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MEASUREMENTS CF NONLINEAR CIRCUITS

by

Michelle Kwok Lee
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@Massachusetts Institute of Technology 1989

ABSTRACT

-A The process of exploring the behavior of nonlinear, dynamical systems can be a time-
consuming and tedious process. In this thesis, I have written a program which automates
much of the work of an experimental dynamicist. In particular, the program automat-
ically characterizes the behavior of any driven, nonlinear, electrical circuit exhibiting
interesting behavior below the 10 Mhz range. In order to accomplish this task, the pro-
gram can autonomously select interesting input parameters, drive the circuit, measure
its response, perform a set of numeric computations on the measured data, interpret
the results and decompose the circuit's parameter space into regions of qualitatively dis-
tinct behavior. The output is a two-dimensional portrait summarizing the high-level,
qualitative behavior of the nonlinear circuit for every point in the graph as well as an
accompanying textual explanation describing any interesting patterns observed in the
diagram. In addition to the graph and the text, the program generates a symbolic de-
scription of the circuit's behavior. This intermediate data structure can then be passed
onto other programs for further analysis.

This report is a revised version of a thesis submitted on May 11, 1989 to the Depart-
ment of Electrical Engineering and Computer Science at the Massachusetts Institute of
Technology in partial fulfillment of the requirements for the degree of Master of Science.
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Chapter 1

Introduction

1.1 Goals

This thesis is motivated by the desire to automatically measure the behavior of complex,

dynamical systems and to generate high-level, qualitative interpretations of their behav-

ior. In this thesis, I have put together a system capable of automatically measuring the

behavior of electrical circuits and performing this high-level interpretation of its behav-

ior. The system takes advantage of information provided by sophisticated measurement

instruments and numerical software packages to aid in the identification and analysis of

the circuit's behavior.

1.2 Background and Motivation of Thesis

Physicists, mathematicians, and engineers have spent a great deal of time studying the

behavior of nonlinear, dynamical systems. They have written numerous papers describ-

ing each system's behavior, focusing in particular on the transition route from stability

to chaos[DBHL82, Hub83, CYY86, Lin8l, KC86, TPJ82, UA81, KKC, MCK85, Sha8l].

These papers typically describe interesting behaviors or patterns exhibited by the dynam-

ical system and the parameter values at which they occur. For example, in Evidence for

Universal Chaotic Behavior of a Driven Nonlinear Owcillator[TPJ82], Testa, Pdrez, and
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Jefferies discuss the parameter values at which they observe the period-doubling' route

to chaos in their driven, nonlinear oscillator. Similarly in The Devil's Staircase[KKC],

Kennedy et. al. trace the progression of the onset of chaos2 in their transistor circuit;

and Chua, in the Devil's Staircase Route to Chaos in a Nonlinear Circuit(CYY86], ex-

plores the parameter values at which his oscillator circuit exhibits subharmonics of all

orders from one to infinity. In fact, the first paragraph describing Chua's experimental

results in the Devil's Staircase paper reads,

As we decrease the frequency f, from 20 khz to 500 khz, with all other

parameters held fixed, we observe subharmonics of all orders from 2 to 33.

Each subharmoic is found to persist over a limited range of input frequency

f.. Each [point] in the [parameter-space] graph can be interpreted as a syn-

chronization state between the input frequency and some submultiple of the

circuit's natural frequency, i.e. the oscillation frequency when the input sig-

nal is set to zero. The (area of each region] can therefore be interpreted as

the "locking range." [The greater the area; the greater the locking range.]

Aside from providing textual descriptions, investigators have also generated parameter-

space graphs which summarize the behavior of a complex, nonlinear system for each

point in the two-dimensional grid. For example, Linsay, in his paper Quasiperiodicity

and Chaos in a System with Three Competing Frequencies[Lin88], presents a series of

parameter-space diagrams one of which is shown in figure 1.1, and similarly Hayashi

makes use of parameter-space diagrams as shown in figure 1.2[Hay64].

Exploring the behavior of a dynamical system over the range of input parameters

clearly provides useful information. Mechanical engineers, for instance, spend much of

their time studying the behavior of the mechanical systems they have designed. They

'A nonlinear system is said to exhibit the period-doubling route to chaos if its behavior progresses
from subharmonics of order 1 -2--* 4 - 8 --* 16 --o 32 - ...--. chaos.

2Chaos is a commonly observed phenomenon in a wide range of physical systems such an nonlinear
electrical circuits, control systems with nonlinear restoring forces, thermal convection in fluids, vibrations
in the panels of a supersonic r .artft or rocket, the swings of a pendulum with a vibrating pivot, the
rotations of Hyperion, a moca - tupiter, buckled elastic beams, certain chemical reactions, propagation
of light through nonlinear o'. 3c;. ievices, the ventricular fibrillation of a heart beat, the firing of neurons
in marine mollusk and even b.C uripping of a leaky kitchen faucet(Moo87].
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2.0-
.0 (b)

I I-

230 240 250 260
Drive Frmeuncy (kHz)

Figure 1.1: Example of a parameter-space graph from Linsay. Points at which the circuit
exhibits a periodic response are shown by dots. The white regions indicate quasiperiodic
behavior, and the black squares represent chaos.

axe typically concerned with locating regions of stability and instability in their devices.

Having parameter-space diagrams such as the ones shown in figure 1.1 and figure 1.2

allows the investigator to locate the regions of interest at a glance.

Referring to figure 1.2, we find that at input values of f = 0.5 and A = 10 (the point

labelled 1), the nonlinear system exhibits harmonic behavior whereas point 2, at f = 2

and A = 0.25, lies on the i-harmonic and the '-harmonic border. The diagram also

decomposes the system's parameter space into regions of qualitatively distinct behavior.

For instance, for values of A and f near the origin, the dynamical system displays brief

occurrences of fifth-order and third-order harmonic behavior. For values of A and f far

away from the origin, the system exhibits higher order subharmonic behavior such as

fifth and sixth.

Exploring the behavior of a complex, nonlinear system and producing a comprehen-

sive parameter-space diagram such as the ones shown in figure 1.1 and figure 1.2 can be a

time consuming and tedious process[AS87]. There exist many techniques to help identify

a system's behavior, including power-spectrum analysis, tests for periodicity, and the

stroboscopic technique. However, the investigator must still repeatedly select interesting

values for parameters and initial conditions, run the test, interpret the results, classify

the behavior and record it. This must be done for every point in a two-dimensional

11



15,

; 0

0 1.0 2.0 3.0 4.9

Figure 1.2: Example of a parameter-space graph from Hayashi.

parameter-space. Moreover, in cases where the behavior is not easily identifiable, the

investigator must run additional tests to gain different perspectives of the system's be-

havior. Using the computer to automate this process can greatly aid the investigator in

his initial exploration of the system's behavior.

In this thesis I describe a program that can automatically produce a two-dimensional

parameter-space diagram characterizing the behavior of a dynamical system. It can

set up, run, and interpret measurements for each point in the parameter space. The

program can identify four types of behavior: harmonics, subharmonics, quasiperiodics,

and chaos. 3 In addition to the graph, the program also produces a high-level, textual

explanation to describe any interesting behaviors or patterns in the parameter space

of the system.4 In particular, the textual explanation draws attention to large and

small regions of uniform behavior, large regions of chaotic behavior, frequency-locking

'Prod definitions of these terms and examples will be given in subsequent chapters.

'In the past, scientists like Ueda and Linsay have written programs to automate parameter-space
graph generation[UASI, Ling$]. However, their programs did not interpret the high-level behavior in
the graph. Instead, they left it up to the user of the program to notice any interesting patterns such a
period-doubling cascades. In fact, many of the published papers in the literature of nonlinear dyuamics
spend a consderable amount of time discussing the investigator'sbigh-level interpretations of the circuit's
behavior. Chu's quote on page 10 provides a brief example. The program in this thesis goes beyond the
work of Linsay et. &l. by automaticaly describing the interesting, high-level, qualitative characteristics
of the parameter-space portrait. With such a capability, the program in this thesis could potentially
write parts of many of the published papers in the literature of nonlinear dynamics.
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ranges, 5 period-doubling cascades and period-adding cascades. 6 It also explains how the

behavior of the system varies as the user varies a single input parameter, and it describes

the bifurcation curves 7 which border each region of uniform behavior. This is the kind

of qualitative, high-level information an investigator seeks when studying the behavior

of complex, nonlinear systems experimentally.

Finally, after computing the graph and generating the accompanying textual expla-

nation, the program also returns a symbolic description of the circuit's behavior in the

form shown in figure 1.3. This symbolic descriptor, containing information about regions

of uniform behavior and boundaries between regions, might then be used by another pro-

gram to further analyze the behavior of the circuit. For instance, a program might take

the symbolic description as input, and it might suggest to the user all the regions in the

parameter space in which the device operates in a stable manner. Or it might search

the graph for other interesting patterns such as saddle-node, pitchfork, flip or Hopf

bifurcations[TS86]. Or it might locate all regions of instability and transition and warn

the user against operating near these regions. The program is capable of offering such

advice because information about the circuit's behavior is summarized in the symbolic

description.

1.3 Sample Run of the Analyzer Program

Figure 1.4 provides a sample parameter-space graph generated by running the program

on the forced negative-resistance oscillator circuit[UA81]. Also, accompanying the graph

is a text explanation describing the high-level, qualitative properties of the behavior of

the circuit. To start the program running, the user needs to type the following input

SFrequency-locking ranges ae regions in a nonlinear system's parameter-space where the behavior
remains conLnt despite variations to an input parameter. For instance, if we increase the driving
frequency of a given circuit from 30000 hertz to 60000 hertz and its response remains fixed at subharmonic
order 1, then the behavior of the circuit is said to be 'locked' in the range from 30000 hertz to 60000
hertz.

6A nonlinear system is said to exhibit a period-adding cascade if its behavior goes from subharmonics
of order I -- 2 - 3 -- 4 --o 5 -* 8 -. . - 8 ..... chaoCY $6]. Compare this definition with the
definition of period doublng as defined in an earlier footnote on page 1.

'A bifurcation is a qualitative change in the organization of an equilibrium state as a system parameter
is varied.
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;; lumped regions of uniform behavior
#(((SUBHARMONIC 3) ;; first region of uniform behavior

(((VOLTAGE 9) (DRIVE-FREQUENCY 47000)) ;; points in region
((VOLTAGE 8.5) (DRIVE-FREQUENCY 47000))))

((CHAOTIC) ;; second region of uniform behavior
(((VOLTAGE 9) (DRIVE-FREQUENCY 47500)) ;; points in region
((VOLTAGE 8.5) (DRIVE-FREQUENCY 47500)))) )

; boundary information
(((SUBHARMONIC 3 "Ri")

((CHAOTIC "R2")))
((CHAOTIC "R2")

((SUBHARMONIC 3 "Ri")))) )

Figure 1.3: Sample symbolic description returned by the program. The first part of
the symbolic descriptor provides information concerning the lumped regions of uniform
behavior. The second part presents bound.ry information.

command:

General Format:

(run-point-by-point-2D-analysis circuit-name test-number
starting-volt ending-volt volt-units

starting-freq ending-freq freq-units

volt-delta freq-delta)

Specific Example:

(run-point-by-point-2D-analysis 'neg-resis 4

1.5 6.5 v
40e3 70e3 hz

.25 1e3)

where the first argument specifies the name of the circuit under investigation. The second

indicates the test number. The third, fourth, and fifth arguments specify the starting

voltage, ending voltage and voltage units respectively. Similarly, the sixth, seventh, and

eighth arguments pertain to the starting frequency, ending frequency and frequency units

respectively. The last two parameter values indicate the incremental step size for voltage

and frequency. Thus, in this particular example, the program will analyze the behavior

of the forced negative-resistance oscillator over the frequency range of 40000 hertz to

14



70000 hertz at increments of 1000 hertz and over the voltage range of 1.5 volts to 6.5

volts at increments of 0.25 volts.

Given this information, the program automatically drives the oscillator circuit with

a sinusoid of the appropriate amplitude and frequency, sends the appropriate commands

to a waveform recorder to record the signal, classifies the response, and produces the

parameter-space diagram shown in figure 1.4 along with its accompanying high-level tex-

tual explanation shown in figure 1.6. Notice how the textual explanation draws attention

to the large and small regions of uniform behavior, the transitions between regions, and

any special patterns such as period-doubling cascades. Notice also how the program,

like a human, correctly identifies three main regions of uniform behavior-first-order

subharmonic, second-order subharmoic, and chaos- in a parameter space that really

consists of nine or more regions. This illustrates the program's ability to abstract the

regions of uniform behavior, even in a messy graph. In other words, the program is able

to take a global enough perspective so as to not let the small, isolated, and sporadic

occurrences of third, fourth, fifth, seventh and ninth order subharmonics distract from

the dominant first-order subharmonic, second-order subharmonic and chaotic behaviors.

As will be discussed in chapter 5 of this thesis, the program accomplishes this abstraction

by cleaning up or transforming the "messy" parameter space in figure 1.4 to the new

graph shown in figure 1.5.

Thus, the parameter-space graph, along with the textual description, gives the inves-

tigator a quick and thorough understanding of the system's behavior, drawing attention

to the regions of qualitatively interesting behavior. After running the program once for

a first-pass overview, the program can be easily run again, over a much smaller region,

to obtain a more detailed picture. Each successive run allows the investigator to zoom

in on the region of interest.

1.4 Implications of Thesis Work

The integration of sophisticated measurement instruments with powerful numerical pack-

ages and software programs, which interpret the results of physical measurements and

numeric computations, suggests new possibilities for test and measurement.
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A EV)

6.SV 1111111111111112222222222222222
6.26V 1111111111111112222222222222222

6V 1111111111111111122222222222222
5.7EV 1111111111111111.22222222222222
5.SV 1111111111111111..2222222222222 KEY:

5.2V 111111111111111.. .2222222222222

6V 111111111111115 ... 222222222222 1 - lit order subharmonic
4.75V 1111111111111.5..9.. .2222222222 2 a 2nd order subharmonic

4.SV I111111111111..55.7 .... 222222222 3 a 3rd order subharmonic

4.25V 11111111111 .... 5 ....... 22222222 4 - 4th order subharmonic

4V 11111111113 .... 5 ....... 22222222 5 - 5th order subharmonic

3.7SV 11111111113 ......... 22222222222 7 a 7th order subharzonic

3.5V 11111111133 ..... 5 ........ 222222 9 a 9th order subharmonic

3.26V 11111111.33 ..... 5 ...... 222222 a chaotic

3V 1111111..33 ............... 22222

2.75V 111111.. .33 ............. 22222

2.5V 11111 ..... 33 .... 5 .......... 2222

2.25V 1111...... 33 ............... 2222

2V I111 ....... 33 ......... 9 ...... 222
1.76V I 11...4 ..... 3 ................ 222
1.sV I .... 4 ..... 3 ................. 22

-- I ------- I ------- I ------- I--> f [kz]
40 50 60 70

Figure 1.4: Sample parameter-space graph from the forced negative-resistance oscillator
circuit. The A along the y-axis indicates the amplitude of the driving sinusoid, while the
f along the x-axis specifies the frequency of the driving sinusoid.
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6.SV I1111111111111112222222222222222
6.25V I1111111111111112222222222222222
6.V I1111111111111111122222222222222
5.7SV 1111111111111111.22222222222222
5.5V I1111111111111111-.2222222222222
5.25V .. 11111111 2222222222222
S.V .1111111... .2222222222222 KEY:
4.75V I 111111........2222222222
4.SV I111111..........222222222 1 = lot order subharmonic
4.2SV I 1111111111............22222222 2 - 2nd order subharmonic
4.V I 11111............22222222 - chaotic
3.76V I11111..........22222222222
3.5V I11111..............222222
3.25V I 11111111................222222
3.V I1111111 ..................22222
2.75V I111111 ...................22222
2.5V I11111 .....................2222
2.2SV I 1111......................2222
2.V I111 ....................... 222M
1.75V It 1.........................222
1.SV I 1.......................... 22

-- I -------- I -------- I -------- I--> f Ekhz
40 so 60 70

Figure 1.5: Cleaned up parameter space without blemishe..
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HIGH-LEVEL INTERPRETATION OF PARAMETER-SPACE DIAGRAM

The parameter-space diagram characterizes the behavior of the forced
negative-resistance oscillator as the frequency and amplitude of the
driving sinusoid are varied from 40000 to 70000 hertz and from 1.5 to 6.5
volts respectively. For amplitudes between 1.5 and 6.5 volts and
frequencies between 40000 to 56000 hertz, the system exhibits
predominantly first order subharmonic behavior, while for amplitudes
between 1.5 and 5.75 volts and frequencies between 51000 to 68000 hertz,
the system exhibits predominantly chaotic behavior, while for amplitudes
between 1.5 and 6.5 volts and frequencies between 55000 to 70000 hertz,
the system exhibits predominantly second order subharmonic behavior.
Aside from these large areas of uniform behavior, the system passes briefly
through subharmonics of order 7, 5, 9, and 4 at isolated points throughout
the parameter-space graph.

The large region of first order subharmonic behavior is bounded by the
bifurcation curve(s) 1-C, and 1-2. where C is a region consisting of
primarily chaotic behavior, but littered with sporadic occurrences of
other kinds of behavior. Similarly, the large region of chaotic behavior
is bounded by the bifurcation curve(s) C-2, and C-i, while the region of
second order subharmonic behavior is bounded by the bifurcation curve(s)
2-C, and 2-1.

Finally, based upon the data gathered so far, the forced
negative-resistance oscillator shows no clear signs of period-doubling
bifurcations as described by Feigenbaum and others.

Figure 1.6: Text generated by the high-level interpreter. In the second paragraph, the
notation 1-C indicates a boundary with first-order subharmonic behavior on one side
and chaotic behavior on the other. Similarly, the notation 1-2 indicates a boundary with
first-order subharmonic behavior on one side and second-order subharmonic behavior on
the other side.
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Currently instruments play a rather isolated and limited role in the design and ex-

ploration stages. Designers or investigators working in most programming environments

do not usually use or have access to a wide range of powerful measurement instruments.

Even if they do have access to some instruments from their programming environments,

the control that they have over an instrument and the results returned by an instrument

tend to be fairly low-level. For example, a user might be able to send amplitude and

frequency values to set up a function generator, or perhaps a dc-voltage level to a volt

meter. Or a dynamic signal analyzer might return several thousand data points as a

result of computing the fast Fourier transform (FFT) of a signal. But, interpreting this

stream of data points to arrive at some sort of high-level understanding of the behavior

still requires a fair amount of human effort.

Aside from the issue of instruments, scientists have typically used computers almost

solely for purposes of numeric computations such as convolutions and autocorrelations.

The results of such computations are usually in the form of large bodies of numerical

data. Although the computer is very good at performing numeric computations, it is

not very good at interpreting its qualitative content. It is currently largely up to the

investigator to scan through reams of data searching for relevant information.

In this thesis, I have taken advantage of both sophisticated measurement instruments

and powerful numerical packages. Yet, on top of these two tools, I have written a program

which interprets the results of the numeric computations and the physical measurements.

As a result, we now have a system with all the power of a whole range of sophisticated

measurement instruments, a whole set of numerical packages, and a high-level interpreter,

capable of producing meaningful and informative, qualitative, descriptions of complex,

nonlinear systems. No longer are scientists limited to low-level, control-the-volt-meter

type commands. They now have access to more powerful, more intelligent tools, capable

of generating such high-level statements as, "The forced negative-resistance oscillator

undergoes a period-doubling cascade as the driving frequency is increased from 26 khz

to 78 khz while the amplitude is fixed at 5.25 volts."
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1.5 Organization of Thesis

Chapter 2, presents a brief overview of the components within this thesis and how they

interrelate. Chapters 3 and 4 discuss the details of how the analysis program classifies the

behavior of the recorded waveform. In particular, chapter 3 focuses on the use of power-

spectrum data for behavior identification, while chapter 4 focuses on the use of time-signal

information. In chapter 5, I describe the high-level interpreter which is responsible for

recognizing interesting patterns in the parameter-space graph and generating the high-

level, textual explanation which accompanies the graph. Finally, chapter 6 concludes

with an analysis of the contributions of this thesis and suggestions for future work.
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Chapter 2

Overview

This chapter presents the experimental set up of the system as well as a brief description

of each component within this system. As illustrated in figure 2.1, the system consists

of three main modules: the Observation Equipment, the Measurement Instruments, and

the Software Module.

2.1 The Nonlinear Circuit

Before discussing these three components, I would first like to describe the types of

circuits the program can handle. Any driven, nonlinear, electrical circuit exhibiting

interesting behavior below the 10 Mhz range can be connected to this system for analysis.1

Moreover, the current system can only have two free parameters: driving amplitude and

frequency. The nonlinear circuit shown in figure 2.1 is Ueda's forced negative-resistance

oscillator circuit[UA81]. I specifically chose to study this circuit because it provides

a rich source of interesting, nonlinear behavior- subharmonics of orders 1 through 19,

quasiperiodics, and even chaos. This oscillator is driven by a sinusoid generated by an

HP 3325a function generator, and its response is measured over the capacitor and input

into the HP 5182a waveform recorder and the oscilloscope. Its nonlinear behavior stems

from the nonlinear resistor parallel to the capacitor. Figure 2.2 illustrates the schematic

'The 10 Mhs constraint is a limitation set by the HP 5182a Waveform Recorder/Generator. Refer to
the specifcation sheet in the Operating Manual for the HP 5182a.(51884].
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Figure 2.2: Nonlinear resistor in the forced negative-resistance oscillator.

of the nonlinear resistor in the forced negative-resistance oscillator.

In addition to the forced negative-resistance oscillator, we have constructed sev-

eral other circuits exhibiting interesting nonlinear behavior- Chua's devil's staircase

circuit[KKC], Matsumoto's double scroll[MCK85], and a simple, series RLC circuit where

the nonlinear element is a varactor diode whose capacitance is a function of voltage.

These circuits were connected to the system and used to test the robustness of the anal-

ysis program, which was developed primarily using Ueda's forced negative-resistance

oscillator circuit.

2.2 The Measurement Instruments

As mentioned earlier, the system uses a set of sophisticated measurement instruments.

In particular, an HP 5182a waveform recorder/generator is used to record the response

waveform of the circuit under investigation and an HP 3325a synthesizer function gener-

ator to produce the sine wave that drives the circuit. For circuits exhibiting interesting

behavioi under the 100 khz region, the HP 3562a dynamic signal analyzer can also be

hooked up to the system for measurement and analysis. However, since most of the in-

teresting behaviors occur at the higher frequencies, the dynamic signal analyzer has been
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of limited use to us. Ai instruments axe controlled remotely by an HP 320 computer via

HP-IB2 commands.

2.3 The Observation Instrument

The observation component of the system does nothing to help the analysis program clas-

sify the nonlinear circuit's behavior. Its only purpose is to let the user visually monitor

in real time the signal and power spectrum of the response. As shown in figure 2.1, the

driving sinusoid of the circuit is fed into channel A of the oscilloscope while its response

is fed into channel B of the scope. In addition, the output of an HP 8007a pulse generator

is connected to the z-input channel at the back of the scope. When the scope is put into

z - y mode, we get a Lissajous figure. By counting the number of crests in the Lissajous

figure, it is possible to determine the order of the subharmonic[CYY86]. This technique,

however, is only practical if the subharmonic order is small enough so the eye can dis-

tinguish one crest from another on the oscilloscope's screen. An easier way to determine

the subharmonic order by inspection is to strobe the time signal with the pulse generator

of the appropriate frequency. If a response is first-order subharmonic, it will display a

single highlighted dot in the Lissajous plot. If it is second order, it will have two dots

in the Lissajous plot. If the response is chaotic or some very high-order subharmonic

response, the Lissajous plot will show a blurring of many, perhaps an infinite number, of

dots. Counting the dots is an easy way to determine order subharmonic.

In addition to the oscilloscope, I have input the circuit's response into an HP 3562a

dynamic signal analyzer. The 3562a has the ability to compute and display on its screen

the power-spectrum response of a signal in real time. Both the oscilloscope and the

dynamic signal analyzer provide useful tools to monitor the behavior of the response.

2.4 The Software Module

As shown in figure 2.1, the software module consists of the analyzer program, the 6.003

signal-processing package, and the communication module. The code for all three com-

2 Hewlett-Packard Interface Bus
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ponents resides on the HP 320 computer.

2.4.1 The Analyzer Program

The analyzer program is the heart of the system. It is responsible for setting up the test

runs, determining the appropriate parameter values for proper or optimal functioning of

the instruments, and sending the appropriate HP-IB commands to the function generator

to drive the circuit and to the waveform recorder to record the circuit's response. Once

the response has been recorded, the analyzer program transfers the recorded waveform

from the waveform recorder to the computer, computes the power spectrum for each

response, and classifies the behavior of the circuit into one of four categories: harmonic,

subharmonic, quasiperiodic, or chaotic. After having identified the behavior of the circuit

for every point in the two-dimensional grid, the analyzer program describes the high-level,

qualitative characteristics of the nonlinear system.

Figure 2.3 illustrates the block diagram of the analyzer program. The inputs to the

program are data points representing the signal captured from the nonlinear circuit by the

waveform recorder, and the outputs include a parameter-space graph, a high-level textual

explanation describing the circuit's qualitative characteristics, and a symbolic description

to be passed to other programs. The behavior classification module of the system, shown

in the top portion of figure 2.3, identifies a system's behavior by examining both the

power-spectrum data and the time-signal data. The high-level interpreter component

of the system consists of all the boxes below the resolver in figure 2.3. Its purpose is

to generate the qualitative text explanation. I will discuss the behavior classification

portion of the analyzer program first. This consists of two parts: The power-spectrum

analyzer and the time-signal analyzer.

The Power-spectrum analyzer

Once the recorded waveform has been down-loaded onto the computer, the power-

spectrum analyzer computes its power spectrum. This power spectrum provides crucial

information for the classification of the circuit's behavior. Based upon the location of

the peaks in the spectrum, the program can categorize the behavior of the circuit into
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one of four categories: harmonic, subharmonic, quasiperiodic, or chaotic. Chapter 3

provides an in-depth discussion of the peak detection and the subsequent classification

of behavior.

The technique of identifying a system's behavior by searching for peaks in the power

spectrum proves effective when the noise level in the spectrum is low. However, as

the noise level in the spectrum increases, peak detection becomes more difficult and the

accuracy of the power-spectrum analyzer's conclusion degrades. To remedy this problem,

the program looks at additional information contained in the time signal to confirm or

disconfirm the analysis of the power-spectrum analyzer. By examining the behavior

from two perspectives, the program increases the likelihood of at arriving at the correct

conclusion.

The Time-signal analyzer

As mentioned in the previous section, the time signal also plays an important role in

the identification of the system's behavior. Referring to figure 2.3, we see that the time-

signal analyzer strobes the response waveform at multiples of the period of the driving

sinusoid. If the response repeats itself with every strobe, it exhibits harmonic behavior.

If the response repeats itself every other time, it exhibits second-order subharmonic

behavior; if every third time, third-order subharmonic response, etc. As the number of

strobes needed for the signal to repeat itself approaches infinity, so too does the order

subharmonic. Subharmonic responses whose order approaches infinity are essentially

chaotic since by definition a chaotic signal does not ever repeat itself. Chapter 4 discusses

in greater depth the details of the time-signal analyzer.

The Resolver

The conclusion produced by the power-spectrum analyzer and the conclusion of the time-

signal analyzer should concur. However, if they do not, the resolver module, as shown

in figure 2.3, has the responsibility of resolving the conflict. To decide which one of the

two conclusions to accept, the resolver looks at contextual information. If, for example,

the power-spectrum analyzer identified the behavior of a particular point as CHAOTIC,
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and the time-signal analyzer classified the behavior of the same point as SUBHARMONIC

ORDER 2, the resolver will look at the neighboring points to the east and to the south.

If one or both are SUBHARMONIC ORDER 2, then the resolver will assume that the power

spectrum was extraordinarily noisy and will reject the CHAOTIC analysis in favor of the

SUBHARMONIC ORDER 2 analysis. Chapter 4 presents the resolver in greater detail.

The High-level interpreter

Once the program has classified the behavior of the circuit for every combination of

input parameters, it produces a two-dimensional parameter-space graph and passes the

result to the high-level interpr.:ter. The high-level interpreter scans the parameter-space

diagram, first cleaning up any small, isolated occurrences of sporadic behavior in a messy

graph, then searching for the boundaries between regions of uniform behavior. Next,

the high-level interpreter generates the textual explanations describing any interesting

patterns observed in the graph. Knowledge about these patterns is contained in an easily

extensible knowledge base. Currently the high-level interpreter can recognize only period-

doubling cascades, period-adding cascades and frequency-locking ranges. However, as

we add more patterns to the knowledge base, the high-level interpreter will be able to

recognize more sophisticated patterns. In Chapter 5, I present some other commonly-

observed, well-studied patterns in nonlinear dynamics which we may want to include.

2.4.2 The 6.003 Signal-processing Package

Although the analyzer program makes up a large portion of the software module, the

6.003 signal-processing software also has an important function. This signal-processing

environment, developed at M.I.T. for the Circuits, Signals, and Systems course, provides

a variety of tools for signal analysis, such as fast Fourier transforms, auto-correlations,

chirp z-transforms, and convolutions. The primary purpose for including this signal-

processing package in the system is to take advantage of its FFT and its autocorrelation

procedures.
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2.4.3 The Communication Module

The communication module is responsible for translating a high-level Scheme command

into the appropriate sequence of HP-lB commands specific to the particular instrument.

For example, the analyzer program contains such high-level commands as:

(get-time-signal ... )

By instrument standards, this is a fairly high-level command. In order to successfully

record a signal, the HP 5182a waveform recorder needs a plethora of additional informa-

tion about the range of the signal, the channel of the incoming signal, whether to AC

couple the signal, whether to select automatic sweep mode for triggering, the value for

the time base, the memory record length, etc. To make matters worse, each instrument

has a different set of HP-1B commands which the user must learn if he wishes to commu-

nicate remotely with the instrument. Ideally the user of the system should not have to
worry about such details every time he wishes to perform a simple task such as record-

ing a signal. The communication module is smart enough to translate such high-level

commands as get-time-signal into a sequence of HP-IB commands, with optimally

chosen parameter values, to perform the appropriate task.3 For example, the following

code shows the commands generated by the communication module to configure the

waveform recorder for get-time-signal:

;; Select Recording mode as opposed to Generating Mode for the HP
;; 5182a Waveform Recorder/Generator.

(write-string-to-analyzer "RC" 5182a-device-file)
;; Auto set to certain default values. See Page 3-52 of 5182a
;; Operating Manual.

(write-string-to-analyzer "AU" 5182a-device-file)

;; Select channel A as input.
(write-string-to-analyzer "CHI" 5182a-device-file)

;; Sel4ct Range for channel A.

"By optimally chosen parameter values I mean the program knows how to, for example, choose the
sampling frequency so am to avoid aliasing. More specifically, it chooses the sampling rate so that it is
sufficiently below the Nyquist rate.
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(write-string-to-analyzer "IAR"I 5182a-device-file)
(write-string-to-analyzer (number->string S00e-3)

5182a-device-f ii.)

;Select AC coupling for channel A.
(write-strings-to-analyzer 5 182a-device-file "IAC1")

;Select Sweeping Arming for Trigger to be Automatic Sweep Mode.
(write-strings-to-analyzer 5 182a-device-file I"SA211)

;Set up value for time base. Note units of time-per-sample
;;is in seconds.
(write-string-to-analyzer "IMM"I 5182a-device-file)
(write-string-to-analyzer (number->string time-per-sample)

5I.82a-device-f ile)

;Set up memory record length.
(write-string-to-analyzer "ILE" 5182a-device-file)
(write-string-to-analyzer (number->string memory-record-length)

6182a-device-f ile)

(write-string-to-analyzer 1L011" 6182a-device-file))

30



Chapter 3

The Power-spectrum Analyzer

The purpose of the power-spectrum analyzer module is to classify the system's behavior

as chaotic, quasiperiodic, subharmonic or harmonic, based upon information presented

in the power spectrum. It achieves this by breaking the task into three main parts: dean

up spectrum, detect peaks, and classify behavior.

3.1 Cleaning up the power spectrum

All real power spectra, including those of perfectly harmonic and subharmonic responses,

have a certain amount of low-level noise scattered throughout the spectrum. Therefore,

before passing the spectrum through the peak detector, the power-spectrum analyzer

tries to identify and then to minimize the effects of noise. In figure 3.1(b), I have plotted

the power spectrum of a periodic response on a logarithmic scale in order to magnify the

presence of the low-level noise in the spectrum.

This noise may be attributed to several factors including:

" Quantization Error due to the analog to digital conversion of the signal by the
waveform recorder,

" Arithmetic Error in the FFT algorithm, and

* Spectral Leakage due to a finite-length representation of an infinite-length input
signal.

Quantization error results from the representation of continuous signal amplitudes

by a fixed number of digital levels within a predefined maximum and minimum analog
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Figure 3.1: Power-spectrum plot to magnify low-level noise: (a) on a linear scale; (b) on
a logarithmic scale.

range. Each value of the continuous signal, z(n), must be encoded using B bits to

obtain the quantized output, zQ(n). The quantization error stems from rounding the

input value, z(n), to the nearest quantization level, zQ(n). Figure 3.2 illustrates how

the input z(n) = 0.450 gets rounded to the nearest quanta, zQ(n) = 0.500.

Thus, the error due to quantization can be represented as

e(n) = jx(n) - xQ(n)I (3.1)

It is this e(n) term which contributes to the low-level noise observed in the power spec-

trum.

In general, the quantization error is a function of B, the number of bits in the A/D

converter and the distribution of the input signal over the range of the A/D converter.

The greater the number of bits, the smaller each quantum and the less the error.

The peak-detection module minimizes the quantization error by appropriately setting

certain parameters on the HP 5182a waveform recorder. The HP5182a with its 10 bits

of accuracy,1 ranges from -511 to +512, a span of 210 = 1024 = 512 - (-512) points.

'For more detailed speciication information on the HPS1S2a waveform recorder, refer to the Operating
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Figure 3.2: Encoding Process Related to A/D Conversion with B = 4 and q = 0.125

[AN83]

The program automatically scales the amplitude of the input signal so that the incoming

waveform makes optimal use of the HP5182a's full range. In other words, regardless of the

amplitude of the incoming signal, the program scales the signal so that it occupies nearly

the full range of the HP5182a from -512 to +512, thereby minimizing the quantization

error.

Spectral leakage results when Fourier transform algorithms try to approximate in-

finitely long signals with finite-length signals. In practice, one typically has access to only

a finite portion of an infinite signal. Computing the fast Fourier transform (FFT) of a

finite-length signal has the same effect as taking a finite piece of the signal, replicating

it and computing its Fourier transform. If, however, the size of the finite segment does

not contain an integral number of cycles, a discontinuity in the signal results, as shown

in Figure 3.3[DLH88].

The discontinuity in the signal gives rise to the leakage of sidelobes (or spectral con-

and Programming ManuaI(51884].
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Figure 3.3: Discontinuity resulting from periodic extension of signal by DFT process:
(a) continuous signal; (b) signal showing discontinuity due to DFT.

tributions) across the entire frequency set. (See Figure 3.4.) These high sidelobe levels

in the spectrum can result in false peak detections. A common way of reducing sidelobe

levels is by multiplying the signal by a weighting function[AN83, DLH88, OS75, Har78].

Weighting functions reduce the contribution of the samples near the endpoints, and there-

fore reduce the discontinuity and its effect on the frequency response. Extensive evalu-

ations comparing the advantages and disadvantages of the various windowing functions

ranging from Kaiser-Bessel windows to Gaussian windows have been performed[Har78j.

I have chosen to multiply the signal by a Haning window of order one before taking the

FFT. Figure 3.5 illustrates tOa the power spectra of a windowed input signal. Compare

the differences between figure 3.4 and figure 3.5, and notice the reduction in height of

the sidelobes due to spectral leakage.

3.2 Peak-detection Component

As mentioned in chapter 1, the key to classifying the behavior of a reponse using power-

spectrum data lies in identifying the peaks and recognizing the relationships among their

locations. Without an accurate peak detector, the power-spectrum analyzer module has
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Figure 3.4: Power spectrum of a non-windowed signal. (a) The top graph illustrates
the full spectrum on a linear scale. (b) The bottom graph shows a magnified version
of (a) around the peak to emphasize the effect of the sidelobes on the low-level noise
throughout the spectrum.
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Figure 3.5: Power spectrum of a windowed signal. (a) The top graph illustrates the
full spectrum on a linear scale. (b) The bottom graph shows a magnified version of (a)
around the peak.
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very little chance of accurately classifying the behavior of a system. The purpose of the

program's peak-detection component is to sequentially check each point in the power

spectrum to see which points possess the traits of a peak. Once it recognizes a peak, this

module records the peak's height and location so the classification module can classify

the recorded waveform's behavior.

3.2.1 Characteristics of a Peak

Each point in the power spectrum must pass three tests in the Peak Detection Module

in order to qualify as a peak: 2 tall-enough?, local-maxima?, and shape-of-a-peak?.

The tall-enough? Criterion

In order to pass the tall-enough? criterion, the height of the potential peak must be

sufficiently greater than the average height of the noise in the power spectrum.

Although windowing the input signal helps minimize spectral leakage and adjust-

ing the range of the HP 5182a waveform recorder helps reduce the quantization error,

there still exists a nontrivial amount of noise scattered throughout the power spectrum.

Therefore, to prevent erroneous peak detection, it is important that the tall-enough?

module verify that the average height of each potential peak is sufficiently greater than

the average height of the low-level noise. To determine what is "sufficiently greater," the

peak-detector module has a variable called fuzz-threshold. Any point with height less

than this fuzz-threshold will not qualify as a peak point. The value of fuzz-threshold

is a function of quantization error, arithmetic error and spectral leakage.

The local-maxima? Criterion

In addition to being taller than the noise floor, the potential peak must also be a local

maximum. This means that the points to the right and to the left must be shorter than

the potential peak. If, for example, the point to the right is taller, then the program

2TTe approach I've used for peak detection is very similar, though not based upon, the method used
by Sreeaiv a and Rao(SR79] for pitch extraction.
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discards the original point and adopts this right-hand point as a new peak candidate. It

then runs the same tests on this new point to see if it meets all the criteria for a peak.

The shape-of-a-peak? Criterion

Besides being a local maximum and sufficiently tall, the potential peak must also have

the shape of a peak. An ideal peak is characterized by a sharply monotonically-increasing

slope and a sharply moaotonically-falling slope.

The sharp-enough? module compares the ratio of the potential peak's height to that

of a neighboring point. This ratio essentially gives the slope of the peak. If the slope is

greater than a certain threshold value, then the peak is sharp-enough?. The advantage

of using this method is its simplicity. The disadvantage is that the ratio is fairly sensitive

to variations in the neighboring value. For example, it is possible to get a large ratio if

the potential peak value is large or if the neighboring value is small. The first is desirable

whereas the second is not. Yet the program avoids erroneous peak detection by imposing

the tall-enough? condition, since the height of the potential peak must be greater than

the height of the low-level noise. This prevents the peak-detector module from picking

up extraneous short peaks merely because the neighboring value is smaller than usual.

Periodogram Averaging or Bartlett Estimator

For the many test cases I have run, the power spectrum was clean enough so the detector

module could detect at least the salient peaks in the spectrum. However, in the event

that the power spectrum, which is normally computed by taking a single FFT of the en-

tire input signal, is too noisy and peak detection becomes too difficult, I have written an

additional module capable of producing a cleaner power spectrum. Although computa-

tionally more expensive, this optional module can produce a clearer power spectrum using

the periodogram averaging or Bartlett's estimator technique[OS75, AN83, SS75, RG75]

as outlined below.

To get cleaner looking power spectra,

1) take signal I---------------------- ------------------
of 16384 pts.
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2) divide signal I---1st chunk--I
into overlapping I---2nd chunk--- I
chunks of size I---3rd chunk---1

2000 points

etc.

3) FFT the chunks

4) Average the results.

More formally, in the periodogram averaging approach, a data sequence z(n), 0 <

n < N - 1, is divided into K segments of M samples each so that N = KM; i.e., we

form the segments

z()(n) = z(n + iM- M), 0 <n < M- 1, 1 < i < K (3.2)

and compute the K periodograms

(, I , 1(i)(n)e
-- 1 < i < K (3.3)

The spectrum estimate is then defined as

I K

B =(w) = (w) (3.4)
i=1I

Choosing the optimal chunk size is important to ensuring a dean power spectrum. In

general, it is not obvious how to choose the optimal chunk size. Increasing or decreasing

the chunk size introduces tradeoffs which must be weighed. In general this choice may

be guided by prior knowledge of the signal under consideration. Refer to [0S75, RG75,

OS75, AN83]. For the purposes of this program, an overlap of 50% works best[OS75].

3.2.2 Finding the precise location of a peak

Once the program has identified a peak, it must record the peak's location so the classi-

fication component can determine its relationship to other peaks.
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To compute the Frequency of a peak, the program uses Equation 3.5,

( Frequency f( Index (3.5)
Frequency Span J = \ Length of Power Spectrum)

where FrequencySpan and Lengthof Power Spectrum are given, and Index is computed

by the peak-detector module. If each data point is in a one-to-one correspondence with

each frequency point in the power spectrum, then equation 3.5 provides a simple and

efficient way to determine the location of a peak. However, in some cases, there is

far less than a one-to-one correspondence between points and frequencies. The forced

negative-resistance oscillator exhibits most interesting behavior at frequencies from 50

khz to 500 khz. Since the power spectrum in this program can be represented by at most

8192 data points, 3 and the power spectrum must span 500 khz in order to reveal the

interesting behavior, there is a 1: ('0 ) = 1 : 6.103515625 correspondence between

each data point and frequency. In other words, each data point in the power spectrum

represents 6.103515625 hertz. As a result, the program might, in the worst case, be off

by 6.103515625 hertz when it returns the location of a peak using equation 3.5.

To alleviate the problem, I have implemented an additional module that computes

more precisely the location of peaks based on the initial, rough estimate.4 The strategy

is as follows.

First, for each peak, magnify the power spectrum around the peak using the chirp

z-transform algorithm. See figure 3.6. The advantage of the chirp z-transform as it

is implemented in the 6.003 software is that it allows the user to select the starting

and ending frequencies, the incremental step size and the desired number of points for

the magnified spectrum, unlike the fast Fourier transform procedure which does not

afford such flexibility. In this program, I used 2048 data points to represent a magnified

"The EP5182a Waveform Recorder/Generator can capture a maximum of 16384 points of a single
signal. Although the 6.003 FFT procedure output& a spectrum of 16384 data points, half of these points
provide redundant information since the power spectrum for the negative frequencies is merely a mirror
image of the spectrum for the positive frequencies. Thus, after discarding the negative frequencies, we
are left with 16384/2 = 8192 data points is the power spectrum.

4 Finding the precise location of a peak is extremely important for dasification purposes because of
the integral relationships between subhamonic frequencies. Section two of this chapter will discuss this
issue in greater depth.
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frequency span of 30 hertz. This means that each peak location can be off by at most

30/2048 = 0.0146484375 hertz, a significant improvement over 6.103515625.

Second, take the tallest three points of the magnified spectrum, and fit them to a

parabolic curve. Then use parabolic interpolation to find the center frequency of the

peak.' In general, interpolation is necessary because the peak's center may lie between

two data points, and the use of a parabola is effective because peaks, when magnified,

have shapes similar to inverted parabolas. See figure 3.6.

More specifically, the equation for a parabola is:

Ax 2 + Bx + C = y (3.6)

Fitting the three points, (Z1, Y11), (T2, Y2), and (X3,13), to a parabolic curve requires

solving three simultaneous equations in three unknowns.

A2x + BZ + C = Yx (3.7)

Ax2 + BX2 + C = Y2 (3.8)

A2x3 + BZ3 + C = 1/3 (3.9)

Solving for A, B, and C, we get

(s - v )(2 - 2l) - (y2 - y1)(:T -2)
B= - :)( -(Y3) - (2 - :)()2 -3 ) (3.10)-

A= (Y2 - YO) - B(2 - XI) (3.11)(X2-

C = yj - Ax2 _ BzI (3.12)

'This technique wa suggested by Geny Suuan.
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Figure 3.6: Magnification of Peak. (a) The top plot illustrates the full spectrum on a
linear scale. (b) The bottom plot displays a magnified version of (a) around the peak.

Once the values for A, B, and C are known, then the center frequency can be read-

ily computed. This center frequency is nothing more than the maximum value of the

parabola obtained by taking the derivative with respect to z of equation 3.6.

2Az + B = 0 (3.13)

Solving for z,

Center Frequency = (3.14)

The third and final step is to take this center frequency of the peak and rescale it

so it has meaning relative to the entire frequency span, not just the magnified span.

Figure 3.6 and figure 3.7 illustrate the process.

Magnifying each peak and interpolating to find the center frequency proves very

effective. The result is a peak location much more accurate than that obtained using

equation 3.5. The tradeoff, however, is that the chirp z-transform is computationally

expensive. If there are many peaks in the power spectrum, then determining the precise

location of all the peaks becomes very slow.
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Figure 3.7: Parabola Fitting and Finding Center Frequency.

3.3 Classification Component

In the previous section, I describe the traits the peak-detection component looks for

when identifying peaks and how it computes their locations in the power spectrum.

Once the peak detector has gathered all the peaks and the frequencies at which they

occur, it passes this list of peaks onto the classifier. In this section, I discuss the classi-

fication component. The purpose of this module is to determine if the response exhibits

harmonic, subharmonic, quasiperiodic or chaotic behavior. I begin this section with a

precise definition of the terms. Following the definitions is an explanation of each of the

modules within the classification component.

3.3.1 Defining the Terms

When looking at the power spectrum, the program will use the following simple defini-

tions to identify the system's behavior. Refer to figure 3.8 and figure 3.9 for examples.

" Harmonic response - peaks in the power spectrum may occur only at the drive
frequency, fj,.,, and integer multiples of the drive frequency.

" Subharrnonic response of order n - peaks in the power spectrum may occur only
at . j and integer multiples of I. j*i,.

" Quasiperiodic response of degree n - peaks in the power spectrum may occur
only at n fundamental frequencies and integer combinations of these fundamental
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frequencies. For example, a quasiperiodic response of degree 2 may have peaks
only at

frequencies = a. fi + b. f2

where fl and f2 are not rational multiples of each other and a and b are integers.'

o Chaotic response - the power spectrum has a lot of broadband noise in addition
to some sharp peaks. The level of noise in the chaotic case is much greater than
the level of noise for the harmonic, subharmonic, and quasiperiodic cases.

3.3.2 Chaos Module

The Classification Component of the program is made up of several modules, the first of

which is the chaos module. Refer to Figure 3.10. The purpose of the chaos module is to

identify chaotic behavior using evidence from the power spectrum.

As mentioned in the definition above, the power spectrum of a chaotic response is

characterized by broadband noise in addition to some sharp peaks. In addition, the

level of noise is much greater in the chaotic case than the low-level noise observed in

the periodic and quasiperiodic responses. Figure 3.11 provides an example of a power

spectrum for a chaotic response.

To recognize chaotic behavior in a power spectrum, I tried computing the average

height of the spectrum and comparing this with the average height of a known, non-

chaotic power spectrum. If the average height of this potentially chaotic response is

significantly greater than that of a known, nonchaotic response, then I classified the

system as chaotic. However, this proved to be an unreliable test for chaos.

An alternative strategy for discerning chaos in the power spectrum involves searching

for sharp, distinct peaks in the spectrum. If the peak detector returns no sharply defined

peaks, we may conclude that the spectrum contains only broadband noise and hence

classify the behavior as CHAOTIC. However, the fact that a response has sharply defined

peaks in its spectrum does not preclude it from being classified as chaotic. As indicated

in the definition of chaos, it is perfectly possible for a chaotic response to have some

'The task of identifying quasperiodicity is simplifed slightly by the fact that the desree of a quasiperi-
odic response seldom exceeds 2. According to Thompson and StewartTS86, page 196, 'A remark-
able theorem in qualitative dynamics, proved recently by Ruelle, Takens, and Newhouse, suggsts that
quasperiodicity of depree greater than 2 may be difficult to observe in nature.'
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Figure 3.8: Examples of power spectra on a linear scale: (a) a harmonic response with

f' ri = 40000 hz; (b) a second-order subharmonic response with fd,,, = 60000 hz;

(c) a quasiperiodic response with f = 69000 hz; and (d) a chaotic response with

fd,,. = 66000 hz.
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Figure 3.9: Examples of power spectra on a logarithmic scale: (a) a harmonic response
with fdi,. = 40000 hi; (b) a second-order subharmonic response with fd,,, = 60000
hz; (c) a quasiperiodic response with Idi.,. = 69000 hi; and (d) a chaotic response with

fdi.= 66000 hz.
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Figure 3.10: Components of the Power Spectrum Classification Module.
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Figure 3.11: Power spectrum of a chaotic response.
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Figure 3.12: Power spectrum of a second-order subharmonic response with fdrie = 50
khz.

sharp peaks. I have found that the power spectrum does not easily provide conclusive

information regarding the chaotic versus non-chaotic nature of a signal." In the next

chapter, I present the autocorrelation technique as a promising alternative approach to

distinguishing between quasiperiodicity and chaos.

Referring back to figure 3.10 again, we find that if the program has concluded the

response is not chaotic, its next step is to distinguish between quasiperiodic and periodic

behavior. Before discussing how the program makes this distinction, I wish to first

explain how the program determines the order subharmoic of a periodic response. An

understanding of how the program computes subharmonics will aid in the understanding

of how it distinguishes between periodicity and quasiperiodicity.

3.3.3 Subharmonic Module

Assuming we already know the response is periodic, the next goal is to determine its

order. Figure 3.12 shows the power spectrum of a second-order subharmonic response

whose drive frequency is 50 khz.

We recognize this response as second-order subharmonic because peaks occur only at

integer multiples of:

TAs it turns out, the problem of distinguishing between quasiperiodic and chaotic behavior is fairly
difficult[UASI, KKC].
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1
- fdvw e where n = 2 and f,,e = 50 khz (3.15)

at frequencies

25 khz = 12s
50 khz =

75 khz = fdrie, and

100 khz = I. fdywe

Information contained in the first 50 khz of the power spectrum is sufficient for us to

classify the system's response as second-order subharmonic. However, the information

contained in the second segment from 51 khz to 100 khz also provides valuable supporting

evidence for our hypothesis. In particular, the peak at 75 khz confirms the information

contained in the 25 khz peak, while the peak at 100 khz confirms the information con-

tained in the 50 khz peak. Scientists, especially when confronted with a noisy power

spectrum, often search for this kind of redundant evidence to confirm or disconfirm their

hypothesis. To take advantage of this duplicate information, I have chosen a multi-set

representation for the list of peaks. This multi-set representation lumps together similar

peaks much as a scientist looking at a power spectrum would. For the power spectrum

shown in figure 3.12, the list of peaks is

((25000 . 10.4206) (50000 . 5.954) (75000 . 1.9) (100000 . 3.721))

I I-----height of peak

location of peak

where the first element of each set indicates the location of the peak (in hertz) and the

second element indicates the height of the peak. This list of peaks will get transformed

into the multi-set
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((2S000 . 2) (S0000 2)).

I I
normalized number of occurrences

location of
peak

with the first element of each set specifying the normalized" location of analogous peaks

and the second element specifying the number of occurrences of such analogous peaks.

Thus, in this case, the (25000 . 2) entry indicates that there were two occurrences

of the 25000 hertz "type" peak in the power spectrum, one at 25000 hertz and one at

75000 hertz. Similarly, there were two occurrences of the 50000 hertz "type" peak, one

at 50000 hertz and one at 100000 hertz.

Once the program has computed this multi-set of remainders, it then transforms this

multi-set of remainders into a multi-set of hypotheses by dividing the drive frequency

by each normalized location. Upon performing this division, we get a new multi-set of

hypotheses.

((2 . 2) (1 . 2))

I I._. number of occurrences

hypothesized

order subharmonic

To compute the final order of the system's response, the program takes the least com-

mon multiple of all the hypothesized orders. In this example, (1ca 2 1) a 2, indicating

a second order subharmonic response, which is correct.

If the peak detector fails to return the precise location of the peaks, but instead

returns the following list:

'The normalibed location it computed by takinS the (peak location) mod (drie freuency).
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((25000.003 . 2.8) (50000.012 . 10.206) (75000.001 . 3.1) (100000 . 6.229))

I I----- height of peak

location of peak

the program can still take advantage of the multi-set representation. This is true because

the program tries to determine what the true location of the peak should have been. More

specifically, if the computed location of the peak were 25000.003, but the true location is

25000, then the program tries to justify renaming the 25000.003 peak to a 25000 peak.

If the computed peak at 25000.003 is close-enough? to the ideal peak location at

25000, then the program goes ahead and renames the 25000.003 peak to a 25000 peak.

Computing the close-enough? threshold level is easy. Recall from section 3.2.2, we

know how to determine the maximum deviation of a computed peak location from its

true location based upon the frequency span and the number of points in the power

spectrum. Thus, if a computed location is off from the ideal location by less than this

maximum deviation, then the difference in distance between the ideal location and the

computed location could logically be explained by the coarse granularity of the power

spectrum.

In the event that the peak detector erroneously picks up a stray spike, the correct clas-

sification of the system's response becomes very difficult. The multi-set representation,

however, helps the program to distinguish between true peak and stray spike.9

For instance, if the peak-detector module accidentally detected an unusually tall stray

spike at 847.457627119 hertz, then we might get the following for the list of peaks:

((847.457627119 . 1.04) (25000 . 9) (50000 . 4) (75000 . 2.3) (100000 . 3)).

'Windowing the input to reduce spectral leakage, selecting the appropriate input range on the
HP5182a waveform recorder and utilizing Bartlett's periodoram averaging technique discussed above
reduce the low-level noise in the power spectrum which minimizes the probability of erroneous peak
detection by the Peak Detector Module. But, the multi-set reprentation helps the program recognize
stray peaks after the Peak Detector has already identified these strays as peaks.
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with a multi-set of remainders of:

((847.457627119 . 1) (25000 . 2) (50000 . 2)),

and a multi-set of hypotheses of:

((S9 . 1) (2 . 2) (1 . 2))

Taking the least common multiple of the 59, 2 and 1, we get 118. At this point the pro-

gram is smart enough to recognize that a 118th order subharmonic response is 1) nearly

impossible to measure because of the imprecisions of the instruments, and 2) is highly

unlikely even if the instruments were extremely precise. Instead of returning a conclusion

of (SUBHARMONIC 118), it goes back to the multi-set of remainders and notices that there

was only a single occurrence of (847.457627119 . 1. 04). Since there was only a single

occurrence of the 847.457627119 "type" peak, this suggests that the 847.457627119 peak

may be a stray. (Perhaps the peak-detector module erroneously picked it up.) The pro-

gram then knows to toss out this single, stray peak and recomputes the order until the

answer seems reasonable. In this case, throwing out the (847.4S7627119 . 1) term

from the multi-set of remainders allows the program to recognize the system's response

as second-order subharmonic, as it should.

Quasiperiodic-or-Periodic Module

Now that we know how the subharmonic module classifies the various order subharmonic

responses, we can begin to discuss how it distinguishes between quasiperiodicity and

periodicity.

Recall from section 3.3.3 that if there was a stray peak in the power spectrum, which

caused the computed order to be extremely high, the program was smart enough to throw

out this peak and recompute the order until it arrived at a reasonable order. For periodic

responses there should be no more than a few of these 'stray peaks. In the section on

the subharmonic module we saw how nicely the 25 khz peak got lumped with the 75 khz

peak and how the 50 khz peak got lumped with the 100 khz peak when we normalized

with the drive frequency of 50 khz, leaving no stray peaks.
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Figure 3.13: Power spectrum of a quasiperiodic response with two fundamental frequen-
cies at w3 and wl.

The power spectrum of a quasiperiodic waveform, with sharp peaks at multiple fun-

damental frequencies and integer combinations of these fundamental frequencies, will be

much more likely to have a greater number of single occurrence peaks than a periodic re-

sponse. Referring to the quasiperiodic power spectrum in figure 3.13[TS86], we see peaks

at the two fundamental frequencies, w, and W3, along with peaks at some of their integer

combinations, 2w3 - wi, wi - W3 , and 2W - W3. Normalizing all the peaks at 2J 3 - WI,

WI - W3, WJ, 2WI - W3 by the drive frequency yields a different answer almost every time

because each peak is not an integer multiple of another peak. Thus, it becomes much

more difficult to lump together analogous peaks as we could in the periodic case when

peaks tended to be multiples of another rather than sums and differences of one another.

To distinguish between quasiperiodicity and periodicity, the quasiperiodic-or-periodic

module notices how many single occurrence peaks occur in the multi-set of remainders. If

more than a few single occurrence peaks exist in a spectrum, 10 this suggests the system's

response may be quasiperiodic. 11

"For the purposes of this implementation of the program, 'a few' means two single occurrence peaks.
This is a fairly tight constraint. However, based upon the example seen so far, the power spectra of
periodic signals tend to have sharp peaks only at integer multiples of each other, producing very few
single occurrence peaks in the multi-set.

"Actually, it would be nice if we could easily group together analogous peaks in the quasiperiodic
spectrum just as we can in a periodic spectrum. For example, the peaks at 2W3 - ",p, - ws, t4, w, and
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If the quasipriodic-or-periodic module deduces that the power spectrum indi-

cates quasiperiodic behavior, the program returns (QUASIPERIODIC); otherwise, it pro-

ceeds to the subharmonic module and computes the order subharmonic as described in

the previous section.

2w, - un should ill be lumped together since they are all integer combinations of the drive frequency,
wl, and the other fundamental frequency, W3. The problem is that in order to recognize the analogous
peaks, we must first be able to recognize all the fundamental peaks, which proves difficult. Even with
the two fundamental frequencies known, there may be too many combinstions to detect.
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Chapter 4

The Time-signal Analyzer

In the previous chapter, we discussed how the power-spectrum data can be used to

classify a system's response. In most cases spectral analysis can accurately categorize

the behavior of a waveform. However, as mentioned in chapter 2, the power spectrum

provides only one perspective of the system's behavior. When the noise level in the spec-

trum increases, peak detection and behavior classification become more difficult, thereby

increasing the likelihood of erroneous classification. To supplement the information pro-

vided by the power-spectrum data, the program also looks at the time-signal data. The

purpose of this chapter is to present the time-signal analyzer, which identifies the circuit's

behavior using time signal information.

4.1 Time-signal definitions

Before discussing the details of implementation, I first present the definitions of harmonic,

subharmonic, quasiperiodic, and chaotic from a time-domain perspective.' These are the

definitions used by the time-signal analyzer to categorize the behavior of a signal.

e Harmonic re.pone - a periodic response with the same frequency as the driving
frequency. Tdv = T. 8 ,,, where T = period.

* Subharmonic reaponse of order n - a periodic response whose frequency is some
fraction of the drive frequency. Or T,..,,m, = n. Tdrive, where T = period.

'The previous definitions given in chapter 3 were from a power spectrum perspective.
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* Quasiperiodic response - a response that is the sum of a couple of periodic signals,
whose periods are not rational multiples of each other. The signal is not periodic,
but rather, almost periodic.

9 Chaotic response - a response that cannot be simply be characterized. The time
signal does not repeat itself in a finite amount of time.

4.2 Basic strategy of the time-signal analyzer

This section describes the strategy used by the time-signal analyzer to identify the be-

havior of a recorded waveform.

4.2.1 Strobe technique to determine order subharmonic

The time-signal analyzer first assumes the recorded waveform is periodic. It then deter-

mines the order subharmonic by strobing the signal at integer multiples of the drive period

and recording the value of each strobe. Since the program knows the drive frequency,2

it can compute the drive period using the relation Td1 ,. = 1/fdri,.. If all strobed values

are within a given epsilon of each other, then the signal is said to be harmonic, since

it repeats itself at intervals of a period. If every other strobe point has the same value,

then the waveform is second-order subharmonic. If every third strobe point has the same

value, then the waveform is third-order subharmonic, etc. Figure 4.1 through figure 4.4

illustrate the notion of strobing the signal to determine order subharmonic. In each of

the figures, the top graph displays the forcing sinusoid, and the bottom graph shows the

response.

In the actual implementation, I examine ten values spaced at multiples of the drive

period. If each of the later nine points are within a small distance, epsilon, of the first

point, then the signal is periodic, more specifically harmonic. If not, the program looks

at ten values3 spaced at twice the drive period. Once again if the later nine points are all

2 RecaD the inputs to the entire analyser program are the ranges of frequency and voltage over which

to run the analysis.

"For greater murance of accuracy, you can increase the number of strobed points. Increasing the
number of strobed value from ten to say fifty means that fifty point. must be close enough' to one
another an opposed to ten. This is a much tighter constraint. However, if all fifty points are *dose
enough,* then you can be more certain that the deduced subharmonic order is correct.
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Figure 4.1: Strobing a harmonic response. Notice how the response waveform repeats
itself at every strobe.

_t !s1c!?
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Figure 4.2: Strobing a second-order subharmonic response. Notice how the response
waveform repeats itself once for every two times the driving sinusoid repeats itself.
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Figure 4.3: Strobing a quasiperiodic response.
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Figure 4.4: Strobing a chaotic response. Notice how the response never repeats itself,
even with an infinite number of strobes.
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within a short distance of the first point, then the program calls this signal subharmonic

of order two, and so on up to some large order subharmonic, like thirty-three.4 If the

order subharmonic is greater than thirty-three, then the behavior of the response is

probably quasiperiodic or chaotic, and the program classifies it as such.

To be truly precise, the time-signal analyzer should probably compare each strobed

value with every other strobed value, not just the first one. In my implementation,

the determination of the order subharmonic is highly dependent upon the value of the

first strobed point. If for some reason the value of this first point has a large variance

in comparison to the other nine points, then the analysis returned by the time-signal

analyzer may be inaccurate. However, the advantage of this implementation is that it

is simpler and more efficient. Moreover, it is unclear how much certainty we gain by

checking extra point values. For the examples I have run, there does not seem to be

a sacrifice in the accuracy of the conclusions resulting from comparisons with the later

nine points with the first point only. If, however, this does prove to be a problem, we

can easily modify the time-signal analyzer so it performs a point-by-point checking.

Finally we must address the issue of how the program computes epsilon. Recall

that epsilon is the threshold value below which two strobed points are considered close

enough and above which two strobed points are not close enough. The time-signal

analyzer computes the epsilon value by taking a certain fraction of the signal span. More

specifically, the program computes the difference between the maximum and minimum

values in the time signal. This is the span of the signal. It then multiplies the span by

a certain fraction, in this case 0.10. What this means is if a subsequent strobed point

varies from the first strobed point by no more than 10% of the span, then the two points

are essentially close enough, and the signal has a chance of repeating itself in a periodic

or quasiperiodic manner.

4There is o theoretical justification for the selection of subharmonic order thirty-three m the threshold
between periodicity and non-periodicity. The only real reason for this selection is that subharmonics
higher than thirty-three are very difficult to detect due to such factors ma imprecision in the measurement
inatruments, and rounding in the sdgnal-proceing package.

58



1.0

I I I I.p ~ Sj

0.5"

05

5 ~ NN

-; 0.0,- Iv) ~ ~

0 4 a 12 16

Time Delay (103 drive Periods)

Figure 4.5: Autocorrelation of a Quasiperiodic Response.

4.2.2 Autocorrelation technique to distinguish between quasiperiodic-
ity and chaos

The previous section described how the time-signal analyzer computes the order sub-

harmonic of a periodic response. But how does the analyzer recognize a chaotic or

quasiperiodic response? One possible technique for distinguishing between a quasiperi-

odic and a chaotic response is to compute the autocorrelation of the recorded waveform.5

If the signal remains fairly highly correlated with itself through time, it is periodic or

quasiperiodic. See Figure 4.5[Lin88]. If, on the other hand, the correlation values are

very low as shown in figure 4.6[Lin88l, then the signal is chaotic.

An autocorrelation value of zero is said to be uncorrelated, while a large autocorrela-

tion value indicates high correlation. When we look at figure 4.6, it makes sense that the

chaotic signal, which nevc; repeats Itself, has low correlation values for large time delays

and high correlation when the time delay equals zero, since the signal correlates exactly

with itself, but not very well with the shifted versions of itself. The quasiperiodic signal

has the property that it is "almost periodic"; that is, the signal almost repeats itself.

Therefore, as shown in figure 4.5, its autocorrelation function has fairly large values in

5This strategy of uwg the autocorrelation to distingskh between qu#Aiperiodicity and chaos was
suggested during a discussion with Professor Paul Linsay of the MIT Physics Department.
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Figure 4.6: Autocorrelation of a Chaotic Response.

comparison to the the chaotic case, but as the time delay grows larger, the amount of

correlation also decreases.

The notion of using the autocorrelation of a signal to distinguish between quasiperi-

odic and chaotic responses looks promising. However, I have not yet implemented this

component yet. Paul Linsay[Lin88], in his studies of quasiperiodicity and chaos, has used

the autocorrelation technique extensively to distinguish between the two types of behav-

ior and finds this method highly effective. The implementation of the autocorrelation

component of the time-signal analyzer has been left for future work.

4.3 The Resolver

What happens if the conclusion produced by the power-spectrum analyzer disagrees with

Ut

the conclusion of the time-signal anlyzer? In such case, the resolver module must re-

solve the conflict. To decide which one of the two conclusions to accept, the resolver

will look at contextual information. If, for example, the power-spectrum analyzer iden-

tified the behavior as CHAOTIC, and the time-signal analyzer classified the behavior as

~SUBRA.KONIC ORDER 2, the resolver will look at the neighboring points to the east and

to the south. If both are SUBBIARKONIC ORDER 2, then the resover will assume that the
power spectrum was extraordinarily noisy, and it will reject the C00OTIC analysis and
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accept the SUBHARMONIC ORDER 2 analysis. This strategy is based upon the assump-

tion that within a given local region, the behavior of a system will tend to behave in a

similar manner. The validity of this assumption depends upon the step size or granu-

larity with which we have chosen to run the program and the rapidity with which the

circuit changes behavior. Contextual information provides just one method of resolving

conflicting analyses. The final chapter of this thesis suggests others.
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Chapter 5

The High-level interpreter

In the previous two chapters of this thesis, I discussed the classification module. Recall

that the primary purpose of the classification module is to characterize the behavior of

the nonlinear system for every point in the two-dimensional parameter space. In this

chapter, I present the high-level interpreter. Its purpose is to take the detailed parameter-

space graph produced by the classification module and to provide a high-level, textual

explanation describing any interesting, qualitative properties of the circuit's behavior.

For example in chapter 1, we saw that the high-level interpreter generated the following

textual explanation given the parameter-space graph shown in figure 5.1.

HIGH-LEVEL INTERPRETATION OF PARAMETER-SPACE DIAGRAM

The parameter space diagram characterizes the behavior of the
forced negative-resistance oscillator an the frequency and amplitude
of the driving sinusoid are varied from 40000 to 70000 hz and from
1.5 to 6.5 volts respectively. For amplitudes between 1.5 and 6.5
volts and frequencies between 40000 and 56000 hertz, the system ex-
hibits predominantly first order subharmonic behavior, while for
amplitudes between 1.5 and 6.75 volts and frequencies between 41000
and 68000 hertz, the system exhibits predominantly chaotic behavior,
while for amplitudes between 1.5 and 6.5 and frequencies between
55000 and 70000 hertz the system exhibits predominantly second order
subharmonic behavior. Aside from these large areas of uniform behavior,
the system's response passes briefly through subharmonics of order
3, 4, 5, 7 and 9 at isolated points throughout the parameter-space
graph.
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A [V]

6.5V 1111111111111112222222222222222

6.25V 1111111111111112222222222222222
6.V 1111111111111111122222222222222

5.75V 1111111111111111.22222222222222

5.5V 1111111111111111..2222222222222 KEY:
5.25V .111111111111111.. 2222222222222
5.V I 11111111111115 .... 2222222222222 1 a 1st order uubharmonic
4.75V 1111111111111.5..9.. .2222222222 2 - 2nd order subharmonic

4.SV 111111111111..55.7 .... 222222222 3 a 3rd order subharmonic
4.25V 11111111111 ........ 22222222 4 a 4th order subharmonic

4.V 11111111113 ... 5 ...... 22222222 5 - 5th order subharmonic
3.75V 11111111113 ......... 22222222222 7 w 7th order subharmonic

3.5V 11111111133 ..... 5 ........ 222222 9 a 9th order subharmonic
3.25V 11111111.33 ..... 5 ........ 222222 . - chaotic
3.V 1111111..33 ............... 22222
2.75V 111111.. .33 ............. 22222
2.SV 11111 ..... 33 .... 5 .......... 2222
2.25V 1111 ...... 33 ............... 2222
2.V 111 ....... 33 ......... 9 ...... 222
1.75V 11 ... 4. 3 ................ 222
1.5V I 1... 4 ..... 3 ................. 22

-- I -------- I--------I--------I-->f khz
40 50 60 70

Figure 5.1: Sample parameter-space diagram.
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The large region of first order subharmonic behavior is bounded
by the bifurcation curves 1-2 and I-C, where C is a region consisting
of primarily chaotic behavior, but littered with sporadic occurrences
of other kinds of behavior. Similarly, the large region of second
order subharmonic behavior is bounded by the bifurcation curves 2-1
and 2-C, while the region of chaos is bounded by C-I and C-2 bifur-
cation curves.

Finally, based upon the data gathered so far, the forced neg-
ative-resistance oscillator shows no clear signs of period-doubling
bifurcations as described by Feigenbaum and others.

In order to provide such a high-level description of the circuit's behavior, the inter-

preter must identify large regions of uniform behavior as well as the small regions of

sporadic behavior. It must notice the types of boundaries which border each region, and

finally it must recognize such well-studied patterns as period-doubling routes to chaos

and period-adding routes to chaos. How the program accomplishes all these tasks is the

topic of this chapter.

The first section in this chapter discusses how the high-level interpreter scans the pa-

rameter space to produce the first paragraph of the textual explanation, which describes

the different regions of behavior. The second section of this chapter explains how the

interpreter uses computer vision techniques to detect the edges of a region and to locate

the bifurcation curves that border the regions of uniform behavior. The third describes

how the interpreter uses knowledge about general nonlinear dynamics to identify such

typical patterns such as period-doubling cascades and period-adding cascades in the pa-

rameter space. The fourth section talks discusses the symbolic description returned by

the analyzer program and used as input to other programs.

5.1 Growing regions of uniform behavior

This section describes how the high-level interpreter identifies the large and small areas

of uniform behavior in the parameter space. By utilizing the computer vision technique

of growing regions of uniform behavior[Hor86], the interpreter can locate the regions of

qualitatively distinct behavior. The strategy for growing such regions is as follows.
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The program begins with any point in the parameter space, say the origin. This

becomes the seed point. It then tries to grow the seed in all possible directions: north,

south, east and west. If, for instance, the behavior of the point to the north is the same

as the behavior of the seed point, then the area of this region expands to include the

northern point. In other words, any point contiguous to the seed point and having the

same behavior as the seed point becomes incorporated into the growing region. After

this northern point has been CLAIMED by a given region, it can no longer be CLAIMED by

another region. Instead, it will serve as a new seed point for further growth of the region.

When the region cannot grow any further in any direction, the program systematically

scans the parameter space point by point for the first UNCLAIMED point to serve as a new

seed point for a new region of behavior. Finally, when all the points in the parameter

space are CLAIMED, we have a parameter space in which all contiguous points having the

same behavior are grouped together as desired. See Figure 5.2. Given this grouping of

points, the high-level interpreter can easily generate statements similar to those shown

in the first paragraph of the sample textual explanation. It can describe the large regions

of uniform behavior, draw attention to isolated regions of sporadic behavior, make note

of general changes in behavior as an input parameter is varied, and comment upon the

frequencies and voltages at which these regions of behavior occur.

5.2 Recognizing boundary types of a region

Generating the textual explanation for the second paragraph, however, is not as straight-

forward. Rather than requiring only local information about the behavior of neighboring

points, the program now needs more global information. For instance, it must be able

to look at the parameter-space diagram in figure 5.1 and recognize that the large region

of first-order subharmonics is bounded by two kinds of borders: a 1-C border, and a 1-2

border, while the region of second-order subhamonicsis bounded by a 2-1 bifurcation

curve and a 2-C bifurcation curve. The high-level interpreter must also recognize that

the streaks of 3rd, 4th, 5th, and 9th-order subharmonics in the chaotic region do not

change the predominance of chaotic behavior in the middle frequencies. In other words,

the behavior in the middle region should be viewed as mostly chaotic with sporadic

65



A EV)

6.5V I 1111111 222222222222222

6.25V I11111111222222222222222
6.V I 11l111li 2222222222222
5.7SV I11111111111111 2222222222222
5.SV I 11111111.222222222222 KEY:
S.26V I11AI1111 .. 222222222222
S.V I111111111111 ... 222222222222 1 - it order subhaxmonic
4.75VI 1111111111111 20..222222222 2 a 2nd order subharmonic
4.5V I111111 .5...22222222 3 a 3rd order subharmonic
4.2SV I1111111111 .... ).... 2222222 4 - 4th order subhsarmonic
4.V I111111111 ... 1 ::.. 2222222 5 - 5th order uubharmonic
3.75V I1111111111..........2222222222 7 w 7th order subharmonic
3.5V I 111111 3 .. .. . .... .. .22222 9 - 9th order uubharmonic
3.25VI 11111111. 3 .. .. ..... 22222 . chaotic

3.V I1114-11 .3........2222

2.75V I 1111................... 2222
2.SV I11111 .......... (............222
2.25V I1111 ...... 3 ................ 222

2.V Il 11.......3................22

-- I -------- I -------- I -------- I--> f khzj
40 50 60 70

Figure 5.2: Lumped regions of uniform behavior.
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occurrences of other types of behavior, rather than as ten separate regions of behavior.

Figure 5.3 illustrates the overall strategy of the High-Level Interpreter in recognizing

the boundary types of a region. In general the task may be decomposed into two main

parts. The first, which is illustrated in the first column of blocks in Figure 5.3, is to

identify the large regions of uniform behavior. The second, which is illustrated in the

second column of blocks in Figure 5.3, is to detect the bifurcation curves bordering each

region of uniform behavior.

5.2.1 Identifying large regions of uniform behavior

In cases where the parameter-space diagram is not littered with small, isolated occur-

rences of sporadic behavior, recognizing the regions of uniform behavior is easy. The

program need only grow points of similar behavior using the algorithm described in the

previous section. If, however, the parameter space is littered with brief occurrences of

sporadic behavior or "blemishes," the interpreter attempts to remove these local blem-

ishes, since they distract from the overall picture. A blemish is defined as a small region

in the parameter space having an area less than a certain fraction of the total param-

eter space area.' To remove a blemish, the interpreter checks to see if the neighbor to

the north belongs to a large region of uniform behavior. If it does, the interpreter will

copy the behavior of the northern point into the behavior of the current point, thereby

erasing the blemish. If the northern point does not belong to a large region of uniform

behavior, the interpreter will check to the south, then to the east and then to the west.2

When all the blemishes in the entire parameter space have been removed, the program

re-grows the regions of uniform behavior. After the second growth, there should be fewer

distinct regions in the parameter space, but each region should have a greater area or a

greater number of points in it. Figure 5.4 illustrates the result of removing the blemishes

from the parameter space in Figure 5.1. Notice how the program can now easily recog-

nize the three large regions of uniform behavior: first-order subharmonic, second-order

'Currently the threshold area is set at 3% of the total area.
2 The problem of blemishes in the parameter-space graphs is similar to Horn's problem of salt-and.

pepper nose in a picture. To remedy the problem of *noise,* we both take advantage of contextual
information.
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Compute Regions of Detect Bifurcation
Uniform Behavior Curves

Compute Boundary

Grow Regions Representation
of Uni orm for each region
Behavior

Remove Binarize
Blemishes Parameter

Space

Grow Regions Detect Edge

Again of Region

Large Regions Record Edge Pt.
of Uniform and neighboring

Behavior behavior
,Boundary
Data Structure

Generator owledg

Figure 5.3: Strategy for Determining Boundary Types of a Region
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A [V)

6.5V 1 1111111111111112222222222222222

6.25V 1 1111111111111112222222222222222
6.V 1 1111111111111111122222222222222
5.75V 1 1111111111111111.22222222222222

5.SV 1 1111111111111111..2222222222222

5.25V I 111111111111111...2222222222222
s.V 11111111111111 ....2222222222222 KEY:

4.75V 111111111111 ........ 2222222222

4.5V 111111111111.......... 222222222 1 u 1st order subharmonic
4.25V 11111111111............ 22222222 2 a 2nd order subharmonic

4.V 11111111111 ............ 22222222 . chaotic
3.75V 1 1111111111 .......... 22222222222
3.SV 1 1111111111 ............... 222222

3.25V 1 11111111 ................. 222222
3.V 1111111 ................... 22222

2.75V 111111 .................... 22222

2.SV 11111 ...................... 2222

2.25V 1111 ....................... 2222

2.V I111 ......................... 222
1.75V 11 .......................... 222
1.SV I ......................... 22

-- I ------- I ------- I --------- > f [khz
40 50 60 70

Figure 5.4: Cleaned up parameter space without blemishes.

subharmonic, and chaos.

Identifying large regions of very messy behavior

Now consider another parameter space diagram shown in figure 5.5 with a large region

of first-order subbarmonics centered about 5.25 volts and 46000 hertz, a large region of

second-order subharmonics centered about 5.5 volts and 65000 hertz, a large region of

chaos centered about 3 volts and 60000 hertz, and a large region of very messy behavior

centered about 2.25 volts and 55000 hertz.

The high-level interpreter should be able to categorize this last, messy region as a

69



A [VJ

6.SV I 111111111111112222222222222222
6.25V I1111111111111112222222222222222
6.V I1111111111111111122222222222222
6.76V I1111111111111111-22222222222222
5.5V I11111111111111.2222222222222 KEY:
S.25V I 1111iM11111 .. .2222222222222
5.V I 11111111111...2222222222222 1 a let order subhuumonic
4.76V I1111111111111 ........2222222222 2 - 2nd order subharmonic
4.5V I111111111111 ..........222222222 3 a 3rd order subharmonic
4.25V Il~ 1111............22222222 4 a 4th order uubharmonic
4.V I1111111111 .............22222222 S w 5th order subhaxmonic
3.76V I11111111113 .........22222222222 6 - 6th order uubhurmonic
3.SV I11111111137 .............. 222222 T - 7th order subharsonic
3.2SV I 1111111Q33 ............. 222222 8 w 8th order uubharmonic
3.V I 1111IlQQ.6 ..............22222 9 - 9th order uubharmonic
2.75V M 1111Q.Q33 .............. 22222 Q - quasiperiodic
2.SV I 1111. .QQQ7 ...............2222 .a chaotic
2.25V I 111Q767.83 ...............2222
2.V I111.9. .6QQ37 ............... 222
1.75VI 11 ... ... .883 ............... 222
1.SV I1. .2.44QQ983 ................22

-- I -------- I -------- I -------- I--> f khz]
40 s0 60 70

Figure 5.5: Parameter-space diagram with region of very messy behavior near 2.25 volts
and 46000 hertz.

70



single region of very messy behavior, not as twenty-two tiny, distinct regions. Viewing

these small regions as distinct would require the interpreter to compute the boundary

types for each tiny region within this very messy area of the parameter space. Although

this is possible, we would not gain very much in doing so. What the high-level interpreter

does, then, is it converts all blemishes which are adjacent to another blemish into a

new kind of region, "M", which stands for "messy" region. Thus, the parameter-space

diagram shown in figure 5.5 would get transformed into the parameter space shown in

Figure 5.6. After all the blemish points have been converted to "M," the Interpreter

grows regions of uniform behavior once again. The result is the lumping together of

points exhibiting qualitatively similar behavior. Notice how the messy region is now

treated as a large, single region rather than many small regions.

The justification for categorizing these blemishes into a single region is as follows. An

investigator examining the behavior of this nonlinear, electrical circuit would notice that

there is a large region of first-order subharmonics at the lower frequencies, a large region

of second-order subharmouics at the higher frequencies, a large region of chaos in the

middle frequencies, and another region of very messy behavior at the lower frequencies

and amplitudes. The details of this last region are not as crucial as the fact that the

general behavior in the region is messy. In addition, from the practical point of view,

identifying the different boundary types for each tiny blemish can be a tedious process.

Instead, it is preferable to identify, in some rough, approximate sense, the large regions

of uniform behavior and then to compute the boundary type for each.

5.2.2 Detecting bifurcation curves that border the regions of uniform
behavior

At this point, the high-level interpreter has finished identifying the large regions of

uniform behavior. The next task is to detect, for each region of uniform behavior, the

bifurcation curves that border the region. In other words, we want to be able to say

the region of chaos in figure 5.1 is bounded on one side by a C-1 bifurcation curve and

on the other side by a C-2 bifurcation curve. To be able to make such a statement, the

interpreter must first locate the edges of the regions in the parameter space.

Once again I have leveraged off of a computer vision technique called binarization to
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A [VJ

6.5V 1 1111111111111112222222222222222
6.26V 1 1111111111111112222222222222222
6.V 1 1111111111111111122222222222222
5.75V 1 1111111111111111.22222222222222
5.5V I1111111111111111-.2222222222222 KEY:
5.25V I11111111l111111.. .2222222222222
6.V I1111111111111..2222222222222 1 u lot order subharmonic
4.76V I 111111........2222222222 2 a 2nd order subharmonic
4.SV I111111111111 ..........222222222 N - messy behavior
4.25V I11111111111 ............22222222 .a chaotic
4.V I111111111MN............22222222
3.76V I111111111N .........22222222222
3.6V I111111111104.............222222
3.25V I111111111004.............222222
3.V I1111111NMMM .............. 22222
2.76V I111111MK0004..............22222
2.5V I111111000004...............2222
2.25V I11111000004K...............2222
2.V I111MK0K0K0004...............222
1.76V I1KKW 1100000...............222
1.SV I 110000000000................22

-- I -------- I -------- I -------- 1-->f EkhzJ
40 60 60 70

Figure 5.6: Parameter Space Diagram with Messy Region Indicated by "M."
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A EV)

6.5V M111111111111110000000000000000

6.2SV 1111111111111110000000000000000

6.V 1111111111111111100000000000000
S.7SV 1111111111111111000000000000000
5.5V 11111I1111111000000000000000
5.25V 1 1111111111111110000000000000000

S.V 1 1111111111111000000000000000000
4.75V 1 1111111111111000000000000000000

4.6V 1111111111110000000000000000000
4.25V 1111111111100000000000000000000

4. V 1111111111000000000000000000000
3.7SV 1111111111000000000000000000000
3.6V 1111111110000000000000000000000

3.25V 1111111100000000000000000000000
3.V 1111111000000000000000000000000

2.75V 1111110000000000000000000000000
2.SV 1111100000000000000000000000000

2.25V 1111000000000000000000000000000
2.V 1110o0000000000000000000000oo
1.75V 1100000000000000000000000000000
i. SV 1000000000000000000000000000000

--I ------- I ------- I ------- I--> f Ekhz)
40 50 60 70

Figure 5.7: Binarized parameter-space diagram for the region of first-order subharmonics.

facilitate in edge detection[Hor86]. The strategy is as follows. Take a single region of

uniform behavior and convert all points within this region to l's and all other points to

O's. Next, scan the parameter space for 1 -- 0 or 0 --, 1 transitions. Any time you come

across such a transition, record that point as an edge point. Also note the behavior of

the adjoining point that caused this point to be an edge point. For example, referring

again to figure 5.1, suppose we decide to binarize the region of first order subharmonics

first. The result of binarizing the parameter space graph would produce a new graph as

shown in figure 5.7.

We next scan the space in figure 5.7 searching for 1 -+ 0 transitions. Scanning the

top row, we encounter our first 1 --+ 0 transition as the frequency is increased from 54000
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hertz to 55000 hertz. Upon detecting this edge point, the interpreter records the point

at 54000 hertz and 6.5 volts as an edge point and notices that the eastern point caused

this point to be classified as an edge point. The program then looks up the behavior

of this eastern point by referring to the original, unbinarized parameter space graph,

notices it is a second-order subharmonic and records the behavior along with the edge

point. Noting the behavior of the boundary-causing point is important because it allows

the high-level interpreter to identify the boundary type.

In general, binarizing each region of uniform behavior has the advantage of simplifying

the process of edge detection. The high-level interpreter need only search for 1 --+ 0 or

0 -4 1 transitions. Once all the boundary points and the behaviors of the edge-causing

neighbors have been recorded, we are left with a data structure containing a summary

of all the boundary types of a region. Figure 5.8 illustrates the contents of a sample

boundary data structure.

The particular example given in figure 5.8 came from the parameter-space graph

shown in figure 5.1. Notice how the data structure accurately describes the behavior in

the the parameter space. It says the region of first-order subharmonic, labelled "RI," is

bounded by three types of regions: chaotic, messy, and second-order subharmonic. The

region of messy behavior, labelled "R2," is bounded by two types of regions: chaotic, and

first-order subharmonic. The region of chaotic behavior, labelled "R3," is bounded by

three types of regions: messy, second-order subharmonic, and first-order subharmonic.

And, the region of second-order subharmonic, labelled "R4," is bounded by two types

of regions: chaotic and first-order subharmonic. Once the high-level interpreter has

this data structure, generating the second paragraph of the textual explanation, which

describes the bifurcation curves that border each region of uniform behavior, becomes

straightforward.

5.3 Recognizing Typical Patterns in the Parameter Space

Finally, the purpose of the last paragraph of the textual explanation is to recognize

and describe any interesting patterns observed in the parameter space, such as period-

doubling cascades or period-adding cascades. As shown in figure 5.3, the two inputs
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Specific Example:

(((SUBHARMONIC I "RI")
((MESSY "R2") (CHAOTIC "R3") (SUDHARMONIC 2 "M)))
((MESSY "R2")
((CHAOTIC "R31) (SUBHARMONIC 1 "Ri")))
((CHAOTIC "311)

((MESSY "R2") (SUBHARMONIC 2 "R4") (SUBHARMONIC I "R1")))
((SUBHARMONIC 2 "R4")

((CHAOTIC "R3") (SUBRARMONIC I "R")

General Format:

( <region-A>
( <bordering region Al> (bordering region A2>... (bordering region AN>)

<region-B>
C( bordering region Bl> <bordering region B2>... (bordering region BN>)

<region-Z>
( (bordering region Zl> (bordering region Z2>... (bordering region ZN>))

Figure 5.8: Boundary Representation Data Structure returned by High-Level Interpreter.
Notice how the regions are numbered 'R" to "RN" to distinguish among multiple regions
with the same kind of behavior.
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to this module are: 1) the boundary representation data structure computed using the

method outlined in the previous section, and 2) general knowledge about nonlinear dy-

namics. Given these two pieces of information, the high-level interpreter has enough

information to identify and explain any interesting patterns. As an example, the pro-

gram searches for a period doubling by tracing through the boundary data structure

searching for the pattern 1 -+ 2 --+ 4 -1 8 -+ 16 - ... -+ chaos. In reality, the inter-

preter does not actually trace through the full 1 - 2 --+ 4 --* 8 --+ 16 ---. ... - chaos

sequence. Instead, if it can successfully trace through four contiguous regions where the

subharmonic order of the current region is twice the order of the previous region, then

the interpreter declares the existence of a period-doubling cascade.

To expand the knowledge base of the interpreter, simply add new procedures to

the high-level interpreter module. Each procedure must, of course, search out a given

pattern such as 1 --+ 2 -- 4 -- 8 - 16 - ... -- chaos for the period-doubling route

to chaos, 1 --* 2 -+ 3 -+ 4 --- 5 -- ... -+ chaos for the period-adding route to chaos,

and periodic - chaotic - periodic -- chaotic -- periodic --* chaotic -+ -periodic ... for

the alternating periodic-chaotic sequence. A particularly interesting route to chaos is

called intermittency. To recognize an intermittent sequence to chaos, see if the system

undergoes a transition from periodic behavior to chaotic behavior with occasional bursts

of noise. Initially there should be long intervals of periodic behavior between short bursts

of noise, but with increasing time the intervals between the bursts decrease; it becomes

more and more difficult and finally impossible to recognize the regular oscillations of the

periodic state[TS86].

5.4 Symbolic description

Finally, after producing the parameter-space diagram and the accompanying high-level

text explanation, the program returns a symbolic summary of the circuit's behavior. Re-

call from chapter 1 that the symbolic descriptor may be pased on to another procedure

for further analysis of the circuit's behavior. The other program might be interested in

searching for more complicated patterns such as saddle-node bifurcations, flip bifurca-

tions, or Hopf bifurcations[TS86]. Or the other program may be interested in locating
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the regions of instability so as to advise the user to avoid operating the device in those

regions. At any rate, figure 5.9 provides an abridged example of the symbolic descriptor

generated by the program from the parameter-space graph shown in figure 5.1.
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Specific Example:

($(((CHAOTIC) ;; first region of uniform behavior

(((VOLTAGE 1) (DRIVE-FREQUENCY 57000)) ;; pts. in chaotic region

((VOLTAGE 4) (DRIVE-FREQUENCY 56000))

((VOLTAGE 1) (DRIVE-FREQUENCY 5O000))))
((SUBHARMONIC 2) ;; second region of uniform behavior

(((VOLTAGE 2) (DRIVE-FREQUENCY 68000)) ;; pts. in subharm 2 region

((VOLTAGE 2) (DRIVE-FREQUENCY 69000))
((VOLTAGE 1) (DRIVE-FREQUENCY 69000))))

((SUBHARMONIC 5) (((VOLTAGE 3) (DRIVE-FREQUENCY 56000))))
((SUBHARMONIC 7) (((VOLTAGE 3) (DRIVE-FREQUENCY 59000))))

((SUBLARMONIC t)
(((VOLTAGE 5) (DRIVE-FREQUENCY 51000))
((VOLTAGE S) (DRIVE-FREQUENCY SO000))
((VOLTAGE 4) (DRIVE-FREQUENCY 50000))))

((SUIBHARMONIC 9) (((VOLTAGE 4) (DRIVE-FREQUENCY 59000)))) )

(((SUBHARMONIC I "RI") ;; boundary representation
((MESSY "R2") (CHAOTIC "R3") (SUBRARNONIC 2 "R4")))

((MESSY "R2")
((CHAOTIC "R3") (SUBHARNONIC 1 "Ri")))

((CHAOTIC "R3")

((MESSY "R2") (SUBHARMONIC 2 "R4") (SUBHARMONIC I "Ri")))
((SUBHARMNOIC 2 "R4")
((CHAOTIC "R3") (SUBHARMONIC 1 "RI")))) )

Figure 5.9: Sample symbolic description returned by the program. The first part of the

symbolic descriptor describes the lumped regions of uniform behavior, while the second
part provides information concerning the boundary representation.
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Chapter 6

Conclusion

This thesis describes the design and implementation of a system that automatically

measures and classifies the behavior of driven, nonlinear circuits and generates high-

level, qualitative interpretations of their behaviors. In the concluding chapter, I would

like to focus on the contributions and future work of this thesis.

6.1 Contributions of Thesis

6.1.1 Valuable Tool for Experimental Dynamicists and Other Investi-
gators

At present the analyzer program is still at an early stage of development. It has only been

tested on a few sample circuits - the forced negative-resistance oscillator circuit[UA81],

the series RLC circuit, and the devil's staircase circuit[KKC]. However, the results look

promising. The analyzer program, along with the signal-processing module, the commu-

nication module, the measurement instruments, and the observation equipment provide

a valuable tool for experimental dynamicists and other scientists studying the behav-

ior of complex, nonlinear, electrical circuits. As mentioned in chapter 1, this system

automates much of the time-consuming and tedious task of exploring the behavior of

dynamical systems. Typically, in order to characterize the behavior of a nonlinear cir-

cuit, the investigator must select interesting parameter values with which to drive the

circuit, measure the response, run a number of numerical computations (e.g. fast Fourier
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transforms, autocorrelations and chirp z-transforms to help identify the behavior of the

signal), and interpret the results. The results of these numeric computations are usually

in the form of massive amounts of numerical data. Although the computer is very good

at performing numeric computations, it is not very good at interpreting its qualitative

content. Thus, it is largely up to the investigator to scan through the reams of data

searching for relevant and important information. To have the analyzer program not

only automatically set up and run the experiment, but produce a high-level qualitative

description of the circuit's behavior, clearly facilitates the task of the investigator. As

mentioned previously, these high-level, qualitative descriptions are typically what an in-

vestigator or experimental dynamicist is interested in. In fact, one of the aims of this

project is to develop programs that can automatically generate descriptions of nonlinear

dynamical systems similar to those found in published papers[AS87]. The content of the

text from the high-level interpreter is based upon articles from the literature.

6.1.2 Integration of instrument environment with a high-level pro-
gramming language and environment

This issue was touched upon briefly in chapter 2, but it is worth mentioning again here.

The system provides a nice integration of the Scheme environment with the instrument

environment. The advantage of such a combination is that it affords the investigator the

flexibility of working in the Scheme environment, including such software packages as

the signal-processing library, while also allowing access to a set of powerful measurement

instruments.

Another advantage of intv,7ating the Scheme environment with the instrument envi-

ronment is that it hides from the user the low-level details of how to communicate with

and operate each instrument. This may not seem like a very large advantage if you only

have one or two instruments to use. However, if you need to use many instruments,i each

of which has a whole different sequence of buttons to press to achieve the desired effect,

you begin to appreciate a program which encapsulates this information. In our system,

the communication module (refer to figure 2.3 of chapter 2) provides a nice interface be-

'The system for this thesim used six different instruments to explore the behavior of these nonlinear
electrical circuits.
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tween user and instruments. Thus, to perform a simple task like record-a-signal, the

user need not open the owner's manual and start reading about the two-million-and-one

options on the waveform recorder. Instead, the analyzer program automatically knows

how to select the appropriate parameter values for optimal operation of the instrument,

and the communication module can send the appropriate, cryptic HP-IB command to

the instrument for the desired result. This saves the user a great deal of time and grief,

especially as the number of instruments used in the system increases.

Finally, as mentioned in chapter 1, the integration of sophisticated measurement in-

struments with powerful numerical packages and software programs, which interpret the

results of physical measurements and numeric computations, suggests new possibilities

for test and measurement. No longer are scientists limited to low-level, control-the-volt-

meter type commands. They now have access to more powerful, more intelligent tools,

capable of generating such high-level statements as, "The forced negative-resistance os-

cillator undergoes a period doubling cascade as the driving frequency is increased from

26 khz to 78 khz while the amplitude is fixed at 5.25 volts."

6.2 Future Work

The Analyzer Program in combination with the rest of this system is a complex system.

No doubt modifications and additions will be made to the system as it is tested on a

greater number of nonlinear electrical circuits. However, I view this implementation as

a successful first prototype. With regard to future work, I see several possibilities.

One possible improvement to the system would be to increase the sophistication of

the pattern recognizer in the high-level interpreter so it can recognize more sequences

than it currently does. At present, th( pattern recognizer is still at a fairly early stage of

development and can only identify a few patterns. However, as we include more knowl-

edge about common dequences in nonlinear dynamics, we can increase the number and

complexity of patterns the high-level interpreter can recognize. Chapter 17 of Thompson

and Stewart(TS861 provides a catalog of additional patterns we may wish to include in

our knowledge base such as intermittency, the U sequence, alternating periodic-chaotic

sequence, etc.
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In addition to including more patterns in the knowledge base, we may wish to take ad-

vantage of Feigenbaum's universal number when searching for period-doubling cascades.

M. J. Feigenbaum discovered a universal solution common to all systems undergoing

period doubling. For a given system, if we denote by An the value of the parameter at

which its period doubles for the nth time, Feigenbaum's discovery can be summarized

by the equation

6n=An+1 -- An

An+2 - An+1

where 6, = 6 and 6 = 4.6692016... for large n[TS86, Fei83]. Thus, if we know the

parameter values at which the period doubled the previous two times, we can predict,

approximately, the parameter value at which the period will double for the third time.

Another improvement to the system might be to include a feedback loop. The ana-

lyzer program, after performing a first pass analysis on a given region, should be able to

automatically zoom in on regions of interest. For example, if the high-level interpreter

sees a 1 --+ 2 - 4 --+ 16 --- 32 -- ... -+ chaos sequence, the program should zoom

into the region between the 4th-order subharmonic and the 16th-order subharmonic to

search for the missing 8th-order subharmonic. In so doing, the program behaves in a

more intelligent manner because it has some idea of what it is looking for; and if the

program doesn't find it, it looks more closely for the missing link.

In addition to augmenting the knowledge base and including a feedback loop, the

use of the autocorrelation technique to help distinguish between quasiperiodicity and

chaos needs to be explored. As mentioned in chapter 4, the use of this technique looks

promising. However, the details of implementation have yet to be worked out.

For nonlinear systems, different initial conditions can lead to different steady state

behaviors. Thus, to obtain truly reproducible parameter-space graphs, we need to ini-

tialize the state variables of the nonlinear circuit to the same state each time. The best

way to implement this is by adding additional hardware to the circuit. In the case of

Ueda's forced negative-resistance osciallator, for example, we might want add circuitry

that automatically shorts out the capacitor and inductor prior to each test run.

A final suggestion about improvements to the system would be to have the resolver

module use knowledge about commonly recognized patterns, such as the period doubling
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cascade, to resolve conflicts between the conclusion of the time-signal analyzer and the

power-spectrum analyzer. For example, if a period doubling cascade is unfolding in a

given region, this piece of information may help the resolver categorize the behavior of

a point within the region.
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