A]

NGO ARKIFIED *

m MIF e

ATION PAGE

Rl Al DIS™P [TTION:

ISR A LE RN L D)

AD-A211 679

12. 60vY ALCESSION NI

3 ORELIBIENTS (ATA Ol Wuw:

Ac2 Corpiler Valigdation Summary RepoOrt:Concurrent
IComputer Corporation, C-° Ada, Version R02-02.00, Concurrent

Computer Corporation 3280 MPS (Host & Target), 89071IWI.10!

tTYPi OF MiBDs”

11 Julvy

B PLEITI (OWiBIL

198G <o S0 L puy()

FQ PIRFORMIN. Dh. RiPL:: apmiit

Wright-Patterson AFB

Y. AUTHOR ;) . CONTAALT OF Skan’™ aym: i,
Wright=Patterson ATE

Dayton, OH, US4

9. PERFORMING DRGARIZATION AND ADDRLSS 10. PROCRAM [fw " PF_i7°, TASK

ARLA & WOHR UNIT BUMZiFS

United States De

artment of Defense

Dayton, OH, USA
33. CONTRO.LING OFFICE Wew: AND ADDARISS 12. A[PORT DeT(
Aca Joint Program Office

washington, DC 20301-3081

9. WM iR UV FALLS

14, BOAJTORAG AGENDY NaMI 3 AJDRLSS(!f oerent from Controlung Otice)

Wright-Patterson AFB
Dayton, OH, USA

15, SELU®RiTy (LAls (c'tharepon,

UNCLASSIFIED

1be . git;ltt"ltl‘loh DOWNIRAZING

wniY "{
N/A

1€. DISTRIE.TION STATEMINT (ofthis Report)

Approved fcr public release; distribution unlim

ited.

17. DISTRIELTION STATIwINT (Ofthe abssractenteced B ocr 2 10 Heren: from Rep

UNCLASEIFIED

18, SUBFLEMINTASY ADTES

15. KEYelRIS (Continue onreverse 3:0¢ d necessany anc s0entify by block numbder)

Aca Procrem~ing language, Aca Compiler Validation Su

e

ety Repsit, A
Corpiler Velicdetion Capaebility, ACVC, Validation Testinc, AZla
Validation Office, AVO, Aca Validation Facility, AVF, ANSI/MI
1B8i5A, A2a Joint Program Office, AJPO

1-8S70-

20. ABSTREZY (Continue Onreverse 310 1f necessary ano i0ent:f) by block numper)

Concurrent Computer Corporation, c3 Ada, Version R02-02.00,
Computer Corporation 3280 MPS under 0S/32, Version R08-02.03 (Host & Target), ACVC 1.10.

ye
NV Y
DD U 31473 £p3Tioe OF 3 NDv 85 1S OBSO.ETE
1 ax 73 S/N DID2-LF-DI4-85D) UN

\CLASSIFIED

SICURIYY [LASSIT]

e —— |

LATION OF TRIS PALL (MhenDeta Entered;

Wright-Patterson AFB, Concurr

AVF Control Number: AVF-VSR-289.0789
89-04-11-CCC

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890711v1.10109
Concurrent Computer Corporation
c’ada, Version R02-02.00
Concurrent Computer Corporation 3280 MPS

Completion of On-Site Testing:
11 July 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Vright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Vashington DC 20301-3081

1-----------llllIlIlIIIllllllllllllllllllllllllllllllIll--------,__

Ada Compiler Validation Summary Report:

Compiler Name: C®ada. Version R02-02.00

Certificate Number: 890711V1.10109

Host: Cbncurrent Computer Corporation 3280 MPS under
0S/32, Version R08-02.03

Target: Concurrent Computer Corporation 3280 MPS under
08/32, Version R0&-02.03

Testing Completed 11 July 1989 Using ACVC 1.10

This report has been reviewed and is approved.

A
e T e
Ada Validaticn Facility
Steve P. Vilson
Technical Director
ASD/SCEL
Wright-Patterson AFER OH 45433-6503

<:;;;2?i??i:4gzk‘

fida Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria vA 22311

: L4
Dr. John Solimond e De(u('(’ DH‘EC(GV

Director
Department of Defense
Vashington DC 20301

i Accession For

{ NTTS GRA&I 7

| .
DT TaB

a
Unacoosuwnced d
Juctivication |
]
By ____ _
Distribution/
| SRR LPRRION,

Avallability Codes
';Lvail and/or
Dtac ' 3pealal

A
b

CHAPTER 1

L
e e 6 v e
U BN

N

CHAPTER

w oM
. e
ro

CHAPTER

NN N O U B W

WWwowwwwwwww
e o e o s s e e e e
W B =

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT .
USE OF THIS VALIDATION SUMMARY REPORT .
REFERENCES. . e e . .
DEFINITION OF TERMS .

ACVC TEST CLASSES .

CONFIGURATION INFORMATION

CONFIGURATION TESTED. . . .
IMPLEMENTATION CHARACTERISTICS ..

TEST INFORMATION

TEST RESULTS. . . .« e e
SUMMARY OF TEST RESULTS BY CLASS e e e
SUMMARY OF TEST RESULTS BY CHAPTER.
VITHDRAWN TESTS
INAPPLICABLE TESTS.

TEST, PROCESSING, AND EVALUATION HODIFICATIONS

ADDITIONAL TESTING INFORMATION.
Prevalidation . o e e e
Test Method .

Test Site

DECLARATION OF CONFORMANCE
APPENDIX F OF THE Ada STANDARD
TEST PARAMETERS

VITHDRAWN TESTS

COMPILER OPTIONS AS T..r.IED BY CONCURRENT

N
8O

uwwwwxr:wwww

s b e
1
SLWORN

|
W NN AN

T

CHAPTER 1

INTRODUCTION

'/ This Validation Summary Report (VSR)Q describes the extent to which a

specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STQ-1813A.
This report explains all technical terms used within it and thoroughly
reports the results of _testing this compiler using the Ada Compiler
Validation Capability, (ACVC)&~-. An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

it e et P~ L e
Even though all validated Ada compilers conform to the Ada Standard, it

must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.™

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal 1language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

e

INTRODUCT.ON

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documenis the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joiu:
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 11 July 1989 at Tinton Falls NJ.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this 1is provided 1in accordance with the "Freedom ot Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Vashington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and 1S0 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler validation Capability Implementers’ Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User’s Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the

Commentary point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and IS0 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AV0 has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AV0 provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

—

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
> demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

-

Inapplicatle 4An ACVC “=z2st that uses features of the language that a
test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Target The computer for which a compiler generates code.
Test A program that checks a compiler’s conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Vithdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured wusing the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, I, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A testis ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another 1language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation 1listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLL message indicating the
result vhen it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by tne Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test 1is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message vhen it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors duriug compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
vould circumvent a test objective. The procedure CHECK FILE is used to
check the contents @&f text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

.NTRODUCTION

tests. Howvever, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is

provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawvn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:

Compiler: C°Ada, Version R02-02.00

ACVC Version: 1.10

Certificate Number: 890711V1.10109

Host Computer:

Machine: Concurrent Computer Corporation
3280 MPS

Operating System: 0S/32
Version R08-02.03

Memory Size: 16 Megabytes

Target Computer:

Machine: Concurrent Computer Corporation
3280 MPS

Operating System: 0S/32
Version R08-0".03

Memory Size: 16 Megabytes

2-1

CONFIGURATION INFORMATION

2.2 TIMPLF' ONTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other <classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correétly processes tests containing loop
statements nested to 65 levels. (See tests DS55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D640O05SE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
TINY_INTEGER, SHORT_INTEGER, and LONG_FLOAT in package
STANDARD. (See tests B86001T..Z (7 tests).)

¢. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation «f expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component’s subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses all extra bits for extra -ange. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) Sometimes NUMERIC ERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) Sometimes NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is not gradual. (See tests C45524A..Z.)

Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..2.)

(2) The method used for rounding to longest integer is round away
from zero. (See tests C46012A..2.)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AQ014A.)

. Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT ERROR for an array having a ‘LENGTH that exceeds
STANDARD. INTEGER’ LAST and/or SYSTEM.MAX INT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises no exception. (See test
C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array type with INTEGER’LAST + 2 components. (See test
C36202A.)

(3) NUMERIC ERROR is raised when ’'LENGTH is applied to a null
array type with SYSTEM.MAX INT + 2 components. (See test
C36202B.)

(4) A packed BOOLEAN array having a ’‘LENGTH exceeding INTEGER’LAST

raises NUMERIC ERROR when the array type is declared. (See
test C52103X.)

2-3

f.

g-

h.

CONFIGURATION INFORMATION

(5) A packed tvo-dimensional BOOLEAN array with more than
INTEGER’ LAST components raises NUMERIC ERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of 1length greater than
INTEGER LAST may raise NUMERIC_ERROR or CONSTRAINT_ ERROR
either wvhen declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
vhen checking whether the expression’s subtype is compatible
vith the target’s subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression’s subtype is
compatible with the target’s subtype. (See test C52013A.)

Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
vhen checking whether the expression’s subtype is compatible
wvith the target’s subtype. (See test C52013A.)

Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
wvhen a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

Pragmas.

(1) The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B, EA3004C..D, and CA3004E..F.)

i.

j.

CONFIGURATION INFORMATION

Generics

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BCZ2(«C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

Input and output

(1) The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT IO can be instantiated with unconstrained
array types and record types with discriminants without

defaults. (See tests AE2101H and EE2401G.)

(3) Modes IN FILE and OUT_FILE are supported for SEQUENTIAL IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes IN FILE, OUT_FILE, and INOUT FILE are supported for
DIRECT I0. (See tests CE2102F, CE2102I..J, CE2102R, CE2102T,
and CEZ102V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE3102E and CE3102I..K.)

(6) RESET and DELETE operations are supported for SEQUENTIAL IO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE31144.)

(9) Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

(10) Temporary sequential files are not given names. (See test
CE2108A.)

(11) Temporary direct files are not given names. (See test
CE2108cC.)

(12) Temporary text files are not given names. (See test CE3112A.)

(13) More than one internal file can be associated with each

2-5

(14)

(15)

CONFIGURATION INFORMATION

external file for sequential files when reading or writing,
except when the external file is a temporary file. (See tests
CE2107A..E, CE2102L, CE2110B, and CE2111D.)

More than one internal file can be associated with each
external file for direct files when reading or writing, except
vhen the external file is a temporary file. (See tests
CE2107F..H (3 tests), CE2110D, and CE2111H.)

More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A..E, CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 c¢f the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawvn because of test errors. The AVF
determined that 360 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for 8 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L
Passed 128 1132 1963 17 27 46 3313
Inapplicable 1 6 352 0 1 0 360
Withdrawn 1 2 35 0 6 0 44
TOTAL 130 1140 2350 17 34 46 3717
3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 190 576 545 245 172 99 160 331 137 36 252 280 290 33:I2

Inappl 22 73 135 3 0 0 6 1 0 0 0 89 31 360

Vdrn 1 1 0 0 0 0 0 2 0 0 1 35 4

44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 VITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D

CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD24A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2481G CD2A83G
CD2A8B4M CD2ABAN CD2B15C CD2D11B CD5007B CD50110
ED7004B ED7005C ED7005D ED7006C ED7006D CD7105A
CD7203B CD7204B CD7205C CD7205D CE21071 CE3111C

CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
wvithdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 360 tests were inapplicable for the
reasons indicated:

a. €24113D..K (8 tests) are not applicable because this
implementation does not support a line length greater than 80
characters.

b. The following 201 tests are not applicable because they have

floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

3-2

TEST INFORMATION

C24113L..Y C35705L..Y C35706L..Y C35707L..Y
C35708L..Y C35802L..2 C45241L..Y C45321L. .Y
C45421L..Y C45521L..2 C45524L..2 C45621L..2
C45641L. .Y C46012L..2

. C357024 and B86001T are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

. The followving 13 tests are not applicable because this
implementation does not support 'STORAGE SIZE representation
clauses for task types:

A39005D C87B62D CD1009K CD1009T CD1009U
CD1CO3E CD1CO4B CD1CO6A CD2C11A CD2C11B
Cb2C11C CD2C11D CD2C11E

. The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

C45231C C45304C C45502C C45503C C45504C

C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55BO7A B55B09C B86001V
CD7101F

. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 47.

. C86001F is not applicable because this implementation does not

support recompilation of package SYSTEM.

. B86001Y 1is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

i. BB6001Z is not applicable because this implementation supports no

predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

. C96005B is not applicable because there are no values of type
DURATION’BASE that are outside the range of DURATION.

. CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests)
are not applicable because this implementation does not support
size clauses for floating point types when the size specification
does not equal 32.

. CD2A61A..D (4 tests), CD2A61F, CD2A61H..L (5 tests), and

CD2A62A..C (3 tests) are not applicable because this
implenentation does not support size clauses for array types wvhen
the specification is not the default value chosen by the compiler.

. CD2A71A..D (4 tests) and CD2A72A..D (4 tests) are not applicable

because this implementation does not support size clauses for
record types when the specification is not the default value

3-3

aa.

TEST INFORMATION

chosen by the compiler.

. CD2AB4B..1 (8 tests) and CD2AB4K..L (2 tests) are not applicable

because this implementation does not support size clauses for
access types when the size specification does not equal 32.

. The following 29 tests are not applicable because this

implementation does not support address clauses for initialized
constant objects:

CD5011B CD5011D CD5011F CD5011H CD5011L
CD5011N CD5011R Cb5012C CD5012D CD5012G
CD5012H CD5012L CD5013B CD5013D CD5013F
CD5013H CD5013L CD5013N CD5013R CD5014B
CD5014D CD5014F CD5014H CD5014J CD5014L
CD5014N CD5014R CD5014U CD5014V

. CD5012J, CD5013Ss, and CD5014S are not applicable because this

implementation does not support address clauses for task units.

. CE2102D is inapplicable because this implementation supports

CREATE vith IN FILE mode for SEQUENTIAL_IO.

. CE2102E 1is inapplicable because this implementatinn supports

CREATE with OUT_FILE mode for SEQUENTIAL_IO.

. CE2102F 1is inapplicable because this implementation supports

CREATE vith INOUT FILE mode for DIRECT_IO.

. CE2102T 1is 1inapplicable because this implementation supports

CREATE vith IN FILE mode for DIRECT_IO.

. CE2102J is 1inapplicable because this implementation supports

CREATE with OUT_FILE mode for DIRECT_IO.

. CE2102N is inapplicable because this implementation supports OPEN

vith IN_FILE mode for SEQUENTIAL_IO.

. CE21020 is inapplicable because this implementation supports RESET

vith IN_FILE mode for SEQUENTIAL_IO.

. CE2102P 1is inapplicable because this implementation supports OPEN

with OUT_FILE mode for SEQUENTIAL IO.

. CE2102Q is inapplicable because this implementation supports RESET

with OUT_FILE mode for SEQUENTIAL IO.

. CE2102R 1is inapplicable because this implementation supports OPEN

with INOUT_FILE mode for DIRECT_IO.

CE2102S is inapplicable because this implementation supports RESEI
with INOUT FILE mode for DIRECT_IO.

3-4

ab.

ac.

ad.

ae,

af.

ag.

ai.

aj.

ak.

al.

am.

an.

TEST INFORMATION

CE2102T is inapplicable because this implementation supports OPEN
with IN_FILE mode for DIRECT_IO.

CE2102U is inapplicable because this implementation supports RESET
with IN FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports open
with OUT_FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports RESET
vith OUT_FILE mode for DIRECT_IO.

CE2107C..D (2 tests), CE2107H, CE2107L, CE2108B, CE2108D, and
CE3112B are not applicable because this implementation does not
support temporary files with names.

EE2401D 1is inapplicable because this implementation does not
support DIRECT I0 with wunconstrained array types. This
implementation raises USE_ERROR on CREATE.

CE3102E is inapplicable because this implementation supports
CREATE wvith IN FILE mode for text files.

CE3102F is inapplicable because this implementation supports RESET
for text files.

CE3102G is inapplicable because this implementation supports
deletion of an external file for text files.

CE3102I is inapplicable because this implementation supports
CREATE with OUT_FILE mode for text files.

CE3102J 1is inapplicable because this implementation supports OPEN
vith IN_FILE mode for text files.

CE3102K is inapplicable because this implementation supports OPEN
wvith OUT_FILE mode for text files.

CE3111B and CE3115B are both not applicable because this
implementation requires that TEXT IO.PUT does not write to an
external file until a subsequent NEW _LINE, RESET, or CLOSE
operation is done. (See Section 3.6)

TEST INFORMATION

3.6 TEST, ™ROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(othervise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn’t anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 8 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

BC2001D BC2001E BC3204B BC3205B BC3205D

The following modifications were made to compensate for legitimate
implementation behavior:

a. At the recommendation of the AVO, the expression "2**T’'MANTISSA -
IR on line 262 of test CC1223A was changed to
"(2%x(T'MANTISSA-1)-1 + 2*%%(T'MANTISSA-1))" since the previous
expression causes an unexpected exception to be raised.

The following tests were graded using a modified evaluation criteria:

a. CE3111B and CE3115B both raised an unhandled END _ERROR exception
and failed during execution. For this implementation, TEXT I0.PUT
does not write to an external file until 2 subsequent NEVW LINE,
RESET, or CLOSE operation. A GET operation before the NEV LINE
can potentially result in an END_ERROR exception, and this occurs
at line 29 in CE3111B and at line 101 in CE3115B. The AVO ruled
these tests should be graded as not applicable.

3-6

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the C° Ada was submitted to the AVF by the applicant for reviev.
Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the C’ Ada using ACVC Version 1.10 was conducted on-site by a
validation team from the AVF. The configuration in which the testing was
performed is described by the following designations of hardware and
softvare components:

Host computer: Concurrent Computer Corporation 3280 MPS
Host operating system: 0S/32, Version R08-02.03
Target computer: Concurrent Computer Corporation 3280 MPS
Target operating system: 0S/32, Version R08-02.03
Compiler: c®ada, Version R02-02.00

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was talen on-site by the

validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magretic tape. Tests requiring modifications during the prevalidation

testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the Concurrent
Computer Corporation 3280 MPS. Results were printed from the host
computer.

The compiler was tested using command scripts provided by Concurrent
Computer Corporation and revieved by the validation team. The compiler was
tested using all the following option settings. See Appendix E for a
complete listing of the compiler options for this implementation. The
following list of compiler options includes those options which vere
invoked by default:

3-7

TEST INFORMATION

ABORT => OFF

ALIST => OFF
INFORM => ON
INLINE => ON

LIST => ON
OPTIMIZE => ON
PAGE_SIZE => 60
SEGMENTED => ON
STACK_CHECK => ON
SUMMARY => ON
SUPPRESS ALL => OFF
SUPPRESS OVERFLOW => OFF
WARN => ON

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on

magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Tinton Falls NJ and was completed on 11 July 1989.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

Concurrent Computer Corporation has submitted the
followving Declaration of Conformance concerning the C
Ada.

DECLARATION OF CONFORMANCE

Compiler Implementor: Concurrent Computer Corporation
Ada Validation Facility: ASD/SCEL. Wright-Patterson AF'B OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration
Base Compiler Name: C %Ada Version: R02-02.00

Base Host Architecture ISA: Concurrent Computer Corporation 3280 MPS
(Under OS/32, Version R08-02.03)

Base Target Architecture ISA: Concurrent Computer Corporation 3280 MPS
(Under OS/32, Version R08-02.03)

Implementor’s Declaration

[, the Undersigned, representing Concurrent Computer Corporation have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the compilers
listed 1n this declaration. I declare that Concurrent Computer Corporation is the owner of
record of the Ada language compilers listed above and, as such, is responsible for maintaining
the said compilers in conformance to ANIS/MIL-STD-1815A. All certificates and registrations
for Ada language compiler(s) listed ir this declaration shall be made only in the owner's
corporate name.

—

/
Seetharama Shastry
Senior Manager, System Software Development {Date)

Owner’s Declaration

I, the undersigned, representing Concurrent Computer Corporation take full responsibility for
implementation and maintenance of the Ada Compilers listed above. and agree to public
disclosure of the final Validation Summary Report. I further agree to continue to comply with
the Ada trademark policy, as defined by the Ada Joint Program Office. I declare that all of the
Ada language compilers listed, and their host/target performance are in compliance with the
Ada Language Standard ANSI/MIL-STD-1815A.

AL ihasly s/3/s5

Seetharama Shastry
Senior Manager, System Software Development (Date)

[4
APPENDIX B
APPENDIX F OF THE Ada STANDARD
The only allowved implementation dependencies correspond to

implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the C® Ada, Version R02-02.00, as described in this
Appendix, are provided by Concurrent Computer Corporation. Unless
specifically noted otherwise, references in this Appendix are to compiler
documentation and not to this report. Implementation-specific portions of
the package STANDARD, which are not a part of Appendix F, are:

-

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINY INTEGER is range -128 .. 127;

type FLOAT is digits 6 range -16#0.FFFF_FF#E63 .. 16#0.FFFF_FF#E63;
type LONG_FLOAT is digits 15
range -16#0.FFFF_FFFF_FFFF_FF4E63 .. ' ©FFF_FFFF_FFFF_FF4E63;

type DURATION is delta 0.00006103515625
range -131072.00 .. 131071.99993896484375;

end STANDARD;

IMPLEMENTATION-

F.1 INTRODUCTION
The following sections provide all implementation-dependent characteristics of the C *Ada

Compiler.

F
DEPENDENT CHARACTERISTICS

F.2 IMPLEMENTATION-DEPENDENT PRAGMAS
The following is the syntax representation of a pragma:

pragma IDENTIFIER [(ARGUMENT {,ARGUMENT))]:

Where:
IDENTIFIER
ARGUMENT

is the name of the pragma.

defines a parameter of the pragma. For example, the LIST pragma
expects the arguments ON Or OFF.

Table F-1 summarizes all of the recognized pragmas and whether they are implemented or

not.

TABLE F-1. SUMMARY OF RECOGNIZED PRAGMAS

PRAGMA l IMPLEMENTED
BIT_PACK es

This pragma allows packing ol composite non-fLOAT

COMMENTS

type objects to the bit ievel, thereby achieving greater
ata compaction. Use of this pragma will result in
longer compile and run times.

BYTE_PACK Yes The elements of an array or record are packed down to
a minima! number of bytes. §
CONTROLLED No Automatic storage reclamation gf unreferenced access
objects is not applicable to the C’Ada implementation.
| ELABORATE Yes Is handied as defined by the Ada language.
INLINE Yes Subprogram bodies are expanded inline at each call.
INTERFACE Yes Is implemented for ASSEMBLER and FORTRAN.
i LIST Yes Is handled as defined by the Ada language.
MEMORY_SIZE No The user cannot specify the number of available storage
. units in the machine configuration which is defined in
package SYSTEM.
j OPTIMIZE No The user cannot specify either time or space as the
‘ primary optimization criterion.
PACK Yes The elements of an array or record are packed down to
a minimal number of bits.
PAGE Yes Is handied as defined by the Ada language.
PARTIAL_IMAGE Yes This pragma informs the compiler that the named
package may be used to build a partial image, and
causes the compiler to verify that the package meets all
requirements for such use.
PRIORITY No The task or main_program cannot have priority.
SHARED No Not applicable because every read or update of the

variable declared by an object declaration and whose
type is a scalar or access type is a synchronization
point for that variable.

48-424 FOO RO2

TABLE F-1. SUMMARY OF RECOGNIZED PRAGMAS (Continued)

PRAGMA | IMPLEMENTED ! COMMENTS

no code s generated which checks for providin
additional space for the run-time stack of any task or o

use of a pragma is legal.

the main task. This pragma may appear wherever the

STACK_CHECK Yes When specified with the argument OFF, this pragma .

indicates to the comptler that there is enough space in
the initial stack chunk for the activation recorc of all
subroutines that mav be active at any time. Therefore,

STORAGE_UNIT No The user cannot specify the number of bits per storage

unit, which is defined in package SYSTEM.

SUPPRESS No

run-time checks such

subprogram etc., See the description of SUPF ES'S_ALL.

All . as
ACCESS_CHECK, INDEX_CHECK, RANGE_CHECK, er-,
cannot be suppressed for any specific type, object,

SUPPRESS_ALL Yes This pragma gives the compiler permission to omit aii |
of the following run-time checks for all types ani

objects in the designated compilation units:

compilation unit.

ACCESS_CHECK, ~ RANGE_CHECK, LENGTH_CHECX,
INDEX_CHECK, DISCRIMINANT_CHECX and
OVERFLOW_CHECK for all integer and fixed poin:
calculations. The pragma must be placed before each

SYSTEM_NAME No The user cannot specify the target system name, which

is defined in package SYSTEM.

F.21 Pragma INLINE Restrictions

lnllmf:i %xpansion of a subprogram call will not occur if the following conditions are not
satisfied:

1.

2.

If the subprogram body is contained in the same compilation unit as the call, the
complete text of the body must precede the call. If the subprogram body is nc:i
contained in the same compilation unit as the call, the compilation unit containing the
body must be compiled before the unit containing the call. (Care should be taken that
the unit containing the body is not recompiied, since this would make the unit
containing the call obsolete.) For every call of a subprogram for which pragma INLINE
is given, a warning message is reported {f the subprogram body is not already known
to the compiler as indicated above; the warning message indicates that inline
expansion is not done for that particular call.

The subprogram body and any enciosed declare blocks may not contain:

e declarations of subprograms
declarations of task types or single tasks
body stubs

generic instaniations

For every call of a sub?rograr_n.for which pragma INLINE is given, a warning message is
reported if this set ol conditions is not satisfied; the message indicates tnat iniin»
expansion is not done for that particular call.

The subprogram body, excluding any enclosed declare biocks, may not >z~

o declarations of objects with task subcomponents

« declarations of access types where the designated type has task subcomponents

e exception handlers

For every call of a sub?rogram for which pragma INLINE is gl.ven. a warning message is

reported if this set of conditions is not satisfied; the message indicates that inline
expansion is not done for that particular call.

Inline expansion occurs when the expanded code contains a valld subproFrgm call.
However, a duplicate Inline expansion is not carried out for a subprogram call if inline

B-3 48-424 FOO RO2

. expansion for that subprogram is aiready in process (e.g. a recursive cail). A warning
message is generated informing the user that this is the case.

F.3 LENGTH CLAUSES

A length clause s?eciﬁes the amount of storage associated with a given type. The
following is a list of the implementation-dependent attributes.

T'SIZE Must be 32 for a_;ypc dertved from FLOAT, and 64 for a type derived
from LONG_FLOAT. For array and record types, only the size chosen
by the compiler may be specified.

T'STORAGE_SIZE is fully supported for collection size specification.

TSTORAGE_SIZE is not supported for task activation. Task memory is limited by the
work space for the program.

T'SMALL must be a power of two for a fixed point type.

Size representation only applies to types - not to subtypes. In the following example, the
size of T is 32, but the size of T1 {s not necessarily 32.

type T is integer range 0..100;
subtype Tl is T range 0..10;
for T'SIZE use 32;

In the following example, the size of the subtype is the same as the size of the type (size
of the type is applied to the subtype).

type T is integer range 0..100;
for T'SIZE use 32;
subtype T2 is T range 0..10;

F.4 REPRESENTATION ATTRIBUTES

The Representation attributes listed below are as described in the Reference Manual for
the Ada Programming Language, Section 13.7.2.

X’ADDRESS
NOTE

Attribute ADDRESS is not supported for

labels.
X'SIZE
R.C’POSITION
R.C’FIRST_BIT
R.CLAST_BIT
T'STORAGE_SIZE for access t\{Fes. returns the current amount of storage reserved for

the type. a T'STORAGE_SIZE representation clause has been

specified, then the amount specified is returned; otherwise, the
current amount allocated is returned.

T'STORAGE_SIZE for task types or objects is not implemented. It returns O.

48-424 FOO RO2

F.4.1 Representation Attributes of Real Types

yields the number of decimal digits for the subtype P. This value is
s1x for type FLOAT, and 15 for type LONG_FLOAT.

vields the number of bma?/ digits in the mantissa of P. The value is
o}

P'DIGITS

P'MANTISSA

21 for type FLOAT, and 51

r type LONG_FLOAT.

DIGITS ' MANTISSA | DIGITS MA?%JIQ'_.SA 1l DIGITS MANTISSA
i [Zl il
8 7 25 12 4]
3 11 8 28 13 45
4 15) 31 14 48
5 18 10 35 15 Sl
PPEMAX xields the largest exponent value of model numbers {or the subtype
. The value Is 84 for type FLOAT, and 204 for type LONG_FLOAT.
DIGITS | EMAX [DIGITS | EMAX [Dleiis | EMAX
1 20 4 i1 1
2 32 7 100 12 164
3 44 8 112 13 180
4 60 9 124 14 182
5 72 10 140 15 204
P’EPSILON yields the absolute value of the difference between the mode!
number 1.0 and the next model number above for the subtype P,
The value is 16#0.00001 # for ty_lpe FLOAT, and
16#0.0000_0000_0000_4# for type LONG_FLOAT.
DIGITS | EPSILON || DIGITS | EPSILON [[DIGITS | EPSILON
1 13;5.1#500 6 1 1#Ek-4 11 16#0. -
2 16#0.2#E-1 7 16#0.) #E-5 12 16#0.1#E-9
3 16#0.4#E-2 8 16#0.2#E-6 13 16#0.1#E-10
4 16#0.4#E-3 9 16#0.4#E-7 14 16#0.2#E-11
5 16#0.8#E-4 l i0 16#0.4#E-8 15 16#0.4#E-12
P'SMALL vields the smallest ?ositlve model number of the suthpe P. The
value is 16#0.8#E-21 for type FLOAT, and 16#0.8#E-51 for type
LONG_FLOAT.
VALUES | SMALL IVALUES | SMALL VALUES | SMALL
1 16#0.8#E-5 3 | B#E-21 11 1 B#E-
2 16#0.8#E-8 7 16#0.8#E-25 12 16#0.8#E-41
3 16#0.8#2-11 8 16#0.8#E-28 13 16#0.8#E-45
4 16#0.8#E-15 9 16#0.8#E-31 14 16#0.8#E-48
S 16#0.8#E-18 10 16#0.8#E-35 15 16#0.8#E-51
B-5

48-424 FOO RO2

P'LARGE yields the largest positive model number of the subtype P. The
value is 16#0.FFFFFFB8#E21] for ty}pc FLOAT, and
16#0.FFFF_FFFF_FFFF_E#ES: for type LONG_FLOAT.

TVALUES | LARGE)

1 16#0.F8#E5 i
16#0.FF#EB !
16#0.FFE#E]1
16#0.FFFE#E1S
16#0.FFFF_C#L18
16#0.FFFF_FB#E2]
16#0.FFFF_FFB#E25
16#0Q.FFFF_FFF#E28
16#0.FFFF_FFFE#E3]
16#0.FFFF_FFFF_L¥E35
16#0.FFFF_FFFF_FT#E38
16#0.FFFF_FFFF_FFB#E4]
16#0.FFFF_FFFF_FFFB#E45
16#0.FFFF_FFFF_FFFF#E48
16#0.FFFF_FFFF_FFFF_E#ES]

VI WRI— O 000 I b WK

Pt s Gt Gt Bt et

P'SAFE_EMAX
P'SAFE_SMALL
P'SAFE_LARGE

P'/RANGE

P'MACHINE_ROUNDS
P'MACHINE_OVERFLOWS
P'MACHINE_RADIX
P'MACHINE_MANTISSA
P'MACHINE_EMAX
P'MACHINE_EMIN

ields the largest exponent value of safe numbers of type P.
he value is 252 for types FLOAT and LONG_FLOAT.

yields the smallest positive safe number of type P. The value
is 16#0.8#E-63 for types FLOAT and LONG_FLOAT.

yields the largest positive safe number of the type P. The
value is 16#0.FFFF_F8#E63 for tyge FLOAT, and
16#0.FFFF_FFFF_FFFF_FE#EG3 for type LONG_FLOAT.

yields the range -16#0.FFFF_FF#E63 . 16#0.FFFF_FF#E63 for
tyspe FLOAT, and -16#0.FFFF_FFFF_FFFF_FF#E63
16#0.FFFF_FFFF_FFFF_FF#E63 for type LONG_FLOAT.

is true.

is true.

is 16.

is six for types derived from FLOAT; else 14.
is 63.

is -64.

F.4.2 Representation Attributes of Fixed Point Types
For any fixed point type T, the representation attributes are:

T'MACHINE_ROUNDS
T'MACHINE_OVERFLOWS

true
true

F.4.3 Enumeration Representation Clauses

The maximum number of elements in an enumeration type is limited by the maximum size
of the enumeration image table which cannot be greater than £5535 bytes. The
enumeration table size is determined by the following function:

generic

type ENUMERATION_TYPE is (<),
function ENUMERATION_TABLE_SIZE return NATURAL is

RESULT : NATURAL :=0;
begin

for I in ENUMERATION_TYPE ’‘FIRST..ENUMERATION_TYPE' LAST loop
RESULT :=RESULT + 2 + I'WIDTH;

end loop;
return RESULT,;

end ENUMERATION_TABLE_SIZE;

48-424 FOO RO2

F.4.4 Record Representation Clauses

The Reference Manual for the Ada Programming Language states that an impiementation
may generate names that denote impiementation-dependent components. This is not
present in this release of the (°Ada Compiler. Implementation dependent offset
components are created for record components whose size {s dynamic or dependent on
discriminants. These offset components have no names.

RESTRICTIONS - Floating point types must be fullword-aligned, that is, placed at a storage
position that is a multiple of 32.

Record components of a private type cannot be iIncluded in a record representation
specification.

Record clause alignment can only be 1,2 or 4.
Component representations for access types must allow for at least 24 bits.

Component representations for scalar types other than for types derived from
LONG_FLOAT must not specify more than 32 bits.

7.4.5 Type Duration

Duration'small equals 61.03515625 microseconds or 2™'* seconds. This number is the
smallest Eower of two which can still represent the number of seconds in a day in a
fullword fixed point number.

System.tick equals 10ms. The actual computer clock-tick is 1.0/120.0 seconds (or about
8.33333ms) in 60HZ areas and 1.0/100.0 seconds (or 10ms) in SOHZ areas. System.tick
represents the greater of the actual clock-tick from both areas.

Duration’small is significantly smaller than the actual computer clock-tick. Therefore, the

least amount of delay possible is limited by the actual clock-tick. The deiay of
duration'small follows this formula:

<actual-clock-tick> + <actual-clock-tick> + 1.3ms

The 4.45ms represents the overhead or the minimum delay possible on a Model 3280 or

3280MPS Family of Processors. For 60HZ areas, the range of delay is ap{)roximatel from

1.3ms to 17.97ms. For 50HZ areas, the range of delay is apﬁroxnmatey from 1.3ms to

21.3ms. However, on the average, the delay is slightly greater than the actual clock-tick.

In general, the formula for finding the range of a delay value, x, is:
nearest_multiple(x,<actual-clock-tick>) + <actual-clock-tick> + 1.3ms

where nearest_multiple rounds x up to the nearest multiple of the actual clock-tick.

TABLE F-2. TYPE DURATION

DURATION'DELTA | 2#].0#E-14 ~6lys
DURATION'SMALL | 2#1.0#E-14 ~6lus
DURATIONFIRST -131072.00 =~ 36 hrs

DURATION'LAST 131071.99993896484375 | ~ 36 hrs
DURATIONSIZE 32

F.5 ADDRESS CLAUSES

Address clauses are implemented for objects. No storage is allocated for objects with
address clauses by the compiler. The user must guarantee the storage for these by some
other means (e.g., through the use of the absolute instruction found in the Common
Assembly Language/32 L/32) Reference Manual). The exception PROGRAM_ERROR is
raised upon reference to the object if the specified address is not in the program’s address
space or is not properly aligned.

RESTRICTIONS - Address clauses are not implemented for subprograms, packages or task
units. In addition, address clauses are not available for use with task entries {i.c.

B-7 48-424 FOO RO2

—7

interrupts).

Initialization of an object that has an address clause specified i1s not supported. Objects
with aodress clauses may also be used to map objects into giobal task common (TCOM)
areas. See Chapter 4 for more information regarding task common.

F.6 THE PACKAGE SYSTEM

The package SYSTEM, provided with the C’Ada system Eermits access to machine-
dependent features. The specification of the package SYSTEM declares constant values
dependent on the Series 3200 Processors. The following is a listing of the visibie section
of the package SYSTEM specification.

package SYSTEM is

type ADDRESS is private,
type NAME is (CCUR_3200);
SYSTEM_NAME : constant NAME := CCUR_3200;

STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 2 =» 24,

MIN_INT : constant :e= -~ 2_147_483_648;
MAX _INT : constant := 2 _147_483_647;
MAX_DIGITS : constant := 15;
MAX_MANTISSA : constant,:= 31;

FINE_DELTA : constant := 2#1.0#E-31;
TICK : constant := 0.01;

type UNSIGNED_SHORT_INTEGER is range 0 .. 65_535;
type UNSIGNED_TINY_INTEGER is range 0 .. 255;
type SEMAPHORE_MODE is (NOT_EXECUTED, EXECUTED):
type SEMAPHORE is private,

for UNSIGNED_SHORT_INTEGER’SIZE use 16,

for UNSIGNED_TINY_INTEGER’SIZE use 8;

subtype PRIORITY is INTEGER range 0 .. 255;
subtype BYTE is UNSIGNED_TINY_INTEGER;
subtype ADDRESS_RANGE is INTEGER range 0 .. 2 ** 24 - 1;

ADDRESS_NULL : constant ADDRESS;
--These functions efficiently copy aligned elements of the specified size.

—--You can declare them locally using any scalar types with
-=-PRAGMA interface(assembler, <Routined);

function COPY_DOUBLEWORD (FROM : LONG_FLOAT) return LONG_FLOAT;
pragma INTERFACE (ASSEMBLER, COPY_DQUBLEWORD);
function COPY_FULLWORD (FROM : INTEGER) return ADDRESS:

function COPY_FULLWORD (FROM : ADDRESS) return INTEGER;
pragma INTERFACE (ASSEMBLER, COPY_FULLWORD),

function COPY_HALFWORD (FROM : SHORT_INTEGER) return SHORT_INTEGER;
pragma INTERFACE (ASSEMBLER, COPY_HALFWORD);

function COPY_BYTE (FROM : TINY_INTEGER) return TINY_INTEGER;
pragma INTERFACE (ASSEMBLER, COPY_BYTE);

function MEMORY_USED return NATURAL;
pragma INTERFACE (ASSEMBLER, MEMORY_USED);

48-424 FOO RO2 B-8

function HEAP_USED return NATURAL;
pragma INTERFACE (ASSEMBLER, HEAP_USED);

~-aAddress conversion routines

function INTEGER_TO_ADDRESS (ADDR : ADDRESS_RANGE) return ADDRESS
renames COPY_FULLWORD;

function ADDRESS_TO_INTEGER (ADDR : ADDRESS) return ADDRESS_KRANGE
renames COPY_FULLWORD;

function “+" (ADDR : ADDRESS:;
OFFSET : INTEGER) return ADDRESS;

function “-" (ADDR : ADDRESS;
OFFSET : INTEGER) return ADDRESS;

procedure EXECUTE_OR_WAIT (S : in out SEMAPHORE;
S_MODE : out SEMAPHORE_MODE);

procedure COMPLETED_EXECUTION (S : in out SEMAPHORE);
procedure RESET SEMAPHORE (S : in out SEMAPHCRE);
-~This is a 32-bit type which is passed by value
type EXCEPTION_ID is private;
function LAST_EXCEPTION_ID return EXCEPTION_ID;
private
type ADDRESS is access INTEGER:
ADDRESS_NULL : constant ADDRESS := null;
type EXCEPTION_ID is new INTEGER:
type SEMAPHORE is
record
SEMA_OBJ : INTEGER := O;
end record;
pragma INTERFACE (ASSEMBLER, EXECUTE_OR_WAIT),
pragma INTERFACE (ASSEMBLER, COMPLETED_EXECUTION),
pragma INTERFACE (ASSEMBLER, RESET_SEMAPHORE),
end SYSTEM;
F.7 INTERFACE TO OTHER LANGUAGES

Pragma INTERFACE is implemented for two languages, ASSEMBLER and FORTRAN. The
pragma can take one of three forms:

1. For any assembly language procedure or function:

pragma INTERFACE (ASSEMBLER, ROUTINE_NAME);

2. For FORTRAN functions with only in parameters or procedures:

pragma INTERFACE (FORTRAN, ROUTINE_NAME);

3. For FORTRAN functions that have in out or out parameters:
. pragma INTERFACE (FORTRAN, ROUTINE_NAME, IS_FUNCTION);:

In the C’Ada system, functions cannot have in out Or out parameters so the Ada
specification for the function is written as a procedure with the first argument being the
function return result. Then, the parameter IS_FUNCTION is specified to inform the

compiler that it is, in reallt}'. a FORTRAN function. Interface routine_names are truncated
to an 8 character maximum length.

B-9 48-424 FOO RO2

F.8 INPUT/OUTPUT (110O) PACKAGES
The following two system-dependent parameters are used for the control of external files:

« NAME parameter
o FORM parameter

The NAME parameter must be an 0S/32 file name string. Figure F-1 {llustrates the four
fields in an O5/32 file descriptor.

48-424 FOO RO2 B-10

424-3-1

voin : filename . ext [acct
L ad

g -

ONE- TO FIVE-DIGIT DECIMAL ACCOUNT
ORCLASS P, G, OR S

L—_’ SLASH

+ I ge ONE- TO THREE-ALPHANUMERIC
CHARACTER EXTENSION

- PERIOD

e on ONE- TO EIGHT-ALPHANUMERIC CHARACTER FILENAME
FIRST CHARACTER MUST BE ALPHABETIC

~ COLON

L . ONE- TO FOUR-CHARACTER ALPHAMUMERIC VOLUME NAME
FIRST CHARACTER MUST BE ALPHABETIC

Figure F-1. 0S/32 File Descriptor

The implementation-dependent values used for keywords in the FORM parameter are
discussed below. The FORM parameter {s a string that contains further system-dependent
characteristics and attributes of an external file. [The FORM parameter is able to convevy to
the file system information on the intended use of the associated external file. This
parameter is used as one of the specifications for the CREATE procedure and the OPEN

rocedure. It specifies a number of system-dependent characteristics such as ‘'u, fis
ormat, etc. It is returned by the FORM function.

B-11 48-424 FOO RO2

ﬁ

The syntax of the FORM string, in our impilementation, uses Ada syntax conventions and 1s

as follows:

form_param ::= [form_spec {, form_spec]]

form_spec ::= lu_spec l fo_spec |
rs_spec | dbf_spec
ibf_spec | al_spec
pr_spec | keys_spec |
pad_spec | dc_spec |
da_spec | ds_spec |
ps_specC ch_spec

lu_spec ;= LU = lu

fo_spec = FILE_ORGANIZATION => fo

rs_spec := RECORD_SIZE => rs

dbf_spec = DATA_BLOCKING_FACTOR => dbf

ibf_spec := INDEX_BLOCKING_FACTOR => ibf

al_spec = ALLOCATION =) al

pr_spec := PRIVILEGE => pr

keys_spec := KEYS => keys

pad_spec := PAD =) pa

dec_spec := DEVICE_CODE => dcC

da_spec 1= DEVICE_ATTRIBUTE => da

ds_spec := DEVICE_STATUS =) ds

pPs_spec := PROMPTING_STRING => ps

ch_spec := CHARACTER_IO

The exception USE_ERROR is raised if a given FORM parameter stri_rlm_E does not have the

correct syntax or if certain conditions concerning the OPEN or CREA

statements are not

fulfilled. Keywords that are listed above in upper-case letters are also recognized by the
compiler in lower-case.

lu

fo

rs

dabf

ibf

an integer in the range 0..254 specifying the logical unit (lu) number.
specifies legal 05/32 file formats (file organization). They are:

INDEX | IN

CONTIGUOUS 1 CO

NON_BUFFERED | NB

EXTENDABLE_CONTIGUOUS | EXTENDABLE_CONTIGUOUS | EC
LONG_RECORD | LR

ITAM

DEVICE

an integer in the range 1.65535 specifying the physical record size.

1. For INDEX, ITAM (inter telecommunications access method) and
NON_BUFFERED files, this specifies the physical record size.

2. The thslcal record size for CONTIGUOUS and
EXTENDABLE_CONTIGUQUS files is determined by rounding the
glemerbl size up to the nearest 256-byte boundary. For such files, rsis
ignored.

3. The physical record size for LONG_RECORD files is specified by the
data blocking factor multiplied bv 25§ and rsis ignorec.

4. For a DEVICE the physical record size always equals the element size
and rs is ignored.

Data_blocking factor. An integer in the range 0.255 (as set up at 05/32
system generation (sysgen) time) that specifies the number of contiguous
disk sectors (256 bytes) in a data block. It agﬁlies only to INDEX,
NON_BUFFERED, NDABLE_CONTIGUOUS and LONG_RECORD files. For
other file organizations (see file_organization above), it is ignored. A value
of 0 causes the data blocking factor to be set to the current 0S/32 defauit.

Index_blocking_factor. An integer in the range 0.255 (as’set up at 0S/32
sysgen time) specifying the number of contiguous disk sectors FZSG bytes)
in an index oc of an NDEX, NON_BUFFERED,
EXTENDABLE_CONTIGUOUS or LONG_RECORD file. For other file
organizations (see file_organization above), it is ignored.

48-424 FOO RO2 B-12

al Allocation. An integer in the range 1.2,147.483,64”. For CONTIGUOUS
files, it specifies the number of 256 byte sectors. For ITAM files, 1t
specifies the phxsical block size in bytes associated with the buffered
terminal. For other file organizations, (see file_organization above), it s

ignored.
pr Privileges. Specifies 0S/32 access privileges, e.g., shared read-only (SRO).
exclusive read-only (ERO), shared write-only (). exclusive write-only

(EWQ), shared read/write }SRW). shared read/exclusive write (SREW),
exzlusive read/shared write (ERSW) and exclusive read/write (ERW).

keys RE-D/WRITE keys. A decimal or hexadecimal integer specifving the 0S/32
READ/WRITE keys, which range from 16#0000# to 16#FFFr#(0..65535).
The left two hexadecimal digits sienifv the write protection key and the
right two hexadecimal digits signily the read protection key. For more
information on protection keys, see the 0S5/32 Multi-Terminal Monitor
(MTM) Primer.

pad Pad character. Specifies the padding character used for READ and WRITE
ﬁ%eﬁ'gtions; the pad character is either NONE, BLANK or NUL. The default is

TABLE F-3. PAD CHARACTER OPTIONS

(PAD CHARACTER | ACTION
NON Records are not padded. (Default)

NUL Records are padded with ASCILNUL.

Records are padded with blanks and
BLANK 0S5/32 ASClHl 170 operations are used.

dc Device code. An imeFer in the range 0.255 specifying the 05/32 device
code of the external file. See the System Generation/32 (SYSGEN/32)
Reference Manual for a list of all devices and their respective codes.

da Device attributes. An integer in the range 0..65535 .?oecifying the 0S/32
device attributes of the external file. See the 05/32 Supervisor Call (SVC)
Reference Manual (Chapter 7, the table entitled Description and Mask
Va ugs of the Device Attributes Field) for ail devices and their respective
attributes.

ds Device status. An integer in the range 0.65535 specifying the status of
the external file. A status of 0 means that the access to the file terminated
with no errors; otherwise a device error has occurred. For errors occurring
during READ and WRITE operations, the status values and their meanings
are found in Chapter 2 (The tabies on Device-Independent and Device-
I’a’epenc}em Status Codes) of the 0S5/32 Supervisor Call (SVC) Reference
anual.

ps Prompting string. This qucted string is output on the terminal before the
GET operation only if the file is associated with a terminal; otherwise this
FORM parameter is ignored. The default is the null string, in which case
no string is output to the terminal.

character_io If character_io is specified in the FORM string, the only other allowabie
FORM parameters are LU => Ju, FILE_ORGANIZATICN => DEVICE &rncd
PRIVILEGE=> SRW. Furthermore, the NAME string must censte & ter—in:!
or interactive device. In order for character_io to work preonerly, the :
;nus: specify ENABLE TYPEAHEAD to MTM, to turn on 610U s type astzal
eature.

F.8.1 Text Input/Ouput {}/0)
There are two implementation-dependent types for TEXT_IO: COUNT and FIELD. Their
deciarations implemented for the C°Ada Contpiler are as follows:

type COUNT is range 0 ..INTEGER’LAST.
subtype FIELD is INTEGER range 0 ..255;

P

48-424 FOO RO2

F.81.1 End of File Markers

wWhen working with text files, the following representations are used for end of file
markers. A line terminator foliowed by ¢ page terminator Is represented by:

ASCII.FF ASCII.CR

A line terminator followed by a page terminator, which is then followed by a file
terminator is represented by.

ASCII.FF ASCII.EOT ASCII.CR

End of file may also be represented as the physical enc of file. For input from a terminal,
the combination above is represented by the control characters:

ASCII.FF ASCII.EOT ASCII.CR
or with BIOC:

ASCII.DC4 ASCII.EOT ASCII.CR, i.e., T °D <cr>

F.8.2 Restrictions on ELEMENT_TYPE
The following are the restrictions concerning ELEMENT_TYPE:

1. 170 of access types is undefined, although allowabie; i.e., the fundamental association
between the access variable and its accessed type is ignored.

2. The maximum size of a variant data type is always used.

3. If the size of the element type is exceeded by the physical record length, then during
a READ operation the extra data on the physical record is lost. The exception
DATA_ERROR is not raised.

4. If the size of the element type exceeds the physical record length during a WRITE
operation, the extra data in the element is not transferred to the external file and
DATA_ERROR is not raised.

5. 170 operations on composite types containing dynamic array components will not
transder thltf:se components because they are not physically contained within the
record itself.

F.8.3 TEXT Input/Output (1/0) on a8 Terminal
A line terminator is detected when either an ASCILCR is :nput or output, or when the
operating sysiem detects a full buffer. No spanned records with ASCIL.NUL are output.

A line terminator foliowed by a page terminator may be represented as:

ASCII.CR
ASCII.FF ASCII.CR

if they are issued separately by the user, e.g. NEW_LINE followed by a NEW_PAGE. The
same reasom‘nﬁ appiles for a line terminator followed by a page terminator, which is then
followed by a file terminator.

All text 10 operations are buffered, uniess for CHARACTER_IO is specified. This means
that physical 1/0 operations_are performed on a line by line basis, as opposed to a
character by character basis. For example:

put ("Enter Data”);
get_lime (data, len):

will not output the string "Enter Data" until the next pul_line or new_line operation is
performed.

48-424 FOO RO2 B-14

F.9 UNCHECKED PROGRAMMING

Unchecked programming gives the programmer the ability to circumvent some of the
strong typing and elaboration rules of the Ada language. As such, it is the programmer’s
responsibility to ensure that the guidelines provided in the following sections are
followed.

F.9.1 Unchecked Storage Deallocation

The unchecked storage deallocation generic procedure explicitly deallocates the space for
a dynamically acquired object.

Restrictions:

This procedure frees storage only if:

1. The object being deallocated was the last one allocated of all objects in a given
declarative part.

2. All objects in a single chunk of the collection belonging to all access types declared in
the same declarative part are deallocated.

£.9.2 Unchecked Type Conversions

The unchecked type conversion generic function permits the user to convert, without type
checking, from one type to another. It is the user’s responsibility to guarantee that such a
conversion preserves the properties of the target type.

Restrictions:

The object used as the parameter in the function may not have components which contain
dynamic or unconstrained array types.

If the target’size is greater than the source’'size, the resulting conversion is unpredictable.
If the target’size is less than the source'size, the result is that the left-most bits of the
source are placed in the target.

Since unchecked_conversijon is implemented as an arbitrary biock move, no alignment
constraints are necessary on the source or the target operands.

F.10 IMPLEMENTATION-DEPENDENT RESTRICTIONS

The main procedure must be patameterless.

The source line length must be less than or equal to 80 characters.
Due to the source line length, the largest identifier is 80 characters.
No more than 65534 lines in a single source file.

The maximum number of library units is 9939,

The maximum number of bits in an object is 23} -1.

The maximum static nesting level is 63.

The maximum number of directly imported units of a single compilation unit must
not exceed 255.

9. Recompilation of SYSTEM or CALENDAR specification is prohibited.
10. ENTRY'ADDRESS, PACKAGE'ADDRESS and LABEL'ADDRESS are not supbpcrted.
11. The maximum number of nested SEPARATES is 63.
12. The maximum length of a filename is 80 characters.
13. The maximum length of a program library name is 64 characters.
14. The maximum length of a listing line is 125 characters.
15. The maximum number of errors handled is 1000.
16. The maximum subprogram nesting level is 64.
17. The maximum number of calls to pragma ELABORATE per compilation unit ts 255.

18. The maximum number of unigueys)i_mbols (identifiers, numeric literals, characters, and
strings) per compilation is 12503/ This limit includes imported symbols.

© NV W

B-15 48-424 FO1 ROO

19. The -total size for text o unique symbols (including imported symbols) per
compilation is 100000.

20. The mmaximum parser stack depth is 10000.
21. The maximum depth of packages is 100.
22. The static aggregate nesting limit is 256.

F.11 UNCONSTRAINED RECORD REPRESENTATIONS

Objects of an unconstrained record type with array components based on the discriminant
are allocated using the discriminant value supplied in the object declaration. If the size of
an unconstrained component has the potential of exceeding 2 Gb, the exception
NUMERIC_ERROR is raised. Assignment of a default maximum discriminant value does not
occur. For example:

type DYNAMIC_STRING(LENGTH : NATURAL := 10)
is record
STR : STRING({ 1 .. LENGTH);
end record;

DSTR : DYNAMIC_STRING.

For this record, the compiler attempts to allocate NATURAL'LAST bytes for the record.
gec?useithis is greater than 2GB, the exception NUMERIC_ERROR is raised. However, the
eclaration

D : DYNAMIC_STRING(80):

raises no exception and creates a record containing an 80 byte string.

F.12 TASKING IMPLEMENTATION

The C’Ada taskingl implementation uses the co-routine paradigm. That is, a task never
yields control of the processor until either:

s it is suspended at an accept statement,

« it is suspended at an entry call statement,

« it is suspended at a delay statement (with simple_expression > 0.0),
« an cpen delay alternative is selected,

« an open terminate alternative is selected,

o it has completed its execution,

e it activates another task,

e it aborts a task, or

a master construct is suspended while dependent tasks terminate.

There is only one 0S5/32 task for all Ada tasks in this model.

Tasks that depend on library packages continue to execute when the main program
terminates.

48-424 FO1 ROO B-16

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

SACC_SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access

type.

SBIG_IDl (1..79 => 'A’, 80 => '1")
An identifier the size of the
maximum input line length which
is identical to SBIG_ID2 except
for the last character.

SBIG_ID2 (1..79 => 'A’, 80 => '27")
An identifier the size of the
maximum input line length which
is identical to SBIG_ID1l except
for the last character.

SBIG_ID3 (1..39 => ’A’, 40 => 37, 41..80 => '4’)
An identifier the size of the
maximum input line length which
is identical to SBIG_ID4 except
for a character near the middle.

c-1

TEST PARAMETERS

Name and Meaning Value

SBIG ID4 (1..39 => ’A’, 40 => '4’', 41..80 => 'A')
An identifier the size of the
maximum input line length which
is identical to SBIG ID3 except
for a character near the middle.

S$BIG INT LIT (1..77 => '0’, 78..80 => "298")
2n integer literal of value 298
vith enough leading zeroes so
that it is the size of the
maximum line length.

SBIG_REAL_LIT (1..75 => '0', 76..80 => "690.0")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

SBIG_STRING1 (1 => "7, 2..41 => 'A', 42 <> '"1)
A string literal which vwhen
catenated vith $BIG_STRING2
yields the image of $BIG_ID1.

SBIG_STRING2 (1 => ", 2..40 => "A', 41 => '1’,
A string literal which when 42 => '1nr)
catenated to the end of
SBIG_STRING1 yields the image of
SBIG_ID1.
SBLANKS (1..60 => ')

A sequence of blanks tventy
characters less than the size
of the maximum line length.

SCOUNT_LAST 2147483647
A universal integer
literal vhose value is

TEXT_IO0.COUNT’LAST.

SDEFAULT_MEM_SIZE 2%%24
An integer literal whose value
is SYSTEM.MEMORY SIZE.

SDEFAULT _STOR_UNIT 8
An integer literal whose value
is SYSTEM.STORAGE_UNIT.

TEST PARAMETERS

Name and Meaning Value

SDEFAULT SYS NAME CCUR_3200
The ~ value of the constant
SYSTEM.SVSTEM_NAME.

SDELTA_DOC 2%#1.04E-31
A real literal wvhose value is
SYSTEM.FINE DELTA.

SFIELD LAST 255
A universal integer
literal vhose value is »

TEXT_10.FIELD’LAST.

SFIXED NAME NO_SUCH_FIXED TYPE
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT_NAME NO_SUCH_SHORT_SHORT_ FLOAT_TYPE
The name of a predefined
floating-point type other than

FLOAT, SHORT FLOAT, or
LONG_FLOAT.
S$GREATER_THAN DURATION 100000.0

4 universal real literal that
lies between DURATION’BASE’LAST
and DURATION’LAST or any value
in the range of DURATION.

SGREATER THAN DURATION BASE LAST 4294967295.0
A universal real literal that is
greater than DURATION’BASE’LAST.

SHIGH PRIORITY 255
An integer literal whose value
is the upper oound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL EXTERNAL FILE NAME1l ILLEGAL_.FIL
An “external” file name which
contains invalid characters.

SILLEGAL_ EXTERNAL FILE NAME2 ILLEGALFILE.NAM
An “external file name which
is too 1long.

SINTEGER FIRST -2147483648

A universal integer literal
wvhose value is INTEGER'FIRST.

c-3

TEST PARAMETERS

Name and Meaning Value
SINTEGER_LAST 2147483647
A universal integer literal
vhose value 1is INTEGER'LAST.
SINTEGER_LAST_PLUS_1 2147483648
A universal integer literal
vhose value is INTEGER’LAST + 1.
SLESS_THAN DURATION -100000.0

A~ universal real 1literal that
lies between DURATION’BASE’FIRST
and DURATION’'FIRST or any value
in the range of DURATION.

SLESS_THAN_DURATION BASE_FIRST
A universal real literal that is
less than DURATION’BASE’'FIRST.

SLOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA_DOC
An integer literal whose value
is SYSTEM.MAX MANTISSA.

SMAX DIGITS
Maximum digits supported for
floating-point types.

SMAX IN LEN
Maximum input line 1length
permitted by the implementation.

SMAX_INT
A universal integer 1literal
vhose value is SYSTEM.MAX INT.

SMAX INT_PLUS 1
A universal integer literal
vhose value is SYSTEM.MAX INT+1.

SMAX_LEN_INT BASED LITERAL
A universal integer based
literal vwhose value is 2#11#
with enough 1leading zeroes in
the mantissa to be SMAX IN LEN
long.

~4294967296.0

31

15

80

2147483647

2147483648

(1..2 => "2:", 3,.77 => '0’,
78..80 => "11:")

C-4

Name and Meaning

TEST PARAMETERS

Value

SMAX LEN REAL BASED LITERAL
A universal real based literal
vhose value 16:F.E: with
enough leading zeroes in the
mantissa to be SMAX IN LEN long.

is

SMAX STRING LITERAL
A string literal of size
SMAX IN LEN, including the quote

characters.

SMIN_INT
A universal integer literal
vhose value is SYSTEM.MIN INT.

SMIN TASK SIZE
An integer iiteral whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SBORT INTEGER,

LONG_FLOAT, or LONG_INTEGER.
SNAME_LIST

A list of enumeration literals

in the type SYSTEM.NAME,

separated by commas.

SNEG_BASED_INT
A based
highest

integer literal whose

order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

SNEV_MEM SIZE
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
SDEFAULT MEM _SIZE. If there is
no other value, then use
SDEFAULT _MEM_SIZE.

(1..3 => "16:", 4..76 => ‘0',
77..80 => "F.E:")

2..79 => ’A’, 80 = '"")

(1 => l"l’

-2147483648

32

TINY_INTEGER

CCUR_3200

16%#FFFFFFFE#

2*%24

TEST PARAMETERS

Name and Meaning Value

SNEWV STOR UNIT 8
An integer literal whose value
is a permitted argument for
pragma STOR-GE_UNIT, other than
SDEFAULT_STOR_UNIT. 1f there is
no other permitted value, then
use value of SYSTEM.STORAGE UNIT.

SNEV_SYS NAME CCUR_3200
A value of the type SYSTEM.NAME, -
other than SDEFAULT_SYS NAME. If
there is only one value of that
type, then use that value.

STASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry vith one 'IN OUT’
parameter.

STICK 0.01

A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lines 50 & 54 and the execution of task CHANGING OF THE GUARD
results in a call to REPORT.FAILED at one of lines 52 or 56.

e. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object’s size be no
greater than 10 although its subtype’s size was specified to be 40
(line 137).

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These

D-1

WITHDRAWN TESTS

tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE 1length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the ’'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

. CD2A81G, CD2A83G, C(D2A84M..N, an® CD50110 (5 tests): These tests

assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

i. CD2B15C and CD7205C: These tests expect that a ’'STORAGE_SIZE length

clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

j. CD2D11B: This test gives a SMALL representation clause for a derived

fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

. CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check

various aspects of the use of the three SYSTEM pragmas; the AVO
vithdravs these tests as being inappropriate for validation.

. CD71054: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

. CD7203B and CD7204B: These tests use the ‘SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task’s activation as
though it wvere like the specification of storage for a collection.

. CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA_ERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it 1is not clear exactly now the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

D-2

WITHDRAWN TESTS

. CE3111C: This test requires certain behavior, when two files are

associated with the same external file, that is not required by the
Ada standard.

. CE3301A: This test contains several calls to END OF LINE and

END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARD INPUT (lines 103, 107, 118,
132, and 136).

. CE3411B: This test requires that a text file’s coliumn number be set to

COUNT'LAST in order to check that LAYOUT ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY CONCURRENT

Compiler: C’Ada

ACVC Version: 1.10

E-1

Default Values for Compiler Start Options

The following are the Compiler Start Options along with the defauit values.
o ABORT => OFF

If set, the compiler stops compiling when an error is encountered in 2 unit and will not
compile any subsequent units in the source file.

¢ ALIST => OFF
If set, a symbolic assembly listing will be appendecd to the listing file.
¢ INFORM => ON
If set, all the information messages (if applicable) will appear in the listing file.
o INLINE => ON
If set, all the pragma Inline requests will be honored (when applicable).
o LIST => ON
If set, & listing file will be produced.
o OPTIMIZE => ON

If set, the compiler performs some optimizations to improve run-time cfficiency of the
program,

v PAGE_SIZE => 60
The default specifies that there will be 60 lincs per page in the listing file.
» SEGMENTED => ON

If set, the object code will contain both PURE (read only) and IMPURE (rcad and write)
scgments.

o STACK_CHECK => ON -
If set, the compiler generates extra code to check if there is enough stack space.

o SUMMARY => ON

If sev, the compiler generatcs & summary file when adacomp is used with a $filc_list_name.

o SUPPRESS_ALL => OFF

If set, the compiler will not generate any run-time checking code for all types and objects in

the compilation: Access_check, Discriminant_check, Index _check, Length_cheek,
Overflow_check, and Range_check.

o SUPPRESS_OVERFLOW => OFF

If set, the Overflow checking code will not be generated by the compiler.
o WARN => ON

If set, all the warning messages will appear in the listing file.

