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SECTION 1

INTRODUCTION

Although particle methods in hydrodynamics have been remarkably suc-

cessful in many problems, 1- 4 current methods suffer from an inadequate treatment
of boundary conditions. This is particularly evident when one tries to include heat
transport in the energy equation.5 -6 Without accurate values of the flux at the bound-
aries, it is not possible to calculate the net exchange of energy between a fluid and its
environment.

Another class of problems requiring accurate treatment of boundary condi-
tions is illustrated by the shock tube problem where the shock is driven by a piston.

In this case the particle method must be able to accommodate an externally-
applied (boundary) pressure. The method should also be able to handle conduction
heating of the gas by a hot wall or piston; and, finally, boundaries must be treate(l
accurately to include radiative heat exchange, in particular, radiative cooling.

In this paper, some new algorithms are developed for smooth particle hy-
(Iro(lynlamics in problems where external boundary conditions are imposed. Althouigih
thermal and radiative diffusion are included, radiation transport is neglected in the
presernt paper.
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SECTION 2

KERNEL ESTIMATES NEAR BOUNDARIES

The standard kernel estimate of a function is given by 3

ff,(x) = f(x')W(x - x', h)dx', (I

where the kernel is normalized by

X
Jim W(x- x',h) dx' 1. (2)
h -,o f

In these expressions the domain of definition is 0 < x < X.

As long as h -* 0 one would not expect normalization problems near the
boundary, but ini practical applications kernels with finite h are used. One would then
expect difficulties within x - h of the boundary because the integrals are truncated by
the boundary. For example

lir W(x - x')dx' (Z- X f 2

which is obvious from Fig. 1.

Consider what this does to the kernel estimate of the density. Assume a dense
constant spacing of particles in the vicinity of the boundary X. Far from the wall, the
kernel estimate gives

pW) jp (x') W(x - x', h) dx'

Srn W(x- - ,h)

P I

2



x x

2h 2h 2h h -_

Figure 1. A typical smoothing kernel, showing how the

symmetrical form is truncated as the particle ap-
proaches a boundary.

where pC is the constant value. However, following Eq. 3, as x -* X, the kernel estirate

becornes

p(X) lim p(x')W(x - x',h)dx'

- m W(X-xh)

1
PC (5)

So within -- . of the boundary the interpolation feature of the kernel estiniate giv's

spurious resuls. Also, presumably, one finds

P(X) lirn P(x')V, (x - x')dx'

2

for the case of a uniform pressure in the neighborliood of the boundary as in Fig. 2.

3



-PC

1/2 P
C

h 
X

Figure 2. The falloff in a uniform pressure distribution as
given by a kernel estimate in the neighborhood
of the boundary.

In summary, we have seen that because of the truncation of the normalization
integral within -- h of a boundary, interpolation implied by the kernel estimate rTnay
not be accurate. Renormalization is a possibility but does not appear to work. Also.
the boundary value method presented below seems to require the apparent failure
mnanifested in Eq. 3.

4



SECTION 3

MOMENTUM EQUATION WITH BOUNDARY
PRESSURE

All treatments of SPH of which the author is aware require integration by
parts when deriving kernel estimates but simply drop the boundary terms. (See Section
8 below.) This is presumably because the kernel is supposed to mimic a 6-function

which goes to zero sufficiently far from the particles representing the edge of the system.

However, if we are to consider problems where the particles interact with a
boundary condition, such as an externally-applied pressure, we must specifically include
the boundary terms. In this section the two procedures developed by Monaghan for
the momentum equation 2' are modified to include boundary pressure.

In the first case, write the momentum equation as

dv 1 9P
dt p dx

-4( a. (7)

The kernel estimate of this equation is formed by changing the independent variable
to x', multiplying by W(x - x')dx' and integrating over the domain 0 < x < X. One
o)t.ains

dv, fX a !'j( z)x

dt , (' P)

-- (P) f , W-(x - x')d,()

where the subscrip,. . ienotes "kernel estimate." The second integral has been lin-
carized by eval,iving (P/p") by its kernel estimate and taking it outside the integral
sign. This is justified since W(x -- x') acts like 6(x - x').

5



After integrating by parts, one finds

dv, - [PW ( j ' x (P) aW(x- 'ddt p 10 P a

())lWxo '- ( P) jX paW (xX') dX', (9)P oP

where we have used dW/drzx -OW/ox' assuming a symmetric kernel.

If we now evaluate the integrals by the particle method, replacing

f f(x')W(x - z') dz' fj W (x - . , (10)
i Pi

we obtain an expression for the momentum equation with external boundary pressures,

dto -+ p W (x - o)

2 2 ± W- X)

Thus, particle i feels the effect of the boundary pressure if it is within range of the
boundary and W(xi - o) ) 0. The boundary pressure enters in a term similar to that
for any other particle j.

Does this expression conserve momentum? If we multiply by m, and sum.
we find

6



d5 re, v, Po m, mI ) + il W(x, - o)

-/P /"\ dm, +~PX Mi X + ilWX

-ZZ j 2~m 2 (9 Xj (12)
• j (Pj (Pil 0x

The last term in the equation vanishes because OW/ax, is antisymmetric in i and
j. To get a form where P, and Pj appear symmetrically was the main point in the
manipulation of P and p in Eq. 7. This insures the vanishing of the last term in Eq. 12
which is necessary for conservation.

Now what about the boundary terms? From Eq. 3, we have

1

m,W(x, - o) = I , (13)
i2

so that Eq. 12 becomes

d 1
E- MiV, -Po+0 Oop0 M 2W (x1 ,-o)

dt 2 P

1P - Px Mi f )W(xt-X). (14)~ ~ P P -, \/-

Here P, and Px are the given boundary values of the external pressure. The other
terms are the interpolated values of the pressure at the boundary given by the internal
calculation. If this calculation is accurate (apart from the factor of 1/2), it must yield

1 ( ;j )0
i i

and

7



Px - px 1: m, W(x, - X), (16)
i (Pi

giving for Eq. 12

d mivi Po - Px (17)
dt

A similar analysis is possible for Monaghan's other conservative form of the
momentum equation. First write

dv 1 OP p11 2 O9p/2
- 2 (18)dt p ax p ax

Then the kernel estimate of the momentum equation becomes

d = -2 p) 10 ax' W(x - x')dx'

= -2 p1/ -)p12W x

-2 (p) / 2-- -- (X - x')dx' . (19)

Evaluating the integral by the particle method gives

dv, - 2 (F)2 [p 0 '/'W(Xi - o) -pXk'
2W(Xi _ X)]

- 2W(Xi Xi) (20)
) PiP, Oxi

where, again, we note the fortuitous appearance of the factor of 2 in the bounldary
terms which will compensate the falloff represented by Eq. 3.

8



After multiplying by m and summing, we obtain

d E-nivj = 2P,/ 2 m pm, W(X, - o)

ii P )

- 2 E E mimjP ,' 2  W (x-x) (21)y PiPj 09xi

where because of the symmetry in i and j, the last term is zero; and since

1 p,/2 - i Em, /2 f~ W(X, -o0)
2 P 1i

2m, ("p1W(X, - X) , (22)

we get the conservation of momentum,

d
-E Mv = P - Px (23)

It is curious that in both of these forms the boundary terms enter in such a
way that the factor of 1/2 from the normalization anomaly at the boundary is required
for a conservative momentum equation. This is not true of all forms, however. For
example, the first expression for the pressure gradient in Eq. 7 does not produce a
boundary term with the factor of 2 present.

9



SECTION 4

EQUIVALENT FINITE DIFFERENCE FORMS

If particles are assumed equally spaced, it is possible to derive the equivalent
finite difference form which the kernel estimate represents.6 It is instructive to look at
these forms, particularly in the neighborhood of the boundary, to get a feeling for the
accuracy of the particle method.

For the purpose of illustration, consider the kernel shown together with its
derivative in Fig. 3,26

1(2 u2 I 0 < lul <

W(x-' (2- u) 3  < u 2 (21)
6h( Iul

0 2 < Jul

where u (x - x')/h, and

w = law (25)

Ox h Ou

Now, consider a series of equally spaced equal mass particles far from any
boundary as shown in Fig. 4. The momentum equation in the form of Eq. 11 is

10



W

h 2h

aw/a x

Figure 3. The smoothing kernel given by Eq. 24 and its
(continuous) first derivative.
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dv, ME +_________ -xj

l rn[( )+( )] (2l ) (l6)

R P2i+1 + il

since OV ' 1/Dx, is zero -xcept for j =I - 1 and j i + I as can be seen from Fig.3.
From Eqs. 24-25 we have

-1

19W (x, - Xj) 0 (27)

Oxi

which leads to Eq. 26 above. This simplifies to the central difference formula

dt 2h i+l i-

where we have used rn/p = h for equally spaced particles.

Let us now consider the case where the boundary falls within h to the right of
particle i. In this case, the j = i + 1 term is missing but the boundary term is present.
Specifically, let us assume the boundary X occurs -- 0.6h to the right of particle i where
W(x, - X) - 1/2h. Eq. 11 then becomes

dv[
dt P xK (L)x + (M il Px()

M m [(p 2h12 (As (29)

12



i-2 i-I i i+1 i+2

(a)

Figure 4(a). A series of equally-spaced particles far from a boundary.

p ._i Pi 
P --

2h

i-I i _

(b)

Figure 4(b). Equivalent difference form for the pressure gradient in the
neighborhood of the boundary.
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since W(x1 - X) = 1/2h and the j = i+1 term is missing. Using h = m/p, this reduces

to

dv, 
(310[(

dt 2h x (0i-1

which is a fairly good approximation. As shown in Fig. 4 it gives a central difference
forin based on Px situated 2h from Pi-1 , although it was assumed that the boundary
was -- 1.6h from xi-1. All finite difference algorithms are uncertain to within Ax = h,
so these boundary terms are probably as good as one would expect of most difference
methods.

14



SECTION 5

WORK TERMS IN THE ENERGY EQUATION

We now consider the work terms which appear in the energy equation in the
presence of boundary pressures. In order to insure conservation, this term must be
expressed in a form that is complimentary to the right-hand side of the momentum
equation so that the kinetic energy appears correctly.

We write the work terms as

d P Ov

dt p ax

- a + V a a

where c is the internal energy per unit mass. Taking the kernel estimate of Eq. 31
yields

dc ~ ~ W~ -xa P x')dx'

+ Vj~ ~ W(x - x')dx' ,(32)

where the second term has been linearized as before. This term is now rewritten using
the kernel estimate for the momentum equation,

dt, Xa I W (x x)dx - ( P),] f X -a 'V (X - X')(dir' . (33)dt (),1

15



If we multiply by v, we get

vKj~ ~ W(x -x')dx'=-(m,)fX ,W(x - x')dx', (3)

which gives for the energy equation

- () x°w(- x)dx' (37)

Next, integrating by parts we obtain

& , dv,, [ W[ -

dt +  Rt - p 0o P ax

-- (PV X)p-a (x - x')dx' (36)

When this expression is evaluated by the particle method, we get the energy

equation expressed in terms of total energy,

di + di -12+ = o)V
- [ ) 2 + 2 ),] xW(, - X)

- Vm + (k)] aw(x, -x,) (37)

16



We can verify that Eq. 37 insures conservation if we multiply by 7n, and sum,

d12) 1 (PV" _____-

I I P(iPi Ps

(Pv)x- PxE miP
2 S i POi

-F ZPm)m, a VV W(X-~ (38)

The left-hand side is the time rate of change of total energy, internal plus kinetic. The
double sum on the right is zero because of the antisymmetry of OW,/Ox,. And as
before, we have

Po mi -PW - 0Pi Pi 2

Px _m, (Pv W X -
1 (Pv)x , (1 (,))

giving

d 7(f1 = (PV) - (Pv)x()

dt 2vi

The energy Fq. 37 is expressed in terms of the total energy. After the parlicles
are imoved using the momentum equation, the change in kinetic energy is known. Then
Eq. 37 can be solved f - r the internal energy (,. In sone cases, it may be desirable to
have the energy equation expressed in terms of the internal energy alone.

17



The explicit appearance of the kinetic energy term can be eliminated using
the momentum Eq. 11,

v( v + poW(xi - o)

- ( v ( PXW(X - X)
x P

-Zm, + 8W,+ 1-ox,)()
j () j Vii P ' wx j

After subtraction, this leads to a form of the energy equation where the kinetic energy
does not appear explicitly,

[V0

dt [VX - (j W(X - X)

- > m, [Vi - d,[ OX, (42)

In summary, we have developed a conservative expression, Eq. 37, for the
work done on a fluid by pressure forces that is complementary to the momentum Eq. II
in the presence of externally-applied (boundary) pressures. These two equations insure
Ihe, conservation of momentum and energy.

18



SECTION 6

HEAT CONDUCTION TERMS IN THE ENERGY
EQUATION

Let us now consider the addition of thermal heat conduction terms in the
energy equation. This will be especially important for ICF applications. Neglecting
other terms for the moment, the energy equation becomes

dc 1a ( _

dt pax (Kax
IlaFp ax(,a

where K is the thermal conductivity, T the temperature and F the heat flux. We
shall approach this equation in the same way as the momentum equation and obtain a
completely parallel formulation.

Following Section 3, we write

d a (aF\ FOp
dt ax p : plx

Which has the following kernel estimate

d(k a ( W(x x')dx'

dt Z, a X' \p

( f x ap W(x - x')d x' (.15)

After integration by parts, one obtains

19



-f(x - x')dx'
dt - 10 ki a

(F [pW(Xx, 

(F) LxpaW(x-x)dx, (1I6)

which in particle form becomes

- [(D + ()] pxW(x, 
-d--F : + (F]PeW(xi _ )

o 2

- _m (F ) + ( F )] OW(xi ) 
(47

P i P (x

It is clear that energy conservation follows in the same way as demonstrated above.

Thus, in Eq. 47 we have the energy equation with heat conduction in. a
form completely analogous to the momentum equation, Eq. 11. The boundary values
for the fluxes, F, and Fx appear in a similar way to the boundary pressures. And
since experience has proven Eq. 11 to be a successful particle form of the momentum
equation, one would expect similar results for Eq. 47.

There remains only to calculate the fluxes for use in Eq. 47. We write F in
the form

F 10T

0- (T) K-T apo- .
=- K~ (-8)

which, by a now-familiar procedure, leads to the particle equation,
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(~i) K, + poW(X, - o)

- [i (T\x ('T)]\xiX

- K m + W(x - X)(49)

S 2 i P2axi

So the temperatures define the fluxes through Eq. 49 and the fluxes determine the
energy transport through Eq. 47.

It is possible to develop an equivalent treatment of heat conduction based
on the product of square root approach used in Eq. 18, but this is unlikely to be any
better than the method already given. Other approaches have been proposed for heat
conduction (which neglect boundary terms, however). The method of Brookshaw is
discussed in the following section, and a variation of Brookshaw's method by Monaghan
gives similar results in test calculations.5
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SECTION 7

CRITIQUE OF BROOKSHAW'S METHOD OF
CALCULATING THERMAL DIFFUSION

In a 1985 paper,6 Brookshaw discusses several approaches to adding radiative
heat diffusion to SPII. He describes Lucy's early attempt 7 at solving the energy equation

dS aF
dt ax

F 4acT' i9T
3Kp ax' (50)

by using the particle method

( T d S ) . = _ m F j ' W x i
dt ,j P 0x

F = _( 4acT 3\i (T) aW(x -x,) (1
3Kp )mj- Px (51)X

It is stated that since W(x, - xj) --+ 0 at the boundary of the fluid, T - 0,
and one has an insulating boundary condition. The statement is made, "...so there is
no reason to assume that the SPH equation will automatically take into account the
correct boundary condition."

It is easy to see where Lucy and Brookshaw go wrong here. In order to get the
particle equations, Eq. 51, they had to integrate by parts and drop the very boundary
terms they are so concerned about. For example

IT -I -W(x -x')dx'
dt j a x'

, x, aW

-FW(x - x')Io - 10 F dx (x - x')dx', (52)
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which becomes in particle form

(dS) FpT- FW(x,-o)-FxW(x, -X)

-m (F OW x- Xj) (5)P i x

Even though boundary terms are present here, this is not a good form to
use, since it does not guarantee conservation. It is better to use the method developed
in Section 6. Test calculations showed Eq. 51 was inaccurate near the boundary and
also the method was sensitive to particle positions. Brookshaw presented a different
approach to calculating heat diffusion based on a difference algorithm that he claimed
gives much smoother results than Eq. 51. The method given in Section 6 should be
accurate near the boundaries, but it may be that Brookshaw's approach would give
added smoothness. For this reason, we shall attempt to derive Brookshaw's algorithm
with boundary terms included.

Write the energy equation as

dc a a) 154)P dt -~ a(K -O9x]

and form the kernel estimate

PKd K-: Jx 'IK 9}IWx -x'dxI, (55)

where curly brackets are used to indicate a special treatment for that particular term.
Integrating by parts yields

P, K- w(x - X') + f ( (- X')dx'. (56)
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Now, Brookshaw appeals to a Taylor series expansion to write a difference
form for the term in curly brackets.

Since

K(x') K(x) - (X- X') OK
ax

aT I12T =x) x - (x- x')- + (X- x -)'- + ..,(57)

we can write

K - - [K(x) + K(x')] T(x) - T(x')
axT OK T (

2K(x) aT _(X - XI) K(x)--a2T + aK aTJ +  (58)

The kernel estimate, Eq. 56, becomes

dE, {K cI} W(X -X')]X-~

fX T(x) - T(X') _(
+ f tK(x) + K(z')] x' W(x - x')dx' (59)x ax

where Brookshaw only discusses the integral and assumes everything goes to zero at
the boundaries.

It is interesting to see something like 2 k under the integral sigl,. To see
how the difference form gives the intended heat conduction term, substitute Eq. 58
into Eq. 59

dc T a a7') 1

'd-- - (X - X) - yK ) + ... W(X - X')

fX~ I _ (x-_ x)~ -a -(9T) + _._(+o 2KI1X.. -(-') K + . W(x - x') dx' .((0)
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When the integral is performed, term-by-term cancellation gives

K dE- + O(h 2) (61)

which is the result obtained by Brookshaw. Including the boundary terms in the
integration by parts does not change the result given by series expansion.

Brookshaw's scheme with boundary terms can now be written as

df, T(x T( )(x - ))

P" dt [{K(x) + K(x')} T(x)- - 'dt X - X1

+ 1 [K(x) + K(x')] T(x) - T(x') a W(x - x') d' ,(62)
oX - X ax ~ 62

which gives in particle form

__ 1 T, -T 1 T,_-Tx_

S K o) [ W(X-)+ K, + KxI - - X W (Xi -x)
dt Pi xi - o Xi - X

+ m Y- (KS. + Ki) T" - T7 a W (Xi - xj) .(63)
j PiPj xi - xj axi

It is clear that Eq. 63 gives conservation since the summation is antisymmetric
in i and j and the necessary factors of 2 are present in the boundary terms. Whether
this approach to heat conduction is better than that represented by Eqs. 47-49 can only
be determined by numerical testing. Eq. 63 certainly solves the problem of an insulating
boundary condition, since any particle within 2h of the boundary (which presumably
is on the order of one diffusion length) will exchange energy with the environment
icprcscnted by the temperatures T, and Tx.
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SECTION 8

CRITIQUE OF SOME MANIPULATIONS IN THE
LITERATURE

In the foregoing, it has been shown that boundary terms neglected in other
derivations of SPH algorithms2 - 7 are essential for many problems and particularly
for energy transport problems. The question arises as to how these terms were so
consistently neglected over the last decade.

In Gingold and Monaghan's paper, 4 they approach the particle method as
follows:

Kernel Estimate P,,(x) = f P(x')W(x - x')dx',

Particle Approx. P, = E m, -P 2

The Gradient (= m 'WPxi - x( ) a (64)
Ox, P a91

However, if one calculates the pressure gradient directly from the kernel estimate one
finds:

Kernel Esti~mate f~ W W(x - x') dx' ,(X, + / ' W x-x)x
Integration PWaP ( - x')dx'(1P

Particle Approx. 49P PxIV(x, - X) - PoW(x, - o)
09x,

+ Zm,( P) aw(x,-x,) (65)
j j 26,

26



This shows clearly that one must be careful of taking derivatives through
particle approximations to kernel estimates. In Monaghan's 1982 paper,3 he mentions
integration by parts but says he is assuming W, the function, or both go to zero on
the boundary. This is better than what one sees in References 4 and 6, because it is
mathematically defined even though unnecessarily restrictive.

The point to be made here is that in dealing with SPH equations, it is safer
to carry everything through to final form as an integral equation and only then replace
the integrals with sums over particles.
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SECTION 9

EXTENSION TO HIGHER DIMENSIONS

Consider first the kernel estimate for the momentum equation, Eq. 7. In
vector notation, this becomes

- _f V1 W(iF- /'I,h)d 3 rI

- f)J V'pW(I#F- i'1,h)d3r', (66)

where we assume the kernel is spherically summetric, extendiig over a range R - 2h
about the point . The volume of integration V is therefore a sphere of radius I?
centered on Fas in Fig. 5. An exception to this is when Fis within range of a boundary
as in Fig. 6. Then integration by parts yields a surface term, where the boundary
pressure at the surface influences the particle at point .

Integrating by parts in Eq. 66 gives

dt7 IB (P) W(IF- F'l,h)d§' - f P(~ VW(jF- F, h)d r'

- (w('-F ',h)d§'- (- pVW(IF - F'Kh)d3 r', (6 7)

where the surface integrals are over that area of the boundary intercepted by the non-
zero range of W. The particle approximation to the kernel estimate becomes
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0

Figure 5. Range of influence of kernel W(IF- F'I) about the
point F.

B

(IA

r

FB
B 0

Figure 6. Range of influence of W intercepts boundary
plane B over area AS.
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a<

Figure 7. The area on a plane boundary intercepted by the
sphere is a disk of radius a.

d 6 - ) + 4) PBW (lr, - F ,h g

-(4 + (4)] VW(1t - Fjj,h), (68)

where PB and PB are the density and pressure at the boundary averaged over AS,, r13
is the normal point at the boundary closest to , and i is the unit vector normal to
the boundary at ASi, all as shown in Fig. 6.

The calculation of ASi is fairly easy if one neglects curvature of the boundary.
which is justified in most cases since h is supposed to be small. In three dimensions.

the area intercepted by a sphere of radius R located a distance d = Jr- rBI along the
normal to a plane boundary, as illustrated in Fig. 7, is

AS, = (R -I- )• (69)

In 2D rectangular geometry (x, y) one considers a unit length in z. Hence, the range
of influence of W is a cylinder of radius R and unit length. In this case, which is
illustrated in Fig. 8, the area intercepted by W on a plane boundary is

As, = 2 (R2 - i- frB) /. (70)
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x

Figure 8. The area on a plane boundary intercepted by the

cylinder of unit length is a rectangle of height 2a.

'his formula does not apply to the situation in 2D cylindrical geometry where, be-
cause of the symmetry, a particle is toroidal in shape. There does not appear to be

a simple expression that covers all boundary configurations in this geometry. In the
one-dimensional cases discussed earlier, one considers a unit length in each of the two

transverse directions giving AS = 1. Eq. 68 then reduces to the ID expression derived
earlier. The area AS, in these three cases can be written generally as

AS, C(a)(R' - - B12) - ' , (71)

where a =z 1,2,3 is the geometrical order, and C(a) = (1,2, 7r), respectively. It should

be rioted that an exception to Eq. 71 may occur at the corner of intersecting boundaries.

The normalization anomaly discussed in Section 2 is not altered in higher
geometries. In this case, one has

lim f W(Ir- 'i, h)d 3 r' (72)F-FB ,- 2 ,(2

and for a uniform distribution of particles in the neighborhood of the boundary,

imW(lB - FI,h) I p, (7:3)
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Likewise, the boundary value of the pressure or any similar function in the particle 
approximation would be expressed as 

(74) 

In order to demonstrate conservation of momentum from Eq. 68, one obtains 
the total component of momentum in any direction x, 

~ d~ A 

~m'di ·:t -
I 

-ps L Fni(Ps~S.. x)W(Iii- fsl, h) 

-ps }:m, (~~§. · x) W(lii- fsj,h), 
• p, 

(75) 

where the double sum vanishes because of the antisymmetry in i and i. The first term 
is the particle approximation to one-half of the boundary value of the net force on the 
system of particles, 

1~ .... 
- L.J(P ~s, · z)s , 
2 • 

(76) 

and by the same arguments presented earlier in Section 3, the second term should be 
a good approximation to this expression also. Conservation is then expressed as 

~ d~ A ~(P"S .... A) L.Jm•y·x = L.J u ,.x B· 
i t i 

(77) 
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By a similar series of steps the work terms in the energy equation of Section 5

are written

de + d ( ' 2 A ,[, (( -i;B1,hdt dt 2VKJ - + (SpW rj 2 Bh

- mi -() + (O) . VW(! - r'I,h), (78)

and conservation of energy follows in a like manner,

d 12 = (PA. ' - (79)

2 i

The heat flux terms in Section 6 are easily generalized to the form.

with the fluxes given by

-- K, + >r (w4) (4)] W ih)(8

(Ti
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SECTION 10

SUMMARY OF NEW SPH ALGORITHMS

A suggested approach to SPH is summarized here that allows boundary values
for pressure, temperature and heat flux to be specified. This allows problems to be
solved where the fluid is driven by an externally-applied pressure, temperature or both.
It also allows the fluid to lose energy to a cooler environment. Although the diffusion
treatment is derived for thermal conduction, radiation which is in equilibrium with the
material temperature can be handled in the same way.

The momentum equation for particle i is written

di B- + (P)i] PBW(I- rBj,h)ASj
dt P

- P) + "

- jZ ( + Mh) VW(ji-F1 1,h) (82)

In this equation PB is the external scalar pressure imposed on the fluid, specified as
problem input. The quantity PB is the boundary value of the density given by

PB = 2 mjW(IF - FBI,h) . (83)

The factor of 2 appears as in Eq. 74 because of the normalization anomaly at the
boundary.

From Eq. 82 we see that any particle i within range of the boundary, i.e.,
Iri - FBI< 2h, begins to be influenced by the external pressure. This pressure terIn
enters in a form similar to that of any neighboring particle except W appears in the
boundary term rather than VW. This equation is, therefore, different than if onu
assumed that a fixed particle represented the boundary with a pressure defined there.
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The work term which appears in the energy equation is written

dti +dr I -2- F+ 1, "A B(~- h)
- dt 2' + (P6)] - ",PBW(Ir,

-( m g + (k)] VW(I - Fj, h). (84)

After the particles are moved using Eq. 82, the change in kinetic energy is known and
Eq. 84 is used to obtain the change in internal energy. From the new values of p, and
ci, the temperatures and pressures can be calculated.

If thermal or equilibrium radiation diffusion is present, the following heat flux
terms must be added to the work terms in the energy equation

dt Work Terms - J iPBW(I - FB ,h)

-m,  +.VW(JF - F , h). (85)

The heat fluxes F, are defined at each particle position just as the pressures and tem-
peratures are. The fluxes are obtained from the temperatures by

B -K, + - A PW(IF - B , h)

-K, m ( + VW(Ii - ?-jh). (86)P i P

It is not clear how best to implement the diffusion equation in the finite dif-
ference approximation. Some numerical experimentation may be necessary. However,
the above set of SPH equations allows for boundary conditions on P, f and T and
conserves energy, momentum, and mass.
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