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Cambridge, Massachusetts 02139

Abstract

CST is a programming language based on Smalltalk-80 that supports concurrency using locks, asynchronous messages,
and distributed objects. In this paper, we describe CST: the language and its implementation. Example programs
and initial programming experience with CST is described. An implementation of CST generates native code for the
3-machine, a fine-grained concurrent computer. Some novel compiler optimizations developed in conjunction with
that implementation are also described.

Introduction

This paper describes CST, an object-oriented concurrent programming language based on Smalltalk-80 [7 and an
implementation of that language. CST adds three extensions to sequential Smalltalk. First, messages are asyn-
chronous. Several messages can be sent concurrently without waiting for a reply. Second, several methods may
access an object concurrently; locks are provided for concurrency control. Finally, CST allows the programmer
to describe distributed objects: objects with a single name but distributed state. They can be used to construct
abstractions for concurrency.

CST is being developed as par. of the I-Machine 1 roject at MIT (4, 3]. The J-Machine is a fine-grain concurrent
computer. The primary building block in the J-machine is the Message-Driven Processor (MDP). It efficiently
executes tasks with a grain size of 10 instructions and supports a global virtual address space. This machine requires
a programming system that allows programmers to concisely describe programs with method-level concurrency and
that facilitates the development of abstractions for concurrency.

Object-oriented programming meets the first of these goals by introducing a discipline into message passing. Each
expression implies a message send. Each message invokes a new process. Each receive is implicit. The global address
space of object identifiers eliminates the need to refer to node numbers and process IDs. The programmer does not
have to insert send and receive statements into the program, keep track of process IDs, and perform bookkeeping to
determine which objects are local and which are remote.

For example, a CST program2 that counts the number of leaves in a binary tree using double recursion is shown
in Figure 1. Nowhere in the program does the programmer explicitly specify a send or receive, and no node num-
bers or process IDs are mentioned. Yet, as shown in Figure I the program exhibits a great deal of concurrency.
Making message-passing implicit in the language simplifies programming and makes it easier to describe fine-grain
concurrency.

CST facilitates the construction of concurrency abstractions by providing distributed objects: objects with a single
name whose state is distributed across the nodes of a concurrent computer. The one-to-many naming of distributed
objects along with their ability to process many messages simultaneously allows them to efficiently connect together

'The research described in this paper was supported in part by the Defense Advanced RPuaarch Projects Agency and moitored
by the Office of Naval Research under contrac s N00014-SSK-0738, N00014-SYK-0825, and N00014-M-K.0124, in prt by a National
Science Foundation Presidential Young Investigator Award with matching funds from General Electric Corporation, an Analog Devices
Fellowsip, and an ONR Fellowship.

2 This proran is in prefir CST, a dialect that has a syntax.resembling LISP. Infix CST [5] has a syntax cos to that of Smaltalk-SO.
3The concurrency profiles presented in this paper are produced by an Icode level simulation of CST programs.
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(class nods (object) left right tree-node?) .." . . ..

(method nod4 coumt-elmets ) 0) .

(if itree-nod.? C* (cont-elements left) -

(count-elements righ)) /

Figure 1: A CST program that calculates the number of leaves-In a tree using double recursion. Its concurency
profile (active tasks in each mmage interval) is shown to the right.

large numbers of objects. Distributing the name of a single distributed queue to sets of producer and consumer
objects, for example, connects many producers to many consumers without a bottleneck.

The Optimist compiler (8] compiles Concurrent Smalitalk to the assembly language of the Messge-Driven Processor
(MDP) [9]. It includes many standard optimizations such as register variable assignment, dataflow analysis, copy
propagation, and dead code elimination (2, 13] that are used in compilers for conventional processors. Due to the fine-
grained parallel nature of the J-machine, compiling for the MDP is unlike compiling for most conventional procesors
ir a few important aspects. For instance, loops are not important 4 , while minimizing code size, tail forwarding
methods, and efficiently and seamlessly handling parallelism are extremely important.

The development of Concurrent Smalltalk was motivated by dissatisfaction with procems-based concurrent program-
ming using sends and receives (11]. Many of the ideas have been borrowed from actor languages [1]. Another language
named Concurrent Smailtalk has been developed at Keio University in Japan [14]. This language also allows message
sending to be asynchronous, but does not include the ability to describe distributed objects.

Concurrent Smalltalk

Top-Level Expressions

A CST program consists of a number of top-level expressions. Top level forms include declarations of program
and data as well as executable expressions. Linking of programs (the resolution from selectors to methods) is done
dynamically.

<top-ewp :W (Global <global-variable) <value)) I
(Constant <constmt-ame) <value>) I
(Class <clas-wme> (<auperclast ' Instance-var) I
(Method clas-am> 4aetachd-asak'

foxamls)) (<ocals)
<ezwessioa'>) I

<zWessZio>

Globals and Constants Globals and constant declarations define names in the environment. These names are
visible in all programs, unless shadowed by a instance, argument, or local variable name. The global declaration
simply defines the name. Its value remains unbound. The constant declaration defines the namne and binds the name
to the specified value.

Classes Objects are defined by specifying classes. Objects of a particular class have the same instance variables
and understand the same messages. A clas may inherit variables and methods from one or more superclasses. For

4 In fact, the anent verson of Concurenm Smaltlk dom n4o even have loops.
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example:

.- (class node (object) left right tree-node?)

defines a class, node, that inherits the properties of class object and adds three instance variables. This means
that methods for the class node can access all the instance variables of class object as well as those defined in their
own class definition. Methods defined for class object are also inherited. Of course, this inheritance is transitive,
so node actually inherits from a series of classes up through the top of the claw hierarchy. Instance variables in the
claw definition may hide (shadow) those defined in the superclasses if they have the same name. The same kind of
shadowing is allowed for selectors (method names).

Methods The behavior of a class of objects is defined in terms of the messages they understand. For each message,
a method is executed. That execution may send additional messages, modify the object state, modify the object
behavior, and create new objects. Methods consist of a header and a body. The header specifies class, selector,
arguments, and locals. The body consists of one or more expressions. For example:

(method node count-elements 0 ()
(if tree-node? (+ (count-elements left)

(count-elements right))
))

defines a method for class node with selector count-elements. The two empty lists indicate that there are no explicit
arguments and no local variables. If present, the keyword reply sends the result of the following expression back
to the sender of the count-elements message. In this case, there is no reply keyword, so the method replies with
the value of the last expression. If the programmer wishes to suppress the reply, he can use the (exit) form which
causes the method to terminate without a reply.. Messages are sent implicitly. Every expression conceptually involves sending a message to an object. Of course,
commonly occurring special cases, like adding two local integers, will be optimized to tliminate the send. For
example, (count-elements left), sends the message count-elements to left. (+ z y) sends the message + with
argument • to object y. If both x and y are local integers, this operation can be optimized as an add instruction.

Each expression consists of a selector, a receiver, and zero or more arguments. Identifiers must be one of: constant,
global variable, argument, local variable, or instance variable. Subexpressions may be executed concurrently and are
sequenced only by data dependence. For example, in the following expression from the program in Figure 1

(+ (count-elements left) (count-elements right))

the two count-elements messages will be sent concurrently and the + message will be sent when both replies have
been received. The only way to serialize subexpression evaluation is to assign intermediate results to local variables.

A complete list of CST expressions is shown below:
Ac~esiur /or

<o zp > :" e x>+ 
. .... ..... .. -<exp> : TIzp ,4

<nme> DTIC TAl [
(<sele*ctor> <receiver-ezp> <argumont-exp>e) I Umanrook-.,d
(send <selector-exp~ freceiver-erp> (argument-erp>*)I
(value <42P)) I
( t (ame> <xp>) I B
(ceet (na-e> <exp>) I
(msg (node> <selector> <receiver> <actuals>) I Iyb o
(forward <continuation> <selector> <receiver> <args>)
(reply <xp>) I Aviiil,. Coi. e s

AvjI .
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(block (aala>) (locals)) <ezpe>) I
(if (cp> "zp> <eap>) I
(begin 4ezp>) I
(exit)

An Example CST Program

We now introduce a slightly more complicated version of the program shown in Figure 1. Rather than simply counting
the leaves on a tree, we compute the lengths of all the lists linked to the tree and sums those lengths together.

(class node (object) left right)

(method node count-list-elments 0 0 - ML

(. (cout-list-eleaenta left) - - a. mm ' ,-.
(cout-list-ele ts right)))

(class pair (object) car cdr)

(method pair count-list-elments 0 )
(length right 0))

(method pair length (n) )
(if (eq cdr 'nil) (+ I n)

(length cdr (+ I n))))

Figure 2: A CST program that computes sum of list lengths and its execution profile

The node clas definition is the same as it was in Figure 1. left and rigt are the children of the current node
in a binary tree. The right of each leaf node points to a linked list of pairs. The method coun--list-elements
recursively counts the lists lengths by doing so for the right subtree and the left subtree concurrently. At the bottom
of the tree, the late binding SEND operation causes the count-list-elments method for pais to be invoked. This
method computes the length of each list using the tail recursive method length.

Distributed Objects

CST programs exhibit parallelism between objects, that is many objects may be actively processing memsages si-
multaneously. However, ordinary objects can only receive one mesage at a time. CST relaxes this restriction with
Distributed Objects (DOs). Distributed objects are made up of multiple representatives (constituent objects) that
can each accept message independently. The distributed object has a name (Distributed object ID or DID) and all
other objects send messages to this name when they wish to use the DO.

Messages sent to the DO are received by one and only one constituent object (CO). Which constituent receives
• the msage is left unspecified in the language. A clever implementation might send the mnssages to the closest

constituent wheres a simpler implementation might send the messages to a random constituent. The state of a
distributed object is typically distributed over the constituents. This means that responding to an external request
often requires the passing of meages amongst the constituents before replying. No locking is performed on the
distributed object as a whole. This means that the programmer must ensure the consistency of the distributed
object.

4



Support for Distributed Objects

CST includes two constructs to support distributed objects. For DO creation, we add an argument for the now selector*- the number of constituents desired in this DO. In order to puss mesage within the object, each constituent object
W must be able to address each of the other constituents. This is implemented with the special selector co. Each

distributed object can use this selector, the special instance variable group (a reference to the DO), and an index
to address any constituent. For example, (co group 6) refers to the 5th constituent of a distributed object. Each
constituent also has access to its own index and the number of constituents in the entire distributed object. Thus a
description of a distributed object might look something like the example shown in Figure 3.

Distributed Arraey Abstraction.
The ContituentS are Spr-ead thtroughout the machine.
The sort-my $Late Is allocated Into equjal sized Chunk& en the Constituents.

(class distarroy (distobj) nr--eIta chunk-size elt-er-ey)

Given an Uninitlelied 00, lflit makes each one an array,
tells It how many sits it has, and how many elemets
are in the entire ar-ray.

(method disteit-sy init (err-size) (
(6o-1 self (block (Censtit elts) (

(co-mI"t (Co (gr-oup constit) Cayfndex Constitt)) sits)
(r-edly constit))

arr-size))

helper for mit

(method distarray co-Init (*Its) (
(begin (set Chunk-size UI its ( asindex)

(set np-ilts" sits)
(t sItr-y (naf sarray chuonk-size))

Tree recursive apply. with one arVinet

(method distarray do-I (e00ock 81 11) () (ida-I (Cc group 0) abloCk et-gi))
(method dilarray ide-i (skiock argi) (a 6 iihdes rindex)

(set iindex (lindex self))
(set rindex Ct-index self))
(et a (if (<. I index weelndo ) (ide-I (co grou Index) ablock "e-I)

(cast 6 (if (<. rfmdex UA&lfldsx) (14V1 (co gru rindox) ablock st-Wi)

(touch a b)
(reaiy (vaiue abiock seif argi))
(exit))

Select array e14iint at indew

(method disterray at (Index) (selector-)
(if (or (( index (8 chunk-size wyldx)

(>- Index (2 chunk-size (# myindex 1))))
(begin (got "electer (truncate (/ index chunk-size)))

(forward reewester a% (ce grup "electr) index)
(euit))

(at elt-a1-y (gad Index chunk-size))))

Set st-ray element at Index to value

(method distat-ray at.put (index value) (selector)
(if (9r (( index (s chuk-size, Nyindex))

()- index (0 Chunk-size (o myindex 1))))
(begin (set "elector (truncate (/ index chunk-size)))

(forwerd t-e~est- &%.put. (ce ueu selector) index value)
(exit))

(at.0ut elt-ar-aY (dad lIndex chunk-sits) value)))

*to makes a distarray of 25 constituents and ot ilselinnts do

(Init (new distirtray 254) 1024)

Figure 3: A Distributed Array Example

In the example of the distributed array, we would create a usable array with two steps. First we construct the.
distributed object using the now form. The example in Figure 3 creates a distributed object with 256 constituents.
After the DO is created, we must initialize in a way that is appropriate for the distributed array. We do so by sending
it an init message (also defined in Figure 3). This initialization sets each constituent up with an private array of the

* 5



appropriate number of elements. For example, if we wanted a distarray of 512 elements, in this case each constituent
would have a private array of two elements. This initialization is done in a tree recursive fashion and therefore takes
O(lg(n)) time.

The mapping of the distarray elements onto the private arrays is done by the at and at.put methods. Each
constituent is responsible for a contiguous range of the distarray elements. Any requests received by a constituent
are first checked to see if they are within the local CO's jurisdiction. If they are not, they are forwarded to the
appropriate CO. If they are, the request is handled locally. This is a particularly simple example because each
constituent is wholly responsible for his subrange and need not negotiate with other constituents before modifying
his local state.

Distributed objects are of great utility in building large objects on a fine grain machines. In the J-machine, we restrict
ordinary objects to fit within the memory of single node, thus restricting object size. With distributed objects, we
only require that a constituent of the DO fit on a single node. Some useful examples for distributed objects are
dictionaries, distributed arrays, sets, queues, and priority queues.

Experience with CST

We have written a large number of Concurrent Smalltalk programs and executed them on our Icode simulator. These
programs include various data structures, distributed arrays, sets, rings, B-trees, grids, and matrices. They also
include several application kernels: N-body interaction and charged particle transport (Particle-in-cell algorithm).
To date, the programs studied range from toys to applications of over 1000 lines. It is clear from our experience
that CST programs exhibit large amounts or parallelism. However, we are just beginning to exploit the potential of
Distributed Objects as building blocks for concurrent programs. We will continue to study data structures, algorithms
and full-blown applications in our continuing evaluation of Concurrent Smalltalk.

The Optimist Compiler for CST

Goals

The main goal of the Optimist compiler is to produce Concurrent Smalltalk code that is as small as possible without
sacrificing speed. In almost all cases optimizations that reduce space also reduce speed, but there are a few cases in
which they conflict; in those cases the decisions were made in favor of optimizing space. Compilation speed was not
a major goal of the compiler project; simplicity and flexibility were considered more important. Still, the compiler
does achieve reasonable compilation speed, taking between one and fifteen seconds to compile most methods on a
2-megabyte Macintosh' II using Coral Software's Allegro Common Lisp.

Organization

The Optimist, compiler is comprised of four phases, as shown in Figure 4. The Concurrent Smalitalk Front End can
be replaced by other front ends to compile other languages for the MDP. Also, the Icode can be extracted from two
places in the compilation process and either compiled onto different hardware or run on an Icode simulator.

The source code is converted by the Front End into an intermediate language called Icode. The Icode is at a
somewhat higher level than the triples or quadruples codes that most compilers use, in that it specifies units such
as entire procedure calls in single instructions. The Icode also allows for the possibility of having more than one
source language compile into MDP assembly language code or having the same source language compile into several
assembly languages. Figure 5 shows the length method in its Icode form.

5 Macintosh ian trademark of Apple Computer, Inc.
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Figure 4: Compiler Organization.
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(RETCU (TE 1))

Figure 5: Icode for the length Method: The Icode output by the Front End is a literal translation of the source
code with few optimizations. At this point all method calls, including primitives, are compiled as CSENDs.

The Statement Analyzer and Optimizer processes and optimizes the Icode generated by the Front End. It performs
all of the compiler's optimizations that are relevant at the Icode level of abstraction. Internally it works with Icode
in the form of a directed control-flow graph. These optimizations include dead code elimination, move elimination,
dataflow transformations, constant folding, tail forwarding, and merging of identical statements on both sides of
paths of a conditional. The optimizations are repeatedly attempted until none of them can improve the code.

The Instruction Generator compiles each Icode statement to a number of quasi-MDP instructions and outputs the
MDP code in the form of a directed control-Bow graph. At the same time, the Instruction Generator assigns variables
to either registers or memory locations and performs statement-specific optimizations on Icodes.

The Amembly Code Generator inserts branches into the directed graph of quui-MDP instructions created by the
Instruction Generator and performs several peep-hole optimization. The important optimizations include shifting
instructions wherever possible to align DC (Load Constant) instructions to word boundaries (all other instruc-
tions need only be aligned at half-word boundaries) and combining SEND and SENDE instructions to SEND2 and
SEND2E. The Assembly Code Generator replaces short branches by long ones where necessary; such replacements
are complicated by the fact that long branches alter the value of MDP's register R0. The Assembly Code Generator
outputs a file of assembly language statements which can be read, assembled, and executed by our MDP simulator7



MDPSim (10]. Figure 6 contains the assembly code output for the sample method length.

NODULE PAIR._LEGTH @ 8

DC NSG:LoadCode18
DC {Clmss.PAIR}, {Nothod.LEIGTH}}
MOVE 2.A3],RO ; 0

ILATE ROA2,ATE..OJ ; 0.5
MM 1,R3 ; I
ADD H3.[3.A3],R2 ; 1.5

MOVE C3,A23LR1 ; 2
DIl/ R1,L001 ; 2.5
MOVE [4,A3,I1 ; 3

BNIL R1,-L002 ; 3.5

DC RSG:feplyConst 4 ; 4
WITAG 11.1.13 ; 6

LS P.3,-16,R3 ; 5.5
SEND2 33,3O ; 6
SEND 11 ; 6.5

SEND2E [SA31.R2 ; 7
BR 'L002 ; 7.6

LO01: MOVE C3,A2].RO ; 8
CALL Seand-odeIr ; 8.5

DC MSG:SendConst+7 ; 9
SUND2 i1,I0 ; 10

DC {(Mthod.LEGTH} ; 11
SEND RO ; 12

SEND2 [3,A2],R2 ; 12.5
SEND [4,A3] ; 13
SENDE [5,A31 ; 13.5

L002: SUSPEND ; 14

Figure 6: Final Output of the Compiler: This is the MDP assembly code into which the length method compiles. If
the optimizations were turned off, the code size would have been 32 words, more than twice the size of the optimized
code.

Optih,-izations

Tail Forwarder The tail forwarder performs the message-passing equivalent of tail recursion. It is often the case
that the value returned by a Concurrent Smalltalk method is the value returned by the last statement of that method,
and that statement is often a method call. An example of this phenomenon is a recursive definition of the length
function in Figure 2.

If cdr is not equal to nil, the length method makes a recursive call and when that call returns, it immediately
returns that value as the result. There is, however, no fundamental reason why length should wait for the result
of the recursive call to length only to return it to the caller; on the contrary, it would be better if the recursive
length call returned its result to the initial caller. length optimized this way runs in constant space instead space
proportional to the list length. The Tail Forwarder performs this optimization by looking for a CSEND statement
whose value is returned by a REPLY statement immediately afterwards. Such a CSEND statement is modified to

inform the callee to return its result to this method's caller instead of this method.

Fork and Join Mergers These two optimizations, if they can be applied, often produce significant savings in the
output code size. They try to consolidate similar statements on both sides of forks (conditionals) and joins (places

8



where two paths of control flow merge) in the control-flow graph.

The Join Merger look- 'or similar statements iimediately preceding each join in the control-flow graph. Here two
statements are corsIered to be similar if they are identical or if they are both CSENDs with identical targets and
the same numb,,r of arguments; the arguments themselves need not be the same. The Join Merger moves both
statements after the join; if the statements were not identical, MOVEs are generated to copy any differing arguments
into temporaries before the join; the combined statement after the join will use the temporaries instead of the original
arguruments. These MOVEs are usually later removed by the Move Eliminator. Although more than two paths of
control flow can join at the same place, the Join Merger only considers them pairwise; if more than two paths can
be merged, initially two will be merged, with the other ones considered in a later pass. The Fork Merger operates
analogously except that it also has to be sure not to affect the value of the condition determining which branch the
program will take.

The Join Merger occasionally merges two completely different method calls which happen to have the same number
of arguments, but which may even call different methods (the method selector is treated as an argument like any
other), a rather unexpected optimization indeed. In each branch just before the join, the resulting object code copies
the differing method arguments into the MDP's registers and stores the appropriate method selector in a register
After the join is common code that sent the message given the method selector and arguments in the registers. Since
the code to send a message is long compared to the code to load values into registers, the optimization has a net
savings of five words (ten instructions) of code without significantly affecting the running time.

Move Elminator For each MOVE statement from a local variable to another local variable, the Move Eliminator
attempts to merge the source and destination variables into one variable and then remove the MOVE statement.
Such a merge can be done successfully if the two variables are never simultaneously live at any point in the code.

The Move Eliminator complements the copy-propagation algorithm in the Optimist. Although both try to optimize
MOVE statements, each is able to handle cases that the other cannot. The copy propagation can handle constants,
while Figure 7 shows an example of MOVE statements that can be eliminated by the Move Eliminator but not by
copy propagation.

Figure 7: Move Eliminator Example: Tb Move Eliminator is able to remove the two MOVE statements (a-b) and
(a-c) in the above code (the arrows indicate possible flow of control paths). The copy propagation algorithm would
not detect the opportunity to remove these two MOVE statements because the value of a at the return statement is
neither a copy of b nor a copy of c. The above code does occur in many methods.

Variable Allocator A greedy algorithm is used to asign eligible variables to registers. The shortest-lived variables
with the most references are considered first. A graph coloring algorithm is used to assign the variables that did not
fit in the registers to context slots; thus, fewer context slots are used, saving valuable memory space.

*



Sumt xy

In this paper, we have presented a new language, Concurrent Smalltalk, that is designed for concurrency. Specific
support for concurrency includes locks, distributed objects, and asynchonous message passing.

Distributed Objects represent a significant innovation in programming parallel machines. We refer to the constituents
of a distributed object with a single name, but the implementation of the object is with many constituents. This
different perspective allows easy use of distributed objects by outside programs while allowing the exploitation of
-internal concurrency.

We have described an implementation of a CST system. This programming environment includes a compiler, simu-
lator, and statistics collection package. This set of tools allows us to experiment with new constructs and implemen-
tation techniques for the language. Although many of the optimizations used by the Optimist compiler are generally
known, they have usually been applied to compilers for conventional processors. The issues involved in compiling
for the MDP are quite different from compiling for conventional processors. After examining the compiler's output,
it becomes apparent that the optimizations are essential to the successful use of Concurrent Smalltalk on the MDP.
The compiler's optimizations reduce the amount of code output by anywhere between 20% and 60% (or even more
in some cases) compared to output with all nonessential optimizations disabled. Such a reduction is very important
on a processor with only 4096 words of primary memory.

There are many open issues relating to CST and similar programming systems. Key efficiency issues remain unre-
solved: how fine grain will the programs written in CST be and what is the run time overhead of CST prograrms?
There are also concerns about the expressive power of languages like CST - how easy is it to write programs in CST
and how useful are distributed objects?
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