

AFOEHL REPORT 89-052EQ0025FEF

AD-A211 778

AUG 28 1989

COMPLIANCE TESTING OF GRISSOM AFB CENTRAL HEATING PLANT COAL-FIRED BOILERS 3, 4, AND 5, GRISSOM AFB IN

JAMES A. GARRISON, Major, USAF, BSC

JUNE 1989

Final Report

Distribution is unlimited; approved for public release

AF Occupational and Environmental Health Laboratory (AFSC) Human Systems Division Brooks Air Force Base, Texas 78235-5501

89 8 28 48

	UNCLAS	SSIF	IED				
š	FCUPITY	CLASS	SIFICA	TION	OF 1	HIS	PAGE

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188						
1. REPORT SECURITY CLASSIFICATION Unclassified		15 RESTRICTIVE I				
2a. SECURITY CLASSIFICATION AUTHORITY			for public r	release.		
2b. DECLASSIFICATION / DOWNGRADING SCHEDU	LE	Distributi	ion is unlim	nited.		
N/A 4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING (ORGANIZATION R	EPORT NU	MBER(S)	
AFOEHL Report 89-052E00025FEF						
6. NAME OF PERFORMING ORGANIZATION USAF Occupational and Environ-	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MC	DNITORING ORGA	NIZATION		
mental Health Laboratory.	ECO		64444 and 210	Codel		
6c. ADDRESS (City, State, and ZIP Code) Brooks_AFB_TX_78235-5501		7b. ADDRESS (Cit)				
BA. NAME OF FUNDING / SPONSORING ORGANIZATION	8b. ÖFFICE SYMBÖL (If applicable)	9 PROCUREMENT	INSTRUMENT ID		UN NUMBER	
Same as 6a 8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS						
		PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO	
Same as 6C 11. TITLE (Include Security Classification)						
Compliance Testing of Grissom AFB Central Heating Plant Coal-Fired Boilers 3, 4, and 5, Grissom AFB IN.						
12 PERSONAL AUTHOR(S) Mai James A. Garrison						
13a. TYPE OF REPORT 13b. TIME CO	DVERED 0120 TO _000215	14. DATE OF REPO		Day) 15	PAGE COUNT	
16 SUPPLEMENTARY NOTATION						
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)						
FIELD GROUP SUB-GROUP Compliance Testing Grissom Source Emission Testing Stack Sampling Particulates Air Pollution						
19 ABCTRACT (Continue on course if processes	19 ABSTRACT (Continue on reverse if necessary and identify by block number)					
·			. .			
At the request of HQ SAC/SGPB source compliance testing (particulate and visible emissions) of boilers 3, 4, and 5 in the Grissom AFB Central Heating Plant was						
emissions) of boilers 3, 4, and 5 in the Grissom AFB Central Heating Plant was accomplished 29 Jan - 15 Feb 89. The survey was conducted to determine compliance with						
regards to Indiana Administrative Code, Title 325 - Air Pollution Control Board, Article						
5, Opacity Regulations, and Article 6, Particulate Regulations. Boiler 3 was tested						
through scrubber B, Boiler 4 through scrubber A and Boiler 5 through scrubber B and the bypass stack. Results indicate that each boiler met applicable visible and particulate						
emissions standards.						
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT	PT DTIC USERS	21 ABSTRACT SEC Unclassif		ATION		
22. NAME OF RESPONSIBLE INDIVIDUAL JAMES A. GARRISON, MAJ, USAF, B		225 TELEPHONE (1 (512) 536-	nclude Area Code		FICE SYMBOL SAFOEHL/ECO	
DD Form 1473, JUN 86	Previous editions are o	لمتحب المتكبل الترقيبية فكريد تتأخرها التجار	بالكل مباكرتهم فتتنع المنعمكنم وبا		ATION OF THIS PAGE	

i

CONTENTS

	DD Form 14 Illustrat			i iv
Ι.	INTRODUCT	ION		1
II.	DISCUSSIO	N		1
	C. Appli	round Description cable Standards ing Methods and Procedures		1 2 3 6
III.	CONCLUSIO	NS		7
IV.	RECOMMEND	ATIONS		10
	Reference	S		12
	Appendix			
	A B C D E F G H I J K	Personnel Information State Regulations Plant Operating Logs Coal Analysis Boiler 3, Scrubber B Field Data Boiler 4, Scrubber A Field Data Boiler 5, Scrubber B Field Data Boiler 5, Bypass Stack Field Data Calibration Data Emissions Calculations EPA Method 9 Certification	AND	13 17 33 39 43 57 73 87 101 121 131

iii

Distribution List

Accesi	on For			
LINC	01-02- 1			
By Distric	· 9			
Avertubility Codes				
Dist	Aved eactur Special			
A-1				

Illustrations

Figure	Title	Page
1	Boiler Pass/Fail Status	1
2	View of Scrubbers and Bypass Stacks	4
3	Flue Gas Flow Diagram	5
4	ORSAT Sampling Train	8
5	ORSAT Apparatus	8
6	Particulate Sampling Train	9

Table

1 Emission Survey Results	11	
---------------------------	----	--

I. INTRODUCTION

On 29 Jan to 15 Feb 1989, a stationary source sampling survey for particulate and visible emissions was conducted on coal-fired boilers 3, 4 and 5 at the Grissom AFB Central Heating Plant, by the Air Quality Function, Consultant Services Division, Air Force Occupational and Environmental Health Laboratory (AFOEHL). This survey was requested by HQ SAC/SGPB to determine particulate emission compliance status with regards to Indiana Administrative Code, Title 325 - Air Pollution Control Board, Article 5, Opacity Regulations (325 IAC 5), and Article 6, Particulate Regulations (325 IAC 6). Personnel involved with on-site testing are listed in Appendix A.

II. DISCUSSION

A. Background

On 7 Nov 1986, the Director, Air and Radiation Division, U.S. Environmental Protection Agency (EPA), Region V, issued a notice of violation (NOV) to Grissom AFB for violation of 325 IAC 5, Opacity Regulations. The NOV was based on information submitted by the State of Indiana Department of Environmental Management and by the EPA. Observations indicated that oil-fired boiler 1 and coal-fired boilers 3 and 4 (boiler 5 was out of service during the State observations) were out of compliance with respect to visible emissions.

To demonstrate and maintain compliance with 325 IAC 5 and other rules set forth by the Indiana Air Pollution Control Board, EPA, Region V required Grissom AFB to: (1) conduct stack particulate emission testing on boilers 3, 4 and 5 (when operational) as specified in Title 40, Code of Federal Regulations, Part 60 (40 CFR 60), Appendix A, Reference Method 5, (2) determine visible emissions from boilers 1-4 and 5 (when operational) as specified in 40 CFR 60, Appendix A, Reference Method 9 and (3) request stack testing following future major modifications to the central heating plant.

This compliance testing project involved conducting source compliance testing (particulate and visible emissions determination) on boiler 3 through scrubber B, boiler 4 through scrubber A and boiler 5 through scrubber B and the bypass stack. Figure 1 below shows the pass/fail status of each boiler based on prior testing by AFOEHL during Nov 87 and Mar 88.

Figure 1. Boiler Pass/Fail Status

Boiler	Bypass Stack	Scrubber A	Scrubber B
3	Р	Р	F
4	Р	-	Р
5	F	Р	-

P = passed emissions testing

F = failed emissions testing

- = not tested previously due to equipment failure

B. Site Description

The Central Heating Plant operates a total of five boilers for steam production:

Boiler No./ Manufacturer	Steam Capacity (1b/hr)	Year Installed	Fuel
1/Springfield Boiler Co.	40,000	1955	oil
2/Springfield Boiler Co.	40,000	1955	oil
3/Springfield Boiler Co.	40,000	1955	coal
4/E. Keeler Co.	40,000	1960	coal
5/Zurn Ind.	65,000	1980	coal

Coal-fired boilers 3, 4 and 5 are spreader-stoker fired units, each having forced-draft and induced-draft fans and mechanical fly ash collection systems. Each unit is fitted with a steam-operated soot blower to remove fly ash and soot from heat exchanger tubing. Boiler 5 is also fitted with an economizer to further increase operating efficiency by preheating the feed water using exhaust gas heat.

Air pollution control consists of individual multiclone dust collectors on each boiler and an optional wet scrubber common to the three coal-fired boilers. The multiclone dust collectors on boilers 3, 4 and 5 were manufactured by Western Precipitation Division-Joy Manufacturing Co. The collector on both boiler 3 and 4 is a Model 9VM-10 and consists of 36 nine-inch diameter cyclonic collectors operating in parallel. The collector on boiler 5 is a Model 9VMU-10 and consists of 48 nine-inch diameter cyclonic collectors operating in parallel. Each unit is located in the boiler exhaust duct upstream of the induced-draft fan. Ash collected by the multiclones is carried by gravity to a hopper.

The exhaust effluent from each boiler is ducted to a common breeching and can be routed to the wet-scrubber or to a bypass stack. The scrubber is a double-alkali flue-gas desulfurization system using soda ash (sodium carbonate) in the scrubbing fluid and lime (calcium hydroxide) slurry for regeneration of the scrubbing liquid. The primary purpose of the unit is to remove sulfur from the flue gas; a secondary purpose is to remove particulates from the flue gas. The system has two identical scrubber units, A and B, each designed to handle 50% of the flue gas from the three coal-fired boilers. Each unit has a 5 foot (ft) diameter stack and terminates about 70 feet above the ground. There is no requirement at this time to use the scrubber system because of the low-sulfur coal being used by the plant. The bypass stack has a 5.5 ft diameter and terminates approximately 70 ft above ground level. The scrubber stacks and the bypass stack can be seen in Figure 2. A flue gas flow diagram is shown in Figure 3.

C. Applicable Standards

The monitoring requirements, opacity regulations and particulate regulations are defined under 325 IAC 3, 5 and 6, respectively. Article 3 states that emissions tests shall be conducted in accordance with the procedures and analysis methods specified in Chapter 40, Code of Federal Regulations, Part 60, Appendix A. EPA Methods 1-5 were used for the determination of particulate emissions and Method 9 for visible emissions.

Article 5 states that visible emissions shall not exceed an average of 40% opacity in 24 consecutive readings or 60% opacity for more than a cumulative total of 15 minutes (60 readings) in a 6-hour period. When conducting a soot blowing operation, visible emissions may exceed these standards except that visible emissions may not exceed 60% opacity nor shall visible emissions in excess of the standards continue for more than 5 minutes in any 60 minute period.

Under 325 IAC 6, the maximum allowable particulate emission rate from the combustion of fuel for indirect heating facilities (either existing and in operation or with permits to construct prior to the effective date of 325 IAC 6, 26 Sep 1980) is determined by the following equation:

$$Pt = \frac{C \times a \times h}{0.75 \quad 0.25}$$
76.5 x Q x N

Where:

Pt = Pounds of particulate matter emitted per million BTU heat input (lb/mm BTU).

C = Maximum ground level concentration with respect to distance from the point source at the "critical" wind speed for level terrain (50 micrograms per cubic meter - provided in standard).

Q = Total source maximum operating capacity rating in million BTU per hour (mmBTU/hr) heat input (50.0 mmBTU/hr for boilers 3 and 4, 83 mmBTU/hr for boiler 5 - determined from plant operation).

N = Number of stacks in fuel burning operation (1).

a = Plume rise factor (0.67 is used for Q less than or equal to 1,000 mmBTU/hr heat input).

h = Stack height in feet (70 ft).

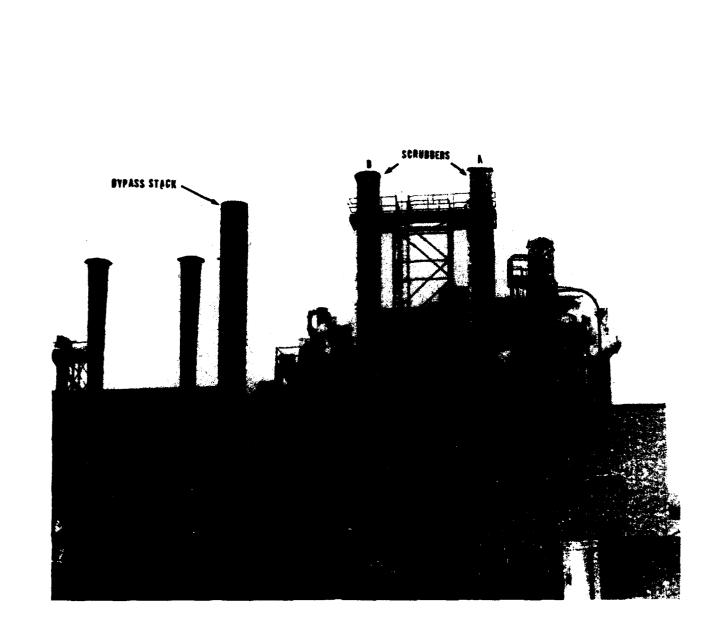
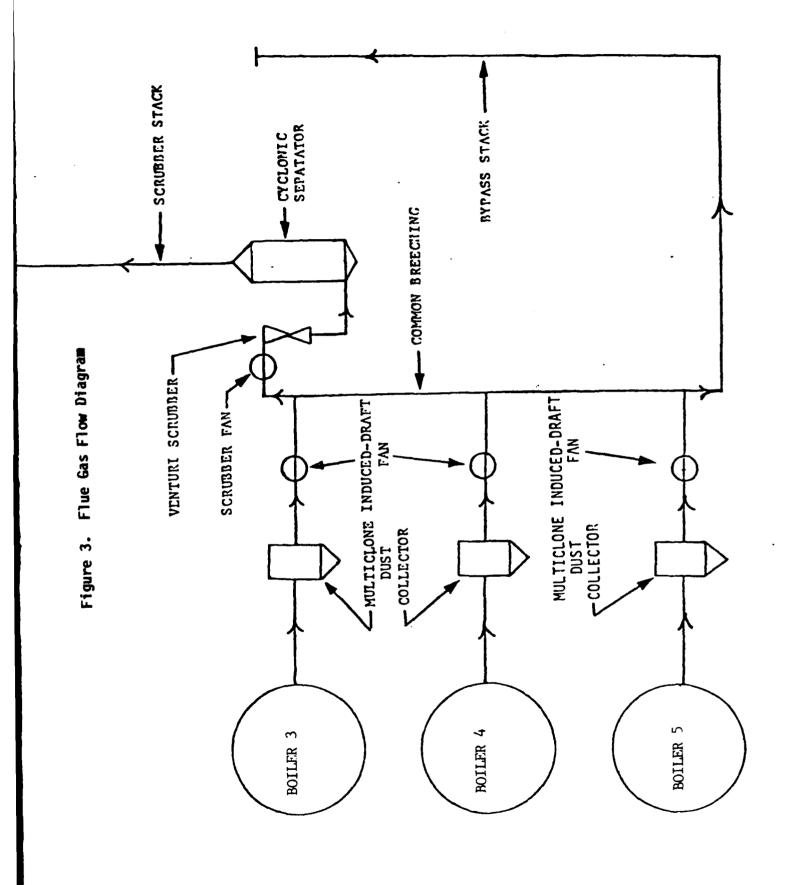



Figure 2. View of Scrubbers and Bypass Stack

The limits on particulate emissions determined by the equation and values of the variables applicable to this facility are 1.6 lb/mmBTU for boilers 3 and 4 and 1.1 lb/mmBTU for boiler 5. However, particulate emissions from facilities used for indirect heating purposes shall in no case exceed the following emission limitations: (1) 0.8 lb/mmBtu heat input for facilities existing and in operation on or before 8 June 1972 or (2) 0.6 lb/mmBTU heat input for any facility which has 250 mmBTU/hr heat input or less and which began operation after 8 June 1972. Item (1) applies to boilers 3 and 4 and item (2) applies to boiler 5. State regulations are presented in Appendix B.

D. Sampling Methods and Procedures

Boiler 3 was tested through scrubber B, boiler 4 through scrubber A and boiler 5 through scrubber B and the bypass stack. Coordination was made with plant personnel to try and operate each boiler at 95% capacity or greater during testing. One of the three runs which comprised a complete test included a soot blow; this is indicated on the field data sheets. Boiler operating logs for the test periods are provided in Appendix C. These logs indicate hourly steam output and coal usage. Laboratory results for the coal analysis are provided in Appendix D. Each coal sample represents an integrated sample collected over a particular one hour test run as noted on the analysis sheet.

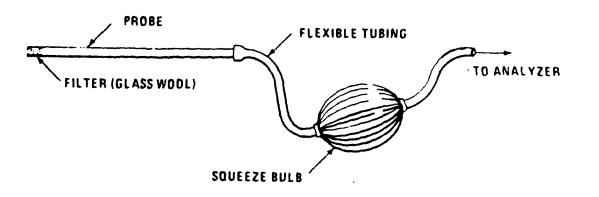
325 IAC 3 requires that all emissions tests be conducted in accordance with the procedures and analysis methods specified in 40 CFR 60, Appendix A, Methods 1-5. Therefore, test methods, equipment, sample train preparations, sampling and recovery, calibration requirements and quality assurance were done in accordance with the methods and procedures outlined in 40 CFR 60, Appendix A.

Sampling ports were in place on both scrubber stacks and located 1.4 stack diameters upstream from the stack exit and 5.6 stack diameters downstream from any disturbance (cyclonic separator). Based on a 5 ft inside stack diameter, port location and type of sample (particulate), a total of 20 traverse points were determined for emission evaluation. Sampling ports were also in place on the bypass stack and were located 2 stack diameters upstream from the stack exit and 7 stack diameters downstream from the nearest disturbance (common breeching inlet). Based on a 5.5 ft inside stack diameter, port location and type of sample (particulate), a total of 12 traverse points were determined for emission evaluation. The sampling time for each sampling run was 60 minutes; therefore, the sampling time per traverse point in each scrubber stack was 3 minutes and 5 minutes per point in the bypass stack. Illustrations showing port locations and sampling points are provided in Appendixes E, F, G and H.

Prior to each emissions test, a preliminary velocity pressure traverse was accomplished and cyclonic flow was determined. For acceptable flow conditions to exist in a stack, the average of the absolute values of the flow angles taken at each traverse point must be less than or equal to 20 degrees. Based on prior testing experience at this location, straightening vanes were installed directly above the cyclonic separator in both scrubber A and scrubber B to prevent cyclonic flow within the stack. The resulting flow angle in the scrubber A stack averaged 14 degrees and that in the scrubber B stack averaged 15 degrees. The average of the flow angles in the bypass stack averaged 5 degrees. The flow angle averages indicated an acceptable flow condition existed in all three stacks.

During each sample run, a flue gas sample for ORSAT analysis (measures oxygen, and carbon dioxide for stack gas molecular weight determination and emissions correction) was taken. ORSAT sampling and analysis equipment are shown in Figures 4 and 5. Flue gas moisture content, also needed for determination of gas molecular weight, was obtained during particulate sampling.

Particulate samples were collected using the sampling train shown in Figure 6. The train consisted of a buttonhook probe nozzle, heated inconel probe, heated glass filter, impingers and pumping and metering device. The nozzle was sized prior to each test so that the gas stream could be sampled isokinetically; in other words, the velocity at the nozzle tip was the same as the stack gas velocity at each point sampled. Flue gas velocity pressure was measured at the nozzle tip using a Type-S pitot tube connected to a 10-inch inclined-vertical manometer. Type K thermocouples were used to measure flue gas as well as sampling train temperatures. The probe was heated to minimize moisture condensation. The heated filte was used to collect particulate materials. The impinger train (first, third and fourth impingers: modified Greenburg-Smith type, second impinger: standard Greenburg-Smith design) was used as a condenser to collect stack gas moisture. The pumping and metering system was used to control and monitor the sample gas flow rate. Equipment calibration data is presented in Appendix I.


Particulate emissions calculations were done using "Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators" (EPA-340/1-85-018) developed by the EPA Office of Air Quality Planning and Standards, Research Triangle Park NC. This is our standard method for calculating emissions data. Emissions calculations from the EPA programs are found in Appendix J.

Visible emissions determinations were accomplished during each sample run. Visible emissions results are presented in Appendixes E through H.

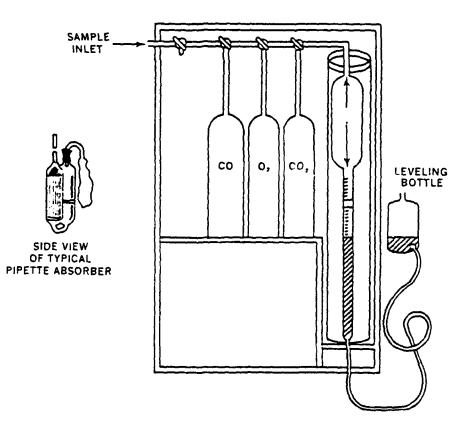
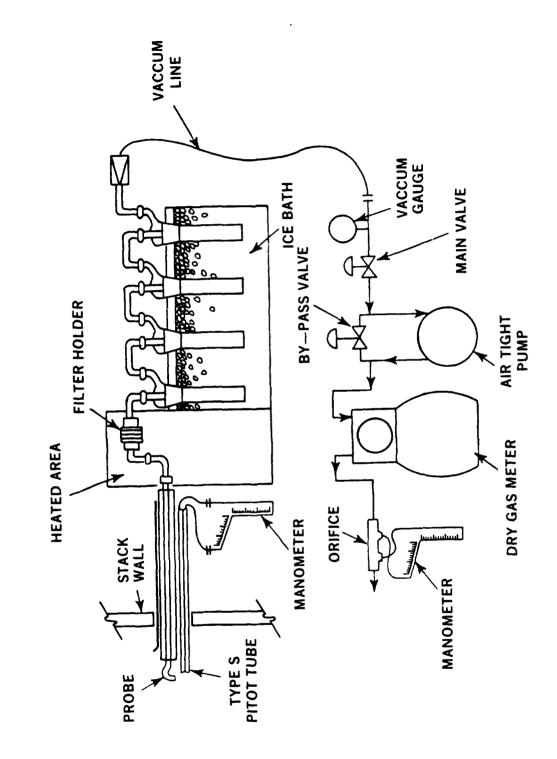

III. CONCLUSIONS

Table 1 provides operating parameters for boilers 3, 4 and 5 during testing and the resultant particulate and visible emissions determined from these tests. Results indicate that emissions from boilers 3 through scrubber B and boiler 4 through scrubber A were well below the emission standard of 0.8 lb/mmBTU with an emission rate of 0.37 lb/mmBTU for both units. Boiler 5 emissions through scrubber B and the bypass stack were well below the emission standard of 0.60 lb/mmBTU with particulate emission rates of 0.19 lb/mmBTU and 0.44 lb/mmBTU, respectively. All visible emissions were equal to or below applicable standards.

To date, boilers 3, 4 and 5 have been tested through both scrubbers and the bypass stack and meet applicable state particulate and visible standards.



ORSAT

Figure 5. ORSAT Apparatus

Figure 6. Particulate Sampling Train

IV. RECOMMENDATIONS

AFOEHL will remain active in providing consultant and testing services to Grissom AFB with respect to the central heating plant.

TABLE 1

STACE GMISSION TESTING BESULTS

h418	TING (MILITART)	801LEB 80.	17ACE 10. •		BOILER OPERATING Capacity (1)	\$001 \$104	COAL MEAT VALUE (Atu/15)	COAL USE (18/61)	6645 369UT (94854/br)	FK EN242085** (1h/br)	4 CO2 18 7LUE 645	PM EMISSIONS CORRECTED TO 134 CO1 (15/mastw)	VIAILE ENISSIONI (6 OPACITE)
	[]]	-	• •	-	•••		11209	400	1.11	9.4	•••	0.35	•.•
11 745 11	1206	-	9CB 8	~	0.44	H	11201	4061	1.64	4.7	1.2	9.30	•••
11 756 13	6761	-	8 E B	-	0.14		91111	4040	6.6	1.1	•.•	6.47	• •
					AVG = 92.8							AVG - 4.37	
11 755 11		•	4 US	-			11433	•110	1.1	5.7	9.6		•••
14 755 23	• • • • •	•	SCB A	~	99.0		49611	••••	47.2	3.0	2.6	6.27	•.•
	••••	•	SCB A	-	93.0	Ħ	59611		47.2	1.0	1.1	0.15	• •
11					AVG = 95.8							444 - 0.37	
10 766 11	1020	•	1 1	-	98.8		11794	111	6.11	11.2	1.1	6.1	•
	1117	•	8CB 8	~	98.0		11463	1113	1	1.5	(.,	0.10	• •
11 121 11	1117	•	8CB 8	-			(1995)	111	6.64	1.1	• •	•.17	•.•
					AVA - 94.4						, e	410 - 9.18	
17 111 17	1101	-	1	-	99.6		61111	1919	17.4	21.4		1.17	8.F
11 111 11	\$221	-		~	100.0		66111	1919	78.0	20.05	10.6	42.4	14.6
17 182 17	2221	•	:	-	•	M	11344	,,,,	8. LL	11.16	7.4	0.65	12.5
					AVG = 59.4							AVG = 0.44	
• 8CB = 8CB0888 87 = 877488	11111111111111111111111111111111111111												
·· PARTCH	•• PARTCHLARS BAIRSIONS												

REFERENCES

- 1. "Standards of Performance for New Stationary Sources", Title 40, Part 60, Code of Federal Regulations, July 1, 1987.
- 2. Quality Assurance Handbook for Air Pollution Measurement Systems Volume III, Stationary Source Specific Methods, U.S. Environmental Protection Agency, EPA-600/4-77-027-b, Research Triangle Park, North Carolina, December 1984.
- 3. Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators. U.S. Environmental Protection Agency, EPA-340/1-85-018, Research Triangle Park, North Carolina, May 1987.

APPENDIX A

Personnel Information

(This page left blank)

1. AFOEHL Test Team

Maj James Garrison, Chief, Air Quality Function Capt Paul Scott, Consultant, Air Resources Meteorologist SSgt Daniel Schillings, Bioenvironmental Engineering Technician SSgt Mary Fields, Bioenvironmental Engineering Technician SrA James Jarbeau, Bioenvironmental Engineering Technician

AFOEHL/ECQ Brooks AFB TX 78235-5501

Phone: AUTOVON 240-2891 Commercial (512) 536-2891

2. Grissom AFB on-site representatives

SSgt Paul Franco	USAF Clinic Grissom/SGPB AUTOVON 928-3017 Commercial (317) 689-3017
Ruel Burns	305 CSG/DEEV AUTOVON 928-2225 Commercial (317) 689-2225
Smedley Graham Jim Williams Michael Esca Michael Ryan	305 CES/DEMMHZ AUTOVON 928-3253 Commercial (317) 689-3253

(This page left blank)

APPENDIX B

State Regulations

(This page left blank)

consistent with existing applicable state rules but no longer than twenty-four (24) consecutive hours.

326 IAC 2-4-3 Compliance determination; guidelines

Sec. 3. (a) Compliance will be determined based on the emission limitations and conditions established in the permits issued in conjunction with the bubble. Compliance tests shall be performed in accordance with the test methods specified in individual rules under this title (326 IAC)

(b) Records must be kept in accordance with sub-section (f) of this section and with 326 IAC 2-4-2(a)(9). These records must be kept for a period of the length of the permit unless the commissioner requires they be kept for a longer period of time

(c) The owner or operator of an emission source under a bubble shall make available copies of reports to the commissioner or its authorized representatives upon written request, at any reasonable time, which include but are not limited to, the nature, specific emission points, and total quantities of all emission.

(d) The bubble shall not exempt any owner/operator from complying with any other applicable rule.

(e) No owner or operator under the bubble is relieved the responsibility for achieving and maintaining a reduction of emissions as expeditiously as practicable, but no later than the compliance date required under the applicable regulation. unless the commissioner grants a later compliance date.

(f) VOC emission sources subject to this rule (326 IAC 2-4) shall maintain records which include as a minimum all data and production information necessary to determine compliance of the process, equipment, or process line under the bubble. This shall include, but not be limited to the following:

(1) type of VOC materials applied;

(2) VOC content of materials applied;

(3) amount of VOC material used: and

(4) estimated emission rates.

326 IAC 2-4-4 SIP revisions

Sec. 4. (a) The following types of bubbles shall be incorporated in the permits and submitted to U.S. EPA as SIP revisions.

period over which they are limited must be emission limitations for the emission points within the bubble but will have single overall emission limit for each pollutant for the entire bubble.

(2) Bubbles including fugitive emissions (defined in 326 IAC 2-2-1).

(3) Bubbles which will include sources that are subject to a federal enforcement action. Federal enforcement action means an order issued under 42 USC, Section 7413(a), a civil action under 42 USC, Section 7413(c), a notice imposing noncompliance penalties under 42 USC, Section 7604

(4) Bubbles resulting in extension of compliance dates.

(5) Bubbles not exempt from dispersion modeling under 326 IAC 2-4-2(a)(4)(A)and 326 IAC 2-4-2(a)(4)(B).

326 IAC 2-4-5 Public notice; comment procedure

Sec.5. All bubble submittals shall be subject to public notice and comment procedures as specified in 326 IAC 2-1-5(a)(1) and 326 IAC 2-1-5(a)(3), and in the Clean Air Act, 42 USC, Section 7410(a)(2)(H). All bubble proposals received by the state shall be submitted to the U.S. EPA for its comments. However, only the bubbles submitted to the U.S. EPA pursuant to 326 IAC 2-4-4 shall constitute SIP revisions. All bubbles approved by the commissioner will become effective after they are approved by U.S. **FPA**

326 IAC 2-4-6 Effect of future emission limitation requirements

Sec. 6. Should a new or more restrictive emission limitation, as required by the board, become applicable to any source included in a bubble under this rule (326 IAC 2-4) the source's permit shall be modified to demonstrate reductions in total bubble emissions equal to the reduction required by the new emission standards.

326 IAC 2-4-7 Enforceability

Sec. 7. All bubbles shall be enforced by the department and may be enforced by the U.S. EPA as part of the SIP.

ARTICLE 3. MONITORING REQUIREMENTS

Rule 1. Continuous Monitoring of Emissions

326 IAC 3-1-1 Applicability of rule

Sec. 1. (a) Sources in the following categories shall continuously monitor and (1) Bubbles which do not have fixed record emissions of air pollutants in ac-

cordance with this rule (326 IAC 3-1).

(1) Fossil fuel-fired steam generators of greater than two hundred fifty (250) million Btu per hour heat input capacity.

(2) Nitric acid plants of greater than three hundred (300) tons per day production capacity, the production capacity being expressed at one hundred percent (100%) acid.

(3) Sulfuric acid plants of greater than three hundred (300) tons per day production capacity, the production capacity being expressed at one hundred percent (100%) acid.

(4) Petroleum refinery catalyst regenerators for fluid bed catalytic cracking units of greater than twenty thousand (20,000) barrels (eight hundred forty thousand (840,000) gallons) per day fresh feed capacity.

(b) Other monitoring requirements are contained in 326 IAC 2-1-3(h) and 326 IAC 7-1.

326 IAC 3-1-2 Compliance date

Sec. 2. All sources must be in compliance with this rule (326 IAC 3-1) by July 1, 1978.

326 IAC 3-1-3 Scope of rule

Sec. 3. This rule (326 IAC 3-1) sets forth the minimum requirements for continuous emission monitoring and recording. These requirements include the source categories to be affected; emission monitoring, recording, and reporting requirements for those sources; performance specifications for accuracy, reliability, and durability to acceptable monitoring systems; and techniques to convert emission data to units of the applicable state emission standard. Such data must be reported to the commissioner as an indication of whether proper maintenance and operating procedures are being utilized by source operators to maintain emission levels at or below emission standards. Such data may be used directly or indirectly for compliance determination or any other purpose deemed appropriate by the commissioner.

326 IAC 3-1-4 Monitoring requirements for applicable pollutants

Sec. 4. (a) The owner or operator of an emission source in a category listed in this rule (326 IAC 3-1) shall:

(1) install, calibrate, operate, and maintain all monitoring equipment necessary for continuously monitoring the pollutants specified in this rule (326 IAC 3-1) for the applicable source category; and

formance tests of such equipment and begin monitoring and recording by July 1, 1978.

(b) The source categories and the respective monitoring requirements are listed below:

(1) Fossil fuel-fired steam generators, as specified in 326 IAC 3-1-8(1), shall be monitored for opacity, nitrogen oxides emissions, sulfur dioxide emissions, and oxygen or carbon dioxide.

(2) Fluid bed catalytic cracking unit catalyst regenerators, as specified in 326 IAC 3-1-8(4), shall be monitored for onacity.

(3) Sulfuric acid plants, as specified in 326 IAC 3-1-8(3), shall be monitored for sulfur dioxide emissions.

(4) Nitric acid plants, as specified in 326 IAC 3-1-8(2), shall be monitored for nitrogen oxides emissions.

326 IAC 3-1-5 Monitoring requirements; exemptions

Sec. 5. Exemptions from the monitoring requirements of 326 IAC 3-1-4 shall be granted by the commissioner to any source which is:

(1) subject to new source performance standards promulgated in 40 CFR 60, pursuant to Section 111 of the Clean Air Act; or

(2) not subject to an applicable emission standard of the state implementation plan (SIP); or

(3) scheduled for retirement by October 6, 1980, provided that adequate evidence and guarantees are provided that clearly show that the source will cease operations prior to such date.

326 IAC 3-1-6 Extensions of time

Sec. 6. Extensions of the time provided for installation of monitors may be granted by the board for facilities unable to meet the prescribed timeframe (compliance by July 1, 1978) provided the owner or operator of such facility demonstrates that good faith efforts have been made to obtain and install such devices within such prescribed timeframe.

326 IAC 3-1-7 Monitoring system malfunction; report

Sec. 7. When a malfunction of any monitoring system lasts more than one (1) hour, the commissioner or the commissioner's appointed representative shall be notified by telephone, or telegraph, as soon as practicable but in no event later than four

(2) complete the installation and per- (4) daytime business hours after the beginning of said occurrence. Information of the scope and expected duration of the malfunction shall be provided. A temporary exemption from the monitoring and reporting requirement of this rule (326 IAC 3-1) may be granted, provided that the owner or operator shows, to the satisfaction of the commissioner, that the malfunction was unavoidable and is being repaired as expeditiously as practicable.

326 IAC 3-1-8 Minimum monitoring requirements

Sec. 8. The sources listed in 326 IAC 3-1-4 shall, as a minimum, meet the following basic requirements:

(1) Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual average capacity factor of greater than thirty percent (30%), as reported to the Federal Power Commission for calendar year 1974 or as otherwise demonstrated to the commissioner by the owner or operator, shall conform with the following monitoring requirements when such facility is subject to an emission standard of the SIP for the pollutant in question.

(A) A continuous monitoring system for the measurement of opacity which meets the performance specifications of 326 IAC 3-1-9(1)(A) of this rule shall be installed, calibrated, maintained, and operated in accordance with the procedures of this rule (326 IAC 3-1) by the owner or operator of any such steam generator of greater than two hundred fifty (250) million BTU per hour heat input except where:

(i) gaseous fuel is the only fuel burned; or

(ii) oil or a mixture of gas and oil are the only fuels burned and the source is able to comply with 326 IAC 5-1 and 326 IAC 6-2 without utilization of particulate matter collection equipment, and where the source has never been found, through any administrative or judicial proceedings, to be in violation of 326 IAC 5-1.

(B) a continuous monitoring system for the measurement of sulfur dioxide which meets the performance specifications of 326 IAC 3-1-9(1)(C) shall be installed, calibrated, maintained, and operated on any fossil fuel-fired steam generator of greater than two hundred fifty (250) million BTU per hour heat input which has installed sulfur dioxide pollutant control equipment.

(C) A continuous monitoring system for the measurement of nitrogen oxides which meets the performance specifications of 326 IAC 3-1-9(1)(B) shall be installed, calibrated, maintained, and operated on fossil fuel-fired steam generators or greater than one thousand (1,000) million BTU per hour heat input when such facility is located in an air quality control region (AQCR) where the administrator of the U.S. EPA has specifically determined that a control strategy for nitrogen dioxide is necessary to attain the national standards. unless the source owner or operator demonstrates during source compliance tests as required by the commissioner that such a source emits nitrogen oxides at levels thirty percent (30%) or more below the emission standard set forth in 326 IAC 12.

(D) A continuous monitoring system for the measurement of the percent oxygen or carbon dioxide which meets the performance specifications of 326 IAC 3-1-9(1)(D) or 326 IAC 3-1-9(1)(E) shall be installed, calibrated, operated, and maintained on all fossil fuel-fired steam generators where measurements of oxygen or carbon dioxide in the flue gas are required to convert either sulfur dioxide or nitrogen oxides continuous monitoring data, or both, to units of the emission standard in the SIP.

(2) Each nitric acid plant of greater than three hundred (300) tons per day production capacity, the production capacity being expressed as one hundred percent (100%) acid, located in an AQCR where the administrator of the U.S. EPA has specifically determined that a control strategy for nitrogen dioxide is necessary to attain the national standard shall install, calibrate, maintain, and operate a continuous monitoring system for the measurements of nitrogen oxides which meets the performance specifications of 326 IAC 3-1-9(1)(B) for each nitric acid producing facility within such plant.

(3) Each sulfuric acid plant of greater than three hundred (300) tons per day production capacity, the production capacity being expressed as one hundred percent (100%) acid, shall install, calibrate, maintain, and operate a continuous monitoring system for the measurement of sulfur dioxide which meets the performance specifications of 326 IAC 3-1-9(1)(C) for each sulfuric acid producing facility within such plant.

(4) Each catalyst regenerator for fluid (NO). For nitrogen oxides monitoring systems installed in nitric acid plants the pollutant gas used to prepare calibration gas mixtures (40 CFR 60, Section 2.1, calibrate, maintain, and operate a continuous monitoring system for the measurement of opacity which meets the performance Specifications of 326 IAC 3-1-9(1)(A). (NO). For nitrogen oxides monitoring systems (NO). For nitrogen oxides monitoring systems installed in nitric acid plants the pollutant gas used to prepare calibration gas mixtures (40 CFR 60, Section 2.1, Performance Specification 2, Appendix B) shall be nitrogen dioxide (NO₂). This gas shall also be used for daily checks under subdivision (7) of this section as applicable. For sulfur dioxide monitoring systems

326 IAC 3-1-9 Minimum performance specifications; alternative procedures

Sec. 9. Owners and operators of monitoring equipment installed to comply with this rule (326 IAC 3-1) except as provided in subdivision (2) of this section shall demonstrate compliance with the following performance specifications.

(1) Performance specifications: The performance specifications set forth in 40 CFR 60, Appendix B, are incorporated herein by reference, and shall be used to determine acceptability of monitoring equipment installed pursuant to this rule (326 IAC 3-1) except that where reference is made to the "Administrator" in 40 CFR 60, Appendix B, the term "commissioner" should be inserted for the purpose of this rule (326 IAC 3-1). Performance specifications to be used with each type of monitoring system are listed below.

(A) Continuous monitoring systems for measuring opacity shall comply with Performance Specification 1.

(B) Continuous monitoring systems for measuring nitrogen oxides shall comply with Performance Specification 2.

(C) Continuous monitoring systems for measuring sulfur dioxide shall comply with Performance Specification 2.

(D) Continuous monitoring systems for measuring oxygen shall comply with Performance Specification 3.

(E) Continuous monitoring systems for measuring carbon dioxide shall comply with Performance Specification 3.

(2) Any source which has purchased an emission monitoring system(s) prior to September 11, 1974, may be granted an exemption by the commissioner from meeting such test procedures prescribed in 40 CFR 60, Appendix B, for a period not to extend past October 1, 1981.

(3) For nitrogen oxides monitoring systems installed on fossil fuel-fired steam generators the pollutant gas used to prepare calibration gas mixtures (40 CFR 60, Section 2.1, Performance Specification 2, Appendix B) shall be nitrogen oxide

pollutant gas used to prepare calibration gas mixtures (40 CFR 60, Section 2.1, Performance Specification 2, Appendix B) shall be nitrogen dioxide (NO_2) . This gas shall also be used for daily checks under subdivision (7) of this section as applicable. For sulfur dioxide monitoring systems installed on fossil fuel-fired steam generators or sulfuric acid plants the pollutant gas used to prepare calibration gas mixtures (40 CFR 60, Section 2.1, Performance Specification 2, Appendix B) shall be sulfur dioxide (SO₂). Span and zero gases should be traceable to National Bureau of Standards reference gases whenever these reference gases are available. Every six (6) months from date of manufacture, span and zero (0) gases shall be reanalyzed by conducting triplicate analyses using the reference methods in 40 CFR 60, Appendix A, as follows: for sulfur dioxide, use Reference Method 6; for nitrogen oxide, use Reference Method 7; and for carbon dioxide or oxygen, use Reference Method 3. The gases may be analyzed at less frequent intervals if longer shelf lives are guaranteed by the manufacturer.

(4) Cycling times include the total time a monitoring system requires to sample, analyze, and record an emission measurement.

(A) Continuous monitoring systems for measuring opacity shall complete a minimum of one (1) cycle of operation sampling, analyzing, and data recording for each successive ten (10) second period.

(B) Continuous monitoring systems for measuring oxides of nitrogen, carbon dioxide, oxygen, or sulfur dioxide shall complete a minimum of one (1) cycle of operation (sampling, analyzing, and data recording) for each successive fifteen (15) minute period.

(5) All continuous monitoring systems or monitoring devices shall be installed such that representative measurements of emissions or process parameters (i.e., oxygen, or carbon dioxide) from the affected facility are obtained. Additional guidance for location of continuous monitoring systems to obtain representative samples are contained in the applicable 40 CFR 60, Performance Specifications of Appendix B.

(6) When the effluents from two (2) or more affected facilities of similar design

and operating characteristics are combined before being released to the atmosphere, the commissioner may allow monitoring systems to be installed on the combined effluent, if the owner or operator shows that measurement of the combined effluents is at least as accurate as simultaneous measurement of each effluent prior to their combining in their common stack.

(7) Owners or operators of all continuous monitoring systems installed in accordance with the requirements of this rule (326 IAC 3-1) shall record the zero (0) and span drift in accordance with the method prescribed by the manufacturer of such instruments; subject the instruments to the manufacturer's recommended zero (0) and span check at least once daily unless the manufacturer has recommended adjustments at shorter intervals, in which case such recommendations should be followed: adjust the zero (0) and span whenever the twenty-four (24) hour zero (0) drift or twenty-four (24) hour calibration drift limits of the applicable performance specifications in 40 CFR 60, Appendix B are exceeded; and adjust continuous monitoring systems referenced by subsection (2) of this section whenever the twenty-four (24) hour calibration drift exceeds ten percent (10%) of the emission standard.

(8) Instrument span should be approximately two hundred percent (200%) of the expected instrument data display output corresponding to the emission standard for the source.

(9) Alternative procedures and requirements:

(A) Alternative locations for installing continuous monitoring systems or monitoring devices may be approved by the commissioner when the owner or operator can demonstrate that installation at alternative locations will enable accurate and representative measurements.

(B) Alternative procedures for performing calibration checks may be approved by the commissioner when the owner or operator can demonstrate that such alternate procedures will still result in meeting the specifications set forth in tables 1.1 for opacity, 2.1 for sulfur dioxide and nitrogen oxides, and 3.1 for oxygen and carbon dioxide, as contained in 40 CFR 60, Appendix B.

(C) Alternative continuous monitoring

curred and the continuous monitoring sys-

tem(s) has not been inoperative, repaired

or adjusted, such information shall be in-

(f) Owners or operators of affected fa-

cilities shall maintain a file of all information reported in the quarterly summaries.

and all other data collected either by the

continuous monitoring system or as neces-

sary to convert monitoring data to the

units of the applicable standard for a mini-

mum of two (2) years from the date of

collection of such data or submission of

326 IAC 3-1-11 Reduction: conversion

Sec. 11. Owners or operators of affected

(1) For fossil fuel-fired steam gener-

ators the following procedures shall be

used to convert gaseous emission monitor-

ing data in parts per million (ppm) to

pounds per million BTU where necessary.

facilities shall use the following proce-

dures for converting monitoring data to

units of the standard where necessary.

cluded in the report.

such summaries.

factors

systems that do not meet the spectral response requirements in 40 CFR 60, Performance Specification 1, Appendix B, but adequately demonstrate a definite and consistent relationship between their measurements and the opacity measurement of a system complying with the requirements in Performance Specification 1 may be approved by the commissioner. The commissioner may require that such demonstration be performed for each affected facility.

326 IAC 3-1-10 Minimum data reporting requirements; retention of records

Sec. 10. (a) Owners or operators of facilities required to install continuous monitoring systems shall submit a written report of excess emissions for each calendar quarter and the nature and cause of the excess emissions, if known. The averaging periods used for data reporting shall be six (6) minutes for opacity and three (3) hours for gaseous measurements. The required report shall include, as a minimum, the data stipulated in this rule (326 IAC 3-1).

(b) For opacity measurements, the summary shall consist of the magnitude in actual percent opacity of all six (6) minute averages of opacity greater than forty percent (40%) opacity for each hour of operation of the facility. Average values may be obtained by integration over six (6) minutes or by arithmetically averaging a minimum of four (4) equally spaced, instantaneous, opacity measurements per minute.

(c) For gaseous measurements the summary shall consist of emission averages, in units of the applicable standard for each three (3) hour period during which the applicable standard was exceeded.

(d) The date and time identifying each period during which the continuous monitoring system was inoperative, except for zero (0) and span checks, and the nature of system repair of adjustments shall be reported. The commissioner may require proof of continuous monitoring system performance whenever system repairs of adjustments have been made.

(e) When no excess emissions have oc-

(A) When the owner or operator of a fossil fuelfired steam generator elects under 326 IAC 3-1-8(1) to measure oxygen in the flue gases, the measurements of the pollutant concentration and oxygen shall be on a dry basis and the following conversion procedure used:

$$E = CF \quad \frac{(20.9)}{(20.9 - \% \ O_{2})}$$

(B) When the owner or operator elects under 326 IAC 3-1-8(1) to measure carbon dioxide in the flue gases, the measurement of the pollutant concentration and the carbon dioxide concentration shall each be on a consistent basis (wet or dry) and the following conversion procedure used:

$$F = CF_{c} = \frac{(100)}{(\% CO_{2})}$$

(C) When the owner or operator elects under 326 IAC 3-1-8(1) to measure sulfur dioxide or nitrogen oxides in the flue gases, the measurement of the pollutant concentration and the sulfur dioxide and/or the nitrogen oxides concentration(s) shall each be on a wet basis and the following conversion procedure used except where wet scrubbers are employed or where moisture is otherwise added to the stack gases:

$$E = C_{ws}F_w \frac{(20.9)}{(20.9(1-B_{wa})-\%O_{2ws})}$$

(D) When the owner or operator elects under 325 IAC 3-1-8(1) to measure sulfur dioxide or nitrogen oxides in the flue gases, the measurement of the pollutant concentration and the sulfur dioxide and/or the nitrogen oxides concentration(s) shall each be on a wet basis and the following conversion procedure used where wet scrubbers or moisture is otherwise present in the stack gases, provided water vapor content of the stack gas is measured at least once every fifteen (15) minutes at the same point as the pollutant and oxygen measurements are made:

$$E = C_{ws}F \qquad \frac{(20.9)}{(20.9(1-B_{ws})-\%O_{2ws})}$$

(E) The values used in the equations under this section are derived as follows:

 C_{ws} = pollutant concentration at stack conditions, g/wscm (grams/wet standard cubic meter), lb/wscm (pounds/wet standard cubic meter), determined by multiplying the average concentration (ppm) for each one (1) hour period by 4.15 x 10-5 Mg/wscm per ppm (2.59 x 10-9 M lb/wscm per ppm) where M is pollutant molecular weight, g/g-mole (lb/lb-mole).

M = 64.07 for sulfur dioxide and 46.01 for nitrogen oxides.

C = as above but measured in terms of pounds/dry standard cubic meter (lb/dscm) or grams/ dry standard cubic meter (g/dscm).

 $F_{r}F_{r} = a$ factor representing a ratio of the volume of dry flue gases generated to the calorific value of the fuel combusted (F), and a factor representing a ratio of the volume of carbon dioxide generated to the calorific value of the fuel combusted (F_c) , respectively. Values of F and Fc are given in 40 CFR 60, Section 60.45(f), as applicable.

 $F_{u} = a$ factor representing a ratio of the volume of wet flue gases generated to the calorific value of the fuel combusted. Values of F_w are:

(i) For anthracite coal as classified according to A.S.T.M. D388-66, $F_w = 1.188$ wscm/million

(2) For sulfuric acid plants the owner or operator shall:

(A) establish a conversion factor three (3) times daily according to the procedures of 40 CFR 60, Section 60.84(b);

(B) multiply the conversion factor by the average sulfur dioxide concentration in the flue gases to obtain average sulfur dioxide emissions in lb/ton; and

(C) report the average sulfur dioxide emission for each three (3) hour period in excess of the emission standard set forth in 326 IAC 7-1, in the quarterly summary.

(3) For nitric acid plants the owner or operator shall:

(A) establish a conversion factor according to the procedures of 40 CFR 60, Section 60.73(b);

(B) multiply the conversion factor by the average nitrogen oxides concentration in the flue gases to obtain nitrogen oxides emissions in lb/ton;

(C) report the average nitrogen oxides for each averaging period in excess of the emission standard set forth in 326 IAC 12, in the quarterly summary.

tion procedures:

emission averages that do not require integration of data may be approved by the commissioner if the owner or operator shows that his procedures are at least as accurate as those in this rule (326 IAC 3-1)

(B) Alternative methods of converting pollutant concentration measurements to units of the emission standard may be approved by the commissioner if the owner or operator shows that his procedures are at least as accurate as those in this rule (326 IAC 3-2).

Rule 2. Source Sampling Procedures

326 IAC 3-2-1 Applicability

Sec. 1. This rule (326 IAC 3-2) applies to any emissions testing performed in the state to determine compliance with applicable emission limits contained in this title (326 IAC), or for any other purpose requiring review and approval by the commissioner.

326 IAC 3-2-2 Federal test procedures; adoption

Sec. 2. Emissions tests subject to this (4) Alternate data reporting and reduc- rule (326 IAC 3-2) shall be conducted in accordance with the procedures and analy-

calories (10580 wscf/million BTU).

(ii) For sub-bituminous and bituminous coal as classified according to A.S.T.M. D388-66, $F_{w} = 1.200 \text{ wscm/million calories (10680 wscf/$ million BTU).

(iii) For liquid fossil fuels including crude, residual, and distillate oils, $F_w = 1.164$ wscm/ million calories (10360 wscf/million BTU).

(iv) For gaseous fossil fuels: for natural gas, $F_w = 1.196$ wscm/million calories (10650) wscf/ million BTU; for propane, $F_w = 1.150$ wscm/ million calories (10240 wscf/million BTU); for butane, $F_w = 1.172$ wscm/million calories (10430 wscf/million BTU).

 B_{wa} = proportion by volume of water vapor in the ambient air.

 $B_{ws} =$ proportion by volume of water vapor in the stack gas.

 $\%0_2$, $\%C0_2$ = Oxygen or carbon dioxide volume (expressed as percent) determined with equipment specified under 326 IAC 3-1-8.

E = pollutant emission, lb/million BTU.

(A) Alternate procedures for computing sis methods specified in 40 CFR 60, Appendix A and 40 CFR 61, Appendix B. Such test methods, equipment, calibration requirements, and analysis must be strictly followed unless otherwise approved by the commissioner.

326 IAC 3-2-3 Privately conducted protocol tests; prior approval, form

Sec. 3. (a) When a test is to be performed by any person other than staff, a test protocol form shall be completed and received by the commissioner no later than thirty-five (35) days prior to the intended test date. Such test protocol shall be on a form approved by the commissioner. Any special or unique information relative to the scheduled test shall be included with the form.

(b) After evaluating the comp. .ea . protocol form, the commissioner may:

(1) Inspect the test site.

(2) Require additional conditions. including, but not limited to the following:

(A) Reasonable modifications to the stack or duct to obtain acceptable test conditions.

(B) A pretest meeting to resolve an acceptable test protocol,

371:0534

(C) Additional tests to allow for adverse conditions such as interferences, nonsteady or cyclic processes,

(D) The keeping of process operating parameter records, operating logs or charts during the test.

(E) Conditions on control equipment operation to make it representative of future normal operation, or

(F) The recording of specified control equipment operating parameters during the test.

(c) If the commissioner requires modifications to the test methods, analytical methods, operational parameters or other matters included in the test protocol, or if a pretest meeting is required, the source operator and the testing firm shall be notified by letter or telephone at least twenty-five (25) days prior to the proposed test date. The source operator will receive notice of the acceptability of the test protocol from the commissioner within ten (10) days of its receipt. If the source operator or test firm desires to change any previously submitted procedures or conditions, the commissioner must be notified of such change at least twenty-five (25) days prior to intended test date, and such changes cannot be made unless approved by the commissioner prior to the test. Changes in the test protocol that result from emergency conditions must be approved by an authorized on-site staff member.

(d) The commissioner reserves the right to conduct any portion of the reference method tests. In such case, a twenty-five (25) day notice of proper test procedures will be given to the company and their testing representative.

(e) The source operator must notify the commissioner of the actual test date at least two (2) weeks prior to the date.

326 IAC 3-2-4 Required testing conditions; calibration of instruments

Sec. 4. (a) Staff may observe the field test procedures and plant operation during the test.

(b) All tests shall be conducted while the source is operating at between ninetyfive (95%) to one hundred percent (100%) of its maximum operating capacity, or under other capacities or conditions specified and approved by the commissioner. For the purpose of this rule (326 IAC 3-2), maximum operating capacity means the maximum design capacity of the

source or other maximum operating capacities agreed to by the source and the commissioner.

(c) Sources subject to 326 IAC 12, New tested under conditions as specified in the applicable provision therein.

(d) Calibration results of the various sampling components must be available used; for examination at the test site. The infermation must include dates, methods used, data and results. All components requiring calibration must be calibrated within sixty (60) days prior to the actual test date. Post test calibrations must be performed on the components within forty-five (45) days after the actual test date or before the equipments' next field use, whichever comes first. Components requiring calibration are listed in the federal test methods specified in 326 IAC 3-2-2. Calibration need not be done between tests when several facilities at one (1) location are tested in series, as long as the units are calibrated prior to the first test and after the last test in the series which is conducted at complete calculation using actual data for that site.

326 IAC 3-2-5 Test results; reports

Sec. 5. (a) All tests shall be reported to the commissioner in the form of a test report containing the following information (which can be kept confidential upon request):

(1) Certification by team leader and or original raw field data; reviewer.

(2) Introduction, containing:

(A) date and type of tests;

(B) type of process and control equipment;

(C) plant name and location;

(D) purpose of test; and

(E) test participants and titles.

(3) Results summary, containing:

(A) tabulated data and results of each test run, process weight rate or heat input rate, the stack gas flow rate, the measured emissions given in units consistent with the applicable emission limits, and the visible emissions or average opacity readings; and

(B) allowable emission rate.

(4) Process information, including:

(A) description of process and control device:

(B) process flow diagram;

(C) maximum design capacities;

(D) fuel analysis and heat value for heat input rate determination;

(E) process and control equipment oper-

ating conditions during tests;

(F) discussion of variations from normal plant operations; and

(G) stack height, exit diameter, volu-Source Performance Standards, shall be metric flow rate (acfm), exit temperature. and exit velocity.

(5) Sampling information, including.

(A) description of sampling methods

(B) brief discussion of the analytical procedures with justification for any variance from standard procedures;

(C) specification of the number of sampling points, time per point, and total sampling time per run;

(D) cross sectional diagram showing sampling points, diagram showing stack dimensions, sampling location and distance from the nearest flow disturbance upstream and downstream of the sampling points: and

(E) sampling train diagram.

(6) Appendix, containing:

(A) sampling and analytical procedures: (B) results and calculations: One (1) each type of test performed must be shown. Results must be stated in units consistent with the applicable emission limitation:

(C) raw production data signed by plant official

(D) photocopies of all actual field data

(E) laboratory report with chain of custody shown;

(F) copies of all calibration data;

(G) applicable regulations showing emission limitation; and

(H) copies of visible emissions observations or opacity monitor readings (for TSP tests).

(b) Unless previously agreed to in writing by the commissioner, all test reports must be received by the commissioner within forty-five (45) days of the completion of the testing.

326 IAC 3-2-6 Special testing procedures; particulate matter; sulfur dioxide; nitrogen oxide; volatile organic chemicals

Sec. 6. (a) Particulate matter tests shall be conducted in accordance with the following procedures:

(1) 40 CFR 60, Appendix A, Method 5, as in effect on December 2, 1981, or other procedures approved by the commissioner shall be used.

(2) Visible emissions (VE) evaluation

44

Environment Reporter

shall be performed in conjunction with a particulate emissions test by a qualified observer in accordance with the procedures contained in 326 IAC 5-1-4. VE readings shall be continuously recorded for at least thirty (30) minutes per hour of sampling time for each sampling repetition. A variance from this requirement may be granted by the on-site staff person for one (1) repetition only and provided that adverse conditions exist which would invalidate the VE readings. Sources equipped with continuous opacity monitors may submit the monitor's instantaneous or six (6) minute integrated readings during the sampling period, in lieu of performing VE observations; provided,

(A) The monitoring system meets the Performance Specifications Tests I as specified in 40 CFR 60, Appendix B as in effect on December 2, 1981, and

(B) The monitor readings submitted with the test include a zero (0) and span calibration check at the start and end of each test.

(3) At least three (3) repetitions of the test must be performed under identical source operating conditions unless otherwise allowed by the commissioner.

(4) During each of the repetitions, each sampling point shall be sampled for a minimum of two (2) minutes.

(5) The total test time per repetition shall be no less than sixty (60) minutes.

(6) The total sample volume per repetition shall be no less than thirty (30) dry standard cubic feed (dscf).

(7) The total particulate weight collected from the sampling nozzle, probe, cyclone (if used), filter holder (front half), filter and connecting glassware shall be reported. Particulate analysis of the impinger catch is not required unless specified by commissioner.

(b) Sulfur dioxide (SO₂) tests shall be conducted in accordance with the following procedures:

(1) 40 CFR 60, Appendix A, Method 6 or 40 CFR 60, Appendix A, Method 8, as in effect on December 2, 1981, or other procedures approved by the commissioner, shall be used.

(2) At least three (3) repetitions of two (2) samples, each of 40 CFR 60. Appendix A. Method 6, or three (3) repetitions of 40 CFR 60, Appendix A, Method 8, performed under identical source operating conditions, shall constitute a test. (3) During each of the repetitions for 40 CFR 60, Appendix A, Method 8, each sampling point shall be sampled for a minimum of two (2) minutes.

(4) The total test time per repetition shall be as follows:

(A) 40 CFR 60, Appendix A, Method 6: a minimum of twenty (20) minutes per run with a thirty (30) minute interval between each run; or

(B) 40 CFR 60, Appendix A, Method 8: a minimum of sixty (60) minutes per run.

(5) The total sample volume per repetition under 40 CFR 60, Appendix A, Method 8, shall be no less than forty (40) dry standard cubic feet (dscf).

(c) Nitrogen oxide tests shall be conducted in accordance with the following procedures:

(1) 40 CFR 60, Appendix A, Method 7, as in effect on December 2, 1981, or other procedures approved by the commissioner, shall be used.

(2) At least three (3) repetitions of four (4) samples each shall constitute a test.

(d) Volatile organic compounds (VOC) emissions tests shall be conducted in accordance with the following procedures:

(1) 40 CFR 60, Appendix A, Method 25, as in effect on December 2, 1981, or other procedures approved by the commissioner, shall be used for the total nonmethane organic (TNMO) emissions.

(2) At least three (3) duplicate samples must be collected and analyzed.

(3) The total test time per repetition shall be a minimum of sixty (60) minutes.

326 IAC 3-2-7 Invalidity of nonconforming tests

Sec. 7. Any tests not meeting the requirements of this rule (326 IAC 3-2) are invalid for purposes of this rule.

326 IAC 3-2-8 Appeals

Sec. 8. A determination by the commissioner may be appealed in accordance with IC 13-1-1-4(f) and IC 4-21.5.

ARTICLE 4. BURNING REGULATIONS

Rule 1. Open Burning

326 IAC 4-1-1 Scope of rule

Sec. 1. The requirements of this rule (326 IAC 4-1) establish standards for the open burning of material which would result in emissions of regulated pollutants. This rule (326 IAC 4-1) applies everywhere in the state, except in areas where

acts permitted by 326 IAC 4-1-3 or authorized by variance pursuant to 326 IAC 4-1-4 are prohibited by other state or local laws, regulations, or ordinances.

326 IAC 4-1-2 Prohibition against open burning

Sec. 2. No persons shall open burn any material except as provided in 326 IAC 4-1-3 or 326 IAC 4-1-4, or 326 IAC 4-1-5.

326 IAC 4-1-3 Exemptions

Sec. 3. (a) The following types of fires are permitted:

(1) Fires celebrating Twelfth Night Ceremonies.

(2) Fires celebrating school pep rallies.

(3) Fires celebrating scouting activities.

(4) Fires used for recreational and cooking purposes, i.e., camp fires.

(5) Residential burning; where residence contains four or fewer units. Burning shall be in a noncombustible container sufficiently vented to induce adequate primary combustion air with enclosed sides, a bottom, and a mesh covering with openings no larger than one-fourth inch (1/4") square. Burning is prohibited in apartment complexes and mobile home parks.

(6) Farm burning: wood products derived from the following farm maintenance operations:

(A) Burning of fence rows and fields or materials derived therefrom.

(B) Burning of natural growth derived from clearing a drainage ditch.

(C) Burning of limbs and prunings, but only if so diseased or infected as to present a contamination problem.

(7) Waste oil burning: where the waste oil has been collected in a properly constructed and located pit as prescribed in 310 IAC 7-1-37(A) of the Division of Oil and Gas, Department of Natural Resources. Each oil pit may be burned once every two (2) months and all the oil must be completely burned within thirty (30) minutes after ignition.

(8) Department of natural resources burning: in order to facilitate "prescribed" burning on DNR controlled properties for wildlife habitat maintenance, forestry purposes, and natural area management.

(9) United States Department of the Interior burning: in order to facilitate a National Park Service Fire Management Plan for the Indiana Dunes National Lakeshore.

(b) All exemptions under subsection (a)

following:

(1) Only wood products shall be burned unless otherwise stated above.

(2) Fires shall be attended at all times until completely extinguished.

(3) If fires create an nuisance or a fire hazard, they shall be extinguished.

(4) All residential, farm and waste oil burning shall occur during daylight hours during which the fires may be replenished. but only in such a manner that nearly all of the burning material is consumed by sunset.

(5) No burning shall be conducted dursuch as temperature inversions, high winds, air stagnation, etc.

326 IAC 4-1-4 Variances

Sec. 4. (a) Burning with prior approval of the commissioner or the commissioner's designated agent may be authorized for the following:

(1) Emergency burning of spilled petroleum products when all reasonable efforts to recover the spilled material have been an imminent fire hazard or water pollution problem.

(2) Burning of refuse consisting of material resulting from a natural disaster.

(3) Burning for the purpose of fire cess of the following: training.

(4) Burning of natural growth derived from a clearing operation, i.e., removal of natural growth for change in use of the land.

(5) Burning of highly explosive or other dangerous materials for which no alternative disposal method exists or where transportation of such materials is impossible.

(b) Burning not exempted by 326 IAC 4-1-3 may be permitted with prior receipt of a variance application and approval of the commissioner or the commissioner's designated agent.

326 IAC 4-1-5 Liability for fire

Sec. 5. Any person who allows the accumulation or existence of combustible material which constitutes or contributes to a fire causing air pollution may not refute liability for violation of this rule (326 IAC 4-1) on the basis that said fire was set by vandals, accidental, or an act of God.

Rule 2. Incinerators

326 IAC 4-2-1 Applicability of rule

Sec. 1. This rule (326 IAC 4-2) establishes standards for the use of incinerators

of this section shall be subject to the which emit regulated pollutants. This rule (326 IAC 4-2) does not apply to incinerators in residential units consisting of four (4) or fewer families. All other incinerators are subject to this rule (326 IAC 4-2).

326 IAC 4-2-2 Stationary incinerators

Sec. 2. All stationary incinerators shall: (1) Consist of primary and secondary chambers or the equivalent.

(2) Be equipped with a primary burner unless burning wood products.

(3) Comply with 326 IAC 5-1 and 326 IAC 2.

(4) Be maintained properly as specified ing unfavorable meteorological conditions by the manufacturer and approved by the commissioner or the commissioner's designated agent.

(5) Be operated according to the manufacturer's recommendations and only burn waste approved by the commissioner or its designated agent.

(6) Comply with other state and/or local rules or ordinances regarding installation and operation.

(7) Be operated so that emissions of made and failure to burn would result in hazardous material including, but not limited to, viable pathogenic bacteria, dangerous chemicals or gases, or noxious odors are prevented.

(8) Not emit particulate matter in ex-

(A) Incinerators with a maximum refuse-burning capacity of two hundred (200) or more pounds per hour; 0.3 pounds of particulate matter per one thousand (1,000) pounds of dry exhaust gas at standard conditions corrected to fifty percent (50%) excess air.

(B) All other incinerators: 0.5 pounds of particulate matter per one thousand (1,000) pounds of dry exhaust gas at standard conditions corrected to fifty percent (50%) excess air.

(9) Not create a nuisance or a fire hazard. If any of the above result, the burning shall be terminated immediately.

326 IAC 4-2-3 Portable incinerators

Sec. 3. All portable incinerators shall be subject to the following conditions:

(1) Approval of the commissioner or its designated agent must be obtained prior to operation at a new project site.

(2) Only wood products shall be burned.

(3) Merchantable material may be salvaged where practicable.

be notified prior to any burning.

(5) All burning shall be conducted under favorable meteorological conditions.

(6) Burning shall occur during daylight hours and all material shall be consumed by sunset.

(7) If burning creates an air pollution problem, a nuisance or a fire hazard, the burning shall be terminated immediately.

(8) The incinerator shall be maintained and operated according to the manufacturer's recommendations and in a manner approved by the commissioner or its designated agent.

(9) The installation and operation of such an apparatus shall comply with all other state and/or local rules or ordinances.

(10) A portable incinerator shall comply with both 326 IAC 5-1 and 326 IAC 2

ARTICLE 5. OPACITY REGULATIONS

Rule 1. Opacity Limitations

326 IAC 5-1-1 Applicability of rule

Sec. 1. (a) This rule (326 IAC 5-1) shall apply to all visible emissions (not including condensed water vapor) emitted by or from any facility or source except those sources or facilities for which specific visible emission limitations are established by 326 IAC 11, 326 IAC 12, or 326 IAC 6.

(1) The requirements of 326 IAC 5-1-2(a)(1) shall apply to sources or facilities located in attainment areas for particulate matter, designated in 326 IAC 1-4

(2) The requirements of 326 IAC 5-1-2(a)(2) shall apply to sources or facilities located in nonattainment areas for particulate matter as designated in 326 IAC 1-4.

326 IAC 5-1-2 Visible emission limitations

Sec. 2. (a) Visible emissions from any source or facility shall not exceed any of the following limitations. Unless otherwise stated, all visible emissions shall be observed in accordance with the procedures set forth in 326 IAC 5-1-4:

(1) Sources or facilities of visible emissions located in attainment areas for particulate matter shall meet the following limitations:

(A) Visible emissions shall not exceed, (4) The local health department shall an average of forty percent (40%) opacity in twenty-four (24) consecutive readings.

(B) Visible emissions shall not exceed sixty percent (60%) opacity for more than a cumulative total of fifteen (15) minutes (sixty (60) readings) in a six (6) hour period.

(2) Sources or facilities of visible emissions located in nonattainment areas shall meet the following limitations:

(A) Visible emissions shall not exceed, an average of thirty percent (30%) opacity in twenty-four (24) readings.

(B) Visible emissions shall not exceed sixty percent (60%) opacity for more than a cumulative total of fifteen (15) minutes (sixty (60) readings) in a six (6) hour period.

(3) Sources and facilities of visible emissions located in both attainment or nonattainment areas, for which an alternate visible emission limitation has been established pursuant to 326 IAC 5-1-5(b), shall comply with said limitations in lieu of the limitations set forth in subsection (a)(1) and (a)(2) of this section.

326 IAC 5-1-3 Temporary exemptions

Sec. 3. (a) Boiler startup and shutdown: When building a new fire in a boiler, or shutting down a boiler, visible emissions may exceed the applicable opacity limit established in 326 IAC 5-1-2(a); however, visible emissions shall not exceed an average of sixty percent (60%) opacity and emissions in excess of the applicable opacity limit shall not continue for more than ten (10) continuous minutes on one (1) occasion in any twenty-four (24) hour period.

(b) Cleaning boilers: When removing ashes from the fuel bed or furnace in a boiler or blowing tubes, visible emissions may exceed the applicable opacity limit established in 326 IAC 5-1-2(a) however, visible emissions shall not exceed sixty percent (60%) opacity and visible emissions in excess of the applicable opacity limit shall not continue for more than five (5) continuous minutes on one (1) occasion in any sixty (60) minute period. Such emissions shall not be permitted on more than three (3) occasions in any twelve (12) hour period.

(c) Facilities not temporarily exempted by subsections (a) and (b) of this section may be granted special temporary exemptions by the commissioner of the same duration and type authorized therein provided that the facility proves to the satisfaction of the commissioner that said exemptions are needed and that during periods of startup and shutdown, owners and operators shall, to the extent practicable, maintain and operate any affected facility including air pollution control equipment in a manner consistent with good air pollution control practice for minimizing emissions. Determination of whether acceptable operating and maintenance procedures are being used will be based on information available to the commissioner, which may include, but is not limited to, monitoring results, opacity observations, review of operating and maintenance procedures and inspection of the SOUTCE

(d) Sources or facilities not exempted through subsections (a), (b), or (c) of this section may also be granted special exemptions by the commissioner, provided that the source or facility owner or operator proves to the satisfaction of the commissioner that said exemption is justifiable. Said exemption(s) may be of longer duration and may apply to other types of facilities not provided for in subsections (a) or (b) of this section.

326 IAC 5-1-4 Compliance determination

Sec. 4. (a) Determination of visible emissions from sources or facilities to which this rule (326 IAC 5-1) applies may be made in accordance with subdivisions (1) or (2) below:

(1) Determination of visible emissions by means of a qualified observer shall be made according to the following:

(A) Position: The qualified observer shall stand at a distance sufficient to provide a clear view of the emissions with the sun, if visible, oriented in the 140° sector to his back. Consistent with maintaining the above requirement, the observer shall, as much as possible, make his observations from a position such that his line of vision is approximately perpendicular to the direction of the visible emissions (plume where applicable), and when observing opacity of emissions from rectangular outlets (e.g., monitors, open baghouses, noncircular stacks), approximately perpendicular to the longer axis of the outlet. The observer's line of sight should not include more than one (1) plume at a time when multiple stacks are involved, and in any case the observer should make his observations with his line of sight perpendicular to the longer axis of such a set of

multiple stacks (e.g., stub stacks on baghouses).

(B) Field records: The observer shall record the name of the plant, emission location, type of facility, observer's name and affiliation, and the date on a field data sheet. Time, estimated distance to the emission location, approximate wind direction, estimated wind speed, description of the sky conditions (presence and color of clouds), and visible emissions (plume where applicable) background are recorded on a field data sheet at the time opacity readings are initiated and completed.

(C) Observations: Opacity observations shall be made at the point of greatest opacity in that portion of the visible emissions, (plume where applicable) where condensed water vapor is not present. The observer shall not look continuously at the visible emissions, (plume where applicable) but instead shall observe the visible emissions, (plume where applicable) momentarily at fifteen (15) second intervals.

(D) Recording observations: Opacity observations shall be recorded to the nearest five percent (5%) at fifteen (15) second intervals on an observational record sheet. A minimum of twenty-four (24) observations shall be recorded. Each momentary observation shall be deemed to represent the average opacity of emissions for a fifteen (15) second period.

(E) Determination of opacity as an average of twenty-four (24) consecutive observations: Opacity shall be determined as an average of twenty-four (24) consecutive observations recorded at fifteen (15) second intervals. Divide the observations recorded on the record sheet into sets of twenty-four (24) consecutive observations. A set is composed of any twenty-four (24) consecutive observations. Sets need not be consecutive in time and in no case shall two (2) sets overlap. For each set of twenty-four (24) observations, calculate the average by summing the opacity of the twenty-four (24) observations and dividing this sum by twenty-four (24). Record the average opacity on a record sheet. For the purpose of determining an alternative visible emission limit in accordance with 326 IAC 5-1-5(b) following, an average of twenty-four (24) consecutive readings or more may be used to calculate the alternate visible emissions limit.

(F) Determination of opacity as a cu-

mulative total of fifteen (15) minutes: For be in compliance with the allowable mass emissions from intermittent sources, opacity shall be determined in accordance with clause (A), (B), (C), and the first sentence of (D). Each momentary observation shall be deemed to represent the average opacity of emissions for a fifteen (15) second period. All readings greater than the specified limit in 326 IAC 5-1-2 shall be accumulated as fifteen (15) second segments for comparison with the limit.

(G) Attached steam plumes. When condensed water vapor is present within the plume as it emerges from the emission outlet, opacity observations shall be made beyond the point in the plume at which condensed water vapor is no longer visible. The observer shall record the approximate distance from the emission outlet to the point in the plume at which the observations are made.

(H) Detached steam plumes: When water vapor in the plume condenses and becomes visible at a distinct distance from the emission outlet, the opacity of emissions should be evaluated at the emission outlet prior to the condensation of water vapor and the formation of the steam plume.

(2) Determination of compliance with visible emission limitations established in this rule (326 IAC 5-1) may also be made in accordance with a source's or facility's continuous monitoring equipment, for any source or facility in compliance with the requirements of 326 IAC 3-1.

(b) If the compliance determination procedures set forth in subsections (a)(1)and (a)(2) of this section results in any conflict in visible emission readings, the determination made in accordance with subsection (a)(2) of this section shall prevail for the purpose of compliance, provided that it can be shown that the continuous monitor has met the performance specifications as set forth in the 40 CFR 60, specifically Performance Specification 1

326 IAC 5-1-5 Violations

Sec. 5. (a) A violation of this rule (326 IAC 5-1) shall constitute prima facie evidence of a violation of other applicable particulate emission control regulations. A violation of any such rule may be refuted by a performance test conducted in accordance with subsection (b) of this section. Such test shall refute the mass emission violation only if the source is shown to

emission limit. An exceedance of the allowable opacity emission limit will not be treated as a violation if, during the test described in subsection (b) of this section, the source demonstrates compliance with the allowable mass emission limit while simultaneously having visible emissions more than or equal to the reading at which the exceedance was originally observed.

(b) The owner or operator of a source or facility which believes it can operate in compliance with the applicable mass emission limitation, but exceeds the limits specified in 326 IAC 5-1-2, may submit a written petition to the commissioner requesting that an alternate opacity limitation be established pursuant to the followprovisions. Additionally, if the ing commissioner has issued a notice of violation to an owner or operator of a source or facility for violation of the applicable opacity limitation, such owner or operator may, propose in notice of violation resolution, to disprove said violation by establishing an alternate opacity limit pursuant to the following provisions. This alternate limit shall be based upon a mass emission performance test conducted according to a method designated by the commissioner, and a visible emission test conducted simultaneously, according to 326 IAC 5-1-4. Where the commissioner determines there is no acceptable test method available, a request for an alternate visible emission limit shall be denied.

(1) The alternate emission limit shall be equal to that level of opacity at which the source or facility will be able, as indicated by the performance and opacity tests, to meet the opacity standard at all times during which the source or facility is meeting the mass emission limitation. However, the commissioner shall also reserve the right to determine the alternate visible emissions limit in the following manner:

(A) If a performance test of a source or facility demonstrates:

(i) that said source or facility is in compliance with the allowable mass emissions limit (as defined in 326 IAC 1-2) at the time that the test is done; and

(ii) simultaneously, said source's or facility's test demonstrates that the allowable opacity emission limit is being exceeded, then, the enforceable opacity limitation shall be equal to that level of opacity at which the source or facility will be able as indicated by the performance and opacity tests to meet the opacity standard at all times during which the source or facility is meeting the mass emission limitation.

(B) If a performance test of a source or facility demonstrates:

(i) that said source or facility is in compliance with the allowable mass emission limit, and the test mass emission rate is within ten percent (10%) of the allowable emissions limit for that source or facility: and

(ii) simultaneously, said source's or facility's test demonstrates that the opacity observed is below the allowable opacity emission limit, the enforceable opacity limitation shall be equal to that level of opacity at which the source or facility will be able, as indicated by the performance and opacity tests, to meet the opacity standard at all times during which the source or facility is meeting the mass emission limitation.

(C) If a performance test of a source or facility demonstrates:

(i) that said source or facility is in compliance with the allowable mass emission limit, and the test mass emission rate is less than ninety percent (90%) of the allowable emissions limit; and

(ii) simultaneously, said source's or facility's test demonstrates that the opacity observed is below the allowable opacity emission limit, the enforceable opacity limitation shall remain the existing allowable opacity emission limitation for that source or facility.

(2) Compliance with 326 IAC 6-1, 326 IAC 6-2, 326 IAC 6-3, and 326 IAC 11-1, and other applicable rules must be demonstrated by the performance test.

(3) The commissioner may require a performance test in any case where it is necessary to determine the compliance status for a facility. However, the commissioner will not request a performance test for any facility which is known to be in compliance with the allowable opacity limitation.

(4) All alternate visible emission limits shall be established on a source or facilityspecific basis. No limitation for any facility or source shall be established by reference to a similar or identical facility or source.

(5) The owner or operator of the source or facility shall notify the commissioner at

INDIANA AIR REGULATIONS

least fifteen (15) days prior to conducting ations; modification by commissioner a test for the purposes of demonstrating an alternate visible emission limit.

(6) A staff member who is a qualified observer, approved by the commissioner or other consultant approved by the commissioner shall be present during any performance tests.

shall be at the expense of the owner or operator.

(8) Any alternate visible emission limit established for any source or facility shall not become effective until said limitation is established in the applicable operating permit. Said limitation will be incorporated. by amendment, into the operating permit for said source or facility and submitted to the U.S. EPA as a SIP revision.

(9) Where a visible emission limitation is based upon a new source performance standard, any new limitation must comply with the provisions of said standard.

326 IAC 5-1-6 Compliance schedule

Sec. 6. Sources newly subject to more stringent limitations on August 27, 1980. by 326 IAC 5-1-2 shall comply with the compliance schedule of 326 IAC 6-1.

326 IAC 5-1-7 State implementation plan revisions

Sec. 7. Any exemptions given or provisions granted to this rule (326 IAC 5-1) by the commissioner under 326 IAC 5-1-3(c). 326 IAC 5-1-3(d), or 326 IAC 5-1-5(b), shall be submitted to the U.S. EPA as a SIP revision.

ARTICLE 6. PARTICULATE RULES

Rule 1. Nonattainment Area Limitations

326 IAC 6-1-1 Applicability of rule Sec. 1. Sources or facilities specifically listed in 326 IAC 6-1-7 shall comply with the limitations contained therein. Sources or facilities that are (1) located in the nonattainment counties listed in 326 IAC 6-1-7. (2) but which sources or facilities are not specifically listed in 326 IAC 6-1-7. and (3) have the potential to emit one hundred (100) tons or more of particulate matter per year or have actual emissions of ten (10) tons or more of particulate

limitations of 326 IAC 6-1-2. 326 IAC 6-1-2 Particulate emission limitations; fuel combustion steam generators, asphalt concrete plant, grain elevators, foundaries, mineral aggregate oper-

matter per year, shall comply with the

Sec. 2. (a) General sources: Facilities not limited by subsections (b) through (g) of this section shall not allow or permit discharge to the atmosphere of any gases which contain particulate matter in excess of 0.07 gram per dry standard cubic meter (g/dscm) (0.03 grain per dry standard (7) The cost of the performance test cubic foot (dscf)). Where this limitation is more stringent than the applicable limitations of subsections (b) through (g) of this section, for facilities in existence prior to the applicability dates, or of a size not applicable to said subsections, emission limitations for those facilities shall be determined by the commissioner and will be established in accordance with the procedures set forth in subsection (h) of this section.

> (b) Fuel combustion steam generators: No person shall operate a fossil fuel combustion steam generator (any furnace or boiler used in the process of burning solid, liquid, or gaseous fuel or any combination thereof for the purpose of producing steam by heat transfer) so as to discharge or cause to be discharged any gases unless such gases are limited to:

> (1) A particulate matter content of no greater than 0.18 grams per million calories (0.10 pounds per million Btu) for solid fuel fired generators of greater than sixtythree million (63,000,000) kilocalories (kcal) per hour heat input (two hundred fifty (250) million Btu):

> (2) A particulate matter content of no greater than 0.63 grams per million calories (0.35 pounds per million Btu) for solid fuel fired generators of equal to or greater than 6.3 but less than or equal to sixtythree million (63,000,000) kcal per hour heat input (twenty-five (25) but less than or equal to two hundred fifty (250) million Btu):

> (3) A particulate matter content of no greater than 1.08 grams per million calories (0.6 pounds per million Btu) for solid fuel fired generators of less than 6.3 million kcal per hou heat input (twenty-five (25) million Btu):

> (4) A particulate matter content of no greater than 0.27 grams per million kcal (0.15 pounds per million Btu) for all liquid fuel fired steam generators.

(5) A particulate matter content of no greater than .01 grains per dry standard cubic foot for all gaseous fuel-fired steam generators.

(c) Asphalt concrete plants: The requirements of this provision shall apply to any asphalt concrete plant (any facility used to manufacture asphalt concrete by heating and drying aggregate and mixing with asphalt cement). An asphalt concrete plant is deemed to consist only of the following: driers, systems for screening, handling, storing, and weighing hot aggregate; systems for loading, transferring, and storing mineral filler; systems for mixing asphalt concrete; and the loading, transfer, and storage systems associated with emission control systems.

(1) No person shall operate the affected facilities of an asphalt concrete plant which existed on or prior to June 11, 1973, so as to discharge or cause to be discharged into the atmosphere any gases unless such gases are limited to:

(A) A particulate matter content of no greater than 230 mg per dscm (0.10 grain per dscf).

(d) Grain Elevators: No person shall operate a grain elevator (a grain elevator is defined as any plant or installation at which grain is unloaded, handled, cleaned. dried, stored or loaded) without meeting the provisions of this subsection. Subdivision (1) of this subsection shall apply to any grain storage elevator located at any grain processing source which has a permanent grain storage capacity of thirtyfive thousand two hundred (35,200) cubic meters (one (1) million U.S. bushels) and any grain terminal elevator which has a permanent grain storage capacity of eighty-eight thousand one hundred (88,100) cubic meters (two and one-half (2.5) million U.S. bushels). All grain elevators subject to this rule (326 IAC 6-1) shall comply with the requirements of subdivision (2) of this section.

(1) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility except a grain dryer any process emission unless such emissions are limited to a particulate matter content of no greater than 0.07 gram per dry standard cubic meter (dscm)(0.03 grain per dry standard cubic foot (dscf)) for said facilities for which construction or modification commenced prior to January 13, 1977.

(2) Grain elevators subject to this subdivision shall provide for good housekeeping and good maintenance procedures. Good housekeeping and maintenance is defined

9-9-88

Rule 2 Participate Emission Limitations for Sources of Indirect Heating

326 IAC 6-2-1 Applicability

Sec. 1. This rule (326 IAC 6-2) establishes limitations for sources of indirect heating:

(a) Particulate emissions from the combustion of fuel for indirect heating from all facilities located in Lake, Porter, Marion, Boone, Hamilton, Hendricks, Johnson, Morgan, Shelby, and Hancock Counties which were existing and in operation or which received permit to construct prior to September 21, 1983, shall be limited by 326 IAC 6-2-2.

(b) Particulate emissions from the combustion of fuel for indirect heating from all facilities not specified in subsection (a) of this section which were existing and in operation or which received permits to construct prior to September 21, 1983 shall be limited by 326 IAC 6-2-3.

(c) Particulate emissions from the combustion of fuel for indirect heating from all facilities receiving permits to construct on or after September 21, 1983 shall be limited by 326 IAC 6-2-4.

(d) If any limitation established by this facilities specified in 326 IAC 6-2-1(a) rule (326 IAC 6-2) is inconsistent with applicable limitations contained in 326 IAC 6-1, then the limitations contained in in the specified counties shall be limited 326 IAC 6-1 prevail.

$$Pt = \frac{0.87}{Q^{0.16}}$$

Where:

Pt = Pounds of particulate matter emitted per million Btu (lb/mmBtu) heat input.

326 IAC 12 prevail.

prevail.

tained in the source's current permits

(g) If any limitation established by this

rule (326 IAC 6-2) is inconsistent with a

limitation required by 326 IAC 2, Permit

Review Regulations, to prevent a violation

of the ambient air quality standards set

forth in 326 IAC-1-4, then the limitations

(h) The addition of a new facility at a

source does not affect the limitations of

the existing facilities unless such changes

in the limitations are required by the pro-

326 IAC 6-2-2 Emission limitations for

Sec. 2. (a) Particulate emissions from

existing indirect heating facilities located

visions of 326 IAC 2 or 326 IAC 6-1.

required by 326 IAC 2 prevail.

by the following equation:

Q = Total source maximum operating capacity rating in million Btu per hour (mmBtu/hr) heat input. The maximum operating capacity rating is defined as the maximum capacity at which the facility is operated or the nameplate capacity. whichever is specified in the facility's operation permit application, except when some lower capacity is contained in the facility's operation permit, in which case, the capacity specified in the operation permit shall be used.

For Q less than 10 mmBtu/hr, Pt shall not exceed 0.6. For Q greater than or equal to 10,000 mmBtu/hr. Pt shall not exceed 0.2. Figure 1 may be used to estimate allowable emissions.

(e) If any limitation established by this (b) The emission limitations for those rule (326 IAC 6-2) is inconsistent with indirect heating facilities which were exapplicable limitations contained in 326 isting and in operation on or before June IAC 12, New Source Performance Stan-8, 1972, shall be calculated using the dards, then the limitations contained in equation contained in subsection (a) of this section where: Q shall reflect the total (f) If any limitation established by this source capacity on June 8, 1972. The rerule (326 IAC 6-2) is inconsistent with a sulting Pt is the emission limitation for limitation contained in a facility's construction or operation permit as issued pursuant to 326 IAC 2, Permit Review Regulations, then the limitations con-

each facility existing on that date and will not be affected by the addition of any subsequent facility. The particulate emissions from all of the facilities which were in existence on June 8, 1972, may be allocated in any way among these facilities provided that they will not result in a significantly greater air quality impact level at any receptor than that which would result if the particulate emissions from each of these facilities were limited to Pt; and provided that the emission limitations for each facility are specified in its operation permit. Significant impact levels are defined in 326 IAC 2-3(d).

(c) The emission limitations for those indirect heating facilities which began operation after June 8, 1972, and before September 21, 1983, and those facilities which receive permits to construct prior September 21, 1983 shall be calculated using the equation contained in subsection (a) of this section where: Q includes the capacity for the facility in question and the capacities for those facilities which were previously constructed or received prior permits to construct. The limitations for all previously permitted facilities do not change. The Q and Pt for each facility at a source which begins operation or receives a construction permit during this time period will be different.

326 IAC 6-2-3 Emission limitations for facilities specified in 326 IAC 6-2-1(b)

Sec. 3. (a) Particulate emissions from indirect heating facilities existing and in operation before September 21, 1983, shall be limited by the following equation:

$$Pt = \frac{C X a X h}{76.5 X Q^{0.75} X N^{0.25}}$$

9-9-85

30

Where:

- C = Maximum ground level concentration with respect to distance from the point source at the "critical" wind speed for level terrain. This shall equal 50 migrograms per cubic meter (μ/m^3) for a period not to exceed a sixty (60) minute time period.
- Pt = Pounds of particulate matter emitted per million Btu heat input (lb/mmBtu).
- \mathbf{Q} = Total source maximum operating capacity rating in million Btu per hour (mmBtu/hr) heat input. The maximum operating capacity rating is defined as the maximum capacity at which the facility is operated or the nameplate capacity, whichever is specified in the facility's operation permit application, except when some lower capacity is contained in the facility's operation permit; in which case, the capacity specified in the operation permit shall be used.
- N = Number of stacks in fuel burning operation.
- a = Plume rise factor which is used to make allowance for less than theoretical plume rise. The value 0.67 shall be used for Q less than or equal to 1,000 mmBtu/hr heat input. The value 0.8 shall be used for Q greater than 1,000 mmBtu/hr heat input.
- h = Stack height in feet. If a number of stacks of different heights exist, the average stack height to represent "N" stacks shall be calculated by weighing each stack height with its particulate matter emission rate as follows:

$$h = \frac{\sum_{i=1}^{N} H_i X pa_i X Q}{\sum_{i=1}^{N} pa_i X Q}$$

Where:

pa = the actual controlled emission rate in lb/mmBtu using the emission factor from AP-42 or stack test data. Stacks constructed after January 1, 1971, shall be credited with GEP stack height only. GEP stack height shall be calculated as specified in 326 IAC 1-7.

this time period will be different.

ceed 0.8 lb/mmBtu heat input.

lb/mmBtu heat input.

the following equation:

(d) Particulate emissions from all facili-

ties used for indirect heating purposes

which were existing and in operation on or

before June 8, 1972, shall in no case ex-

(e) Particulate emissions from any facil-

ity used for indirect heating purposes

which has 250 mmBtu/hr heat input or

less and which began operation after June

8, 1972, shall in no case exceed 0.6

326 IAC 6-2-4 Emission limitations for

Sec. 4. (a) Particulate emissions from

indirect heating facilities constructed after

September 21, 1983 shall be limited by

facilities specified in 326 IAC 6-2-1(c)

(b) The emission limitations for those indirect heating facilities which were existing and in operation on or before June 8, 1972, shall be calculated using the equation contained in subsection (a) of this section where: Q, N, and h shall include the parameters for all facilities in operation on June 8, 1972. The resulting Pt is the emission limitation for each facility existing on that date and will not be affected by the addition of any subsequent facility. The particulate emissions from all of the facilities which were in existence on June 8, 1972, may be allocated in any way among these facilities provided that they will not result in a significantly greater air quality impact level at any receptor than that which would result if the particulate emissions from each of these facilities were limited to Pt; and provided that the

emission limitations for each facility are specified in its operation permit. Significant impact levels are defined in 326 IAC 2-3-2(d).

(c) The emission limitations for those indirect heating facilities which began operation after June 8, 1972, and before September 21, 1983, and those facilities which receive permits to construct prior to to September 21, 1983, shall be calculated using the equation contained in subsection (a) of this section where: Q, N, and h shall include the parameters for the facility in question and for those facilities which were previously constructed or received prior permits to construct. The limitations for all previously permitted facilities do not change. The Q, N, h, and Pt for each facility at a source which begins operation or receives a construction permit during

$$Pt = \frac{1.09}{Q^{0.26}}$$

Where:

- Pt = Pounds of particulate matter emitted per million Btu (lb/mm Btu) heat input.
- Q = Total source maximum operating capacity rating in million Btu per hour (mmBtu/hr) heat input. The maximum operating capacity rating is defined as the maximum capacity at which the facility is operated or the nameplate capacity, whichever is specified in the facility's permit application, except when some lower capacity is contained in the facility's operation permit; in which case, the capacity specified in the operation permit shall be used.

For Q less than 10 mmBtu/hr, Pt shall not exceed 0.6. for Q greater than or equal to 10,000 mmBtu/hr, Pt shall not exceed 0.1. Figure 2 may be used to estimate allowable emissions.

(b) As each new indirect heating facility is added to a plant Q will increase. As a result, the emission limitation for each progressively newer facility will be more stringent until the total plant capacity reaches 10,000 mmBtu/hr after which the emmission limit for each newer facility will be 0.1 lb/mmBtu heat input. The rated capacities for facilities regulated by 326 IAC 12, New Source Performance Standards, shall be included when calculating Q for subsequent facilities.

9-9-88

Published by THE BUREAU OF NATIONAL AFFAIRS, INC., Washington, D.C. 20037

32

APPENDIX C

Plant Operating Logs

.- +

(This page left blank)

_	3 Fe	. 0	DAIL	STEAN	BOILER	PLANT	OPERAT	ING LO	G			1. COM	MAND	5.			
4		20	7				<u> </u>	FUEL	USED				;	00	LC.	<u> </u>	
		AM (PSIC)		STEAM P	RODUCED				D			1			FLUE		
	TIME HOUR	AM (r'S			Pounds)		COAL - B	TU/GAL				┣───			e		
	ÊP	STE			с			TU/1000CF				•	2 OR C	2 (A ug	%)		TEMP
		ď		BOIL	ER NO.			BOIL	ER NO.			1	BOIL	R NO.		359	
_	^ .	8	1	2	3	4	,	2	3		4	'	2	3	4	1	2
	030	118		15,000	29,000	- <u></u>	248	115	ļ			11.0	10. <u>C</u>	110	-	4-10	
	<u>0130</u> 07230	<u>1:2.</u> 	28,000	<u>13 (m)</u>	26,000		248	115	<u> </u>		<u> </u>	1115		1.5	<u> </u>	-1-10	1120
-	0350		2200	10/11/2	24,00		248	86	┨────			1.6	5.5	10.0	+	440	420
HS	0.1°C	1.12	27 000	an	53000		239	07			·	10.5	5~	11.5		1.12	+
	0530	116	27,000	11/00	32.000		239	47			h	10.5	10.0			421	1-1-10
Ξ	0630	116	20,000	13,000	32,000		265	115				11.0	10.5	11.5		4-0	121
	0730	116	20,000	14,000	32'00		257	124				10.5		11.5		440	420
	TOTAL	932	224,000	98000 12,250	237,000		1983	8'de 108	26,33			10.5	81	89		3-520	
	<u>AVG.</u> 2윤 <u>3</u> 0	120	28,000	12000	34000		221	101.	3292			10.0	10.0	11.1	+	440	420
	1930	IDD	20000	10 000	38000		177	88	<u> </u>			10.0			<u>†</u> 1	460	
1	030	12	11000	12000	36000		168	106				11.0		12.0	1	460	
111	11.30	16	14000	10000	36000		142	28				11.0	10.0			460	
10.5	12.20	KOZ	16000	10000			169	78	ļ			11.0		120		460	_
00	320 450	110	19000	10000			159	200		~ {		10.0	10.0	12.0		440	
SE	1530	108	21000	14000	33000		186	124-						11.5	+	440	42
	TOTAL	884	153000			2	135.4	779	3200	20		80.5				3620	308
	AVG.	111	19125	1100			169	97	400	20	*	10,1	1011	11.7	1	453	386
	1620	121	22000	13000.	22000		195	115	ļ			10.0	_	11.5		440	420
	730	13	3000	11000	7,000		20-1	97				10.5	10,0	<u> \</u>	ļ	4.10	4/10
E	1830	116	23000	1/000	28000		204	97	<u> </u>			10.5	10.0	12.0		440 440	40:
SHIF	1930	114	22000	11000	29000		195	108	╉╼───			11.0	10.0	11.0	1	450	201
0	1010	112	24000	17:00			2/2	106	<u> </u>			11.0	10.5	$\frac{11}{11}$	1	4/41)	_
111	2220	1)0	20000	13020	126000		112	115	<u> </u>			117		11.0	1	440	911
-	2330	118	79:000	10000			204	88	:			11.0	10.5		>	440	
	TOTAL	933	186000		12/5000		1547	821	238			86.6		92	↓		1322
	TOTAL	1/7			16875	·	193	103	298				244		<u> </u>		403
DAILY	AVG	2749	503000		740010		4894	103	8222			_	10.5			10660	966
<u>0</u> 5.		<u>1175</u>	14242X	111 VAN	136075	L	1201		1274			DPERATI			<u> </u>	25	.8 9
				1	- I	HP)A	ST SHIFT	# 3				SECO	ND SH	FT A	3		- Ť)
Α.	STEAM P	LOW FI	NAL (Integr		545439		609Z	8150			+ 7927	752			19914		55.
	STEAM P				541960		1020	81087			डर्ग39	756-		<u> </u>	<u>15000</u> 8800	2	54
			UNIT OF F		221,000	- 98;	(200)	237,00	<u>v</u> _+	15	3000	7.80	000		12:00	<u> </u>	186
					0500	<u>~</u>	55	0450	+					09	24-812	38	2010
۴.	LOW DO				TIME: OIO			64+420	=684	TIME	; •		GAL		420:1		
G.	DEGREE	DAY											<u></u>		-		
_	DPERATO				PICHAPI)	- Bezan	PD-L)	TTENSE	INK /	<u>DE</u> W	rees-K	ic Hick	1. Sc	TEPLO	· Bit	<u>is 1</u>	فكسمط
	TIREMAN				<u> </u>					Rg	NNEK	<u> </u>		<u></u>			
			IRS OPERA			<u>`h</u>	- <u></u> .				-64-		0				NOT
		1	•	•	uc-CC-	- 0025				• -		-	-		-	æ	\mathcal{M}_{i}
				1	AIHIES -	$\alpha_{10} - \alpha_{10}$				HS	HES-	1500	シンル	-20			
			-	•	م ن ۳۳ <i>م</i> د۲		5/10 = 4	20				1600	/				
-		· •	-	_	·)'n''						•				
				01:		il to s	1 /		. /				 -				~
0 4	TE			T	SIGNATURE	OF CHIEF	OPERATIN	GENGINF		AN	GER 2	00 -	1359	- <u></u>			<u> </u>
	-			1		an enter											

Transmission Transmission<		DAILY ST	DAILY STEAM BOILER PLANT OPERATING LOG	OPERATING LOG		COMMAND	Sili		6	Pri SSCU		!	11	, 'z	1 SULLOIN	6 NO. AND NA		Ë	1 Ke	625	
				d Internet						עני	FEEDWAJ	 Ş	FEEDWATE		, i	TTAN OUT			OWATER .		
		NY 341		011 - 570/18 011 - 570/841 645 - 570/10066		15		Strolly.			HEATE 0	 ¢	FLOR /CH		•	LOW real			1.21		
							ĪĿ	BOILER PO.	L _	įe		┝	┣	5.ALS	TAAT	\$100	<u> </u>	_		د تو	
			1995	212 97	·	95	1	30 5.0			11	2		2.09	1505	++	┢┤		2		
		116 2402		212		ŝ		Q F	20		×	2		6.1.1		Т		3			
						156 di	255 211	360	20	1	xo			7101		- In					_
			Ī		Ť					Ţ		2		- Dr		T-		1.5		.;	_
					T			101		†-				10 F		+	+		Ň	4	
		245 11 1 24 V			T	02 100	011 S 01	T						7229		+	H		- 1 - 1	3	
		00120101101		N.		ŝ	11.0 446		3	H	01	216		7224		-	111	J S	22	2	
		933 18/000	3 8460	1672	21242	N.	5 8 5 53		9		3 *	1321		12:28			7	ন্ন	<u>g</u>		_
		22615	3 800	5	2722	ŝ		T	1	1		1	\downarrow	2000	01.10	- 1	1		1200	*	
		1003/ 40		20			12.0 11	Ī.	25	Ţ	n N		-	9157	36		₽		1 2 2		-
	1 1 <th1< th=""> 1 1 1 1<td>2430/10 10 10 10 10 10 10 10 10 10 10 10 10 1</td><td></td><td>60</td><td></td><td></td><td>101 150</td><td><u>a</u>m</td><td></td><td>t</td><td>1</td><td></td><td>-</td><td>75.4</td><td></td><td></td><td></td><td>35</td><td>6</td><td></td><td></td></th1<>	2430/10 10 10 10 10 10 10 10 10 10 10 10 10 1		60			101 150	<u>a</u> m		t	1		-	75.4				35	6		
		1-2-20/1 Cillor	Ī	┿			12.1 1.50	C 4	0		5	121		7115				751	202	52	_
	1 1 <th1< th=""> 1 1<td>CO 0 111 0'1. L'</td><td></td><td>c U</td><td></td><td></td><td>12. 9 440</td><td>Π</td><td>2</td><td></td><td>3</td><td>51</td><td></td><td>25 9 C</td><td></td><td></td><td>4</td><td>20</td><td>5.52</td><td>5</td><td>_</td></th1<>	CO 0 111 0'1. L'		c U			12. 9 440	Π	2		3	51		25 9 C			4	20	5.52	5	_
		12 20 110 8000		21-12			12.5 1441		2		2			3369			7	20		2	
		114 1620		1		C.0 16.0	12.2 840		20		in l	1		16247			4	150			_
		r - 113 2000		-		20102	111-5 11-		ģ		-	12		9029				2			
ms 111 (1/2) 3.24 (2/2) 3.24 (2/2)<		887 16000		5	22192	21.0525	8571351		9		_			1020	T	Ţ	1				-
(12) (12)		111 10750		52		10.21	11.5.51	3		1	-		\downarrow	10000		卞				ļ	
		9555 TITC				10 m 10 m	1000 - 1000 - 1000			1	T		+	100 07	3272			12	1200		—
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12 16000	20:02							ţ	Т			2010		1		5	19	Ş	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	magi	100 5 000	1.4 1.00						Ţ	Т			108			2301	9			_
1 1 <td>1 1</td> <td></td> <td>13100</td> <td>107 107</td> <td></td> <td>10105</td> <td></td> <td>Γ</td> <td></td> <td></td> <td>8</td> <td>12</td> <td></td> <td>7/01/</td> <td></td> <td>_</td> <td></td> <td><u>,</u></td> <td>290</td> <td>2</td> <td></td>	1 1		13100	107 107		10105		Γ			8	12		7/01/		_		<u>,</u>	290	2	
1 1 <td>1 1<td></td><td>22000</td><td>130 116</td><td></td><td>10/02</td><td></td><td>Π</td><td>2</td><td></td><td>2</td><td>14</td><td></td><td>2/20</td><td>T</td><td>+</td><td></td><td>8</td><td>¥.</td><td></td><td>-</td></td>	1 1 <td></td> <td>22000</td> <td>130 116</td> <td></td> <td>10/02</td> <td></td> <td>Π</td> <td>2</td> <td></td> <td>2</td> <td>14</td> <td></td> <td>2/20</td> <td>T</td> <td>+</td> <td></td> <td>8</td> <td>¥.</td> <td></td> <td>-</td>		22000	130 116		10/02		Π	2		2	14		2/20	T	+		8	¥.		-
And And <td>1 1</td> <td></td> <td></td> <td>1154 116</td> <td></td> <td>19010</td> <td></td> <td>1</td> <td></td> <td>1</td> <td>× v</td> <td></td> <td></td> <td>87 K</td> <td>Ī</td> <td>k</td> <td></td> <td></td> <td>200</td> <td>ħ</td> <td>-</td>	1 1			1154 116		19010		1		1	× v			87 K	Ī	k			200	ħ	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Note Note <th< td=""><td></td><td>231<u>5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 </u></td><td></td><td>13260</td><td>121-121</td><td></td><td>1</td><td>1</td><td>†: +</td><td>τ</td><td>1</td><td></td><td>1 Self</td><td></td><td></td><td>000</td><td></td><td>8</td><td>318</td><td>_</td></th<>		231 <u>5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 </u>		13260	121-121		1	1	†: +	τ	1		1 Self			000		8	318	_
1 1 <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td></td> <td>V-112 COL 9 2- 241</td> <td></td> <td>14/1</td> <td>20102</td> <td>11/3 17/</td> <td></td> <td>3</td> <td></td> <td>Г</td> <td>8/4</td> <td></td> <td>1521</td> <td></td> <td>Ĭ</td> <td>10/1</td> <td>3</td> <td>Sac</td> <td>0</td> <td></td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		V-112 COL 9 2- 241		14/1	20102	11/3 17/		3		Г	8/4		1521		Ĭ	10/1	3	Sac	0	
$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	$ \frac{1}{2} 1$	101 11 101	11 3 1 10 1 5 CIV	3583 747 1	261 126.32	<u>al 255 k</u>	15 27331070	0920 52011	1		42.5	216	Ц	DUNKS		Ì	1321	1755	-114	385	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		13 58400 31200	14 001 641	×4 343	05101	200 1.11	1962 5041	14	Ц	2 2	<i>L</i> ,		5352			đ	EF	2	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				8	ERATING DATA	2	Ś	را گرا		ļ	38400		Ţ	LANT COM		<u> </u>	5			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1		BECOND SHIFT	ľ		AINS ON IN	-10	TUT H	×22×		Ĭ			,	2			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	٦.		10/07/1	10/207		22,53			12:27	00050		Ĩ	5% 5.	A 21.2%	ند ا	•	.0		_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_		ł		16 6.00	197:00	MINE/	1000	200	Į Q V	J64600			LANT BTU	DUTPUT	10. 11	•	۵		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{1}{1000000} \frac{1}{1000} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$							Į.						Π	M utheran			3	13170	Å	
$\frac{1}{1000000} \frac{1}{10000000000000000000000000000000000$	$\frac{1}{1000000} \frac{1}{1000000} \frac{1}{100000000} \frac{1}{10000000000000000000000000000000000$	1 1001 BLOWN	2412	0.52			12-55 21	00-050	Ģ		Π			Π				•			_
$\frac{1}{10000000} = \frac{1}{10000000000000000000000000000000000$	$\frac{1}{1000000} = \frac{1}{100000000} = \frac{1}{10000000000000000000000000000000000$	5		6ALL 2027	TIME.	GALD. C	+210 = 210	T:ME.	1			2014/00	2111-2	T	11				16.76		_
$\frac{1}{12} = \frac{1}{12} $	$\frac{1}{12} = \frac{1}{12} $	<u>.</u>									ļ			1	491		5	;		}	
11 200 A. W. W. M.	Million Million <t< td=""><td>1. 001 84108</td><td></td><td></td><td>Ŀ</td><td>4</td><td>Ţ</td><td>TANK M</td><td></td><td>2 Januar</td><td></td><td></td><td></td><td>T</td><td>Million of</td><td></td><td>ν. -</td><td>S S S S S S S S S S S S S S S S S S S</td><td>2, 0</td><td>G</td><td></td></t<>	1. 001 84108			Ŀ	4	Ţ	TANK M		2 Januar				T	Million of		ν. -	S S S S S S S S S S S S S S S S S S S	2, 0	G	
1, 700 A. C. M.	4 70 4 4 7 4 7 4 7 7 7 7 7 7 4 7 7 7 7 7 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		\dagger	<u></u>	1		Ţ				$\frac{1}{2}$	11		-			_	•	•		
1, 200 A. M. M. M. C. C. C. C. L. L. C. C. L. C.	1/2 1/2 <td></td> <td></td> <td></td> <td></td> <td></td> <td>ł.</td> <td>WU KAILENS</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>\geq</td> <td>110</td> <td>53</td> <td>5</td> <td></td> <td>S</td> <td>۲. ان</td> <td></td>						ł.	WU KAILENS		1				\geq	110	53	5		S	۲. ان	
11 - 11 - 12 - 12 - 12 - 12 - 12 - 12 -		11. 11 200								1610			:	<u> </u>	DVANAL VI		; ; 	, ,	3	1	
							ł											-			
1 (* - 1 - 1) (* - 1 - 1) (* -	1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		r			-	01					ſ									
	10. 11. 11. 11. 11. 11. 11. 11. 11. 11.		, , ,) ,		-	•						-	-		- 1	in the same	: 1:		ļ		
21. 1. 1. 1. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1456 recent and a construction contraction contraction and a second second second second second second second s	1		×				•					-		100 m 100						
	1468 recents contrar en teori								1	1											
																		ļ]	٦

12 FE		9DAIL'	STEAN	BOILER	PLANT	OPERA	TING LO	G			1. COM	MAND	S,	AC		
	STEAM IESS (PSIC)			RODUCED			FUEL	USED D						FLUE	GAS	
TIME	AM (PS	· ·	(1000	Pounds)		COAL -			* <u></u>	4. 4.4					: ,	
E P	SS			с		 	BTU/GAL			ė.,;*; .	•		2 (Aut %	5)		TIM
						GAS -	BTU/1000CF			ق					331	29
				ER NO.	5-		- <u>1-</u>	ER NO		5-4		BOILE		54	 	80
	1.20	1	2	3		124	2	· · ·		14	1	2	3			
0120		14000	1000	\/	57600	the second s	62				10.0	9.5		11.0	440	34
0230	104	2200	/	┼┼──╭╱─	59200	195	+				10.5			<u> 11.0</u>	440	_
5 0330		24000		++-+-	· · · · · · · · · · · · · · · · · · ·	212		<u> </u>			10.5		┝	11.5	4:1)	┢╱
03:01 04:0	174	22000	TIMO	. ₩≁	67200	195	62				10.5	9.5	├───┤		$\frac{440}{5}$	\
5 05:0		15007	6000	 X –	67200	133	53	<u> </u>			10.5	9.5	┝───┤	11.0	44	3
0630		141000	200	<u>⊢-</u> ∧	6560	124	+-22	<u>-</u>				9.5	┢────┤			_
0750	1/2	13000	8000	+++-	67200		7/	+			105 10.0	9.5		11.0	440	3:
TOTAL	400	147000	36000	+ - +	512 000	115	318			35054	15.D	415		11.0 BB.5		
AVG.	113	18355	7200	1/	64000	11.7	and the second				×	9.5	-	<u>ap.5</u>		16
0830	1/12	12/000	7200	₭	64.500	124	64	<u> </u>	~	6887	10.4	7.2	┢────╋	<u></u>	440	
0930	110	1-1270	1200	 \/	1,420		64	+			10.5	R. 0		12.5		
1030		8000	8000	+ + - +	15100	124	71	+		·	10.5	10.0	├─── ┼	12.5	440	
1170		8000	8000	+ + /-	13000		+ + + + + + + + + + + + + + + +	+					┢╾╼╾╾╉	12.5	420	30
1230	+	8000	9055	+-₩	64000		151	<u> </u>				0.0		13.0	1	3
2 1330		2000		┼──╂──	14000		1	+			10,0	10.0		13.0		ピ
0 1 <u>630</u>	+++-	\$000		$+\Lambda$	62800	1	1	+			10.0		 	12.5	420	
15 30		8000	0000	+ + +	22800	+ 4,	71	<u> </u>			10.0	10.0		13.0		3
TOTAL	++++++	68000	9000	+/+	51070	+ · · · · · · · · · · · · · · · · · · ·	441			54914	71.0			1015		-
AVG	114	9714	7733	+ - +	1 3838	10UA:	69	┼──	×	6864	10.1	10.0		12.7	431	3
163()			7000	 { }	54400	20	+9-5	+		6704	10.0		<u>/</u>	12.5	440	3
10-30	115	15000	2000		42000	122	62				10.0	10.0	/1	125	440	
1830	and the second se	IGINX	7000	<u>⊢ X</u> ∕−	52800	168					10.0	10.0	-/-	12 2	440	[쒼
1930		14000		1/ ~	56000	160					10.5		+	<u>16.7</u>	440	+
5 15 0 X V	1	22000	4100 D	2000	40000	202	25-			<u> </u>	10.5	19.5	VD	175	6/18)	170
		26000	11000	23000	25600		97				11.12	10.0		9.1	4110	12
	1114	28600	14000		K	248	124	+			11.0	10.0	11.0		440	15
+	1120	35000	IL/CO	25000	-><	265	124				1.0	100	11.0	\times	11.10	1 म
TOTAL	492	INTES	5200	9400	271.41	1450	5024	101	14	29763	81	59,5	405	えら	3520	
AVG	1155	20500	940	23500	41,133	101	TÂT	2.6		4961	10.5	9.9	10.1	11 4	440	30
TOTAL	1757			441100	1299500		1233				2365		40.5	24 B		
AVG.	115	15112	0711	1200	54015	40	73	21	11	6351	19	9.8		11.9	419	3
- <u></u>	117 +	10110					1 - 1	منا محررا	<u> </u>		PERATI	NG DA	TRU R	<u></u>	2.6	<u>م</u> ــد
			T	E1	E I B	ST-BINFT	75					LO SHI		#5		4/1
. STEAM	FLOW FI	NAL (Integr	ator)	53852		52906	1200	/		3934		529-		857		541
. STEAM				535965		12906	973054			38527		5290		1930		39
C. TOTAL	· · · ·			147000		6000				8000		6400		1070		114
		UNIT OF F	UEL						<u> </u>							لنت
E. SOOT BI	OWN						0200			•				1000	5 12	14
. BLOW D	OWN			TIME: 010	0	GALS.	52+490 -	_	TIME	.0900		GAL	5-352+1			
. DEGREI	DAV				_	11. 100 - 5		1.1		S. Start	1.1.1					
. OPERAT	08			MCAHEAR			UNTENDE	inx		anis DE	WEES	ETTA	ZEAR.	EL HI	199	Fa
FIREMA	N									DINGI						
TOTAL	MANHOU	RS OPERA	TION		2	4			4	18						
3. REMAR	KS (Cont	inue on reve	rse)	WC-GC	- DA - C	015				GG-DA	7 - 6	282	0			υ
				rishes			190			¥5-08 		•				4
			С	NL TEANS	FER TO	9'3".				151	1-5/	05		•		Ê
			L,	ALLEP "	2 m nor	n m	5-0745	-		•						
DATE		<u> </u>	í,	SIGNATURE	OF CHIEF	OPERATI	NG ENGINES	ER								
													e			
AF SCT	, 1458	PREVIO	US EDITIC	ON WILL BE	USED.	•		. .					- 			

1	<u> D FE</u>	<u> 58</u>	DAIL	Y STEA	M BOILER	R PLANT	OPERA		G				,	<u>5 A</u>			
	-	AM (PSIG)			RODUCED	_	COAL - 1		USED D	•					FLUI	E GAS	
	TIME	A.		(1000	Pounds)	•		TU/GAL								r	
	E5	STE			с			TU/1000CF				0	2 DR CO	2 (Aug %	9		TE
		Č.		BOIL	ER NO.			· · · · · · · · · · · · · · · · · · ·	ER NO					R'NO.		352	- •0
`		•	1	2	1 3	15	, ,	2			15		2	13	.45		
-	0030	118	27000	2000	+	59200	239	171				105	10.0		10.5	440	30
	0130	118	27000	100:0		56000		82	1			100:			10.0		3
	0230	118	$28\alpha(x)$	100:27		52800	248	88	<u>├</u> ───			100	10.5		105		
	0330	118	27000			5602)	239	88				10.0	10.5	_		440	12
H	0430	118	27000	the second s	1	57000	239	80	<u> </u>			10.5	ID.S		10.0		
51	0570	118	26500		1	56800	234	71				105	10.5		10.0	1/20	13
FIRS.	04.30	118	25077	8000	1	62400	221	171	 			D.S.	10:5		10.0	430	3
	C>= YO	114	22000		+	63500	195	71				10.0	100		TOO	420	13
1		440	20KD		1	463700	1854	628	1.	· · ·	49860	821				344.0	
	AVG.	117	26187	8875	+	57962	232	72	<u>+</u>		6233	10.2	10.3			432	3
	07.30	1110	17500	_		64000	155	5/				12.0	11.5		12.6	400	13
	0930	114		8000	1	64000	142	57	1			12.0	11.5		14.2	400	3
	1030	TIZ		800		64000		7/	<u> </u>				11.5		UI.I	<u> </u>	IJ
	130	\overline{m}	11000	10000		64000	97	88		,		11.0	11.5		11.6	380	3
ŝ	12.30	108	17000		1	64000	130					11.5			14.2	400	\square
QNO	12:30	1/1	18000		1	64000	159		• •			12,0			14.2	400	Ľ
SECO	1430	10%	18000		1	64000	159		1			12:0		,	14.0	400	C
5	1:30	118	11000		1	64000	97	\sim	1			12:0	\sim	·	14.0	400	C
	TOTAL	896	108500	34000	1	512000	959	301		_	55054	82.5	44.0		111.3	2760	TH
	AVG.	117-	13563	8500	,	64000	137	75		X	6892	11.8	11.5		13.9		3
	1630	TH	10.0	dias		27:000	354	230	1			11.0	11.0		10.0	1. 60	52
	19:00	29	36001	2:000	1	41000	319	204				115	10.5		11.5	440	-
	1830	116	32000	8000		48000	283	71				4.0	195		11.5	437	7
L.L	1930	120	31000	10000	1	43000	274	89	1			12.0	11.0		11.0	420	hi
HS	2A30	123	15500	Ram	1	48000	221	7/	1			11.5	10.0		11.5	4.80	172
2	2130	114	26000	8: 50	1	48000	230	71				11.5	10.6		11.5	4:0	
H	2230	120	28000	8000	1	52800		71				11.5	10.0		120	480	
	2330	12-1	26000	8000	1	52800	230	71				11.5	140		11.5	180	
i	TOTAL	876	244000	9900		366400	2/59	878			39398	91.5	83.0		90.5	3840	34
	AVG.	7:0	30500	12375		45800	270	110			4925	11.4	197		11.3	480	4
2 Z	TOTAL	2712	562000	204000		1.342,00	4972	1807			144312	25%	211.5		2828	1406	17
UALL DAIL	AVG.	113	24435	10200	5	55921	216	90			60/3		10.6		11.9	437	
5.											0		ING DAT			- 85	
					4		TSHIFT	Ŧ			#	SECO	NE SHII		#5		7
A.	STEAM F	LOW FI	NAL (Integn	ator)	522924	75	0338	944	799	52	24984	7	5069	5 9	75 14	72	5.
8.	STEAM F	LOW ST	ART		519417	74	9321	9388	769	52	2924	74	5034	7 5	447	99	52
c.	TOTAL ST	EAM P	RODUCED		209500	71	000.	4637	8	10	R500	3	4000	4	51200	0	29
D.	LBS. STE	AM PER	UNIT OF F	VEL			• .										
٤.	SOOT BLO	NWC			0415.	· 04	120	048	5	<u> </u> Z	30	12	40		124	15	2
F,	BLOW DO	WN			TIME: UIU	0		52+420=		TIME	0900		GAL	.48444			r i M 1
G.	DEGREE	DAY			100 A				10				the same	e in a			
н.	OPERATO	R			MC PHEA	eni) (G	ASPARD			wil	lieme Sc	heblo	inter	Ban	er -		Go
١.	FIREMAN	1				-	<u> </u>				Enne		Richa				
۶.	TOTAL M	ANHOU	RS OPERA	TION		16				· 4	8						
3.	REMARK	S (Cont	ínue <mark>on reve</mark>	rse)	WC-GO		015				GG-DA-						
	f				ASHES (2>420		ASHE ASHE	5 = 0390 5 = 15 3 0	-0900= - 1600	210 F210				
									0,	,	¥0-	n e	.To The	maile o	fGbe		
									5	audo	un #3-4 1200 of	، خود من من آر هرد من	ator	14 +-	~5.2~		
DA	TE			r	SIGNATURE	OFCHIEF	OPERATIN	GENGINE		<u>ng</u>	in a	<u>er 000</u>	- <u></u>	<u>u _ 'Ø</u>	<u></u>		
.•																	
-		1458			ON WILL BE												
-	OCT #2																

,

• •

.

.....

....

APPENDIX D

Coal Analysis

(This page left blank)

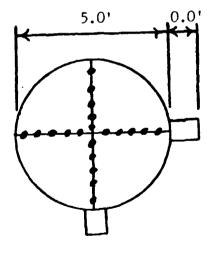
The laboratory data sheets were not suitable for reproduction; therefore, the coal analysis results are presented in the following table.

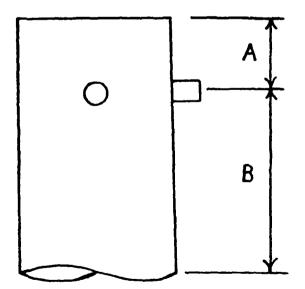
BOILER #	RUN #	STACK ID*	AS RECEIVED BTU/LB VALUE
3	1	SCB	11209
3	2	SCB	11281
3	3	SCB	11316
4	1	SCA	11433
4	2	SCA	11369
4	3	SCA	11365
5	1	SCB	11794
5	2	SCB	11463
5	3	SCB	11995
5	1	BP	11339
5	2	ВР	11359
5	3	BP	11344

* SCA = SCRUBBER A SCB = SCRUBBER B BP = BYPASS

(This page left blank)

APPENDIX E


Boiler 3, Scrubber B Field Data


(This page left blank)

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

Stack	ID: _	SCRUBBER	B	Stack	diameter at ports:	5.0	(ft)
Distar	nce A	(ft)	7.0		(duct diameters)	1.4	
Recom	nended	lnumber	of	traverse	points as determine	d by	
distar	nce A:	20	-				
					(duct diameters)		
Recom	mended	l number	of	traverse	points as determine	d by	-
dista	nce Ba	20					

Number of traverse points used: 20_____

	P	RELIMINARY SUR	VEY DATA SH Geometry)	IEET NO. 1
BASE GRISCOM DATE		PLANT CENTRAL SAMPLING TEAM	- Itrat	PLANT
13 FEB &	59			
		INSIDE STACK DIAM	ETER	
SOURCE NUMBER BOX 5 KV BBR RELATED CAPACITY	K.B	60	TYPE FUEL	Inches
DISTANCE FROM OUTSIC		INSIDE DIAMETER		• .
NUMBER OF TRAVERSES	2	NUMBER OF POINTS		Inches
	<u>. </u>	OCATION OF SAMPLIN	G POINTS ALON	IG TRAVERSE
POINT	PERCENT C DIAMETER		WALL	TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inches)
1				1.5
2				4,9
3				8.8
Ч				13,6
5				20,5
6				39,5
7				46.4
8				57.2
9				55,1
10				55,1 58,5
,				
	<u> </u>			
	<u> </u>			

		EY DATA SHEET NO. 2 emperature Traverse)	
BASE GRISSON AI	FB	13 FRB 89	
	CRUBBER B		
INSIDE STACH DIAMETER			Inches
STATION PRESSURE 28,975	······································		
STACK STATIC PRESSURE			In Hg
SAMPLING YEAM	······································		In H20
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	CYCLONIC	STACK TEMPERATURE (^{OF})
1	.16	23 21	108
2	,16	23 22	108
3	,16	23 2D	103
Ч	.16	10 11	109
5	,17	05	108
6	.23	86	108
7	,23	10 10	109
z	. 26	15 12	108
9	126	20 19	108
10	, 275	18 20	108
		$A'G = 15^{-0}$	
FPS = 27			
$T_{5} = 108$			
FPS = 2.7 Ts = 108 NOZ DIA = . 3224			
	AVERAGE		

	AMBRENT YEARP	40	8. PTS In He	248 £ 25 of	E HEATER SETTING	е семоти 72	ZZLE AREA (A) B4 ft		DRY GAS FRACTION (Pd)	SAMPLE IMPINGER	*					52 - 25 22 - 25	+-	247		24 26		+		244 SO		+	+			2129716	1 12 2. 2580-
2	NAMA			HEA		L .	"HM	°,84	L		IN AVG OUT (Tm) (Tm) (oR) HToF)	-				16 24 46 34				105 105		30 43		102 94	Sp hor	42 Jai		106 91	107 M		irce lotal F
1058 STOP 1128	SAMPLING DATA SHEET	• • • • • • •	. 2		a – 1	or your	Heat in the se		Lu D=-16	ORIFICE GAS	PRESS. JOLUNE 9	1 ALEST		212	2,22	2.32		2.60	2.61	2.17 12:2 40		.87	18.	1.8.	22	2.60	<u> </u>	3.01		VIL . SICK	112 2124
10:13	PARTICULATE SAMPLING DI				2		Post	, 	Static	-	AEAD (VP)	7.01	1 22 2 2.31		_	2			X			·) <u>511</u>							123		ZIN- 2,35
SARET	P/						•			STACK TEMP	MORE (OF) (Ta)		001 0			20/	+-			1 0 1	901 5			\rightarrow	+	╈		-	701 5.4		1.
		Scrubber D	89		a Arb		MBER /			┝	TIME PRETORE (min) (DTH20)	0 3.0	3. 1. 5	6 K.8				200			7	7	h 9	ا ک	2			24 6		20 200	81
			13 Feb	PLANT	Lericcon	SAMALE NOX W	د ≠اذ	Qw/Qn	ე	TRAVERSE		48	2	3	ł		2	-60	σ.	0		2	n	λc	2	-9r	-0	6	- 2		OEHL FORM

	AIR POLL	UTION PARTICU	LATE ANA	LYTICAL	DATA	
PASE GRISSO		IZ FEL	3 89	>	RUN NUMBER	· · · · ·
BUILDIGAUMBER	PLANT	-	Bo	INDER I	3 50	RUBBER B
l.	TEM	FINAL W	EIGHT	INIT	IAL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER		• 34		.2	918	0,0533
ACETONE WASHINGS Hall Filler)	; (Probe, Front	96,6	805		6641	•0164
BACK HALF (II neede	rd)					
		Total Wa	sight of Parti	culates Colle	acted	.0697
11.		WAT	ER			
I	TEM	FINAL W		INITI	AL WEIGHT	WEIGHT WATER (den)
IMPINGER 1 (H20)		243	3. ¢	200	0.0	43, Ø
IMPINGER 2 (H20)		211.	Ø	20	0.0	11.¢
IMPINGER 3 (Dr)			.5		0.0	1.5
IMPINGER 4 (Silice G	•1)	208,	4	20	0.0	8.4
		Total We		Collected		63.9 em
111.	·····	GASES				
ITEM	ANALYSIS	ANALYSIS 2	ANA	2 YSIS 3	ANALYSIS	AVERAGE
VOL % CO2	4.4	4.4	4.	4		4.4
VOL % 02	4.4 14.4	14.4	14	1.2		4.3
VOL 2 CO						
VOL % N2						
		Voi % N ₂ = (100% - %	co2 • \$ 02 •	% CO)		

AMD FORM 651 REPLACES OFHL 20, MAY 78, WHICH IS OBSOLETE.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				STAR		1 2:0 8 PARTICULATE SA	1243 SAMPLING DATA SHEET		570P 1:13	1	sat blas	رما		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	96R	m 		LUC OF STAL	CK CR055 5	ECTION	EQUATIONS				AMBIEN	T YEND		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				5		Ą	98 = ¹ + 46	0 		-4	101713 28	APRESS OT S		
Score Price Price Price Price Score Martin Price Price Price Price Martin Martin Martin Price Price Price Martin Martin Martin Price Price Price Martin Martin Martin Martin Price Price Martin Martin Martin Martin Price Price Martin Martin Martin Martin Martin Price Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin Martin <td></td> <td>10000</td> <td></td> <td>10</td> <td></td> <td>(</td> <td></td> <td></td> <td></td> <td>4</td> <td>HEATER</td> <td>BOX TEMP</td> <td></td>		10000		10		(4	HEATER	BOX TEMP		
Resonance Resonance Relate Ist And State Relate Ist And State Relate Relate </td <td>a vse</td> <td></td> <td></td> <td>2</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>PROBE 1</td> <td>I - C.S HEATER SETTIN</td> <td>0 6 7</td>	a vse			2		_					PROBE 1	I - C.S HEATER SETTIN	0 6 7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Since service	V PFO				<u>}</u>	Pitot	good			PROBE	C ENGTH		
Boy Number Boy Number SCOT BLOUL SCOT BLOUL <th cols<="" td=""><td>Nutech</td><td>+-</td><td>; </td><td></td><td>י (י</td><td></td><td>Preleak</td><td></td><td>Jeet</td><td></td><td>5</td><td></td><td>ia</td></th>	<td>Nutech</td> <td>+-</td> <td>; </td> <td></td> <td>י (י</td> <td></td> <td>Preleak</td> <td></td> <td>Jeet</td> <td></td> <td>5</td> <td></td> <td>ia</td>	Nutech	+-	; 		י (י		Preleak		Jeet		5		ia
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ň J						Post lea	k 15" A	5000		, 7 22	AREA (A)	1 <u></u> 5 .	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Qw/Qn						Scor	BLOW	0	L	ۍ مړ			
REAL ADDRELING STACK TEAM VELOCITY ONLINE OTAL REFER VELOCITY ONLINE OTAL REFER ADDRELING ADDRELI	ე							JV =-,16		A	DRY GA	S FRACTION (Pd		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TRAVERCE	SAMPI MG	14 M.a	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS	METER TEM	-	SAMPLE	IMPINGER	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	POINT	T IME (min)		I (oF)	(eR)	AEAD (VP)	DIFF.	SAMPLE VOLUME	IN	<u>├</u> =	r	BOX TEMP	OUTLET	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	0	4,2	106			2.35	F.F.I.S. S49	98	┨─	-	H2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	3	4.3	104	-	1225	2,42		100		98	244	43	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	m	9	4.5	501		5121	36.5		103		48	244	54	
$ \begin{bmatrix} 4 & 4 & 5 & 10^{6} & 10^{$	he.	5	5	106	7	212	3.32		10%		7	543	3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		<u>v</u>	4.2	90		3:	227		90	+		232	F ů	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	~	4.4	491	- 	100	2.54		201			2442	200	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	12	4.9	108		12	62.2		101			122	5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	٩	Ŕ	4.9	109		1225	2,43		109		101	212	SS	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ā	3		3	-1	. 20	212	e 598.240	10		5	142	Slo	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		an XE		X	X	V	X-		<u>^</u>	Y	X		V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 0	0	0 < 7 7	502	1			-1	-+-		2	172	20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	2							201		31	1776	2K	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	6	- 5	50	•	55).			101		24	240	3 25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S	<u>م</u>	4.4	103		195	3.11		110		50	1.42	5	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	او	5	مر ک	109		2521	2,55		211		3	243	SL	
ZH 6.4 101 2.11 2.82 2.82 101 240 21 6.4 103 1.2 2.82 1.12 104 240 23 36 59 6.4 105 1.2 2.82 2.82 1.12 1.04 240 36 59 6.4 105 1.2 2.82 2.82 1.12 1.04 242		λ	و رو	gai		ন্দ	2.50		2]		<u></u>	242	54	
36 step 6.4 103 126 2.82 4620.080 112 104 242	po	12	5.5	F01		252	2.57		2]	-+-	3	1172	SS	
36 360	0	2	2			92	2,92					240	م م	
		1 (980-0-03			7		q	
			X	V		F								

[AIR POLL	UTI	ON PARTICUL	ATE ANA	LYTICA	DATA		
GRISSO.	M AFB	DATE	FEB	89		RUN NUMBER		
BUTOING NUMBER	FARNT			Bon	ER S	3 SCAN		BER B
ı	ITEM	<u> </u>	FINAL WE	EIGHT	1117	IAL WEIGHT	•	EIGHT PARTICLES
FILTER NUMBER			.342	.3	,2	966		0.0517
ACETONE WASHING Hall Filter)	5 (Probe, Front		98,7417			735U	:	0067
BACK HALF (If need	ed)							
			Tetal Wei	ight of Partic	ulates Call	ected	,	0584 .
11.			WATE	ER				
	ITEM		FiNAL WE (@m)	-	INIT	IAL WEIGHT		WEIGHT WATER (@m)
IMPINGER 1 (H20)			242	2-,Ø	20	0.0		42.0
IMPINGER 2 (H20)			214	<i>τ.Φ</i>	20	0.0		16.0
IMPINGER 3 (Dry)			2,5	5		0.0		2.5
IMPINGER 4 (Silice G	•1)		211.	5	20	0.0		11.5
			Tatal Wei	ight of Water	Collected			72.Ø 🖛
łłt			GASES	(Dry)		T		
ITEM	ANALYSIS 1		ANALYSIS 2	ANAL	YSIS 3	ANALYSIS		AVERAGE
VOL % CO2	4.2		4.2	4.	2			4.2
VOL 3 02	13.6		13.6	4. 13.	6			4.2) 13.6
VOL % CO								
VOL % N2				` .				
		Vel %	N2 = (100% - % (:0 ₂ . % 0 ₂ .	% CO)	•		

AND FORM 651 REPLACES OFHL 20, MAY 78, WHICH IS OBSOLETE.

•

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				12 A	STACT 1:47	ZAMPLING DATA S	1 2:52	4				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		130	TEMATIC OF ST	Ľ		EQUATIONS				AMBIEN	T TENP	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Scrubber	6	٦			0K = 0F + 46	9					но
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50 B 1		٥{		¢,		₩₽₳ <i>Ċ</i> ₩ 4] 2			28	91 S	in He
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					(ີ. ເ		-	HEATER	EDX TEMP	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-					BHOBE	<u>- 25</u> Heater setti	NG OF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1556m AFB				\mathcal{T}		c			519	0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				(,	,	1494-	Aook	C		72		Ľ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				•	•	Pre-leak		200	4	UNZZON	: AREA (A) 2-0	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-		Fost lea	×>.			•		
REAL ANNULUID WEAK STACK TEAP VELOCITY ORFICE CASE OAS MELE MARCA STACK TEAP VELOCITY ORFICE CASE OAS MELE MARCA STACK TEAP VELOCITY ORFICE CASE CASE OAS MELE MARCA STACK TEAP VELOCITY ORFICE CASE CASE OAS MELE MARCA STACK TEAP VELOCITY ORFICE CASE CASE <thcas< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2P=716</td><td></td><td>±</td><td>DRY GA</td><td>S FRACTION (Fd)</td><td>6</td></thcas<>							2P=716		±	DRY GA	S FRACTION (Fd)	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\vdash	┡	Ļ	K TEMP	VELOCITY	ORIFICE	GAS		AETER TEN	4	SAMPLE	INPINGER
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				(Ts) (°R)	HEAD (Vp)		SAMPLE VOLUME	NI NI			BOX TEMP	OUTLET TEMP
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	0'1	105		11			00/	-	Т	255	, h
$ \left\{ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	7.0	108	•	2121	2.31		102		1001	236	Ð
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	و	7.0	109		2121	2,30		103		00	137	15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9		10%		121	9212		Y		10	237	43
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	é	80	501		22	2.37		106	┤	3	238	45
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	×	9-4 X4 	X0		52	r2,5		0	+		334	<u>.</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			60/		21	5 5 7 7	_		+		102	73
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	4			242	14.0		5			239	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			011		195	2.09	4642.885	106		101	239	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9979 1997		χ	X	X	X	V	X	X	X	X	N
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 0	_	2		·135	85.	* 642.886	102		8	239	46
\vec{P} \vec{C} </td <td>Ŋ-</td> <td>2.2 9</td> <td>00</td> <td></td> <td></td> <td>1°83</td> <td></td> <td>2</td> <td></td> <td>00</td> <td>042</td> <td>5</td>	Ŋ-	2.2 9	00			1°83		2		00	042	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00		501			49.1	_				234	¥.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1	1.0	00		61					23	226	¥ 9
18 11.2 105 . 23 2.48 105 101 21 17.6 109 . 235 2.53 10^{41} 101 34 13.9 110 . 235 2.94 101 101 21 14.1 110 . 233 2.94 101 101 30 day 13.9 110 . 233 3.01 7.64 101 30 day 14.1 110 . 23 3.01 7.64 101 30 day 103 105 . 23 3.01 7.64 101 30 day 103 105 . 104 . 101 101		1.14			123	24.2		2		10	642	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	11.2			123	2,48		105		101	242	45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	le	12.4	-		252.	2,53		10(1		10	241	ନ
$\frac{21}{30 \text{ deg}} 4.1 100 1.23 3.01 \times 664.641 103 101 10$	34	13.9	+		S12.			102		101	240	51
18 1 = 103 1 = 104 1 = 2.3, 12575 11. 0484 1441 140		_	9		123	1	F 664. 541	101	+	ă	।মুহ	A
18 7 - 103 12 109 /14 7.30 12575 11. 0484 124 -	-	N		Ì					+	╋		
	FORM MAY 78	<i>"</i> ₹	103	, v	109		51241	10 1		1	Vern Du 4	790

-

	AIR POLLU	TION PARTICUL	ATE ANA	LYTICAL	DATA	
The saw		13 FEB	89		THRE	'С
POWER	PLANT		Bon	MBER	3 Sen	MOBERB
l	ITEM	PARTICU FINAL WE (gm)	IGHT	INITI	AL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER		.368		, 2	169	0.0772
ACETONE WASHING Half Filter)	5 (Probe, Front	103.5			.5278	0.0095
BACK HALF (II need	ed)					
		Tetal We	ight of Partic	ulates Colle	icted	.0867 m
11.	ALF (II needed) Tetal Weight of Particulates Collected , 0867 WATER ITEM FINAL WEIGHT INITIAL WEIGHT WEIGHT WATE (gm) ER 1 (H20) ER 1 (H20)	*				
		WEIGHT WATER (gm)				
IMPINGER 1 (H20)		53.0				
IMPINGER 2 (H20)		21	0.0	201	5.0	10.0
IMPINGER 3 (Dry)		0			0.0	0
IMPINGER 4 (Silica G]●I)	20	7.0	20	0.0	8
۵. ۲۰۰۱ ۲۰۰۱ که سیر		Tomi We	ight of Water	Collected		71.0 .
111.		GASES	(Dry)			
ITEM	ANALYSIS 1	ANALYSIS 2		YSIS 3	ANALYSIS	AVERAGE
VOL % CO2	4.0	4.0	4.	0		4.0
VOL % 02	4.0	4.0	4. 13.	8		4.0 13.9
VOL % CO						
VOL 3 N2			·			
		Vel % N ₂ = (100% - %)	co ₂ .%0 ₂ .	% CO)		

AMD FORM 651 REPLACES OFHL 20, MAY 78, WHICH IS OBSOLETE.

VISIBLE EMISSION OBSERVATION FORM

No. Ren # 1

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	COMPANY NAME				OBSE	PVATION	DATE		START		END TIME
STREET TADRESS DEC 2.2. DEC 2.2.	Carizzan AFB Heaty	Plant				13	Feb	99	1 11	Ø6	
CITY STATE 20 0 0 0 CITY SUPECE DI HUMBER 2 0 0 0 0 PROCESS EQUICATION SUPECE DI HUMBER 2 0 0 0 0 PROCESS EQUICATION SUPECE DI HUMBER 0 0 0 0 0 0 PROCESS EQUICATION SUPECE DI HUMBER 0 <t< td=""><td>STREET ADDRESS</td><td></td><td></td><td></td><td>3FC</td><td>1</td><td>1</td><td></td><td></td><td></td><td>COMMENTS</td></t<>	STREET ADDRESS				3FC	1	1				COMMENTS
CITY STATE 200 0 0 PROPER EXERCISION FORMATION SOURCE D NUMBER 0 0 0 0 PROPER EXERCISION FORMATION SOURCE D NUMBER 0 0 0 0 PROPER EXERCISION FORMATION OPERATING MODE 0 0 0 0 PROPER EXERCISION FORMATION OPERATING MODE 0 0 0 0 PROPER EXERCISION FORMATION OPERATING MODE 0 0 0 0 PROPER EXERCISION FORMATION INFORMATION 0 0 0 0 PROPER EXERCISION FORMATION INFORMATION FO DEBERGING PARTICLE STATE PROPER FOR DEBERGING PARTICLE STATE PARTICLE STATE PROPER FOR DEBERGING PARTICLE STATE PARTINE PROPER FOR DEBERGING PARTICLE STATE PARTICL	bug cc)					6	d's	t de	10		
Grissen HEB LA H497/ PROVE PROVISION CONTACT SOUNCE DINIMEER PROCESS ECUPRENT OPERATING MODEL PROCESS ECUPRENT OPERATING MODEL Sound E SUMMERT OPERATING MODEL CONTROL EQUIPMENT OPERATING MODEL Sound E SUMMERT OPERATING MODEL DESCREE EMISSION POAR I BISTAME FROM OBSERVER III Sound Sound LEVEL INEGUNT RELITIVE TO CORRESPORT Sound Sound LEVEL INEGUNT RELITIVE TO CORRESPORT Sound Sound Sound Sound Sound III DESCREE EMISSION SOUND III Sound Colond IF watched Differst relitive Sound Colond End Sound Colond End Sound Colond End Sound Colond End Sound Colond Sound Colond Sound Colond Sound Co	CITY	ISTATE	710		2	⊢ ¥	1			<u> </u>	
PHONE (HEY CONTACT) SOURCE ID NUMBER -	Grisson AFB	In	46	971				_		<u> </u>	
PECCESS CONTINUENT OPERATING MODE CONTINUE CONTINUENT HEGUIT RELIGIUM FRUIDURE FLUET SLOP HEGUIT RELIGIUM FRUIDURE CONTINUE FROM OBSERVER DIRECTION FROM OBSERVER DISTANCE FROM OBSERVER DIRECTION FROM OBSERVER Sum OTTAL LEUR FROM OBSERVER DIRECTION FROM OBSERVER </td <td>PHONE (KEY CONTACT)</td> <td>SOURCE ID</td> <td>NUMBER</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 1</td> <td></td> <td>·····</td>	PHONE (KEY CONTACT)	SOURCE ID	NUMBER						1 1		·····
B. M. A. B. 2 CONTROL GUINERATING MODE CONTROL GUINERATING MODE CONTROL GUINERATING MODE F. M. 24. M. STORE & C. M. 1 CONTROL GUINE EXCENSION POINT F. M. 24. M. STORE & C. M. 1 CONTROL CONTROL & C. M. 1 CONTROL CONTROL & C. M. 1 CONTROL CONTROL & C. M. 1 CONTROL & C. M		1			·			1	$ \mathcal{P} $		
CONTROL EQUIPMENT SCONTOLE CALVOLT SKETCH DESCRIPTE ENCOUND LEVEL HEDHT ABOVE CROUND SERVER San 30 C End San 10 D ESCRIPT EMBER SIGNES San 2 End HE STARLE CLOWER ENDER San 2 End HE STARLE CLOWER ENDER San 10 D ESCRIPT ENDER AT WATER DECEMBANED San 2 End San	PROCESS EQUIPMENT					L 7	<u> </u>		<u> </u>		
DESCRIPE EMISSION POINT F. L.M. J. Q.M. HOW C.				the second s			4	\$	Ø	ļ	······································
Fibri gur Hould Gur Height Reut Reutine for Observer HEIGHT ADOVE GROUND LEVEL HEIGHT REUtine REUtine Reutine Reutine for Observer Bar 20: End Sun TO End DESCRIPE ENSIGNE DIRECTON FROM OBSERVER San 30: End Sun TO WE End DESCRIPE ENSIGNE End San 10: End Finance RCP Provide Control of the Reutine RCP Provide Control of the Reuter RCP Provide Control of the Reuter RCP Provide Control of the Reuter RCP Provide Control of Skir Conspirations San 10: End Sun 10: Control of Skir Conspirations San 20: End Sun 00: Control Skir Conspirations San 30: End Sun 00: Control Skir Control Market Privation San 30: End Sun 00: Control Skir Control Market Privation San 30: End Sun 00: Control Market Privation San 30: End Sun 00: Control Market Privation <td>. Somer B (iver</td> <td><u>)</u></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>Ľ</td> <td></td> <td></td>	. Somer B (iver	<u>)</u>			2				Ľ		
HEGHT AGOVE GROUND LEVEL HEGHT BELATIVE TO OBSERVER Sim Sim DISTANCE FROM DESERVER Direction FROM DESERVER Sim Origonomic Status Sim Sim DESCRIPE EMISSIONS End Sim Charles Construction Sim Charles Construction DESCRIPE EMISSIONS End Sim Charles Construction Sim Status	DESCRIBE EMISSION POINT	, 11 0	2		8	<u> </u>					
HEGHT ABOVE GAOUND LEVEL HEGHT RELATIVE TO OBSERVER 11 DISTANCE FROM OBSERVER DIRECTOR FROM OBSERVER 11 Stan 300 End DIRECTOR FROM OBSERVER 11 Stan 300 End DIRECTOR FROM OBSERVER 11 Stan 4 End DIRECTOR FROM OBSERVER 11 Stan 300 End Stan N W End 12 DESCRIBE EMISSIONS End 13 Stan 2 End End Match Deport PLUME Stan 7 End 100 End End 10 DESCRIBE PLUME AT WHICH OPACITY WAS DETERMINED Stan 100 End 100 End 10 Stan 100 End 100 End 10 Stan 100 End 100 End 10 Stan 6 (1) W End 100 End 10 Stan 7 End 100 End 100 End 100 Stan 7 End 100 End 100 End 100 Stan 7 End 100 End 100 End 100 Oh 100 End 100 End 100 End 100 Observers Position	Filliglan Start 6	OCCIAN	24		9						
93 Sun 95 End 11 DISTANCE FROM OBSERVER DIRECTON FROM OBSERVER 11 DISCRIBE ENDISONS Sun NW End DESCRIBE ENDISONS End 11 DESCRIBE ENDISONS End Sun T Sun T DESCRIBE ENDISONS End Sun T Sun T DESCRIBE ENDISONS End Sun T DESCRIBE RLUNG BACKGROUND Sun T Sun Sun	:				10				1	1	
DISTANCE FROM OBSERVER SUR DUPECTON FROM OBSERVER SUR DUPECTON FROM OBSERVER SUR DUPECTON FROM OBSERVER SUR DUPECTON FROM OBSERVER 12 12 12 12 12 12 13 14 13 14 13 14 14 15 14 15 16 16 17 18 18 19 19 19 10 19 10 10 10 10 10 10 10 10 10 10		1 11			11						
DESCRIBE EMISSIONS 13 Start Grid EMISSION COLOR FWATER DIOPLET PLUME Surt PLANCE Surt PLANCE POINT IN THE PLUME ATACHO OPACTY WAS DETERMINED Start Deteched D Start Deteched D DESCRIBE PLUME BACKGROUND Start Disched D Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Distervaria Position Observaria Position Distervaria Position Observaria Position Distervaria Position	DISTANCE FROM OBSERVER	DIRECTION	FROM OBSET	RVER	12						
Sum End EMASSIN COLOR IF WATER DROPLET PLUME Sum 7 End Sum 7 End OUNT IN THE PLUME AT WHICH OPACITY WAS DETERNANED Sun 100 End Sun 7 III DESCRIEF PLUME AT WHICH OPACITY WAS DETERNANED Sun 100 End Sun 100 End DESCRIEF PLUME ACKROUND Sun 100 End BACKGROUND COLOR Skr CONDITIONS Sun 100 Skr CONDITIONS Sun 20 mM End Sun 100 End Sun 20 mM End Sun 50 End Sun 20 mM End Sun 50 End Sun 34 End Sun 4 WIT DULB TEMP Sun 4 WIT DULB TEMP Sun 4 WIT DULB TEMP Sun 4 Dianopart Sun 5 Dianopart Sun 6 Dianopart Sun 10		Start N	W End		13					1	
EMBSLOC COLOR Sun 7 End Arached C Derached C Sun 100 End End C Derached C Sun 100 End C End C Derached C Sun 200 End C End C TRAINAGE CONTROL End C TRAINAGE CONTROL SUR C		End		·	14				1		
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMANED 18 Sun 100 End DESCRIBE PLUME BACKGROUND End Stan TT DESCRIBE PLUME BACKGROUND End Stan TT BACKGROUND COLOR SNY CONDITIONS Stan Stan Stan Stan <td></td> <td></td> <td>POPLET PLU</td> <td>IME</td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			POPLET PLU	IME	15						
Stan 100 End 17 DESCRIBE PLUME BACKGROUND Stan 18 18 Stan Tracks Lawler End 18 BACKGROUND COLOR Star CONDITIONS Stan Star OV C End VIND SPEED WIND DIRECTION Stan Star SUC End 20 21 22 21 22 Star SUD End Star SUD SOURCE LAYOUT SKETCH Draw Noth Amor 24 25 28 27 28 28 29 30 30 Observer's Position Strict Stringston Point OBSERVERS SIGNATURE Strict H OBSERVERS SIGNATURE Date Idon Strict H Strict H Strict H <t< td=""><td></td><td></td><td></td><td>Detached 🛛</td><td>18</td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></t<>				Detached 🛛	18					<u> </u>	
DESCRIPE PLUME BACKGROUND Stan Track (Laugh) End BACKGROUND CO.DR Stan (D/C) End BACKGROUND CO.DR Stan (D/C) End Stan (C) (Laugh) Stan (D/C) End Stan (D/C) End 20 Vinto Sheed Wind DURECTON Stan 20 mph End Stan 500 End Stan 314 End Stan 324 End	1 100.		RMINED		17				┼───	 	
Stan Strachus Lough End BACKGROUND COLOR SKY CONDITIONS Stan Grünz End Stan OV C Stan Grünz End Stan OV C Stan ZUrner End Stan SC End Stan ZUrner End WITT BULB TEMP Stan ZUrner End WITT BULB TEMP Stan ZUrner End Stan SC End Stan ZUrner End WITT BULB TEMP Stan ZUrner End Stan SC End Stan ZUrner End Draw Noth Annor Stan ZUrner End Stan SC End Stan ZUrner End Draw Noth Annor Stan ZUrner End Sternission Point Stan ZUrner End					·						
BACKGROUND COLOR SKY CONDITIONS Star G(::UEnd Star ()/C Star ()/C End WIND DRECTION Star 20 mpk End Star ()/C Star 31 End Star 31 End Star 1 SOURCE LAYOUT SKETCH Draw North Arrow 24 23 23 24 23 25 26 27 28 29 30 Observer's Position Ocserver's Position Observer's Position C Sun Location Line C ADDITIONAL INFORMATION Sun Location Line		End							ļ	} -	•
VIND SPEED WIND DIRECTION Start 3 W Start 3 W Start 3 W End Start 3 H End	BACKGROUND COLOR	SKY CONDI	NONS	/	19	 		L		ļ	
Star 20 mpk End Star 50 End 21 AMBIENT TEMP WET BULB TEMP PH, percent Star 34 End ODE Star 4 SOURCE LAYOUT SKETCH Star 5 Draw North Arrow Star 5 SOURCE LAYOUT SKETCH Star 5 Sourt 6 Star 5 SOURCE LAYOUT SKETCH Star 5 Sourt 6 Star 6 Sourt 6 Star 7 Star 6 Star 7 Star 7 Star 6 Sourt 6 Star 7 Star 7		Stan DV	End		20				<u> </u>		
AMBIENT TEMP WET BULB TEMP PH, parcynt 22 Start 34 End 23 Start SOURCE LAYOUT SKETCH Draw North Arrow Start SOURCE LAYOUT SKETCH Draw North Arrow Start Source Source Layout Sketch Start Source Source Layout Sketch Start Source Start Start Start Source Layout Sketch Draw North Arrow Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start Start			\ ⁻	\checkmark	21						
Sizet SOURCE LAYOUT SKETCH Draw North Arrow 23 Wind I I I Sun I I I Vind I I </td <td>AMBIENT TEMP</td> <td></td> <td></td> <td>AH. percent</td> <td>22</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	AMBIENT TEMP			AH. percent	22						
wind 24 Phone 25 Wind 26 Wind 27 28 27 29 29 30 29 29 30 Observer's Position 0055000000000000000000000000000000000	Start 24 End	<u> </u>	l	900	23						
Sun 4 Wind - Wind - U bit M D Emission Point C bit M D D D D D D D D D D D D D D D D D D	with C	YOUT SKETCH	Dr	aw North Arrow	24				 		
28 27 28 27 28 29 30 OBSERVER'S NAME (PRINT) CLUL T Sreft OBSERVER'S SIGNATURE (PRINT) CLUL T SREFT		-		\oslash	25						
28 29 30 28 29 30 OBSERVER'S NAME (PRINT) CLU T Srett OBSERVER'S SIGNATURE CLU T Srett CLU	Wind >	>:			28					1	
29 30 Observer's Position Observer's Position OBSERVER'S NAME (PRINT) Club Club Club Sun Location Line ADDITIONAL INFORMATION	(C) hold ?		Point		27					1	
Stand 30 Observer's Position 30 OBSERVER'S NAME (PRINT) CLUL TSTCH OBSERVER'S SIGNATURE OBSERVER'S SIGNATURE OBSERVER'S SIGNATURE CLUL TSTCH OBSERVER'S SIGNATURE OBSERVER'S SIGNATURE </td <td></td> <td>1</td> <td>-</td> <td></td> <td>28</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1	-		28						
Observer's Position Observer's Position 140° CLUL T Sreft OBSERVER'S SIGNATURE DATE 140° BI-Ch:81 ORGANIZATION U.L. L C.C.H.L /C.C.G. ADDITIONAL INFORMATION DATE ADDITIONAL INFORMATION INFORMATION			A	,	29						
ADDITIONAL INFORMATION Observer's Position I and CLUL T. Sreft OBSERVER'S SIGNATURE CLUL T. Sreft OBSERVER'S SIGNATURE CLUL T. Sreft OBSERVER'S SIGNATURE CLUL T. Sreft DATE DATE CLUL T. Sreft DATE DATE CLUL T. Sreft DATE CLUL T. Sreft DATE CLUL T. Sreft DATE CLUL	1 clest	1			30			 			
ADDITIONAL INFORMATION Observer's Position I and CLUL T. Sreft OBSERVER'S SIGNATURE CLUL T. Sreft OBSERVER'S SIGNATURE CLUL T. Sreft OBSERVER'S SIGNATURE CLUL T. Sreft DATE DATE CLUL T. Sreft DATE DATE CLUL T. Sreft DATE CLUL T. Sreft DATE CLUL T. Sreft DATE CLUL		1			0955	AVE2'\$ 1			L	L	· · · · · · · · · · · · · · · · · · ·
ADDITIONAL INFORMATION ADDITI		Observer's	Position			Fai	IT		Śret	+	
ADDITIONAL INFORMATION ADDITI					OBSE	RVER S	SIGNATU	FP.	ا و		DATE 1) OVI
ADDITIONAL INFORMATION LINE DATE Sound Stand Dury (DATE Sound Stand Dury (No Sound Stand Dury (No Sound St					ORGA	NIZATIO	¥-	1,30	12		1131-0001
ADDITIONAL INFORMATION CERTIFIED BY Record in initial During () DATE Sound St	Sun Loca	tion Line	· · · · ·	<u>></u>		US,	HFC	EHL	- /t	644	
	ADDITIONAL INFORMATION				CERT IREC.	IFIED BY ルール	int)			No Sout S
				54							- <u>1-4</u>

VISIBLE EMISSION OBSERVATION FORM

NO. TWO

CONPANY NAME		OBSE	AVATION	DATE		START	TIME	END TIME
Grisson Heating Plant		11 1	3Fr			12	35	1250
CONPANY NAME Cr3son Heating Plant STREET ADDRESS Blag 223		SEC	0	15	30	45		COMMENTS
J		1	Ø	Ø	φ	¢		
CITY Grisson AFB STAT	e zip 4697/	2	Ć	cb	¢	Ų.		
	Ch 4697/		ø	Ø	ψ	¢		
			φ	Ċ	$\mathcal{O}^{:}$	$\dot{\phi}$	508	Aniat 1239
PROCESS EQUIPMENT BUTLE #3	OPERATING MODE] <u> </u>	Ø,	Ø	ϕ	Ø		
CONTROL FOLIPMENT	OPERATING MODE	╢╸	Ø	Ø	Ø	5		
. Wet Scrubby #B		<u>_</u>	5	5	Ø	Ø		
DESCRIPTE EMISSION POINT Fr Denglass stack 6	6"doants		<u>¢</u>	ψ_{-}	Ŵ	7		
		9	G	Ø.	¢	<i>\bar{\bar{Q}}_{\bar{a}}</i>		
HEIGHT ABOVE GROUND LEVEL HEIGH	AT RELATIVE TO OBSERVER	10	Ø_	Ø	Ø.	ĝ'		
95' . Start	95' END		Ø	Ø	ģ.	Ø	ļ	
DISTANCE FROM OBSERVER DIREC Start 300 End Start	NU, End	12	ϕ	B B	Ψ́	ġ	<u> </u>	
DESCRIBE ENVISIONS	El · I		$\frac{\phi}{c}$	$\frac{\partial}{\partial}$	Ø	ϕ		
Sian OTTING End EMISSION COLOR J IF WA	TER DROPLET PLUME/)	14	Û	Û U	¢	$\frac{Q}{dr}$		
Start N / K End Attach	Detached C	11	Ψ_	$ \Psi $	Ψ	4	<u> </u>	<u> </u>
POINT IN THE PLUME AT WHICH OPACITY WAS Start / 00 End	S DETERMINED	17				╂───		
DESCRIBE PLUME BACKGROUND STRAT								
Star Gray SK4 End		19						
	CONDITIONS	20	<u> </u>	<u> </u>			<u> </u>	
WIND SPEED WIND	SW End	21						
AMBIENT TEMP WET	BULB TEMP RH, percent	22	 					
Start 35 End	95	23	<u> </u>					<u> </u>
Stack SOURCE LAYOUT SI	KETCH Draw North Arrow	24				<u>}</u>		**************************************
Sun 🔶 , — m	\bigcirc	25						
		26				1		
	isston Point	27						
		28						
		29						
C.A.		30						
		OBSE	· D	NAME (PI		- ++		
Obse	erver's Position	OBSE	Fau Rygh's	SIGNAR	RE()	1001		DATE -1 -
140*		ORG	(an	<u> </u>	Su	/; ;		13/00/
Sun Location Lin		l	1 SAF	-ÓE	4L/	ECL	'~	
ADDITIONAL INFORMATION	5		FIED BY	ATT (1 mit	al B	boul	DATE 16 Sent 89
		1						

1/16 SIBLE EMISSION OBSERVATION FORM

-	VISIBLE EMISSION	OBSEF	IVATIC	N FO	RM			NO. THRIF
COMPANY NAME Gistom Hatig Plant		OBSE	RVATION 3 L/P	DATE 089		START	TIME 33	ENO TIME G
STREET ADDRESS		SEC	0	15	30	45		COMMENTS
			Ø	Ø	Ø	S		
CITY CVIBSON AFB In	ZIP 46971	2	¢	Φ	Ø	Ø		
PHONE (KEY CONTACT) SOURCE ID	14677	3	C	4	Ø	Ŷ		
		 •	ψ	¢	Ø	Ø		
PROCESS EQUIPMENT Coal-Fired Borthan #3	OPERATING MODE	5	ψ	i)	Ŷ	5		
CONTROL EQUIPMENT West Scrubber B	OPERATING MODE	7	Ψ	Ŷ	ρ_{-}	P		
بالمستعدي والشريبية الأربع وتجريب والمتحد والمتحد والمستعدية	<u>` 1</u>	•						
DESCRIBE EMISSION POINT Frank Bay Stack 60" à	ants	9		· ·				
<u>_</u>		10		•				
HEIGHT ABOVE GROUND LEVEL HEIGHT REL 95' Start 9	ATIVE TO OBSERVER	11						
DISTANCE FROM OBSERVER DIRECTION	ROM OBSERVER	12						
Start 300' End Start NU		13						
sian loftman End V	/	14					<u> </u>	
EMISSION ODLOR IF WATER DI Start Of Start Of Sta	Detached	15						
POINT IN THE PLUME AT WHICH OPACITY WAS DETE	RMINED	16						
DESCRIBE PLUME BACKGROUND		17						
Stort Cloud's-Stratmy End		19						
BACKGROUND COLOR SKY CONDIT Start Gray End Start OV	End	20						<u></u>
WIND SPEED WIND DIREC	TION	21						
AMBIENT TEMP WET BULB T	EMP RH, percent	22						
Start 36 End V.	95	23						
Stack SOURCE LAYOUT SKETCH		24						
Sun 🔶 Wind 🛥 (Å)	\heartsuit	25						
		26						
	Point	27					<u></u>	
	a. A	28					···	
		29 30						
			AVER'S N		PINITO			
Observers	Position		Pau	(D_{1}	5 <u>6</u> 8	<u>+</u>	
		OBSE	AVERS S	IGNATU	₩ Sc	H	-	DATE Felig
Sun Location Line			NIZATION		SHL	/E	· (1)	
ADDITIONAL INFORMATION		CERT	FIED BY	1.1	R	The l	<u> </u>	DATE
	56		KOS TH	run	14 L.			1659407

•

APPENDIX F

Boiler 4, Scrubber A Field Data

(This page left blank)

.

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

 Stack ID: SCRUBBER A
 Stack diameter at ports: 5.0 (ft)

 Distance A (ft) 7.0 (duct diameters) 1.4

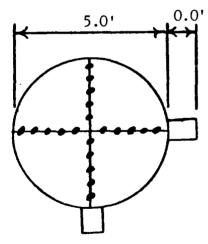
 Recommended number of traverse points as determined by

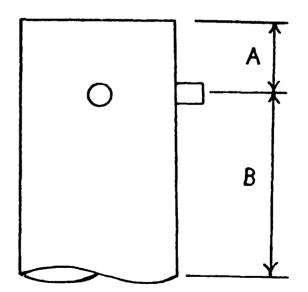
 distance A: 20

 Distance B (ft) 28 (duct diameters) 5.6

 Recommended number of traverse points as determined by

 distance B (ft) 28 (duct diameters) 5.6


 Recommended number of traverse points as determined by


 distance B (ft) 28 (duct diameters) 5.6

 Recommended number of traverse points as determined by

 distance B: 20

Number of traverse points used: 20

	P	RELIMINARY SURVI	EY DATA SHEET Geometry)	NO. 1
BASE GRISSOM DATE 14/28 SOURCE TYPE AND MAR COAL FIRM BOURCE NUMBER JE/JER RELATED CAPACITY	AFB	PLANT GRISSOM B SAMPLING TEAM	FB CENTR	AL HEAT PLONET
14 MB SOURCE TYPE AND MAK	89 (E			
COAL TIRA	ED BOILE	R TINSIDE STACK DIAME		/ <u>^</u> !!
RELATED CAPACITY	<i>4</i>	SCRUBARK	TYPE FUEL	50 Inches
DISTANCE FROM OUTSIL	DE OF NIPPLE TO I	INSIDE DIAMETER		Inches
NUMBER OF TRAVERSE	°2	NUMBER OF POINTS/1	RAVERSE	
· · · · · · · · · · · · · · · · · · ·	L	OCATION OF SAMPLING	POINTS ALONG TR	AVERSE
POINT	PERCENT O DIAMETER		ALL	TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inches)
1				1,5
2				<u>4.9</u>
3				8,8
4				13,6
5				20,5
6				39,5
7				46.4
8				51.2
9				55,1
10				58,5

		EY DATA SHEET NO. 2 emperature Traverse)	
BASE GRISSOM AF	B	DATE IN FEB J9	
I BOU FR NUMBER	BBRR A	<u></u>	
INSIDE STACK DIAMETER			Inches
STATION PRESSURE 29.381			In Hg
STACK STATIC PRESSURE - , 2.9			In H20
SAMPLING TEAM			
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	CYELLIK VI	STACK TEMPERATURE (⁰ F)
1	. 19	25 23	102
2	, 21	20 22	102
3	, 22	14 15	102
4	127	5 7	106
5	,30	5 5	102
6	. 38	5 5	103
7	. 4.3	10 9	102
8	.37	10 11	102
9	,33	15 17	102
10	, 25	25 25	102
		Ave = 14°	
FPS-32			
Ts - 103			
NEZLLE DIA = 0.2	899		
	L		
OFHL FORM 1/	AVERAGE		

OEHL APR 78 16

RUN NUMBER					PADTICU ATE CAL	CANDI ING DATA	A SHEFT			PΗΔ	1= 2.07	
			TIP OF CY	ļ.					ſ	AMBIEN		
ſ	Perley & Scutter A	he, A	dir.		بعو	0R = 0F + 460	Q					H o
14 5.6	69	Comer B	8		H V		2 L			79.381	и риезs . 38 /	in He
7⊾	-			;	1	<u>Netro</u> = H	·	₽. vp		HEATER BOX	BOX TEMP	i
			1		((,c,))	J	٦			248	248 t 25	40
60,650 v	450 m AFB	2()		J.	R	Ditit	A col			190	190	2
SAMPLE BOX NU	UMBER	7		:	1.5-		4" " 4"		ď	PROBE	ENGTH	
NUSER BOX NU	NUMBER	· ·	1		þ	Dectles to	k 19"	r H	cook	NOZZLE	E MEN (N)	
1		, ,'		, , , , , , , , , , , , , , , , , , ,		rosi /aa		-		ैठ	1	
ů			,i			4.1.4	102	29		DRY GA	S FRACTION (Fd)	6
TRAVERCE	SMIINAS	. 1.00 1.10	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS	METER TEMP		SAMPLE	IMPINGER
POINT	TIME (min)		#((oF)	(Ts) (oR)	HEAD (VP)	F Press.	SAMPLE VOLUME (ci ft)	in Kof	ofin Sve Sve Sve Sve Sve Sve Sve Sve Sve Sve	out Tor	BOX TEMP	ALLET
	0	3,8	C.b.		501.		* 665.254	95	₩		V.	3
2	3	9.4	96		6145	1.30		41		89	246	24
~	و	S'S	91		.2	1.81		۲ <u>.</u> ۴		89	246	34
т э	5	۔ ر مف	80		\n i	20.2		9 0		90	242	50
n	2	13.8			24	439		- 8	+-		542	39
5	2	2761	41		:55	5.03		101		92	250	¥
99		17.8	5		ده.	5,74		102		<u>,</u> 2	249	ر ې
3	*	17.9	2		8	· Siztrat		201	-+	9	え	48
2)		L.11	÷	Ī	Lh I	4.27 0	115.179	0)		<u>2</u>	242	5
		8.4 1.1	6	$\langle $	26	2.2	21212077	(2	(42	242	(4
2	3	0	90		, 215	2,38		3		94	242	2
M	e	10.0 1.0	5 5		. 345	2.80		96		94	244	53
J	5-1	101	272		3281	n. Tr		10		ह	<u>ш3</u>	3
2	×	< 11 </td <td>F o</td> <td>-</td> <td></td> <td>0</td> <td></td> <td>20</td> <td></td> <td>*</td> <td>243</td> <td>S S</td>	F o	-		0		20		*	243	S S
pr-	~~~	2.5	20	+-: 	287	7.60				, , , ,	241	75
\sim	3		46		772	2124		105		96	117	S-I-S
÷٤	7.	· •	3		72.			201		96	ነትሮ	55
0	20.500	6.0	5 5		21.	r < 9 · 1	849.211	106	+	4	240	5
		ľ		Ĭ		F						

	AIR POLLUT	ION PARTICUL	LATE ANA	LYTICAL	DATA	
ASE ARISSO	UAFB 1	+ Feb 8			RUN NUMBER UNE	
Power.	PLANT	-	BOIL		Sceub	BERA
1.		PARTICU FINAL W		INIT	IAL WEIGHT	WEIGHT PARTICLES
		(@m)) ` 		()	(@m)
FILTER NUMBER		. 31	49	.2	898	0.0251
ACETONE WASHINGS Hall Filtor)	i (Probe, Front	100.0	1882	100.	Ø52Ø	0.0362
BACK HALF (II need	əd)				,	
		Tetal We	ight of Partle	ulates Cell	ec ted	0,0613 m
11.		WAT	ER			
	TEM	Final We (@m)		INIT	IAL WEIGHT	WEIGHT WATER (@m)
IMPINGER 1 (H20)		230	8.0	20	0.0	3¢.C
IMPINGER 2 (H20)	·····	212	.p	20	0.0	12-ø
IMPINGER 3 (Dry)		2	,5	(Ŋ. O	2.5
IMPINGER 4 (Silice G	o!)	214	-	20	0.0	14.1
		Total We	ight of Water	Collected		.58.6 🖛
111.	Ţ	GASES	1		······································	
ITEM	ANALYSIS	ANALYSIS 2	ANAL	. Y\$IS 3	ANALYSIS	AVERAGE
VOL % CO2	3.0	3.0	3.	0		3.0
VOL 3 02	3.0	17.6	3.	6		3.0 17.4
VOL % CO						
VOL 3 N2			`.			
	Vel	% N ₂ = (100% - %)	co ₂ . % o ₂ .	% CO)		

AMD FORM 651 REPLACES OFHL 20, MAY 78, WHICH IS OBSOLETE.

.

	AMBIENT TEMP	OF STATION PRESS	. 38 I in Hg	HEATER BOX TEMP 248 ±25 OF	HEATER SETTING	PROBE LENGTI. G L	E AREA (A) and fr		DRY GAS FRACTION (Fd)	$\left \right $	ัก	235	H		231 June 1	230			235 la3		239 52			241 58				741 54		102 A3= 50.42
1229	T AMBREN	STATIO	29.	нелтен вох 248 ± 24	PROBE H	PROBE L	NOZZLE	0	DRY GA	TEMP	our H7or	[44]	44	44	24		95	Ч Ч	~ Lo	Ĭ	1 26	95		a.,	92	8	25	, इ.स.	╞╾┿ ┩╵╽ ╋╾┿	13.8008
STUP			۲. V	•		ord	hool			GAS METER	IN AVG (Tm) (OR)	+	45	96	5	00-	102	102	201		48	100	30		101	108	109	01		= 5121
	SHEET		5130-F4-CP-A 2 Tm	· 	yord	n is the g	ck 12" Hig 3		52-2	GAS		114.255 T							PLA CITY		Pro.04							764.675		3,24
	SAMPLING DATA SHEET	°R = °F + 460	H = 5130-1	 I	Ctot -	Preleak d	leck		Slatic DD	ORIFICE	r Press.	-		2,15	5	22.2	5.13 11	5,20 11	5.86 41	Υ.	3.19 *	3.54	3.55	200	2.64	2.23	20.2	1.12 ×		¥7
2; II	PARTICULATE SAI	J. C.		14.4	1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2	\dot{P}	£			VELOCITY	A (VP)	185	122	2521	L7.	214.	ەر. م	13.	243.	X	, 35	56:1	1 <u>7</u>	15.	151	245	• 225	561		5b
STRET	Ľ	2		P I 9						K TEMP	(Ts) (oR)									Ŋ										×-
	SCHEMATIC OF STAC	1	1	J.			, , ,		· . •	STACK	H (0F)		42	50	95 25	1 	42	3	96	ŧŊ ↓	26	96	55	\$	44	961	36	99		
	1 SCHEM	۲.		J.	5		<u>;</u> 			40-6-1		S.I	ہ و	ور	200	1.1	17.9	17.9	6 <u>7</u> 1	X	il. 0	12.4	13.2	12.1	5.9	1.1	- 6.	ـــــــــــــــــــــــــــــــــــــ	•	- n - 4
		4 Sciuble	هرا		SP-C	fex humerer	MBER H				TIME (min)	0	~	<u>۔</u>	<u>-</u>		2	ہ	*7	30 400	1 1	m	96		~	13	-	*	30 Ang	18
			<u>_</u>	<u>-</u>	Bri Cond	ب الر	NULLER BOX NUN	Qw/Qm	ა		POINT		2	Μ	.	ي م		24	r v			~	~	-~	و		×35	-9		OEHL FORM

•

	AIR POLL	UTION PARTICU	LATE ANA	LYTICAL	DATA	
BASE AR 1550.	0.01	14 FEB		7	RUN NUMBER)
Fawer	RANT			IMBER	f Scruk	BBERA
ı.		PARTICI FINAL W	EIGHT	INIT	IAL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER		(em 0,3)		.28	(#***) 389	(m) 0,0254
ACETONE WASHIN Hall Filtor)	GS (Probe, Front	102.		<u></u>		0.0073
BACK HALF (If ne	eded)					
		Total We	aight of Portic	culates Coll	ected	0.0327m
11.		FINAL W	·		AL WEIGHT	WEIGHT WATER
		(¢ m,			(gm)	(gm)
IMPINGER 1 (H20)		232	:0	20	0.0	32,9
IMPINGER 2 (H20)		2.12.	0	200	0.0	12.0
IMPINGER 3 (Dry)		2.	0	0	. 0	2.0
IMPINGER 4 (Silica	Gel)	216.		200	0.0	16,1
		Total We	ight of Water	Collected		62.1 em
111.		GASES				
ITEM	ANALYSIS 1	ANALYSIS 2	1	3 	ANALYSIS	AVERAGE
VOL % CO2	2.8	2.8	2.8	8		2.8
VOL % 02	15.4	15.4	15.0	2		15.3
/OL % CO						
VOL % N2						
		Vei % N ₂ = (100% - %	co ₂ .%o ₂ .	% CO)		
AMD FORM 651	REPLACES OFHL 20, M	AY 78, WHICH IS OBSC	LETE.			

			NAP!	5.		3	255		U. LL			
				PARTICULA	LATE SAM	SAMPLING DATA	SHEET					
RUN NUMBER			SCHEMATIC OF STACK CROSS SECT	ROSS SECTION	T	EQUATIONS				AMBIENT TEMP	T TEMP	
B Baler	4 Scrubber	LA L	1	A.		°R = °F + 460	Q					40
lit Foh	29	A Start			1					29.	125	in He
				P S S	Ŀ	H =	1	Ts . Vp		HEATER	BOX TEMP	
		5				L	Г			842	248 t 25	ч
BASE C	200	9.			• • •	-				PROBE	HEATER SETT	DN
SAMPLE BOX NUMBER	UNBER UNBER		and] 4		that so). م			PROBE	PROBE LENGTH	
Nulech	AI	، د ي .		K		Preleak c	ch Is" he	יז'סביקר		9 8		i.
x V	NUMBER Lot H			€1	- <u>()</u>		ck is the	good	_)	NOZILE	: AREA (A) 33	tj bs
Sw/Qm						Soct B	BLOW	-		5 8		
ა			Ę,	i,		ZP = - 7 2	25	יורר	576	DRY GA	S FRACTION (Fd)	Ð
TOAVEDEE		1 2/24	STACK TEMP	┢	2	ORIFICE	GAS	GAS		EMP	SAMPLE	INDINGED
	TIME (min)		(Ts) (Ts) (OF)	B) R (VP)		DIFF.	SAMPLE	Z	AVG AVG	T	BOX	OUTLET
	C	3.9	╋	4,	2	(H) 20.7	L 769.257	42	1	1 (a) 1 4 (b)	4	
2	n	4.0	5		1235	2.15		100		44	231	₹
3	9	4.5	96	21	5921	2.41		102		£	249	⋧
	c	4.9	69	121	6	5.63		201		35	9 <u>5</u>	Y
4			44			3.00		201		3	হ	3
9r	<u></u>	ہ ر مو	00			4.51		ا و ا			1 h2	20
- x			00			4.47		101		44	241	35
30-	え		101		242	542				1001	142	3
5	27	6.4	(o¢	7	282.	4,43	794,652	• 1		9 9)	ਖ਼ੁਨ	lolo
N.	30 star		X X					X	X	X	V	Ň
	-	15			<u>کړ</u>	5.5	(rainhly	20		0	240	<u>с</u> н
	ר רי					3.46		201		10	272	2
en	20	210			515						25	3
)		-	102	19:0				102	3	2=
ع (0.0	101		T	273 2464		115		34	11.	5-3
F	8	2.5	66	-	5	£		1		181	177	5
94	ネ	ר.ד	102		<u>-24</u>	5112		1901		103	243	43
5	र्हत	1.7	100	- -	26	2.33		0		103	CH2.	Ŧ
0	2) 20	4.8	895		ž	2126	219.501	21		104	242	<u>و</u>
	4.	4							,			

AIR POLLUTION PARTICULATE ANALYTICAL DATA									
BASE DATE , RUN NUMBER									
161551	FFB89	FFB89 V		TAREE		0			
BUILDING NUMBER POWER PRANT I. PARTICULATES BUILER 4 SCRUBBER A									
ITEM			FINAL WEIGHT		INITIAL WEIGHT (gm)		WEIGHT PARTICLES (gm)		
FILTER NUMBER		0.3	0,3132		.2.875		0,0257		
ACETONE WASHINGS (Probe, Front Hall Filter)		105.	105.3842,		105.3784		0.0058		
BACK HALF (If needed)									
			Totul Weight of Particulates Collected			0.0315			
11.	<u></u>	WATI							
ITEM			FINAL WEIGHT		INITIAL WEIGHT (gen)		WEIGHT WATER (gm)		
IMPINGER 1 (H20)		209. Z	209.0		200.0		9.0		
IMPINGER 2 (H20)		224.	224.0		200.0		24.0		
IMPINGER 3 (Dry)		10.	<i>j0.0</i>		0.0		10.0		
IMPINGER 4 (Silica Gel)		210,	210,7		200.0				
	Total We	Total Weight of Water Collected		53.7.		53.7 m			
III	······································	GASES	(Dry)						
ITEM	ANALYSIS 1	ANALYSIS 2	ANA 1	YSIS ANALYSIS 3 4			AVERAGE		
VOL % CO2	2.2	2.2	2	.2	2		2.2		
VOL . 02	2.2. 15.4	15.4	2.2 2.1 1.4 15.4		4		2.2) 15.4		
VOL % CO							/		
VOL % N2			·.						
Vel % N ₂ = (100% - % CO ₂ - % O ₂ - % CO)									
AMD FORM 651 REPLACES OFHL 20, MAY 78, WHICH IS OBSOLETE.									

I

PRELIMINARY SURVEY DATA SHEET NO. 2 (Velocity and Temperature Traverse)							
BASE DCB		14 Feb 8-9					
BOILER NUMBER H 4		19 ten 07					
INSIDE STACK DIAMETER							
5TATION PRESSURE J.9. 381		Inches					
STACK STATIC PRESSURE		In Hg					
SAMPLING TEAM	In H20						
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	** * ~ ~	STACK TEMPERATURE (⁰ F)				
	.19	25	102				
2	.21	20	102				
3	, 22	14	102				
4	,27	5	106				
5	.30	5	102				
6	, 38	5	103				
7	.43	10	102				
8	.37	10	102				
9	, 33	18	102				
10	,25	25	102				
FSA: 32							
Ts = 103							
Tr : 103 Nossle <u>Nic</u> : 2899							
	h	· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·						
	AVERAGE	+					

_

	VISIBLE EMISSION C							Run #1
COMPANY NAME GUISSON AFB Akata PG	nt			DAJE	39	START 1		END TIME 1032
COMPANY NAME Grisson AFB Akatz Pla STREET ADDRESS BLIG 22-3		SEC	0	15	30	45		COMMENTS
			ψ	φ_{-}	ψ	Ψ		
CITY GARSon AFB STATE	ZIP 246971	2	0	Ö	Çy	0		<u></u>
	ID NUMBER	3	Ø	ф, С)	ري. ():	\bigcirc		
	OPERATING MODE	5	$\frac{\varphi}{Q}$	ψ	φ	\ddot{U}		
PBOCESS EQUIPMENT BOCITY PL Buly 4 CONTROL EQUIPMENT	CIS-WO JU OPERATING MODE	6	¢	, Сл	() ()	0		
wel Seublin A		7		ļ				
DESCRIBE EMISSION POINT Fibe Class Strek 60" du	infer 1	8	 		 	├		
I I M CHAN SHER OU CAN		9				$\left - \right $		
	RELATIVE TO OBSERVER	10	<u> </u>	<u> </u>	├───	┼┤		
DISTANCE FROM OBSERVER DIRECTIC		12			<u> </u>			
		13						
DESCRIBE EMISSIONS Stan LOFTING End V		14	<u> </u>	ļ				
EMISSION COLOR I IF WATER	DROPLET PLUME	15		 	 	<u> </u>		
POINT IN THE PLUME AT WHICH OPACITY WAS DI Stan 150 End 4	ETERMINED	16				┟──┤		
		17		╂────		╁╼╾┧		•
Start SKY End V	IDITIONS ,	19	<u> </u>	<u>† </u>	 	†	 	
start Rive End / Start Start S	End End	20						
	NW End	21		1				· · · · · · · · · · · · · · · · · · ·
AMBIENT TEMP WET BUL Start 35 End	B TEMP RH, porcont	22			<u> .</u>			
Stack SOURCE LAYOUT SKET	TCH Draw North Arrow	23	┼	┼	 			
with Carling Plume Sun -	\bigcirc	24	 	+	 	+		
Wind	~	26			<u> </u>	·		
	ion Point	27						
	Å	28			 			·····
	-	29			}		 	
China and		30 0856	BVFP'	NAMELE	BINT	1	<u> </u>	
Tur Oly Cobserve	er's Position		Pau	$\left(\right)$	<u>.)</u>	cott		DATE
			(n	signati	fer	56		14 Felcer
Sun Location Line		ORG	ILS/	4F	DEL	<u>4 / E</u>	ECQ	
AUDITIONAL INFORMATION	· · · · · · · · · · · · · · · · · · ·	CEAT	A H	r Can	fral	Buan	l	DATE 16 Sept 8
	69							

VISIBLE EMISSION OBSERVATION FORM

NO.TWO

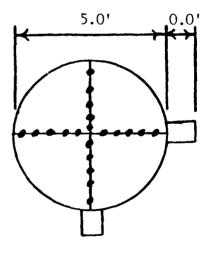
COMPANY NAME		OBSE	RVATION	DATE		START	TIME	END TIME
STREET ADDRESS		14	T-ek	88		121	2_	1218
BUL 2.23		SEC	0	15	30	45		COMMENTS
Ū ·		1	ψ	ψ	$\overline{\varphi}$	U		
CITY STATE STATE	ZIP 46971	2	0	ψ	Ø	φ		
GUISSMAPB IN PHONE (KEY CONTACT) SOURCE ID NUL		3 ·	ϕ	O)	Ú.	U	_	
		4	Ö	0	$\omega^{:}$	0		
PROCESS EQUIPMENT	PERATING MODE	5	0	Ų	φ	φ		· · · · · · · · · · · · · · · · · · ·
PROCESS EQUIPMENT Coal-T-Ived Birlei#4	95-10 3%	6	0	c	à	0		
control equipment o Wat Saturbler 1	PERATING MODE	7		- <u>×</u>	¥			
DESCRIBE EMISSION POINT		0						
Energing was strek 60 de	evnetly	9						
J	·	10						,
HEIGHT ABOVE GROUND LEVEL HEIGHT RELATI	End L	11						
DISTANCE FROM OBSERVER DIRECTION FRO Start 300 End Start NIN	M OBSERVER	12						
		13						
DESCRIBE EMISSIONS Stan LULTING End		14						<u></u>
EMISSION COLOR		15						
Start N/ F End Attached D		16						
Start 100 End V		17						
DESCRIBE PLUME BACKGROUND /		18						•
Start SKY End		19		· · ·				
BACKGROUND COLOR SKY CONDITION SIAN BLUE WWW End Sian BKN	L End	20						
WIND SPEED WIND DIRECTION	ÎN	21						
Start 5 End Start NNC AMBIENT TEMP WET BULB TEM								
Start 39 End V	65	22						
Stack SOURCE LAYOUT SKETCH	Draw North Arrow	23						
Plume Sun 🔶	\bigcirc	25						
Wind	Ŭ	26						
(DA) Emission Point	nt	27			 •		<u> </u>	
	b	28						
		29						
		30						
(in the second s			AVER'SIN				L	
Observer's Pos	lition		aul	Ţ.	Si	itt		
		OBSE	aul	NGN/201	AE	y		DATE The Co
140.			NIZATION		er i	1 ^		117 Fevil
Sur Location Line	>		15AT	-UE	HL	<u>/ É (</u>	<u>Q</u>	
ADDITIONAL INPORMATION	70	CEAT	FIED BY	lir G	ital	3174	nd	DATE T SY

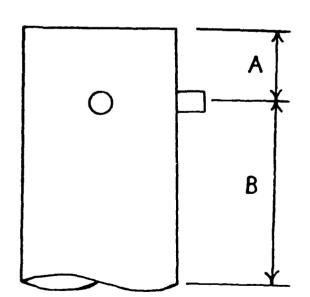
VISIBLE EMISSION OBSERVATION FORM

the control of the second s		VISIBLE EMISSION	OBSEF	IVATIC	DN FOI	MF		No.	THREE	5
GUIDANY NAME GUISSON ATTS HEAL	h Plas	ł		A L	elo g	9	START 13	TIME	END TH	WE.
STREET ADDRESS)		SEC	0	15	30	45		COMMEN	TS
			1	Φ	Φ	Φ	\dot{Q}			
CITY	STATE	ZIP	2	\mathcal{O}	Û	Ċ	ϕ	South	low at	1338:
CHISSON AFD	SOURCE ID	NUMBER	3	5	5	5	Ø			
	<u> </u>		<u> </u>	Ø	Ø	Ø:	6			
PROCESS EQUIPMENT Cral Fired Borley H	ц	OPERATING MODE 95-10070] <u>s</u>	Ø	Ø	СЬ	Ý,			
CONTROL EQUIPMENT	<u> </u>	OPERATING MODE	6	ψ	0	¢	ø			
. Wet Scrubber A			<u> </u>	6	<u>(</u>)	ψ	(¢	·		
DESCRIBE EMISSION POINT F. hey glass Stock bi	' du t	~		0	$\bigcup_{i=1}^{i}$	φ	Ø			
11-14-03			9	Ø	Ø	Ø	Ċţ			
HEIGHT ABOVE GROUND LEVEL	HEIGHT RE	LATIVE TO OBSERVER	10	0	Q	Ŷ	Ŷ		_	
95	Start 9			\emptyset	Q	4	0			-
DISTANCE FROM OBSERVER	Start	FROM OBSERVER	12	Ý	Ø	φ	9	· · · ·		
DESCRIBE GUISSIONS										·····
Sign LORT		BOPLET PLUME	15							
Stan Cortuny End	Attached	Detached 🗆	16							
POINT IN THE PLUME AT WHICH OPAC	End End	2 AMINED	17						<u> </u>	
DESCRIBE PLUME BACKGROUND			1 18							•
SIAN SKY BACKGROUND COLOR	End SKY CONDI		19						<u> </u>	
Start Blue End	Start ≤	CT End	20							
WIND SPEED Start 5 End V		CDON End	21		[]					
AMBIENT TEMP	WET BULB	TEMP RH, percent	22		•					
Start 39 End V	NP	65	23						<u> </u>	
Stack SOURCE LAY	YOUT SKETCH	I Draw North Arrow	24							
Sun 🔶		\oplus	25							
Wind			26							
	Emission	Point	27							
	KIR		28							
	1 mm		29							
			30							
			OBSE	RVER'S I	NAME (PE		5	reH		
		Pesition	OBSE	RVER'S S	SIGNATU	75 1	, A	F	DATE	Int' c
	6		ORGA	/ an					1/7/	0.000
Sunde	tion Line	· · · · · · · · · · · · · · · · · · ·		FIED BY	4F0				DATE	
ADDITIONAL INFORMATION		71	Ter	osti	- Cent	nl i	3.7-1		165	4159
			1		,				1 1	

(This page left blank)

APPENDIX G


Boiler 5, Scrubber B Field Data


(This page left blank)

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

Number of traverse points used: _20____

75

!

	PRE	LIMINARY SURVE (Stack G		EET NO. 1	
BASE		LANT			
BRISSOM DATE 10 FFEB 89		CAN TRA	- Ither	H PLANT	
DATE	, s	AMPLING TEAM			
SOURCE TYPE AND MAKE	_		<u></u>		
SOURCE NUMBER	·····	NSIDE STACK DIAMET	ER		
RELATED CAPACITY		60	TYPE FUEL	Inches	
DISTANCE FROM OUTSIDE		DE DIAMETER	.		
NUMBER OF TRAVERSES	-	UMBER OF POINTS/T	AVERSE	Inches	
2		10			
		ATION OF SAMPLING			
POINT	PERCENT OF DIAMETER	DISTANCE F INSIDE WA (Inches		TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inches)	
1				1.5	
2				4.9	
3				5,8	
4				13.6	
5				20.5	
6				39,5	
7				46.4	
8				51,2	
9				55.1	
10				58.5	
				_	

	· _ · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·	·····			

·		EY DATA SHEET NO. 2 emperature Traverse)	
BASE		ID FRB89	
GRISSOM BOILER NUMBER		1011001	
#5 SCRUBBA	C_B	· <u> </u>	
STATION PRESSURE			Inches
29,455 STACK STATIC PRESSURE			In Hg
STACK STATIC PRESSURE			In H20
SAMPLING TEAM			
TRAVERSE POINT NUMBER	VELOCITY HEAD, VP IN H20	√ Vp	STACK TEMPERATURE (⁰ F)
<u> </u>	.14	23 22	1/2
2	.14 .145	2-4 22	,13 ,14
2	.15	24 23	,14
Ч	,16	12 10	114
5	.195	5 10	,14
6	, 23	56	114
2	124	8 7	113
8	, 24	14 9	113
9	. 27	19 18	//3
10	.2.6	21 20	//3
		AVG = 15	
FAS= 21			
FAS= 21 Ts=113			
NOZ DIA = . 325			
		l	
	AVERAGE		
OEHL FORM 16	77		

APR 78

The matrix of the state of the sta		Sheet-			SIME	TOG46	1020	\$10P	10:01				
1 Развиду (2) Полиции (2) По					PARI		MPLING DAT		A H	2	67		
Полиции <	H Part	South		ATIC OF STA	CK CR055 1	ECTION		ç					Чe
Пали Пали <t< td=""><td>da O</td><td>69</td><td></td><td><u>م</u>ا</td><td></td><td>A</td><td>• •</td><td></td><td></td><td>[</td><td>титон р Х. Х</td><td>ress <</td><td>a R d</td></t<>	da O	6 9		<u>م</u> ا		A	• •			[титон р Х. Х	ress <	a R d
Политивни Предстативни продукт						ć		ປິ	•	L <u></u>	HEATER BO	X TEMP	
Митей полнени Порт Алект Пор			<i>J.,</i>			~~~				<u> </u>	190 190	TER SETTIN	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Хõ —	uuusea Le l	·!		, , , ,	1	110	Ŕ		<u>**</u>	PADE LEN	IGTH	
Ome Tigk leak of the service Tigk leak of the service Socy BLOC	190 Lech	UMBER					Preterko	19,17		لــــــل	3 Z Z	rea (A) O	u tj sd (t
Schic Al 19 Schic Al 19 Schic Al 19 Schic Al 19 1 0 10 10 0 10 0 10 0 10 0 10 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>707</td> <td></td> <td>, _</td> <td>P OL</td> <td>RACTION (Pd</td> <td></td>								707		, _	P OL	RACTION (Pd	
ETRE AMPLING HAPLE STACK TEMP VELOCITY OBFC AMPLE APLE VELOCITY OBFC AMPLE APLE													
Time Time <th< td=""><td>TRAVERSE</td><td>SAMPLING</td><td>1101610</td><td></td><td></td><td>VELOCITY</td><td></td><td></td><td>GAS h</td><td></td><td></td><td>AMPLE</td><td>IMPINGER</td></th<>	TRAVERSE	SAMPLING	1101610			VELOCITY			GAS h			AMPLE	IMPINGER
0 14 11 12 12 23 86 11 12 24 86 34 86 34 86 34 86 34 86 34 86 34 86 34 86 34 86 24 36 34 36 34 36 34 36 34 36 34 36 34 36 34 36 36 36 36 36 36 </td <td>POINT NUMBER</td> <td>TIME (min)</td> <td></td> <td>⊥(°F)</td> <td></td> <td></td> <td>PRESS.</td> <td>SAMPLE VOLUME (cu ft)</td> <td>NI NI</td> <td>-</td> <td></td> <td>TEMP</td> <td>OUTLET L TEMP</td>	POINT NUMBER	TIME (min)		⊥ (°F)			PRESS.	SAMPLE VOLUME (cu ft)	NI NI	-		TEMP	OUTLET L TEMP
3 80 11 124 2:4 14 12 7.0 164 125 2:3 2:4 13 10 125 10 125 2:4 15 12,8 10 12 10 12 16 10.8 10.1 10 11 11 17 13 10.1 11 11 11 18 10.3 10.5 11.2 11.2 11.2 19 11.1 11.1 11.1 11.1 11.1 10 10.1 11.1 11.1 11.1 11.1 11 11.1 11.1 11.1 11.1 11.1 11 11.1 11.1 11.1 11.1 11.1 11 11.1 11.1 11.1 11.1 11.1 11 11.1 11.1 11.1 11.1 11.1 11 11.1 11.1 11.1 11.1 11.1 11 11.1 11.1 11.1 11.1 11.1 11 11.1 11.1 11.1 11.1 11.1 11 11.1 11.1 11.1 11.1 11 11.1 <td< td=""><td></td><td>C</td><td>مارا</td><td></td><td></td><td></td><td>2.39</td><td>106.9187</td><td>87</td><td></td><td>) </td><td>2 t t t</td><td>4</td></td<>		C	مارا				2.39	106.9187	87) 	2 t t t	4
6 6.0 101 123 2341 87 87 87 1 12 13.1 106 12.5 10 12.5 2.35 1 12 13.1 106 12.5 10 12.5 10 1 12 13.1 108 10 12.5 10 2.55 24 11.1 11.1 11.1 11.1 11.1 11.1 11.1 1 13.1 108 12.5 10 12.5 10 2.55 284 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 20500 10.1 2.15 2.15 2.15 2.15 2.15 20500 10.1 2.15 2.15 2.15 2.15 2.15 20500 11.2 11.1 1.15 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1	\$	3	8.5	111		,24	ک .لر		87			249	цq
9 8.1 104 1.235 2.236 91 67 81 271 11 2 1.5 1.6 1.24 1.25 2.51 91 87 251 11 1.5 1.6 1.24 1.24 2.51 1.24 2.51 1.24 15 1.24 1.24 1.24 2.15 2.15 2.15 2.15 2.15 2 1.24 1.24 2.51 1.24 2.51 2.15 2.15 2.15 3 3 1.1 1.1 1.1 1.1 1.1 2.15 2.15 2.15 3 3 1.1 1.1 1.1 2.15 2.15 2.15 2.15 3 3 2.6 1.1 1.12 1.21 2.25 2.4 3 3 2.6 1.1 1.12 1.13 2.1 1 1 1.1 1.1 1.13 2.1 2.6 1 1 1.1 1.13 1.13 2.1 2.6 1 1 1.1 1.13 1.13 2.1 2.6 1 1 1.13 1.15 1.13 2.1 2.6	б	و	6.0	104		. 23	5.41		89	7		242	56
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	÷	o-!	9.1	104		, 225	2,36		10		-	102	اك
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n-	14	200	501		. 245	1 () 1		55		+		75
\mathbf{A} 1 $\mathbf{\tilde{z}}$, $\mathbf{\dot{v}}$ 108 1.27 $\mathbf{z}_{\mathbf{c}}\mathbf{\tilde{s}}$ $\mathbf{\dot{v}}1$ $\mathbf{z}_{\mathbf{c}}\mathbf{s}$ $\mathbf{\dot{v}}1$ $\mathbf{z}_{\mathbf{c}}\mathbf{s}$ $\mathbf{\dot{v}}1$ $\mathbf{z}_{\mathbf{c}}\mathbf{s}$ $\mathbf{\dot{v}}1$ $\mathbf{z}_{\mathbf{c}}\mathbf{s}$ $\mathbf{z}_{\mathbf{c}}s$	95	<u>n</u> az	2.0 10.8			-12	21.2		6 0 7		+	11/1	23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	276	12.4	801			201		41		22	292	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	σ	क्ते	12.8	111		121	2.84		48		10	264	2
30340 9.0 110 119 2.00 42 24 30 9.0 110 117 118 11 21 26 30 9.0 110 117 118 101 92 24 30 9.4 118 1.18 1.18 101 93 24 30 12 1.18 1.18 101 93 24 30 13 1.18 1.18 102 93 24 19 13 1.18 1.18 101 111 111 19 13 1.18 1.18 105 93 24 10 19 101 1.18 101 101 111 11 113 111 111 111 111 111 11 113 12 12 12 12 11 13 13 13 13 16 10 11 13 13 13 13 16 10 11 13 13 13 10 11 11 11 13 13 10 10 10 10 11 13 1	0	હ	11.2	113		11;	231	× 236.835	5:5	-	40	292	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X	30506							\rightarrow				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- <	Or	0,0 0	<u>م</u>		21.	005	* 238.836				292	2 (
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	der										24	402	*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	20	5	6/1		8-	88.1		20		20	2975	2
13.9 13.9 13.9 13.9 13.9 13.9 13.9 10.1 1 1 1 1 1 1 1 1 1 24 1 1 1 1 1 1 1 1 24 1 1 1 1 1 1 1 1 24 1 1 1 1 1 1 1 1 24 1 1 1 1 1 1 1 1 2051 1 1 1 1 1 1 1 1 30510 1 1 1 1 1 1 1	S	<i>e</i>	9.9	ž		120	50.2		50)		94	266	51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	و.	Š	13.9	132		121	しいて		ios		<u>15</u>	العلا	52
Zul 1.21 2.82 1.61 9 2.15 Zul 1.11 1.11 1.11 1.11 1.11 Zul 1.11 1.11 1.11 1.11 1.11 Zoster 1.01 1.01 3.06 3.06 3.06 Zoster 1.01 1.01 1.01 1.11		<u>0-</u>	8.21	ş		[21	22		106	~	9	トゥ	र
30570 11.0 11.0 11.0 1.0 3.06 × 200.392 101 91 2.08	, 007	78.	1.2	2		لغ	28.5		רסי		9	2972	22
30514	5 Q	1	1.1.	61	T	007		192 AL	50			Xar	
	X	30570				- 1 6 7							
				V									

	AIR POLLU	TION PARTICUL	ATE ANAL	YTICAL	DATA	<u> </u>
GRISSO		FEB	89		UN NUMBER	
BUILDING NUMBER	PLANT		BOIL		5	UBBER B
	EM	FINAL WE (gm)		INITIA	L WEIGHT	WEIGHT PARTICLES (@m)
FILTER NUMBER		0.40	45	ø		0.1190
ACETONE WASHINGS Helf Filter)	Probe, Front	100:0 100.06	622 38	100	¢497	0.0125
BACK HALF (If needed	D)					
		Total We	ight of Particu	lates Colle	c ted	0.1315 0.1343 am
II.		WAT	ER			
TI	EM	FINAL WE (gm)		INITO	AL WEIGHT (@m)	WEIGHT WATER (gm)
IMPINGER 1 (H20)		246	,.5	2	00.0	46.5
IMPINGER 2 (H20)		217	.Ø	20	0.0	17.0
IMPINGER 3 (Dry)		7	7,5		0.0	7.5
IMPINGER 4 (Silica Ge	1)	210,	4	20	ون	10.6
			ight of Water (Collected	_	10.6 71.6 m
111.	Г	GASES	1	T		
ITEM	ANALYSI5	ANALYS15 2	ANAL	YSIS 3	ANALYSIS 4	AVERAGE
VOL % CO ₂	7,2	7.3	7,	2		7.2
VOL 7 02	11.8	11.8	12,	¢		11,9
VOL % CO						
VOL % N2						
	·,	Vol % N ₂ = (100% • %	co ₂ . % o ₂ -	% CO)		
AMD FORM 651						

AND FORM 651 REPLACES OFHL 20, MAY 78, WHICH IS OBSOLETE

			ч	in Hg					11 bs	G	IMPINGER	OUTLET TEMP TEMP OF		51	SN	ß	G	55	51	3	رم	V	اولو	و	9	38	240	22	2	50	51		
		Aubient temp		154 - HE 39. 455	HEATER BOX TEMP 348 £ 25	PROBE HEATER SETTING	PTOBE LENGTH	NOZZLE MEX (MTDIA	84-	GAS FRACTION (Fd)	SAMPLE	BOX HJ TEMP MP OF		348	ાન્દ	श्रवत	292	15	500	012	270	V	255	252	342	157			235	श्मर	してわる		11 A9A
		- Xubie		*	HEATE	PROBE	990rd	NOZZ	ර රි	DRY G	TEMP			98	99	100	160		105	٦٩	(0)	X	50	60	3	2		20	106	201	-0C		
	7.07				م			,	ą		GAS METER	v A A A B A C B A C B C C B C C B C C C C									_	X											Ņ
	SHa =			ta E	Ts .			ا ومعلم	15" Hg good		G	IN IN	8	10)	104	106	Xo I		<u>الم</u>	וג	2	-	-+	2	2,		?\ <u>`</u>		Ē	113	51		1120
	7		460	- 5130-F4-Co-A 2	ບໍ		Jan Co	ck IS"Hy	CK 15"H	NP =- 19	GAS	SAMPLE VOLUME (Ci ft)	£14.008 ¥				_				* 283.285		\$ 203.885								HS1. 908 1		
51:1 10	SAMPLING DATA SHEET	EQUATIONS	°R = °F + 4			2	+++		Kertleek	Static	ORIFICE	OIFF.	2.43	9. FO	2.50	1. L	89.2	40.0	2.85	2.79	1.39	Ň	2.17	1015	9 [5.6	320	21/12	2.42		3.46		10-10-
STOPI	ΛTE	ECTION	<	r f		<u>}</u>					VELOCITY	PEAD (Vp)	,23	くまく	સં	1235	542	97	92.	255.	1215	X	4	511	200	911		22	121	•3	ىرى		
	PARTI	K CROSS			<u> </u>)					TEMP	(Ts) (0R)										X											Lai
		SCHEMATIC OF STACK CROSS SECTION			P.C.)) 19	:				STACK TEMP	H) ^(oF)	113	511	0	100	900	ar V	10	10	202	X	106	0	2		911	211	113	211	112		Ň
	しった 1		\$, 					1 France	(iNH20)	4.0	ナナ	4'S	4. 8.	010		و	<u>و</u> ، (5.8	X	5,3	23	2 - 1	20	ۍ د و	. 5-9 -	1.5	ې م	8.1		- : D(
STRRT?		Roll- 5	SCR. BURK	89		AFA	UMBER	N AF NUMBER	+		SAMPLING	TIME (min)	0	3	و	5		~~	7	ネ	لدو	X	D		au D	~		20	K	¥	5	30.300	a A
		MBER	2	ଏମ୍ବ ମ	PLANT	TASE	SAMPLE BOX NU	METER BOX NUM	Que/Que	ບິ	TRAVERSE	POINT		2	n	→P	~- ^-	٩٢	50	a	0	\mathbf{x}		N	 -	+		21-	8	ø	0		DEHL FORM
i												1	80)	. 4					*	-	_ _											-

	AIR POL	LUTION PARTICUL	ATE ANALYTICA	L DATA	
ASE PRISS	M IND	DATE FEB 8	ī9	RUN NUMBER	
	PLANT		BOILER	Sarua	
_	ITEM	FINAL WE (gm)	IGHT INI	TIAL WEIGHT (gm)	WEIGHT PARTICLES
FILTER NUMBER		0.363	39 0	.2883	0.0750
ACETONE WASHIN Hell Filter)	GS (Probe, Front	2 102: 2	102 102	·2.42\$	0.0154
BACK HALF (If ne	oded)			,	
		Totul Wei	ght of Particulates Col	llected	0.0904
•		WATE FINAL WE	<u>-</u>	TIAL WEIGHT	WEIGHT WATER
	ITEM	(gm)		(gm)	(gm)
IMPINGER 1 (H20)		23	7.0 Z	10.0	37.0
IMPINGER 2 (H20)		218	20 20	0.0	18.0
IMPINGER 3 (Dry)		5.	5	0.0	5.5
IMPINGER 4 (Silica	Gel)	213	.8 20	0.0g	13.8
		Total Wei	ight of Water Collected	U	13.8 74,3 a
16. ITEM	ANALYSIS 1	GASES ANALYSIS 2	(Dry) ANALYSIS 3	ANALYSIS 4	AVERAGE
VOL % CO2	6.3	6.2	6.1		6.2
VOL % O2	11.5	11.6	11.7		6.2
VOL % CO					
VOL % N2					
	, 4_	Vol % N2 = (100% - % (L		

AMD FORM 651 REPLACES OEHL 20, MAY 78, WHICH IS OBSOLETE.

	= 2.67	YMBIENT TEMP	STATION PRESS		THEATER BOX TEMP	IT ING	150 PROBE LENGTH		NOZZLE MEN (A) P/A	ty bs nec		DRY GAS FRACTION (Fd)	$\left \right $	IN AVG OUT BOX OUTLET IN AVG OUT BOX OUTLET IL (Tm) LTOF, UZ POF, AUL PEN	102 246	105	106 105 255 45	SS 701	103 221		(Q)	103 255	254	Ņ		102 252				102 201	102 255	102 253	253	
2:50 5:00:	SAN	EQUATIONS	$^{0}R = ^{0}F + 460$	[5130.F¢Co.A] ²	1		_			Rostleak ck 18"Hr.		Shahi NP = 19		DIFF. SAMPLE PRESS. VOLUME	2.44.4	2.52	3.40	2,50		09.5					*	-		-					315	16.76 +
しいて	2:48 PARTICULATE	SCHEMATIC OF STACK CROSS SECTION	ۍ ۲	1										(oF) (Ts)			101	105	901	-+	101	211			21° 103 1.1	1 201		23	151				124 1.3	
STHRT		F.	#3 Scrubber B			BASE	Crission AFB	SAMPLE BOX NUMBER	Nut CC A A I	Vintech #	Qw/Qm	3		TRAVERSE SAMPLING STA POINT TIME PREA NUMBER (min) (10 F				4 40	<u>{</u>	Σ.					0	3	3	5				1		A LA

	AIR POLL	UTION PARTICUL	ATE ANALYTICA	L DATA	_
ASE O		DATE	•	RUN NUMBER	
L'RISS (M IND	FE	889	THRE	Ę
	PLANT	PARTICU	BOILSE	Sceut	BEER B
	ITEM	FINAL WE	IGHT INI	TIAL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER	·····	0,35		.2868	0.0676 0.0686
ACETONE WASHING Hall Filter)	35 (Probe, Front	105.34	3931	,3753	0.0178
BACK HALF (If nee	ded)	-			
		Total Wei	ght of Particulates Co	llected	0.085-4
		WATE	R	······································	······································
	ITEM	FINAL WE (gm)	IGHT INI	TIAL WEIGHT (gen)	WEIGHT WATER (@m)
IMPINGER 1 (H20)	······	245	5 2	00.0	45.5
IMPINGER 2 (H20)		216	.0 20	10.0	16.0
IMPINGER 3 (Dry)		5		0.0	5,5
IMPINGER 4 (Silica (Gel)	212.	-	0.0g	12.7
		Total Wei	ght of Water Collected	0	79.7 m
•	······································	GASES (Dry)		······································
ITEM	ANALYSIS 1	ANALYSIS 2	ANALYSIS 3	ANALYSIS	AVERAGE
vol % co ₂	6.0	6.0	6.0		6.0
VOL - 02	11. 4	11.4	11.4		6.0
VOL % CO					
VOL % N2			· ·		
		Vol % N2 = {100% - % C	02 - 5 02 - 5 CO)		

~		000	21/471-		6 23 1			
Run#1							No	Ren#1
COMPANY NAME COVISSON POWE Plan STREET ADDRESS Bldg # 223	nt			I DATE		STAHT	11MF	EEN() JIMP 1
STREET ADDRESS)	SEC	0	15	30	45	·	COMMENTS
Blag H == 0			10	Cit	05	8)		· •
V				3	1 in	1		
Grissen AFB	STATE ZIP In 46971		1.	<u>}</u>				
PHONE (KEY CONTACT)	SOURCE ID NUMBER		17-	1/	N	$\left(\begin{array}{c} c \\ c \\ c \\ c \\ \end{array} \right)$		
		_ +	$\left \frac{\zeta}{\zeta} \right $		¥.	$\int \mathcal{I}$		
PROCESS EQUIPMENT	OPERATING MODE	5	$ \mathcal{P} $	14	4	ý.		
CONTROL EQUIPMENT	OPÉRATING MODE	- 6	17	4	4	Y		+ islan-
CONTROL EQUIPMENT	>	<u>'</u>	12	(\mathcal{O})	<u>'</u> ?'	$\mathcal{L}^{\mathcal{P}}$	<u>ن، اخ</u>	+ 1035
DESCRIBE EMISSION POINT	l'a	7	(7)	.7,	1'	17	·	iling time
- In illen stice	· 12	- 9	$\vec{\mathcal{Q}}$	19.	2			1041
J		10	1	7.	Y	1.		,
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER	11		÷.				
DISTANCE FOM OBSERVER	DIRECTION FROM OBSERVER	12	11		(2)	5		
Stan - 101- End	Start NA End	13	 }`	7	- <i>F</i>			
DESCRIBE ENISSIONS Stan (2) they	End 🖌	14		<u> </u>	 			
EMISSION COLOR	IF WATER DROPLET PLUME	15		<u> </u>				
Stan inclohim End	Attached C Detached	1		<u> </u>	<u> </u>			
POINT IN THE PLUME AT WHICH OPA	CITY WAS DETERMINED		<u>}</u>	<u> </u>				
			} -					
start DKV	End			 				
BACKGROUND COLOR	SKY CONDITIONS	19						
SIGN BUCK END L	Start (F End -	- 20	ļ	 				
Start IC End	Stan 70 End	21						
AMBIENT TEMP Start 18 End	WET BULB TEMP RH, percent	22						
	AYOUT SKETCH Draw North Arrow	23		L				
Stack SOURCE L		24						
Sun 🔶	\bigcirc	25						
Wind		26						
		27						
		28						
		29			}			
13/ 10-1		30						
			RVFR'S			<u></u> _		
, K	Observer's Position	11 2	(`	- I ,	\rightarrow	coff	-	
		OBSE	RVER'S	SIGNATU		·		DATE
	100	ORGA	NIZATIO		• • • •	<u> </u>		10 7. 17
Sun Lo	Line		ij		ie li	-	ic	• · · · · ·
ADDITIONAL INFORMATION			FIFD UY	mR-	1/2	aster 10:0	K	DATH 5-10
						T LA MI		
	8	41			• -			1 1 1 1

Ren # 2	VISIBL	E EMISSION (DBSER	IVATIC		RM		No	END TIME
CONDUCTV NAME				RVATION			START	TIME	END TIME
6n 33cm Pore	1 Plad		iC	1-2	17		12	-18	1230
STREET ADDRESS Blog # 22	3		MIN	0	15	30	45		COMMENTS
			1	6	Ø	Ø	Ø		
CITY Gissom AFB	STATE 2 IN	1197/	2	P.	Ø	φ	Ø		
PHONE (KEY CONTACT)	SOURCE ID NUMBER	-16171	3	Ø	Ø	1	Ø		
L	<u> </u>		4	Ø	$ \psi $	<u>(†)</u>	ϕ		
PROCESS EQUIPMENT. BUTCH	OPERAT ウィ	TING MODE, 5-10010	5	\$	D	C,	$ \emptyset $		
CONTROL FOLIPMENT	OPERAT	ING MODE	6	Į,	Ø	¢	Q		
Wet Services B	<u></u>		7	Ŷ.	\mathcal{O}	Ø	φ		
DESCRIBE EMISSION POINT Fibrig an Stack 6	"d'ander		8	Ø	Ø	ϕ	0		
			9	Ţ.	Ø	0	0		
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO	OBSERVER	10	<i>q</i> :	Q). D	G: L'	Ţ.		
DISTANCE FROM DESERVER	HEIGHT RELATIVE TO Stan 95 H EI DIRECTION FROM OB	nd V	12	$\frac{\langle \cdot \rangle}{C}$	<u> </u>		ų.		
son 300 FT End		nd	13	<u>¥</u>	Ø	<i>Q</i> ,	φ		
DESCRIBE EMISSIONS	· · · ·		14		 				
Sian Utimer EMISSION ODLOR	End V	2UME	15						
Stan NIT End	Attached D	Detached 🛛	16				<u> </u>		
Start 100			17						
DESCRIBE PLUME BACKGROUND	1/		18						•
Stan 210 BACKGROUND COLOR	End SKY CONDITIONS		19						
STAR BLUE END	Start CIC Er	nd	20						
Start I End	Start SLV E	nd	21						
AMBIENT TEMP	WET BULB TEMP	RH, percent	22						
		Draw North Arrow	23						
with C		$\overline{\mathcal{A}}$	24				ļ		
Sun 🔶 Wind 🛌 1	-	\bigcirc	25						
			26						
	Emission Point		27						
	С — Ст М		28						
	:		29 30				! 		
					VAME (RS	2 MT	\		
	Deerver's Position		I F	Jan			Sic	\mathcal{H}	
			OBSER	au	SIGNADU	REST	12		DATE Feb89
	40** 	\geq	ORGA	<u> </u>		EH.	1/3	CQ,	
ADDITIONAL INFORMATION	ítion Line		CERTI		r U	1 10	16	n	DATE
		85	[]LY	is Air	- Cont	tol B	لمب يري		16×pt 80

VISIBLE EMISSION OBSERVATION FORM No. K OBSERVATION DATE 10 Feb 89 START TIME COMPA Power Plans 1459 SEC STREET 30 ٥ 15 45 COMMENTS Ø Ú Ø 1 Ø Ó \checkmark 2 CITY STATE ZIP Ø "4697 (nisson Ø Ø Ø 3 Ø PHONE (KEY CONTACT) SOURCE ID NUMBER Ø Ø 4 Ø Ø. Ø Ċb Ø B Coal - Fired Boly 5 OPERATING MODE 95-100% Ø Ø Ó Ø 6 CONTROL EQUIPMENT Wet Scrubber OPERATING MODE Ø 7 Ø Ø đ DESCRIBE EMISSION POINT Fiberglass Stack Ø Ø Ċ Ø 8 60" deante Ø Ø Ø 9 (h Ó Ø Ø 10 Ò HEIGHT ABOVE GROUND LEVEL HEIGHT RELATIVE TO OBSERVER Stan 75 End В t) Ø, DISTANCE FROM OBSERVER 11 Ċ, DIRECTION FROM OBSERVER D 0 Ø Ø 12 Start 300 End Start Ν End U 13 DESCRIBE EMISSIONS Stan Lefting - Steam EMISSION BOLOR 14 End IF WATER DROPLET PLUME 15 Start N/D End Attached POINT IN THE PLYME AT WHICH OPACITY WAS DETERMINED Detached 🖸 16 Stan 180 End 17 DESCRIBE PLUME BACKGROUND Stan DE SKY BACKGROUND COLOR 18 \checkmark End 19 SKY CONDITIONS sur Blue End V Start End 20 WIND SPEED WIND DIRECTION Start 10 start SW 21 End V End AMBIENT TEMP WET BULB TEMP RH, percent 22 Start 240 50 End 23 SOURCE LAYOUT SKETCH Stack with O Draw North Arrow 24 Sun 🔶 25 Wind -26 Emission Point 27 28 29 30 OBSERVER'S NAME (PRINT) xott Paus S Position DATE _____ OBSERVER'S SIGNATURE in ORGANIZATION Sun Location Line CERTIFIED BY DATE 16: ADDITIONAL INFORMATION Texus Air (86

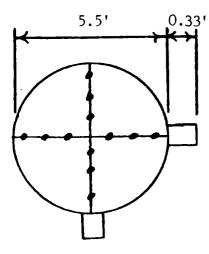
APPENDIX H

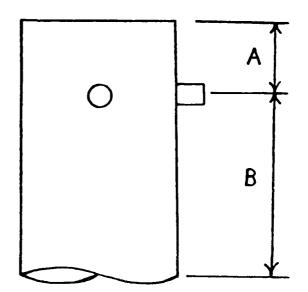
Boiler 5, Bypass Stack Field Data

(This page left blank)

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

 Stack ID: BYPASS
 Stack diameter at ports: 5.5 (ft)


 Distance A (ft) 11.5 (duct diameters) 2.1


 Recommended number of traverse points as determined by

 distance A: 12

Distance B (ft) <u>39.5</u> (duct diameters) <u>7.2</u> Recommended number of traverse points as determined by distance B: <u>12</u>

Number of traverse points used: <u>12</u>

	P		Geometry)	T NO. 1
BASE Ch3SUM	·	PLAND POWER P SAMPLING JEAM	la f	
DATE 2 Fal C	29	SAMPLING TEAM	ing	
SOURCE TYPE AND MAK		ULIL		
BOURCE NUMBER	stack	INSIDE STACE DIAME	TER	·
RELATED CAPACITY		66	TYPE FUEL	Inches
			COAL	
DISTANCE FROM OUTSIE	ØØ			Inches
NUMBER OF TRAVERSE	s -	NUMBER OF POINTS	RAVERSE	
	L	OCATION OF SAMPLING	POINTS ALONG T	RAVERSE
POINT	PERCENT O DIAMETER		ALL	TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inches)
				6.9
2				13.7
3				23.5
4				50.5
5	<u>+</u>			60.3
6				1.7.1
	 			
				A
				Assu 1120-6% MW-29
	<u> </u>			MW-29
				·······
			`. 	
	<u> </u>			
	+			
	L			

.

		EY DATA SHEET NO. 2	
BASE	(Velocity and 1	emperature Traverse)	
Grissum AF BOILER NUMBER	B, In	Feb 89	
By-Pass S	stack		
INSIDE STACK DIAMETER			Inches
STATION PRESSURE	17		
STACK STATIC PRESSORE			In Hg
			In H20
OEHL/EC	<u>2</u> Q	1	T
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	V X6 CX	STACK TEMPERATURE (⁰ F)
<u> </u>	, 05	p¢	360
2_	.09	54	300
3	, 13		38%
4	.15	47	308
.5	. 15	1012	385
6	.13	\$ ¢	309
		ANG ## 5.0	
			(1
			C. 5.
			PRS-23/
			PPS-23/ Ts-345
			<u></u>
		<u> </u>	0-,3929
		 	
		+	+
	AVERAGE		
EHL FORM 16)1	

			- 5,0-	PARTICU	LATE	SAMPLING DATA SHEET	\triangleleft	« ; 2	10			
RUN NUMBER	\mathbf{n}	SCHEMA	SCHEMATIC OF STACK CROSS SECT	CK CROSS 3	ECTION	EQUATIONS				AMBIEN	AMBIENT YEMP	
H C	221/14c1					$^{\circ}R = ^{\circ}F + 460$	0			STATIO	STATION PRESS	oF
17 19.				/		-	5130.Fd.Co.A			1.2	110	in Hg
PLANT				(Ů	Ts . Vp		HEATER BOX	R BOX TEMP	
		۲ ح ا				ł	1			248	248 2 35	oF
	4 7 4	J				Ē				104		
SAMPLE BOX NUMBER	V TTC					1,40+	fork			PROBE	PROBE LENGTH	
1). Lech						<u> </u>		1,1	0	9 9 		
METER BOX NUMBER	UMBER		٢	<u> </u> -a		115 16 C				NOZZLE	ZZLE AREA (A)	1
₩Q/₩Q				7		1 cu H C		511.31	أعر	C ^b But		•
ပိ						Stal.	21: - 07			DRY GAS	S FRACTION (Fd)	Ģ
TRAVERSE	SAMPLING	10410	STACK	STACK TEMP	VELOCITY	ORIFICE	GAS	GAS	GAS METER TE	TEMP	SAMPLE	IMPINGER
POINT	TIME (min)	Net of the	HI ^(oF)	(Ts) (oR)	HEAD (Vp)	DIFF.	SAMPLE VOLUME (CI ft)	IN IN	S A C A C A C C A C C C C C C C C C C C	OUT TOF	BOX TEMP (0F)	OUTLET TEMP ALA PORT
-	0	<u>н</u> .9	301		00	-	オート	49			<u>ا ا</u>	49
~	5	6.0	306		101	1.20	315	₩		47	238	52
3	01	2.1	303	•	• د.الر	1.35		<u>ک</u> ا		L H	231	SS
J	15	וו.ע	ナス	•	٥١.	1.81		ઝ		8 4	241	56
ა	oe	2.4.	301		01	1.81		St		3	3to	29
و	کد م	0 0)	30k	·	01.	1.9		54		<u>م</u>	541	ومه
	305 m						¥ 433 ,032					
Y	X	X	X	X	X	Ň	VI	X	X	Ň	N	Ň
	0	13.1	252		، د او	1.10	¥ 433.035	7		Ŧ	232	ī
	ຄ	1.3	293	T	2801	1.56		3		÷	235	Ð
Ct of 3	0	(1:10) (· 8	260		21	1.866	* 431,416	2		49	235	25
+		e. e	1,82	-	.ck	48	× 440.005	25		; ; ; ; ; ;	732	4
n.	o, Oc		R		5001	1.21		54		20	230	Ŧ
و	2	7.9 15:11	0146		590.	27.1		6		£	23.2	47
	20201505						* 451, 140					
	N-			TA.	<u></u>	24		, 139	1-			- 13, 1010
				29te			, , , ,			2	2#	
												34-27-26
								_				

	AIR POLL	UTION PARTICU	LATE ANA	LYTICAL	DATA	
ASE ANSE	AFB	IL FER	5 59			ONE
	5				~ ~	YPASS
TOWER	TEANT	BADTIC	ULATES	Len		7
•	ITEM	FINAL W	EIGHT	INITI	AL WEIGHT (@m)	WEIGHT PARTICLES
FILTER NUMBER		.45	96		2898	0.1698
ACETONE WASHINGS Hall Filtor)	i (Probe, Front	95.6	105	9 95	. 5190	0.0915
Filter #2	•••	.382	20	Ø.2	2945	0.0875
		Total W	eight of Partic	ulates Colle	ic ted	0,3488
l			TER			WEIGHT WATER
·	ITEM	FINAL V (Øn		INIT	AL WEIGHT (gen)	WEIGHT WATER (gm)
IMPINGER 1 (H20)		232	,5	24	0.0	32.5 325
IMPINGER 2 (H20)		21	2.0	20	0.0	12.0
IMPINGER 3 (Day)			0		0.0	0
IMPINGER 4 (Silica G	•1)	206	Ø	20	00.0	6.0
			eight of Water	Collected		50.5
<u>{</u> [ANALYSIS	GASE ANALYSIS	S (Dry)	YSIS	ANALYSIS	
ITEM	1	2		3	4	AVERAGE
VOL % CO2	9.0	9.0	9.	0		9.0
VOL % 02	9.2	9.2	9.	2		9.2
VOL % CO						
VOL % N2			<u> </u>			
		Vol % N2 = (100% - %	. co2 - % 02 -	% CO)		_

	op A Hai	AP OF	in sq ft	ę	IMPINGER OUTLET TEMP ILL FOR	4)	45	42	51	19	X	51	÷	32	92	2		16.0570	12
AMBIENT TEMP	STATION PRESS	PROBE HEATER SETTING PROBE HEATER SETTING PROBE LENGTH Q	LID ZOS	64 GAS FRACTION (Fd)	SAMPLE BOX TEMP	<u>, 33</u>	235	238	232	19	X	234	238	9 N2	246	42		F3- #1	
	STATI 29 HEATI	PROBE H	NOZZLE CP	DRY GAS	TEMP OUT DUT	5	35	St.	32	ŝ	X	۲	22	60	6	62		Total	
r 2.01	L. VP	4 - 6	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(GAS METER 1 IN AVG (Tm) (oF) (oR)	╋╌┼	512	SV	Q Q Q	•	X X	54	62 62	<u>رم</u>	64	61	1.212.1		
ST of sheet Δ_{α}	$\begin{bmatrix} 7 + 460 \\ \hline 5130 \cdot \mathbf{F} + \mathbf{C}_{0} \cdot \mathbf{A} \end{bmatrix}^{2} \cdot \frac{\mathbf{T}_{m}}{\mathbf{T}_{s}}$	J == 12	ck 15" 144		GAS SAMPLE VOLUME (cu ft)	451.64				467,731	X	469.892				*486.026		TPSTS -	
1:05 SAMPLING DATA	$^{\circ}R = ^{\circ}F + 460$ $H = \left[\frac{5130 \cdot 1}{5130 \cdot 1} \right]$	pilet	Arcleak A	Static A	ORIFICE DIFF. PRESS.	<u>k El.</u>	92-1	1,60	1.67		X	. 43 x		1.46	92-	1. 01		- 1.36	
					VELOCITY HEAD (Vp)	5	101	. 087	ۍ د د ن		X	50	2 C	51.0	106	101		Ħ	
12.2 0 12.50 PARTI		\frown		1	TEMP (Ts) (or)						X	1						82	
START 12.20 12:50 PARTICULA			اح		STACK TEMP	219	287	182	242	3	X	240	82	510 510	02,	3		1/2	
		4			HIT LEVE	4.0		10,1	75		X	24	ه من	24	1.1	T		= 58	
	By Bass	NCO MUER	MBER (SAMPLING TIME (min)	0	50	15	94	30500	X	0	<u>م</u>	<u>ە</u>	8	ନ୍ଥ ଜୁନ୍ମ ଜୁନ୍ମ		K	
	HZ PANT	BASE EXALSSON DEB SAMPLE BOX NUMBER	Numbech # 1 METER BOX NUMBER Numbech # 1 Ow/Om	კ	TRAVERSE PJINT NUMBER		0 r	Ŧ	S	2	X		(14)=	S.	٩			

	AIR POLL	UTION PARTICUL	ATE ANA	LYTICAL	. DATA	
ASE		ATE		T	RUN NUMBER	
Grizsom 1	AFB, In	12 Feb	89 SOURCE NU		TWO	·····
Bldg ZZ	-3 - Power Pl	{	Boile		By	Pass
0		PARTICU	LATES	· · _ · · · · · · · · · · · · · ·	+	
	ITEM	FINAL WE (@m)		INIT	IAL WEIGHT	WEIGHT PARTICLE (gn)
FILTER NUMBER	A	.440		Ų.	294	0.1461
ACETONE WASHING Half Filter)	S (Probe, Front	105,4	1356 1698	3 105.	0880	0.0470
File	ter B	,420	2	Ċ.	2910	0,1292
		Total Wei	ght of Partic	ulates Colla	ected	0.3223
	·····	WATE	R			T
	ITEM	FINAL WE (gm)	ібнт	INIT	IAL WEIGHT	WEIGHT WATER (gen)
IMPINGER 1 (H20)		229	7.5	26	0.6	29.5
IMPINGER 2 (H20)		216.0	00	2.0	6-Ø	16.0
IMPINGER 3 (Dry)		.	0		ф. С	2.0
IMPINGER 4 (Silica (iel)	211.2	2	201	6.6	11.2
		Total Wei	ght of Water (Collected		
		GASES	(Dry)			
ITEM	ANALYSIS	ANALYSIS 2	ANAL	Y515 3	ANALYSIS	AVERAGE
VOL % CO2	10.6	10.6	10	.6		10.6
VOL 3 02	7.6	7.8	7.	8		10.6
VOL % CO						
VOL % N2			`.			
		Vol % N2 = (100% - % C			•	

				_			_	_			_		_									_				-	-		-					····
			40	in Hg		oF	2				t) ba		6	IMPINGER	OUTLET TEMP	14	36	40	46	SS	29		V	19		14	ŧ	3	J				0470	4970
		AMBIENT TEMP	SS JU DIE	1.245	HEATER BOX TEMP	346 1 2	HEALER SETT	PROBE LENGTH	0	NOZZLE AREA (A)	17	+	DRY GAS FRACTION (Fd)	SAMPLE	43 TENP	238	othe	242	242	242	142		V	730	CHIC CHIC	332	74	212	2 2 2 2				#1 17.0	112 1
		AMBIE	STATION	29.	HEATE	हे		PROBE	96	NOZZI	ද ව	ま	08 × 6	dW	OUT DoF)		69	69	70	07	5		X	2	300	12	2	5	ř				Ĩ	4
	2.67				n .				all.	الم من	and.			GAS METER TEMP	SE SE SE SE SE SE SE SE SE SE SE SE SE S								X								┝╼╄		+	1 otal
	.، ړ			Tm Li	Ts .				14 40	لا م لا لا		\mathbf{b}		GA	IN (OF)	68	70	2	さ	*	74		X	12	1/2	18	80 80	35	4.1				. וחוויה ר	
Stul	знеет 人			5130.F&Cp.A	ບິ	I	(Soort		n l	- Ly	7		GAS	SAMPLE VOLUME (CL (T)	487, 036						504.083	N N	enc 110	1.1.1.2					1222,560			חר	S
3.C b	SAMPLING DATA SHEET	EQUATIONS	°R = °F + 460	u _ [5130-1		ľ	Ş	tiot	Are leak of		Posteck CN	SOUT BLOW	Static DP	ORIFICE	PRESS.	, 47 *	1.18	94.1	+1.1	1.82	19.1	75	V	1 2 1			1, 39	1.47	1.19	T			4	1.5.1
	TE	ECTION		- 1			_	_				n N		VELOCITY	HEAD (Vp)	701	a0.	520	8	770,	580'		X X	1.5	780	5	10.	10.	90			1	11 - 1 th	117
2:22	PARTI	K CROSS ?			{			-			\$	13- eu		TEMP	(Ts) (R)	•	•		,			ľ	X											_
STARS		SCHEMATIC OF STACK CROSS SECTION						1				Soot		STACK T	(oF)	275	592	278	287	142	594		X	220	274	22	612	21	112				190	9
مر		-	~					-		Ţ				, IsBarie	THE BOTH	4.1	6.0	80	1.0	5	2,0	N	X	12		7.0	ور	6.9	7,0				1- 1- 2	0
	scut hlaw	بحر		c)				TSS ON MUNBER	-#	MBER	- +			SAMPLING	TIME (min)	0	S	<u>0</u>	ম	ૠ	2°	30505	X	C	<i>ba</i>	01	า	20	ĸ	30 340				- N
		RUN NUMBER	TH STR	12 40 89	PLANT		BASE	CLTSSer.	Nitch	BOX NU	N utech		ථ	TRAVERSE	POINT NUMBER		2	3	7	5	g		X		2	E	3	5	و					
I					•					.	-					9	6							-		1								

<u>se</u>	AIR POL	LUTION PARTICUL	ATE ANA		DATA RUN NUMBER		
INDING NUMBER	AFB	RFEB 8	T9		THRE	E	
Powce	PRANT		Bel	LER	56	YPAS	55
	ITEM	FINAL WE		INITI	AL WEIGHT		PARTICLES
FILTER NUMBER	A	.452	-9	Ø, Z	859	0.16	70
ACETONE WASHINGS Hell Filter)	5 (Probe, Front	105.9		9	806Z	0.16	36
F1 (4C) BACK WALF () 1 nood	lod) B	. 466	1	6.29	13	0.17	48
		Total Weig	pht of Partic	ulates Colle	ic ted	0.51	54 em
		WATE	R				
	ITEM	FINAL WEI (gm)	GHT	1NITI	AL WEIGHT	1	IT WATER gm)
IMPINGER 1 (H20)	<u></u>	24	0.0		10.0	4	6.0
IMPINGER 2 (H20)		210	. J	20	0.0		0.0
IMPINGER 3 (Dry)			0		0.0		0
IMPINGER 4 (Silica G	·ol)	20	7.0	20	0.0		7
			pht of Water	Collected		57	7, D em
	T	GASES (·····	
ITEM	ANALYSIS	ANALYSIS 2	ANAL	YSIS 3	ANALYSIS	^	VERAGE
VOL % CO2	7.4	7.4	7.	4		7	1.4
VOL % 02	10.4	10.4	10	2			. 3
VOL % CO							
VOL % N2			` .				
		Vol % N2 = (100% - % C	02 - % 02 -	% CO)			

	VI	SIBLE EMISSION (DBSER	VATIC	N FO	RM		No.	ONE
COMPANY NAME	DI. L.		OBSE	AVATION Feb	DATE Ç Q	<u>.</u>	START	TIME	END TIME
COMPANY NAME <u>CH3ichAFB</u> Powr STREET ADDRESS <u>BUG</u> 223	Tun		SEC	0	15	30	10 45	18	COMMENTS
· J ·			Min 1	5	5	5	5		
	STATE	ZIP 46971	2	5	10	10	ĪĆ		
GNBSON AFB	L IV	HU711	3	10	5	5	5		
			4	5	5	10	5		
PROCESS EQUIPMENT Builty # 5	· C	95-106 4	5	5	10	15	15		
CONTROL EQUIPMENT		OPERATING MODE	6	IØ	10	1¢	Ιø		
. None - By Tim	L		7	5	5	5	5		
DESCRIBE EMISSION POINT, Steel stack	61." X. C.	ilez	8	5	5	5	5		
			9	10	10	5	5		
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELAT	TVE TO OBSERVER	10	5	5	5	5		
100 1 +	Start 8	End	11	:0	10	5	5		
DISTANCE FROM OBSERVER Start 40 End U	DIRECTION FR	OM OBSERVER End	12	5	14	14	55		
DESCRIBE EMISSIONS	. 7		13	1¢ 5		2			
SIAN LICHA	End IF WATER DRO		14	55	5 1 x	$\frac{1}{1}$	1¢		
Start Bouncerd		20 Detached S	15	ר 5	10		1¢ ¢		
POINT IN THE PLUME AT WHICH OPACIT	TY WAS DETERN	AINED	16	5 Ø	1¢ 5	5	Q 5		
DESCRIBE PLYME BACKGROUND	<u> </u>		18	5	5 5		7		
start SKV		NG	10) Ø	С С	i¢ Æ	С Ф		
BACKGROUND COLOR Star BULL End	SKY CONDITION		20	4. 5	4. 10	(†.	4 5		······································
WIND SPEED	WIND DIRECTIC	N	21	5	14 5	14 [°] <	ر. ح		
AMBIENT TEMP	WET BULB TEN	MP RH, percent	22	5) く	<u>ר</u>			
Start 28 End	VA	45	23	5	8	(7,	ϕ		
Stack SOURCE LAY	OUT SKETCH	Draw North Arrow	24	Ċ,	Ý C	5	5		
Piume Sun 🔶		\mathbb{T}	25	<u> </u>					
Wind			26						
	Emission Poi	- int	27						
	$\dot{\bigcirc}$	/	28						
	\smile		29						
× 💉 🔨	ļ		30	·					
	Observer's Po	sitor	OBSE	NER'S M	NAME (PE		50	·H	
1 Stor			OBSE		SIGNATU	Flint	24.		DATE 12 Fib
Sun Local	lion the		ORGA		<u>`</u>	ÜEH	12/	ECU	
ADDITIONAL INFORMATION		98	CERTI T2			tul			DATE 16 Sijt
T		48.1			<u></u>	*			·

VISIBLE EMISSION OBSERVATION FORM

NO. TWO START TIME COMPANY NAME ENO TIME OBSERVATION DATE Griss AFB Heatin Place 12 Teb 89 132Z 332 STREET ADORESS SEC Bld. 45 0 15 30 COMMENTS 2.2.3 ľĎ 1 5 5 5 3 5 5 5 2 CITY STATE 719 4697 GN350m HTT In \overline{b} Ø D 3 5 PHONE (KEY CONTACT) SOURCE ID NUMBER 40 4 25 1 2 .(7 3 30 PROCESS EQUIPMENT Borler #5 OPERATING MODE 95-100 10 5 15 3 25 6 ΙØ ίĥ 5 CONTROL EQUIPMENT OPERATING MODE none - By Pass 7 5 5 \mathcal{O} 5 5 5 DESCRIBE EMISSION POINT 8 Ø steelsteen 66 deants ī5 20 9 5 In 5 5 10 10 1Ø HEIGHT ABOVE GROUND LEVEL HEIGHT RELATIVE TO OBSERVER 11 Loc Ft. 81 Start End DISTANCE FROM OBSERVER DIRECTION FROM OBSERVER 12 son 40' N End V Start End V 13 DESCRIBE EMISSIONS Stan Flaggant / Lift 14 End IF WATER DROPLET PLUME 15 Start Brown. End Attached G Detached 🖸 16 POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED Start 5 . 1 End 17 DESCRIBE PLUME BACKGROUND 18 sian SKI End 19 BACKGROUND COLOR SKY CONDITIONS Sign Blue Start C. (K End End 20 WIND DIRECTION WIND SPEED sun 45 21 Start WSW End End AMBIENT TEMP WET BULB TEMP RH, percent 45 22 NIA Stan 29 End 23 SOURCE LAYOUT SKETCH Stack Draw North Arrow with O 24 Sun ÷ 25 Wind ----26 (X) Emission Point 27 28 29 30 OBSERVER'S NAME (PBINT) Tol 's Position OBSERVER'S SIGNARURE IZHER BY lant ORGANZATION 'E'CQ USH Sun Location Line CERTIFIED BY DATE Sept 88 ADDITIONAL INFORMATION Bosna 19xasthr 99

	VISIBLE	EMISSION (DBSER	IVATIO	N FOR	MF		NO. THREEE
CONPANY NAME Grizson HFB	kating Plant			T-ebs			START 151	TIME END TIME
COMPANY NAME Grisson HF3 (STREET ADDRESS Blog 223	<u>-</u> }		SEC	0	15	30	45	COMMENTS
0			1	5	5	5	15	
City Grisson AFB	STATE ZI	46971	2	20	1¢	5	10	
PHONE (KEY CONTACT)	SOURCE ID NUMBER		3	2¢	10 16	う… 1(5	. <u>5</u> 15	
PROCESS EQUIPMENT	OPERATI	NG MODE	5	7	15	10	15	
Button # 5		100 70	6	10	5	10	15	
. hone - By Parts			7	2d	25	2ct	24	
DESCRIBE EMISSION POINT Steat Start 66	" D it!		8	20	15	15	10	
Star Share OG	avent		9'	10	5	19	1¢	
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO	OBSERVER	10	15	25	24	30	sort blen it 1523 - 4
100 ft DISTANCE FROM OBSERVER	,	۰ <i>س</i>	11	60	kit.	64	3¢	· · · · · · · · · · · · · · · · · · · ·
STAR 40' End	Start N En		12	44 30	54	<u>65</u> 50	61 34	
	. 1 .2		14	20	25	25	24' 15	
SIAN BULLEMANT	End IF WATER DROPLET P		15	15	15	10	15	
Stan BON End Y POINT IN THE PLUME AT WHICH OPAC		Detached 🛛	16	10	10	15	10	
Start S	End		17	10	10	5	5	
DESCRIBE PLUME BACKGROUND	End lotting 1		18	5	5	5	5	•
BACKGROUND COLOR / (SKY CONDITIONS	./	19	5	5	5	İψ́	
SIGH BUL END V	Start CLIC EN		20	 				
Start CHLM End <5	STAR LAR EN WET BULB JEMP	d SU	21					
Start 39 End	N/A	RH, percent 45	22					
with O	YOUT SKETCH	Draw North Arrow	24	<u> </u>				
Pturne Sun 🔶		()	25					· · · · · · · · · · · · · · · · · · ·
Wind	_		26					
	Emission Point		27					
			28					
2			29	ļ			 	
? ?			30		L	<u> </u>	1	L
	Observer's Position		11 D_{-}	RVER'S	NAME (P	RING C	t	
			11	RYER'S	67	Sart	\square	DATE Fiel 18
		>	ORG	US/	ZF()	EHI	./E(
	ation Line			ILIED DI	<u>, </u>		LBr	DATE
		100		his	'-[1r	y n	へいた	nl 16 51- 18

APPENDIX I

Calibration Data

(This page left blank)

NOZZLE CALIBRATION DATA FORM

Nozzle	N	lozzle Diam	eter ^a	L	
identification number	D ₁ , mm (1n.)	D ₂ , mm (in.)	D ₃ , mm (in.)	ΔD, ^b mm (in.)	D _{avg}
•	.300	.319	.320	.001	.320
				•	

where:

^aD_{1,2,3}, = three different nozzles diameters, nm (in.); each diameter must be within (0.025 mm) 0.001 in.

b

 ΔD = maximum difference between any two diameters, mm (in.), $\Delta D \leq (0.10 \text{ mm}) 0.004 \text{ in.}$

^c D_{avg} = average of D_1 , D_2 , and D_3 .

Quality Assurance Handbook M5-2.6

NOZZLE CALIBRATION DATA FORM

Date Feb 29 i Calibrated by Gamison					
Nozzle identification number	$\begin{array}{c c} Nozzle Diameter^{a} \\ \hline D_{1}, & D_{2}, & D_{3}, \\ mm (In.) & mm (in.) & mm (in.) \end{array}$			ΔD, ^b mm (in.)	D C avg
• # 4 12 7 e- 89	. 374	. 311 . 395	. 377 . 395	00 10 00	. 377 • 395

where:

^aD_{1,2,3}, = three different nozzles diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

b

С

(.

 ΔD = maximum difference between any two diameters, mm (in.), $\Delta D \leq (0.10 \text{ mm}) 0.004 \text{ in.}$

 $D_{avg} = average of D_1, D_2, and D_3.$

Quality Assurance Handbook M5-2.6

NOZZLE CALIBRATION DATA FORM

Nozzle	N	Vozzle Diam	neter ^a	h h		
dentification number	mm (1n.)	D ₂ , mm (in.)	D ₃ , mm (in.)	ΔD, ^D Imm (in.)	D _{avg}	
	.302	.303	- 304	.002	.303	•••
				-		
						:
here:			۰.		•	
$D_{1,2,3}$, = three diame	e different eter must b	nozzles d e within (iameters, : 0.025 mm)	mm (in.); e 0.001 in.	each	
$\Delta D = \max_{\Delta D} \frac{1}{2}$	num differe (0.10 mm) 0	nce betwee .004 in.	n any two	diameters,	mm (in.)	
D _{avg} = avera	age of D ₁ , 1	D and D				

Quality Assurance Handbook M5-2.6

TYPE S PITOT TUBE INSPECTION DATA FORM

#6A Pitot tube assembly level? _____ yes _____ no Pitot tube openings damaged? ____ yes (explain below) ____ no $\alpha_1 = -\frac{1}{2} \circ ((10^\circ)), \quad \alpha_2 = -\frac{2}{2} \circ ((10^\circ)), \quad \beta_1 = -\frac{2}{2} \circ ((5^\circ)),$ $\beta_2 = \underline{3} \circ (<5^\circ)$ (1.1875) $\gamma = -\frac{14}{16}$, $\theta = -\frac{0}{16}$, $A = \frac{3}{16}$ cm (in.) 0,125 $z = A \sin \gamma = 0.082R$ cm (in.); <0.32 cm (<1/8 in.), $w = A \sin \theta = 0.0$ cm (in.); <.08 cm (<1/32 in.) 0.0313 $P_{h} \frac{19/32(0.5935)}{32(0.5935)} \implies (in.) P_{h} \frac{19/32(0.5935)}{32(0.5935)} \implies (in.)$ $D_{+} = 0,375$ cm (in.) Comments: CONSTRUCTED 1AW 40 CFR 60, APPA METH2, FIG-2.2. ASSIGNED BASELINE COEFFICIENT = 0.84

Calibration required? _____ yes ____ no

Quality Assurance Handbook M2-1.7

TYPE S PITOT TUBE INSPECTION DATA FORM

#8A Pitot tube assembly level? _____ yes _____ no Pitot tube openings damaged? ____ yes (explain below) ____ no $\alpha_1 = 1^{\circ} (\langle 10^{\circ} \rangle, \alpha_2 = 2^{\circ} (\langle 10^{\circ} \rangle, \beta_1 = \phi^{\circ} (\langle 5^{\circ} (\langle 5^{\circ} \rangle, \beta_1 = \phi^{\circ} (\langle 5^{\circ} (\langle$ $\beta_2 = \underline{2}^{\circ} (\langle 5^{\circ} \rangle)$ (0.438) $\gamma = 1^{\circ}, \theta = 1^{\circ}, A = \frac{15}{6} cm (in.)$ 0.1250 $z = A \sin \gamma = 0.0164$ cm (in.); <0.32 cm (<1/8 in.), $w = A \sin \theta = 0.0164$ cm (in.); <.08 cm (<1/32 in.) 0.0312 $P_{A} \frac{\frac{15}{32.(0.469)}}{cm (in.)} P_{b} \frac{\frac{15}{32.(0.469)}}{cm (in.)} cm (in.)$ $D_{+} = \frac{3}{6} (.375) \text{ cm (in.)}$ Comments: CONSTRUCTED IAW 40CFR 60, BPPA METH2 FIG 2.2 ASSIGNED BASELINE CORFFICIENT = 0.84

Calibration required? _____ yes ____ no

.

Quality Assurance Handbook M2-1.7

- -

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Date 21 Nov 88

Meter box number Nutch #2

Barometric pressure, $P_b = 30.02$ in. Hg Calibrated by Scott & Vaughn

	Orifice	Gas v Wet test	Dry gas	T Wet test	emperati Drv	ure gas met	er			
VAC	manometer setting	<pre>meter (V_),</pre>	$\frac{\text{meter}}{(V_d)},$	meter (t_),	Inlet (t _d),	Outlet	Avg (t _d),	Time (θ),		
۷m	(ДН), . in. H ₂ O	ft ³	ft ³	°F	°F	°F	۰F	min	Yi	ΔH@ in. H ¹ 20
4.ø	0.5	5	5.057	75 75 5 <u>35</u>	77 82	75 77	537.75	12.40	<i>\$.9926</i>	1.73
4.¢	1.0	5	5.031	76 536	84 89	77 80			1.0034	1.87
4.0	1.5	10	10.101	17 17 537	90 94	84	547.75	15,35	1.0061	1.97
4.ø	2.0	10	10.230	78 538 78 538	97 99		552.ø	B.45	6.9981	2.00
4.ø	3.0	10		78 538	163	87 89	554.75	116.92	1.0065	1.97
4-0	4.0	10	10/191	76 538	13 ·	67. 91	557.ø	9.35	1.0061	1.92
-								Avg	1.402	1,91

ΔH, in. H ₂ 0	<u>Дн</u> 13.6	$Y_{i} = \frac{V_{w} P_{b}(t_{d} + 460)}{V_{d}(P_{b} + \frac{\Delta H}{13.6}) (t + 460)}$	
0.5	0.0368	(5)(30.02)(537.75) (5.05?)(30.02+=5,)(535)	$\frac{(0317)(.5)}{(30.02)(537.75)} \left(-\frac{(535)(12.4)}{(5)}\right)^2$
1.0	0.0737	(5×30.02×542.5) (5.631)(30.42+13.6)(536)	(+0317) (1.0) (336) (9.14) 2 (30.02) (547.5) 5
1.5	0.110	$\frac{(10)(30.02)(547.75)}{(10.161)(30.02+\frac{15}{15})(537)}$	(0317)(1.5) (30,22)(547.75) (537)(537) (30,22)(547.75) (537)(537)
2.0	0.147	(10)(30.02)(552) $(10.23)(30.42+\frac{2.0}{156})538$	(0317) (2.0) (538/13.45) 2 (00.001 532) (10)
3.0	0.221	$\frac{(10)(31,22)(554.75)}{(10)(31,22)(554.75)}$	(03(1)(3.0) (3002) (554.75) [538) (10.92) 2
4.0	0.294	$\frac{(10)(30.02)(557)}{(10.19)(30.02)(557)}$	$\frac{(.0317)(4.0)}{(30.02)(357)} \left(\frac{(538)(4.35)}{10} \right)^2$

^a If there is only one thermometer on the dry gas meter, record the temperature under t_d.

Quality Assurance Handbook M4-2.3A (front side)

nits) Plant Offulf Pretest Y 1. 27	$\begin{array}{c c} & Y \\ & V_{w} P_{b} (t_{d} + 460) \\ & V_{u} P_{b} (t_{d} + 460) \\ & V_{d} (P_{b} + \frac{\Delta H}{13.6}) (t_{w} + 460) \\ & I_{1} & 085 (q_{1}52) (q_{2}182) (543) \\ & I_{1} & 085 (q_{1}52) (q_{2}182) (543) \\ & I_{1} & 075 (q_{2}182) (2782) (q_{2}182) (573) \\ & I_{1} & 075 (q_{2}182) (2782) (q_{2}182) (2783) \\ & I_{1} & 075 (q_{2}182) (2782) (q_{2}182) (2783) \\ & I_{1} & 075 (q_{2}182) (2782) (q_{2}182) ($
nglish ur A <u>#1</u> h.urell	vacuum Setting, Jin. Hg L L L L L L L C V - 1.077-
ORM (E. Nuteol er <u>Loc</u> l	Time (0), (0), 10,95 20,95 20,10 20,10 20,10 20,10 F.
PREJEST FOR POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units) Test number $\frac{1}{1000}$ bate $\frac{1}{8}$ $\frac{1}{1000}$ $\frac{1}{800}$ Meter box number $\frac{1}{1000}$ $\frac{1}{400}$ $\frac{1}{400}$ Plar Barometric pressure, $P_{b} = \frac{29.82}{29.82}$ in. Hg Dry gas meter number $\frac{1}{1000}$ $\frac{1}{1000}$ Pret	mperature Inlet Outlet Average (t_d) , (t_d) , (t_d) , (t_d) , \circ_{Γ} \circ_{Γ} \circ_{Γ} \circ_{Γ} (t_d) , (t_d) , \circ_{Γ} \circ_{Γ} \circ_{Γ} \circ_{Γ} \circ_{Γ} \circ_{Γ} \circ_{Γ} $\delta_{S43} 79538 540.5$ $\delta_{S43} 79538 540.5$ $\delta_{F4} 547 5547 6$ $\delta_{F4} 547 5547 6$ $\delta_{F4} 547 5547 5$ $\delta_{F4} 547 5547 6$ $\delta_{F4} 547 5547 5$ $\delta_{F4} 547 5547 6$ $\delta_{F4} 547 5547 5$ $\delta_{F4} 547 5547 5547 5547 5547 5547 5547 554$
TEST DRY 0.55 Dry_{0}	lume Dry gas meter (V _d), ft <i>q.152</i> <i>q.152</i> <i>q.214</i> <i>q.214</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i> <i>q.272</i>
PREJEST FOR BOSTTEST DRY GAS METE Test number Post bost Pb = 29.82 in. Barometric pressure, Pb = 29.82 in.	3
PREJE Test r Barome	Orifice Ranometer Setting, (AH), (AH), in. H20 in. H20 in. H20 in. d d d d d d

Quality Assurance Handbook M4-2.4A

 $t_d = Average temperature of the gas in the dry gas meter, obtained by the average of <math>t_d$, ^{o.F.}

Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y ± 0.05 Y. . d5385

 Θ = Time of calibration run, min. $P_b = Barometric pressure, in. Hg.$

 $Y_i = Ratio of accuracy of wet test meter to dry gas meter for each run.$

 ΔM = Pressure differential across orifice, in. $H_2^{0.5}$

7:.

POSTTEST DRY GAS METER CALIBRATION DATA FORM (English uni	Barometric pressure, P _h = 29, 2740 in. Hg Dry gas meter number Shauland Pratact v / 1877	Gas volume Temnerature 1	Wet test Dry gas Wet test	meter . meter meter Inlet Outlet Average (V.), (V.), (V.), (t.), (t.), (t.), (t.) a Time Vacinity	ft ³ ft ³ or or or or or V_{d} , V	5372 81 5135 × 53.36 538.25 12.33 8.0 1074 1.002	9.306 11 5312 285475 13 54.5 542.00 12,31 8.0 1.478 10	1. 82 1. 082 1. 082 J	Y = I, 0.78	a If there is only one thermometer on the dry gas meter, record the temperature under t,		$V_{u} = Gas$ volume passing through the wet test meter, ft ³ . (1, ϕ 77±. θ 53 $f \Rightarrow$ 1, ϕ 231 \leftrightarrow 1, 13 ϕ 9	$V_d = Gas$ volume passing through the dry gas meter, ft ³ .	H	$t_d = Temperature of the inlet gas of the dry gas meter, °F.$	$t_d = Temperature of the outlet gas of the dry gas meter, °F.$	= Average temperature of the gas in the	= Pressure differential across orifice, in. H_2 O.		$X = Average ratio of accuracy of wet test meter to dry gas meter for all three runs;tolerance = pretest Y \neq 0.05Y.$	$P_b = Barometric pressure, in. Hg.$	$\Theta = Time \ of \ calibration \ run, min.$	Ouality Accurance Bandhook W. 2
i i t	Baromei	Orifice	manometer	setting, (AH),	in. H ₂ 0	2.5	57	25		a If th	vhere	>3	" P > 10	ر ۳	بر م. ۳.	ر م ا	r d	= H2 ;	" "	= X	" ଜୁ	" 0	

110

3.	TUCK IENE EK		ALIBRATION DATA	NOTECH H
			-	
Date <u>3</u>	JAN 89	T	hermocouple numb	er INLET/OUT
Ambient te	mperature _		metric pressure	
Calibrator	GARRERON	Reference:	mercury-in-glass	MSTM: 63F
	Slott		other	
				
Reference		Reference thermometer	Thermocouple potentiometer	Temperature
point number	Source ^a (specify)	temperature, °C	temperature,	difference, ^D
				70
VLET	HOT WATER			
_	BATH	43.5	43	.5
<i></i>	ROM	26	26	0
	TEMP	20	20	
TLET				
	HAT WATTLE BATTLE	43.5	42	l
	BATH		42 26.5	
-	ROOM	2.6	26.5	.5
	Inca			

Quality Assurance Handbook M5-2.5 * must be witten 3°C of Reference

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM IMPINGER .20 19/00188 PI Thermocouple number Date 29 232/ Ambient temperature <u>26</u> °C Barometric pressure <u>29.175</u> in. Hg Calibrator GARPISON/ Reference: mercury-in-glass NBS SCOTT other Thermocouple Reference Temperature thermometer potentiometer Reference Source^b difference, temperature, temperature, point number^a X°C °C °C (specify) ICE 0 0 0 BATH 0.6 ROOM 25.5 26.1 TEMP ^eEvery 30°C (50°F) for each reference point. ^DType of calibration system used. (ref temp, °C + 273) - (test thermom temp, °C + 273) ref temp, °C + 273 100<1.5%.

* MUST BE WITHIN / C OF REF

Quality Assurance Handbook M2-2.10

	1900-1-8 mperature _		- nermocouple numb z netric pressure 2	6 711 /
Calibrator	GARRISON SCOTT		mercury-in-glass	NBS
Reference point number ^a	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference,
0	ICE BATH	0	0	_
_	ROOM TEMP	26.0	26.6	0.6
				-

Quality Assurance Handbook M2-2.10

₹.,

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

r-.

	<u>19/0_7</u> 85 mperature		nermocouple numb Z netric pressure ?	9.2321
Calibrator		Reference: n	nercury-in-glass	_
Reference point number ^a	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, c مربخ م
C	ICE BATH	0	0.6	0.6
	ROOM TEMP	25.B	25.6	0.2
				•

^bType of calibration system used. ^c $\left[\frac{(ref temp, °C + 273) - (test thermom temp, °C + 273)}{ref temp, °C + 273}\right]$ 100<1.5%.

* MUST BE WITHIN I'C OFREF

Quality Assurance Handbook M2-2.10

Date <u>19</u> Ambient te			nermocouple numb netric pressure	29,232
Calibrator	GARRISON/ SCOTT		nercury-in-glass	NBS
Reference point number ^a	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, % °C *
0	ICE BATH	0	0.6	0.6
(Room TEMP	25.5	25.6	0.1
a Every 30	°C (50°F) fo	or each referen	ce point.	

Quality Assurance Handbook M2-2.10

	_	• •	• • • • • • • • • • • • • • • • • • •	IMPING
Date	PBJ 88	T	hermocouple numb	$\frac{1}{29,232}$
Ambient te	mperature _	26 °C Baron	metric pressure	<u>29.175</u> in.
Calibrator	GARRISON/ SCOTT		mercury-in-glass	NBS
Reference point number ^a	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperatur difference
0	ICE BATH	0	0.6	0.6
	ROOM TEMP	26	25.5	0.5
^b Type of c	alibration	r each referen system used.	ce point. mom temp, °C + 2	<u>273)</u>] 100<1.

Ambient te	_	26°C Baron	netric pressure.	29.232/ 19./75 in. Hg
Calibrator	SCOTT		nercury-in-glass	<u>NBS</u>
Reference point number ^a	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference *
D	ICE BATH	0	0.6	0.6
	ROOM TEMP	24	25.5	0.5
b _{Type} of	calibration	or each referer system used. 3) - (test the	nce point. mom temp, °C +	273)]

Date $\underline{19/24}$ Ambient te	pod 88	Th <u>2-6</u> °C Baron	nermocouple numb netric pressure	Im p / NG Kler $D729.23219.175 in. H$
Calibrator	GARRISON/ SC.OTT		mercury-in-glass	NRS
Reference point number ^a	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference,
0	ICK BATH	0	0.6	0.6
	ROOM TEMP	26	25.5	0.5
,				

f must be writtin 1°C of REF

Quality Assurance Handbook 12-2.10

	and a second	· · · · · · · · · · · ·
्त् STACK SE	NSOR CALIBRA	FION: 19-20 (
SENSOR #	REFERENCE TEMPERATURE (deg K) X axis	TEST TEMPERATURE
P1	273.30 371.90 447.00	273.60 373.60 450.20
P2	273.30 371.80 447.60	273.60 373.60 450.80
P3	273.30 371.90 447.60	274.10 374.10 450.80
Ρ4	273.30 371.80 447.60	273.60 373.60 450.80

% Deviation @ 2000 F(1093.3 K) = 1.27%

7---

P5	273.30 371.90 447.60	274.10 373.60 450.80	Regression Outpu Constant Std Err of Y Est	it: -3.03 0.37
			R Squared No. of Observations Degrees of Freedom	1.00 3.00 1.00
			X Coefficient(s) 1.0 Std Err of Coef. 0.0	
			% Deviation @ 2000 F(1093	.3 K) = 1.0
P6	273.30 371.90	273.30 373.60	Regression Outpu	
	447.60	450.80	Constant Std Err of Y Est	-5.03 0.09
			R Squared	1.00
			No. of Observations Degrees of Freedom	3.00 1.00
			X Coefficient(s) 1.02 Std Err of Coef. 0.00	2
			% Deviation @ 2000 F(1093.	.3 K) = 1.37
P7	273.30	273.30	Regression Output	::
	371.90 447.60	373.60 450.80	Constant	-5.03
	447.00	430.00	Std Err of Y Est R Squared	0.09 1.00
			No. of Observations	3.00
			Degrees of Freedom	1.00
			X Coefficient(s) 1.02 Std Err of Coef. 0.00	
			% Deviation @ 2000 F(1093.	3 K) = 1.37 ⁴
P8	273.60	273.60	Regression Output	:
	371.80 449.40	373.00 452.40	Constant Std Enn of Y Fet	-4.75
	, 1 2 • TV	7 7 .	Std Err of Y Est R Squared	0.39 1.00
			No. of Observations	3.00
			Degrees of Freedom	1.00
			X Coefficient(s) 1.02 Std Err of Coef. 0.00	
			% Deviation @ 2000 F(1093.3	

7=

APPENDIX J

EPA Computer Program Emissions Calculations

(This page left blank)

······	XRON "METH 5"	XRON -METH 5-	XRON THETH DT
	RUN NUMBER	RUN NUMBER	RUN NUMBER
į	B3 R1 SCR: B	B3 R2 SCR: B	B3 R3 SCR: B
	RUN	RUN	RUN
1	METER BOX Y?	METER BOX Y?	METER BOX Y?
	1.0770 RUN	1.0770 RUN	1.0770 RUN
j	DELTA H?	DELTA H?	DELTA H?
	2.3500 RUN	2.3180 RUN	2.3290 RUN
	BAR PRESS ?	BAR PRESS ?	BAR PRESS ?
	28.9750 RUN	28.9750 RUN	28.9750 RUN
	METER VOL ?	NETER VOL ?	METER VOL ?
	43.9890 RUN	44.5310 RUN	44.4798 RUN
1	MTR TEMP F?	NTR TEMP F?	NTR TENP F?
;	96.0000 RUN	104.0000 RUN	103.0000 RUN
1	7 OTHER GAS	2 OTHER GAS	2 OTHER GAS
	REMOVED BEFORE	RENOVED BEFORE	REMOVED BEFORE
	DRY GAS METER ?	DRY GRS METER ?	DRY GAS METER ?
(RUN	RUN	Rin .
	STATIC HOH IN	STATIC HOH IN ?	STATIC HOH IN ?
l	1660 RUN	1690 RUN	1600 RUN
	STACK TEMP.	STACK TEMP.	STACK TEMP.
	187.9000 RUN	108.0000 RUN	109.0000 RUN
(NL. WRTER ?	ML. WATER ?	NL. WATER ?
ŀ.	6 <u>3.9</u> 000 RUN	72.0000 RUN	71.0000 RUN Sat ½ = 8.7
1	SAT % = 8.2	SAT % = 8.4	5H1 4 - 0.7
		1M0 * U0U - 7 0	IMP. % HOH = 7.1
	IMP. χ HOH = 6.4	IMP. % HOH = 7.2	10F, 4 Holt - 111
	· · · · · ·	% H0H=7.2	% HOH=7.1
	% HOH=6.4	4 HUH=7.2	4 100-1.1
		% C02?	% C02?
	% C02?		4.0000 RUN
	4.4000 RUN		2 OXYGEN?
	2 OXYGEN?	% OXYGEN? 13.6000 RUN	13.9800 RUN
	14.3000 RUN	13.0000 KON	2 C8 ?
1	% CO ?	RUN	RUN
	RUN	MOL NT OTHER?	NOL WE OTHER?
	MOL WT OTHER?	RUN	RUN
	RUN	i kon	
	MUL -20, 20	NHd =29.22	MWd =29.20
	MWd ≈29.28	MW WET=28.41	NW WET=28.40
	MW WET=28.55	IN MET-20141	
i			
	SURT PSTS ?	SORT PSTS ?	SORT PSTS ?
ł		11.0021 RUN	11.6489 RUN
		TINE MIN ?	TIME MIN ?
	TIME MIN ? 60.0000 RUN	68.8990 PUN	68.0000 RUN
	NOZZLE DIA ?	NOZZLE DIA ?	NOZZLE DIA ?
	.3260 RUN	.3200 RUN	.3200 RUN
		STK DIA INCH ?	STK DIA INCH ?
	STK DIA INCH ? 60.0000 Run	60.0000 RUN	68.0000 RUN
	60.0000 RUN	0010000	
	* VOL NTR STD = 43.749	* VOL NTR STD = 43.735	* VOL MTR STD = 43.763
	STK PRES ABS = 28.96	STK PRES RBS = 28.96	STK PRES ABS = 28.96
	VOL HOH GRS = 3.01	VOL HOH GAS = 3.39	VOL HOH GAS = 3.34
	$\frac{1}{2}$ MOISTURE = 6.43	X MOISTURE = 7.19	% MOISTURE = 7.09
		MOL DRY GRS = 0.928	MOL DRY GAS = 0.929
	MOL DRY GAS ≈ 0.936	% HITROGEN = 82.20	% NITROGEN = 82.10
•	2 NITROGEN = 81.30	MOL NT DRY = 29.22	HOL HT DRY = 29.28
i i	MOL HT $DRY = 29.28$		MOL NT NET = 28.40
	NOL NT NET = 28.55	NOL WT WET = 28.41	VELOCITY FPS = 27.66
	VELOCITY FPS = 27.76	VELOCITY FPS = 27.54	STACK AREA = 19.63
, i	STACK AREA = 19.63	STACK AREA = 19.63	STACK ACFM = 32,591,
· ·	STACK ACFM = 32,702.	STACK ACFM = 32,449.	* STACK DSCFM = 27,199.
	* STACK DSCFM = 27,583.	* STACK DSCFM = 27,099.	* STHCK DSCPH = 20197. % ISOKINETIC = 94.33
	% ISOKINETIC = 92.99	% ISOKINETIC = 94.62	4 TOUVINETIC - 24/33

.

.....

XROM *MASSFLO*

.

......

RUN NUMBER B3 R1 SCR: B	0
	RUH
VOL NTR STD ? 43.7490	RUN
STACK DSCFN ? 27,583.0000	RUN
FRONT 1/2 NG ? 69.7000	RUN
BACK 1/2 NG ?	
9.00 0	RUN
F GR/DSCF = 0.024 F MG/NHN = 56.2619 F LB/HR = 5.8128 F KG/HR = 2.6367	
XRON -MAS	SFL0-
RUN NUMBER	
B3 R2 SCR: B	RUN
	KUN
VOL NTR STB ? 43.7350 STACK DSCFN ?	RUN
27,099.0000	RUN
FRONT 1/2 NG ? 58.4000	RUN
BACK 1/2 NG ? 0.0000	RUN
0.0000	NUN
F GR/DSCF = 0.0206 F HG/NHM = 47.1553 F LB/HR = 4.7865 F KG/HR = 2.1711	
XRON -MAS	SFLOr
RUN NUMBER	
B3 R3 SCR: B	RUN
VOL MTR STD ?	
43.7630 Stack DSCFN ?	RUN
27,199.0000 FRONT 1/2 MG ?	RUN
.0000	CLX
86.7000 BACK 1/2 NG ?	RUN
0.000	RUN
F GR/DSCF ≈ 0.0306 F NG/NHM = 69.9615 F LB/HR = 7.1276 F KG/HR = 3.2331 124	

XRON -NETH	5- 1	XRON -NETH 5-	j	XRON THE	rh 5*
RUN NUMBER		RUN NUMBER	1	RUN NUMBER	
84 RI SCR: A		B4 R2 SCR: A		B4 R3 SCR: A	
F	NUN	RUN			RUN
METER BOX Y?		NETER BOX Y?	}	NETER BOX Y?	
	IUN	1.0770 RUN		1,0770	RUN
DELTA K?		DELTA H?		DELTA H?	
	tun l	3.2400 RUN		3.3508	RUN
BAR PRESS ?		BAR PRESS ?		BAR PRESS ?	
	N	29.3810 RUN		29.3810	RUN
NETER YOL ?				METER VOL ?	
	N SUN	METER VOL ? 50.4200 RUN		59,2570	RUN
NTR TEMP F?	(Uni			NTR TEMP F?	
	RUN	NTR TEMP F? 99.0000 RUN		104.0000	RUN
% OTHER GAS	(on	•••••		% OTHER GAS	
REMOVED BEFORE		2 OTHER GAS		REMOVED BEFORE	
		REMOVED BEFORE		DRY GAS METER ?	
DRY GAS HETER ?	RUN	DRY GAS METER ?	,	DAT GOUNDICACK .	RUN
	KUM	RUN	f	STATIC HOH IN ?	KON
STATIC HOH IN ?	51111	STRTIC HOH IN ?		2908	RUN
	RUN	2980 RUN	1	STACK TEMP.	NOU
STACK TEMP.	0183	STACK TEMP.			RUN
	RUN	95.0000 RU	i .	98,0000	KUN
ML. WATER ?		ML. WATER ?		NL. WATER ?	
	RIIN	62.1000 KU	N (53.7009 Sat % = 6.2	RUN
SAT % = 5.3		SAT % = 5.6		5H) 4 - 0.C	
THE 1 1011 - 5 7		·		THO + 11011 - 4 0	
IMP. % HOH = 5.3		IMP. % HOH = 5.4		IMP. % HOH = 4.8	
				6. 11A11 J. A	
% HOH=5.3		% HOH=5.4		% HOH=4.8	
			1		
% CO2?		% CO2?		% 202?	
3,0090	RUN	, 2 . 8888 RUI	N	2.2000	RUN
2 OXYGEN?		% OXYGEN?	1	% OXYGEN?	
17.6000	RUN	15.3090 RUI	N	15.4000	RUN
% CO ?		% CO ?	ł	% CO ?	_
	RUN	RUI	N i		RUN
NOL WT OTHER?		NOL WT OTHER?		MOL NT OTHER?	
	RUN	RU	N		RUN
MWd =29.18		NHd =29.06		HWd =28.97	
MW WET=28.59		NH HET=28.46		MW WET=28.44	
SORT PSTS ?		SORT PSTS ?		SORT PSTS ?	
13, 1919	RUN	13.8003 RU	N	14.1079	EN;
TIME HIN ?		TINE MIN 2		TIME HIN ?	
60.0000	RUN	60.0000 RU	N	68.8888	RU
NOZZLE DIR ?		NOZZLE DIR ?	,,	NOZZLE DIA ?	
, 3830	0(₂₀₅	.3030 RU	v.	,3030	RUI
STK DIA INCH			'n	STK DIA INCH ?	
60.0000	RUN	STK DIA INCH ? 60.0000 RU	N.	69,0000	RU
		60.0000 RU	N		
* VOL MTR STD = 48.9	<u>(</u> 0	. 141 MTD OTD - 50 775		* VOL MTR STD = 50	176
STK PRES ABS = 29.		* YOL MTR STD = 50.775		STK PRES ABS = 2	
VOL HOH GAS = 2.76		STK PRES ABS = 29.36		VOL HOH GAS = 2.	
2 MOISTURE = 5.31		VOL HOH GAS = 2.92		2 MOISTURE = 4.8	
MOL DRY GAS = 8.94	7	% MOISTURE = 5.44	1	MOL DRY GAS = 0.	
2 NITROGEN = 79.40	,	NOL DRY GRS = 0.946	i •	% NITROGEN = 82.	
MOL WT DRY = 29.18		% NITROGEN = 81.90		MOL WT DRY = 28.	
		MOL WT DRY = 29.86		MOL WT WET = 28.	
MOL NT WET = 28.59		HOL WT WET = 28.46			
VELOCITY FPS = 32.		VELOCITY FPS = 34.29		VELOCITY FPS = 3	
STACK AREA = 19.63		STACK AREA = 19.63		STACK AREA = 19.	
STACK ACFN = 38,52	1.	STACK ACFH = $40,391$.		STACK ACFM = 41,	
	75				
<pre>* STACK DSCFM = 34,1 % ISOKINETIC = 93</pre>		* STACK BSCFN = 35,654. 2 ISOKINETIC = 93,12		<pre>* STACK DSCFM = 36 % ISOKINETIC =</pre>	

XROM *MASSFLO*

RUN NÚŇBER B4 R1 SCR: A	RUN
VOL MTR STD ? 48.9690 Stack DSCFM ?	RUN
34,175,0000	RUN
FRONT 1/2 NG ? 61.3000 BACK 1/2 NG ?	RUN
8.0000	RUN
F GR/DSCF = 0.0193 F MG/NNM = 44.2065 F LB/HR = 5.6588 F KG/HR = 2.5668	
XRON "MAS	SFLOr
RUN NUMBER B4 R2 SCR: A	RUN
VOL NTR STD ? 50.7750 Stack DSCFM ?	RUN
35,654,0000	RUH
FRONT 1/2 MG ? 32,7000	RUN
BACK 1/2 MG ? 0.0000	RUN
F GR/DSCF = 0.0099 F MG/MMH = 22.7428 F LB/HR = 3.0373 F KG/HR = 1.3777	
XRON "NASS	FL0°
RUN NUMBER B4 R3 SCR: A	RUN
YOL MTR STD ? 50.1760	RUN
STACK DSCFN ? 36,511.0008	RUN
FRONT 1/2 MG ? 31.5000	RUN
BACK 1/2 MG ? 0.0000	RUN
F GR/DSCF = 0.0097 F MG/NNN = 22.1698 F LB/HR = 3.0319 F KG/HR = 1.3753	

,
- 1
:
- 1
:
÷.
1
Ì
1
:
1
:
٠
1
•
£.
ç.
5
•
- 5

B5 R2 SCR: B RUN B5 R3 SCR: B RUN RUN METER BOX Y? 1.0770 RUN 1.0770 DELTA H? 1.0770 RUN DELTA H? 2.4900 RUN BAR PRESS ? 29.4550 RUN 29.4550 METER VOL ? 29.4550 RUN 29.4550 METER VOL ? 46.0820 RUN 44.6550 METER VOL ? 44.6550 PUN MTR TEMP F? 105.0000 RUN 1 06.0000 RUN 105.0000 Y OTHER GAS Y OTHER GAS REMOVED BEFORE DRY GAS METER ? RUN RUN STATIC HOH IN ? 1900 RUN STACK TEMP. RUN STACK TEMP.
RUN RU RU NETER BOX Y? 1.0770 RU 1.0770 RUN 1.0770 RU DELTA H? 1.0770 RU DELTA H? DELTA H? 2.4900 RU BAR PRESS ? 29.4550 RUN 2.4900 RU BAR PRESS ? 29.4550 RUN 29.4550 RU METER VOL ? 29.4550 RUN 29.4550 RU METER VOL ? 46.0820 RUN 44.6550 PU MTR TEMP F? 106.0000 RUN 105.0000 RU V OTHER GAS ½ OTHER GAS ½ OTHER GAS REMOVED BEFORE PEMOVED BEFORE PEMOVED BEFORE PUN DRY GAS METER ? RUN RU RU STATIC HOH IN ? 1900 FUN 1900 FUN STACK TEMP. RUN STACK TEMP. NUN STACK TEMP.
METER BOX Y? METER BOX Y? 1.0770 RUN 1.0770 RU DELTA H? DELTA H? DELTA H? RUN 2.4900 RU BAR PRESS ? 29.4550 RUN 2.4900 RU RUN 29.4550 RU NETER VOL ? 29.4550 RUN 29.4550 RU 44.6550 PU NETER VOL ? 46.0820 RUN 105.0000 RU 105.0000 RU NTR TEMP F? 106.0000 RUN 105.0000 RU 105.0000 RU Y OTHER GAS Y OTHER GAS Y OTHER GAS Y OTHER GAS REMOVED BEFORE REMOVED BEFORE DRY GAS METER ? RUN STATIC HOH IN ? 1900 RUN 1900 PUN STACK TEMP. RUN STACK TEMP. RUN STACK TEMP. STACK TEMP.
1.0770 RUN 1.0770 RU DELTA H? DELTA H? DELTA H? 2.4900 RU BAR PRESS ? 29.4550 RUN 2.4900 RU BAR PRESS ? 29.4550 RUN 29.4550 RU NETER VOL ? 46.0820 RUN 44.6550 RU MTR TEMP F? 106.0000 RUN 105.0000 RU X OTHER GAS X OTHER GAS X OTHER GAS X OTHER GAS RUN 105.0000 RU Y GAS METER ? RUN 105.0000 RU 105.0000 RU RU STATIC HOH IN ? RUN RUN STATIC HOH IN ? RUN 1900 RUN STACK TEMP. RUN STACK TEMP. RUN STACK TEMP. STACK TEMP.
DELTA H? DELTA H? DELTA H? 2.6000 RUN 2.4900 RU BAR PRESS ? 29.4550 RUN 29.4550 RU METER VOL ? 46.0820 RUN 44.6550 RU MTR TEMP F? 106.0000 RUN 105.0000 RU X OTHER GAS X OTHER GAS X OTHER GAS X OTHER GAS REMOVED BEFORE DRY GAS METER ? RUN 105.0000 RU 105.0000 RU STATIC HOH IN ? RUN 105.0000 RU 105.0000 RU STATIC HOH IN ? RUN 105.0000 RUN 105.0000 RU STATIC HOH IN ? RUN STATIC HOH IN ? RUN 1900 RUN 1900 FUN STACK TEMP. STACK TEMP. RUN STACK TEMP. RUN
DELTA H? 2.6000 RUN 2.4900 RU BAR PRESS ? 29.4550 RUN 29.4550 RU METER VOL ? 29.4550 RUN 29.4550 RU METER VOL ? 46.0820 RUN 44.6550 RU MTR TEMP F? 106.0000 RUN 105.0000 RU X OTHER GAS X OTHER GAS X OTHER GAS REMOVED BEFORE PLMOVED BEFORE DRY GAS METER ? RUN 105.0000 RU RUN STATIC HOH IN ? 1900 RUN 1900 RUN STACK TEMP. RUN STACK TEMP. STACK TEMP.
2.6000 RUN 2.4900 RU BAR PRESS ? 29.4550 RUN 29.4550 RU NETER VOL ? 29.4550 RUN 29.4550 RU NETER VOL ? 46.0820 RUN METER VOL ? 44.6550 RU NTR TEMP F? 106.0000 RUN 105.0000 RU X OTHER GAS X OTHER GAS X OTHER GAS REMOVED BEFORE DRY GAS METER ? RUN 105.0000 RU STATIC HOH IN ? 1900 RUN 1900 RUN STACK TEMP. RUN STACK TEMP. STACK TEMP. STACK TEMP.
BAR PRESS ? 29.4550 RUN 29.4550 RI NETER VOL ? 46.0820 RUN METER VOL ? 44.6550 RI NTR TEMP F? 106.0000 RUN 105.0000 RI ½ OTHER GAS ½ OTHER GAS ½ OTHER GAS ½ OTHER GAS ½ REMOVED BEFORE DRY GAS METER ? RUN 105.0000 RI STATIC HOH IN ? RUN RI RI STATIC HOH IN ? 1900 RUN 1900 RUN STACK TEMP. DUN STACK TEMP. STACK TEMP. STACK TEMP.
29.4550 RUN 29.4550 RU NETER VOL ? 46.0820 RUN 44.6550 PU NTR TEMP F? 44.6550 PU 105.0000 RUN 106.0000 RUN 105.0000 RU 20.4550 RUN 105.0000 RU 20.4550 RUN 105.0000 RU 20.4550 RUN 105.0000 RU 20.4550 RUN 105.0000 RU 20.0000 RUN 1900 RU 20.0000 RUN 1900 RU 20.00000<
29.4550 RUN 29.4550 RU NETER VOL ? 46.0820 RUN 44.6550 PU NTR TEMP F? 106.0000 RUN 105.0000 RU '2 OTHER GAS '2 OTHER GAS '2 OTHER GAS '2 OTHER GAS 'REMOVED BEFORE PROVED BEFORE PRY GAS METER ? RUN STATIC HOH IN ? 1900 RUN 1900 PU STACK TEMP. DUN STACK TEMP. DUN STACK TEMP.
METER VOL ? 46.0820 RUN METER VOL ? MTR TEMP F? 44.6550 PI MTR TEMP F? MTR TEMP F? 105.0000 106.0000 RUN 105.0000 RUN 107 0THER GAS 2 OTHER GAS 108 0THER GAS 2 OTHER GAS 109 REMOVED BEFORE REMOVED BEFORE REMOVED BEFORE 108 METER ? DRY GAS METER ? RUN 1090 RUN 1900 RUN 1900 1090 RUN 1900 RUN 1900 PUN
46.0820 RUN 44.6550 Pi MTR TEMP F? MTR TEMP F? MTR TEMP F? 106.0000 RUN 105.0000 R ½ OTHER GAS ½ OTHER GAS ½ ½ OTHER GAS ½ OTHER GAS ½ REMOVED BEFORE PEMOVED BEFORE PEMOVED BEFORE DRY GAS METER ? BRY GAS METER ? R STATIC HOH IN ? 1900 RUN 1900 STACK TEMP. STACK TEMP. STACK TEMP. STACK TEMP.
46.0820 RUN 44.6550 Pi MTR TEMP F? MTR TEMP F? MTR TEMP F? 106.0000 RUN 105.0000 R ½ OTHER GAS ½ OTHER GAS ½ ½ OTHER GAS ½ OTHER GAS ½ REMOVED BEFORE PEMOVED BEFORE PEMOVED BEFORE DRY GAS METER ? BRY GAS METER ? R STATIC HOH IN ? 1900 RUN 1900 STACK TEMP. STACK TEMP. STACK TEMP. STACK TEMP.
NTR TEMP F? MTR TEMP F? 106.0000 RUN 105.0000 % OTHER GAS % OTHER GAS % OTHER GAS % OTHER GAS REMOVED BEFORE PEMOVED BEFORE DRY GAS METER ? BRY GAS METER ? RUN R STATIC HOH IN ? 1900 FIGURE STACK TEMP.
106.0000 RUN 105.0000 R % OTHER GAS % OTHER GAS % OTHER GAS % REMOVED BEFORE PEMOVED BEFORE
106.0000 RUN 105.0000 R % OTHER GAS % OTHER GAS % OTHER GAS % REMOVED BEFORE PEMOVED BEFORE
% OTHER GAS % OTHER GAS REMOVED BEFORE PEMOVED BEFORE DRY GAS METER ? DRY GAS METER ? RUN R STATIC HOH IN ? 1900 STACK TEMP. STACK TEMP.
REMOVED BEFORE PENOVED BEFORE DRY GAS METER ? BRY GAS METER ? RUN RUN STATIC HOH IN ? 1900 1900 RUN STACK TEMP. STACK TEMP.
DRY GAS METER ? RUN STATIC HOH IN ? 1900 RUN STACK TEMP. BRY GAS METER ? RUN STATIC HOH IN ? 1900 PUN STACK TEMP.
DRY GAS METER ? RUN STATIC HOH IN ? 1900 RUN STACK TEMP. BRY GAS METER ? RUN STATIC HOH IN ? 1900 PUN STACK TEMP.
RUN R STATIC HOH IN ? STATIC HOH IN ? 1900 RUN1900 P STACK TEMP. STACK TEMP.
STATIC HOH IN ? STATIC HOH IN ? 1900 RUN1900 F STACK TEMP. STACK TEMP.
STATIC HOH IN ? STATIC HOH IN ? 1900 PUN1900 P STACK TEMP. STACK TEMP.
1900 PUN1900 P STACK TEMP. STACK TEMP.
STACK TEMP. STACK TEMP.
STACK TEMP. STACK TEMP.
187.8889 RUN 112.8889 P
74 3000 Dilli
74.3000 RUN <u>79.7000 R</u>
SAT $x = 8.1$ SAT $x = 9.3$
, · · · ·
IMP, ½ HOH = 7.1 IMP, ½ HOH = 7.8
% HOH=7.1 % HOH=7.8
2 CO2?
' 6.2000 RUN 6.8000 F
010500
11.6000 RUN 11.4000 R
RUN R
MOL WT OTHER? NOL WT OTHER?
RUH
MWd =29.46 MWd =29.42
NW WET=28.64 NW WET=28.53
CODT DCTC 2
60.0000 RUN 60.0000 P
NOZZLE DIA ? NOZZLE DIA ?
.3200 RUN .3200 F
.3200 RUN .3200 R STK DIA INCH ? STK DIA INCH ?
.3200 RUN .3200 R
.3200 RUN .3200 F STK DIA INCH ? STK DIA INCH ?
.3200 RUN .3200 F STK DIA INCH ?
.3200 RUN .3200 I STK DIA INCH ? STK DIA INCH ? 60.0000 RUN 60.0000 I * VOL NTR STD = 45.874 * VOL NTR STD = 44.520
.3200 RUN .3200 I STK DIA INCH ?
.3200 RUN .3200 I STK DIA INCH ?
.3200 RUN .3200 FUN .3200 FUN .3200 FUN .3200 FUN .3200 FUN .3200 FUN
.3200 RUN STK DIA INCH ? 60.0000 RUN * VOL MTR STD = 45.874 STK PRES ABS = 29.44 VOL HOH GAS = 3.50 % MOISTURE = 7.88 * VOL HOH GAS = 7.77
.3200 RUN STK DIA INCH ? 60.0000 RUN * VOL MTR STD = 45.874 STK PRES ABS = 29.44 YOL HOH GAS = 3.50 % MOISTURE = 7.86 * VOL MTR STD = 44.520 STK PRES ABS = 29.44 YOL HOH GAS = 3.75 % MOISTURE = 7.77
.3200 RUN STK DIA INCH ? 60.0000 RUN * VOL MTR STD = 45.874 STK PRES ABS = 29.44 VOL HOH GAS = 3.50 % MOISTURE = 7.06 MOL DRY GAS = 0.929 * VOL DRY GAS = 0.922
.3200 RUN STK DIA INCH ? 60.0000 RUN * VOL MTR STD = 45.874 STK PRES ABS = 29.44 YOL HOH GAS = 3.50 % MOISTURE = 7.06 % MOISTURE = 7.06 % MOISTURE = 7.06 % MOISTURE = 82.20 % NITROGEN = 82.20 % NITROGEN = 82.60
.3200 RUN STK DIA INCH ? 60.0000 RUN * VOL MTR STD = 45.874 STK PRES ABS = 29.44 YOL HOH GAS = 3.50 % MOISTURE = 7.06 % MOISTURE = 7.06 % MOISTURE = 7.06 % MOISTURE = 82.20 % NITROGEN = 82.20 % NITROGEN = 82.60
.3200 RUN STK DIA INCH ? 60.0000 RUN * VOL MTR STD = 45.874 STK PRES ABS = 29.44 VOL HOH GAS = 3.50 % MOISTURE = 7.06 % MOISTURE = 7.06 % MOISTURE = 7.77 MOL DRY GAS = 0.929 % NITROGEN = 82.20 MOL MT DRY = 29.42 % NO RUN % MOI MT DRY = 29.42
.3200 RUN STK DIA INCH ? 60.0000 RUN * VOL MTR STD = 45.874 STK PRES ABS = 29.44 VOL HOH GAS = 3.50 X MOISTURE = 7.06 X MOISTURE = 7.06 X MOISTURE = 7.77 MOL DRY GAS = 0.929 X NITROGEN = 82.20 MOL DRY GAS = 0.929 X NITROGEN = 82.60 MOL MT DRY = 29.46 MOL MT DRY = 29.42 MOL WT WET = 28.53
.3200 RUN .3200 RUN STK DIA INCH ? STK DIA INCH ? STK DIA INCH ? 60.0000 RUN 60.0000 RUN * VOL MTR STD = 45.874 * VOL NTR STD = 44.520 STK PRES ABS = 29.44 STK PRES ABS = 29.44 YOL HOH GAS = 3.50 VOL HOH GAS = 3.75 X MOISTURE = 7.06 % MOISTURE = 7.77 MOL DRY GAS = 0.929 X NITROGEN = 82.20 X NITROGEN = 82.20 % NITROGEN = 82.60 MOL WT DRY = 29.46 MOL WT DRY = 29.42 MOL NT WET = 28.64 MOL WT WET = 28.53
.3200 RUN .3200 RUN STK DIA INCH ? STK DIA INCH ? STK DIA INCH ? 60.0000 RUN 60.0000 RUN * VOL MTR STD = 45.874 * VOL NTR STD = 44.520 STK PRES ABS = 29.44 STK PRES ABS = 29.44 YOL HOH GAS = 3.50 VOL HOH GAS = 3.75 % MOISTURE = 7.08 % MOISTURE = 7.77 MOL DRY GAS = 0.929 MOL DRY GAS = 0.922 % NITROGEN = 82.20 % NITROGEN = 82.60 MOL WT DRY = 29.46 MOL WT DRY = 29.42 MOL WT WET = 28.64 MOL WT WET = 28.53 VELOCITY FPS = 28.75 VELOCITY FPS = 28.4
.3200 RUN .3200 RUN STK DIA INCH ? STK DIA INCH ? STK DIA INCH ? 60.0000 RUN 60.0000 RUN * VOL MTR STD = 45.874 * VOL MTR STD = 44.528 STK PRES ABS = 29.44 STK PRES ABS = 29.44 VOL HOH GAS = 3.50 VOL HOH GAS = 3.75 % MOISTURE = 7.08 % MOISTURE = 7.77 MOL DRY GAS = 0.929 NOL DRY GAS = 0.922 % NITROGEN = 82.20 % NITROGEN = 82.60 MOL WT DRY = 29.46 MOL WT DRY = 29.42 MOL WT WET = 28.64 MOL WT WET = 28.53 VELOCITY FPS = 28.75 VELOCITY FPS = 28.4 STACK AREA = 19.63 STACK AREA = 19.63
.3200 RUN .3200 RUN STK DIA INCH ? STK DIA INCH ? STK DIA INCH ? 60.0000 RUN 60.0000 RUN * VOL MTR STD = 45.874 * VOL MTR STD = 44.528 STK PRES ABS = 29.44 STK PRES ABS = 29.44 VOL HOH GAS = 3.50 VOL HOH GAS = 3.75 % MOISTURE = 7.08 % MOISTURE = 7.77 MOL DRY GAS = 0.929 NOL DRY GAS = 0.922 % NITROGEN = 82.20 % NITROGEN = 82.60 MOL WT DRY = 29.46 MOL WT DRY = 29.42 MOL WT WET = 28.64 MOL WT WET = 28.53 VELOCITY FPS = 28.75 VELOCITY FPS = 28.4 STACK AREA = 19.63 STACK AREA = 19.63
.3200 RUN .3200 RUN STK DIA INCH ? STK DIA INCH ? 60.0000 RUN 60.0000 F * VOL MTR STD = 45.874 * VOL MTR STD = 44.528 STK PRES ABS = 29.44 STK PRES ABS = 29.44 STK PRES ABS = 29.44 VOL HOH GAS = 3.50 * VOL HOH GAS = 3.75 * MOISTURE = 7.77 MOL DRY GAS = 0.929 * NOL DRY GAS = 0.922 * NITROGEN = 82.60 MOL WT DRY = 29.46 MOL WT DRY = 29.42 MOL WT MET = 28.64 MOL WT WET = 28.53 VELOCITY FPS = 28.75 VELOCITY FPS = 28.4 STACK AREA = 19.63 STACK AREA = 19.63 STACK ACFM = 33.867. STACK ACFM = 33.496
.3200 RUN .3200 RUN STK DIA INCH ? STK DIA INCH ? STK DIA INCH ? 60.0000 RUN 60.0000 RUN * VOL MTR STD = 45.874 * VOL MTR STD = 44.520 STK PRES ABS = 29.44 STK PRES ABS = 29.44 YOL HOH GAS = 3.50 VOL HOH GAS = 3.75 ? MOISTURE = 7.08 ? MOISTURE = 7.77 NOL DRY GAS = 0.929 NOL DRY GAS = 0.922 ? NITROGEN = 82.20 ? NITROGEN = 82.60 MOL MT DRY = 29.46 MOL WT DRY = 29.42 MOL WT WET = 28.64 MOL WT WET = 28.53 VELOCITY FPS = 28.75 VELOCITY FPS = 28.4 STACK AREA = 19.63 STACK AREA = 19.63 STACK AREA = 19.63 STACK ACFM = 33.490 * STACK DSCFM = 28.835. * STACK DSCFM = 28.051
.3200 RUN .3200 RUN STK DIA INCH ? STK DIA INCH ? STK DIA INCH ? 60.0000 RUN 60.0000 RUN * VOL MTR STD = 45.974 * VOL MTR STD = 44.520 STK PRES ABS = 29.44 STK PRES ABS = 29.44 YOL HOH GAS = 3.50 VOL HOH GAS = 3.75 % MOISTURE = 7.08 % MOISTURE = 7.77 MOL DRY GAS = 0.929 MOL DRY GAS = 0.922 % NITROGEN = 82.20 % NITROGEN = 82.60 MOL MT DRY = 29.46 MOL MT DRY = 29.42 MOL WT WET = 28.64 MOL WT WET = 28.53 VELOCITY FPS = 28.75 VELOCITY FPS = 28.4 STACK AREA = 19.63 STACK AREA = 19.63 STACK ACFM = 33,867. STACK ACFM = 33,490
TIME MIN ? 60.0000 RUN TIME MIN ? 60.0000

127

و ند و ا

. . .

XROM -MOSSELC-

XROM THE	ISSFLO-
RUN NUMBER B5 R1 SCR: 8	DUN
	RUN
VOL MTR STD ? 44.1400 Stack DSCFM ?	RUN
28,356.0000	RUH
FRONT 1/2 MG ? 131.5000 BACK 1/2 MG ?	PUR
0.0000	RUN
F GR/DSCF = 0.046 F MG/NHM = 105.20 F LB/HR ≈ 11.1742 F KG/HR ≈ 5.0686	60
XROM -MA	SSFLO
RUN NUMBER	
BS R1 SCR: B	
	RUN
VOL MTR STD ? 45.8740 STACK DSCFM ? 28,835.0000 FRONT 1/2 MG ? 90.4000 BACK 1/2 MG ? 0.0000 F GR/DSCF = 0.0304 F MG/MMM = 69.5903 F LB/HR = 7.5162 F KG/HR = 3.4094	RUN
XRON THAS	SFLO
RUN NUMBER B5 R3 SCR: B	RUN
VOL MTR STD ? 44.5200	RUN
STACK DSCFM ? 28,055.0000	DUIG
28/035.0000 FRONT 1/2 MG ?	PUN
85.4000	RUN
BACK 172 NG ? 0.0000	DUM
0.00 <u>0</u> 0	RUN
F GR/DSCF = 0.0296 F MG/NNM = 67.7407 F LB/NR = 7.1185 F KG/NR = 3.2290	

1

•

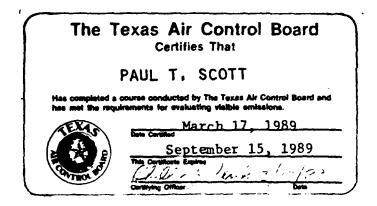
:

··· XROM THRS	SFLO®
RUN NUMBER B5 R1 BP	
	RUN
YOL MTR STD ? 37.7110	RUK
STACK DSCFM ? 17,484.0000	RUN
FRONT 1/2 MG ? 348,8000 Back 1/2 Mg ?	RUN
8,0000	RUN
F CR/DSCF = 0.1427 F MG/NMM = 326.629 F LB/HR = 21.3908 F KG/HR = 9.7029	5
XROM "MAS	SFLO-
RUN NUMBER	
B5 R2 BP	RUK
VOL MTR STD ? 34.8650 Stack DSCFM ?	RUN
	RUN
322.3000 BACK 1/2 MG ?	RUN
8.0009	RUN
F GR/DSCF = 0.142 F MG/MMM = 326.45 F LB/HR = 20.0169 F KG/HR = 9.0797	7 67
XROM THR	SSFLO®
RUN NUMBER	
85 R3 8P	RUN
YOL NTR STD ? 36.3100	RUN
STACK DSCFM ? 17,075,0000	RUN
FRONT 1/2 MG ? 505.4000 Back 1/2 MG ?	RUN
BRUK 172 HG : 8.0000	RUN
F GR/DSCF = 0.21 F NG/NNM = 491.5 F LB/NR = 31.437 F KG/NR = 14.260	366 5

XRON -NE	TH ST T
RUN NUMBER 85 R1 EP	
METER BOX Y?	RUNS
1.8770 Delta H?	RUNE
1.4600 BAR PRESS ?	RUNG
29,4100 METER VOL 2	RUN
34.2830 MTR TEMP F2	RUN
50.0000 2 Other Gas	RUN .
REMOVED BEFORE	·. , ·
DRY GAS METER ?	RUN
STRTIC HOH IN ? 1200	RUN
STACK TEMP. 296.0000	RUN
ML. WATER ? 50.5000	RUN
IMP. 2 HOH = 5.9	4-4-1 1-1-1 1-1-1
% HOH=5.9	••
% CO2?	
9.0000 % OXYGEN?	RUN
9.2000 % CD 2	RUK
NOL NT OTHER?	RUN
HOE HE OTHER:	RUN
MWd =29.81 MW WET=29.11	
SQRT PSTS 2 7.7591	DHN
TIME MIN ? 60.0000	
NOZZLE DIR ?	
.3950 STK DIA INCH ?	PUN
	RUN
 * VOL MTR STD = 37.7 STK PRES PES = 29. VOL HOH GPE = 2.38 % MOISTURE = 5.93 MOL DRY GAS = 0.94 % NITROGEN = 81.88 MOL NT DRY = 29.81 MOL NT DRY = 29.81 MOL NT MET = 29.11 VELOCITY FPS = 19. STACK AREA = 23.76 STACK ACFM = 27.48 * STACK DSCFM = 17.4 	49 11 80
<pre>% ISOKINETIC = 10</pre>	18.42

ł

XROM •NET Run Number B5 R2 BP•	H 5-
METER BOX Y?	RUN
1.0770 DELTA H?	RUN
1.3600	RUN
BAR PRESS ? 29.4100	RUN
METER VOL ? 32.2010	RUN
	RUN
% OTHER GAS Removed before	
DRY GAS METER ?	RUN
STATIC HOH IN ? 1200	RUN
STACK TEMP. 281.0000	RUN
ML. WATER ? 58.7000	RUN
IMP. % HOH = 7.3	
% HOH=7.3	
X C02?	
10.6000 % OXYGEN?	RUN
7.7000 % CO ?	RUN
NOL WT OTHER?	RUN
	run
MWd =30.00 MW WET=29.12	
SQRT PSTS ? 7.2127 Time Min ?	
	RUN
60.0000 Nozzle DIA ?	RUN
.3950 STK DIA INCH ?	RUN
66.0000	RUN
* VOL MTR STD = 34.80 STK PRES ABS = 29.4 VOL HOH GAS = 2.76 % MOISTURE = 7.34 MOL DRY GAS = 0.92 % NITROGEN = 81.70 MOL WT DRY = 30.00 MOL WT DRY = 30.00 MOL WT WET = 29.12 VELOCITY FPS = 17.7 STACK AREA = 23.76 STACK AREA = 23.76 STACK ACFM = 25.23 * STACK DSCFM = 16.37 % ISOKINETIC = 99.0	10 7 70 3. 70.


XRON THE	TH 5-
RUN NUMBER B5 R3 BP	
NETER BOX Y?	RUN
1.0770 DELTA H2	RUN
1.4700 BAR PRESS ?	RUN
29.4189	RUN
METER VOL ? 34.4970	RUN
MTR TEMP F? 73.0000	PUN
% OTHER GAS Renoved before DRY GAS Meter ?	
	RUN
STATIC HOH IN ? 1200	RUK
	RUN
ML. WATER ? 57.0000 IMP. % HOH = 6.9	RUN
% HOH=6.9	
% CO2? 7.4000	RUH
% OXYGEN?	
10.3009 % CO ?	RUN
MOL NT OTHER?	RUN
	RUN
MWd =29.60 MW WET=28.80	
SORT PSTS 2	
7.4441 TIME MIN ?	RUN
60.0000 NOZZLE DIA ?	RUH
.3950 STK DIA INCH ?	RUN
66.0000	RUN
 ¥ VOL MTR STD = 36. STK PRES ABS = 29 YOL HOH GAS = 2.6 ½ MOISTURE = 6.88 MOL DRY GAS = 8.9 ½ HITROGEN = 82.3 MOL NT DRY = 29.6 MOL NT DRY = 28.8 YELOCITY FPS = 18 STACK AREA = 23.7 STACK ACFM = 26.13 	.40 8 31 0 8 8 .37 6
<pre>* STACK DSCFM = 17+ % ISOKINETIC = -9*</pre>	875.

APPENDIX K

EPA Method 9 Certification

.

(This page left blank)

This is a recertification; initial certification was Sept 1988.

(This page left blank)

DISTRIBUTION LIST

	Copies
HQ AFSC/SGPB Andrews AFB DC 20334-5000	1
HQ USAF/SGPA Bolling AFB DC 20332-6188	1
HQ SAC/SGPB Offutt AFB NE 68113-5001	1
USAF Regional Medical Center Wiesbaden/SGB APO New York 09220-5300	1
OL AD, AFOEHL APO San Francisco 96274-5000	1
USAFSAM/TSK Brooks AFB TX 78235-5301	1
USAFSAM/EDH Brooks AFB TX 78235-5301	1
Defense Technical Information Center(DTIC) Cameron Station Alexandria VA 22304-6145	2
HQ HSD/XAE Brooks AFB TX 78235-5501	1
HQ USAF/LEEV Bolling AFB DC 20330-5000	1
HQ AFESC/RDV Tyndall AFB FL 32403-6001	1
HQ SAC/DE Offutt AFB NE 68113-5001	1
USAF Hospital Grissom/SGPB Grissom AFB IN 46971-5300	2
USAF Hospital Grissom/SGPB Grissom AFB IN 46971-5300	2

.