
* 11fl #Lt
UNCLASSIFIED

SECUPIVIN CLASSIfICA'O0 Of I"IS PAC5E (W en Data fntere___

AD-A210 883 NIATION PAGE:
12. GOV1 ACCESS1Uh N'- 3 RECIPIEi CAAOc. hu i.k

-. S S. . *1 . TYPE Of ItEP)R7 & PO COVERED

Ada Compiler Validation Sumary Report:TA A 12 Apr. 198'. tc' 12 Apr. 2990
LABORATORIES INCORPORATED, TARTAN ADA Sun!Sun, k'crsion 2.i,
Sun 3/60 (Host and Target), 89041211.10042 f. PERFORMAIW R. REPOI WM-EiR

7. AuTNOR) . CONdTRACT o &RANT NULBER(s)

IABG,
Ottobrunn, Federal Republic of Germany

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROG'RA ELEMENT. PRCjET. TASK
AREA & WORK U;1 MO4ERS

IABG,
Ottobrunn, Federal Republic of Germany

12. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORI DATE
Ada Joint Program Office
United States Department of Defense 13 Put Ut F.%
Washington, DC 2 301-3081

14. MONITOR;NG AGENCY NAML & ADDRESS(I different from Controlling Office) 15. SECURITI CLASS (of this ,epon)
UNCLASSIFIED

IABG, 16*. i

Ottobrunn, Federal Republic of Germany N/A

16. DISTRIBUTION STATEMENT (ofthaReport)

Approved for public release; distribution unlimited.

17. DLSTRIB 01ON STATEMI.NT (of the ebfr$ct ente,edin Block 2C If O,tferen (forn Report)

UNCLASSIFIED U

is. SUPPEMENIARN NOTES AU 07~ 1369 :L

19. KEYWDRDS (Continue on reverse sid ,fnecessary end identif by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/FMIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRAC T (Continue on reve, rse side if necesser end identof) by block number)

TARTAN LABORATORIES INCORPORATED, TARTAN ADA Sun/Sun, Version 2.i,IABG, Ottobrunn W. Ger any

SUN 3/60 under SUN OS, Version 3.5 (Host and Target), ACVC 1.10

0161

DD u 1473 [i; -O, Or I ,. .

AVF Control Number: AVF-IABG-027

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 89041211.10082
TARTAN LABORATORIES INCORPORATED
TARTAN ADA Sun/Sun Version 2.1

Sun 3/60 Host and Target

Completion of On-Site Testing:
:2 April 1989

Prepared By:
IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

Accesion F~r

Prepared For: NTIS CRA&i
Ada Joint Program Office bFIC TAB 0

United States Department of Defense U:,anno,,o< 1d
Washington DC 20301-3081 J.i.,

By

Oi ibLuti0o
/ . Aval,-bi! ty Codes

' , Dit A , d for
• '" ',Cidi

Adoa Cpi Validation Summary Report:

Compiler Name: TARTAU ASA Sun/Sun Version 2.1

Certificate Nuber: Zo4:... 32

Host: SUIT 3/60 under SUIT OS Version 3.5

Target: SUN 3/60 under SUN OS Version 3.5

Testing Completed 12 April 199 Using ACVC 1.10

This report has been reviewed and is approved.

Dr. S.Neibrunner
IABG mbH, Abt SZT
Einsteinstr 20

D8012 Ottobrunn
West Germany

Ada Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

Ada Compiler Validation Summary Report:

Compiler Name: TARTAN ADA Sun/Sun Version 2.1

Certificate Number: 89041.2I1.10082

Host: SUN 3/60 under SUN OS Version 3.5

Target: SUN 3/60 under SUN OS Version 3.5

Testing Completed 12 April 1989 Using ACVC 1.10

This report has been reviewed and is approved.

LL
Dr. S Heilbrunner
IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

Ada Validation Organiza
Dr. John F. Kramer
Institute for Defense Analy-
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
1.3 REFERENCES 3
1.4 DEFINITION OF TERMS 3
1.5 ACVC TEST CLASSES 4

CHAPTER 2 CONFIGURATION INFORMATION 7

2.1 CONFIGURATION TESTED 7
2.2 IMPLEMENTATION CHARACTERISTICS 8

CHAPTER 3 TEST INFORMATION14

3.1 TEST RESULTS14
3.2 SUMMARY OF TEST RESULTS BY CLASS14
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 15
3.4 WITHDRAWN TESTS 15
3.5 INAPPLICABLE TESTS 15
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 19
3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation 20
3.7.2 Test Method20
3.7.3 Test Site21

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX D COMPILER AND LINKER OPTIONS

1-T PC)DUC T?:

CHAPTEF: 1

INTRODUCTI ON1

j /

This Validation Summary Report -VSR ' describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-l185A.
This report explains all technical terms used within it and thoroughly
reports the results of -testing this compiler using the Ada Compiler
Validation Capability , (ACVC)c, An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information ii. this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

IP'TRODUCTION;

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by IABG mbH, Abt SZT according tc
procedures established by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO). On-site testing was completed 12
April 1989 at IABG mbH, Ottobrunn.

1.2 USE OF THIS VALIDATION SU1MARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

I1:7RODUCTIOTr

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 19&3 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Prograr Office, i January 1907.

3. Ada Compiler Validation Capability Imrplementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/NIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

IrTRCDUCT:OT:

Inapplicable An ACVC test that uses features of the .anguace that a
test compiler is not requlred to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated h- the

compiler.

Test A progran. that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity tc the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Ciass B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A t ensure thc successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
timE. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile timne and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

4

I1:TRODUCTIO0"

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a coTiler.
Since there ait no capacity requirements placed on a compiler by the Aca
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a cor.piler
may refuse to compile a Class D test and still be a conforming zompier.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity funcLions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHEC}:_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
tests. However, some tests contain values that require the test to be

customized according to implementation-specific values--for example, an
JIlegal file name. A list of the values used for this validation is
provided ip Appendix C.

A corriler rust correctly process each of the tests in the suite and
dem, iicrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable tc
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable _Jr a
subsequent validation. Any test that was determined to contain an illegal
anguage construct or an erroneous language construct is withdrawn from the

ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

CONFIGUR;T:O: I11FOR!:ATIO:

CHAPTET 2

CONFIGURTOI: IINFO!IMTI0N

2.1 CONFIGURATION TESTED

The candidate corpilation system for this validation was tested under the
following configuration:

Compiler: TARTAN ADA Sun/Sun Version 2.2

ACVC Version: 1.10

Certificate Number: E9041211.10082

Host Computer:

Machine: SUN 3/60

Operating System: SUN OS Version 3.5

Iemory Size: 8 IB

Target Computer:

Machine: SUN 3/6C

Operating System: SUN OS Version 3.5

Memory Size: 8 ,B

cONr:GURATION: Ir;FOR!:ATIO:

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. C2ass D and E tests specifically check for such implerentatior.
differences. However, tests in other classes also character:ze at.
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes a compila':ion containing
723 variables in the same declarative part. (See test
D29002K.)

2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

1) This implementation supports the additional predefined types
SHORTINTEGER, BYTEINTEGER, and LONGFLOAT in the package
STANDARD. (See tests B86001T..Z [7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the tine at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) None of the default initialization expressions for record
components are evaluated before any value is
checked for membership in a component's subtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

CONFIGURATION II1FORMATION

3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test C35903A.)

4) NUIIERICERROR is raised for predefined and largest integer and
no exception is raised for smallest integer when an integer
literal operand in a comparison or membership test is outside
the ra:%ze of the base type. (See test C45232A.)

10o exception is raised when a literal operand in a fixed-
point comparison or membership test is outside the range of
the base type. (See test C45252A.)

6) Underflow is gradual. (See tests C45524A..Z (26
tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to integer is round to even.
(See tests C46012A..Z (26 tests).)

2) The method used for rounding to longest integer is round
to even. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C4A014A.)

e. Array types.

An implemeutation is allowed to raise NUMERICERROR or
COTSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDAPD.INTEGER'LAST and/or SYSTE .MAXINT. For this
implementation:

1) Declaration of an array type or subtype declaration with more
than SYSTE!.KAXINT components raises NUJERICERROR for
one dimensional array types, two dimensional array types and
twc dimensional array subtypes, and no exception for one
dimensional array subtypes. (See test C36003A.)

2) NUMERICERROR is raised when an array type with
INTEGER'LAST + 2 components is declared. (See test
C36202A.)

CONFIGURATIOf: INFOR::A'TO?0

3) NUMERICERROR is raised when an array type w:th
SYSTE:.AXINT + 2 components is declared. (Set test
C36202B.)

4) A packed BOOLEAN array having a 'LENGTH exceeding ITEGEF'LAST
raises NU! ERIC ERROR when the array type is declared. (See
test C52103X.)

5) A packed two-dinensiornal BOOLEAN array with more than
h?1TEGEF'LAST components raises FU!ERIC_E;RO. when the array
type is declared and exceeds INTEGER'LAST. (See test
C52]04Y.)

6) In assigning one-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See cest Z52013A.)

7) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

8) A null array with one dimension of length greater
than INTEGER'LAST may raise NUKlERIC_EFROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an implemen-
tation may accept the declaration. However, lengths must
mz;tch in array slice assignments. This implementation raises
NUERICERROR when the array type is declared. (See
test E52103Y.)

f. Discriminated types.

1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)"

2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

CONFIGURA'TIOTN I!FOR:.:Ar:TI

3) CONSTRAINT ERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtype. (See test
E43211B.)

h. Pragmas.

1) The pragma INLINE is supported for functions and
procedures but not when applied across compilation units.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

i. Generics.

This compiler enforces the following two rules concerning
declarations and proper bodies which are individual compilation
units:

o generic bodies must be compiled and completed before their
instantiation.

o recompilation of a generic body or any of its transitive
subunits makes all units obsolete which instatiate that
generic body.

These rules are enforced whether the compilation units are in
separate compilation files or not. A1408 and A1506 allow this
behaviour.

1) Generic specifications and bodies can be compiled
in separate compilations. (See tests CAI012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CA1O12A and
CA2009F.)

3) Generic library subprogram specifications and bodies be
compiled in separate compilations. (See test
CAlO12A.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

i!

CONFIGURATIOV II:FOR!,;.:TO

6) Generic unit bodies and their subunits can be
compiled ii, separate compilations. (See test CA3OIIA.)

7) Generic package declarations and bodies can be
compiled ir separate compilations. (See tests C12009C,
5C3204C, and BC32O5D.)

$) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests
BC3204C and BC3205D.)

9) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3011A.)

j. Input and output.

1) The package SEQUENTIAL_1O cannot be instantiated with
unconstrained array types or record types with
discriminants without defaults. (See tests AE2101C, EE2201D,
and EE2201E.)

2) The package DIRECT 10 cannot be instantiateZ with
unconstrained array types or record types with
discriminants without defaults. (See tests AE2101H, EE2401D,
and EE240IG.)

3) Modes IN FILE and OUT FILE are supported for SEQUENTIALJIO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

4) Nodes INFILE, OUTFILE, and INOUTFILE are supported for
DIRECT_10. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2l02T, and CE2102V.)

5) Modes IN FILE and OUT-FILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

6) RESET and DELETE operations are supported for
SEQUENTIAL_10. (See tests CE2102G and CE2102X.)

7) RESET and DELETE operations are supported for DIRECT_10.
(See tests CE2102K and CE2102Y.)

8) RESET and DELETE operations are supported for text
files. (See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

9) Overwriting to a sequential file truncates to the last
element written. (See test CE2208B.)

C31[FI GUJFA1O1: IITFOR!2ATIc*1

10) Temporary sequential files are given namer and
deleted when closed. (See test CE21OSA.)

11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

12) Temporary text files arE given na.es and deleted
when closed. (See test CE3112A.)

13) Nore than one internal file can be associated with
each external file for sequential files vhen wviting or
reading. (See tests CE2107A..E (5 tests), CE2102L, CE2110B,
and CE2111D.)

14) More than one internal file can be associated with
each external file for direct files when writing or reading.
(See tests CE2107F..H (3 tests), CE2110D and CE2111H.)

15) More than one internal file can be associated with
each external file for text files when reading only or when
writing only. (See tests CE3111A..E (5 tests), CE3114B, and
CE3115A.)

TEST I:FOR!:.IT O:

CHAPTER 3

TEST INFOREATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. Vhen this compiler was
tested, 43 tests had been withdrawn because of test errors. The AVF
determined that 290 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported by the implementation. Modifications to the code,
processing, or grading for 81 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMM:ARY OF TEST RESULTS BY CLASS
RESULT TEST CLASS TOTAL

A B C D E L

Passed 127 1132 2042 17 22 44 3384

Inapplicable 2 6 274 0 6 2 290

Withdrawn 1 2 34 0 6 0 43

TOTAL 130 1140 2350 17 34 46 3717

TEST II:FORr:ATIOI:

3.3 SUMINAFY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 1: 14

Passed 19E 577 553 245 172 9. 161 333 127 36 252 339 292 3384

14 72 12 3 0 0 5 0 0 0 0 30 29 290

Wdrn 1 ! C 0 0 0 0 1 0 C 1 35 4 43

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A39005G B97102E BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84N
CD2A84F, CD5011O CD2B15C CD7205C CP2DIB CD5007B
ED7004B ED7005C ED7005D ED7006C ED7006D CD7105A
CD7203B CD7204B CD7205D CE2107I CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
atterpt. For this validation attempt, 290 tests were inapplicable for
the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM. IIAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

TEST IIFOR!,:;7'O1:

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C4E321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (2.5 tests)
C45641L..Y (14 tests) C46012L..Z (15 testr)

b. C35702A and B86001T are not applicable because this irplementation
supports no predefined type SHORT_FLOAT.

c. The following 16 tests art not applicable because thai
implementation does not support a predefined type LONGI11TEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55BO9C B86001V
CD7101F

d. C86001F is not applicable because, for this implementation, the
package TEXT 10 is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXT_10, and
hence package REPORT, obsolete.

e. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

f. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG-FLOAT, or SHORTFLOAT.

g. CA2009A, CA2009C, CA2009F and CA2009D are not applicable because
this compiler creates dependancies between generic bodies, and
units that instantiate them (see section i.2i for rules and
restrictions concerning generics).

h. LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma
INLINE when applied across compilation units (See Appendix F of
the Ada Standard in Appendix B of this report, a-id Section 2.2.h
(1)).

i. CD1009C and CD2A41A..J (10 tests) are not applicable because this
implementation imposes restrictions on 'SIZE length clauses for
floating point types.

j. CD2A61I is not applicable because this implementation imposes
restrictions on 'SIZE length clauses for array types.

k. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation imposes restrictions on 'SIZE length
clauses for access types.

9..

TEST IFFOR!,:ATION

1. CD2A91A..E (5 tests) are not applicable because 'SIZE length
clauses for task types are not supported.

.. CD2BllG is not applicable because 'STORAGE SIZE representation
clauses are not supported for access types where the designated
type is a task type.

n. CD2Bl5B is not applicable because a collection size larger than
the size specified was allocated.

o. AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL_10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

p. AE210IH, EE2401D, and EE240IG use instantiations of package
DIRECT_1O with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

q. CE2102D is inapplicable because this implementation supports
CREATE with IN-FILE mode for SEQUENTIALIO.

r. CE2102E is inapplicable because this implementation supports
CREATE with OUTFILE mode for SEQUENTIALIO.

s. CE2102F is inapplicable because this implementation supports
CREATE with INOUTFILE mode for DIRECT_10.

t. CE2102I is inapplicable because this implementation supports
CREATE with IN-FILE mode for DIRECT_1O.

u. CE2102J is inapplicable because this implementation supports
CREATE with OUT-FILE mode for DIRECTIO.

v. CE2102N is inapplicable because this implementation supports OPEN
with INFILE mode for SEQUENTIALIO.

w. CE21020 is inapplicable because this implementation supports RESET
with INFILE mode for SEQUENTIALIO.

x. CE2102P is inapplicable because this implementation supports OPEN
with OUT-FILE mode for SEQUENTIALIO.

y. CE2102Q is inapplicable because this implementation supports RESET
with OUT FILE mode for SEQUENTIALIO.

z. CE2102R is inapplicable because this implementation supports OPEN
with INOUTFILE mode for DIRECTIO.

27

TEST INFOR.,T01-

aa. CE21C2S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIRECT_IC.

ab. CE2:C2T is inapplicable because this implementation supports OPEN
with IL'F:LE mode for DIRECT_10.

ac. CE2C2U is inapvlicable because this implementation supports RESET
with INFILE mode for DIRECT_IO.

ad. CE2!02V is inapplicable because this implementation supports OPEN
with OUTFILE mode for DIRECT 10.

ae. CE2102W is inapplicable because this implementation supports RESET
with OUTFILE mode for DIRECTIO.

af. CE3102E is inapplicable because text file CREATE with IN_FILE mode
is supported by this implementation.

ag. CE3102F is inapplicable because text file RESET is supported by
this implementation.

ah. CE3102G is inapplicable because text file deletion of an external
file is supported by this implementation.

ai. CE3102I is inapplicable because text file CREATE with OUT-FILE
mode is supported by this implementation.

aj. CE3102J is inapplicable because text file OPEN with IN_FILE mode
is supported by this implementation.

ak. CE3102K is inapplicable because text file OPEN with OUTFILE mode
is no: supported by this implementation.

al. CE31.1B and CE3115A open two internal files, both of which
correspond to the same external file. The tests PUT a string to
the first internal file, and then try to read this string from the
second internal file.

This implementation raises ENDERROR upon executing the GET
statement because of the use of buffers which are not flushed
until the output of a line of page terminator. Due to LRM 14.1
(13), the AVO ruled these tests not applicable.

iA

TEST INFOR::ATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modificat:ons of code,
processing, or evaluation in order to compensate for lec:tinate
implementation behavior. !Yodifications are made by the AVF 1n cases w:Jere
legitimate implementation behavior prevents the successful complet.1o of al.
(otherwise) applicable test. Examles of such modificat i:nE mncludE:
adding a length clause to alter the default size of a coilectio:.; st-tt:ic
a Class B test into subtests so that all errors arE detected; anC
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 81 tests.

a. The following tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B24007A B24009A B25002B B32201A B3400514
B34005T B34007H B35701A B36171A B36201A B37101A
B37102A B37201A B37202A B37203A B37302A B38003A
B38003B B38008A B38008B B38009A B38009B B38103A
B38103B B38103C B38103D B38103E B43202C B44002A
B48002A B48002B B48002D B48002E B48002G B48003E
B49003A B49005A B49006A B49007A B49009A B4AC1OC
B54A20A B54A25A B58002A B58002B B59001A B59001C
B59001I B62006C B67001A B67001B B67001C B67001D
B74103E B74104A B85007C B91005A B95003A B95007B
B95031A B95074E BC1002A BC11O9A BC1109C BC1206A
BC2001E BC3005B BC3009C BD5005B

b. For the two tests BC3204C and BC3205D, the compilation order was
changed to

BC3204C0, C!, C2, C3M, C4, C5, C6, C3M
and

BC3205DO, D2, DIM

respectively. This change was necessary because of the compiler's
rules for separately compiled generic units (see section 2.2i for
rules and restrictions concerning generics). When processed in
this order the expected error messages were produced for BC3204C3M
and BC3205D1M.

c. The two tests BC3204D and BC3205C consist of several compilation
units each. The compilation units for the main procedures are
near the beginning of the files. When processing these files
unchanged, a link error is reported instead of the expected
compiled generic units. Therefore, the compilation files were
modified by appending copies of the main procedures to the end of

TEST INFOR!ATIOT'

these files. When processed, the expected error messages were
generated by the compiler.

d. Tests C39005A, CD7004C, CD7005E and CD7006E wrongly presume an
order of elaboration of the library unit bodies. These tests were
modified to include a PRAGMA ELABORATE (REPORT)7

e. Test E28002B checks that predefined or unrecognized pragas may
have arcuments involving overloaded identifiers without enough
contextual imformation to resolve the overloading. It also checks
the correct processing of pragma LIST. For this implementation,
pragma LIST is only recognised if the compilation file is compiled
without errors or warnings. Hence, the test was modified to
demonstrate the correct processing of pragma LIST.

f. Tests C45524A and C45524B contain a check at line 136 that may
legitimately fail as repeated division may produce a quotient that
lies within the smallest safe interval. This check was modified
to include, after line 138, the text:

ELSIF VAL (= F'SAFESMALL THEN COMMENT ("UNDERFLOW SEEMS GRADUAL");

For this implementation, the required support package specification,
SPPRT13SP, was rewritten to provide constant values for the function names.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the TARTAN ADA Sun/Sun Version 2.1 compiler was submitted to the AVF
by the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the TARTAN ADA Sun/Sun Version 2.1 compiler using ACVC
Version 1.10 was conducted by IABG on the premises of IABG. The
configuration in which the testing was perforred is described by the
following designations of hardware and software components:

Host computer: SUN 3/60
Host operating system: SUN OS Version 3.5
Target computer: SUN 3/60
Target operating system: SUN OS Version 3.5
Compiler: TARTAN ADA Sun/Sun Version 2.1

The original ACVC distribution tape was loaded to a VAX 8350, where it was
customized to remove all withdrawn tests and tests requiring unsupported
floating point precisions. Tests that make use of implementation specific

TEST I:FOR::ATIOr

values were also customized. Tests requiring modifications during the
prevalidation testing were modified accordingly.

The customized ACV was then transfEred to the host computer via an
Ethernet connection.

After the test files were loaded tc dis:, the fui: set of tests was
compiled linked, anj all eXEcutabiE tests were run on the SUN
3160. Results were transfered vra an Eternet connection to a VAX 8350,
where they were evaluated and printed.

The compiler was tested using command scripts provided by TARTAN
LABORATORIES INCORPORATED and reviewed by the validation tean. The
compiler was tested using no option settings. All chapter B tests were
compiled with the listing option on (i.e. -La). The linker was called with
the command

alib link (testname>

A full list of compiler and linker options is given in Appendix E.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at IABG mbH, Ottobrunn and was completed on 12 April
1989.

DECLARATION: OF CO;FOR!:AI::r

APPENDIX A

DECLARATION OF CONFORMANCE

TARTAN LABORATORIES INCORPORATED has submitted the following
Declaration of Conformance concerning the TARTAN ADA Sun/Sun
Version 2.1 compiler.

DECLARATION OF CONFORMANCE

Compiler Implementor: Tartan Laboratories Incorporated
Ada Validation Facility: IABG mbH, Dept. SZT
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: Tartan Ada Sun/Sun Version 2.1
Host Architecture: Sun 3/60
Host OS and Version: Sun OS Version 3.5
Target Architecture: Sun 3/60
Target OS and Version: Sun OS Version 3.5

Implementor's Declaration

I, the undersigned, representing Tartan Laboratories Incorporated, have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler(s) listed in this declaration. I
declare that Tartan Laboratories Incorporated is the owner of record of
the Ada Language compiler(s) listed above and, as such, is responsible
for maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A.
All certificates and registrations for Ada Language compiler(s) listed
in this declaration shall be made only in the owner's corporate name.

_ ~Date:___________

.arma Laboratories Incorporated
D. L. Evans, President

Owner's Declaration

I, the undersigned, representing Tartan Laboratories Incorporated, take
full responsibility for implementation and maintenance of the Ada com-
piler(s) listed above, and agree to the public disclosure of the final
Validation Summary Report. I declare that all of the Ada Language
compilers listed, and their host/target performance, are in compliance
with the Ada Language Standard ANSI/MIL-STD-1815A.

____________________ Date:________
Tartn Laboratories Incorporated
D. L. Evans, President

A-a

APPEIM:x F OF THE Ada STANDARD

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies corres-
pond to implementation-dependent pragmas, to certain machine-
dependent conventions as mentioned in chapter 13 of the Ada Stan-
dard, and to certain allowed restrictions on representation
clauses. The implementation-dependent characteristics of the
TARTAN ADA Sun/Sun Version 2.1 compiler, as described in this
Appendix, are provided by TARTAN LABORATORIES INCORPORATED.
Unless specifically noted otherwise, references in this appendix
are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, are
contained in Appendix F.

6"-I

Chapter 5

Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F to Military Standard. Ada Programming Language.
ANSI/MIL-STD-1815A (American National Standards Institute, Inc., February 17. 1983).

5.1. PRAGMAS

5.1.1. Predefined Pragmas
This section summarizes the effects of and restrictions on predefined pragmas.

Access collections are not subject to automatic storage reclamation so pragma CONTROLLED has no effect.
Space deallocated by means of UNCHEC'.=EDDEALLOCATION will be reused by the allocation of new
objects.

• Pragmna ELABORATE is fully supported.
* Pragma ZNL:NE is supported but has an effect on the generated code only when the call appears within the

same compilation unit as the body of the in-lined subprogram.

" Pragma INTERFAC- is not supported. The implementation-defined pragma FOREIGV_BOD. (see, Sec.
tion 5.1.2.2) dan be used to interface to subprograms written in other languages.

* Pragma L:ST is supported but has the intended effect only if the command line option -La was supplied
for compilation, and the listing generated was not due to the presence of errors and/or warnings.

" Tartan compilers currently optimize both the time and space aspects based on what is best in the local
context. Future releases of the compiler will have option switches to decrease the level of sophistication of
the optimizations. Because it is generally very difficult to establish global time and space tradeoffs,
pragma OPTIMIZE cannot be effectively supported in the form suggested in the ILM.

* Pragma PACK is fully supported.

* Pragma PAGE is supported but has the intended effect only if the command line option -La was supplied
for compilation. and the listing generated was not due to the presence of errors and/or warnings.

* Pragma PRIORTY is fully supported.

* Pragma SUPPRESS is fully supported as required by Ada LRM 11.7.

* Futume releases of the compiler will support the following pragmas: MEMORYSIZE. SHARED,
STORAGEUNIT and SYSTEM NAME.

A warning message will be issued if an unsupported pragma is supplied.

5.12. Implementation-Defined Pragmas
Implementation-defined pragmas provided by Tartan are described in the following sections.

USER MANUAL FOR TARTA% ADA S.N

5.1.J.. Pragma LN:XKAG._NAME

The pragma L:NKAGE NAME associates an Ada entity with a sing that is meaningful externally; e.g.. to a
linkage editor. It takes the form

pragma L,:K.AGENAMPE (Ada.simpie-name. £trzng-consrant)

The Aaa-simple-name must be the name of an Ada entity declared in a package specification. This entity must be
one that has a runtme representation; e.g., a subprogram, exception or objecL It may not be a named number or
string constant. he pragma must appear after the declaration of the entity in the same package specification.

Th- effect of the pragma is to cause the string-consrant to be used in the generated assembly code as an
exter na name for the associated Ada entity. It is the responsibility of the user to guarantee that this string
constant is meaningful to the linkage editor and that no illegal linknamne clashes arise.

S..2 . Pragnw FORE:GN BOD'

A subprogram writen in another language can be called from an Ada program. Pragma FOREZ:GNBODY is
used to indicate that the body for a non-generic top-level package specification is provided in the form of an
object module. The bodies for several subprograms may be contained in one object module.

Use of the pragma FORE:GN BODY dictates that all subprograms, exceptions and objects in the package are
provided by means of a foreign object module. In order to successfully link a program including a foreign body,
the object module for that body must be provided to the library using the al.ib foreign command described
in Section 4.7.

The pragma is of the form:

pragma FORE:GNBODY (language name [, elaboraion-routzie-narel)

The parameter languagename is a string intended to allow the compiler to idenify the calling convention used
by the fo-eign module (but this functionality is not yet in operation). Curently. the programmer must ensure that
the calling convention and data representation of the foreign body procedures are compatible with those used by
the Tartan Ada compiler. Subprograms called by tasks should be reentranL

The optional elaboration routine name string argument provides a means to initialize the package. The
routine specified as the elaboraion rounine name, which will be called for the elaboration of this package body,
must be a global routine in the object module provided by the user.

A specification that uses this pragma may contain only subprogram declarations, object decarations that use
an unconstained type mark, and number declarations. Pragmas may also appear in the package. The type mark
for an object cannot be a task type, and the object declaration must not have an initial value expression. The
pragma must be given prior to any declarations within the package specification. If the pragma is not located
before the first declaration, or any restriction on the declarations is violated, the pragma is ignored and a warning
is generated.

The foreign body is entirely responsible for initializing objects declared in a package utilizing pragma
FORE:GN BODY. In particular, the user should be aware that the implicit initializations described in LRM 3.2.1
are not done by the compiler. (These implicit initializatons are associated with objects of access types, certain
record types and composite types containing components of the preceding kinds of types.)

Pragna L:NKAGE NAME should be used for all declarations in the package, including any declarations in a
nested package specification to be sure that there are no conflicting link names. If pragma LINKAGE. NAME is
not used. the cross-reference qualifier, -x, (see Section 3.2) should be used when invoking the compiler and the
resulting cross-reference table of inknrames inspected to identify the linknames assigned by the compiler and
determine that there are no conflicting linkanmes (see also Section 3.5).

In the following example, we want to call a function pimrn which computes polynomials and is written in C.

APP~C 'O TCNC-S,D- 815 A

package MATH FUNCS is
pragma FOREI:GN BODY c"")
function POLYNOMIAL 'X: :NTEGKR) return :NTEGER;

-- Ada spec match;..ng the C routine
pragma L:NKAGE NAME (POLYNOM:AL, "pin");

-- Force compiler to use name "piton" wnen referring to this
-- funct.ion

end MATHFUNCS;

with MATH FUNCS use MATH FUNCS
procedure MA:N is
X:iNTEGER :- POLYNOM:AL(IO);

-- Will generate a call to "plmn"
begin ...

end ,A:N;

To compile, link and run the above program, you do the following steps:

1. Compile MATH FUNCS

2. Compile MA:N

3. Obtain an object module (e.g. math. o) containing the compiled code for plmn.

4. Issue the command
alib foreign math funcs math.o

5. Issue the command
alib link main

Without Step 4, an attempt to link will produce an error message i..,orming you of a missing package body for
MATH_7UNCS.

Using an Ada body from another Ada program library. The user may compile a body written in Ada for a
specification into the library, regardless of the language specified in the p-agma contained in the specification.
This capability is useful for rapid prototyping, where an Ada package may serve to provide a simulated response
for the functionality that a foreign body may eventually produce. It also allows the user to replace a foreign body
with an Ada body without recompiling the specification.

The user can either compile an Ada body into the library, or use the command alib foreign (See Section
4.7) to use an Ada body from another library. The Ada body from another library must have been compiled
under an identical specification. The pragma .:NvAG-= A._kE must have been applied to all entities declared in
the specification. The only way to specify the linkname for the elaboration routine of an Ada body is with the
pragma FORE:GNBODY.

Using Calls to the Operating System. In some cases, the foreign code is actually supplied by the operating
system (in the case of system calls) or by runtime libraries for other progrmming languages such as C. Such
calls may be made using a dummy procedure to supply a file specification to the a2ib foreigncommand.
You need a dummy . o file which may be obtained in a number of ways. One way is to compile the procedure 4

procedure DUMMY is
begin

null;
end:

Then. use the library command

alib foreign pkg dunny.o
where pkg is the name of the package that contains the pragma LINKAGE_ NAME for the operating system call

For example to use the SunOS system call _sbrk in the program TEST:

USER MANUAL FOR TARTAN ADA SUN

Package MEMORY is
pragma FORE:GN BODY ("ASM");
procedure GET V-RTUAL MEMORY (MEM: TNTEGER);
pragma =NKAGENAME (GETVIRTUALMEMORY, "_sbrk ");

end MEMORY;

with MEMORY;
procedure TEST is

begin

GET VIRTUAL MEMORY(MEM);

end TEST;

Obtain the file dumny. o. Then use
alib foregign memory duimy.o

to include the body for the system call in the library.

5.2. IMPLEMENTA TION-DEPENDENT ATTRIBUTES
No implementation-dependent atributes are currently supported.

5.3. SPECIFICATION OF THE PACKAGE SYSTEM
The parameter values specified for the SUN in package system [LRLM 13.7.1 and Appendix C1 are:

package SYSTEM is
type ADDRESS is new INTEGER;
type NAME is (MC68000);
SYSTEM NAME : constant NAME :- MC68000;
STORAGEUNIT : constant :- 8;
MEMORY S:ZE : constant :-1 000 000;
.MAX_I.NT : constant :- 2_147483647;
M:N INT : constant :- -MAX INT - 1;
MAX_:GITS : constant := 15;

MAX .MA-NTISSA : constant :-31;
F:NE DELTA : constant :-2#1.0#e-31;
TICK : constant :- 0.01667;
subtype PRZOR:TY is INTEGER range 10 .. 200;
DEFAULT PRIORZTY : constant PRIORITY :- PRIORITY'TF:RST;
RUNT:ME ERROR : exception;

end SYSTEM

5.4. RESTRICTIONS ON REPRESENTATION CLAUSES
The following sections explain the basic restictions for representation specifications followed by additional

restictions applying to specific kinds of clauses.

5.4.1. Basic Restriction
The basic resuicuon on representation specifications (LLM 13.1] that they may be given only for types

declared in terms of a type definition, excluding a generic_ type definit.ion (LRM 12.1) and a
przvae_vtype_definition (LRM 7.4). Any representation clause in violation of these rules is not obeyed
by the compiler a diagnostic message is issued.

Further restictions are explained in the following sections. Any representation clauses violating those resuic-
tions are not obeyed but cause a diagnostic message to be issued.

APP- DIX F TO %..-S7D-i815A

-1.4.2. Length Clauses
Length, clauses rL.RLM 13.21 are, in general. supported. For details, refer to the following sections.

5.4.2.1. Size Specificaions for Types

The rules and resmctions for size specifications applied to types of various classes are described below.
The following principle rules apply:

1. The size is specified in bits and must be given by a static expression.

2. The specified size is taken as a mandate to store objects of the type in the given size wherever feasible.
No attempt is made to store values of the type in a smaller size, even if possible. The following rules
apply with regard to feasibility:

An object that is not a component of a composite object is allocated with a size and alignment that
is referable on the target machine: that is, no attempt is made to create objects of non-referable size
on the stack. If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object: for example

type My Enum is (A,B);
for My_enum'size use 1;
V,W: Myenum; -- will occupy two storage

-- units on the stack
-- (if allocated at all)

type rec is record
V,W: Myenum;

end record;
pragma Pack(re:):;
0: rec; -- wi.ll occupy one storage unit

* A formal parameter of the type is sized according to calling conventions rather than size
specifications of the type. Appropriate size conversions upon parameter passing take place
automatically and are transparent to the user.

' Adjacent bits to an object that is a component of a composite object. but whose size is
non-referable. may be affected by assignments to the object. unless these bits am occupied by ofhr
components of the composite object: that is, whenever possible, a component of non-referable size
is made referable.

In all cases, the compiler generates correct code for all operations on objects of the type, even if they arm
stored with differing representational size in different contexts.

Note: A size specification cannot be used to force a certain size in value operations of the type: for
example

type my int is range 0..65535:
for myi.nt'size use 16; -- o.k.
A,B: my int:

A + B... -- this operation will generally be
-- executed on 32-bit values

3. A size specification for a type specifies the size for objects of this type and of all its subtypes. For
components of composite types, whose subtype would allow a shorter representation of the component.
no attempt is made to take advantage of such shorter representations. In contast, for types without a
length clause, such components may be represented in a lesser number of bits than the number of bits
required to represent all values of the type. Thus, in the example

USER MA.L'UA" FOR TARTA2N ADA SL.N

ty pe MY :NT .s range 0.. 5
for MY -NT'S::"E use 16; -- (I)
subtype SMALL MY :NT is _ N' range 0..25.;
type R 1s recor=

X: SMALlMY N;',

end record;

the component R.X will occupy 16 bits. In the absence of the length clause at (1), R.X may be represented
in 8 bits.

For the following type classes, the size specifiwation must coincide with the default size chosen by the compiler
for the type:

" access types
" floating-point types
Ssk types

No useful effect can be achieved by using size specifications for these types.

5.4.22. Size Specification for Scalar Types

The specified size must accommodate all possible values of the type including the value 0 (even if 0 is not in
the range of the values of the type). For numeric types with negative values the number of bits must account for
the sign bit. No skewing of the representation is attempted. Thus

type myint is range 100..101:
requires at least 7 bits, although it has only two values, while

type my. nt is rance -101..-100;

requires 8 bits to account for the sign bit.
A size specification for a real type does not affect the accuracy of operations on the type. Such influence

should be exerted via the accuracy def init:on of the type (LRM 3.5.7, 3.5.9).
A size specification for a scalar type may not specify a size larger than the largest operation size supported by

the target architecture for the respective class of values of the type.

5.4.2J. Size Specification for Array Types

A size specification for an array type must be large enough to accommodate all components of the array under
the densest packing strategy explained below in adherence to any alignment constraints on the component type
(see Section 5.4.7).

The size of the component type cannot be influenced by a length clause for an army. Within the limits of
representing all possible values of the component subtype (but not necessarily of its type), the representation of
components may, however, be reduced to the minimum number of bits, unless the component type cae a size
specification.

If there is a size specificition for the component type. but not for the array type, the component size is
rounded up to a referable size. unless pragma PACK is given. This applies even to boolean types or other types
that require only a single bit for the representation of all values.

5.42.4. Size Specificadon for Record Types

A size specification for a record type does not influence the default type mapping of a record type. The size
must be at least as large as the number of bits determined by type mapping. Influence over packing of com-
ponents can be exerted by means of (partial) record representation clauses or by Pragma PACK.

Neither the size of component types. nor the representation of component subtypes can be influenced by a
length clause for a record.

APPe;DD FTO MN.-STD-1I85A

The only implementation-dependent components allocated by Tartan Ada in records contain dope information
for arrays whose bounds depend on discnminants of the record or contain relauve offsets of components within a
record layout for record components of dynamic size. These impiementauon-dependent components cannot be
named or sized by the user.

A size specification cannot be applied to a record type with components of dynamically determined size.
Note: Size specifications for records can be used only to widen the representation accomplished by padding at

the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragma PACK.

5.4.2.5. Specicfadon of Collecdon Sizes

The specification of a collection size causes the collection to be allocated with the specified size. It is
expressed in storage units and need not be static: refer to package SYSTEm for the meaning of storage units.

Any attempt to allocate more objects than the collection can hold causes a STORAGEERROR exception to be
raised. Dynamically sized records or arrays may carry hidden administrative storage requirements that must be
accounted for as part of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible to use all memory locations of the allocated collection. Furthermore, some administra-
tive overhead for the allocator must be taken into account by the user (currently I word per allocated object).

In the absence of a specification of a collection size, the collection is extended automatically if more objects
are allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGE ERROR is raised only when the available target memory is exhausted. If a collection size of
zero is specified. no access collection is allocated.

5.4.2.6. Specificadon of Task Aci'adon Sie

The specification of a task activation .ize causes the task activation to be allocated with the specified size. It
is expressed in storage units: refer to package S!YSTEM for the meaning of storage units.

Any auempt to exceed the activation size during execution causes a STORAGEERROR exception to be
raised. Unlike collections, there is generally no extension of task activations.

5.4-.7. Specirlcanon of' SMALL

Only powers of 2 are allowed for ' SMALL.
The length of the representation may be affected by this specification. If a size specification is also given for

the type, the size specification takes precedence: the specification of ' SMAL:.L must then be accommodatable
within the specified size.

5.4.3. Enumeration Representation Clauses

For enumeration representation clauses [.RM 13.3], the following restictions apply.

" The internal codes specified for the literals of the enumeration type may be any integer value between
INTEGER' FIRST and INTEGER' LAST. l.is strongly advised to not provide a mpresenmation clause that
merely duplicates the default mapping of enumeration types, which assigns consecutive numbers in as-
cending order starting with 0, since unnecessary runtime cost is incurred by such duplication. It should be
noted that the use of attributes on enumeration types with user-specified encodings is costly at run time.

* Army types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array involves a runtime translation of the index
value into the corresponding position value of the enumeration type.

9-

USER NtA.,"LAL FOR TARTAN ADA SLN

5.4.4. Record Representation Clauses

The alinment clause of record representation clauses [LRM 13.41 is obse.ved. The specified expression
must yield a target-dependent value.

Stauc ob.ects may be aligned at powers of 2 up to a page boundary. The specified alignment becomes the
minimum alignment of the record type. unless the minimum alignment of the record forced by the component
allocauon and the minimum alignment requirements of the components is already more stingent than the
specified alignment.

The component clauses of record representation clauses are allowed only for components and discriminants
of statically determinable size. Not all components need to be present. Component clauses for components of
variant parts are allowed only if the size of the record type is statically determinable for every variant.

The size specified for each component must be sufficient to allocate all possible values of the component
subtype (but not necessarily the component type). The location specified must be compatible with any alignment
constraints of the component type; an alignment constraint on a component type may cause an implicit alignment
constraint on the record type itself.

If some, but not all, discriminants and components of a record type are described by a component clause, then
the discriminants and components without component clauses are allocated after those with component clauses.
no attempt is made to utilize gaps left by the user-provided allocation.

5.4.5. Address clauses

Address clauses [LRM 13.51 ar supported with' the following restrictions:

When applied to an object. an address clause becomes a linker directive to allocate the object at the given
address. For any object not declared immediately within a top-level library package, the address clause is
meaningless. Address clauses applied to local packages are not supported by Tartan Ada. Address clauses
applied to library packages are prohibited by the syntax: therefore, an address clause can be applied only to
a package if it is a body stub.

* Address clauses applied to subprograms and tasks are implemented according to the LRM rules. When
applied to an entry, the specified value identifies an interrupt in a manner customary for the target.
Immediately after a task is created, a runtime call is made for each of its entries having an address clause,
establishing the proper binding between the entry and the interrupt.

* Specified addresses must be constants.

5.4.6. Pragma ?.ACX
Pragma PACK LRM 13.11 is supported. For details, refer to the following sections.

5.4... Pragma PACK for Arrays

If pragma PACK is applied to an array, the densest possible representation is chosen. For details of packing,
refer tu. the explanation of size specifications for arrays (Section 5.4.23).

If. in addition, a length clause is applied to

1. the array type, the pragma has no effect, since such a length clause already uniquely determines the array
packing method.

2. the component type, the array is packed densely, observing the component's length clause. Note that the
component length clause may have the effect of preventing the compiler from packing as densely as
would be the default if pragma PACK is applied where there was no length clause given for the com-
ponent type.

r>

APPENDIX F TO T-.-SD-ISiA

5.4.6.2. The Predefined Type String

Package STANDARD applies Pragma PACK to the type st=r-n;. However, when appiled to cnaracter arrays,
this pragna cannot be used to achieve denser packing than is the default for we target: 1 character per 8-bit
word.

5.4.6.3. Pragma PACKfor Records

If pragma PACK is applied to a record, the densest possible representation is chosen that is compatible with
the sizes and alignment constraints of the individual component types. Pragma PACK has an effect only if the
sizes of some component types are specified explicitly by size specifications and are of non-referable nature. In
the absence of pragma PACK, such components generally consume a referable amount of space.

It should be noted that default type mapping for records maps components of boolean or other types that
require only a single bit to a single bit in the record layout, if there are multiple such components in a record.
Otherwise, it allocates a referable amount of storage to the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but not all components, the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the srategy of not utilizing gaps between explicitly allocated components still
applies.

5.4.7. Minimal Alignment for Types

Certain alignment properties of values of certain types are enforced by the type mapping rules. Any represen-
tation specification that cannot be satisfied within these constraints is not obeyed by the compiler and is ap-
propriawey diagnosed.

Alignment constraints are caused by properties of the targe: architecture. most notably by the capability to
extract non-aligned component values from composite values in a reasonabiy efficient manner. Typically, restric-
tions exist that make extraction of values that cross certain address boundaries very expensive, especially in
contexts involving army indexing. Permitting data layouts that require such complicated extractions may impact
code quality on a broader scale than merely in the local context of such extractions.

Instead of describing the precise algorithm of establishing the minimal aiignment of types, we provide the
general rule that is being enforced by the alignment rules:

No object of scalar type including components or subcomponents of a composite type. may span a target-
dependent address boundary that would mandate 3n eraction of the ob'et's value to be performed by two
or more extractions.

$.. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS
The only implementation-dependent components allocated by Tartan Ada in records contain dope information

for arrays whose bounds depend on discriminants of the record. These components cannot be named by the user.

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES

Section 13.5.1 of the Ada Language Reference Manual descnbes a syntax for associating interrupts with task
entries. Tartan Ada implements the address clause

for =ENTRY use at int-':

by associating the interrupt specified by intD with the toent-y entry of the task containing this address
clause. The interpretation of inZD is both machine and compiler dependent.

USER MANUAL FOR TARTAN ADA SL2N

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS
Tartan Supports UNCHECKE _CONVERS:ON with a restriction that requires the sizes of both source and

target types to be known at compile time. The sizes need not be the same. If the value in the source is wider than
that in the targe, the source value will be muncaed. If narrower. it will be zero-extended. Calls on insianuations
of UNCHECKED CONVERSION are made infine automatically.

5.8. IMPLEMENTATION-DEPENDEA7T ASPECTS OF INPUT-OUTPUT PACKAGES
Tartan Ada supports all predefined input/output packages [LRM Chapter 14] with the exception of

LOWLEVEL_ c (which is planned for a futre release).

SEQUENT:AL_:O and DIRECT _0 may not be instantiated on types whose representation size is greater
than 32255 bytes. Any attempt to read or write values of such types raises USEERROR.

SEQUENT:AL :c and DIPECTzO may not be instantiated on unconsn-ained array types, nor on record
record types with discriminants without default values.

An amtmpt to delete an external file while more than one internal file refers to this external f-le raises
USE ERROR.

When an external file is referenced by more than one internal file, an attempt to reset one of those internal
files to OUT -FLE raises USEERROR.

An attempt to create a file with F:LEMODE -N_FILE raises USEEORROP.
Since the implementation of the input-output packages uses buffers, output to one file cannot necessarily be

read immediately from another file associated with the same external file.
The FORm parameter of file management subprograms is ignored.
An attempt to read a non-existent data record through the operations of SZQUENT:AL _10 or DIRECT 10

raises DATA ERROR. except that END -- RROR is raised when reading beyond the end of file.
If a SunOS system call returns an error number that cannot be mapped onto a predefined Ada exception, the

exception DEVI CE"ERROR is raised.

5.9. OTHER IMPLEMENTATION CHARACTERISTICS
The following informaton is supplied in addition to that required by Appendix F to MfL-STD-1815A.

5.9.1. Definition of a Main Program
Any Ada library subprogram unit may be designated the main program for purposes of linking (using the

a1 b command) provided that the subprogram has no parameters.
Tasks initiated in imported library units follow the same rules for termination as other tasks [described in

LRM 9.4 (6-10)]. Specifically, these tasks are not terminated simply because the main program has terminated
Terminate alternatives in selective wait statements in library tasks are therefore strongly recommended.

5.9.2. Implementation of Generic Units
All instantiations of generic units, except the predefined generic UNCHECKED CONVERSION and

UNCHECKED DEALLOCAT:ON subprograms, are implemented by code duplications. No attempt at sharing
code by multiple instandazions is made in this release of Tartan Ada. (Code sharing will be implemented in a
later release.)

Tartan Ada enforces the restriction that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the rstriction that the specification and body of a generic unit must be provided
as part of the same compilation. A recompilation of the body of a generic unit will obsolete any units that
instantiated this generic uniL

(--. 1

A9PE.%DIX F TO MNLSZhI15A

5.9-. Implementation-Defined Characteristcs in Package STANDARD

The impiementauon-dependent charactenstics for SUN in package STANDARD [Annex C am:
package STANDAR iL

type BY'E :NTEGER is range -:28 .. 127;
type SHORT INTEGER is range -32768 .. 32767;
type INTEGER is range -2 147 483_648 .. 2 147_483_647;
tpe FLOAT is digits 6 range -[.6#0.7FFFFF8#E 32 .. 16#0.7FFF _FF8#E+32;

type LONG FLOAT is digits 9 range -16#0.7FFF FFFF_FFFFFE#E+256
:,6#0.7FFF FFFF FFFF FE0#E+256 ;

type DURAT:ON is delta 0.0001 rage -86400.0 .. 86400.0;
-- DURATION'SMALL - 2#1.0#E-14 (that as, 6.103516E 5 sec)

end STANDARD;

5.9.4. Attributes of Type Duration
The type DURATION is defined with the folowing characteristics:

DURAT:ON' DELTA is 0.0001 sec
DU;.T:ON' SALL is 6.103516Z 5 sec
DU"CR.T:ON' F:RST is -8600.0 sec
DuRATION' LAST is 86400.0 sec

5.9.5. Values of Integer Attributes

Tartan Ada suppors the predefined intege. types INTEGER. SHORTINTEGER and BYTE-INTEGER. The
range bounds of the predefined type INtEGER am:.

..NTEGER' F:RzT = -20031
INTEGER'.LAsT = 2'31-1

SHORT INTEGER' F:RST= -2'1S
SHORT :NTEGER'"L.ST = 2"15-l

BYTE :NTEGER' F:RST = -I!8

BYTE :NTEGER' LAST = 127

The range bounds for subtypes declared in package TEXT_ 0 arm:

CO'JNT' FIRST = 0
COUNT' LAST = :NTEGER' LAST- 1

POSIT:VE COUNT' FIRST = I
POSITIVE COUNT' LAST = INTEGER' LAST - I

FIELD' F:RST = 0

F:ELD' LAST = 20

The range bounds for subtypes declared in packages DI RECT: 10 anm:

COUNT' F:RST = 0
COUNT' LAST = INTEGER'LAST

POS:TIVE COUNT ' FIRST = 1
POSIT:VE COUNT' LAST = COUNT' LAST

USFR MANUAL FOR TARTAN ADA SUN

5.9.6. Values of Floating-Point Attributes
Tartn Ada supports the predefined floaing-point types FLOAT and LONG FLOAT.

Atibute Value for FL A"

DIG:TS 6

MANT:SSA 21

EMAX 84

EPS: LON 16#0. 1000_000#E-4
approximately 9.53674E-07

SMALL 16#0.8000_000#E-21
approximately 2.58494E-26

LARGE 16#O.FFFFSBO#E+21
approximnately 1.93428Ei25

SAFEEMAX 126

SAFE SMALL 16#0.2000_000#E-31
approximately 5.87747E-39

SAFE LARGE 16#0.3F-rr.F"O#E- 32
approximately 8-50706r-37

F:RST -16#0.7Fr-r _FFC#E+32
apprxmately -1.70141E 38

LAST 16#0.7FFF F C#E+'32
approximaLely 1.7014 IE+38

MACH:NERADIX 2

cl :: N_ MA :SsA 24

MACH:N_, EMAX 126

MAC.H:NZEMIN -126

MACH:NEROUNDS TRUE

MACH:-NEOVERFLOWS TRUE

c>- '3

APPEVDDC FTO NM-ST-,DlSA

Attibute Value for LONJG FLOAT

D!G::s 15

MAN~: S SA13

EMAX 204

EP S LON 1600.4000..0000..0000_.000#E- 12
approximately 8.8817841970013E-16

SMALL. 16#0.8000-.0000-.0000-..000E-5 I
approximately 1.944692'27433 16E-62

LARGEi6#0.FFFFFFF-FFF..EOO#E+5 1
approximately 2-571 1008708 143E+-61

SAFE EMAX 1022

SAFE -SMALL 16#0.2000-0000Q.0000..000#E-255

approximately 1.1125369292536-308

SAFE LARGE 16#.3FFr FFFj 80#E+56

approximately 4.494232-837 1557E'-307

rl:7%- .16#0.7FFF_.FFFFFFF..YEE'256

approximately -8.9884656743 12E+307

LAST ~16#o.7FFF.FFyFFFFFE0=#E+256
approximately 8.98946567431 15E+307

MACHi:NERA--D:x 2

MAcH:-NE MANTI'SSA 51

MACH'':NE rAX 1022

MAC 1-:NEEl-tIN -1022

MAC:4:NE ROUNDS TRUE

MACH-NE OVERFLOWS TRUE

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementatioD-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below. The use of the '*' operator signifies a multiplication of the
following character, and the use of the '&' character signifies
concatenation of the preceeding and following strings. The values within
single or double quotation marks are to highlight character or string
values:

Name and Meaning Value

$ACC_SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIGID1 239 * 'A' & '1'
An identifier the size of the
maximum input line length which
is identical to $BIGID2 except
for the last character.

SBIGID2 239 * 'A' & '2'
An identifier the size of the
maximum input line length which
is identical to $BIG_IDi except
for the last character.

SBIGID3 120 * 'A' & '3' & 119 * 'A'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID4 except
for a character near the middle.

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 120 * 'A' & '4' & 119 * '$A'
An identifier the size of the
maximum input line length which
is identical to SBIGID3 except
for a character near the middle.

SBIGINTLIT 237 I '0' & "298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

SBIG REALLIT 235 * '0' & "690.0"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRING1 '"' & 120 * 'A' &
A string literal which when
catenated with BIG STRING2
yields the image of BIGID1.

$BIGSTRING2 '"' & 119 * 'A' & '1' &
A string literal which when
catenated to the end of
BIGSTRING1 yields the image of
BIGID1.

SBLANKS 220 *
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT_.LAST 2147483646
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 1000000
An integer literal whose value
is SYSTEM.MEMORYSIZE.

SDEFAULTSTOR UNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT_SYSNAME MC68000
The value of the constant
SYSTEF.SYSTEMNAME.

$DELTIADOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELD LAST 20
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

SFIXED NAME THEREIS_NO_SUCH_FIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT NAME THERE IS NOSUCHFLOATTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATER THANDURATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THANDURATIONBASE LAST 100000000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH PRIORITY 200
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL EXTERNAL FILE NAME! /?/this/is/a./ILLEGAL EXTERNAL FILENAME 1
An external file name which
contains invalid characters.

SILLEGALEXTERNAL FILE NAME2 /*/this/is/an/ILLEGAL EXTERNAL FILENAME 2
An external file name which
is too long.

TEST PARAMETERS

Name and Meaning Value

$INTEGERFIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER LAST 2147483647
A universal integer literal
whose value is INTEGE'LAST.

SINTEGER_LAST_PLUSI 2147483648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHANDURATION -100000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESSTHAN DURATIONBASE FIRST -100_000_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW_PFIORITY 10
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSADOC 31
An integer literal whose value
is SYSTEM.MAX MANTISSA.

SMAXDIGITS 15
Maximum digits supported for
floating-point types.

SMAX_INLEN 240
Maximum input line length
permitted by the implementation.

SMAXINT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+I.

Lt.nmn m ml ~ | mnnmm n H II

TEST PARAMETERS

Name and Meaning Value

$MAXLENINTBASEDLITERAL "2:" & 235 * '0' & "11:"
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAX_LENREALBASELLITERAL "16:" & 233 * '0' & "F.E:"
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRING LITERAL ... & 238 * 'A' &
A string literal of size
MAXINLEN, including the quote
characters.

$MININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

SMINTASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME BYTE-INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT-FLOAT, SHOIWINTEGER,
LONG-FLOAT, or LONG-INTEGER.

$NAMELIST VAX,MILSTD_1750A,MC68000,ND500
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG_BASEDINT 8#777777777776#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

TEST PARAMETERS

Name and Meaning Value

SNEWMEM SIZE 500000
An integer literal whose value
is a permitted argument for
pragma MEMORYSIZE, other than
SDEFAULT_MEMSIZE. If there is
no other value, then use
$DEFAULT.MEMSIZE.

SNEW_STOR_U1NIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
SDEFAULT_STORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

SNEW_SYSNAME MC68000
A value of the type SYSTEM.NAME,
other than $DEFAULTSYS NAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 96
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 0.01667
A real literal whose value is
SYSTEM.TICK.

m_ 6mm mm mm nmmi

WITHDRAWN TESTS

APPE:DIX D

WITHDRAWN TEFTS

Some tests are withdrawn from the ACVC because they do not conform to tne
Ada Standard. The following 43 tests had been withdrawn at
the time of validation testing for the reasons indicated. A reference of
the form AI-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE. --

63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
wait alternative (line 31).

d. BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none
of the units is illegal with respect to the units it depends on;
.by AI-00256, the illegality need not be detected until
execution is attempted (line 95).

e. CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

f. CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests) These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length clause and attribute whose interpretation is
considered problematic by the WG9 ARG.

g. CD2A81G, CD2A83G, CD2A84N & M, CD50110 [5 tests] These tests
assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this
is not the case, and the main program may loop indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

,T -mm -m nu7 u u

WITHDRAWN TESTS

h. CD2B15C & CD7205C These tests expect that a 'STORAGESIZE
length clause provides precise con- trol over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

i. CD2DIlB This test gives a SMALL representation clause for a
derived fixed-point type (at line 30) that defines a set of
model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a
derived fixed-point type must be representable values of the
parent type.

j. CD5007B This test wrongly expects an implicitly declared
subprogram to be at the the address that is specified for an
unrelated subprogram (line 303).

k. ED7004B, ED7005C & D, ED7006C & D [5 tests] These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

1. CD7105A This test requires that successive calls to
CALENDAR.CLOCK change by at least SYSTEM.TICK; however, by
Commentary AI-00201, it is only the expected frequency of
change that must be at least SYSTEM.TICK--particular instances
of change may be less (line 29).

m. CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by
the WG9 ARG.

n. CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

o. CE21071 This test requires that objects of two similar scalar
types be distinguished when read from a file--DATAERROR is
expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

p. CE3111C This test requires certain behavior, when two files are
associated with the same external file, that is not required by
the Ada standard.

q. CE3301A This test contains several calls to ENDOFLINE &
END OF PAGE that have no parameter: these calls were intended
to specify a file, not to refer to STANDARD-INPUT (lines 103,
107, 118, 132, & 136).

2.- --- - m,,,, m m m m

WITHDRAWN TESTS

r. CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUTERROR is raised
by a subsequent PUT operation. But the former operation will
generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

COM~PILER. AND 'WINK~ER OPTIONS

APPENDIX E

COMPILER AND LINKER OPTIONS

This appendix contains information of the compiler and linker
options used in this validation.

COMPILER AND LINKER OPTIONS

TADA(1) USER COMMANDS TADA(1)

NAME
tada - Tartan Ada Compiler

SYNOPSIS
tada [option ...] file [option ...]

DESCRIPTION
tada is the Tartan Ada Compiler. tada compiles a source
file, sequentially processing all compilation units. Upon
successful compilation of a unit, the ada program library
ada.db which must reside in the working directory is updated
and one or more separate compilation files and/or object
files are generated. (Refer to alib(1) for instructions on
how to obtain an initial ada.db).

At least one argument must be a source file name. Any
number of options, each beginning with a hyphen, may precede
or follow it. Later options override earlier options. The
following options are recognized:

-Fh Select hardware floating point support. This is

the default.

-Fs Select Sun software floating point support.

-La Generate a listing, even if no errors were found.
The default is to generate a listing only if an
error is found.

-Ln Never generate a listing. The default is to gen-
erate a listing only if an error is found.

-i Cause compiler to omit data segments with the text
of enumeration literals. This text is normally
produced for exported enumeration types in order to
support the 'IMAGE attribute. You should use -i
only when you can guarantee that no unit that will
import the enumeration type will use 'IMAGE. How-
ever, if you are compiling a unit with an enumera-
tion type that is not visible to other compilation
units, this option is not needed. The compiler can
recognize when 'IMAGE is not used and will not gen-
erate the supporting strings.

-a Causes the compiler to retain generated assembly
code in the user's directory.

COMPILER AND LINKER OPTIONS

-Opn Control the level of optimization performed by the
compiler, requested by n. The optimization levels
available are:

n=C Minimum - Performs context determination,
constant folding, algebraic manipulation, and
short circuit analysis.

n=l Low - Performs level 0 optimizations plus com-
mon subexpression elimination and equivalence
propagation within basic blocks. It also
optimizes evaluation order.

n=2 Space - Performs level 1 optimizations plus
flow analysis which is used for common subex-
pression elimination and equivalence propaga-
tion across basic blocks. It also performs
invariant expression hoisting, dead code elim-
ination, and assignment killing. Level 2 also
performs lifetime analysis which is used to
improve register allocation. It also performs
inline expansion of subprogram calls indicated
by Pragma Inline which appears in the same
compilation unit.

n=3 Time - Performs level 2 optimizations plus
inline expansion of subprogram calls which the
optimizer decides are profitable to expand
(from an execution time perspective). Other
optimizations which improve execution time at
a cost to image size are performed only at
this level.

-pc68000
Generate code for the 68000 instruction set.

-pc68010
Generate code for the 68010 instruction set.

-pc68020
Generate code for the 68020 instruction set. This
is the default.

-v Printout compiler phase names. The compiler will
print out a short description of each compilation
phase in progress.

-S [ACDEILORSZ]
Cause the compiler to omit extra code to perform
various checks at run time. The action of this
option is equivalent to applying a pragma SUPPRESS

e-3

CO:PILER AND LINKER OPTIONS

to the entire source program. Supplying thi -s
option significantly decreases the size and execu-
tion time of the compiled code.

Suppress the given set of checks:
A ACCESSCHECK
C CONSTRAINT_CHECK
D DISCRIMINANTCHECE
E ELABORATIONCHECK
I INDEX CHECK
L LENGTH CHECK
0 OVERFLOW CHECK
R RANGE CHECK
S STORAGE_CHECK
Z "ZERO"DIVISIONCHECK

Examples:

-SOZ Suppress OVERFLOW and DIVISION.
-S Suppress ALL
-SC Suppress CONSTRAINT-ERROR, equiv. to -SADILR

-x Cause the compiler to generate a cross reference
file containing entries of the form 'Ada-
name=>linkname at line'. This option will allow
users to find the linkname generated for the given
Ada-name, and use linkname to set breakpoints in
debuggers. The file will have the extension .xrf.

FILES
source

Any legal unix file name is acceptable as Ada source to
tada.

source.1st
Listing file containing source interspersed with error
messages. At most one .1st file is generated for a
single source file.

For the remaining files, one file is generated for each com-
pilation unit (cu); therefore, compiling a single source
file with multiple compilation units may result in more thanone of each of these files. Their names are derived from the
Ada name of the compilation unit rather than from the source
file.

cuname.xrf Cross reference listing
cuname.di Separate compilation file (spec)
cuname.bod Separate compilation file (generic body)
cuname.con Separate compilation file (subunit context)
cuname.map File containing a memory allocation listing (map)

COMPILER AND LINKER OPTIONS

cuname.stb File of symbol definitions for all global symbols in the image.
cuname.s Assembly code file
cuname.ss Assembly code file
cuname.o Object file
cuname.so Object file

Other files:

tada Tartan ada compiler
ada.db User library database

Some temporary files are also created. For an explanation of those file, see
the Tartan Ada SUN User Manual.

SEE ALSO
alib(1) the Tartan Ada Debugger Program Librarian

DIAGNOSTICS
Please refer to the Tartan Ada SUN User Manual.

BUGS
Please refer to the Release Notes distributed with your com-
piler.

COMPILER AND LINKER OPTIONS

ALIBIl) USER COMMANDS ALIB(1)

NAME
alib - the Tartan Ada Program Librarian

SYNOPTC

alih subcommand [option ...] [argument ...) [option ...]

DESCRIPTION
The Tartan Ada Program Librarian alib implements the Ada
Language requirement for separate compilation and dependency
control.

The program library directory holds all necessary compila-
tion units, including packages that are part of the applica-
tion under development and any standard packages such as
those for I/O. It also holds a library administration file
which is a database file, ada.db, whose contents are managed
by the Tartan Ada librarian, alib, and the tada command.
The program library in effect during a compilation may be
specified explicitly connecting to the directory containing
the library administration file name. The alib command
invokes the Ada Program Librarian to:

Create an Ada library

Delete an entire library

Delete unit(s) from an Ada library

Check the closure of a unit in the library

Provide useful information about a unit in the library

Insert a non-Ada object into the library as the body of
a package.

Link an executable image

Each operation is requested through a subcommand. Most com-
mands take an Ada-name as an argument. This is the identif-
ier used in the compilation unit declaration. There is no
required correspondence between this identifier and the
source file name. To allow subcommands to use regular
expressions containing wildcard characters, the standard
usage of "*" and "?" has been abandoned. The character "#"
replaces "*," and "%" replaces "?" for all Ada-name regular
expressions.

COMPILER AND LINKER OPTIONS

Names are simple Ada-names for library units and their
bodies, and Ada-name pairs for subunits. A pair consists
of: ancestor-name subunit-simple-name.

The following subcommands are available.

mhlib creates an initialized Ada library database file,
ada.db, and places it in a directory that has beer. created
to hold the library database file and files required by the
library, i.e., separate compilation and compiler-generate
files. Standard system and Ada I/O packages are placed in
the library directory and references to them are recorded in
ada.db. The format of the mklib command is

alib mklib [directory]

where the argument directory specifies the name of the
existing subdirectory in which the library is to be located
and must be supplied only if the library directory is not
the current directory.

rmlib deletes the entire library identified by the directory
path supplied as a argument, including all compiler-
generated files and the file ada.db. No wildcards may be
used in the directory name. The format of the rmlib command
is

alib rmlib [option ...] directory

where the argument directory specifies the name of the sub-
directory in which the library is located.

The following option may be used with the rmlib command:

-log causes a message to be written to stdout after each
unit is deleted.

delete deletes the the specified unit from the library. The
format of the delete command is

alib delete [option ...] Ada-name ...

where each argument Ada-name specifies the name of a unit to
be deleted.

The following options may be used with the delete command:

-b deletes the body unit and any subunits emanating
from this body. The Ada-name supplied as a argument
must be a library unit name. All compiler-generated
files are deleted with the unit. Compiler-generated

COMPILER AND LINKER OPTIONS

files do not include those created by the librarian
with the link subcommand. This is the default if no
option is supplied.

-s deletes the specification, body and all subunits
that have this specification as an ancestor from the
library. The Ada-name supplied as a argument must
be a library unit name. All compiler-generated
files are deleted with the unit.

-sub deletes the subunit named and all of its subunits,
in a transitive manner. An Ada-name pair containing
an ancestor-name and a subunit-simple-name is
required.

-1 causes a message to be written to stdout after the
unit is deleted. This option may be used in combi-
nation with any other option.

closure checks the closure or full closure of the named
units. Any errors associated with the closure are reported
to stderr, and the partial ordering of the closure is sent
to stdout. The format of the closure command is

alib closure [option ...) Ada-name ...

where the argument Ada-name specifies the name of the unit
whose closure is to be checked.

The following options may be used with the closure command:

-b checks closure only on the body unit named by the
Ada-name argument. The Ada-name supplied as
a argument must be a library unit name.

-s checks closure only on the specification unit named
by the Ada-name argument. The Ada-name must be a
library unit name. This is the default if no option
is supplied.

-sub checks closure of a subunit which must be identified
by two arguments, the name of the ancestor and the
simple name of the subunit

-full checks the full closure (linking closure) for the
specification unit named by the Ada-name argument.
The Ada-name must be a library unit name.

describe provides information about the unit. It lists
name, type, time of compilation, state of residence (local
or foreign), source and binary file specifications, first-

COMPILER AND LINKER OPTIONS

level dependencies (if any), and subunits (if any).
describe command is

alib describe [option ...] Ada-name ...

where the argument Ada-name specifies the name of the unit
to be described.

One of the followvng options may be used with the describe
command:

-a describes both the specification and body units for
the specified library unit. The Ada-name supplied
as a argument must be a library unit name. -a is a
shorthand for -s -b and is the default if no option
is supplied.

-A describes all library units and subunits. No Ada-
name should be specified.

-b describes only the body unit for the specified
library unit. The Ada-name supplied must be a
library unit name. No information about bodies
resulting from generic instantiations is given when
the -b option is given. To get such information use
-s or -a.

-s describes only the specification unit for the speci-
fied library unit. The Ada-name supplied as a argu-
ment must be a library unit name.

-sub describes the subunit. An Ada-name pair containing
an ancestor-name and a subunit-simple-name is
required.

foreign inserts a pointer to an object file into the library
for a package whose specification contains a pragma
FOREIGNBODY. The format of the foreign command is

alib foreign [option ...] Ada-name file

where the argument Ada-name specifies the name of the pack-
age containing the pragma FOREIGN-BODY. The argument file
is the path-name of the object file.

The following option may be used with the foreign command:

-1 informs the librarian that the object file is an ar
archive format file. The librarian will use this
information by attempting to link this file last
when a link operation is invoked.

C__.rmmmmmq m mII m m

COMFILER AND LINKEF OPTIONS

a

- -c Copies the named file into the library's directory.
(See bugs)

link checks that the unit has the legal form for a main
unit, checks the full closure, finds all required ob:-ect
files, and invokes ld to link the appropriate object files
and produce an executable file. The format of the link com-
mand is

alib link [option ...] Ada-name [option ...]

where the argument Ada-name specifies the unit in the
library to be made the main program.

The following options may be used with the link command:

-K creates a shell script file that may be redirected
to sh to cause the Ada program to be linked. The
user assumes full responsibility for the consistency
of the program when this script is run instead of
using the alib link command.

-M causes ld to produce a load map.

-o file names the final output file from the loader

-t invokes ld with the -t switch to provide a trace of
the load command indicating what files are being
loaded

SEE ALSO
tada(1), The Tartan Ada Compiler

DIAGNOSTICS
Please refer to the Tartan Ada User Manual.

BUGS
alib delete -s # will delete all units in the library, as
expected, and will also delete the file ada.db. It is a
synonym for alib rmlib

The -c switch for foreign is not implemented.

Please refer to the Release Notes distributed with your com-
piler.

E-1

