5
10 6.134E-2 1.880E-2 1.633E-2 2.403E-5 7.847E-6

11 3.439E-2 8.495E-3 5.669E-3 1.845E-5 3.461E-6
12 1.418E-2 4.563E-3 3.097E-3 7.208E-5 3.680E-6
13 6.557E-3 1.924E-3 1.155E-3 2.607E-5 2.122E-6
14 2.931E-3 9.452E-4 5.069E-4 2.272E-5 3.167E-6
15 1.150E-3 4.067E-4 2.161E-4 7.206E-5 5.047E-6

16 1.562E-4 1.546E-4 8.918E-5 3.206E-5 1.824E-6
17 1.746E-4 6.061E-5 2.900E-5 2.351E-6 1.411E-6
18 6.527E-5 2.269E-5 1.559E-5 2.786E-5 5.151E-6
19 5.327E-5 1.221E-5 7.633E-6 7.906E-6 1.556E-6
20 3.155E-5 1.015E-5 8.375E-6 1.11OE-5 1.939E-7
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Table 4.6 Total Computer Times and LU Factor Storage

Requirements for Calculations with a Direct Solver

CPU time, Storage for LU factors
Calculation IBM 3033 (sec) (words)

Craig's Sudden Expansion

40 x 20 grid 56 174K

50 x 30 grid 140 470K

Moon & Rudinger

Sudden Expansion

40 x 20 grid 56 174K

50 x 30 grid 141 470K

Johnson and Bennett

40 x 40 grid 173 545K

Habib and Whitelaw

40 x 37 grid 165 492K
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4. 2 Techniques for Reducing Storage

The main disadvantage of direct procedures for sparse matrix inversion is the
requirement for large amounts of computer memory. The storage requirements are even
greater in three-dimensional flows. Therefore, it is profitable to investigate techniques that
can reduce the storage requirements of the matrix inversion.

In this study, two techniques were considered. The first deals with ordering the
finite-difference nodes in a manner that reduces the storage for "fill in" during the matrix
inversion process. This ordering locates the finite-difference nodes on alternate diagonals of
the grid network and is called alternate diagonal ordering. In the second technique, called
"domain decomposition," the flow domain is divided into subdomains that are individually
solved but are connected with neighboring domains through the boundary conditions. Because
each domain is solved separately, the storage for the LU inversion is less than that for the
complete solution domain. Consequently, the storage difficulties associated with the use of
direct inversion techniques are somewhat mitigated. These two techniques will be briefly
described below.

4.2.1 Alternate Diagonal Ordering

Figure 3.2 shows two numbering systems for the grid nodes of the finite-difference
network. In the first system, the nodes are ordered in a lexicographic manner. That is, the
nodes are numbered either along the rows or along the columns. This is standard ordering.
In the second system, the nodes are numbered along alternate diagonals. First the diagonals
are identified. Then, starting from any given corner, the nodes are numbered on alternate
diagonals. When the last alternate diagonal has been numbered, the numbering continues
from the first skipped diagonal. This numbering system reduces the storage required by the
sparse matrix inversion algorithm by approximately a factor of two. The storage reduction
is also a function of the number of nodes in the two directions. The YSMP subroutine used in
the present work also has an option to order the nodes. This option was not exercised in the
present study. The alternate diagonal ordering reduced the CPU time by a factor of two.

4.2.2 Domain Decomposition

The domain decomposition technique is a simple divide-and-conquer strategy. The
domain splitting is analogous to techniques such as network tearing and nested dissection used
in solving systems of linear equations. The flow domain is first divided into a number of
subdomains. Each subdivision is then solved with given (old iterate) values of variables on
the boundaries of the subdomain. The domains are defined to be overlapping, usually with an
overlap of two nodes. (We find the overlap to be necessary.) The subdivisions may be
performed either in one or both coordinate directions. Figure 4.28 shows two possible
subJivision patterns. The flow equations are solved as follows. First, a sequence is defined
for visiting each subdomain; this is done through the numbering of the subdomains. Each
subdomain is then solved with known conditions on its four boundaries. The boundary
conditions may be fixed ones (such as at walls), or they may be those obtained from an
earlier solution of the neighboring subdomain. The Jacobian matrix of the coefficients is
formulated for only the subdomain of current interest and the inversion is obtained for this
limited region. For the case of sudden-expansion-type flows, we have used four to eight
subdivisions, only in the x-direction. We also found it advantageous to discard the solution in
the overlap region between the current subdomain and the next-to-be-calculated subdomain.

The boundary conditions we employed on the subdomain boundaries were prescribed
velocities (i.e., inflow and outflow). These velocities were not altered until they became the
interior velocities of another subdomain. Alternatively, one could prescribe pressure
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boundary conditions by holding the pressures at nodes outside the subdomain and calculating
the velocities located on the subdomain boundaries. Such conditions may be better for
problems with no predominant flow, such as the flow in a cavity with a moving top wall.
Further research is necessary in this direction.

We observed that the domain-splitting methodology reduced the computer storage
significantly, permitting calculations with large numbers of mesh points. At the same time,
the number of iterations required for convergence remained nearly the same as in the
procedure with full-domain inversion. A comparison of CPU time and storage for the two
procedures is given in Table 4.7. In the whole-domain inversion, one can factor the Jacobian
only a few times in the beginning and freeze the factors for the remaining iterations, thus
saving the CPU time for the factoring. In the procedure with domain splitting, storage exists
for only one set of factors, which must be calculated for every iteration. We empirically
observed that the procedures with and without domain splitting require nearly the same CPU
time but that the former is significantly cheaper from a storage viewpoint.

The domain decomposition technique has been applied to the problems presented in
Section 4.1. Table 4.7 presents the CPU times and storage requirements for fine-grid
calculations utilizing the domain decomposition procedure.

Table 4.7 CPU Times and Storage Requirements for the Factors of the Jacobian

CPU time, Storage for
IBM 3033, LU factors,

Calculation sec 103 words

Craig's sudden expansion
40 x 20 grid (4 regions) 64 (56 )a 42 (174)
40 x 20 grid (9 regions) 63 (56) 19 (174)
50 x 30 grid (5 regions) 146 (140) 80 (470)
80 x 30 grid (8 regions) 233 80
80 x 50 grid (8 regions) 408 136
80 x 95 grid (8 regions) 945 285

Johnson and Bennett's coaxial jets
40 x 40 grid (4 regions) 153 (173) 97 (545)

a - Numbers in parentheses indicate requirements for full-domain analysis.

4.3 Calculation of Reacting Flows

For reacting flows, additional equations must be solved to determine the local
concentrations of the chemical species. For diffusion flames with a one-step global kinetics
scheme, two additional equations are solved, one for the mixture fraction and the other for its
root mean square fluctuations. The chemical reaction is considered to be dictated by the rate
of mixing of fuel and oxidant streams.

The extension of the previous technique to reacting flows consists of solving partial
differential equations for the mixture fraction and its variance. These equations are also
solved decoupled from the momentum and continuity equations with interaction only through
the density field. The density field is calculated from the distributions of the mixture
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fraction and its variance. The time-averaged mixture properties at any location x are
evaluated by the convolution integral

ob-I (4.5)

where Qj (k,x) may stand for temperature, chemical species, etc. For density, the expression
is

()[I vP (4.6)

The solution procedure for the reacting flow was tested in the diffusion flame
configuration experimentally studied by Lockwood, EI--Mahallawy, and Spalding [261. In
these experiments, coaxial streams of town gas and air were admitted into a cylindrical
chamber (town gas was the inner stream). The flame was stabilized at the dividing_ lip
between the two streams. Measurements were made of the time mean mixture fractions (,),
for different fuel air ratios, and with swirl in the air stream. The walls of the furnace were
cooled by circulating water, although measurements of the wall temperature have not been
reported. The effects of burner geometry, Reynolds number, and swirl were reported. In
our study only the nonswirling cases were calculated for fuel/air ratios of 0.0785 and
0.0635. Complete details of the experiments can be obtained from Ref. 26.

Calculations were made with different finite-difference grids to study the effects of
grid fineness on the convergence of the algorithm and the accuracy of the finite differencing.
The finite-difference grids considered contained 40 x 19, 40 x 27, 80 x 64, and 80 x 97
grid nodes in the x- and r-directions, respectively. The grid nodes were nonuniformly
distributed, with aspect ratios varying between 5 and 20. The 40 x 19 grid contained two
nodes in the central jet and three nodes in the annular air stream. The 40 x 27 grid
contained nine nodes in the central jet; the distribution of the remaining nodes was kept the
same as in the 40 x 19 grid. The 80 x 64 and 80 x 97 grids contained grid refinement in
both the radial and axial coordinate directions. For the 40 x 19 and 40 x 27 grids, the
complete domain was divided into four nearly equal subdomains. For the 80 x 64 and 80 x
97 grids, eight subdomains were employed. The inlet profiles of the flow variables in the
two streams were prescribed to correspond with fully developed flow in a straight pipe and
an annulus, respectively. These conditions are consistent with the long settling lengths used
in the experiments. At the exit, a zero-derivative condition was used on the relevant flow
variables. However, care was taken to preserve the overall mass continuity. A zero
derivative boundary condition is also prescribed at the axis of symmetry. The walls were
considered adiabatic. Standard values were used for the constants in the turbulence model.
The fuel properties are summarized in Table 4.8.
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Table 4.8 Fuel Properties

Stoichiometric ratio 10.59
Heat of reaction 2.630 x 107 J/kg
Molecular weights

Air 25.36
Fuel 10.18
Products 25.69

Specific heat (kJ/deg.kg) constants
al bl

Air 1.00 1.21E-4
Fuel 2.11 1.67E-3
Products 1.08 2.71 E-4

For our calculations it was not necessary to use any underrelaxation factors on the
velocities, pressure, turbulence, and scalar variables. This experience is similar to that for
isothermal flows. However, it was necessary to slightly underrelax the successive changes
in the density field. A value of a - 0.7 was used in all calculations, with a defined as

p = apnew + (1 - a)pold

The value of a in current calculations is much larger than the values obtained in earlier
studies that used the SIMPLE algorithm [27].

Figures 4.29-4.32 show the decrease of normalized successive changes in u, v, and
pressure fields with iteration number for the fuel/air ratio of 0.0635. These changes may
also be interpreted as the normalized residuals in the finite-difference equations. (The mass
residual Is always zero.) The rate of convergence is fast for all the grids, typically
requiring only 25-30 iterations to achieve a high accuracy. Further, the residuals decrease
to small values without any sluggish behavior. The currently observed rates are similar to
those for isothermal flows. Therefore, it is encouraging to observe that the algorithm
retains its strength in the presence of strong density variations. The corresponding rates of
convergence for the fuel/air ratio of 0.0785 are shown in Figs. 4.33-4.36. The impact of
the fuel/air ratio on the convergence rate is small. Table 4.9 gives the computer times
required for these calculations.

Table 4.9 Required Computer Times for 25 Iterations

Time on
Calculation IBM 3033, sec

40 x 19 104
40 x 27 150
80 x 84 900
80 x 97 1500
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4.3.1 Effect of Finite-Difference Grid on Calculated Flow Fields

The number of grid nodes and their locations in the computational domain play a
central role in obtaining accurate solutions of the differential equations. The number of
required grid nodes depends on the internal variations of the flow variables and the locations
of the grid nodes. For example, two grids with the same total number of nodes but with
different numbers of nodes in the thin shear layers may produce different results. Because
of such difficulties, reports of past experiences are somewhat confusing. Elgobashi [27], for
example, reported that a 15 x 20 grid produces nearly the same results as a 20 x 30 grid.
Smith and Smoot (28], on the other hand, showed a significant effect of the finite-difference
grid even for small changes in the number of grid nodes.

One of the objectives of the present study was to investigate these grid dependency
effects In more detail. The flow variables calculated with these grids are compared at several
locations, especially in regions of steep variations. Some of these comparisons are presented
in Figs. 4.37-4.42 for the fuel/air ratio of 0.0785; comparisons at a fuel/air ratio of
0.0635 are similar.

From the above comparisons, it is evident that the 40 x 19 finite-difference grid is
not sufficient to adequately resolve the gradients in the shear layer. The 80 x 64 grid is
adequate. However, such recommendations are somewhat subjective and depend on the
quantity compared and the degree of accuracy desired. Further, if the differencing scheme is
improved through the inclusion of higher order terms, smaller grids may be adequate.

4.3.2 Comparison with Experimental Data

Lockwood et al. [261 presented distributions of the time mean mixture fraction for
different test conditions. In this section, we first compare the calculated mixture fraction
distributions with measured values. Figure 4.43 compares the calculated radial profiles of
the mixture fraction at several axial locations for a fuel/air ratio of 0.0635. The calculated
values have the same qualitative trends as the experimental values; however, significant
quantitative differences exist. The calculated mixture fractions in the central jet region are
higher than the data, indicating underexpansion of the central jet. Such discrepancies have
also been reported by Elgobashi [27] and by Smith and Smoot [28], albeit to a lesser extent,
and are attributed to the inadequacies of the turbulence and combustion models. Figure 4.44
compares the calculated distributions of the mixture fraction for the fuel/air ratio of
0.0785. The discrepancies are similar to those for a fuel/air ratio of 0.0635.

Figures 4.45-4.47 show the contours of temperature, turbulent kinetic energy, and
mixture fraction (k) rate for a fuel/air ratio of 0.0785. These contours show the flame
front and the mixing layer of the fuel and air streams. These plots agree qualitatively with
earlier calculations, especially those of Elgobashi, and with experimental data.

To improve present calculations, it is possible to modify the k-E model and the
concentration fluctuation equation. The modifications proposed in the past have ranged from
ad hoc changes to the constants to development of functional relations for the constants. Such
changes must, however, be thoroughly tested to make them generally applicable to all
configurations.

4.4 Extensions to Three-Dimensional Flows

On the basis of the observed success in two-dimensional flows, the coupled direct
inversion procedure was extended to three-dimensional flows. In three dimensions, the
block size corresponding to each node is four, and the bandwidth is larger because of the

102



30-

20-

10-

40X19 GRID

0 80X64 GRID.

80X97 GRID

-10-
0.00 0.02 0.04 0.06 0.08 0.10

y, m

Fig. 4.37 Calculated Radial Profiles of u-velocity
at x = 0.12m

20

10

40X19 GRID

0. LoX.64 GRID
80X97 GRID

0.00 0.02 0.04 0.06 0.08 0.10 0.12

y, m

Fig. 4.33 Calculate,, Radial Profiles of
u-velocity at x = 0.38m

103



20-

15-
40X19 GRID

B0X64 GRID
S0X97 GRID

0.00 0.02 0.04 0.06 0.08 0.10
y, m

Fig. 4.39 Calculated Radial Profiles of Turbulent
Kinetic Energy at x 0 .13m

40X19 GRID
2- _SOX64 GRID

80ClX97. GRID

00.00 0.02 0.04 0.06 0.08 0.10

y, m

Fig. 4.40 Calculated Radial Profiles of Turbulent
Kinetic Energy at x - .39m

104



1200-

1000-

S800-
LaJ 40X19 GRID

I-600- 80X97 GRID

400-

200-
0.00 0.02 0.04- 0.06 0.08 0.10

Ym

Fig. 4.41 Calculated Radial Profiles of
Temperature at x 0 .13m

1400-

1200-

1000-

0

40X19 GRID

80X64 GRD

400

0.00 0.02 0.04 0.06 0.08 0.10

y, m

Fig. 4.42 Calculated Radial Profiles of
Temperature at x = 0.39m

105



X CArA.X.O 11

z .8AA X a.1S if

)oAX 0.250.6 -

0.4

0.2 o

0.00 0.02 0.04 0.06 0.08 0.10 0.12

y, m

Fig. 4.43 Radial Distributions of Mixture

Fraction, F/A = 0.0635

0.8 - X OAUX - 0.05 M

0 0 DAIA X - 0.13 M

0.6- DAT"A X -0 .37 M

pN 04- x .,

3.Z

02 V

,U

o.00 0.02 0.04 0.06 0.08 0.10 0.12

y, M

Fig. 4.44 Radial Distributions of Mixture
Fraction, F/A = 0.0785

106



4O?

Fig. 4.45 Contours of Temperature, F/A 0.0785

Fig. 4.46 Contours of Turbulent Kinetic Energy,
F/A = 0.0785

Fig. 4.47 Contours of Nondimensional Mixture
Fraction, F/A = 0.0785

107



linkages in the third direction. Thus factoring the coefficient matrix requires much more
storage for three-dimensional problems. The CPU time also increases significantly.

Although a full-domain inversion becomes impractical even for modest grids, the
storage problem can be made tolerable through domain decomposition or plane-by-plane
solution. In the domain decomposition method, the flow domain is divided into a number of
parallelepipeds that interact with each other at the boundaries. The boundary conditions at
the interfaces can be of prescribed velocity or prescribed pressure. In the prescribed
velocity case, it is necessary to provide some overlap between the domains to avoid numerical
instability. The overlap is not necessary for prescribed pressure conditions. However, the
subdomains cannot be very large. Typically a 10 x 10 x 10 grid is all that can be afforded on
commonly available computers. Thus for bigger grids, a number of subdomains need to be
joined, and the data structures can become quite complicated. Even then, whether the overall
sequence can compete with other iterative solvers is unknown.

An alternative procedure, applicable only to a select class of flows, is a plane-by-
plane inversion technique. In this concept, the direct inversion is performed on cross-
sectional planes perpendicular to a certain flow direction. The flow direction is chosen so
that the flow is predominant along that direction. The storage required for such inversions is
much less than that required for the complete flow domain. To test this procedure,
calculations have been made of several duct flow situations. One flow configuration that has
significant elliptic effects is the flow in a curved duct with a small radius of curvature.

Calculations have been made for the experimental configuration of Humphrey et al.
1291. The duct is of square cross section (d = 0.04 m) and has a radius of curvature of
0.072 m. The curved duct is preceded and followed by straight sections. The Reynolds
number of the flow (based on duct width and inlet bulk velocity) is 792.0. The flow is
considered fully developed at a station 0.2 m (5d) upstream of the 00 point of the bend. The
present calculations were made with a (58 x 15 x 11; 0, r, z) grid that is nearly the same
size as that used by Humphrey et al. (60 x 15 x 10). Because of symmetry conditions, only
half the duct was solved.

Fully developed duct flow profiles were first generated by solving the equations of a
straight duct. These were then prescribed at the inlet plane. A zero-derivative exit
boundary condition was prescribed at x = 10d in the aft straight duct. The calculations
were started with simplistic guesses for the velocity and pressure fields. The normalized
maximum residuals in the momentum and continuity equations were monitored with iteration
number. The present calculations converged rapidly to residuals of 10- 3 in about 40
iterations. The CPU time on an IBM 3033 was 8 min, which reflects an improvement of a
factor of 2.5 over the time quoted by Humphrey et al. (after considering the relative speeds
of the computers involved). Additional computational efficiency can be gained by developing a
reliable iterative algorithm in place of the direct inversion procedure.

Figure 4.48 shows the calculated secondary flow patterns at four axial locations. The
secondary flow is already present upstream of the 00 station, as a consequence of the
ellipticity in the flow. The secondary velocities increase in magnitude with bend angle,
reaching a value in excess of 50 percent of the bulk velocity in regions close to the bottom
wall.

Figure 4.49 shows the development of the axial velocity at different heights from the
bottom wall. In the initial region of the bend, the flow has separated from the outer side wall
at z - 1 mm, as a consequence of the large adverse pressure gradient. The development of
the axial velocity profiles agrees satisfactorily with the experimental data and calculations of
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Humphrey et al. Further improvement in the agreement is possible, however, through the

use of more grid nodes in regions of large velocity gradients.

4.5 Summary

In Section 4, extensions of the direct solution procedure to two-dimensional reacting
flows and to three-dimensional flows are described. In reacting flows, the convergence of the
algorithm has been quite good and has provided significant reductions In CPU time.
Techniques such as domain decomposition and alternate diagonal ordering provide further
decreases in CPU time and storage.

However, for three-dimensional flows, the storage requirements are very large and
unaffordable. Even with domain decomposition techniques, the technique is not attractive
because of the complexities of programming the boundary conditions. These difficulties for
three-dimensional flows led us to reexamine coupled iterative solvers, this time in
conjunction with multigrid techniques. This research will be described in the remaining
sections of the report.

5. BLOCK-IMPLICIT MULTIGRID TECHNIQUE

5.1 Introduction

The previous sections show that the coupled solution of the momentum and continuity
equations with a direct inversion procedure is rapidly convergent and can lead to significant
savings in computational effort. The direct solver is robust to grid aspect ratios, problem
size, and flow characteristics. However, direct-solver-based procedures have one principal
disadvantage, namely the large computer memory required for the factorization of the
coefficient matrix. This storage requirement is prohibitive and unaffordable in three-
dimensional problems. Therefore, three-dimensional flows require development of iterative
procedures. However, the coupling between the momentum and continuity equations Is
important. Therefore, Iterative procedures based on the coupled solution of the momentum
and continuity equations are next pursued.

Traditional iterative procedures such as Gauss-Seidel, Jacobi and ADI, can be
extended for the block structure of the coupled momentum and continuity equations.
However, single-grid iterative procedures are asymptotically slow in convergence when the
finite-difference grid is refined. The slow convergence is attributed to the low-frequency
component in the error spectrum. However, such low frequencies can be better resolved by
adopting the multigrid strategy [301. In the following sections, research into developing a
coupled multigrid solver for complex fluid flows is described. A systematic assessment of
this technique in several recirculating flows has been conducted, and the results are
presented. Finally, a prototypical computer program developed under this research study is
described.

5.2 Coupled Iterative Solvers

Almost all iterative procedures employed for single equations can be extended to the
blocked set of momentum and continuity equations. The simplest iterative solver is the
Jacobi point method. However, because the Jacobi method uses the old values for its
neighbors, it is equivalent to a decoupled update. The Gauss-Seidel operator can retain the
implicit pressure velocity coupling, but the method must simultaneously update velocities on
all faces of the cell. This symmetric update is necessary for convergence. A similar practice
was adopted by Caretto et al. [31). The symmetrically coupled Gauss-Seidel technique
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(SOGS) has the lowest work count among the various block solvers. However, on fine grids it
also has the slowest asymptotic rate of convergence. A coupled line solver [321 improves the
rate of convergence but has a higher work count. However, for finite-difference cells of
large aspect ratio and anisotropic coefficients, the line solver may be necessary. In the
present research, the SCGS operator has been used throughout.

Consider a two-dimensional finite-difference cell at a location with indices (ij). Let
the four velocities on the faces of the cells be denoted by Ui,1 /2 ,j; Ui1 .2,; vi,j 1 /2;

vi-/,and the pressure at the center by Pij. The four momentum equations and the
continuity equation can be written as

(Apu)1 1 Ui+1/2,+1j (ANu)i+l/2,j ui+1/2 ,1~l +
(ASu)i+l/2,j ui+1/2,j.1 +
(AWu)i+l/ 2 ,j uii..j2,j +
(AEu)I+l, 2 ,j ui+3/2,j +

Dui1/2j(P~j- Pi+1,j) + SUi+I/,

(Apu)i 1 1 2 , ui..1 /,j (ANu)i.1/,j ui..1 / 2 ,j+1  +

(ASuLi -1/2,j U i-1/2,j- 1 +

(AwU)i..l,2,j ui..3/2 ,j +
(AEu)i.l/2 ,j Lii+1/2,j +

Dui1/,j(i-~j- Pij) + aui 1112 , (5.1)

(APv)i1 j+1 1 2 vij+l/2 -(ANy)i j+1/2 v1 11+3/2 +
(ASv)i,j+1/2 vij..1/2 +
(AWv)i,j+l/2 v1 ..1 ,j 1 / 2 +
(AE)i,j+l/2 vi+1,j+1/2 +

Dvi~+1/2Pi~ - Pi,j+1) + Ii+/

(APv)i,j1..1 2  vij..l 2  =(AN), 1 1 2  vlj+1 2  +
(A5 v), 1 2 vij.3/2 +
(AW')i j..1/2 vi..lJ.1/2 +
(AEv)i,..l/2 vi+1 ,j-1/2 +

o v11..,/2(Pi,j-1 - P1,1) + S-vi 11/2 (5.2)

(Pi+1/2,j ui+1/2,j ai+1/2,j -Pi-1/2,j Ui.1/2,j ai..1/2,i) +
(Pl,J+1/2 vij+1/2 aij+1/2 -PI~J-1/2 vij..l 2 ai1,. 1 2) = 0 . (5.3)

These finite-difference equations can be arranged in a matrix form and can be analytically
inverted. The coefficients in the finite-difference equations are assembled, and each cell is
visited in a lexicographic manner. The corresponding velocities and pressures are updated.
For a given set of finite-difference equations, a single sweep or multiple sweeps can be
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performed. Performing more sweeps increases the rate of convergence but is also more

expensive.

5.3 Single-Grid Convergence of SCGS

The SCGS procedure converges well on very coarse grids. This is demonstrated in Fig.
5.1 for the solution of a model problem of laminar flow in a square cavity with a moving top
wall. For a 5 x 5 uniform grid and a Reynolds number (uwH/v) of 100, the SCGS is
convergent in nine iterations to an accuracy of 10-4 for the momentum residual. However,
when the number of cells is doubled in each direction to a 10 x 10 grid, the rate of
convergence slows, and the desired accuracy is achieved in about 40 iterations. Further
refinement produces even worse rate of convergence. However, for the first few iterations,
the finer grids converge at nearly the same rate as the coarsest grid. After the initial
iterations, the residuals decrease very slowly. Such behavior is a result of low-frequency
components in the error spectrum.

The slow rate of convergence can be improved in part by the use of more powerful
solvers such as conjugate gradient methods and Stone's strongly implicit procedure (SIP).
However, they involve more work per iteration.

5.4 Overview of the Multigrid Technique

The concept of the multigrid technique is as follows. Given the argument that the low
frequencies converge slowly, it is possible to accelerate their rate of convergence by making
them behave as high frequencies on coarser grids. Because the error spectrum contains a
wide range of frequencies, it is necessary to consider a number of coarse grids. On the
coarsest grid, which must be a small grid, a direct inversion procedure can be used, or the
necessary number of iterations can be performed. The multigrid technique cycles between
fine and coarse grids and attempts to preserve the same rate of convergence for the low
frequencies as for the high frequencies.

The multigrid cycling can be arranged in several ways, and each method has slightly
different rates of overall convergence. However, the choice of the procedure that is used is
really not very crucial as long as the low frequencies are adequately smoothed. The
determination of the precise cycling procedure is more a matter of academic research; for
practical problems any multigrid strategy is sufficient. In general, the multigrid technique
proceeds as follows. Consider that we initiate a solution on a given fine grid. A few iterations
are first performed on this fine grid. For these iterations, the convergence is usually fast.
Subsequently, the convergence begins to worsen (as monitored by the ratio of the consecutive
residual norms). At this point, the calculations are switched to a coarser grid. The solution
and the residuals are "restricted" to the next coarse grid. The corrections on the coarse grid
are determined by solving the equation

Lh-18qh-1 = Ihh-I[R]h , (5.4)

where L is the elliptic operator, q is the solution vector (8q is the correction), I is an
interpolation operator, and [R] is a residual norm. The super- and subscripts refer to the
grid h and the coarse grid h-i. When only two grids are considered, the solution on grid 1 is
obtained to the required accuracy by iterating only on grid 1. The operator L is the same as
on the fine grid but is assembled either by restricting (i.e., interpolating) the fine-grid
operator or from the solution on grid h. When Sq is obtained to the required accuracy, it is
extrapolated ("prolongated") to grid h. Thus,
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qhne w - qhold + Ilh-ih qhi l  (5.5)

The solution on grid h is then continued with the new solution, and a few iterations are
performed. The residuals are again interpolated to grid h-i, and the above two steps are
repeated. Convergence is obtained on grid h when the residuals are diminished to the desired
level.

When more than two grid levels are considered, the same procedure as above is
followed. However, on grid h-1 the iterations are not continued to complete convergence, but
only until the high frequencies are converged. Further iterations are performed on coarser
grids below h-1. On grid 1, no further restrictions are made. The prolongation procedure
is the same as before, i.e., the corrections from a coarser grid are prolongated to the next
finer grid and are added to the existing solution.

The multigrid strategy has several variants and cycling schemes. The first variant is
whether a correction scheme or a full approximation scheme (FAS) is used. The correction
scheme explained above solves for the corrections to the fine-grid equations. In FAS, the
coarse-grid equations, which can be written as

Lh-lqh-1 = Ihh-l[R]h + Lh-1 (ihh-1 qh) , (5.6)

or

Lh-lqh-1 = fh-1 + ihh-l[R]h - [Rlh , (5.7)

are solved on the coarse grids. The solution on grid h-1 is then used to correct the solution

on grid h, as

qhnew = qhold + lh-l 1h(qh- l - Ihh'lqhoId) . (5.8)

In Eq. (5.8), the quantity within the parentheses is the change of q on the coarse grid from
its original restricted solution from grid h. The two I operators are the prolongation and the
restriction operators.

The manner in which the grids are visited can also be varied. In the simplest scheme,
called the V-cycle, each grid is visited In turn on the downward and upward legs of a V cycle.On each grid, a fixed number of iterations are performed, and the next grid is visited. The

iterations can be done during both the restriction part (downward limb) of the V cycle and
during the prolongation part (upward limb). The number of iterations can be prescribed a
priori or chosen adaptively. Usually, a fixed number is chosen. When the number of
iterations is chosen adaptively, the grids are visited until a fixed reduction of the residual is
obtained.

Another way to perform the iterations is the full multigrid (FMG) strategy. In the
FMG, the iterations are started on the coarsest grid rather than on the finest grid. The initial
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solution on the finest grid is obtained by successively prolongating the converged solutions on
the coarse grids. Thus, when a solution on grid 1 is obtained to the desired accuracy, it is
prolongated to grid 2, and iterations on grid 2 are initiated from this solution. When the
solution on grid 2 Is obtained, it is prolongated to grid 3, and the process is continued to the
finest grid. The advantage of the FMG strategy is that finer grids are started from reasonably
good initial fields. This starting solution, however, does not guarantee good convergence of
the low-frequency errors. It is still necessary to cycle between the coarse and fine grids to
obtain fast convergence of the low-frequency components.

5.5 Performance of the Multigrid Technique

Figure 5.2 shows the benefit of multigrid cycling for the problem of laminar cavity
flow presented earlier. The three grids converge at nearly the same rate as do the initial few
iterations. Thus, the superior performance observed on the 5 x 5 grid is retained for all
grids. The work count now increases nearly linearly with the number of grid nodes. Of
course, extra work is involved in the coarse-grid solution and in the restriction prolongation
parts of the algorithm. This work is usually about half of the fine-grid work. Even with this
increased work, the multigrid cycling is significantly cheaper than a single-grid iterative
procedure.

The relative benefits of multigrid cycling can decrease if more complex and powerful
iterative solvers are used. This is because some of the low-frequency errors are resolved by
the iterative procedure. Thus the multigrid acceleration may not be as significant. However,
the more powerful iterative procedures are expensive, and the total CPU time can be much
more than that with a simple point relaxation scheme. Another factor to be considered is the
effect of the other nonlinearities in the flow problem such as variable viscosity, variable
density, and nonlinear source terms (distributed resistances). These nonlinearities delay
convergence even when direct solvers are employed. Therefore, use of an expensive iterative
solver, unless specially mandated, is not necessary. The special circumstances when more
robust iterative solvers should be used are when the coefficients are highly anizstropic and
when mesh aspect ratios are quite large (greater than about six).

5.6 Details of the Overall Multigrid Procedure

The total multigrid procedure consists of a number of individual components. The
most important part is the relaxation procedure for the equations. The manner in which the
overall iterative sequence is constructed, including resolution of other nonlinearities, is
another important aspect of the procedure. The restriction/prolongation operators that
transfer information between the grids are also important elements in the calculation
sequence. Each of these components can be constructed in different ways. For example,
various relaxation schemes can be used to solve the momentum and continuity equations. The
prolongation operator can be of bilinear/trilinear type or of higher order. Various cycling
procedures are also possible. In the present work the choice of each component is dictated by
simplicity and the computational cost involved. The details of the present solution procedure
are given below.

5.7 Solution Cycle

We have used the FAS-FMG cycle with adaptive switching between the coarse grids.
The solution of the momentum equations is intertwined with the solution of the turbulence
and scalar equations. The multigrid technique is used only for the momentum and continuity
equations. A multigrid sequence for the turbulence equations was found to converge with
difficulty, and a single-grid strategy is used. Although a multigrid sequence can easily be
developed for the scalar equations, they too are currently solved by a single-grid procedure.
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The solution sequence in FLANELS consists of the following steps.

5.7.1 Multigrid Cycle

1. The calculations are started on the coarsest grid, grid number 1 (IGRF = 1). On this
grid, a solution to the complete set of equations is sought by executing the following steps.

2a. One iteration on the momentum and continuity equations is performed. This iteration
consists of assembling the coefficients in the momentum and continuity equations and solving
them coupled with an SCGS operator.

2b. The equations for k and E are solved with the velocity fields calculated in step 2a.
These velocity fields are used to assemble the coefficients and the source terms.

2c. The scalar equations are solved with the velocity fields of step 2a.

2d. The turbulent viscosity is updated with the new values of k and E.

2e. Steps 2a-2d are repeated until convergence is obtained to the desired accuracy.

3a. After the solution on the first grid is obtained, it is prolongated to the next finer grid.
On this finer grid, the momentum and continuity equations are solved first. For grids finer
than grid 1, the solution for the momentum equations is somewhat different than step 2a and
incorporates the multigrid cycling, as in the following steps.

3b. First, one iteration of the momentum and continuity equations is performed on the
locally finest grid. The procedure is the same as step 2a.

3c. The solution and residuals on the finer grid are then restricted to the adjacent coarser
grid. On this coarser grid, Eq. (5.6) is solved with the additional residuals from the finer
grid. The solution on the coarse grid is obtained to an accuracy proportional to the residual
on the finer grid. Typically, this criterion is

[e] = 8 [R] , (5.9)

where [e] is the accuracy on the coarse grid and 8 ranges between 0.2 and 0.4.

3d. The solution on the coarse grid is then used to correct the fine-grid solution, as
indicated by Eq. (5.8). When more than one coarse arid exists, a similar strategy is used to
visit each grid. The changes on any grid are used to correct the solution on the next finer
grid. One FAS cycle of the momentum and continuity equations consists of one iteration on the
locally finest grid and several adaptive iterations on the coarse grids.

4. The turbulence and scalar equations on the locally finest grid are solved. A single-
grid strategy is used, and the equations are solved with an SCGS operator (typically, 5-10
sweeps are performed). The turbulent viscosity and the density are then updated.

5. Steps 3b-3d and 4 are repeated until convergence on the locally finest grid is
obtained to the desired accuracy.

6. The solution is prolongated to the next finer grid, and steps 2a-5 are repeated. The
complete sequence is terminated when the solution on the finest grid in the entire procedure
is obtained to the specified accuracy.
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The above sequence combines the FMG algorithm with the FAS cycling on the momentum and
continuity equations. Note that in the FMG cycling, it is not necessary to obtain the solution
on the Intermediate grids to a great accuracy. Typically accuracy one order of magnitude less
than that required on the finest grid is sufficient.

A flow chart of the overall sequence is given in Fig. 5.3.

5.7.2 Solution of the Turbulence Equations

The it,:-ulence equations are solved decoupled from the momentum and continuity
equations because the turbulence equations are stiff in their source terms (in the 1/k
relation in the source terms of the e equation). As a result, it is necessary to solve the k and
e equations iteratively to resolve the coupling through the source terms. The turbulence
viscosity is updated after a reasonable solution for the k- equations is obtained. When the
momentum, continuity, and turbulence equations are solved fully coupled, incorporating the
relation for the turbulent viscosity, the procedure is not convergent. Consequently, the
turbulence equations are solved separately from the momentum and continuity equations.

The turbulence ec4uations are solved on the locally finest grid in the FMG cycle. On
each grid, the equations are solved by a point method, and multiple sweeps are performed.
The coefficients and the production terms are calculated only once, at the beginning of the
sweeps. However, the total source terms are updated during each sweep. This updating is
necessary to resolve the 1/k nonlinearity and the coupling between the k and e equations.

The wall functions [6] are imposed only on the locally finest grid. The source terms
are modified to represent the production and dissipation terms appropriate to the logarithmic
region. These are incorporated by modifying the linearized source terms. The wall furtions
for the velocities are imposed on the locally finest grid, but in the multigrid cycling, they
are not restricted to the coarser grids. Thus, the linearized source terms are set to zero
when restrictions are made. Also, when the coarse grids are solved, the turbulent viscosities
are restricted from the fine grid rather than being evaluated from the coarse-grid k and e
fields.

5.7.3 Solution of the Scalar Equations

The scalars are also currently solved by a single-grid technique, although a multigrid
sequence is possible. The solution of the scalars is similar to the procedure for the
turbulence equations, but each scalar is solved individually. The coefficients for each scalar
are different because different laminar and turbulent Prandtl numbers contribute to the
diffusion terms. The source terms for each scalar are also different. Currently, the
following scalars have been considered: (a) the swirl velocity, w; (b) a nondimensional
mixture fraction, f; and (c) the fuel fraction, mfu. The source terms for these variables are
given in Tables 5.1 and 5.2. The subroutine for the scalars has the same general structure as
that for the turbulence equations and contains (a) the coefficient calculation, (b) the source
calculation, and (c) the iterative solver. The scalars are solved only on the current finest
grids. For some scalars, wall functions are used at the near-wall points, whereas for others,
zero-gradient conditions at the walls are imposed and corresponding coefficients that link the
wall values are set to zero.

5.7.4 Underrelaxatlon

The equations that govern fluid flows are nonlinear. The nonlinearities arise from the
convection terms, the source terms, and the turbulent viscosity. For swirl flows, the
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Table 5.1 Exchange Coefficients and Source Termsa
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Table 5.2 Exchange Coefficients and Source Terms
(Cylindrical Polar Coordinate System)a
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centrifugal forces create additional nonlinearities. In order to maintain numerical stability,
it is necessary to dampen the successive changes of the flow variables. Currently,
underrelaxation Is implemented in the momentum equations and on the turbulent viscosity.
The k and e equations are underrelaxed during the sweeps when the source terms are updated.
The scalar equations are underrelaxed in the conventional way by modifying the central
coefficient and the source terms.

Traditionally, underrelaxation is implemented by changing the equations as follows:

Ap = Ap/a (5.10)

AP(1 S* + - (5.11)

No underrelaxation is used in the continuity equation or on the pressure field. The values of
the underrelaxation factors range between 0 and 1. The optimal values vary with the flow
problem. The values for velocities have typically been 0.6 or higher. For the turbulent
viscosity, the underrelaxation factor used in most of the problems has been 0.6.

5.7.5 Integral Mass Flow Adjustments

The SCGS operator currently used updates velocities on all four faces of a finite-
difference cell. Because of this, when there is a predominant flow in one of the directions,
the total mass flow through the downstream face is not preserved. In a pipe flow, the mass
flow can continuously decrease (or increase) with distance. This error leads to a slower rate
of convergence.

A simple way to eliminate this problem is to ensure that the total flow through any
given cross-sectional plane equals the known mass flow. This correction is similar to the
block adjustments performed in the SIMPLE technique. When the flow velocities are
corrected, it is also necessary to correct the downstream pressure field to reflect the Implied
correction in the pressure gradient. The block corrections are performed as follows. After
the sweeps with the SCGS operator are completed, each line of cells is adjusted to satisfy the
requirement of total mass conservation. The subroutine that performs the Integral mass
adjustment is called for each line of cells from the inlet to the exit of the domain. For a given
line of cells, the velocities and pressures are corrected as follows. If m represents the
theoretical flow rate, then the equation

YPi+1/2,jui+1/2,jai+1/2,j = mi+112 (5.12)

must be satisfied; otherwise, a correction

mi+1/2- P pi+1/2,jui+1/2,jai+1/2,jAui+i /2 = (5.13)
Pi+ll2,j ai+l/2,j

is applied uniformly to u.
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The uniform adjustment to the downstream pressures is calculated as

A mi+1/2- 7 Pl+1/2,jUi+1/2,jai+1/2,j (5.14)
Y,.Pi+1/2,j(C)Ui+l/2,j/ o)Pi,j)ai+1/2,j

The pressure correction is made to all downstream planes, i.e.,

Pk,j = Pk,j + APi

k i + 1 to (imax- 1) (5.15)

j 2 to (max - 1).

5.7.6 Restriction Operator

Restriction refers to interpolating values of a fine grid to an adjacent coarse grid. By
successively restricting values from one grid to the other, one can generate values on all
coarse grids. The restriction procedure depends on the way variables are located on the
finite-difference mesh. Basically, a fine grid is obtained by splitting a coarse-grid cell into
four (or eight) cells. On this fine grid, the pressures and scalars are located at the centers
of the cells, and the velocities are located on the cell faces. Figure 5.4 shows the layout of
variables on the fine and coarse grids. The restriction process is different for velocities and
for the variables located at the cell centers. For the cell-centered values, the coarse-grid
values are obtained by averaging four fine-grid values. If we denote (ic,jc) as the coarse-
grid indices and (if,jf) as the fine-grid indices, then

pC(ic,jc) = 0.25 * [ pf (if,jf) + pf(if-l,jf) + pf(if,jf-1)

+ pf(if-ljf-1)] (5.16)

where the superscripts f and c refer to the fine and coarse grid, respectively. The fine-grid
indices can be related to the coarse-grid indices (ic, jc) by the relations

if = 2 * ic - 1
(5.17)

jf = 2 * jc - 1

All variables located at the cell centers are restricted by Eq. (5.16); these are the
pressure, turbulence kinetic energy, e, fuel fraction, mixture fraction, and turbulent
viscosity, etc. The residuals are also restricted in the same way; however, because they are
computed for the complete cell volume, they must be summed rather than averaged. Similar
reasoning holds for the source terms.

The velocities require a different restriction procedure because of their staggered
location. Consider Fig. 5.4. On each face of a coarse-grid cell, there are two fine-grid
normal velocities. These velocities must be averaged to obtain the restricted velocity. Thus,
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uc (ic,jc) = 0.5 * [uf (if,jf) + uf  (if,jf-1)] (5.18)

vC (ic,jc) = 0.5 * [vf (if,jf) + vf  (if-l,jf)] (5.19)

5.7.7 Prolongation Procedure

Prolongation refers to the extrapolation employed to obtain fine-grid values (or
corrections) from coarse-grid values. The prolongation procedure is, in a sense, opposite to
the restriction procedure. Again, the staggered-mesh arrangement makes the prolongation
procedure for velocities different from that for scalars. A straightforward way of
prolongating values is to simply substitute neighboring coarse-grid values (or add
neighboring corrections) for the fine-grid values. This way of prolongating values considers
no variations and is somewhat inferior to a bilinear prolongation procedure that assumes a
linear variation of the variables. Currently we use a bilinear prolongation procedure.

The coarse- and fine-grid values involved in the prolongation are shown in Fig. 5.5.
For velocities, four coarse-grid values are used to correct four fine-grid values. Let (cl,
c2, c3, c4) be the four coarse-grid values. The four fine-grid values corrected are denoted
by (fl, f2, f3, f4). The relations are

,Auf2 = Auc2 F1 + ,Uc4 (1 - Fj) (5.20)

Auf 4 = Auc2 F2 + Auc4 (1 - F2 ) (5.21)

AUfl = 1/2 [(AUcI + Auc2) F1 + (Auc3 + Auc4) (1 - F1 )] (5.22)

Auf 3 = 1/2 [(AUci + Auc2) F2 + (Auc3 + AUc4) (1 - F2 )] (5.23)

where F1 , F2 are interpolation factors. For v velocities, similar relations can be obtained
by rotating the coordinates 90 degrees.

For pressures and scalars that are located at the cell centers, the relations are
somewhat different. Here, the four fine-grid pressures located at pl, p2, p3, and p4 on the
coarse grid are corrected with coarse-grid values P1, P2, P3, and P4. The prolongation
formulae, however, are derived by first interpolating in one direction and then interpolating
the results in the other direction.

In the FAS multigrid cycle, when the coarse grids employ the solutions rather than
corrections, it is necessary to first compute the changes obtained from restricting the fine-
grid values. After the fine-grid values are restricted, the difference between the converged
coarse-grid solution and the restricted field is computed. This difference is then prolongated
as per Eqs. (5.20)-(5.23).

5.8 Summary

In this section, the multigrid concept is described and a calculation sequence
combining the coupled solution of the momentum and continuity equations with the multigrid
procedure is outlined. The integration of the turbulence and scalar transport equations with
the momentum and continuity equations is described. Currently, the SCGS scheme is used for
the momentum equations. The restrictions use simple averaging, and bilinear relations are
used for prolongation. An adaptive switching is used for transfer from fine to coarse grids.
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The performance of the above calculation scheme in a number of model and complex
fluid flow problems is described in Section 6.

6. PERFORMANCE OF THE BLOCK-IMPLICIT MULTIGRID TECHNIQUE

6.1 Introduction

In this section, the performance of the coupled multigrid solution technique is
presented. Several model problems and actual experimental flows were analyzed, and
detailed comparisons with published numerical/experimental data were made. Both two-
dimensional and three-dimensional problems were considered. For each problem,
calculations were made with increasingly finer grids, and the efficiency of the multigrid
cycling was studied. These results are described below.

6.2 Two-Dimensional Model Problems*

The algorithm was tested in a number of laminar and turbulent model problems over
the past two years. The first problems considered were the laminar flow in a square cavity
and laminar flow in a sudden expansion. In addition, two other model problems representing
a flame stabilizer and the flow in a rectangular chamber were considered. The grid size, flow
Reynolds number and dimensions of the geometry were varied to assess the performance of
the algorithm. These results were published earlier [33-35] and are summarized below.

6.2.1 Laminar Flow in a Square Cavity [33]

The numerical solution of the flow in a square cavity with the top wall moving at a
constant velocity has been a standard problem for testing the efficiency of many solution
algorithms. The problem characterizes the elliptic and nonlinear nature of many engineering
flows. The flow in a square cavity has been of interest also because of the yet unresolved
controversies on the flow structure at high Reynolds numbers. In the application of the
present algorithm to the square cavity problem, a number of flow Reynolds numbers and
several finite-difference grids were considered. Calculations were made for Reynolds
numbers of 100, 400, 1000, 2000, and 5000 with grids consisting of 40 x 40,
80 x 80, 160 x 160, and 320 x 320 finite-difference nodes. In these calculations an
adaptive switching at smoothing rate of 0.5 was selected. The optimal underrelaxation
factors for the calculations are given in Table 6.1.

Table 6.1 Optimal Underrelaxation Factors

Re
Gdd 100 400 1000 2000 5000

40 x 40 0.8 0.8 0.6 0.6 0.6
80 x 80 0.8 0.8 0.6 0.6 0.5
160 x 160 0.8 0.8 0.6 0.6 0.5
320 x 320 0.8 0.8 0.5 0.5 -

In these calculations, the coefficients in the finite-difference equations were dynamically
calculated.
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The convergence criterion was based on the summed average residual in the three equations.
Thus,

IRII 2  1 Ri, + Rij + Ri, IMAX"* JMAX"* 3),
i'j (6.1)

where Ru, Rv , and Rc are residuals in the u and v momentum equations and in the continuity
equations. The momentum residuals have been normalized by pu 2 , and the mass error is
normalized by puw, where Uw is the top wall velocity and p is the density. The calculations
were terminated when IIRII was less than 10- 3 . The rates of convergence for three Reynolds
numbers are shown in Figs. 6.1-6.3. The CPU times for the calculations on an IBM 3033
(Table 6.2) show that except for Re = 5000, the CPU times increase almost linearly with
the number of grid nodes. This confirms the attractive feature of the multigrid technique.
The CPU times increase with Reynolds number as a result of increased nonlinearity. In
contrast with the direct inversion procedure by LU factorization, the use of multigrid
techniques requires much less storage. In the multigrid technique, storage is necessary only
for the variables and the coefficients. These are stored also on the coarser grids. Therefore a
slight increase in storage over a single-grid technique is necessary.

The results of the calculation for the flow in a cavity at different Reynolds numbers
are shown in Figs. 6.4-6.6. The contours of stream function represent the vortex pattern
set up by the motion of the top wall. These flow patterns are in good agreement with earlier
results of Schreiber and Keller [361, Agrawal [37], and Ghia et al. [38]. Table 6.3 gives the
values of the maximum stream function and the locations of the central, bottom left, and
bottom right vortices. These are in general agreement with earlier results. Further results
are given in Vanka [33].

Table 6.2 CPU Times and Numbers of Fine-Grid Iterations

Re

Grid 100 400 1000 2000 5000

40 x 40 4.09 a  6.09 12.42 16.43 21.0
(12 )b (15) (26) (32) (51)

80 x 80 16.52 22.0 52.0 88.0 133.0
(15) (12) (24) (33) (60)

160 x 160 64.0 71.0 154.0 280.0 853.0
(15) (14) (19) (25) (52)

320 x 320 282.0 267.0 644.0 1080.0 -
(16) (15) (23) (27)

a - IBM 3033 seconds.
b - Numbers of iterations are in parentheses.
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Table 6.3 Selected Characteristics of the Driven Cavity Flow

Primary Vortex Lower Left Vortex Lower Right Vortex

Re *max x y x y *max x y

100 0.1034 0.6188 0.7375 -1.94E-6 0.0375 0.0313 -1.14E-5 0.9375 0.0563

400 0.1136 0.5563 0.6000 -1.46E-5 0.0500 0.0500 -6.45E-4 0.8875 0.1188

1000 0.1173 0.5438 0.5625 -2.24E-4 0.075 0.0813 -1.74E-3 0.8625 0.1063

2000 0.1116 0.5250 0.5500 -6.90E-4 0.0875 0.1063 -2.60E-3 0.8375 0.0938

5000 0.0920 0.5125 0.5313 -1.67E-3 0.0625 0.1563 -5.49E-3 0.8500 0.0813
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6.2.2 Flow Over a Backward-Facing Step

The calculations for this geometry were made for a step height (h) equal to half the
duct height (H) (expansion ratio . 2.0) and a duct length (L) equal to six times the duct
height. Three Reynolds number values (Re = uinH/v), 100, 200, and 400, were
considered. For each Reynolds number, three finite-difference grids containing 40 x 20
(on 3 levels), 80 x 40 (on 4 levels), and 128 x 64 (on 5 levels) cells in the x- and
y-directions, respectively, were employed. The underrelaxation factor (a) was varied for
each case in order to determine Its optimum value and to observe the sensitivity of the rate of
convergence (and CPU time). Values of au and av were taken to be equal.

The initial and boundary conditions for these calculations were assigned as follows.
The left boundary was prescribed to be the inflow region. The inlet flow was considered
uniform with only the axial component (u). The top boundary was treated as a wall
(u = v = 0) with no slip, and the bottom boundary was taken to be a symmetry line. At
the right exit boundary, a zero-derivative condition on the u-velocity was imposed. The
calculations were initiated with zero values for the pressure and v-velocity fields. The
u-velocity field was assigned a uniform value (plug distribution) equal to the average value
in the channel. The calculations are terminated when the residual hJRil was less than
5 x 10- 3 . To ensure that this represented sufficient accuracy, the calculations were
continued until a level of 10-3 was attained, and the final results were compared. Typically,
the results differed by 0.1 percent. Values at the 10-2 level of accuracy differed from those
at the 10- 3 level by 1 percent.

Figure 6.7 shows the convergence plot for the Reynolds number of 400. The rates of
convergence for Reynolds numbers of 100 and 200 are similar to those in Fig. 6.7. The
curves correspond to three grids with the optimum underrelaxation factors presented in
Table 6.4. These plots show that the algorithm converges rapidly, typically in 15 fine-grid
iterations. Further, the rate of convergence is nearly the same for all three grids; thus,
increasing the number of mesh points did not significantly increase the number of iterations.
The optimal value of the underrelaxation factor is unity, that is, no underrelaxation is
necessary for this problem.

Table 6.4 Optimal Underrelaxation Factors for Flow
over a Backward-Facing Step

Re
Grid 100 200 400

40 x 20 1.0 1.0 1.0
80 x 40 1.0 1.0 1.0
128 x 64 1.0 1.0 1.0

The CPU times on an IBM 3033 [FORTHX OPT(2) compiler] and the numbers of
fine-grid iterations to reach the 5 x 10-3 level of accuracy are given in Table 6.5. These
times are much smaller than for other procedures based on single-grid techniques with
which the author is familiar. The CPU times increase by roughly a factor of five (instead of
four) when the numbers of nodes are doubled in each direction. These times also Include the
times for prolongations and restrictions. The average rates of decrease of the residuals per
fine-grid iteration over the entire calculation are given in Table 6.6. These values are
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slightly higher for finer grids, again probably for the reasons mentioned above. A slight
deterioration in the rate of convergence is observed with increase in Reynolds number.
Figure 6.8 shows the calculated velocity vector plot at a Reynolds number of 200.

Table 6.5 Fine-Grid Iterations and CPU Times for Flow
over a Backward-Facing Step

Re
Grd 100 200 400

40x20 Il a  10 10
(3 .03 9 )b (2.8) (3.34)

80 x 40 15 13 13
(22.39) (15.46) (16.03)

128 x 64 18 14 13
(82.38) (52.48) (47.22)

a - Number of iterations.
b - IBM 3033 seconds are in parentheses.

Table 6.6 Residual Reduction Factors for Flow over a
Backward-Facing Step

Re
Grid 100 200 400

40 x 20 0.678 0.656 0.666

80 x 40 0.719 0.701 0.702

128 x 64 0.756 0.707 0.688

6.2.3 Flow Over a Blunt Base

The geometry for this case is the inverse of the backward-facing step. Here the
recirculation zone is attached to the symmetry line instead of the wall. The situation is
similar to that behind a flame holder commonly used in combustors. Calculations for this
geometry were made for Reynolds numbers (Re = uinH/v) of 100, 200, and 400. Three
finite-difference grids consisting of 40 x 20 (on 3 levels), 80 x 40 (on 4 levels), and
128 x 64 (on 5 levels) nodes were considered. The channel length was taken to be six
times the height (H), and the blunt base was taken to be half the channel height.

The inlet velocity profile was taken to be uniform in the axial direction, with no
radial velocity component. The top boundary was a no-slip wall, and the bottom boundary
was a symmetry line. Zero-derivative conditions are prescribed on the right exit boundary.
As an initia distribution, the u-velocity was prescribed to be uniform, with a value equal to
the average velocity in the channel. The initial pressure and radial velocities were given
zero values. The calculations were terminated when the norm of the residual was less than
5x 10 - 3 .
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Figure 6.9 shows the convergence plot for the Reynolds number of 400 and for the
three finite-difference. grids. The curves correspond to the optimum relaxation factors given
in Table 6.7. The convergence histories for Re = 100 and 200 are identical to those of
Fig. 6.9 and are therefore not presented. The CPU times and the number of fine-grid
iterations to reach the 5 x 10- 3 level of accuracy are given in Table 6.8. These times are
nearly the same as for the backward-facing step problem. The observed flow field for
Re = 400 is shown in Fig. 6.10.

Table 6.7 Optimal Underrelaxation Factors for Blunt Base Flow

Re
Grid 100 200 400

40 x 20 1.0 0.9 0.8

80 x 40 1.0 0.9 0.8

128 x 64 1.0 0.9 0.7

Table 6.8 Fine-Grid Iterations and CPU Times for Blunt-Base Flow

Re
Grid 100 200 400

40 x 20 Il a  11 12
(2.89)b  (3.23) (4.52)

80x40 15 14 16
(15.58) (16.46) (25.61)

128 x 64 17 15 17
(57.09) (54.90) (74.80)

a - Number of iterations.
b - IBM 3033 seconds are in parentheses.

6.2.4 Flow In a Rectangular Tank

The flow field established in a rectangular tank differs significantly from the
previous two cases and consists of a long recirculation zone in the top section. For this
geometry, the Reynolds number is defined as vinL/v, where L is the length of the tank and vin
is the inlet velocity. In this study, calculations for two Reynolds numbers, 800 and 1600,
were made with finite-difference grids containing 32 x 16 (on 3 levels), 64 x 32 (on 4
levels), and 128 x 64 (on 5 levels) nodes. The length is taken to be four times the depth.
Thus the mesh aspect ratio was two for all these grids. For this geometry, the optimum
values of the underrelaxation factors were found to be slightly lower than those of the
previous two geometries; they are given in Table 6.9.
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Table 6.9 Optimal Underrelaxation Factors for
Flow in a Rectangular Tank

Re
Grid 800 1600

32 x 16 0.8 0.7

64 x 32 0.8 0.7

128 x 64 0.8 0.7

The boundary conditions, including the inlet and the exit, were prescribed to be of
Dirichlet type. The walls were treated as no-slip boundaries, and the inlet and outlet
velocities were prescribed to be of uniform distribution. The initial flow field was
prescribed to have zero radial velocity and uniform axial flow. The pressure field was given
zero values. Figure 6.11 shows the convergence histories for a Reynolds number of 1600.
Convergence rates for Re = 800 are similar to those for Re = 1600. For this geometry,
calculations were terminated at an accuracy level of 10-2 because of slow convergence in the
asymptotic range. The corresponding CPU times are given in Table 6.10. Table 6.11 gives
the appropriate residual reduction factors. The velocity vector plot for Re = 800 is given in
Fig. 6.12.

Table 6.10 Fine-Grid Iterations and CPU Times
for Flow in a Rectangular Tank

go
Grid 800 1600

32x 16 13a  13
(2 .20)b (2.30)

64x32 15 17
(11.58) (14.67)

128 x 64 15 18
(47.40) (63.02)

a - Number of iterations.
b - IBM 3033 seconds are in parentheses.

Table 6.11 Residual Reduction Factors for Flow
in a Rectangular Tank

Re
Gid 800 1600

32 x 16 0.694 0.707
64 x 32 0.723 0.760
128 x 64 0.700 0.753
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6.2.5 Model Side-inlet Combustor

For this geometry, the dimensions were assigned somewhat proportionately to a
three-dimensional ramjet configuration considered earlier by the author. The total length of
the channel was taken to be eight times the height, and the inlet opening was taken to be halt
the size of the duct height. The dome length was equal to the duct height. The angle of the flow
was taken to be 450 from the vertical. Two values of the Reynolds number (defined as
vinLlv), 200 and 800, were considered, and for each of these values calculations were made
with three finite-difference grids. The grids contained 64 x 16 (on 3 levels), 128 x 32
(on 4 levels), and 256 x 64 (on 5 levels) nodes. The initial values were plug u-velocity
distribution, zero radial velocity, and a zero pressure field. The left and top boundaries were
walls with no-slip conditions. Zero-derivative conditions were prescribed at the right
boundary. The bottom boundary was a symmetry line.

Figure 6.13 presents the rates of convergence for Re = 800 with the optimum
relaxation factors given in Table 6.12. For this geometry, the initial rates of convergence
are satisfactory. However, in the later iterations the rate of convergence worsens, as for the
rectangular tank. For this flow, the downstream region is characterized by a predominantly
one-way flow. For such strongly aligned flows, point relaxation schemes are slow to
converge the high-frequency components. One remedy is to use a line relaxation scheme, but
that is computationally expensive. Alternatively, semicoarsening [301, i.e., coarsening only
in the perpendicular direction, can be used effectively. Semicoarsening requires more
storage and CPU time for the coarse-grid calculations; however, if the number of fine-grid
iterations is reduced significantly, the overall time may be smaller.

Table 6.12 Optimum Underrelaxation Factors
for Model Side-Inlet Combustor

Re
Grid 200 800

64 x 16 1.0 0.8
128 x 32 1.0 0.8
256 x 64 1.0 0.8

Such semicoarsening has been programmed and calculations have been made for the
side inlet combustor model at Re = 800 and grids of 64 x 16 and 128 x 32 cells. The
rate of convergence with semicoarsening is shown in Fig. 6.14. The number of iterations
and total CPU time with full and semicoarsening are given in Table 6.13. Applying
semicoarsening has significantly improved the asymptotic convergence. However, because
the coarse grids contain more nodes In the x-direction, the number of iterations and the CPU
time per iteration on the coarse grids have considerably increased. The overall result is an
increase in CPU time over the full-coarsening calculation, when both are terminated at the
5 x 10- 3 level of accuracy. Thus, although semicoarsening has better asymptotic
convergence, it is not advantageous over full coarsening when the calculation is terminated at
a reasonable accuracy. Other strategies, such as selective semicoarsening and marching
calculation, are currently being explored. The flow pattern for this case is shown in
Fig. 6.15.
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Table 6.13 Fine-Grid Iterations and CPU Times for Model
Side-Inlet Combustor

Re
Grid 200 800 800a

64x 16 11b  12 9
(5 .0 6 )c (5.50) (7.07)

128x 32 13 16 9
(26.43) (26.65) (70.83)

256 x 64 21 12d

(220.0) (127.40)

a - With semicoarsening.
b - Number of iterations.
c - IBM 3033 seconds are in parentheses.
d - Converged to 10-2 level only

6.3 Three-Dimensional Model Problems

In this section, the following four flow situations, sketched in Fig. 6.16, are
considered:

(a) A three-dimensional sudden expansion,
(b) Flow over a blunt body,
(c) A rectangular box,
(d) A model side inlet combustor.

These situations represent, in a simplified way, several practical flows, such as those in
furnaces, ramjet and gas turbine combustors, and heat exchangers, and the flame
stabilization phenomenon behind blunt bodies. For each flow situation two or three Reynolds
numbers and two or three grids are considered. The rate of convergence of the algorithm is
studied in detail.

Each situation differs considerably from the others through unique flow field
development and flow complexity and offers to a varying degree zones of predominant flow and
zones of flow recirculation. Therefore, the calculations currently performed are stringent
tests of the ability of the algorithm to calculate practical fluid flows.

All calculations were started from plug distributions of axial velocity and null values
for cross-stream velocities and pressure. Sensitivity tests were performed to determine the
optimum underrelaxation tactor. The calculations were made with full as well as semi-
coarsening. The rate of convergence and the required CPU times on an IBM 3033 FORTHX
compiler were tabulated for each test calculation. Some plots of the convergence history are
given in Figs. 6.17 to 6.26. Because the emphasis in this study is on the rate of convergence,
no efforts were made to compare the flow fields with any existing data. However, the flow
fields were checked for plausibility and qualitative correctness.

For flow in a three-dimensional expansion, a 4:1 area ratio was considered. A total
duct length of eight duct heights was considered. Because of symmetry conditions, only a
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Fig. 6.21 Rate of Convergence for a Blunt-Base Flow, Z = 8.0, Re = 400;
(A) 8 x 8 x 32 Grid, Full Coarsening; (B) 16 x 16 x 64 Grid, Full
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Fig. 6.22 Rate of Convergence for a Blunt-Base Flow, Z = 8.0, Re = 800;
(A) 8 x 8 x 32 Grid, Full Coarsening; (B) 16 x 16 x 64 Grid, Full
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Fig. 6.23 Rates of Convergence for Flow in a Side Inlet Combustor, Re = 600;
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Fig. 6.24 Rates of Convergence for Flow in a Side Inlet Combustor, Re = 2400;
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quarter section of the duct with two symmetry planes was calculated. The finest mesh used
contained more than 16,000 nodes with 16 x 16 x 64 cells in the x-, y-, and z-
directions, respectively. Three values of the flow Reynolds number (defined as winH/v),
200, 400 and 800, were considered. Because of the large expansion ratio, the recirculation
zone in these c.lculations was quite long. Consequently, it was necessary to use cells of large
aspect ratio. Figures 6.17 and 6.18 show the rate of convergence for Reynolds numbers of
400 and 800 with full and semicoarsening. The quantity plotted is an average of the
residuals in the four equations, defined as

IIRIV [I{(R) +( R) + (Rw) 2 + ( R)} / (NEC/ (6.2)

where NEQ = IMAX x JMAX x KMAX x 4 and the summation is made over all cells. Ru , RV ,

Rw, and Rc are point residuals (per unit cell volume) in the appropriate equations
normalized by inlet momentum and inlet mass as appropriate. This norm of residuals was
converged to a level less than 10-3 , which is provides a solution of good accuracy. The
optimal values of the underrelaxation factor, the numbers of fine-grid iterations, the
equivalent work units, and the CPU times for these calculations are given in Tables 6.14 and
6.15. A work unit is the time required for one fine-grid iteration.

Figures 6.19-6.22 present the rate of convergence for flow over a blunt body. This
flow is the geometric inverse of the three-dimensional sudden expansion. In this case, the
recirculation zone was established behind the blunt body instead of at the top wall. Two duct
lengths of four and eight duct heights were considered, and calculations for only one-quarter
of the duct cross section were made. Three Reynolds numbers (winH/v), 400, 800 and
1600, were considered for each case, with the finest grid containing 16 x 16 x 64 cells
(three levels). Calculations with both full and semicoarsening were made. The results of
these calculations are summarized in Tables 6.16-6.19. As before, these timings and rates
of convergence correspond to an accuracy level of 10-3 in the residual.

Table 6.14 Convergence Details with Full Coarsening
for Laminar Sudden-Expansion Flow, z = 8.0

Re
Grid Item 200 400 800

8 x 8 x 32 a 1.0 1.0 0.8
b 16 15 24
c 23 22 36
d 14.0 13.3 21.3

16x 16 x 64 a 1.0 1.0 0.8
b 30 26 27
c 45 39 43
d 225.0 205.0 217.0

a - Optimal underrelaxation factor.
b - Number of fine-grid iterations.
c - Number of work units.
d - CPU time, seconds.
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Table 6.15 Convergence Details with Semicoarsening
for Laminar Sudden-Expansion Flow, z = 8.0

Re

Grid Item 200 400 800

8 x 8 x 32 a 1.0 1.0 1.0
b 8 7 8
c 14 13 17
d 8.76 8.02 10.54

16 x 16 x 64 a 1.0 1.0 1.0
b 10 7 8
c 18 14 20
d 94.0 72.0 98.0

a - Optimal underrelaxation factor.
b - Number of fine-grid iterations.
c - Number of work units.
d - CPU time, seconds.

Table 6.16 Convergence Details with Full Coarsening
for Laminar Blunt-Base Flow, z = 4.0

Re
Grid Item 400 800 1600

8 x 8 x 32 a 0.9 0.9 0.7
b 16 19 20
c 24 29 30
d 14.4 17.6 18

16 x 16 x 64 a 0.9 0.9 0.7
b 20 22 25
C 31 35 41
d 158.0 181.0 207.0

a - Optimal underrelaxation factor.
b - Number of fine-grid iterations.
c - Number of work units.
d - CPU time, seconds.

For the blunt-body calculations with a length of four duct heights, both full and
s,. 'coarsening converge at nearly the same rate. However, when the duct length is increased
to eight duct heights (with the aspect ratio of cells equal to four), the full-coarsening
strategy is inferior to semicoarsening. Typically, improvement in CPU time by a factor of
two is observed with semicoarsening. Nevertheless the CPU times with both full and
semicoarsening are quite small.
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Table 6.17 Convergence Details with Full Coarsening
for Laminar Blunt-Base Flow, z - 8.0

Re
Grid Item 400 800 1600

8 x 8 x 32 a 0.8 0.8 0.8
b 22 25 29
c 32 37 43
d 19.3 22.0 26.2

16x 16x64 a 0.8 0.8 0.8
b 31 29 32
c 49 49 55
d 258.0 254.0 278.0

a - Optimal underrelaxation factor.
b - Number of fine-grid iterations.
c - Number of work units.
d - CPU time, seconds.

Table 6.18 Convergence Details with Semicoarsening
for Laminar Blunt-Base Flow, z = 4.0

Re
Grid Item 400 800 1600

8 x8x32 a 1.0 1.0 1.0
b 16 14 12
c 34 30 24
d 21.1 18.7 14.8

16 x 16 x 64 a 1.0 1.0 0.9
b 13 15 16
c 31 37 40
d 162.0 191.0 208.0

a - Optimal underrelaxation factor.
b - Number of fine-grid iterations.
c - Number of work units.
d - CPU time, seconds.

The third flow situation considered'is a rectangular representation of a side inlet
dump combustor of a liquid-fueled ramjet. In this geometry, the flow enters a r j .ular
duct from the top at an angle, as shown in Fig. 6.16. The angled inject' up a
recirculation region behind the inlet jet, a stagnation region at the point of impingement, and
a top wall recirculation region. In the downstream section, the flow is nearly one-way after
the reattachment region.
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Table 6.19 Convergence Details with Semicoarsening
for Laminar Blunt-Base Flow, z . 8.0

Re
Grid Item 400 800 1600

8 x 8 x 32 a 1.0 1.0 1.0
b 10 10 11
c 18 19 23
d 11.3 11.6 141

16 x 16 x 64 a 1.0 1.0 0.9
b 12 12 12
c 26 26 28
d 133.6 137.0 144.0

a - Optimal underrelaxation factor.
b - Number of fine-grid iterations.
c - Number of work units.
d - CPU time, seconds.

For this geometry, the Reynolds number was defined to be vinZ/v. A total length of
six duct heights was considered. Only half of the cross section was calculated because
normally two inlet ports are located symmetrically. Calculations were made for three values
of the Reynolds number, 600, 1200, and 2400, and two grids containing 8 x 8 x 32 and
16 x 16 x 64 finite-difference cells. The corresponding aspect ratios of the cells are 1.5
and 3.0 in the xz and yz planes, respectively. For this geometry also, both full and
semicoarsening were investigated. The calculations were initiated with plug axial velocity
and zero secondary velocity and pressure distributions. The calculation was terminated when
the residual norm was below 10-3. The rates of convergence for two of the three Reynolds
numbers are shown in Figs. 6.23 and 6.24. Convergence was obtained typically in 25 fine-
grid iterations for all three Reynolds numbers. For this case, full coarsening is superior to
semicoarsening. The CPU times, optimal relaxation factors, and the numbers of fine-grid
iterations are given in Tables 6.20 and 6.21.

Table 6.20 Convergence Details with Full Coarsening
for Model Side Inlet Combustor

Re
Grid Item 600 1200 2400

8 x 8 x 32 a 0.8 0.8 0.8
b 20 21 21
c 28 30 30
d 16.7 17.3 17.8

16x 16 x 64 a 1.0 1.0 0.8
b 23 24 27
c 35 37 42
d 174.0 184.0 214.0

a - Optimal underrelaxation factor.
b - Number of fine-grid iterations.
c - Number of work units.
d - CPU time, seconds.
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Table 6.21 Convergence Details with Semicoarsening for
Model Side Inlet Combustor

Re
Grid Item 600 1200 2400

8 x 8 x 32. a 1.0 1.0 0.8
b 15 18 21
c 28 33 41
d 16.7 19.7 24.2

16x 16 x e4 a 1.0 1.0 0.9
b 20 23 29
c 44 55 70
d 221.0 272.0 348.0

a - Optimal underrelaxation factor.
b - Number of fine-grid iterations.
c - Number of work units.
d - CPU time, seconds.

The fourth situation calculated is the complex flow field established in a rectangular
box when flow enters from one corner and exits from the opposite corner (shown in
Fig. 6.16). The geometry is a model of the flow fields in nuclear reactor (breeder) plena
and heat exchangers, and of ventilation flow in buildings. For this situation, the length of the
box was taken equal to four duct heights. Three Reynolds numbers (winH/v) equal to 200,
400, and 800 were calculated with grids containing 8 x 8 x 16 and 16 x 16 x 32
cells. For this geometry, only full coarsening was calculated because there is no predominant
one-way flow, and initial calculations with semicoarsening displayed slow convergence. The
results for this case are summarized in Table 6.22. Figure 6.25 shows the rate of
convergence for the intermediate Reynolds number of 400.

Table 6.22 Convergence Details with Full Coarsening
for Flow in a Rectangular Box, z = 4.0

Re
Grid Item 200 400 800

8 x 8 x 16 a 0.8 0.8 0.8
b 14 15 21
c 21 22 32
d 5.50 6.12 8.61

16 x 16 x 32 a 0.8 0.8 0.8
b 18 20 22
c 66.30 75.94 88.0
: 27 31 37

a - Optimal underrelaxation factor.
b - Number of fine-grid iterations.
c - Number of work units.
d - CPU time, seconds.
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6.4 Comparisons with Experimental Data

The calculation procedure was applied to the computation of three isothermal flows in
which recent measurements were made. The three flow situations are

(a) turbulent flow over a planar backward-facing step,

(b) turbulent flow in an axisymmetric sudden expansion, and

(c) isothermal turbulent swirling flow in a sudden expansion.

6.4.1 Flow Over a Backward-Facing Step

A review of the experimental data base for turbulent flow over a backward-facing
step was recently made by Eaton and Johnston [391, and the problem was considered as a
standard problem at the 1980-81 AFOSR-HTTM-Stanford Conference on Complex Turbulent
Flows 1401. The flow field behind a backward-facing step contains a recirculation zone, a
reattachment region, and a relaxation region. In reality, the flow is three-dimensional
because of the large-scale vortex dynamics associated with the shear layer. Further, the
reattachment region is highly unsteady. However, despite the three-dimensionality and the
unsteadiness, two-dimensional steady-state models have been employed in the past to
characterize this flow. Of the many data sets available, we have selected the one presented
recently by Pronchick and Kline [41], primarily because the data are recent and accurate
(an LDV technique was used). The experimental data of Pronchick and Kline are also readily
available in tabular form. The flow Reynolds number for Pronchick's experiments, based on
mean inlet velocity and step height, was 1.4 x 104 . The step height was 30 percent of the
downstream channel height, and a fully developed channel flow existed at the inlet to the
expansion. Pronchick and Kline measured several flow properties including axial and radial
velocities, normal and shear stresses, and triple correlations. They presented data for a
number of downstream situations.

We considered two grids consisting of 40 x 20 and 80 x 40 finite-difference cells
in the x- (axial) and y-directions. The step region contained 6 and 12 (uniform) cells, and
the inlet region was occupied by 14 and 28 cells, respectively, for the two grids. The length
of the channel was taken to be 20 step heights, at which location zero-derivative outflow
conditions were imposed. The top and bottom boundaries of the channel were prescribed as
walls and wall functions were imposed to model the steep gradients normal to the walls.
Calculations were first made for a long channel of the height of the inlet region, and the
conditions at the exit of this channel were prescribed to be the inlet conditions for the step
flow.

The calculations were initiated from uniform (plug) distributions for the interior
values of u, k, and e. The values of u were assigned to be the average in the channel, and k and
E in the flow domain were made roughly equal to the mean inlet value. The radial velocity and
pressure were set to zero over the whole flow field; this represents the simplest
prescription of the initial flow field. For the 40 x 20 grid, two levels of grids containing
20 x 10 and 40 x 20 cells were considered. For the 80 x 40 grid, three levels with
20 x 10, 40 x 20, and 80 x 40 cells were included. The calculations were always
started on the coarsest grid, and the solution was prolongated to the next grid.

Figure 6.26 shows the rate of convergence of the algorithm for the two grids. The
values of underrelaxation factors were 0.7 for all variables (i.e., u, v, k, and e). The CPU
times for the two calculations on an IBM 3033 with FTX (OPT2) compiler and virtual
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memory addressing were 12.3 sec and 69.0 sec, respectively, for the 40 x 20 and
80 x 40 calculations.

The calculated values of u and k were compared with the measured values at five axial
stations. Figures 6.27 and 6.28 provide these comparisons for results of the
80 x 40 grid. The agreement between m,)asurements and calculations is good. A
monotonic discrepancy at x/h = 2 indicates a lower mass flow in the experiments than in
the calculations. For stations downstream, the mass flows and the profiles seem to be in
much better agreement. The agreement for the turbulent kinetic energy is also good. Here,
the turbulent kinetic energy was taken to be 3/4 (u.2+ v.2) , under the assumption that
w.2 is equal to half the sum of the other (measured) components. The calculated

reattachment point was 5.75 step heights versus the measured value of 6.75 step heights.
Such . discrepancy was observed earlier and was attributed to the inadequacies in the k-E
turbulence model.

6.4.2 Flow In an Axisymmetric Sudden Expansion

A counterpart of the backward-facing step flow in cylindrical geometry is the
axisymmetric sudden expansion. The axisymmetric sudden expansion is characteristic of
flows in furnaces, ramjet and gas turbine combustors, and orifice meters. The flow field is
qualitatively similar to that of a backward-facing step, but quantitative differences on flow
development exist. Measurements and calculations of this flow situation have been reported.

The present calculations were made for the experimental configuration of Craig et al.
1201. In these experiments, the step height was 0.89 inches, and the inlet pipe was 2 inches
in diameter. The Reynolds number, based on inlet velocity and inlet diameter, was
8.2 x 104. Measurements with a two-component laser velocity meter are reported for
several axial locations in the sudden expansion. The inlet flow was undeveloped, and the
turbulence level was low (u'/u - 0.025).

For the calculations, a finite-difference grid with 80 x 40 cells was used. In the
radial direction, 21 cells were placed in the inlet pipe, and 19 cells were located in the step
region. The axial length was taken to be 16 step heights, at which zero-derivative outflow
conditions were placed. The inlet was specified to be of plug distribution with zero radial
velocities. A uniform value of kin equal to 9.0 x 1 0 Uin was prescribed from measured
data, and e was calculated from the reported decay of k at centerline for two initial stations.
Ein for this calculation is prescribed to be approximately equal to 1.20 x 10- 5 , because
measurements of Ein are not available. Wall functions were used for the cells adjacent to the
pipe wall, and the axis of the pipe was considered as a line of symmetry. Calculations were
made for one radian of the pipe.

Figure 6.29 shows the rate of convergence of this calculation, starting from plug
distributions of u, k, and F. Four levels of grids containing 10 x 5, 20 x 10, 40 x 20,
and 80 x 40 finite-difference cells are considered. The tolerance level on grids 1, 2, and
3 was set to 10-2, whereas for the finest grid, tolerance was set to 2 x 10-3 . The total CPU
time on an IBM 3033 with FTX (OPT2) compiler was 53 seconds, for a total of 37 work
units.

Figure 6.30 shows the decay of the calculated profile of centerline velocity and
experimental data. The agreement is good. Figure 6.31 shows the development of the axial
velocity at several axial stations. Again, the comparison with data of Craig et al. [201 is
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good, although minor differences exist. In Fig. 6.32, the calculated values of kinetic energy

of turbulence (k) are converted to a turbulence intensity ( u'/ uin) and are compared

with the data. In this conversion, the three normal stresses are assumed to be equal and to
have a value of 2k/3. The calculations consistently underpredict the turbulence intensity by
about 25 percent. This discrepancy may be attributed either to the assumptions made in
converting the value of k or to the basic k- turbulence model. However, in the case of the

backward-facing step, v is about half the value of u' 2 and k is taken to be equal to

3 / 4 ( 2 + •). If such an assumption were also used here, the agreement might be better.

6.4.3 Swirling Flow In a Sudden Expansion

Swirling flows are significant to reacting flows. For subsonic ramjet combustors,
swirling the air-fuel mixture can improve the combustion efficiency and possibly shorten
the required dump region. Several measurements and corresponding multidimensional
calculations of swirling flows have been reported in recent years. In the present study,
calculations were made with the block-implicit multigrid algorithm for a configuration
recently studied by Nejad et al. [401 at the Wright Patterson Air Force Base. These
experiments have considered the development of a swirling turbulent flow into an
axisymmetric sudden expansion with a step height of 0.0254 m and radius of 0.0762 m.
Detailed measurements of the velocities, turbulence kinetic energy, and shear stresses have
been made for two swirl numbers (0.3 and 0.5) at several axial and radial stations.

The calculations for this geometry were performed for the region starting at a
location 0.375 step heights from the dump plane. At this plane, the measured values of axial
and azimuthal velocities were prescribed. The radial velocities were taken to be zero. The
inlet turbulence kinetic energy and its dissipation rate were calculated from

kin= ,3/4(U.+ .2 (6.3)

in=  kin 0 .3 ri , (6.4)

where ri is the radius of the inner pipe of the sudden expansion. These expressions imply
that v'2 is half of the sum of the other two components and that the dissipation length scale is
uniform over the cross section. These assumptions were necessary because v'2 was not
measured, and no means are currently available to measure the dissipation rate.

The solution domain was taken to be 20 step heights long, and zero-derivative
boundary conditions were prescribed at the exit. At the top boundary, wall functions were
used to model the near-wall turbulence phenomena. The solution was performed only for one
radian sector of the cross section with the assumption of azimuthal symmetry. The
calculations were made for three different finite-difference grids consisting of 20 x 12,
40 x 24, 80 x 48 finite-difference cells in the x- and r-directions, respectively. In the
multigrid strategy, the coarsest grid contained 5 x 3 cells that were of uniform size in the
respective directions. The solution was terminated when the sum of the absolute residuals in
the x-momentum equation was less than 5 x 10-3 of the inlet momentum. At this level, the
maximum successive changes in the u- and v-velocities were of the order of 10-3 of a
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typical inlet value. Currently, calculations of only the case with weak swirl (0.3) are
documented.

Figure 6.33 shows the convergence of the calculation for the three grids considered.
The residual in the x-momentum equation is plotted against the fine-grid iteration number.
The calculations were Initiated from simplistic plug distributions of velocities, pressure,
and turbulence variables. The residuals decreased very rapidly with iteration number, and
good convergence was obtained In less than 15 iterations. The efficiency of the multigrid
cycling is seen in the fact that the three grids converged at the same rate. Thus the present
solution procedure Is attractive in computing engineering flows as well as in research toward
development of turbulence models.

Figure 6.34 shows the axial velocities and measured profiles for several axial
distances. At x/H - 0.375, there is a small outward (negative) velocity consequent to the
section through the corner recirculation eddy. At x/H - 1.0, some disagreement is seen
between the measured and calculated values, but the discrepancy is not large. The principal
difference is in the central region and at the edge of the shear layer from the lip of the sudden
expansion. Up to x/H = 6.0, the agreement is satisfactory, considering the asymmetries
observed in the measurements at two opposite radial lines. However, at locations x/H - 8.0
and beyond, the calculations significantly differ from the measurements. The measurements
indicate a considerably flatter profile of u-velocity whereas the calculations show higher
velocities in the center and lower values toward the wall. For the swirl velocity (Fig. 6.35),
the agreement is again satisfactory up to x/H = 6.0, and significant deviations are observed
at x/H = 8.0 and beyond.

The principal cause for these discrepancies can be inferred from the comparisons of
the turbulence kinetic energy, shown In Fig. 6.36. At x/H = 1.0, the differences between
calculations and the measurements of the turbulence kinetic energy are not significant. This
is expected because the flow has not developed very far from the inlet. However, for stations
downstream, I.e., at x/H = 3.0 and beyond, the large turbulence intensities at the center are
not at all reproduced by the k-c turbulence model. Instead, the turbulence energy decays
sharply, in disagreement with the measurements. The disagreement near the shear layers is
not as large, although the overall turbulence intensities are lower than the observed values.
However, for nonswirling flows the predicted kinetic energies agree much better with data,
thus illustrating the inability of the k- model to represent the additional production of
turbulence kinetic energy due to azimuthal swirl. The predicted kinetic energies at locations
farther downstream (x/H = 8.0, 10.0, 12.0) show the same trends. This prediction of
lower turbulence kinetic energy is the principal cause for the smaller amounts of turbulent
mixing, which result in sharper gradients than those observed in the experiments. We
believe that the current results with the finest grid (80 x 48) are nearly free of
numerical-diffusion errors.

6.5 Summary

In Section 6 we have presented results of calculations performed to demonstrate the
efficiency of the present solution technique. Several model problems and experimental
configurations were analyzed. Systematic convergence studies were conducted to observe the
performance of the algorithm. Further, comparisons with some measured data are presented.

In Section 7 further extensions to the algorithm are described, and their performance
is assessed. The extensions include vectorization, calculations on nonorthogonal grids, and
treatment of chemical kinetics and liquid sprays. Although these extensions have not been
fully tested, they indicate the viability of the procedure.
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7. EXTENSIONS OF THE BLOCK-IMPLICIT MULTIGRID TECHNIQUE TO

COMPLEX ASPECTS

7.1 Introduction

The block-implicit multigrid concept can be extended in a straightforward way to
many other complexities that are frequently encountered in practical reacting flows. The
common complexities are (a) complex geometric shapes; (b) multistep chemical kinetics;
and (c) liquid fuel transport. Further, with the popular use of super computers, it is
necessary to explore the possibilities of vectorizing the mathematical operations. In the
present study, these features have been integrated into the algorithm, and some
demonstration calculations have been made to observe the performance. However, extensive
calculations or code development efforts were not conducted. In this section, these
experiences are described. The results were also reported by the author in earlier
publications [43-451.

7.2 Treatment of Complex Geometries

Many practical geometries are complex in shape, and their representation by
Cartesian or cylindrical polar grids is not possible without incurring inaccuracies. A
popular method of simulating such geometric shapes is the technique of grid generation. In
this concept, the complex shape is transformed to a regular shape, and a rectangular grid is
used in the transformed space. In the physical space, this corresponds to a curvilinear grid
that fits the boundaries of the domain. The concept of boundary-fitted coordinates is
explained in detail in several earlier works, notably in Ref. 46.

7.2.1 Solution on Nonorthogonal Meshes

For solution on nonorthogonal meshes, it is first necessary to select the velocity
components for which the momentum equations are solved. Among the alternatives available,
the equations for the Cartesian (x,y) velocities have a simpler formulation. The transport
equations with these flow velocities can be written as [451

a/4 (pU4 + a/ll (pV4 = a/at (cl aak + C2

+ ala('103 a4al + C4 alla) + s , (7.1)

where (,,-q) are the coordinates in the curvilinear system and U and V are the contravariant
velocity components given by

U = y-u - xnv (7.2)

V = xpv - ypu , (7.3)

u and v are the Cartesian velocities, and xt, yk, xn , y define the local alignments of the
coordinate system. S is a source term, given in Table7.1 for each equation. C1 , C2, etc.,
are given by

C 1 = 0' ( J ;(7.4)

C2=04 = -rC 4 / J; (7.5)
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Table 7.1 Source Terms for the Dependent Variables

Variable Source Term

yu Yq p/ak, - yk, ap/ Yrq + ( y. r4 - y4 , y.T )(Y u4, - y4 u.,) J +

( yT, vt - y4 v ) ( xt r - x. r4)/ J

x, ap/ih - x., ap/ap + p w2 / r + (x u. - x u,) (yl, r -y r. )/J +

( x4 v - x v4 ) (xt r, - x4 r4 ) / J

w -p vw/r-r w/r 2 -w(x4,"q -x, r4 )/J/r

k G-pc
G = t [ {2.0 {(y., u- y, ul) 2 + (xt vr1 - x., v )2} +
Ny vp - Y4 VTI + Xp U -x,1 U4,) 2 + (YT, wt y4 _, )2 +

(X Wn - Xn wt )2} / j 2  (w/r) 2 + 2.0 v2 / r2

C 1.47 Ge/k - 1.92 p e2 /k

mfu max ( RARR , REBU ); RARR as per Equation 7.12 of text;

REBU = -CRmfu pc/k;CR=3.0

mCH max ( RARR , REBU ); RARR -s per Equation 7.12 of text;

REBU = -CR min(mCH, mox*MCH/Mox) pe/k

mCo max ( RARR , REBU ); RARR as per Equation 7.12 of text;

REBU = -CRmin(mCO, mox*2.0* McO/Mox) pc/k

mH2  max ( RARR , REBU ); RARR as per Equation 7.12 of text;

REBU = -CR min (mH2, mox* 2.0*MH2 /Mox) pE/k
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C3 = ro -f/J ; (7.6)

2 2
a= Xl+ Y-n; (7.7)

= x + Yxk YT ; (7.8)

Y = X42 + y42 ; (7.9)

J = xF Y' - xnyY . (7.10)

The quantity represents the Cartesian velocities u and v, the scalars such as the turbulence
variables, and the chemical species. The mass continuity equation is obtained by setting t to
unity.

The solution algorithm for nonorthogonal systems is very much the same as that
described in Section 5. The restriction/prolongation procedures are similar, and the same
code structure is used for the relaxation operator. However, the fluxes are calculated from
modified expressions that take into consideration the orientation of the velocities with the
coordinate directions. The algorithm was first verified in simple geometries and later
applied to the calculation of the flow field in a sloping-wall dump combustor. The following
three model problems have been considered (Fig. 7.1):

(a) Flow in an inclined driven cavity

(b) Flow through an inclined channel

(c) Flow through an inclined sudden expansion.

The first flow is driven by the shear from the top wall and thus emphasizes the shear stress
and pressure terms, while the other two are dominated by the convection of the inlet flow.
The efficiency of the present calculation procedure was investigated for several flow
Reynolds numbers, grid sizes, and angles between the coordinate lines. The calculations were
initiated from simplistic guessed flow fields (e.g., plug distributions), and convergence to a
mass residual of 10-3 was achieved. The results are documented in Tables 7.2-7.4. These
tables give the required CPU times on an IBM 3033 machine for the optimum value of the
underrelaxation parameter.

The present calculations indicate that for the Reynolds numbers considered, good
convergence can be obtained with the solution for the Cartesian velocity components only up
to an inclination of around 400. Beyond this value the convergence deteriorates, and the
procedure diverges for values greater than 45". Further, the CPU time variation Is not
strictly linear in all cases. Typically, the exponent is between 1 and 1.25 (closer to unity
for the cavity flow). The CPU time includes times for restrictions, prolongations, and the
adaptive coarse-grid cycling. The causes for departure from strict linearity in CPU time are
(a) the inclusion of all operations in the accounting of the total CPU time, (b) linear
instead of higher order prolongations, and (c) adaptive instead of prescribed cycling.
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(a) Flow in an Inclined Cavity

(b) Flow in an Inclined Channel

Fig. 7.1 Model Flow Problems in Inclined Geometries
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(c) Flow in an Inclined Sudden Expansion

Fig. 7.1 (contd)
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Table 7.2 CPU Times for Inclined Cavitya

Angle/Grid 22x22 42x42 82x82

Re=100 1.24 4.98 21.0
Re=400 1.88 7.60 25.54
Re=1000 2.66 14.16 47.5
o_300
Re=100 1.26 5.0 22.18
Re=400 1.92 8.18 27.90
Re=1000 7.01 37.22 161.57
0=450

Re=100 1.45 7.06 35.68
Re=400 2.28 8.09 26.78
Re=1000 10.5 36.72

a - IBM 3033, sec.

Tible 7.3 CPU Times for Tncl ined Channe'la

Angle/Grid 22x12 42x22 82x42

0=150
Re=100 0.68 3.56 16.86
Re=400 0.79 3.75 16.74
Re=1000 0.71 3.61 16.99

Re=100 0.79 3.49 18.34
Re=400 0.94 4.09 19.08
Re=1000 0.87 4.56 31.23
97450

Re=100 0.88 3.97 17.79
Re=400 1.08 ..........
Re=1000 1.34 ..........

a - IBM 3033, sec.
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Table 7.4 CPU Times for Inclined Sudden
Expansiona

Angle/Grid 22x12 42x22 82x42

e=150
Re=100 0.63 4.08 25.54
Re=400 0.89 5.97 29.75
e=300

Re=100 0.72 3.91 23.06
Re=400 1.47 7.79 33.37

Re=100 0.70 3.72 20.99
Re=400 ..... .....

a- IBM 3033, sec.
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7.2.2 Isothermal Flow In a Sloping-Wall Combustor

Figure 7.2 shows a dump combustor with the top wall sloping at an arbitrary angle
and with a nozzle at the exit. Depending on the slope of the outer wall, a recirculation zone
that forms at the corner of the dump can be used for stabilizing the combustion process. The
pressure drop and combustion characteristics can be optimized by varying the slope and the
length of the combustor.

Demonstration calculations have been made for an inlet velocity of 20 m/s and for
different angles of the outer wall. The dimensions of the configuration are shown in Fig. 7.2.
Calculations have been made for three finite-difference grids of increasing fineness. The
grids contained 10 x 5, 20 x 10, and 40 x 20 cells in the axial and radial directions,
respectively. The coordinate lines in the radial direction were aligned with the outer wall,
whereas the axial lines were of constant x values. The coarsest grid in the calculations
contained 10 x 5 cells in the x- and r-directions. The tolerance criterion on the
momentum residual was set to 10-3 . Figure 7.3 shows the rates of convergence and the
calculated streamlines for an outer wall slope of 45". The residual plotted is of the
u-momentum equation. The total number of work units, including the coarse-grid work, is
approximately equal to twice the number of iterations shown in the plot.

The three grids in Fig. 7.3 converged at nearly the same rate, and convergence was
achieved in about 20 fine-grid iterations. The streamlines and the calculated distributions of
other variables behaved according to expectations, but quantitative comparison with
experimental data is necessary.

The influence of the outer-wall slope on the rate of convergence and the streamline
patterns is shown in Figs. 7.4 and 7.5 for two other angles. The convergence for smaller
angles is slightly better than that for 450 slope, presumably because of the lack of flow
recirculation for the two smaller angles. The present procedure of solving for the Cartesian
velocities imposes limitations on the inclination of the grid lines, and the convergence is
empirically observed to become difficult after about 450 of inclination. However, this
limitation can be removed by solving either for the covariant velocities or for two
components on each face [47].

7. 3 Chemical Kinetics

The four step scheme of Hautman et al. [48] for a general aliphatic hydrocarbon has
been considered. The four steps in this global kinetics scheme are

CnH2n+2 -4 (n/2)C 2 H4 + H2

C2 H4 + 02 - 2CO + 2H2

CO + 1/2 02 -CO2

H2 + 112 02 - H2 0 . (7.11)

The reaction rate expressions are
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Fig. 7.2 Geometry of a Sloping-Wall Combustor
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Fig. 7.4 Rate of Convergence for Isothermal Flow in a 300 Sloping-Wall Combustor
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dldt [Cn H2n+2]= - 1 0 x lexp (- E I/RT)

[Cn H2n+2]al[02] [C2H4] mole/cm .s
(7.12)

d/dt[C2H4 ]=- 1 0X2exp (- E2/RT)[C 2 H4 ]a 2

02] b2[Cn H2 n+2]C2mole/cm 3 ,s

d/dt [C (j{ 1 0 X 3 exp(- E 3/R T) [cc~a3[o2]b3 [H 20c 3)}  oec 3 O

(7.13)

d/dt [H2] - 1 0 X4 exp (- E4/RT)[H 2]a4[0 2]b4[C2H4]C4mole/cm3es

where a1 , etc., are given in Table 7.5.

F = 7.93 exp(-2.48 4)) (7.14)

where (b is the initial equivalence ratio, and F is always less than one.

Table 7.5 Reaction Rate Constants

Reaction x E a b c

1 17.32 49600 0.5 1.07 0.40
2 14.70 50000 0.9 1.18 -0.37
3 14.60 40000 1.0 0.25 0.50
4 13.52 41000 0.85 1.42 -0.56

The above equations are tightly coupled locally through the source and sink terms. The
resolution of these local source terms is much more important than the convective and
diffusive transport due to the flow field. To resolve this close coupling between the species,
it is necessary to iterate between the species equations, updating the respective source
terms.

In the present solution framework, the chemical kinetic equations are solved by a
single-grid technique. The calculation sequence for one iteration on the scalar equations is as
follows.

(a) Select a scalar.
(b) Assemble convection and diffusion coefficients.
(c) Calculate source terms.
(d) Perform one Gauss-Seidel sweep of the domain.
(e) Repeat (a) - (d) for all scalars.
(f) Repeat (a) - (e), typically five times.
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The finite-difference coefficients need not be updated if the PrandtI-Schmidt numbers for the
species are assumed to be equal; otherwise, they need to be reevaluated in step (b). The
updated values of the species are used in the evaluation of a new density field.

The above sequence has been applied to compute the premixed combustion of a
stoichiometric mixture of propane and air with the composition given in Ref. 48. The inlet
temperature of the mixture is taken to be 1130 K. The density is updated after each solution
of the chemical kinetic equations, and an underrelaxation factor of 0.6 is used on the density
to procure stable convergence. Figure 7.6 shows the convergence plot for the reacting flow
The convergence criterion is the same as before and is based on the residual *- the
x-momentum equation. The chemical kinetic equations are solved by a fixed number of
sweeps (10), and their successive changes at convergence are observed to decrease below
10-5. The convergence of the chemical kinetic equations influences the overall convergence
through changes in the density.

7.4 Liquid Fuel Sprays

The liquid fuel injection is considered as a dilute spray, characteristic of the region
downstream of the injector nozzle. A convenient framework by which dilute gas particle
flows can be computed is the Lagrangian representation of the transport of individual groups
of particles [49,501. In this approach, a discrete number of particle groups are tracked
with the flow field, and the relative motion of the liquid droplets is considered through
empirical drag laws. This approach is superior to the locally homogeneous flow (LHF)
approximation in situations when the droplet drag is significant. An even more rigorous
methodology [501 considers the dispersion of the particles due to gas phase turbulence by
considering instantaneous transport of the particles. The instantaneous positions are
randomly sampled, and a mean position is computed. We have not considered such a stochastic
model; however, the present solution methodology can be easily modified for such a model.

The particle transport equation can be written as

mp dp/dt = CDPndp 2 /4 * (_ - _p) Il - YpI, (7.15)

where CD is a drag coefficient given by an empirical relation, dD is the diameter of the
droplet, mp is the mass of the droplet, and YV and Y-n are the gas phase and particle total
velocities, respectively. The particle trajectory is obtained by int, r, 'he equation

dXp/dt = Y_p. (7.16)

A commonly used correlation for the drag coefficient CD is

C D = 24/Re * (1 + 0.15 ReO 6 8 7 ), (7.17)

where

Re = pdp IV-Y.pl/.g, (7.18)

and gg is the gas phase viscosity.

In the case of evaporating and combusting sprays, it is necessary to specify further
the droplet temperature and size histories. The behavior of a single droplet (or a cloud of
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droplets) in a gas stream was recently reviewed in detail by Faeth [50], Law [51], and
Sirignano 152]. The model used in this study assumes that the droplet first heats up to its
boiling temperature, then evaporates at a constant temperature. The initial heat is supplied
to the drop by the gas stream, and when evaporation takes place the heat of reaction of the
fuel vapor is deposited in the gas stream. Empirical relations of the initial heating and
droplet evaporation are necessary to complete the mathematical model. The following
expressions have been used (531.

Heating

mpCpdTp/dt = hap (T - Tp) (7.19)

Nu = 2.0 + 0.6 * Re 0 .5 Pr0 .3 3 3  (7.20)

h = Nu /dp (7.21)

Evaporation

d/dt (dp) 2 = -Cb(1 + 0.23 Re 0 .5 ) (7.22)

Cb = 8X/PCp In {1 + Cp/L (T - Tp)} (7.23)

where Cp is the specific heat of the liquid and X is the conductivity.

The trajectories of the individual groups of droplets are calculated by a Lagrangian
method. For each group, the initial velocities, position, droplet diameter, temperature, and
number density are specified. These values (except number density) are then updated by
following the trajectory of the particle. If the particles collide with the wall boundaries,
perfect reflection is assumed. The trajectory is terminated at an outflow location. The
sources of fuel, enthalpy, and momentum are calculated for each finite volume by summing
the contributions from all groups of droplets. Thus,

(Sm)i,J N ((PpM-p)in - (PpYp)out} (7.24)

(Su)i,J = £k {(PpUp 2 )in " (ppup 2 )out} (7.25)

where pp.Yp is the total mass flow of liquid droplets.

The calculations that include of liquid droplets have been made only for the isothermal
case. In this case, the spray has no effect on the rate of convergence, because the interaction
of the spray with the flow field through evaporation and combustion of the fuel has not been
exercised. Spray calculations with combustion will be pursued in future studies.

7.5 Vectorization

In this section, the results of vectorizing the SCGS algorithm are explained.
Vectorizing the restriction and prolongation phases is relatively straightforward. The
vectorization studies were made with a simple workbench code applicable only to a two-
dimensional laminar flow and using an earlier version of the algorithm. Details of
vectorization are fully described in Ref. 43.
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7.5.1 Data Structures

In the multigrid framework, it is convenient to store all variables in one-
dimensional arrays and access them with appropriate offsets. This is because the size of a
variable array is different for each grid. Thus the values corresponding to the fine and
coarse grids are packed in single arrays U, V, and P. The residuals that are transferred from
one grid to the other are stored only for the coarse grids. A lexicographic storage convention
is used, and variables are stored with increasing I index for each J. The coarsest grid is
stored first.

7.5.2 Coloring the Nodes

Because dependency relations cannot exist in a vectorizable loop, it is necessary to
solve only those nodes that are completely independent from each other. This separation of
the nodes depends on the finite-difference stencil used. Several coloring schemes are
possible. For the Poisson equation, the five-point stencil is easily isolated into two colors
(red-black), and efficient data structures with long vector lengths are achieved. For the
relaxation operator used here, a two-color system does not remove the dependency. For
complete independence, the SCGS operator requires eight colors. Alternatively, sixteen
colors can be used for convenience in programming and reduction in storage for the
temporary arrays.

Currently, two different schemes of coloring have been used. In the first, a
combination of two and sixteen colors is used. Two colors are used on the first few grids in
order to preserve adequate vector lengths. Because the two-color ordering does not remove
the dependencies completely, old values are used for values calculated further down in the
loop. This means that some of the terms in the convective fluxes are evaluated at the
previous iteration. (The convergence of the algorithm appears not to be affected much by
this practice.) On finer grids (greater than 32 x 32 nodes), sixteen colors are used. Thus, a
compromise between storage for temporary arrays (to store the results of one color) and
vector lengths is achieved. In the second system, a two-color ordering is used, but the nodes
are processed line by line. Thus, each line (say of constant J) is processed in sequence. For
each line, the nodes are processed in red and black ordering. On the first few coarser grids,
the whole-domain red-black ordering can be used to preserve adequate vector lengths; this
was not done in this system because of the relatively smaller time spent on these grids.

The first system of coloring introduces indirect addressing during the load stage of the
arrays. The indirect addressing results because the loop index is the node number, and for
each node, the I and J indices are computed. Programming for the loading of arrays is as
follows:

DOnNC = 1, NCT
I = IB(NC)
J = JB(NC)

IJ = I + (J - 1)* IMAX + IOFF
UI(NC) = U(IJ)

n CONTINUE

where NCT is total number of cells arranged in red-black ordering and IB and JB give the
column and row numbers. The offset for grids is denoted by IOFF. A subsequent loop then

204



uses the loaded arrays for assembling the finite-difference coefficients and solving the
equations.

The line-by-line processing removes the Indirect addressing. In this way, the above
loop becomes

DOn 1 J = 2,JMAX - 1
1B = 0
IJF = (J - 1) * IMAX + IOFF

DO n2 I = IFST,IMAX - 1,2
lB = IB + 1

U1(IB) = U(I + IJF)

n2 CONTINUE
n, CONTINUE

where IFST gives the first cell at any line J and IMAX and JMAX are the total numbers of grid
nodes in each direction. Programmed in this way, the n2 loop fully vectorizes and runs
faster than the earlier version, resulting in approximately 25 percent reduction in total
CPU time. Because of this speed-up, the second system is advocated.

7.5.3 Boundary Indices and Conditional IF Statements

For scalar equations on a nonstaggered mesh, the equations are formulated only for the
interior nodes, and no special treatment for boundary conditions is necessary. For a
staggered mesh with coupled processing of the two velocities and the pressure, conditional IF
statements are necessary to eliminate the updating of the velocity on the boundary. This
inhibits vectorization. To remove the conditional arrays, some indices (0 and 1 vectors) for
the boundary nodes are created. All nodes are processed in the same loop, but the appropriate
residuals and the equations are later masked by the boundary indices. In this way, a few
computations are wasted, but the overall loop vectorizes. IF statements are also encountered
in the absence of the addition of restricted residuals to the fine-grid equations. To eliminate
a conditional jump to a different statement, a separate subroutine for the fine grid solution is
used. This routine is identical to the other SOLVE subroutine in all places except where
restricted residuals are added to the right-hand sides of the equations.

7.5.4 Performance

The vectorized code was used to repeat earlier calculations [331 made on a scalar
(IBM 3033) machine for laminar flow in a square cavity. Only the two-dimensional code
was vectorized, but the concepts discussed above are equally valid for three-dimensional
situations. Calculations on the CRAY X-MP were made by using only one processor. The CFT
1.15 compiler with CRAY operating system COS 1.14 at Mendota Heights was used.
Calculations have been made for several finite-difference grids up to 512 x 512 nodes and for
three different Reynolds numbers (uwd/v), 100, 400, and 1000. The calculations were
made for an error tolerance criterion of 10-3 on the norm of residuals 1331. For each
calculation, detailed statistics are provided on the overall speed-up values due to
vectorizations and the percentage contributions by each grid.

Table 7.6 gives the CPU times and the speed-up due to vectorization. A maximum
speed-up of 6 was achieved for Re = 400 on the 512 x 512 grid. For other sets, the speed-
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up was smaller because of the short vector lengths on the coarse grids. In Tables 7.7 through
7.9, more detailed statistics of the speed-up are given. Here, the percentage time and the
speed-up on each grid are compared with the IBM 3033 calculation. These tables show that
on the coarsest (4 x 4) grid, the speed-up was purely due to different scalar speeds on the
two machines. For this grid, the vector length was two. The speed-up ratio increased on
finer grids, with an eventual speed-up of roughly 28 on grids of size 128 x 128 (vector
length equal to 64) and larger. The restrictions and prolongations, each of which takes
roughly eight percent of the time, have speed-up values of about 18 and 8, respectively.
Again, the suboptimal vector lengths on the coarse grids caused this decreased efficiency.

Table 7.6 CPU Times (s) for Scalar and Vector Versions on CRAY X-MP

GMt
Calculation 64 x 64 128 x 128 256 x 256 512 x 512

Re = 100
Scalar CRAY 1.47 7.05 34.00 150.20
Vector CRAY 0.64 2.05 7.79 41.47

Re = 400
Scalar CRAY 1.95 9.35 40.20 222.6
Vector CRAY 1.33 2.65 8.12 38.95

Re = 1000
Scalar CRAY 4.60 16.40 55.40 227.40
Vector CRAY 2.18 6.02 17.34 46.01

Table 7.7 Percentage Time Spent and Speed-upa for Re = 100

Grd
Su4Wd 64x64 128x 128 256x 256

4x4 9.37 3.15 0.91
(5.01)b (5.01) (4.90)

8x8 7.52 2.77 0.88
(8.6) (8.65) (8.48)

16 x 16 10.24 4.22 1.46
(14.30) (14.26) (13.83)

32 x 32 20.24 8.72 3.05
(20.50) (20.50) (19.01)

64 x 64 38.54 20.05 7.53
(25.12) (25.95) (24.31)

128 x 128 46.07 20.93
(28.18) (27.61)

256 x 256 49.90
- - (27.70)

Prolongation 7.08 8.09 8.33
(7.67) (8.18) (8.48)

Restriction 7.00 6.93 6.99
(19.01) (23.15) (23.40)

a - Based on vector timings and IBM 3033 computer.
b - Speed-up values are in parentheses.
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Table 7.8 Percentage Time Spent and Speed-upa for Re = 400

Gid
Subgrid 64x64 128x 128 256x 256

4x4 14.93 7.76 2.65
(4 .9 0)b (4.94) (4.74)

8x8 17.17 8.70 3.17
(8.26) (8.47) (7.91)

16 x 16 15.93 7.79 2.97
(13.30) (14.37) (12.96)

32 x 32 15.09 8.45 3.50
(19.0) (19.22) (18.26)

64 x 64 21.92 16.78 7.48
(22.85) (24.21) (24.08)

128 x 128 35.31 20.01
(26.41) (26.38)

256 x 256 44.46
- (25.67)

Prolongation 6.48 7.54 8.41
(7.06) (7.80) (8.29)

Restriction 8.48 7.68 7.37
(14.68) (19.06) (21.56)

a - Based on vector timings and IBM 3033 computer.
b - Speed-up values are in parentheses.

Table 7.9 Percentage Time Spent and Speed-upa for Re = 1000

Grd

Subgrid 64x64 128 x 128 256x 256

4x4 10.02 6.67 3.29
(5.1I)b (5.01) (4.70)

8x8 18.47 12.11 6.68
(8.71) (8.49) (7.96)

16 x 16 20.27 13.47 8.40
(14.11) (13.70) (12.97)

32 x 32 16.75 12.66 8.25
(20.62) (19.77) (18.35)

64 x 64 17.52 16.58 9.71
(24.80) (24.83) (23.08)

128 x 128 20.49 17.45
(27.10) (26.62)

256 x 256 - 27.64
- (26.29)

Prolongation 7.27 8.21 8.97
(7.24) (7.65) (8.07)

Restriction 9.70 9.80 9.65
(15.57) (18.04) (19.63)

a - Based on vector timings and IBM 3033 computer.
b - Speed-up values are in parentheses.
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8. DESCRIPTION OF A PROTOTYPICAL CODE

8.1 Introduction

This section describes a prototypical computer program that was developed to
perform the test calculations described in the previous sections. Because the intent of the
effort was not the development of a computer code, the present computer program lacks many
desirable features such as user-friendly input data, postprocessing, and easy adaptation to
other flow configurations. This section documents a version of the computer program
delivered to the Advanced Propulsion Division at the Wright Patterson Air Force Base, Ohio,
in April 1987.

8.2 Flow Chart

The sequence of calling the routines and the flow of program control is shown in
Figure 8.1. The central control is held by the unnamed routine MAIN. This routine reads
input data and sets up the geometry, the initial conditions, and the multigrid cycle. In MAIN,
the FMG cycle is set up by the index IGRF, which is the index for the locally finest grid. On
this grid, the first call is to subroutine MOMENT, which solves the momentum and continuity
equations. MOMENT calls subroutines SOLVE, RESTV, RESTBV, and RESTR, and calls the PROL
subroutines to perform one cycle of the FAS scheme. When the control is returned to MAIN,
the subroutine TKENER is called. TKENER solves the k and e equations and calls subroutine
SRCS to compute the source terms. The next subroutine called by MAIN is SCALAR. SCALAR
solves the scalar equations in sequence and calls SRCS to compute the source terms
appropriate to each equation. The density is updated after the call to SCALAR in subroutine
PROPS. This sequence is repeated until the residual in the u-momentum equation converges
to the desired level. The fields on grid 1 are then prolongated to grid 2, and IGRF is
incremented. The same solution is repeated on this grid. When convergence on grid IGRF =
NGRID (i.e., the finest grid) is achieved, the iterations are terminated. MAIN then calls the
subroutines PSTPR and OUTPUT to calculate some parameters of the flow field and to print
the flow fields. The execution is terminated after plot variables are tabulated in subroutine
PLOTS.

In the following sections each subroutine is detailed further, and the various
calculation sections are further explained. The subroutines are explained in alphabetical
order.

8.3 Subroutine ADJST (I, IGR, DUPL)

ADJST performs the block corrections on velocities and pressures to satisfy the
integral mass balance across lines of constant x values. ADJST is called by subroutine SOLVE.
The arguments of ADJST are I, IGR, and DUPL. I is the value of the index for the constant-x
line. IGR is the current grid number, and DUPL is the summation of au/ap across the line of
cells. The first step in ADJST, after the various indices are computed, is the calculation of
the mass defect. This is done by summing the total mass flow from the line of cells and
comparing it with the required value (calculated at the beginning from the initial fields in
another subroutine, FLOIN). The products of area and density are also summed, to be used as
the denominator in the expression for the velocity correction. This constant correction is
added to the u-velocities at location i + 1/2. The pressure correction is calculated by
dividing the mass defect by the quantity DUPL. This pressure correction is added uniformly
to all pressures that are downstream of line I, i.e., I + 1 to IMAX - 1. No pressure
corrections are made to lines downstream of IMAX - 1. However, the velocity at IMAX - 1 is
adjusted to satisfy the required mass flow.
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START

CALL INPUTC
CALL OUTP
CALL CONST
CALL INIT CALL RESTV
CALL OUTPUT CALL RESTBV

CL CALL RESTR

CALL PROLU,V CALL RESTV
CALL PROLGI CALL MOMENT CALL RESTBV

CALL SOLV CALL RESTR

ALSCALL TKENER CALL SRCS

CALL SCALAR CALL SRC

I~IF
CALL PROPS

CALL PSTPR
CALL OUTPUT

CALL PLOTS1

S
Fig. 8.1 Calling Sequence of Subroutines

209



8.4 Subroutine CONST

CONST calculates all the invariant indices and geometric terms in the calculation
scheme. First, the indices IMAX and JMAX for the coarse grids are calculated. IMAX and
JMAX are the maximum numbers of lines in the x- and y- (or r-) directions, including the
boundaries. (The numbers of cells are IMAX - 2 and JMAX - 2 in the respective directions.)
The values of these indices on the finest grid are computed in INPUT.

The next step in CONST is the computation of the offsets for accessing the variables in
the one-dimensional arrays. The three offsets are NBEG, NBEGI, and NBEGJ; their argument
is the grid number. NBEG is the offset on each grid for the main flow variables. NBEGI and
NBEGJ are offsets for one-dimensional quantities that vary only in the I or the J direction.
The quantities in this category are cell sizes, interpolation factors, cell radii, etc. The
indices to be calculated are the offsets for the scalars. All scalars are equivalenced to one
single array (SCLR), and NSC(NV) gives the offset for each scalar. The segment indices are
next computed for the coarse grids; the fine-grid values are read in subroutine INPUT. The
subsequent FORTRAN statements compute the geometric variables. The sizes of the cells, the
interpolation factors, the coordinates of the locations, and the radii at the cell centers and at
the v-velocity locations are calculated. These arrays vary either with I or with J and are
offset by the index arrays NBEGI and NBEGJ.

8.5 Subroutine EXTRPL (IGR)

EXTRPL stands for extrapolation and imposes the Neuman conditions on the
prescribed boundaries. EXTRPL distinguishes between two types of boundaries, the
symmetry lines and the outflow boundary. The programming sections for both these
boundaries are nearly the same, but two separate sections are necessary. Each boundary
category has four sections. These four sections deal with the x-minus, x-plus, y-minus, and
y-plus boundaries. On each boundary, the symmetry condition is imposed on the segment for
which the boundary index is set to 3. It is impossible to have only part of the boundary as the
symmetry line; thus, symmetry boundaries invariably have only one segment. When
symmetry conditions prevail, zero-derivative conditions are imposed on all variables except
the velocity normal to the boundary, which is set to zero.

The logic for the outflow conditions is exactly the same as that for the symmetry
boundaries. However, the velocity normal to the boundary is not set to zero. Further, in
extrapolating the normal velocity at the boundary, the fluxes must satisfy the integral mass
conservation. Thus, the velocities must be weighted with the densities on the boundary. A
final section in EXTRPL is the cleanup of the corner values. This cleanup is required to avoid
the use of nonsensical values from the boundaries, especially in computing certain
derivatives.

8. 6 Subroutine FLOIN

The purpose of FLOIN is to compute the required mass flow from the downstream faces
of each line of cells. These are stored in array FLOW and are accessed by index IOGR. The
mass flows are computed by summing the boundary fluxes from the x-minus, y-minus, and
y-plus sides of the flow domain. FLOIN first computes the flow from the x-minus side and
adds the total inflow from the top and bottom boundaries. For the y-minus boundary, a
positive v-velocity is an inflow; for the y-plus boundary, a negative v-velocity is an inflow.
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8.7 Subroutine INIT

INIT prescribes the initial conditions for the variables. These include the internal
(guessed) values and the boundary conditions. The guessed values are prescribed uniformly
at all locations inside the flow domain and are read in subroutine INPUT. INIT has four
sections, appropriate for four boundaries. On each boundary, the values for all the variables
are prescribed. These include velocities, pressures, turbulence variables, and all scalars.
On the x-minus boundary, a special call is made to subroutine INLET. This routine over-
writes the x-minus values with profiles read and calculated in subroutine INLET. This
feature is specific to some experiments currently conducted at the Wright Patterson Air
Force Base, and It is not used if the IREAD index is set to FALS. INIT also calls subroutine
EXTRPL to impose the symmetry line boundary conditions and the outflow conditions.

INIT prescribes values for only the finest grid. These values are restricted to all the
coarse grids. This is done by calls to subroutines RESTBV, RESTV, and RESTS. INIT also
initializes the residuals on all the coarse grids.

8.8 Subroutine INLET

INLET prescribes initial conditions at the x-minus boundary from experimental data.
The experimental data need not be at the radial locations of the calculated variables. INLET
automatically interpolates the variables at the required radial locations. The first step in
INLET is to read the experimental data points. The quantities read are y, u, u', v, v', w, and
w'. These values are read in English units (in., ft/sec). The turbulence kinetic energy is
calculated to be

k = 0.5 *(u '2 + v 2 + w-2 ). (8.1)

The subsequent section in INLET interpolates the experimental data at the grid locations
where the velocities are stored, i.e., in UIN, WIN, etc. These values replace the conditions at
the x-minus boundary. INLET is not used when IREAD is set to FALS.

8.9 Subroutine INPUT

INPUT prescribes all data necessary for the calculations. With the exception of
INLET, no other subroutine reads any data. The description of the input data is given
separately, in Section 9 of this document.

8.10 Subroutine MOMENT

MOMENT performs one FAS cycle on the momentum and continuity equations. This is
done by calling SOLVE (to solve the equations); RESTR, RESTV, RESTBV (to restrict the
solution and residuals); and PROLU, PROLV, and PROLG (to prolongate the velocities and
pressures). MOMENT first calculates the turbulent viscosity on the locally finest grid. The
turbulent viscosity is underrelaxed with its old value. A loop with 10 CONTINUE is then set
up. In this loop an index IPATH controls the future path to be followed. First, one iteration
on grid IGRF is performed by calling SOLVE1. SOLVE1 returns the index IPATH. This index
indicates the following three actions:

IPATH = 1 implies convergence on the grid.
IPATH = 2 implies need to restrict to a coarser grid and solve.
IPATH = 3 implies continued relaxation on the same grid.
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IPATH is decided In SOLVE. Currently, IPATH = 3 only on grid 1. When IPATH - 2, the
solution and residuals are restricted to a coarser grid. This is done by calling subroutines
RESTBV (to restrict boundary conditions), RESTV (to restrict internal variables), and
RESTR (to restrict residuals). When the restrictions are made, control is directed to 10
CONTINUE. The SOLVE routine is called, and one iteration is performed on the coarse grid.
When and if this grid is converged to the desired accuracy, the solution on the coarse grid is
used to correct the finer grid values. This is done by PROLU, PROLV, PROLG. The grid
number is incremented, and control is transferred to 10 CONTINUE. However, if the grid
after prolongation is the locally finest grid, control is returned from MOMENT to the MAIN
program. In addition, if IPATH = 1 on the locally finest grid, then IPATH is reset to 0 and
control is returned to MAIN. This means that the :ocally finest grid is converged and the IGRF
index must be updated.

When the restrictions are made, the accuracy on the coarser grid is set to

[e]h-I = 8 [R~h • (8.2)

8.11 Subroutine OUTP

OUTP is an echo printout routine. It pi'lts all the input data read by subroutine
INPUT. The quantities printed are in metric units " d have the same nomenclature as the
input routine. OUTP consists primarily of WRITE and t-ORMAT statements.

8.12 Subroutines OUTPUT (IGR) and PLANE

OUTPUT prints the field variables. The print control is through the index IPRINT,
which is set to zero or unity for each variable. If IPRINT is set to 1, the field variable is
printed on the grid IGR by calling PLANE.

8.13 Subroutine PROLU (IGR)

PROLU prolongates the u-velocities (x-direction) from grid IGR to IGR + 1. The
prolongation relations are as described in Section 5.7.7. The first half of PROLU restricts
the solution from IGR + 1 to grid IGR. The restricted solution is stored locally in PHI. The
correction field is the difference between the coarse-grid solution and PHI. Because bilinear
prolongation relations are used, separate sections are necessary for lines adjacent to the top
and bottom boundaries.

8.14 Subroutine PROLV (IGR)

PROLV is similar to the PROLU routine and prolongates the v-velocities. The only
differences between these subroutines are due to the rotation of the coordinate direction. In
PROLV a separate section is required for the lines adjacent to the left and right boundaries.

8.15 Subroutine PROLG (IGR,Q)

PROLG prolongates all scalars located at the cell centers. Because of the staggered-
mesh arrangement, the prolongation relations are different for the velocities and the
pressures. PROLG uses the variable 0 for the scalar to be prolongated. As in PROLU and
PROLV, the first step of PROLG is to restrict the variable and store it in array PHI. The
differences between the coarse-grid values and PHI are then prolongated. A bilinear relation
with inlotrpolalion in the x- and y-directions is used. In the first loop, tho domain from 2 to
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(IMAXC-2) and from 2 to (JMAXC-2) is spanned. The near-boundary lines are separately

prolongated, to avoid use of the boundary values.

8.16 Subroutine PLOTS

PLOTS is written to tabulate field variables for plotting, consistent with GRAPHTALK
software on personal computers. PLOTS is an interpolation routine and provides tabular
values of variables at the x-distances read in subroutine INPUT. XPLOT is the distance at
which the interpolated values are tabulated. The current version allows tabulation of up to
10 values of x.

8.17 Subroutine PSTPR

PSTPR is an abbreviation for POSTPROCESS. This subroutine is called after all
computations are completed. PSTPR is intended to calculate quantities such as y-plus values
at the boundaries, heat transfer rates, and combustion efficiencies. Currently, PSTPR
calculates the y-plus values and cleans up the scalars at the corners and boundaries to avoid
errors during the plotting stage.

8.18 Subroutine PROPS (IGR)

PROPS calculates the density of the fluid and is appropriate to situations that have
density dependency on either pressure or temperature or both. PROPS is currently
undergoing changes to incorporate two- and four-step reactions and will be different in a
forthcoming version. Currently, PROPS contains four options. One is for diffusion flames
calculated by a one-step reaction; another is a premixed flame, calculated by a one-step,
eddy breakup model; a third caters to compressible flows in which the density is evaluated
from the ideal gas law; and a fourth is a simple RETURN that maintains the density initially
prescribed.

8.19 Subroutine RESID (IGR)

RESID evaluates the residuals in the solutions on any grid. It is similar to the SOLVEI
subroutine. RESID calculates the residuals in the u- and v-momentum equations and In the
mass continuity equation. RESTR assembles these residuals into arrays RESU, RESV, and
RESC for multigrid cycling. RESID uses the same differencing as the SOLVE1 subroutine, and
they must be consistent. For a description of the operations in RESID, see SOLVE1 Section
8.24.

8.20 Subroutine RESTR (IGR)

RESTR restricts residuals by calculating the residuals to be transferred from a fine
grid to an adjacent coarse grid. RESTR uses the subroutine RESID to calculate the residuals
for the desired grid. RESTR first calls RESID for two grids, IGR and IGR - 1. The two
residuals are necessary because the coarse-grid residuals must first be subtracted from the
right hand side. RESID returns the residuals in the arrays AWE, AEE, and ASE, because these
arrays are not needed at this stage. The fine-grid residuals are summed to obtain the coarse-
grid residual. For the velocities, two residuals are added, whereas for the continuity, four
residuals are added.

8.21 Subroutine RESTBV (IGR)

Subroutine RESTBV restricts boundary values of grid IGR to values of grid IGR - 1
and is called by subroutine MOMENT or, initially, by subroutine INIT. In subroutine
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RESTBV, only the quantities requircd for the MOMENT stage are restricted. RESTBV restricts

densities, u- and v-velocities, pressures, and viscosities at the boundaries.

8.22 Subroutine RESTV (IGR)

RESTV restricts the internal variables used in the MOMENT stage. The list of
restricted variables includes velocities, densities, and pressures. Also restricted are source
terms and viscosity. Two fine-grid velocities are averaged for a coarse-grid velocity, and
four fine-grid pressures are averaged for a coarse-grid pressure. The scalars are averaged
as are the pressures, and the source terms are summed because they contain the volume
term. The SP terms are set to zero, and wall functions are not used on the restricted grid.

8.23 Subroutine RESTS (IGR)

RESTS restricts the scalars and is called by INIT. Currently a single-grid strategy is
used for scalars. Therefore, the restriction of the scalars is necessary only to prescribe the
initial fields on the coarse grids. However, in the future, a multiple-grid solution on the
scalars will be considered. This was attempted originally but was not pursued to completion.
The scalars are restricted by averaging four tine-grid values. The logic for the indices is the
same as for pressure. RESTS has separate sections for the four boundaries.

8.24 Subroutine SOLVE1 (IGR)

SOLVE1 is the main iterative procedure used in the FLANELS code, which currently
uses the SCGS operator. SOLVE1 has three main sections. The first step in the subroutine
assembles the source terms by a call to subroutine SRCUV. SRCUV is called only for the
locally finest grid. For grids that are restricted, the source terms are assembled by
restricting the fine-grid values.

The second section in SOLVE1 assembles the coefficients and the residuals. The
coefficients are assembled by calculating interface fluxes that are due to convection and
diffusion. Hybrid differencing is used to obtain the coefficients. The assembling of the
residual and the coefficients is done first for the u-velocity, then for the v-velocity and the
continuity.

The coefficient section is followed by the SCGS operator. Currently, five sweeps of
this operator are made, but this can be reduced to three for some problems. In each sweep,
the correction arrays UP, VP, and PP are updated for all internal cells.

After the velocity corrections are made, SOLVE1 calls ADJST to correct the velocities
and pressures to satisfy integral mass flows across lines of constant x. ADJST is followed by
the logic that sets the IPATH index. If IGR = 1, IPATH is set to 3; for other values, IPATH is
set to 2. However, if the solution is converged, IPATH is set to 1.

8.25 Subroutine SCALAR (IGR)

SCALAR solves the equations for the transport of the scalars. If the index KSOLVE is
set to unity, the corresponding equation is solved. For each scalar, there are four steps in
the solution sequence.

Step 1 assembles the coefficients in the finite-difference equation. The scalars are
stored at the cell centers; therefore, the interface densities are interpolations of the cell-
centered densities. The viscosity at the interface is calculated in the same way as the density
but is modified to account for the Prandtl numbers. The convection fluxes and the diffusion
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terms are computed in the standard way, and hybrid differencing is used to obtain !he
coefficients.

Step 2 calls the source term subroutine SRCS to calculate the source terms. SRCS has
individual sections for each scalar that is accessed by the index NV.

Step 3 modifies the central coefficient and the source term to incorporate the under-
relaxation.

Step 4 solves the finite-difference equations by repeated sweeps of a Gauss-Seidel
operator. The number of sweeps is read by the INPUT routine. In each sweep, the point value
is updated by calculating the residual and dividing it by the central coefficient. The sweeps
are terminated if the changes are less than 10-5 .

8.26 Subroutine SRCUV (IGR)

SRCUV assembles the source terms for the u- and v-momentum equations. The source
terms include terms that are due to the viscosity variation and the modifications that are due
to the wall functions. The source terms are calculated for the complete cell volumes. The
wall functions incorporate the logarithmic variations. Separate sections are given for the u-
and v-velocity components. For the u-velocity, wall functions are imposed on the y-minus
and y-plus boundaries. For the v-velocity, the wall functions are imposed on the x-minus
and x-plus boundaries. On each boundary, the information is processed by segments. SRCUV
is called only for the current finest grid, and wall functions are imposed only on the current
finest grid.

8.27 Subroutine SRCS (IGR, NV, NSW)

SRCS assembles the source terms for the scalars. At present, this includes k, e, w,
enthalpy, mixture fraction (f), fuel fraction (mfu), and concentration fluctuation (g). The
selection is made by the index NV. For the k and e equations, the production term (stored in
PROD) is calculated only once and is not recomputed during the multiple sweeps. The index
NSW skips the DO loops 10 and 15 if its value is greater than unity. The production terms
are programmed in DO loops 10 and 15.

The wall functions ior k and E are prescribed at the four walls. For the k equation,
the source terms SUU and SPU are modified, and diffusion from the wall is set to zero. The
selection is made by the index for the boundary segment (KB...). For the dissipation
equation, the source term utilizes the production term assembled by the k equation. The wall
functions for the e equation fix the dissipation at the near-wall nodes.

The , equation is followed by the swirl velocity and enthalpy equations. Currently, no
source terms are programmed for the enthalpy equation, and no modifications are made for
the near-wall nodes. For the mixture fraction equation, the source terms are zero, and the
derivatives at the walls are zero. For the concentration fluctuation equation, two different
models are programmed. The first section of the program computes a production term based
on gradients in the mixture fraction; the second uses the fuel fraction gradients. To impose
zero derivatives at the walls, the links with the walls are set to zero. A final section is
concerned with the fuel fraction equation. The eddy breakup model is used for the fuel
consumption. This subroutine will soon be updated by the four-step reaction model.
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8.28 Subroutine TKENER (IGR)

TKENER is called by MAIN for the current finest grid in the FMG cycle. The structure
of TKENER is the same as that of SCALAR, except that the coefficients for both k and e are
assembled at the same time. The solution sequence is explained in Section 5.7. First the
coefficients are assembled, and then stored. The coefficients are different because of the
different turbulent Prandtl numbers. Next, the sweeps on the two variables are initiated. In
each sweep, the following calculation sequence is used.

(a). Calculate the source terms for k.
(b) Perform one iteration on k.
(c) Calculate the source terms for E.
(d) Perform one iteration on E.
(e) Repeat steps (a) - (d).

9. INPUT DATA

This section describes the procedure for setting up a flow geometry and prescribing
the input data.

9.1 Setting up a Geometry

The flow geometry in FLANELS is prescribed through specification of boundary
conditions. For two-dimensional flows, this means that conditions on four boundaries must
be prescribed. Each boundary can be divided into five segments. For each segment, different
conditions can be prescribed. The velocities, densities, and scalar variables on each segment
can be assigned independently, and boundary segments can be of wall type, an inlet, an
outflow, or an axis of symmetry. Thus, a variety of geometries can be simulated by
appropriate prescription of the input data. The segment is defined by its starting and ending
indices in the appropriate direction. These indices are prescribed on the finest grid.

An inlet defines the inflow conditions, which are kept constant throughout the
calculation. For a wall, the velocities are considered fixed, but wall functions are prescribed
at these boundaries. The wall functions are used only in a turbulent flow. For an outflow,
zero-derivative conditions are used to extrapolate the boundary values of all variables. For
the axis of symmetry, the normal derivatives and the normal velocities are set to zero.

9.2 Input Data

The current version (April 1987) of FLANELS requires the following input data.

CARD VARIABLE MEANING

1 ITITLE Title of the problem. This will be
printed on the output.

2 KLAM Index for Laminar flow (TRUE or
FALS).

2 COMPR Index for Compressible flow (TRUE
or FALS). Currently not used.

2 REACT Reacting flow (TRUE or FALS).
2 IREAD Logical index for reading profiles at

the x-minus boundary.
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CARD VARIABLE MEANING

2 IWRITE Logical index for writing restart
files (currently not used).

3 KPLAX Index for Plane or Axisymmetric
flows. (1 = Plane; 2= Axisym).

3 NGRID Number of grids In the calculation.
The total number of cells is
calculated from NCELX, NCELY, and
NGRID.

3 NTO3P Number of grid on which the
iterations should be stopped. If this
is NGRID, the full solution will be
carried out.

3 NCELX, NCELY Number of cells in the x- and y-
directions on the coarsest grid. The
total number of cells is
ncel *2 ** (ngrid - 1).

3 NSCALR Number of the last scalar variable
to be solved. The first two are the
turbulence variables k and e. The
next in sequence are w, h, f, g, and fu.

4, 5 DXF, DYF Sizes of coarse grid cells in the x
and y-directions. There are NCELX in
the x-direction and NCELY in the y-
direction.

6 RO Radius of the inner boundary in an
axisymmetric flow. This is nonzero
for annular-type geometries for
which the inner y-boundary is not
the axis of symmetry.

7 NSXM, NSXP, NSYM, NSYP Number of segments on the
x-minus, x-plus, y-minus, and y-plus
boundaries.

The following cards are to be prescribed for each segment.

8 KBXM Boundary index for each segment.
KBXM = 1, Wall

= 2, Inlet
= 3, Symmetry axis
= 4, Outflow boundary

8t JFXM, JLXM First and last J indices for the
segment on the x-minus boundary.

9t UBXM, VBXM, Values of u-velocity, v-velocity,
TKXM, TDXM, k, F, density, w-velocity, enthalpy,
RHXM, WXM, mixture fraction, concentration
HXM, FXM, fluctuation, fuel mass fraction, and
GXM, FUXM, TXM temperature on the x-minus

boundary.
1 0 KSOLVEI-t Array of indices for solving the

scalars.
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CARD VARIABLE MEANING

NV = 1, Kinetic energy of turbulence
(KSOLVE for NV = 2, Turbulence dissipation
turbulence equations NV = 3, w-velocity
is overridden by NV = 4, Enthalpy
explicit call to TKENER.) NV = 5, Mixture fraction

NV = 6, Concentration fluctuation
NV = 7, Fuel fraction

1 1 NSWP (NSCALR) Number of sweeps on the scalar
equations; a value of 10 for all
scalars is appropriate.

1 2 ERR (NGRID) Error tolerances in axial momentum
residual on each grid. Typically, 0.01
on all coarse grids and 0.005 on the
finest grid is adequate.

1 3 IPRINT (12) Index for printing a variable (= 1, to
print).
IPRINT (1): u-velocity
IPRINT (2): v-velocity
IPRINT (3): Pressure
IPRINT (4): Turbulence energy
IPRINT (5): Turbulence dissipation
IPRINT (6): w-velocity
IPRINT (7): Enthalpy
IPRINT (8): Mixture fraction
IPRINT (9): Concentration

fluctuation
IPRINT (10): Fuel mass fraction
IPRINT (11): Temperature
IPRINT (12): Density

1 4 UGS, VGS, TKGS, TDGS, Initial prescriptions for interior
RHGS, WGS, HGS, FGS, GGS, values of u, v, k, e, w, h, f, g, fu, and T.
FUGS, TGS

1 5 FLOWRF Reference flow used in the
momentum residual.

1 5 REFU, REFV, REFC, Reference values for normalizing
REFSC (NSCALR) the changes in u, v, continuity, and

scalars. If all are given a value
of unity, the absolute changes
will be printed. REFC is currently
not used because the residual in the
u-momentum is monitored.

1 6 MODEL Model for density calculation
(reacting flow).
MODEL 1, Diffusion flame

calculation
MODEL = 2, Premixed flame

calculation
MODEL = 3, Density evaluated from

gas law
MODEL = 4, No changes are made to

initial values
16 CPRAT Ratio of specific heats.
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CARD VARIABLE MEANING

1 6 GASCON Universal gas constant (8314 in
metric units).

16 PREF Reference prossuro for density
evaluation.

1 6 WMOL Mean molecular weight (for
MODEL . 3).

1 6 N Mean value of specific heat.
16 AMU Value of laminar viscosity.

The following cards are needed only for reacting flows.

1 7 IPROB Probability density function model
for reacting flows.

1 7 STOIC Stoichiometric ratio of the fuel.
17 HFU Heat of reaction.
1 8 ACPF, BCPF, CCPF Values in the relation for specific

heat of fuel; CP = A + B * T + C *

T**2.
1 9 ACPOX, BCPOX, CCPOX As above for the oxidant.
2 0 ACPROO, BCPROO, CCPROD As above for the products of

combustion.
2 1 WMOX, WMFU, WMPROD Molecular weights of oxidant, fuel,

and products.
22 FUUB, FUB Unburnt and burnt values of the

fuel fraction for the problem. These
are the limits of variation of the
fuel fraction.

2 2 PHIA, PHIF The nondimensional mixture
fraction in the air and fuel streams
(0 and 1 for a two-stream flow).

22 ENTHFU, ENTHOX Enthalpy in the fuel and oxidant
streams (used in the diffusion flame
calculations).

The follor'ing cards are necessary for all problems.

23 RELXU, RELXV, Values of underrelaxation factors
RELXG, RELXS (NSCALR) for u, v, Igt, k, e, w, h, f, g, and fu.

24 PRL (NSCALR) Laminar Prandtl numbers for the
scalars. Typically unity, except for
enthalpy.

2 5 NPLOTX Number of x-stations at which the
plot tables are desired.

26ttt XPLOT Values of x at the required stations.

tCards such as 8 and 9 should be prescribed for each boundary (x-plus, y-minus, and y-

plus boundaries).

ttKSOLVE for turbulence equations is overridden by explicit call to TKENER.
tttlf inlet conditions at x-minus boundary are read as profiles, additional cards for IREAD =
TRUE case are necessary. These are read in the format y, u, u', v, v', w, w' for the
experimental stations. TDIN, through which the dissipation is calculated as k "* 1.5/TDIN,
is also read.
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10. SAMPLE DATA SETS

This section provides four sample input data sets.

1 0. 1 LamnInar Flow In a Pipe

Data are set for a Reynolds number of 100 and for a 26 x 18 grid with 3 levels.

SAMPLE 1 LAMINAR FLOW IN A PIPE
TRUEFALSFALSFALSFAL-S/ KLAM,COMPR,REACT,IREAD,I WRITE
2,3,3,6,4,2/KPLAX,NGRID,NCELX,NCELY,NSCALAR
6 *0.5/ DX F
4*0.1 25/DY F
0. 0/RO
1,1,1 ,1INSXM,NSXP,NSYM,NSYP
2,2,1 7/KBXM,J FXM ,JLXM
1 .0,0.0,0.0,0.0,1 .0,5*0.0/U,V,K,EPS,RH,W,H,F,G,FU,T
4,2,1 7/KBXP,JFXP,JLXP
1 .0,0.0,0.0,0.0,1 .0,5*0.0/U,V,K,EPS,RH,W,H,F,G,FU,T
3,2,25/KBYM,IFYM,ILYM
1.0,0.0,0.0,0.0,1 .0,5*0.0/U,V,K,EPS,RH,W,H,F,G,FU,T
1 ,2,25/KBYP,IFYP,ILYP
0.0,0.0,0.0,0.0,1 .0,5*0.0/U,V,K,EPS,RH,W,H,F,G,FU,T
0,0/KSOLVE
10,1 O/NSWP
0.01,0.01,0.001/ERR
1,1,1 ,9*0/I PRINT U,V,P,OTHERS
1.0,0.-0,0. 0,0.0, 1.0,5*0.0/UGS, VGS,TKGS,T DGS, ETC
0.125,1.0,1 .0,0.125,2*1.0/REFERENCE VALUES
4,1.0,1.0,0.0,1.0,1 .0,1 .OE-2/MODEL,CPRAT,GASCON,PREF,WMOL,CPCON,AMU
0. 8,0.8,0.6,0.5,0.5/R ELAX FACTORS
2*1 .0/PRL
0/N PLOTX

1 0. 2 Turbulent Flow In a Pipe

Data are set for a Reynolds number of 5.0 * 104 and for a 26 x 18 grid with 3 levels.
In the following sample, the bold highlights indicate changes from data obtained for laminar
flow in a pipe.

SAMPLE 2 TURBULENT FLOW IN A PIPE
FALSFALSFALSFALSFAL-S/ KLAM,COMPR,REACT,IREAD,I WRITE
2,3,3,6,4,2tKPLAX,NGRID,NCELX,NCELY,NSCALAR
6 *0.5/ DX F
4*0. 1 25/DYF
0.0/ RO
1,1,1 ,1/NSXM,NSXP,NSYM,NSYP
2,2,1 7/KBXM,JFXM,JLXM
1.0,0.0,0.01,0.033,1 .0,5'0.0/U,V,K,EPS,RH,W,H,F,G,FU,T
4,2,1 7/KBXP,JFXP,JLXP
1 .0,0.0,0.01,0.033,1 .0,5*0.0/U,V,K,EPS,RH,W,H,F,G,FU,T
3,2,25/KBYM,l FYM,ILYM
1 .0,0.0,0.01,0.033,1 .0,5*0.0/U,V,K,EPS,RH,W,H,FG,FU,T
I ,2,25/KBYP,IFYP,ILYP
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0.0,0.0,0.0,0.0, 1.0,5*0.0/U.V.K,EPS, RH,W, H, F,G, FUT
1 ,1/KSOLVE
1 0,10/NSWP
0.01.0.01,0.001/ERR
1,1,1,1,1,7'0/IPRINT U,V,P,OTHERS
1.0,0.0,0.01,0.033,1 .0,5*0.0/UGS,VGS,TKGS,TDGS, ETC
0.125,1.0,1 .0,0.125,0.01,0.033/REFERENCE VALUES
4,1 .0,1.0,0.0,1.0,1.0,1 .OE-5/MODEL,CPRAT,GASCON,PREF,WMOL,CPCON,AMU
0.8,0.8,0.6,0.5,0.5/R ELAX FACTORS
2*1 .0/PRL
0/NPLOTX

1 0. 3 Lamninar Flow In a Sudden Expansion

Data are set for a Reynolds number of 50.0 and for a 26 x 18 grid with 3 levels. In
the following sample, the bold highlights indicate changes from data obtained for laminar flow
in a pipe.

SAMPLE 3 LAMINAR FLOW IN A SUDDEN EXPANSION
TRUEFALSFALSFALSFALS/ KLAM,COMPR,REACT,IREAD,IWRITE
2,3,3,6,4,2/KPLAX,NG RI D,NCE LX,NC ELY, NSCALAR
6 *0.5/ DX F
4 *0. 1 25/DY F
0.0/ RO
2,1,1 ,1/NSXM,NSXP,NSYM,NSYP
2,2,9/K BXM ,JFXM ,J LXM
1 .0,0.0,0.0,0.0, 1.0,5*0.0/U,V,K,EPS,RH,W,H,F,G,FU,T
1, 10, 1 7/K BXM, JFX M,J LX M
0.0, 0.0, 0. 0,0.0, 1. 0, 5 *0.0/U, V, K, EPS, R H,W, H,F, G, FU,T
4,2,1 7/KBXP,J FXP,JLXP
1 .0,0.0,0.0,0.0, 1.0,5*0.0/U,V,K,EPS,RH,W,H,F,G,FU,T
3,2,25/KBYM,IFYM,ILYM
1.0,0.0,0.0,0.0, 1.0,5-0.0/U,V,K,EPS, RH,W, H, F,G, FUT
1 ,2,25/KBYP, IFYP,I LYP
0.0,0.0,0.0,0.0,1 .0,5-0.0/U,V,K,EPS,RH,W,H,F,G,FU,T
0,0/KSOLVE
1 0,10/NSWP
0.01,0.01,0.001/ERR
1,1,1 ,9*0/IPRINT U,V,P,OTHERS
0.25,0.0,0.0,0.0,1 .0,5*0.0/UGS,VGS,TKGS,T DGS, ETC
0.0625,1.0,1.0,0.0625,0.01,0.033/REFERENCE VALUES
4,1.0,1.0,0.0,1.0,1.0,1 .OE-2/MODEL,CPRAT,GASCON,PREF,WMOL,CPCON,AMU
0. 8,0.8,0.6,0.5,0.5/R ELAX FACTORS
2*1.0/PRL
0/NPLOTX

1 0.4 Turbulent Flow In a Sudden Expansion

Data are set for a Reynolds number of 5.0 x 104 and for a 26 x 18 grid with 3 levels.
In the following sample, the bold highlights indicate changes from data obtained for laminar
flow in a pipe.
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SAMPLE 4 TURBULENT FLOW IN A SUDDEN EXPANSION
FALSFALSFALSFALSFALS1 KLAM,COMPR,REACT,IREAD,I WRITE
2,3,3,6,4,2KPLAX,NGRID,NCELX,NCELY,NSCALAR
6*0.5/DXF
4*0. 1 25/DYF
0.0/RO,
2,1,1,1 /NSXM,NSXP,NSYM,NSYP
2,2,9/K BXM,J FXM ,J LXM
1.0,0.0,0.01,0.033,1 .0,5*0.0/U,V, K, EPS,RH, W, H, F,G, FU,T
1, 10, 17/K BXM, JFX M, JLX M
0.0,0.0,0.0,0.0, 1.0,5*0.0/U, V,K, EPS, RH, W, H,F, G, FU,T
4,2,1 7/KBXP,JFXP,JLXP
0.25,0.0,0.01,0.033,1 .O,5*O.O/U,V,K, EPS, RH,W,H, ,F,G, FU,T
3,2,25/KBYM,I FYM,ILYM
1.0,0.0,0.01,0.033,1 .0,5*O.0/U,V,K, EPS,R H,W, H, F,G,F U,T
1 ,2,25/KBYP,IFYP,ILYP
0.0,0.0,0.0,0.0,1 .0,5*0.0/U,V,K,EPS, RH,W,H,F,G,FU,T
1 ,1/KSOLVE
10,1 0/NSWP
0.01,0.01,0.001/ERR
1,1,1,1,1,70/IPRINT U,V,P,OTHERS
0.25,0.0,0.01 ,0.033,1 .0,5*0.0/UGS,VGS,TKGS,TDGS, ETC
0.0625,1.0,1.0,0.0625,0.01,0.033/REFERENCE VALUES
4,1.0,1.0,0.0,1.0,1.0,1 .OE-5/MODEL,CPRAT,GASCON,PREF,WMOL,CPCON,AMU
0.7,0.7,0.6,0.5,0.5/R ELAX FACTORS
2*1 .0/PRL
0/N PLOTX
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