f

) BHS Lt
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered

Y

RLAZ DNSTRUTTION:
BETORY "OW: _TTL N7 PO

AD—A210 883 IMENTATION PAGE

(2. GOVY ACCESSIOM NC.

5 RECIPIENIS CATALOC NUmMcik

W, 1atme (PN SwMIIT

Ada Compiler Validation Summary Report:TARTAN
Sun 3/60 (Host and Target), 89041211.10082

§. TYPL OF REPORT § PELRIQOL [OVERLD

12 Apr. 1984 to j2 Apr. 1990

LABORATORIES INCORPORATED, TARTAN ADA SunéSun, Version 2.1, P ERTORMING DR
. 4PWw w .

REPORT MUME:R

7. AUTNOR(s)

IABG,
Ottobrunn, Federal Republic of Germany

8. CONTRALT OR GRANT NUMEBER(s)

8. PLRFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMINT, PRCJOECT, TASK
ARLA 3 WORK UNIT NUMBERS

IABG,

Ottobrunn, Federal Republic of Germany

CONTROLLING OFFICE NAMI AND ADDRESS 12. RLPORT DATE

Ada nggt Progéam Office £ Def

Unite tates Department of Defense h—er v

Washington, DC 20301-3081 e

14. MONITORING AGENCY NAM: & ADDRESS(/f different from Controliing Office) 15. SECURITY CLASS (of this report)
UNCLASSIFIED

1ABG, _ 152, QELLASSIFICATION /DOWNGRADING

Ottobrunn, Federal Republic of Germany cridoct Nk

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

T Na ‘;9 t;.,

ﬁ j o

TLECTE

UNCLASSIFIED

[y o % ‘-

17. DISTRIBUTION STATEMINT (0f the abstractentered nBiock 20 1f oifferent from Report)

18. SUPPLEMENTARY NOTES

18. KEYWORDS (Continue onreverse side 1f necessary and identify by block number)

1815A, Ada Joint Program Office, AJPO

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Fac111ty, AVF, ANSI/MIL-STD-

20. ABSTRALT (Continue on reverse side 1f necessary and 1dentify by biock number)

el L, .
Q) -

TARTAN LABORATORIES INCORPORATED, TARTAN ADA Sun/Sun, Version 2.1,IABG, Ottobrunn W.
SUN 3/60 under SUN 0S, Version 3.5 (Host and Target), ACVC 1.10

DD ‘v 3473

016

~

EDITION OF % M~ #1 ¢ mecc oo

AVF Control Number:

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890412I1.10082
TARTAN LABORATORIES INCORPORATED
TARTAN ADA Sun/Sun Version 2.1
Sun 3/60 Host and Target

Completion of On-Site Testing:
22 April 1989

Prepared By:
IABG mbH., Abt SZT
Einsteinstr 20
D8012 Ottobrunn
Vest Germany

Prapared For:
Ada Joint Program Office
United States Department of Defense
Vashington DC 20301-3081

AVF-IABG-027

~§ccemon For ﬁ
NTIS CRa&l

CTic 1AB 0O
Uiannounced O
Justiticatiun)

. __-._,___;Z:;:'_.______,
BY

Dist-ibution |
b-q_“__.._‘-.‘__._-

Availability Codes

pP——— ——— i e .

g AV adior]
15t SeneCral
1 f
A-l.
t
L .

Ada Conpiler Val:dation Summary Report:

Conpiler Name: TARTAN ADA Sun/Sun Version 2.1

Czrtificate Mumber: 29C41271.20032

Hest: SUN 3/60 under SUMN OS Version 3.5

Targst: SUN 3/60 under SUN OS Version 3.8
Testing Completed 12 April 19289 Using ACVC 1.10

This report has been reviewed and is approved.

o LU

Dr. S.\Heilhsrun
IABG mbH, &bt
Einsteinstr 20
D8012 Ottobrunn
Vest Germany

o

TR

Kda Validation Organization
Dr. John F. Kramer

Institute for Defense knalyses
Alexandriz Vva 22311

40 St

Ada Joint Program Office
Dr. John Solomond
Director

Department of Defense
Washington DC 20301

Ada Compiler Validation Summary Report:

Compiler Name: TARTAN ADA Sun/Sun Version 2.1

Certificate Number: 890412I1.10082

Host: SUN 3/60 under SUN OS Version 3.5

Target: SUN 3/60 under SUM OS Version 3.5
Testing Completed 12 April 1989 Using ACVC 1.10

This report has been reviewed and is approved.

. LU

Dr. S.\Heilbrunner
IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

Ada Validation Organization
Dr. John F. Kramer 2
Institute for Defense Analy <
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director

Department of Defense
Washington DC 20301

CHAPTER 1

T e =
v . s .
e we

CEAPTER

[N]

[S0 N
o«
[o

CHAPTER

(¥

W W wiww W

L] -« o . ® . . . L]

~] I~ IOy OV W)
.

" APPENDIX A

APPENDIX B

RPPENDIX C

APPENDIX D

APPENDIX D

(U XN

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT .

USE OF THIS VALIDATION SUMMARY REPORT . .
REFERENCES ¢ v v v v v v o v 4
DEFINITION OF TERMS
ACVC TEST CLASSES « ¢ v v ¢ o o« o . .

CONFIGURATION INFORMATION
CONFIGURATION TESTED

IMPLEMENTATION CHARACTERISTICS

TEST INFORMATION + « « .« .

TEST RESULTS e e e e e o

SUMMARY OF TEST RESULTS BY CLASS

SUMMARY OF TEST RESULTS BY CHAPTER

WITHDRAWN TESTS .« ¢ ¢ ¢ ¢ & o e o o o o o « o &
INAPPLICABLE TESTS . ¢ ¢ ¢ ¢ ¢ v v o « o o «
TEST, PROCESSING, AND EVALUATION MODIFICATIONS
ADDITIONAL TESTING INFORMATION

Prevalidation ¢« ¢ v & v ¢« ¢ « o

Test Method ¢« ¢« ¢ ¢ ¢ v 4 v ¢ o o o &

Test Site ¢ ¢ o v o 4 b e e e
DECLARATION OF CONFORMANCE
RPPENDIX F OF THE Ada STANDARD
TEST PARAMETERS
VI?HDRAVN TESTS

COMPILER AND LINKER OPTIONS

& W Wy -

-3

. 14

14
14
15
15
15
19

20
20
21

iy

INTRGDUCTION

CHRFTEE 1

INTRODUCTION

//"

This Validation Summary Report 'TVSRfj describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815h.
This report explains all technical terms used within it and thoroughly
reports the results giw_testing this compiler wusing the Ada Compiler
Vzlidation Capability { (ACVC)e~ An hda compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
rmust conform to the requirements of the Ada Standard. The Ada Standard
nust be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
rust be understood that some differences do exist between implementations.
The Ade Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating svstems, hardware, or implementation strategies. &ll
the dependencies observed during the process of testing this compiler are
given in this report. -

The information in: this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an ida compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the xdz Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but 1is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
conmpile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
hda compiler. Testing was carried out for the following purposes:

(s

INTRODUCTION

To zttempt to identify any language constructs supported by the
compiler that do not conforr to the hda Standard

To attempt to identify any language constructs not supported by
the compiler but required by the hAda Standard

To deterrine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by IABG rbH, Abt SZT according to
procedures established by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO). On-site testing was completed 12
April 1989 at IABG mbH, Ottobrunn.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVC may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act”
(5 U.s.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

hda Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Vashington DC 20301-3081

or from:

IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

hda Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Rlexandria VA 22311

—*

1.3 REFERENCES

[98]
.

Prograr Office, 1 January 1987.

Inc., December 198€.

1.4 DEFINITION OF TERMS

Ada programming language.

Ada An Rda Commentary contains all information

Commentary point addressed by a comment on

form RI-ddddd.

3. hda Compiler Validation Capability Implementers

ACVC The Ada Compiler Validation Capability.
programs that tests the conformity of an Ada compiler to the

INTRODUCTICH

1. Reference Xanual for the Ada Programming Language,
RNSI/MIL-STD-1815k, February 15¢3 and ISO 8652-1987.

Guide,

The set of BRda

relevant to the
Standard.
comments are given a unique identification number hLaving the

hda Cormpiler Validation Procedures and Guidelines, hda Joint

SofTech,

4. Ada Compiler Validation Capability User's Guide, December 1986.

Ada Standard ANSI/NIL-STD-1815A, February 1983 and ISO 8652-19¢&7.

hpplicant The agency requesting validation.

AVF The Ada Validation Facility. The
conducting conpiler wvalidations

contained in the Ada <Compiler
Guidelines.
AVO The Ada Validation Organization.

authority over all AVF practices

maintaining a uniform process
compilers. The AVO provides

is
according to
Validation

responsible
procedures
Procedures

RVO has
for
validation
administrative and technical

the

oversight
purpose
of Ada

support for Ada validations to ensure consistent practices.

Compiler L processor for the Ada language.

report, a compiler is any language

context

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

3

result

of this
processor, including

These

for

and

that

IrTRCDUCTION

Inapr_.icabie An RCVC test that uses features of the _anguage that a
test corpiler is not required (o support or may legitimately
support in a way other than the one expected by the test.

Fassel test An AZVC test for which @& conpiler generates the expected

result.

Target The corputer vwhich executes the code generated by the
corpiler.

Test &~ prograr that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity tc the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class R, C, D, and E tests are executable,
and special program units are used to report their results during
executicn. Ciass B tests are expected tc produce compilation errors.

lass L tests are expecteé to produce errors because of the way in which a
program libraryv is used at link time.

Class 2 tesls ensure the successiul compilation and execution of legal &ida
procrams with certain language constructs which cannot be verified at rurn
time. There are no explicit progranm components in a Class A test to check

semantics. For exampie, a Class 2 test checks that reserved words of
another language (other than those already reserved in the Ada 1language)
are not treated as reserved words by an Ada compiler. & Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects 1illegal 1language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

IPTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compilec and executed. Each Class C test is self-checking
and produces a PASSED, FRILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of & corpiler.
Since there are¢ no capacity requirements placed on a compiler by the Acde
Standard for some parameters--for example, the nurmber o¢f identifiers
permitted 1in a compilation or the number of units in a library--& corpiler
ray refuse to compiie a Class D test and still be =z confcrming compiler.
Therefore, 1if a Class D test fails to compiie because the capacity of the
corpiler is exceeded, the test is clascified as inapplicable. If a Ciass D
test compiles successfully, it is self-checking and produces a FASSED or
FAILED message during execution.

]

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Aida
Standard. Each Class E test 1is self-checking and produces a NOT
RPPLICHRBLE, FARSSED, or FRILED message when it is compiled and executed.
However, the hda Standard permits an implementation to reject progranms
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it 1is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal hda programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
B Class L test passes if it is rejected at link time--that is, an attenpt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. 1In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FARILED, or
NOT APPLICABLE results. It also provides a set of identity functiions used
to defeat some compiler optimizations allowed by the 2da Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT ané CHECK_FILE is
checked by a set of executable tests. These tests produce mressages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
tests. However, some tests contain values that require the test to be

——

INTRODUCTION

custorized according te implementation-specific values--for example, an
iilegal file name. 2 list of the values used for this validation :s

provided in Rppendix C.

L corpiler rust correctly process each of the tests 1in the suite and
demzun.crate conformity to the Ahda Standard by either meeting the pass
criteria given for the test or by showing that the test 1s inappliicable tc
the implementation. The applicability of a test to an implementation 1s
considered each time the implementation 1s validated. h test that 1is
inapplicable for one wvalidation 1t not necessarily inapplicable .or a
subsequent validation. Any test that was determined to contain an 1llegal
language construct or an erroneous language construct is withdrawn from the

CVC and, therefore, 1is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

|1

CONFIGURATIOK INFORNZTION

CHAFPTEF 2

CONFIGURATIOKR

2.1 CONFIGURARTION TESTED

INFORMETION

The candidate corpilation svstem for this validation was tested under

following configuration:

Compiler: TARTAN ADA Sun/Sun Version 2.1

ACVC Version: 1.10

Certificate Number: £90412I11.10082

Host Computer:

Machine:

Operating System:

Memory Size:

Target Computer:

MYachine:

Operating System:

Memory Size:

SUN 3/60
SUN OS Version 3.5

g MB

SUN 3/6¢
SUN OS Version 3.5

& ¥B

the

——

CONTIGURATION INFORNATION

2.2 IMPLEXENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler 1in those areas of the Ada Standard that permit implementetions
to differ. Class D and E tests specifically check for such implerentatior
differences. However, tests 1in other <classes alsc <character:ze an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes a compila:ion containing
723 variables in the same declarative part. (See test
D29002K.)

2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests DSS5A03A..H (8
tests).)

3} The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

1) This 1implementation supports the additional predefined types
SHORT_INTEGER, BYTE_INTEGER, and LONG_FLOAT in the package
STANDARD. (See tests B86001T..Z {7 tests).)

¢. Expression evaluation.

The order in which expressions are evaluated and the time at which

constraints are checked are not defined by the language. While

the ACVC tests do not specifically attempt to determine the order

of evaluation of expressions, test results indicate the following:

1) HNone of the default initialization expressions for record

components are evaluated before any value is
checked for membership in a component's subtype. (See test
C321174.)

2) hssignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

Y

CONFIGURATION INFORMATION

3) This implementation uses nc extra bits for exntra precision

and uses all extre bits for extra range. (See test C35903h.)

4) NUMERIC_ERROR is raised for predefined and largest integer and
no exception is raised for smallest integer when an integer
literal operand in a comparison or membership test is outside
the renge of the base type. (See test C45232h.)

' Mo exception 1is raised when a literal operand in a fixed-
point comparison or membership test is outside the range of
the base type. (See test C45252A.)

6) Underflow is gradual. (See tests C45524hR..2 (26
tests).)
Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to integer 1is round to even.
(See tests C46012h..Z (26 tests).)

[38]
~—

The method used for rounding to 1longest integer 1is round
to even. (See tests C46012A..Z (26 tests).)

3) The method useé for rounding to integer in static universal
real expressions is round to even. (See test §4A014A.)

Array types.

in irplemeutation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a ‘LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEX.MAX_INT. For this
irplementation:

1) Declaration of an array type or subtype declaration with more
than SYSTEM.KAX_INT components raises NUMERIC_ERROR for
one dimensional array types, two dimensional array types and
twe dimensional array subtypes, and no exception for one
dimensional array subtypes. (See test C36003A.)

2) NUMERIC_ERROR is raised when an array type with
INTEGER'LAST + 2 components is declared. (See test
C362021.)

6)

8)

CONFIGURATIOR INFORLATION

NUMERIC_ERROE is raisec when an array tvps w2th
SYSTEN.NAX_INT + 2 components 1s declared. (Sec test
C36202B.)

L packed BOOLEAK array having a 'LENGTE cxceeding INTEGEFR'LAST
raises NUMERIC_ERROR when the array type is decliared. {See
test €52103%.)

5 packed two-dinensional BOOLEAR array with more than
INTEGER'LAST components raises NUMERIC_ERROF when <the array
tvpe 1s declared and exceeds INTEGER'LAST. (See test
C52104Y.)

In assigning one-dimensional array types, the expression 1is
not evaluated in its entirety before CONSTRRINT_ERROR 1is
raised when checking whether the expression's subtype 1is
compatible with the target's subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression 1is
not evaluated in its entirety before CONSTRAINT_ERROR 1is
raised vhen checking whether the expression's subtype 1is
compatible with the target's subtype. (See test C52013k.)

A null array with one dimension of length greater
than INTEGER'LAST may raise NUNERIC_ERROR or CONSTRZINT_ERROR
either vhen declared or assigned. RAlternatively, an implemen-
tation may accept the declaration. However, 1lengths must
match in array slice assignments. This implementation raises
NUMERIC_ERROR when the array type is declared. (See
test E52103Y.) .

Discriminated types.

1) In assigring record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT_ERROR is raised
vhen checking vhether the expression's subtype is compatible
with the target's subtype. (Sec test C52013L.)

Aggregates.

1} In the evaluation of a multi-dimensional aggregate, the test
results indicate that al choices are evaluated before
checking against the index type. (See tests C&3207R and
C43207B.) -

2) In the evaluation of an aggregate containing subaggregates,

not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

CONFIGURATION INFORNALTION

3) CONSTRARINT_ERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtype. (See test
E43211B.)

Pragmas.

1) The pragma INLINE is supported for functions ané
procedures but not when applied across compilation units.
(See tests LA3004X..B (2 tests), En3004C..D (2 tests), and
CR3004E..F (2 tests).)

Generics.

This corpiler enforces the following two rules concerning
declarations and proper bodies which are individual comp:lation
units:

o generic bodies must be compiled and completed before their
instantiation.

o recorpilation of a generic body cr any of its transitive
subunits makes all units obsolete which instatiate that
generic body.

These rules are enforced whether the compilation wunits are in
separate compilation files or not. ARI408 and AIS06 allow this
behaviour.

1) Generic, specifications and bodies can be compiled
in separate compilations. (See tests <Cal012x, CA2009C,
Cr2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CR1012R and
CA2009F.)

3) Generic 1library subprogram specifications and Dbolies be
compiled in separate compilations. (See test
CR1012h.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009Z.)

5) Generic non-library subprogram bodies can be
compiled in separate compilations from their stubs. (See test
CA20089F.)

CONFIGURRTION INFORNATION

Generic unit bodies and their subunits can be
corpiled in separate compilations. (See test CA301iR.)

Generic package declarations anc bodies can be
corpiled ir. separate compilations. {See tests CA2009C,
BC3204C, and BC3205D.)

Generic library pachkage specifications and bodies can be
compiled in separate compilations. (See tests
BC32C4C and BC3205D.)

Generic unit bodies and their subunits can be
conpiled in separate compilations. (See test CR3011A.)

Input and output.

1)

2)

3)

1)

€)

9)

The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array tvpes or record tyres with
discriminants without defaults. (See tests AE2101C, EE2201D,
and EE2201E.)

The package DIRECT_IO cannot be instantiated with
unconstrained array types or record tvpes with
discriminants without defaults. (See tests ARE2101H, EE2401D,
and EE24016G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Yodes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 tests), CE2102FR,
CE2102T, and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

PESET and DELETE operations are supported for
SEQUENTIAL_JO. (See tests CE2102G and CE2102X%.)

RESET and DELETE operations are supported for DIRECT_IO.
(See tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text
files. (See tests CE3102F..G (2 tests), CE3104C, CE31104, and
CE3114L.)

Overwriting to a sequential file truncates to the last
element written. (See test CE2208B.)

b
[%)

10)

11)

15)

CONFIGURATION INFORMATICN

Temporary sequential files are civen names ané
deleted when closed. (See test CEZ2108A.!

Temporary direct files are g:iven names and deleted vwhen
closed. (See test CE2108C.)

given nar.es and deleted

b d
PR

Temporary text £
t

es
vhen closed. (See +

€
"
r'S

wm v

e

More than one internal file car be assoriated vith
each external file for sequential <Iiles wvhen writinc or
reading. (See tests CE2107x..FE (5 tests), CE2102L, <CEZ2110B,
and CE2111D.)

More than one internal £file can be associated with
each external file for direct files when writing or reading.
(See tests CE2107F..H (3 tests), CE2110D and CE2111H.)

More than one internal file can be associated with
each external file for text files when reading only or when
writing only. (See tests CE3111A..E (5 tests), CE3114B, and
CE3115k.)

TEST IKFORNATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. VWhen this compiler was
tested, 43 tests had been withdrawn because of test errors. The LVF
determined that 290 tests were inapplicable to this implementation.
211 inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported Dby the implementation. Modifications to the code,
processing, or grading for 81 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMRRY OF TEST RESULTS BY CLASS
RESULT TEST CLASS TCTAL
A B C D E L

Passed 127 1132 2042 17 22 44 3384
Inapplicable 2 6 274 0 6 2 290
Vithdrawn 1 2 34 0 6 0 43

TOTRL 130 1140 2350 17 34 46 3717

TEST INFORNMATICKL

3.3 SUMKARY OF TEST RESULTS BY CHAFTER

PESULT CHAPTER TOTA
< 3 4 5 6 7 ¢ 9 10 11 12 1 14
Passed 18t 577 553 245 172 ee 161 333 121 36 252 339 292 338
W/3 i Tz ilv 3 0 0 5 0 10 0 0 30 29 290
vdrn 1 b 0 0 ¢ 0 0 1 0 C 1 35 4 43
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 VITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A390056G B97102E BC3009B CD2R62D CD2RA63R
CD2R63B CD2A63C CD2A63D CD2R66R CD2A66B CD2K66C
CD2R66D CD2R73: CD2R73B CD2R73C CD2A73D CD2RL76R
CD2R76B CD2R76C CD2R76D CD2h816G CD2A836G CD2A84N
CD2R84N €Db50110 CD2B15C CD7205C CPZDLlB CD5007B
ED7004B ED7005¢ ED7005D ED7006C ED700¢D CD7105%
CD720C3B CD72048B CD7205D CE21071 CE3111C CE3301r
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 IKRARPPLICABLE TESTS

Some tests do not apply to &ll compilers because they make use of features
that 2 compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawvn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt 1= not necessarily inapplicable for a subsequent
atterpt. For this validation attempt, 290 tests were inapplicable for
the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX_DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

TEST IETORNATION

C35708L..Y (14 tests) €35802L..2 (1% tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C4%%21L..2 (15 tests)
C45524L..Z (15 tests) C45€21L..Z2 (1% tests)
Ca5641L..Y {14 tests) C46012L..2 (15 teste!

C35702% and B86001T are not applicable because this irpiementation
supports no predefined type SHORT_FLOAT.

The following 16 tests are not aprplicable because this
implementation does not support a predefined type LONG_INTEGEEK:

€45231¢C C45304C €455¢02C €45503¢ €45504C
C45504F C45611C €45613C €45614¢C €45631C
€45632C B52004D CS5BOTA B55B0SC B86001VW
CD7101F

C86001F is not applicable because, for this implementation, the
package TEXT_IO is dependent upon package SYSTEM. These tests
recompile package SYSTEN, making package TEXT_I0, and
hence package REPORT, obsolete.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B860012Z is not applicable because this irplementation supports no
predefined floating~point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

CR2009x, CR2009C, CR2009F and CR2009D are not applicable because
this compiler creates dependancies between generic bodies, and
units that instantiate them (see sectiorn .21 for ruies and
restrictions concerning generics).

LA3004A, LR3004B, ER3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma
INLINE when applied across compilation units (See Append:x F of
the Ada Standard in Zppendix B of this report, and Section 2.2.h
(1)).

CD1009C and CD2A4IA..J (10 tests) are not applicable because this
implementation imposes restrictions on 'SIZE length clauses for
floating point types.

CD2A61I 1is not applicable because this implementation imposes
restrictions on 'SIZE length clauses for array types.

CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation imposes restrictions on 'SIZE length
clauses for access types.

CD2291K..E
clauses for

CD2B11G 1is

TEST INFORMATION

{5 tests) are not applicable because 'SIZE length
task types are not supported.

not applicable because 'STORAGE_SIZE representation

clauses are not supported for access types where the designated
type is a task type.

CD2B15B 1is

not applicable because a collection size larger than

the size specified was allocated.

RE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL_IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package

DIRECT_IO

with unconstrained array types and record types with

discriminants without defaults. These instantiations are rejected
by this compiler.

CE2102D 1is
CREATE with

CE2102E is
CREATE with

CE2102F 1is
CREATE with

CE2102I 1is
CREATE with

CE2102J 1is
CRERTE with

inapplicable because this implementation supports
IN_FILE mode for SEQUENTIARL_IO.

inapplicable because this implementation supports
OUT_FILE mode for SEQUENTIAL_IO.

inapplicable because this implementation supports
INOUT_FILE mode for DIRECT_IO.

inapplicable because this implementation supports
IN_FILE mode for DIRECT_IO.

inapplicable because this implementation supports
OUT_FILE mode for DIRECT_IO.

CE2102N is inapplicable because this implementation supports OPEN
with IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET
with IN_FILE mode for SEQUENTIAL_IO.

CE2102P is inapplicable because this implementation supports OPEN
with OUT_FILE mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESET
with OUT_FILE mode for SEQUENTIAL_IO.

CE2102R is inapplicable because this implementation supports OPEN
with INOUT_FILE mode for DIRECT_IO.

——

ac.

ad.

aeE.

af.

ag.

ah.

aj.

ak.

al.

TEST INFORMATION

CE21€2S 1is inapplicable because this implementation supports RESET
with INOUT_FILE mode for DIRECT_IOC.

CE21027 is inapplicabie because this implementation supports OPEK
with IF_FZLE mode for DIRECT_IO.

CE2iC2U is inapr_icable because this implementation supports RESET
with IN_FILE mode for DIRECT_IO.

CE2IC2V is inapplicable because this implementation supports OPEN
with OUT_FILE mode for DIRECT_IO.

CE2102V is inapplicabie because this implementation supports RESET
with OUT_FILE mode for DIRECT_IO.

CE3102E is inapplicable because text file CREATE with IN_FILE mode
is supported bv this implementation.

CE3102F is inapplicable because text file RESET 1is supported by
this implementation.

CE3102G is inapplicable because text file deletion of an external
file is supported by this implementation.

CE31021 is inapplicable because text file CREATE with OUT_FILE
mode :s supported by this implementation.

CE3102J is inappiicable because text file OPEN with IN_FILE nmode
is supported »y this implementation.

CE3102K is inapplicable because text file OPEN with OUT_FILE mode
is no: supported by this implementation.

CE3111B and CE3115R open two internal files, both of which
correspond to the same external file. The tests PUT a string to
the first internal file, and then try to read this strin¢ from the
seconé internal file.

This implementation raises END_ERROR upon executing the GET
statement because of the use of buffers which are not flushed
until the output of a line of page terminator. Due to LRM 14.1
{13), the AVO ruled these tests not applicable.

T I AIIIIIIII——//
TEST IKFOFRIIATIOR

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modificeztions of code.
processing, or evaluation in order to compensate for lec:itinmate
inplementation behavior. Yodifications are made by the RVF ir cases where
legitimate implementation behavior prevents the successful completuorn of an
(othervise) applicable test. Exarmples of such modificatiens include:
adding a length clause to alter the default size of a cocllectio:; spi:itting
a Class B test into subtests so that =all errors are detected; anc
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 81 tests.

a. The folloving tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B24007R B24009A B25002B B32201r B34005N
B34005T B34007H B35701A B36171A B36201A B3710iA
B37102x B37201A B37202n B37203% B37302% B38003A
B38003B E38008n B38008B E38009A B38009B B38103A
B38103B B38103C B38103D B38103E B43202C B44002h
B48002A B48002B B48002D B48002E B48002G B48003E
B49003x B49005A B49006r B49007x% B490092 B4AC10C
B54R20r B54A25R B58002A B580C2B BE590012 B59001C
B590011I B62006C B67001A B67001B B67001C B67001D
B74103E B74104R B85007C B91005A& B95003An BS50CTB
B95031x B95074E BC1002x BC1109x BC1109C BC1206a
BC2001E BC3005B BC3009C BD5005B

b. For the two tests BC3204C and BC3205D, the compilation order was
changed to

BC3204C0, Ci, C2, C3¥, C4, C5, C6, C3NM
and
BC3205D0, D2, D1¥

respectively. This change was necessary because of the compiler’'s
rules for separately compiled generic units (see section 2.2i for
rules and restrictions concerning generics). When processed 1in
this order the expected error messages were produced for BC3204C3M
and BC3205D1X.

c. The two tests BC3204D and BC3205C consist of several compilation

. units each. The compilation units for the main procedures are
near the beginning of the files. When processing these files

unchanged, a 1link error is reported instead of the expected

compiled generic wunits. Therefore, the compilation files were

modified by appending copies of the main procedures to the end of

I IIII—§—§—§
TEST INFORMRTIOI

these files. Vhen processed, the expected error messages Were
generate¢ by the compiler.

é¢. Tests C39005%, <CD7004C, CD7005E and CD7006E wrongly presume an
order of elaboration of the library unit bodies. These tests were
moéified to include a PRAGMA ELABORATE (REPORT):

e. Test E28002B checks that predefined or unrecognized pragrmas may
have arguments 1involving overloaded identifiers without enough
contextual imformation to resolve the overloading. It also checks
the correct processing of pragma LIST. For this implementatior,
pragma LIST is only recognised if the compilation file is compiled
without errors or warnings. Hence, the test was modified to
demonstrate the correct processing of pragma LIST.

f. Tests C45524R and C45524B contain a check at line 136 that may
legitimately fail as repeated division may produce a quotient that
lies within the smallest safe interval. This check was modified
to include, after line 138, the text:

ELSIF VAL ¢= F'SAFE_SMALL THEN COMMENT ("UNDERFLOW SEEMS GRARDUAL"):

For this implementation, the required support package specification,
SPPRT13SP, was rewritten to provide constant values for the function names.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the TARTAN ADA Sun/Sun Version 2.1 compiler was submitted to the AVF
by the applicant for review. Analysis of these results demonstrated that
the corpiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the TARTAN ADA Sun/Sun Version 2.1 compiler using ACVC
Version 1.10 was conducted by IABG on the premises of IABG. The
configuration in which the testing was perforred 1is described by the
following desigrations of hardware and software components:

Host computer: SUN 3/60

Kost operating system: SUN O0S Version 3.5

Target computer: SUN 3/60

Target operating system: SUN 0S Version 3.5

Compiler: TARTAN ADAR Sun/Sun Versiom 2.1

The original ACVC distribution tape was loaded to a VAX 8350, where it was
customized to remove all withdrawn tests and tests requiring unsupported
floating point precisions. Tests that make use of implementation specific

-

TZET IFFORIATIOR

roéifications during the

Lo}

values were also customized. Tests reguirin
.

prevalication testing were modified accordingly

[2od

™he custorized AZVZ was then transfered to the host computer via an
Ethernet connection.

After the test files were Joaded ¢ dish, the full set of tests wac
corpiled linked, auc ell erecutalle tests were run on the SUN
3/60. Results were transfered vie an Ethernet connection to a ViY 8350,
where theyv were evaluated and printed

The compiler was tested using command scripts provided by TARTAN
LABORATORIES INCORPORATED and reviewed by the wvalidation tearn. The
compiler was tested using no option settings. Hkll chapter B tests were
compiled with the listing option on (i.e. -La). The linker was called with
the command

alib link (testname>
kR full list of compiler and linker options is given in Appendix E.
Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs
were caprured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

2,7.3 Test fite

Testing was conducteé at IRBG mbH, Ottobrunn and vas completed on 12 April
1986.

DECLARATION OF COPNFORNAICE

RPPENDIX R

DECLARATION OF CONFORMANCE

TRRTAN LABORATORIES INCORPORATED has submitted the following
Declaration of Conformance concerning the TARTAN EDA Sun/Sun
Version 2.1 compiler.

DECLARATION OF CONFORMANCE
Compiler Implementor: Tartan Laboratories Incorporated

Ada Validation Facility: IABG mbH, Dept. SZT
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: Tartan Ada Sun/Sun Version 2.1
Host Architecture: Sun 3/60

Host 0S and Version: Sun 0S8 Version 3.5

Target Architecture: Sun 3/60

Target 0S and Version: Sun OS Version 3.5

Implementor's Declaration

I, the undersigned, representing Tartan Laboratories Incorporated, have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-18152 in the compiler(s) listed in this declaration. I
declare that Tartan Laboratories Incorporated is the owner of record of
the Ada Language compiler(s) listed above and, as such, is responsible
for maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A.
211 certificates and registrations for Ada lLanguage compiler(s) listed
in this declaration shall be made only in the owner's corporate name.

%ﬁ_ Date: o Mé;,/ &7

Tartan Labeoratcries Incorporated
D. L. Evans, President

owner's Declaration

I, the undersigned, represerting Tartan Laboratories Incorporated, take
full responsibility for implementation and maintenance of the Ada com-
piler(s) listed above, and agree to the public disclosure of the final
Validation Summary Report. I declare that all of the Ada Language
compilers listed, and their host/target performance, are in compliance
with the Ada Language Standard ANSI/MIL-STD~1815A.

/%_ Date: 2M4;¢ 5?

Tartan Laboratories Incorporated
D. L. Evans, President

APPERDIX F OF TRE Ada STANDARD

RPPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies corres-
pond to implementation-dependent pragmas, to certain machine-
dependent conventions as mentioned in chapter 13 of the Ada Stan-
dard, and to certain allowed restrictions on representation
clauses. The implementation-dependent characteristics of the
TARTAN ADA Sun/Sun Version 2.1 compiler, as described in this
Appendix, are provided by TARTAN LABORATORIES INCORPORATED.
Unless specifically noted otherwise, references in this appendix
are to compiler documentation and not to this report.

Implementation-specific portions of the package STANDARD, are
contained in Appendix F.

Chapter 5
Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F o Military Siandard, Ada Programming Language,

ANSIMIL-STD-1815A (American Nadonal Standards Institute, Inc., February 17, 1983).

5.1. PRAGMAS

5.1.1. Predefined Pragmas

This section summarizes the effects of and restrictions on predefined pragmas.

* Access collections are not subject o automatic storage reclamation so pragma CONTROLLED has no effect.
Space deallocaied by means of UNCHECXED DEALLOCATION will be reused by the allocation of new
objects.

e Pragma ELABORATE is fully supported.

e Pragma INLINE is supporied but has an effect on the generated code only when the zall appears within the
same compilation unit as the body of the in-lined subprogram.

* Pragma INTERFACE is not supported. The implementation-defined pragma FOREIGN_BODY (see: Sec-
tion 5.1.2.2) can be used to interface to subprograms written in other languages.

e Pragma LIST is supported but has the intended effect only if the command line option -La was supplied
for compilation, and the listing generated was not due to the presence of errors and/or wamnings.

¢ Tarian compilers currently optimize both the time and space aspects based on what is best in the local
context. Future releases of the compiler will have option switches 10 decrease the levei of sophistication of
the opumizations. Because it is generaily very difficult to establish global time and space tradeoffs,
pragma OPTIMIZE cannot be effectively supported in the form suggested in the LRM.

» Pragma PACK is fully supported.

¢ Pragma PAGE is supported but has the intended effect only if the command line option -La was supplied
for compilation, and the listing generated was not due o the presence of errors and/or warnings.

* Pragma PRIORITY is fully supported.
¢ Pragma SUPPRESS is fully supported as required by Ada LRM 11.7.

¢ Future releases of the compiler will suppont the following pragmas: MEMORY_SIZE, SHARED,
STORAGE_UNIT and SYSTEM_NAME.

A waming message will be issued if an unsupported pragma is supplied.

.2. Implementation-Defined Pragmas
Implementation-defined pragmas provided by Tartan are described in the following sections.

6-2

USER MANUAL FOR TARTAN ADA SUN

5.J2.1. Pragma LNKAGE_NAME

The pragma LINKAGE_NAME associates an Ada entity with a string that is meaningful exiernally; e.g., 10 a
linkage editor. It takes the form

pragma LINKAGE_NAME (Ada-simpie-name, Siring-consiani)

The Aaa-simpie-name must be the name of an Ada entty declared in a package specification. This entity must be
one that has a runome representation; e.g., a subprogram, exception or object. It may not be a named number or
suing conswant T he pragma must appear after the declaration of the entity in the same package specification.

The effect of the pragma is 1o cause the string-constant 10 be used in the generated assembly code as an
externa. name for the associaled Ada enaty. It is the responsibility of the user to guarantee that this string
constant is meaningful to the linkage editor and that no illegal linkname clashes arise.

5.12.2. Pragma TOREIGN_BODY

A subprogram written in another language can be called from an Ada program. Pragma FOREIGN_BODY is
used to indicate that the body for a non-generic top-level package specification is provided in the form of an
object module. The bodies for several subprograms may be contained in one object module.

Use of the pragma FOREZGN_BODY dictates that all subprograms, exceptions and objects in the package are
provided by means of a foreign object module. In order 0 successfully link a program including a foreign body,
the object module for that body must be provided w0 the library using the alib foreign command described
in Section 4.7,

The pragma is of the form:

pragma FOREIGN BODY (language_name [, elaboranion_routine_name})
The parameter language_name is a string intended to allow the compiler w identfy the calling convention used
by the foreign moduie (but this functonality is not vet in operation). Currently, the programmer must ensure that
the calling convention and data representation of the foreign body procedures are compatible with those used by
the Taran Ada compiler. Subprograms called by tasks should be reenrant

The opuonal elaboration_routine_name string argument provides 3 means to initialize the package. The
routine specified as the elaboration_rousnine_name, which will be called for the elaboration of this package body,
mus: be a global routine in the object module provided by the user.

A specificauon that uses this pragma may contain only subprogram declarations. object decarations that use
an unconstrained type mark, and number declarations. Pragmas may aiso appear in the package. The rype mark
for an object cannot be a task type. and the object declaration must not have an inidal value expression. The
pragma must be given prior to any declaradons within the package specificaton. If the pragma is not located
before the first declaration, or any restriction on the declarations is violated, the pragma is ignored and a warning
is generated.

The foreign body is entrely responsible for initializing objects declared in a package utilizing pragma
FOREIGN_BODY. In particular, the user should be aware that the implicit initalizations described in LRM 3.2.1
are not done by the compiler. (These implicit initializations are associated with objects of access types, cernain
record rypes and composite types contining components of the preceding kinds of types.)

Pragma LINKAGE_NAME should be used for all declarations in the package, including any declarations in a
nested package specification to be sure that there are no conflicting link names. If pragma LINKAGE_NAME is
not used, the cross-reference qualifier, -x, (see Secton 3.2) should be used when invoking the compiler and the
resulting cross-reference tabie of linknames inspected to identify the linknames assigned by the compiler and
determine that there are no conflicting linknames (see also Section 3.5).

In the following example, we want to call a function plmn which computes polynomials and is wrigen in C.

-ta

APPENDIX FTO MIL-STD-18154

package MATH _FUNCS is
pragma FOREIGN_BCTY ("C");
function POLYNOMIAL {X:INTEGER) return INTEGER:
--Ada spec match:ng the T routine
pragma LINKAGE_NAME (POLYNOMIAL, "plmn™):
--Force comp..er L0 use name "pimn" wnen referring to this
-~ function
end MATH_FUNCS;

with MATH_FUNCS:; use MATH_FUNCS
procedure MAIN is
X:INTEGER := POLYNOMIAL(10):;
== Will generate a call to "plmn"
begin ...
end MAIN:

To compile, link and run the above program, you do the following steps:
1. Compile MATE_FUNCS
2. Compile MAIN
3. Obtain an object module (e.g. math. o) containing the compiled code for plmn.
4, Issue the command
a.ib foreign math_<£uncs math.o
5. Issue the command
alib link main

Without Step <, an attempt to link will produce an error message i..forming you of a missing package body for
MATH_FUNCS.

Using an Ada body from another Ada program library. The user may compile a body written in Ada fora
specification into the library, regardiess of the language specified in the pragma contained in the specification.
This capability is useful for rapid prototyping, where an Ada package may serve 10 provide a simulated response
for the functionality that a foreign body may eventually produce. It also allows the user 1o replace a foreign body
with an Ada body without recompiling the specification.

The user can either compiie an Ada body inw the library, or use the command alib f£oreign (See Section
4.7) 1 ust an Ada body from another library. The Ada body from another library must have been compiled
under an identical specificaton. The pragma ZINKAGE_NAME must have been applied o all entities declared in
the specificanon. The only way to specify the linkname for the elaboration routine of an Ada body is with the
pragma FOREIGN_BODY.

Using Calls to the Operating System. In some cases, the foreign code is actually supplied by the operating
system (in the case of system calls) or by runume libraries for other programming languages such as C. Such
calls may be made using a dummy procedure to supply a file specification to the alib foreigncommand.
You need a dummy . o file which may be obtained in 2 number of ways. One way is o0 compiie the procedure &

procedure DUMMY is
begin

null;
end;

Then, use the library command
alib foreign pkg dummy.o
where pkg is the name of the package that contains the pragma LINKAGE_NAME for the operating system call
For example 10 use the SunOS system call _sbrk in the program TEST:

USER MANUAL FOR TARTAN ADA SUN

Package MEMORY is

pragma FCREIGN_BODY (“ASM"):

procedure GET V'R"‘UAL MEMORY (MEM: INTEGER) ;

pragmaNKAGE NAME (Gc.'l' VIRTUAL_MEMORY, "_sbrk "):;
end MEMORY:;

with MEMORY;
procedure TEST is

begin
GET_VIRTUAL_MEMORY (MEM) ;

end TEST:

Obtain the file dummy . 0. Then use
alib fore:gn memory dummy.o
10 include the body for the system call in the library.

5.2. IMPLEMENTATION-DEPENDENT ATTRIBUTES
No impiementation-dependent attributes are currently supported.

53. SPECIFICATION OF THE PACKAGE SYSTEM
The parameter values specified for the SUN in package system [LRM 13.7.1 and Appendix C] are:
package SYSTEM is
type ADDRESS is new INTEGER;
type NAME is (MC68000);

SYSTEM_NAME : constant NAME := MC68000;
STORAGE_UNIT : comstant := 8;

MEMORY SIZE : constamt := 1_000_000:

MAX_INT : constant := 2_147_483_647;

.V.IN INT : constant := -MAX INT - 1;
SISIT : constant := 15;

MAX MANTISSA : conmstant := 31;

FINE_DELTA ¢ constant ;= 2#1 O#e-31;

TICK : constant := 0.01667;

subtype PRIORITY is INTEGER range 10 .. 200;

DEFAULT_PRIORITY : comstant PRIORITY := PRIQRITY'FIRST:

RUNTIME_ERROR : exception:

end SYSTEM;

5.4. RESTRICTIONS ON REPRESENTATION CLAUSES

The following sections explain the basic restrictions for representation specifications followed by additional
restrictions applying w© specific kinds of clauses.

5.4.1. Basic Restriction

The basic restiction on representation specifications [LRM 13.1] that they may be given only for types
declared in terms of 2 type definition, excluding a genezic_ type_definition (LRM 12.1) and a
private_type_definition (LRM 7.4). Any representation clause in violation of these rules is not obeyed
by the compiler; a dxagnosuc message is issued.

Further restrictions are explained in the following sections. Any representation clauses violating those restric-
tions are not obeyed but cause a diagnostic message to be issued.

6-5

APPENDIX F TO MLL-STD-1815A

£.4.2. Length Clauses
Length clauses [LRM 13.2] are, in general, supported. For details, refer to the following sections.

5.4.2.1. Size Specifications for Types

The ruies and restrictions for size specifications applied to types of various classes are described below.
The following principle rules apply:

1. The size is specified in bits and must be given by a static expression.

2. The specified size is taken as a2 mandate 1o store objects of the type in the given size wherever feasible.
No attiempt is made to store valoes of the type in a smaller size, even if possible. The following rules
apply with regard to feasibility:

* An object that is not a component of a composite object is allocated with a size and alignment that
is referable on the target machine: that is, no attempt is made to create objects of non-referable size
on the stack. If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object; for example

type My_Enum is (A,B):
for My_enum’size use 1l;
V,W: My enum; -- will occupy twe storage
-- units on the stack
-~ (1f allocated at all)
type rec is record
V,W: My_enum;
end record;
pragma Pack(rec):;
O: rec; -- will ocCupyv one storage unit
» A formal parameter of the type is sized according to calling conventions rather than size
specifications of the type. Appropriate size conversions upon parameter passing lake place
automagcally and are transparent 1o the user.

* Adjacent bits t0 an object that is a component of a composite object, but whose size is
non-referable. may be affected by assignments 10 the object, unless these bits are occupied by other
components of the composite object: that is, whenever possible, a component of non-referable size
is made referabie. .

In all cases, the compiler generates correct code for all operations on objects of the type, even if they are
stored with differing representational size in different contexts.

Note: A size specificadon cannot be used to force a cerain size in value operations of the type; for
exampie
type my_int is range 0..6553S;
for my_iunt’size use 16; ~-- o.k.
A,B: my_int;
...A + B... =~ this operation will generally be
-~ executed on 32-bit values

3. A size specification for a type specifies the size for objects of this type and of all its subtypes. For
components of composite types. whose subtype would allow a shorter representation of the component,
no atempt is made to take advantage of such shoner representations. In contrast, for types without a
length clause, such components may be represented in a lesser number of bits than the number of bits
required to represent all values of the type. Thus, in the example

G-¢

USER MANUAL FOR TARTAN ADA SUN

type MY _INT is range (0..2**15-1;
Sor MY_INT/SIZE use 16; -- (1)
subtype SMALL MY INT is MY _INT range 0..2%Z%;

4
—

cype R .s recor:z

X: SMALI_MY_INT;

enc.i. ;ecord:
the component R.X will occupy 16 bits. In the absence of the iength clause at (1), R.X may be represented
in 8 bits.
For the following type classes, the size specification must coincide with the default size chosen by the compiler
for the type:

 access types
« floating-point types
e task types

No useful effect can be achieved by using size specifications for these types.

5.4.2.2. Size Specificadon for Scalar Types
The specified size must accommodate all possibie values of the type including the value 0 (ever if 0 is not in
the range of the values of the type). For numeric types with neganve vaiues the number of bits must account for
the sign bit No skewing of the representation is attempted. Thus
type mv_int is range 100..101:
requires at least 7 bits, although it has only two values, while
type my_int (s range -101..-100:
requires 8 bits 10 account for the sign bit
A size specification for a real type does not affect the accuracy of operations on the type. Such influence
should be exered via the accuracy_definiziorn of the type (LRM 3.5.7,3.5.9).
A size specification for 2 scalar type may not specify a size larger than the largest operation size supported by
the target architecture for the respective class of values of the type.

5.423. Size Specification for Array Types

A size specificadon for an array type must be large enough to accommodate all components of the array under
the densest packing strategy explained below in adherence to any alignment constraints on the component type
(see Section 54.7).

The size of the component type cannot be influenced by a length clause for an array. Within the limits of
representing all possibie values of the component subrype (but not necessarily of its type), the representation of
components may, however, be reduced to the minimum number of bits, unless the component type cammes a size
specification.

If there is a size specification for the component type, but not for the array type, the component size is
rounded up to a referable size, unless pragma PACK is given. This applies even to boolean types or other types
that require only a single bit for the representation of all values.

5.42.4. Size Specification for Record Types

A size specificaton for a record type does not influence the default type mapping of a record type. The size
must be at least as large as the number of bits determined by type mapping. Influence over packing of com-
ponents can be exerted by means of (partial) record representation clauses or by Pragma PACK.

Neither the size of component types, nor the representation of component subtypes can be influenced by a
length clause for a record.

T
e

APPENDIX F TO ML_-STD-1815A

The only impiementation-dependent components allocated by Taran Ada in records contain dope information
for arrays whose bounds depend on discniminants of the record or contain reiative offsets of components within a
record layout for record components of dynamic size. These impiementaton-dependent components cannot be
named or sized by the user.

A size specification cannot be applied to a record type with components of dynamically determined size.

Note: Size specifications for records can be used only to widen the representation accomplished by padding at
the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragma PACK.

5.42.5. Specificaton of Collection Sizes

The specification of a collecton size causes the collection to be allocated with the specified size. It is
expressed in storage units and need not be static: refer o package SYSTEM for the meaning of storage units.

Any attempt 10 allocate more objects than the collection can hold causes a STORAGE _ERROR excepton 0 be
raised. Dvnamically sized records or arrays may carry hidden administratve storage requirements that must be
accounted for as pant of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible o use all memory locations of the allocated collection. Furthermore, some administra-
tive overhead for the allocator must be taken into account by the user (currendy 1 word per allocated object).

In the absence of a specification of a collection size, the collection is extended automatically if more objects
are allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGE_ERROR is raised only when the available target memory is exhausted. If a collecton size of
zero is specified. no access collecton is allocated.

5.4.2.6. Specification of Task Activation Size

The specification of a task activation size causes the task activation 1o be allocated with the specified size. It
is expressed in storage units; refer 1o package SYSTEM for the meaning of storage units.

Any agempt to exceed the activaton size during execution causes a STORAGE_ZRROR exception to be
raised Unlike collectdons, there is generally no extension of task activations.

5.42.7. Specification of ' SMALL
Only powers of 2 are allowed for * SMALL.

The length of the representation may be affecied by this specification. If a size specification is also given for
the type, the size specification takes precedence; the specification of * SMALL must then be accommodatable
within the specified size.

5.4.3. Enumeration Representation Clauses
For enumeration representation clauses [LRM 13.3], the following restrictions apply:

¢ The internal codes specified for the literals of the enumeration type may be any integer value between
INTEGER'FIRST and INTEGER’ LAST. Itis strongly advised (o not provide a representation clause that
merely duplicates the default mapping of enumeration types, which assigns consecutive numbers in as-
cending order starting with 0, since unnecessary runtime cost is incurred by such duplication. It should be
noted that the use of atributes on enumeration types with user-specified encodings is costly at run Gme.

¢ Armay types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array invoives a runtime translation of the index
value into the corresponding position value of the enumeration type.

&-8

USER MANTUAL FOR TARTAN ADA SUN

5.4.4. Record Representation Clauses

The alignment ctause of record representation clauses [LRM 13.4] is observed. The specified expression
must vield a target-dependent vaiue.

Stauc objects may be aligned at powers of 2 up to a page boundary. The specified alignment becomes the
minimum alignment of the record type. unless the minimum alignment of the record forced by the component
allocation and the minimum alignment requirements of the components is already more stringent than the
specified alignment

The component clauses of record representation clauses are allowed only for components and discriminants
of stadcally determinable size. Not all components need to be present Component clauses for components of
variant parts are allowed only if the size of the record type is statically determinabie for every variant.

The size specified for each component must be sufficient w0 allocate all possible values of the component
subtype (but not necessarily the component type). The locagon specified must be compatibie with any alignment
constraints of the component type: an alignment consraint on a component type may cause an implicit alignment
constraint on the record type itself.

If some, but not all, discriminants and components of a record type are described by a component clause, then
the discriminants and components without component clauses are allocated after those with component clauses;
no antempt is made to utilize gaps left by the user-provided allocation.

5.4.5. Address clauses
Address clauses [LRM 13.5] are supported with the following restncuons:

¢ When applied to an object, an address clause becomes a linker directive to allocate the object at the given
address. For any object not deciared immediately within a top-ievei library package, the address clause is
meaningiess. Address clauses applied to local packages are not supported by Tartan Ada. Address clauses
appiied 1o library packages are prohibited by the syntax; therefore, an address clause can be applied only to
a package if it is a body stub.

* Address clauses applied 10 subprograms and tasks are implemenied according to the LRM rules. When
applied 10 an entry, the specified value identifies an interrupt in a manner customary for the target
Immediately after a task is created. a runtime call is made for each of its entries having an address clause,
establishing the proper binding between the entry and the interrupt.

» Specified addresses must be constants.

5.4.6. Pragma ?ACX
Pragma PACK [LRM 13.1] is supported. For details, refer to the following sections.

5.4.¢.1. Pragma ?ACX for Arrays

If pragma PACK is applied 10 an array, the densest possible representation is chosen. For details of packing,
refer w the explanaton of size specifications for arrays (Section 5.4.2.3).

If, in addition, a length clause is applied to

1. the array type, the pragma has no effect. since such a length clause already uniquely determines the array
packing method.

2. the component type, the armay is packed densely, observing the component’s length clause. Note that the
component length clause may have the effect of preventing the compiler from packing as densely as
would be the default if pragma PACK is applied where there was no length clause given for the com-

ponent fype.

APPENDIX F TO ML.-STD-1815A

5.4.6.2. The Predefined Type String

Package STANDARD applies Pragma PACK 1o the type stzong. However, when appiied o characier arrays,
this pragma cannot be used to achieve denser packing than is the default for the tarpet 1 character per 8-bit
word.

5.4.6.3. Pragma PACK for Records

If pragma PACK is applied to a record, the densest possible representation is chosen that is compatible with
the sizes and alignment constraints of the individual component types. Pragma PACK has an effect only if the
sizes of some component types are specified explicidy by size specifications and are of non-referable nature. In
the absence of pragma PACK, such components generally consume a referable amount of space.

It should be noted that default type mapping for records maps components of boolean or other types that
require only a single bit to a singie bit in the record layout, if there are muitipie such components in a record.
Otherwise, it allocates a referable amount of storage to the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but not all components, the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the strategy of not utilizing gaps berween explicidy allocaied components stll
applies.

5.4.7. Minimal Alignment for Types

Cenain alignment properties of values of certain types are enforced by the type mapping rules. Any represen-
lation specificagon that cannot be satisfied within these constraints is not obeyed by the compiler and is ap-
propriately diagnosed.

Alignment constraints are caused by properties of the targe: architecture. most notably by the capability to
extract non-aligned component values from composite vaiues in a reasonabiyv efficient manner. Typically, restric-
tions exist thar make extraction of values that cross centain address boundaries very expensive, especially in
contexts invoiving array indexing. Permining data layouts that require such complicaied extractions may impact
code quality on a broader scale than merely in the local context of such extractions.

. Instiead of describing the precise aigorithm of establishing the minimal aiignment of types, we provide the
general rule that is being enforced by the alignment rules:

* No object of scalar type including components or subcomponents of a composite type, may span 3 target-
dependent address boundary that would mandate an evracton of the obsect’s value to be performed by two
Or more exgracuons.

55. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS

The only implementation-dependent components allocated by Tanan Ada in records contain dope information
for arrays whose bounds depend on discriminants of the record. These components cannot be named by the user.

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES

Section 13.5.1 of the Ada Language Reference Manual describes a syntax for associating interrupts with task
enmies. Tartan Ada implements the address clause

for TOENTRY use at intID:

by associating the interrupt specified by intID with the toent =y enoy of the task conuining this address
clause. The interpretation of intID is both machine and compiler dependent

10

(9]
]

USER MANUAL FOR TARTAN ADA SUN

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS

Taran supports UNCHECKEZ_CONVERSION with a restricuon that requires the sizes of both source and
target types to be known ar compile time. The sizes need not be the same. If the value in the source is wider than
tha in the target, the source value will be runcated. If narrower, it will be zero-extended. Calls on instantiations
of UNCHECKED_CCNVERSION are made inkine automaucally.

5.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES
Tartan Ada supponts all predefined input/output packages [LRM Chapter 14] with the excepuon of
LOW_LEVEL_IC (which is planned for a future reiease).
SEQUENTIAL_IO and DIRECT_IO may noi be instantiated on types whose representation size is greater
than 32255 bytes. Any anempt to read or write values of such types raises USE_ERROR.

SEQUENTIAL_IC and DIRECT_IC may not be instantaied on unconstrained array types, nor on record
record types with discriminants without default values.

An auempt (o delete an external file while more than one internal file refers o this external file raises
USE_ERROR.

When an exiemnal file is referenced by more than one internal file, an attempt to reset one of those internal
files 10 OUT_FILE raises USE_ERROR.

An atempt to create a file with FILE_MODE IN_FILE raises USE_ERROR.

Since the implemenuation of the input-output packages uses buffers. output 10 one file cannot necessarily be
read immediately from another file associated with the same external file.

The FORM parameter of file management subprograms is ignored.

An auempt to read a non-existent data record through the operations of SEQUENTIAL_IO or DIRECT_IO
raises DATA_ERRCR, except that END__ZRROR is raised when reading beyond the end of file.

If a SunQS system call returns an error number that cannot be mapped ontwo a predefined Ada excepuon, the
excepuon DEVICE _ERROR is raised.

5.9. OTHER IMPLEMENTATION CHARACTERISTICS
The following informaton is supplied in addition 10 that required by Appendix F to MIL-STD-1815A.

5.9.1. Definition of a Main Program

Any Ada library subprogram unit may be designated the main program for purposes of linking (using the
alib command) provided that the subprogram has no parameters,

Tasks initiated in impored library units foliow the same ruies for termination as other tasks [described in
LRM 9.4 (6-10)]. Specifically, these tasks are not terminated sunply because the mawn program has terminated.
Terminate altematives in selective wait statements in library tasks are therefore strongiy recommended.

5.9.2. Implementation of Generic Units

All instantiations of generic units, except the predefined generic UNCHECKED CONVERSION and
UNCHECKED_DEALLOCATION subprograms, are implemented by code duplications. No atempt at sharing
code by mulaple instantations is made in this reiease of Tartan Ada. (Code sharing will be impiemented in a
later release.)

Tartan Ada enforces the restriction that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the restriction that the specification and body of a generic unit must be provided
as pant of the same compiladon. A recompilation of the body of a generic unit will obsolele any units that
instantated this generic unit.

- 11

APPENDIX F TO MIL-STD-1815A

5.9.3. Implementation-Defined Characteristics in Package STANDARD
The impiementation-dependemt characterisucs for SUN in package STANDARD [Annex C] are:

package STANDARD i

-

type BYTE INTEGER s range -.2 . 127;
type SHCRT INTEGER is range 232768 .. 32 767;