Department of STATISTICS

Statistical Interdisciplinary
Research Laboratory

F4ISEP@TAMVM L BITNET

AD-A210 992

Alo A30/0.3 -MA

TEXAS A&M UNIVERSITY
COLLEGE STATION, TEXAS 77843-3143 ﬂ

Emanuel Parzen
Distinguished Professor

MULTI-SAMPLE FUNCTIONAL
STATISTICAL DATA ANALYSIS

Technical Report #54
May 1989

DTIC.

ELECTE B
AUGO9 1989 E

Emanuel Parzen

Texas A&M Research Foundation
Project No. 5641
Sponsored by the U. S. Army Research Office
Professor Emanuel Parzen, Principal Investigator

Approved for public release; distribution unlimited

«r




INCIASSIFTIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING EORM
T, REPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
) Alo 230/0-3-MA N/A N/A
4. TITLE (and S:!b“"') S. TYPE OF REPORT & PERIQO COVERED
Multi-Sample Functional Statistical Technical

Data Analysis

8. PERFORMING ORG. REPORT NUMBER

§7. AUTHOR(s) T CONTRACT OR GRANT NUMBER(S)

DAALO3-87-K-0003
Emanuel Parzen

9. PERFORMING ORGANII.A'NON NAME AND ADORESS 10. ::giRA‘."OglLK!’JSINTY.NPtRAo"EERCST' TASK
Texas A&M University
Department of Statistics
College Station, TX 77843-3143
11. CONTROLLING OFFICE NAME AND ADDRESS |2M;¢PORT DATE
U. S. Army Research Office y
Post Office Box 12211 13- ;Z““ OF paGes
08
& MONIiOlING AGENCY %AII & Aoalil%li ii“mt from Controlling Office) 1S. SECURITY CLASS. (of this report)
Unclassified

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

[78. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, ! different from Report)

NA

18. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy, or decision, unless so
tian
19. XEY W [( tinue on revesee side If necessary and identify by dlock number) .
quanti%e ata analysis, multi-sample nonparametric testing,

Anderson Darling tests, Cramer von Mises tests, comparison density
function, components

26 ABSTRACT (Canthouwe an reverse shid N y and Keatify by block number)

This paper discusses a functional approach to the problem of comparison of multi-
samples (two samples or c samples, where ¢ > 2). The data consists of ¢ random
sqmples whose probability distributions are to be tested for equality. A
diversity of statistics to test equality of c samples are presented in a unified
framework with the aim of helping the researcher choose the optimal procedures
which provide greatest insight about how the samples differe in their distributiohs.

DD, EDIMON OF 1 HOV 6513 ORSOLETE UNCLASSIFIED

SECUMTY CLASSIFICATION OF THIS PAGE (When Dote Entered)
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ABSTRACT. This paper discusses a functional approack to the problem of compar-
ison of multi-samples (two samples or ¢ samples, where ¢ 2 2). The data consists of ¢
random samples whose probability distributions are to be tested for equality. A diversity
of statistics to test equality of c samples are presented in a unified framework with the
aim of helping the researcher choose the optimal procedures which provide greatest insight
about how the samples differ in their distributions. Concepts discussed are: sample distri-
bution functions; ranks; mid-distribution function; two- sample t test and nonparametric
Wilcoxon test; multi-sample analysis of variance and Kruskal Wallis test; Anderson Darling
and Cramer von Mises tests; components and linear rank statistics; comparison distribu-
tion and comparison density functions, especially for discrete distributions; components
with orthogonal polynomial score functions; chi-square tests and their components. (l< - \ -

1. INTRODUCTION. We assume that we are observing a variable Y in ¢ cases or sam-
ples (corresponding to c treatments or ¢ populations). The samples can be regarded as the
value of ¢ variables Yj,...,Y, with respective true distribution functions Fy(y),...,F. %{)
and quantile functions Ql(uz, veeryQ@c(u). We call Y7,...,Y; the conditioned variables (the
value of Y in different populations).

The general problem of comparison of conditioned random variables is to model how
their distribution functions vary with the value of the conditioning variable k = 1,...,¢,
and in particular to test the hypothesis of homogeneity of distributions:

Hy:Fi=...=F.=F

The distribution F to which all the others are equal is considered to be the unconditional
distribution of Y (which is estimated by the sample distribution of Y in the pooled sample).

2. DATA. The data consists of ¢ random samples
Yi(4)s =1,...,n;
for k = 1,...,¢. The pooled sample, of size N = ny +... + n., represents observations of

the pooled (or unconditional) variable Y. The ¢ samples are assumed to be independent
of each other.

8. SAMPLE DISTRIBUTION FUNCTIONS. The sample distribution functions of
the samples are defined (for —co < y < o0) by

Fi"(y) = fraction <y among Yi(.).
The unconditional or pooled sample distribution of Y is denoted
F*(y) = fraction <y among Yi(.),k=1,...,c.
We use " to denote a smoother distribution to which we are comparing a more raw
323111:;1231:;3{1. which is denoted by a ~. An expectation (mean) computed from a sample is
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4. RANKS, MID-RANKS, AND MID-DISTRIBUTION FUNCTION. Nonparamet-
ric statistics use ranks of the observations in the pooled sample; let

Ri(t) denote the rank in the pooled sample of Yi(t).

One can define Ri(t) = NF"(Y(t)).

In defining linear rank statistics one transforms the rank to a number in the open unit
interval, usually Ri(t)/(N + 1). We recommend (Ri(t) — .5)/N. These concepts assume
all observations are distinct, and treat ties by using average ranks. We recommend an

approach which we call the “mid-rank transform” which transforms Yi(t) to P(Y,(¢)),
defining the mid-distribution function of the pooled sample Y by

P*(y) = F*(y) - .5p"(y).

We call
p"(y) = fraction equal to y among pooled sample

the pooled sample probability mass function.

5. SAMPLE MEANS AND VARIANCES. When the random variables are assumed
to be normal the test statistics are based on the sample means (for k = 1,...,¢)

Vi = E' (Y] = (1/m) )_ Ya(2).
t=1

We interpret Y;~ as the sample conditional mean of Y given that it comes from the kth
population. The unconditional sample mean of Y is

Y- =EY]=p Y17 +...+p.Yc,
defining N
Pk = ng

to be the fraction of the pooled sample in the kth sample; we interpret it as the empirical
probability that an observation comes from the kth sample.

The unconditional and conditional variances are denoted 9

VARTY) = (1% 3 3 (40) - ¥?

x=1j=1
VAR(Y] = (1/n8) Y_{¥i(s) - &)
1=1

Note that our divisor is the sample size N or n; rather than N — ¢ or n; — 1. The latter
then arise as factors used to define F statistics.
We define the pooled variance to be the mean conditional variance:

[
o' =) ps VAR[Yy)
k=1




6. TWO SAMPLE NORMAL T TEST. In the two sample case the statistic to test
Hp is usually stated in a form equivalent to

T = {Y; - Y37} /o {(N/(N = 2))((1/m1) + (1/n2))}°

We believe that one obtains maximum insight (and analogies and extensions) by expressing
T in the form which compares Y}~ with Y™

T ={(N-2)p1/(1 -p)}* {1 - Y}/
The exact distribution of T is ¢t(N — 2), t-distribution with N — 2 degrees of freedom.

7. TWO-SAMPLE NONPARAMETRIC WILCOXON TEST. To define the popular
Wilcoxon non-parametric statistic to test Ho we define Wy to be the sum of the n; ranks
of the Y} values; its mean and variance are given by

E[Wi] = ng(N +1)/2, VAR[W| = nina(N +1)/12
The usual definition of the Wilcoxon test statistic is
Ty = {W) — E[Wi]}/{VAR[W]}®.

The approach we describe in this paper yields as the definition of the nonparametric
Wilcoxon test statistic (which can be verified to approximately equal the above definition

of Ty, up to a factor {1 — (1/N)2}5)

Ty = {12(N - 1)p.1/(1 - p.1)}*(By™ - .5},
defining

R = (Un1) S (Ra(t) ~ 5)/N
t=1
_ (Wa/miN) - (1/2N)

One reason we prefer this form of expressing non-parametric statistics is because of its
relation to mid-ranks;
Ry = E'(P"(Yy)]

One should notice the analogy between our expressions for the parametric test statistic
T and the nonparametric test statistic 77; the former has an exact t(N — 2) distribution
and the latter has asymptotic distribution Normal{0,1}.

8. TEST OF EQUALITY OF ¢ SAMPLES NORMAL CASE. The homogeneity of
¢ samples is tested in the parametric normal case by the analysis of variance which starts
with a fundamental identity which in our notation is written

[+
VARTY] =) pi{Vi - Y} + 07
k=1

The F test of the one-way analysis of variance can be expressed as the statistic or

¢
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defining
T = (N —-c{Yy -Y}/o"
TF, = {(N - c)pi/(1 = pa)}* (Vi =Y} /o

The asymptotic distribution of T2/(c—1) and TFE are F(e—1,N —c) and F(1,N —¢)
respectively.

9. TEST OF EQUALITY OF ¢ SAMPLES NONPARAMETRIC KRUSKAL-
WALLIS TEST. The Kruskal-Wallis nonparametric test of homogeneity of ¢ samples
can be shown to be

TKW? = ch(l — P.k)ITKW, 2.
k=1
TEW; = {12(N - 1)p/(1 — px)} *{ R~ — .5}

The asymptotic distributions of TKW? and TK W,f are chi-squared with ¢ ~ 1 and 1
degrees of freedom respectively.

10. COMPONENTS. We have represented the analysis of variance test statistic T
and the Kruskal-Wallis test statistic T KW? as weighted sums of squares of statistics TF;
and T KW} respectively which we call components, since their values should be explicitly
calculated to indicate the source of the significance (if any) of the overall statistics. Other

test statistics that can be defined can be shown to correspond to other definitions of
components.

11. ANDERSON DARLING AND CRAMER VON MISES TEST STATISTICS. Im-
portant among the many test statistics which have been defined to test the equality of
distributions are the Anderson-Darling and Cramer-von Mises test statistics. They vill
be introduced below in terms of representations as weighted sums of squares of suitable
components.

12. COMPARISON DISTRIBUTION FUNCTIONS AND COMPARISON DEN-
SITTY FUNCTIONS. We now introduce the key concepts which enable us to unify and
choose between the diverse statistics available for comparing several samples. To compare
two continuous distributions F(.) and H(.), where H is a true or smooth and F is a model
or raw, we define the comparison distribution function

D(u) = D(u; H,F) = F(H™'(u))
with comparison density
d(u) = d(u; H,F) = D'(u) = f(H ™ (u))/R(H*(u)).

Under Hy: H = F, D(u) = u and d(u) = 1. Thus testing Hy is equivalent to testing
D(u) for uniformity.

Sample distribution functions are discrete. The most novel part of this paper is that
we propose to form an estimator D"(u) from estimators H~ 8 and F~(.) by using a general
definition of D(.) for two discrete distributions H(.) and F(.) with respective probability
mass functions py and py satisfying the condition that the values at which py are positive
include all the values at which pp are positive.
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18. COMPARISON OF DISCRETE DISTRIBUTIONS. To compare two discrete
distributions we define first d(u) and then D(u) as follows:

d(v) = d(u; H, F) = pp(H ™ (u))/pg (H(u)),
1
D(u) =/0 d(t)dt.

We apply this definition to the discrete sample distributions F~ and F7 to obtain
di"(u) = d(u; F*, Fy")
and its integral Dk'(u?.

We obtain the following definition of d;"(u) for the ¢ sample testing problem with all
values distinct:

dp"(u) = N/ng if (Re(7) —1)/N <u < Ri(j)/N,j =1,...,ng,
=0, otherwise.

A component, with score function J(u), is a linear functional

1
T (J) =/(; J(u)dg"(u)du

It equals
) 3on [ sy
-
which can be approximated by E~[J(P"(Y%))].
14. LINEAR RANK STATISTICS. The concept of a linear rank statistic to compare

the equality of ¢ samples does not have a universally accepted definition. One possible
definition is

T (J) = (1/ng) Y_ J((Re(5) — -5)/N)
1=1

However we choose the definition of a linear rank statistic as a linear functional of di"(u),

which we call a component; it is approximately equal to the above formula.
We define

1
T() = (N = 1) VARW()lpa/ (1 - p)® [ Jw)ide @) = 1hdu ()
where U is Uniform{0,1}, E[J(U)] = f5 J(u)du,
1
VAR (V)] = /0 {J(u) - E[J(U))}2du.
Note that the integral in the definition of T;"(J) equals

1
/0 J(u)d{Di"(u) — u}.

5




The components of the Kruskal-Wallis nonparametric test statistic TK W2 for testing
the equality of ¢ means have score function J(u) = u — .5 satisfying

E[J(U)} = .5, VAR{J(U)] = 1/12.
The components of F test statistic T2 have score function
J(u) = {Q@(v) -Y}/o"

where Q"(u) is sample quantile function of the pooled sample Y.

15. GENERAL DISTANCE MEASURES. General measures of the distance of D™(u)
from u and of d"(u) from 1 are provided by the integrals from 0 to 1 of

{T(w)-1}%, {D(w)-u}?, (D(u)-u}/u(l-v), {d(s)-1}}

where d*(u) is a smooth version of d"(u). We will see that these measures can be decom-
posed into components which may provide more insight; recall basic components are linear
functionals defined by (!)

1
T(J) = /0 ()& (u)du.

If ¢;,(u),1=0,1,2,..., are complete orthonormal functions with ¢o = 1, then Hg can
be tested by diagnosing the rate of increase (as a function of m = 1,2,...) of

1 m
/0 {dm(u) -~ 1)%du = 3 [T (42

=1

which measure the distance from 1 of the approximating smooth densities

dm(u) = ) _ T (6i)¢5(u)-

1=1
16. ORTHOGONAL POLYNOMIAL CC. ‘PONENTS. Let p;(z) be Legendre poly-
nomials on (-1,1):

pifz) ==z
p2(z) = (32 - 1)/2,
pa(z) = (52° - 32)/2,
py(z) = 35z4 — 3022 + 3.
Define Legendre polynomial score functions
$Li(u) = (28 + 1)°p;(2u - 1).

One can show that an Anderson-Darling type statistic, denoted AD(D"), can be repre-
sented

1
AD(D") = /0 ({D"(w) - u}*/u(1 - u)}du
=Y T (6L) 2/ (i(5 + 1))
t=1

6




Define cosine score functions by

¢Ci(u) = 2%cos(iru).

One can show that a Cramer-von Mises type statistic, denoted CM(D"), can be repre-
sented

1
CM(D") = /0 {D"(u) — u}?du

=3 IT(#C;)I?/ (i)

1=1

In addition to Legendre polynomial and cosine components we consider Hermite poly-
nomial components corresponding to Hermite polynomial score functions

$H;(u) = (i) H;(@ 7 (u))
where H;(z) are the Hermite polynomials:
Hy(z) = z,
Hy(z) = z? - 1,
Hj(z) = z3 - 3z,
Hy(z) = z* - 62% + 3.

17. QUARTILE COMPONENTS AND CHI-SQUARE. Quartile diagnostics of the
null hypothesis Hy are provided by components with quartile “square wave” score functions

S5Qq(u) =-2%  0<u<.25,
=0, .25<u<.75,
=25  B<u<i;

SQz(u) =1, 0 <u<.25
=-1, .25<u<.T5,

=1, d5<u<l;

SQ3(u) =0 if0<u<.250r.75<u<1,
=-25  25<uc<.5,
=25 B5<u<.75.

A chi-squared portmanteau statistic, which is chi-squared(3), is

3
CQr=(N-1pi/(1~pi) ) _IT(5Q)
1=1
1
= (V= pa/(1= pa) [ (4Qule) - 1)2du
defining the quartile density (for ¢+ = 1,2,3,4)
dQi(u) = 4{Dy"(s(.25)) — Dp"((s — 1).25), (s — 1).25 < u < £(.25)

7




A pooled portmanteau chi-squared statistic is

CQ=)Y (1-pi)CQ

k=1

18. DIVERSE STATISTICS AVAILABLE TO TEST EQUALITY OF ¢ SAMPLES.
The problem of statistical infereence is not that we don’t have answers to a given question;
usually we have too many answers and we don’t know which one to choose. A unified
framework may help determine optimum choices. To compare ¢ samples we can compute
the following functions and statistics:

1) comparison densities: d;"(u),
2) comparison distributions Dj (u),
3) quartile comparison density dQ(u), quartile density chi-equare

1
CQu = (N - 1)pi/(1-py) /0 {dQi(u) - 1)%du.

4) non-parametric regression smoothing of d;"(u) using a boundary Epanechnikov kernel,
denoted d;"(u),

5) Legendre components and chi-squares up to order 4 are defined using definition (!) of
T

TLi(v) = Te (¢ L)

CLg(m) =Y _|ITLi(i)?
1=1

CL(m) = Y _(1-pi)CLk(m)
k=1

ADy = ) |TLk(3)2/i(i +1)

=1
c
AD =) (1 -pi)AD;
k=1
6) Cosine components and chi-squares up to order 4 are defined:
TC,(s) = T, "(6Cy)

CCi(m) = ) |TCi(3)|?
i=1

[

CC(m) = Y _(1 - pe)CCk(m)

k=1
CMy, =Y _ |TC(3)*/(im)?
1=1
CM =) (1-pir)CM;
k=1




7) Hermite ccmaponents and chi-squares up to order 4 are defined:
TH(s) = Ti. (¢ H,)
m

CHi(m) = ) ITH(i)?

=1

CH(m) =) (1 - p.x)CH(m)
k=1

8) density estimators dy"(u) computed from components up to order 4,
9) entropy measures with penalty terms which can be used to determine how many
components to use in the above test statistics

19. EXAMPLES OF DATA ANALYSIS. The interpretation of the diversity of statis-
tics available is best illustrated by examples.

In order to compare our methods with others available we consider data analysed by
Boos (1986) on ratio of assessed value to sale price of residential property in Fitchburg,
Mass., 1979. The samples (denoted I, II, III, IV) represent dwellings in the categories
single-family, two-family, three-family, four or more families. The sample sizes (54, 43,
31, 28) are proportions .346, .276, .199, .179 of the size 156 of the pooled sample. We
compute Legendre, cosine, Hermite components up to order 4 of the 4 samples; they are
asymptotically standard normal. We consider components greater than 2 (3) in absolute
value to be significant (very significant).

Legendre, cosine, and Hermite components are very significant only for sample I,
order 1 (-4.06, -4.22, -3.56 respectively). Legendre components are significant for sample
IV, orders 1 and 2 (2.19, 2.31). Cosine components are significant for sample IV, orders 1
and II (2.36, 2.23) and sample III, order 1 (2.05). Hermite components are significant for
sample IV, orders 2 and 3 (2.7 and -2.07).

Conclusions are that the four samples are not homogeneous (have the same distribu-
tions). Samples I and IV are significantly different from the pooled sample. Estimators
of the comparison density show that sample I is more likely to have lower values than the
pooled sample, and sample IV is more likely to have higher values. While all the statistical
measures described above have been computed, the insights are provided by the linear rank
statistics of orthogonal polynomials rather than by portmanteau statistics of Cramer-von
Mises or Anderson-Darling type.

20. CONCLUSIONS. The goal of our recent research (see Parzen (1979), (1983))
on unifying statistical methods (especially using quantile function concepts) has been to
help the development of both the theory and practice of statistical data analysis. Our
ultimate aim is to make it easier to apply statistical methods by unifying them in ways
that increase understanding, and thus enable researchers to more easily choose methods
that provide greatest insight for their problem. We believe that if one can think of several
ways of looking at a data analysis one should do so. However to relate and compare the
answers, and thus arrive at a confident conclusion, a general framework seems to us to be
required.

One of the motivations for this paper was to understand two-sample tests of the
Anderson-Darling type; they are discussed by Pettitt (1976) and Scholz and Stephens
(1987). This paper provides new formulas for these test statistics based on our new def-
inition of sample comparison density functions. Asymptotic distribution theory for rank
processes defined by Parzen (1983) is given by Aly, Csorgo, and Horvath (1987); an excel-
lent review of theory for rank processes is given by Shorack and Wellner (1986).
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H- ..ever one can look at k sample Anderson-Darling statistics as a single number
formed from combining many test statistics called components. The importance of com-
ponents is also advocated by Boos ‘1986), Eubank, La Riccia, and Rosenstein (1987) and
Alexander (1989). Insight is greatly increased if instead of basing one’s conclusions on
the values of single test statistics, one looks at the components and also at graphs of the
densities of which the components are linear functionals corresponding to various score
functions. The question of which score functions to use can be answered by considering
the tail behavior of the distributions that seem to fit the data.
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For samples I and IV, sample comparison distribution function D™(u)
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For samples I and IV, sample comparison density d"(u), sample quartile density dQ"(u)
(square wave), nonparametric density estimator d"(u)
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