
Depen-tdency -Directed
CV) Localization

of Software
< -bugs

Ron 1. Kupe

MIT Artificial intelIligyence Labora tory

DTIC
ELECTE

UNCLASSIFIED
SECJOIe CLAS.rItATION O

r
T'IS "&GE rW1%. Dee twn ted)

REPORT DOCUMENTATION PAGE RE INSTRUCTIONS
1, REPORY NUMBERt 2. GOVT ACCESSION NO. J RECIPIENT'S CATALOG NUMIER

AI-TR 1053

4 71T L E (end , w6IIle) S, TYPE OF REPORT a PERIOo COVERED

Dependency-Directed Localization of Software technical report

Bugs I. PEaRFORMING O1G. REPORT NUMBER

7. AUTNORfo) S. CONTRACT OR GRANT NUM1r104e)

N00014-88-K-0487Ron I. Kuper

S. PERFORMING ORGANIZATION NAME ANO AOORRESS 0. PROGRAM ELEMENT. PROJfCT. TASK

AREA & WORK UNIT NUMBERS

Artificial Intelligence Laboratory
545 Technology Square
Cambrid~e, MA 02139

It. CONTROLLING OFFICE NAME AND AOORESS 13. REPORT DATE

Advanced Research Projects Agency May 1989

1400 Wilson Blvd. Is. NUmaEOtOF PAGES

Arlington, VA 22209 74

14. MONITORING AGENCY NAME G AOORESS(II dIffternt front CoerllnS Office) IS. SECURITY CLASS. (et tli repert)

Office of Naval Research UNCLASSIFIED
Information Systems

Arlington, VA 22217 IS.. OtCLASS, FICATION/OOWNGRAOING

16. OSTRIBUTION STATEMENT (0S Ohio R per) -

Distribution is unlimited

17. OISTRIBUTION STATEMENT (of It. abstract eftered In Bieck 20. It die.rent fre" Popov)

IS. SUPPLEMENTARY NOTES

None

Is. KEY WORDS (CoMO. an ,ee-* ide of necesary an identify by block Memer.,)

debugging
programmer's apprentice

80. ABSTRACT (Cmnfn e on revure* Offe. it nocedar aed D&wif by &#*st Ruw~ev

A software bug manifests itself as a violated specification. Debugging is the processthat culminates in repairing a program so that it satisfies its specification. An im-

portant part of debugging is localization, whereby the smallest region of the program
that manifests the bug is found. The Debugging Assistant (DEBUSSI) is a system
that localizes bugs by reasoning about logical dependencies. Via queries to the user
and automated deduction, DEBUSSI manipulates the assumptions that underlie a

D r 1 473 -o,,o.o or I Nov s, It OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE r*e Dote linfo*o

Block 20 cont.

bug manifestation, eventually localizing the bug to one particular assumption. At

the same time DEBUSSI incrementally acquires specification information, thereby

extending its understanding of the buggy program. As part of the Programmer's Ap-
prentice, DEBUSSI will be useful for validating partial designs, as well as for testing

fully implemented code.

Accession For
NTISGI&I

DTIC TAB F]
Unannounced 0"
Justi ioatlo-

By
Dlstribution/

Availability Codes X

Avail and/or " /
Dist Special

Dependency-Directed Localization

of Software Bugs

by

Ron I. Kuper

May 10, 1989

Copyright @1989 Massachusetts Institute of Technology

Abstract

A software bug manifests itself as a violated specification. Debugging is the process
that culminates in repairing a program so that it satisfies its specification. An im-
portant part of debugging is localization, whereby the smallest region of the program
that manifests the bug is found. The Debugging Assistant (DEBUSSI) is a system
that localizes bugs by reasoning about logical dependencies. Via queries to the user
and automated deduction, DEBUSSI manipulates the assumptions that underlie a
bug manifestation, eventually localizing the bug to one particular assumption. At
the same time DEBUSSI incrementally acquires specification information, thereby
extending its understanding of the buggy program. As part of the Programmer's Ap-
prentice, DEBUSSI will be useful for validating partial designs, as well as for testing
fully implemented code.

/~i *1

This publication is a revised version of Automated Techniques for the Localization
of Software Bugs, a report submitted to the Department of Electrical Engineering and
Computer Science on May 12, 1988 in partial fulfillment of the requirements for the degree
of Master of Science.

The research described here was conducted at the Artificial Intelligence LaL .:ory of the Mas-
sachusetts Institute of Technology. Support for the laboratory's artificial intelligence research has
been provided in part by the following organizations: National Science Foundation under grant IRI-
8616644, Advanced Research Projects Agency of the Department of Defense under Naval Research
contract N00014-88-K-0487, IBM Corporation, NYNEX Corporation, and Siemens Corporation.

The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the policies, expressed or implied, of these organizations.

Contents

1 Introduction 3
1.1 The Approach Taken by DEBUSSI 4
1.2 Overview of DEBUSSI's Operation 5
1.3 DEBUSSI As Part of the Programmer's Apprentice 7
1.4 Organization 8

2 Localization Scenarios 9
2.1 Terminology 9
2.2 The User Interface 10
2.3 A Program Without Specifications 12
2.4 Localizing a Non-Fatal Bug 14
2.5 Localizing a Fatal Bug 24
2.6 A Partially Implemented Program 28

3 The Details 39
3.1 The Plan Calculus 40
3.2 Visualizing Dependencies 44
3.3 Dependency-Directed Bug Localization 44
3.4 Multiple Bugs 50
3.5 Query Selection Heuristics 52

3.5.1 Binary Search 52
3.5.2 Avoid Language Primitives 53
3.5.3 Maximal Data Flow Cover 53
3.5.4 Sequential Stepping 53

4 Related Work 55
4.1 Hardware Troubleshooting 55

4.1.1 The Role of Specifications 55
4.1.2 The Cost of Internal Probing 56

4.2 Hardware Troubleshooting Approaches 56
4.3 Overview of Software Debugging 57

I

2 CONTENTS

4.4 Tutoring Systems................................... 58
4.5 Debugging Systems 61
4.6 Related Work in The Programmner's Apprentice. 65

5 Limitations and Future Work 68

Chapter 1

Introduction

One of the most dreaded tasks in programming is debugging unfamiliar code. A
methodical approach is the only way to manage the complexity of this task. First,
determine which subroutines actually contribute to the program's incorrect output.
Then choose a subroutine and consult its source code and documentation to determine
what it is supposed to do. Finally, compare its expected behavior with its observed
behavior; where they disagree is where the bug can be found.

In this approach to bug localization, the focus is on reasoning about a program's
structure and behavior. The control and data flow structure of a program gives
rise to a network of dependencies between its parts. These dependencies determine

how a bug ultimately manifests itself, so they provide leverage to the task of bug
localization. Furthermore, approaching bug localization at the level of dependencies
allows idiosyncratic details of a program's implementation to be ignored, therefore
allowing debugging techniques to be applied to partially implemented programs.

The Debugging Assistant (DEBUSSI 1) is an experimental system that helps a
programmer localize bugs. DEBUSSI finds an initial set of suspects by reasoning
about the dependencies that arise from data flow and control flow. With well-chosen
queries to the user, it incrementally acquires missing specification information, until
it has enough information to rule out all but one suspect. If this one remaining
suspect has internal structure, localization continues recursively on its parts.

DEBUSSI is a part of the Programmer's Apprentice project [191, both in terms of
its philosophy and and its technology. DEBUSSI is intended to work side-by-side with
the programmer as a junior partner. It is implemented using Cake [15], a powerful
reasoning system developed in the project.

Studying debugging contributes to an understanding of general problem solving
principles. We believe that the techniques that people use in debugging programs
are similar to those in other problem solving tasks, such as hardware troubleshooting
and medical diagnosis. Understanding how to debug unfamiliar code is especially

1Apologies to the late composer.

3

4 CHAPTER 1. INTROD UCTION

revealing of general problem solving abilities, because it requires reasoning in the
face of limited experience. Debugging unfamiliar code provides insight into "first-
principles" reasoning, as opposed to experience-based reasoning.

1.1 The Approach Taken by DEBUSSI

In any discussion of automated program debugging, several major issues must
be addressed. This section will discuss these debugging issues, and will characterize
DEBUSSI's approach in terms of these issues.

A first issue is how the debugger represents programs and specifications. Predicate
logic, parse trees and graph formalisms are examples of common program represen-
tations. A good representation should be programming language independent and
should easily scale to large programs.

DEBUSSI represents programs using a hybrid of graphical and logical formalisms
known as the Plan Calculus [2, 13, 16]. A plan is a graph whose nodes represent
operations in a program, and whose arcs represent data flow and control flow. Plans
also have logical annotations to represent preconditions, postconditions and data
invariants.

Plans are programming-language independent. They abstract away from such
language-specific details as variable binding constructs and unnecessary sequential-
ization of control flow. Plans are also hierarchical. They allow computations to be
viewed as "black boxes" whose internal structure may or may not be important.

A second issue in debugging is what part of the task is actually performed by the
debugger. Debugging can be viewed as being composed of the following sequence of
steps: test generation, bug detection, bug localization, bug understanding and bug
repair. Various systems focus on one or more of these steps.

DEBUSSI performs bug localization, isolating an error to a particular function call
or section of code. Bug localization becomes critically important in programming-in-
the-large, where programs can be millions of lines long. In such programs, the sheer
quantity of code makes bug localization a very labor intensive task.

A final debugging issue is the type of knowledge and deductive capabilities that
are brought to bear. Debugging systems may use several kinds of programming
knowledge. For example, a system may have a library of "bug patterns," which
are matched against a buggy program to find errors. A system may also have some
knowledge about program design. A debugger empowered with this kind of knowledge
can compare its design decisions with the programmer's, with the expectation that
the bug will be found in some bad decision.

Debugging systems also employ a variety of deductive methods. One commonly
used method is to rewrite programs via transformation rules, eventually making the
program syntactically equivalent to its buggy counterpart. Another method is to
represent the program via logical formulae, and use automated theorem proving to

1.2. OVERVIEW OF DEBUSSI'S OPERATION 5

demonstrate its correctness or incorrectness.
DEBUSS utilizes knowledge of program's specifications, control flow and data

flow. Control flow and data flow information is obtained from the program's source
code. Specification knowledge may be provided a priori, or may be obtained from
the user.

DEBUSSI's programming knowledge is represented as logical predicates. Deduc-
tion on these predicates is done by Cake [15], a layered reasoning system developed
for the Programmer's Apprentice. An important aspect of the deductive capability
of Cake is it's use of truth maintenance techniques to record logical dependencies.

1.2 Overview of DEBUSSI's Operation

Figure 1.1 depicts DEBUSSI's overall architecture. There are two major compo-
nents to the system: the reasoning system, Cake; and the debugging assistant, DE-
BUSSI. Cake is an existing system in the Programmer's Apprentice project. DEBUSSI
is the contribution of this research.

DEBUSS accepts input in the form of source code. (In the current implementation
of DEBUSSI, all programs must be side-effect free.) As shown in the lower left comer
of the figure, a program analyzer translates the source code into plans. (In the current
implementation of DEBUSSI, source-code analysis is done by hand, but technology
exists in the Programmer's Apprentice to automate this process [26].) Recall that
the plan is a hybrid representation for the program, combining graphical and logical
formalisms. The program analyzer encodes the graphical aspect of the plan as logical
formulae, and through these formulae Cake reasons about the run-time behavior of
the program.

In addition to program plans, the reasoning system may be given some initial
partial specification information. For example, the user (or an automated assistant
[3]) can supply an explicit test case. Alternatively, specifications may already exist
in the design environment.

If the program is buggy, then its specifications will be in conflict with its behavior.
This conflict will manifest itself in the reasoning system as a contradiction. DEBUSSI
commences bug localization when a contradiction arises.

Given a contradiction (bug manifestation) DEBUSSI first forms an initial set of
suspects via dependency analysis. By exploring the dependency structure that leads
to the contradiction, DEBUSSI determines the premises that underlie the bug mani-
festation. The initial set of suspects is determined from this set of premises.

Because DEBUSSI bases its dependency analysis on violated specifications, a bug
can be localized only if it can be made to manifest itself. In other words, if some
bug is lying dormant in a program, and the user has no test case (or specification)
that reveals that bug's presence, DEBUSSI will be unable to localize it. Some of
the suspects will be conditional statements, or "splits" in control flow. DEBUSSI

6 CHAPTER I. INTRODUCTION

User

Suspects
(

DEBUSSI IF

Dependency split % Query
Analysis -- t Analysis --

Program

Analyzer

Source Code

Figure 1.1: Architecture of DEBUSSI

1.3. DEBUSSI AS PART OF THE PROGRAMMER'S APPRENTICE 7

attempts to exonerate splits by performing split analysis on each one. In split analysis.
DEBUSSI observes how the program's output changes when a split "goes the other
way." If changing a split's outcome does not alleviate the bug manifestation, then
the split can be exonerated. (See Chapter 3 for more details).

Dependency analysis and split analysis will usually exonerate some, but not all,
of the suspects. At this point DEBUSSI requires more specification information, so
it queries the user about one of the remaining suspects. In choosing which suspect
to ask about, DEBUSSI balances the need to obtain as much new information as
possible with the need to avoid overtaxing the user's mental faculties. Finding the
middle ground between these two opposing constraints is done with heuristics.

The new information obtained in the query will result in a change in the logical
dependency structure within Cake. The changed dependency structure will often
reflect the exoneration of one or more suspects. To determine which suspects may
be exonerated as a result of the query, DEBUSSI once again performs dependency
analysis on the initial bug manifestation.

DEBUSSI continues iterating through the steps of dependency analysis, split anal-
ysis and querying until it finds itself with one suspect or no suspects. If one suspect
remains, and it represents a call to a system primitive (such as Car in Lisp), then
DEBUSSI concludes that the bug is due to an incorrect use of that primitive.

If one suspect remains, and it represents a call to a user-defined function, then
DEBUSSI will attempt to further localize the bug to some point within that function
call. In this case, DEBUSSI "zooms in" on the function call by expanding its definition
inline, and continues by recursively debugging the expanded definition.

If DEBUSSI is unable to localize the bug after zooming in, it ends having no
suspects. In this case, DEBUSSI concludes that the bug is at some undetermined
place within the enclosing function call. This situation typically arises when the
bug is due to faulty data flow, such as incorrect argument order for a function call.
(Another way for DEBUSSI to come up with zero suspects is when the program has
more than one bug. Chapter 3 addresses this issue in detail.)

1.3 DEBUSSi As Part of the Programmer's Apprentice

DEBUSSI shares three key philosophical features with the Programmer's Appren-
tice. First, it is an active tool, cooperating with the programmer as an assistant.
This is demonstrated by DEBUSSI's query mechanism, which does some things by
itself, and gets assistance from the user for others.

Second, DEBUSSI adds to, rather than replaces, existing programming environ-
ments. For example, we expect other systems [3] to provide DEBUSSI with test cases
that will allow the automatic testing of potentially buggy code.

Third, DEBUSS follows the approach of incremental automation, meaning that
its power will advance with improvements in the underlying technology. One such

8 CHAPTER 1. INTRODUCTION

technological advance would be the inclusion of a program's design history into the
debugging environment. The design history could supply knowledge of which func-
tions have been tested the least or edited most recently, knowledge that could assist
the task of bug localization.

DEBUSSI uses Cake [15], a technological resource of the Programmer's Apprentice
project. Cake is a layered reasoni,,g system, supporting reasoning about functions,
sets, frames and plans. It includes a truth maintenance system, which makes it easy
to deal with the changing and possibly contradictory information that is inherent in
the task of debugging.

1.4 Organization

Chapter 2 presents several transcripts illustrating the key ideas underlying DE-
BUSSI's localization techniques. These transcripts are actually runnable in the current
implementation of DEBUSSI. Chapter 3 describes the localization algorithm in detail
and discusses the heuristics employed in query selection. Chapter 4 discusses related
work, including a comparison of the domains of software bug localization and hard-
ware troubleshooting. Chapter 5 adiresses limitations of the localization algorithm
and proposes future work.

Chapter 2

Localization Scenarios

This chapter contains three scenarios illustrating DEBUSSI's bug localization tech-
niques. The first scenario demonstrates how DEBUSSI localizes a non-fatal bug. The
second scenario demonstrates the localization of a fatal bug, i.e., a bug that manifests
itself by "crashing" the program. The final scenario demonstrates that DEBUSSI's
localization techniques are general enough to be applied to partially implemented
programs.

There are several important recurring themes in this chapter. One theme is the
range of DEBUSSI's applicability. DEBUSSI can localize bugs in fully implemented
programs by running them on concrete data and comparing observed and expected
results. Alternatively, DEBUSSI can debug partially implemented programs by at-
tempting to prove that an implementation satisfies a set of partial or complete spec-
ifications.

A second important theme is DEBUSSI's use of heuristics, both in choosing queries
and exonerating suspects. Heuristics are useful in choosing queries because the struc-
ture of a program may not provide enough insight into which parts of the program are
most likely to be buggy. Heuristics are useful for exonerating suspects because they
provide shortcuts that can reduce the workload of the automated reasoning system.

A third theme is the way DEBUSSI uses queries to incrementally acquire partial
specification information. The underlying principle is that if a programmer recognizes
that some part of a program is buggy, he can often provide a violated specification that
characterizes the bug. For example, if a programmer indicates that some function
argument has the wrong value, he is asked to provide a description of the correct
value.

2.1 Terminology

A bug is an error ii structure of a program. One common type of bug is
the incorrect use of a t mming language primitive, for example, using Cons to

9

10 CHAPTER 2. LOCALIZATION SCENARIOS

concatenate two lists instead of Append. Another common type of bug is incorrect
dataflow within a function, for example, calling (Member The-List 'X) instead of
(Member 'X The-List).

Programmers usually find bugs by noticing violated specifications, or bug mani-
festations. A common type of bug manifestation is the failure of a simple test case,
where a program produces an incorrect output for a particular input. Another com-
mon bug manifestation is abnormal termination, or "crashing." A third type of bug
manifestation is nontermination, or "infinite looping."

There is an important distinction between bugs and bug manifestations. Bugs are
identified by noticing incongruities in a program's source code. Bug manifestations
are identified by noticing inconsistencies in a program's run-time behavior. In other
words, if a program is viewed as a black box with input and output ports, then a bug
is a structural error found inside the box. A bug manifestation is an error observed
on the box's ports.

DEBUSSI performs bug localization by finding the innermost dynamic function
call that manifests a bug. To better understand the notion of "innermost," suppose
that the function Main manifests a bug, and Main calls Func (among others). Initially,
DEBUSSI localizes the bug to Main, but if it can show that Func also manifests a bug,
then the bug is further localized to Func.

A crucial characteristic of DEBUSSI's localization technique is that it localizes
bugs to function calls, not function definitions. In the previous example, if Main had
called Func twice, then DEBUSSI would consider each call to Func as an independent
suspect. After the bug has been localized to a particular call, the user can choose
between replacing the call with a different function, or redefining Func.

In the process of localizing a bug, DEBUSSI maintains a set of suspects, which is
the set of potentially buggy function calls. This set is narrowed down by exonerating
one or more suspects, i.e., removing them from the current set of suspets. Repeated
exoneration will either narrow the suspect set down to a single culprit, or will rule
out all of the suspects (see Chapter 3).

2.2 The User Interface

The scenarios below present an idealized version of DEBUSSI's user interface. The
differences between the ideal and actual interfaces to the running prototype are mostly
aesthetic and require no changes to DEBUSSI's automated techniques. This section
provides an overview of the interface and explains the presentational conventions.

2.2. THE USER INTERFACE 11

Sample Frame

Function call: (ReEnqueue 'JoblS '(JobIS Jobi8))
Returned (incorrect) value: (Job15)

(Deftu ReEnqueue (Item Queue)
(If (Queue-Empty? Queue)

(Make-Queue Item)
(Enquene Item (Queue-Delete Item Queue))))

CODE VIIDOV

Suspects due to dependency analysis:
Queue-Empty Queue-Delete Enqueue

Split analysis exonerates:
Queue-Empty?

Function call: (Queue-Delete 'JobIS '(JobiS Job18))
Returned value: Nil

Was Queue-Delete called correctly? Yes
Did Queue-Delete return the right result? lo

11ERA CTION WINDOW

The figure above is a sample frame illustrating DEBUSSI's user interface. The user
and DEBUSSI are tracking down a bug within ReEnqueue, a procedure that takes an
item and a queue and returns a new queue with the item at its head.

At the top of the figure is the code window. It contains a source-code listing
of the procedure that is the current focus of attention. The calls to Enqueue and
Queue-Delete are displayed in a bold typeface, indicating that they are suspects.
The call to Queue-Empty is underlined, indicating that it has just been exonerated.
Queue-Delete has a box around it to indicate that it is the suspect currently being
queried about.

Below the code window is the interaction window. It is the locus of communication
between DEBUSSI and the user. DEBUSSI keeps the user abreast of its actions via
messages displayed in this window.

The last few lines in the interaction window are a simple query about the boxed
call of Queue-Delete. The user's response to the query is displayed in bold.

The only difference between DEBUSSI's actual interface and this hypothetical
interface is the presence of the code window. Since the code window is merely a
presentation of the program's source code, its addition does not add any power to
DEBUSSI's automated techniques, but does increase its usability.

A practical interface to DEBUSSI would be considerably less verbose than the one
presented in this chapter. In particular, any actions taken by DEBUSSI that do not
explicitly require user interaction can be done silently, and in this chapter, frames
which contain such actions will be indicated as "Not Presented to the User.'

12 CHAPTER 2. LOCALIZATION SCENARIOS

2.3 A Program Without Specifications

The first two scenarios demonstrate how DEBUSSI localizes bugs in a program
having no specifications. All specification information that DEBUSSI obtains will
come from the user. The only initial information available is source code, from which
DEBUSSI can determine control and data flow.

The example program is a Common Lisp [23] program that performs unification
[271. It's inputs are two patterns and an environment (an initial list of bindings).
Patterns are represented as lists. Variables are represented as lists whose Car is a
question-mark. Bindings are represented as cons-cells whose Car is a variable.

> (Unify '(F C? X) C? Y)) '(F 3 4) Nii)
(((? X) . 3) C(? Y) . 4))
> (Unify 'CF C? 1)) '(G 3) Nil)
NoNatch
> (Unify '(F 1) '(F 1) Nil)
Nil

Three examples of calls to Unify are shown above. In the second example, the
two patterns given to Unify are incompatible, and Unify returns the special atom
NoMatch. In the third example, the two patterns match trivially (i.e., with no bind-
ings), and Unify returns Nil.

The top-level code for the unifier is shown in Figure 2.1. Unify recursively com-
pares the two patterns, updating the environment when a variable is encountered in
either pattern. Var-Var-Match compares two variables and, if necessary, updates the
environment after binding one to the other. Var-Pat-Match matches a variable with
a pattern, making sure that the pattern is compatible with the current environment.

The remaining code in the unifier implementation is shown in Figure 2.2. Freeof?
verifies that a pattern does not contain any instance or binding of a particular vari-
able. Lookup returns the binding of a given variable within an environment, and
Extend adds a new binding to an environment.

Constant? returns a non-Nil value when its argument is an atom, i.e., not a list
or variable. Same-Constant? compares two constants using Eq. Var? returns non-
Nil when its argument is a variable, i.e., a Cons-cell whose Car is a question-mark.
Nov-Binding, Binding-Var and Binding-Val are the constructor and accessors for
variable bindings.

2.3. A PROGRAM WITHOUT SPECIFICATIONS 13

(Defun. Unify (PI P2 Env)
(Cond ((Eq Env 'NoMatch) 'NoMatch)

((ar? P1)
(If (Var? P2)

(Var-Var-Match P1 P2 Env)
(Var-Pat-Match P1 P2 Env)))

((ar? P2) (Var-Pat-Match P2 P1 Env))
((Constant? PO)
(If (Constant? P2)

(If (Same-Ccnstant? PI P2)
Env

'NoMatch)
'NoMatch))

((Constant? P2) 'NoMatch)
(T (Unify (Cdr P1)

(Cdr P2)
(Unify (Car P1) (Car P2) Env)))))

(Defun Var-Var-Match (V1 V2 Env)
(If (Eq VI V2)

Env
(Let ((El (Lookup V1 Env))

(B2 (Lookup V2 Env)))
(If (Null B1)

(If (Null B2)
(Extend V1 V2 Env)

(Unify V1 (Binding-Val. B2) Env))
(Unify (Binding-Val Bi)

(If (Null B2)
V2

(Binding-Val B2))
Env)))))

(Defun Var-Pat-Match (Var Val Env)
(Let ((Value-Cell (Lockup Var Env)))
(If (Null Value-Cell)

(If (Fresof? Var Val Env)
(Extend Var Val Env)

'NoMatch)
(Unify (Binding-Val Value-Cell) Val Env)))

Figure 2.1: Implementation of Unify, Var-Var-Match and Var-Pat-Match.

14 CHAPTER 2. LOCALIZATION SCENARIOS

(Defun Fre.of? (Var E Env)
(Cond ((Constant? E) T)

((Var? E)
(If (Equal Var E)

Nil
(Let ((B (Lookup E Env)))
(If (Null B)

T
(Freeof? Var (Binding-Val B) Env)))))

((Freeof? Var (Car E) Env)
(Freeof? Var (Cdr E) Env))))

(Defun Lookup (Var Env)
(Cond ((Null Env) Nil)

((Equal Var (Binding-Var (Car Env))) (Car Var))
(T (Lookup Var (Cdr Env)))))

(Defun Extend (Var Val Env)
(Cons (New-Binding Var Val) Env))

(Defun Constant? (X) (Atom X))

(Defun Same-Constant? (X Y) (Eq X Y))

(Defun Var? (X)
(And (ConsP X) (Eq (Car X) '?)))

(Defun New-Binding (Var Value) (Cons Var Value))

(Defun Binding-Var (Cell) (Car Cell))

(Defun Binding-Val (Cell) (Cdr Cell))

Figure 2.2: Miscellaneous functions used by Unify.

2.4 Localizing a Non-Fatal Bug

There are two bugs in this implementation of Unify. This first scenario will
illustrate how DEBUSSI localizes one of the two bugs based on a failed test case.

2.4. LOCALIZING A NON-FATAL BUG 15

Frame 1

(Defun Unify (P1 P2 Env)
(Cond ((Eq Env 'NoMatch) 'Nomatch)

((Var? Pi)
(If (Var? P2)

(Var-Var-Match P1 P2 Env)
(Var-Pat-Match P1 P2 Env)))

((Var? P2) (Var-Pat-Match P2 P1 Env))
((Constant? P1)
(If (Constant? P2)

(If (Same-Constant? Pi P2)
Env

'NoMatch)
'NoMatch))

((Constant? P2) 'NoMatch)
(T (Unify (Cdr PI)

(Cdr P2)
(Unify (Car P1) (Car P2) Env)))))

CODE WINDOW

> (MMY '(? 1)) ((? X)) il)
((? X) . (? X))
> (Correct-Output-Is Nil)

INTERACTION WINDOW

As the scenario begins, the user has completed writing the code for Unify and
its related functions and tests the program on a simple test case. (The test case
could have alternatively been supplied by an automated system.) The result of the
test case is not what the user expected. Unifying (? X) with (? X) should have
returned Nil, indicating that the two patterns matched with no substitutions. At
this point, the user invokes DEBUSSI by typing (Correct-Output-Is Nil). This
command instructs DEBUSSI to begin localizing a bug from a failed test case.

16 CHAPTER 2. LOCALIZATION SCENARIOS

Frame 1.1 (Not Shown to the User)

Function call: (Unify '((? X)) '(C? X)) Nil)
Returned (incorrect) value: (C? X) . (? X))

(Defun Unify (PI P2 Env)
(Cond ((Env 'NoMatch) 'NoMatch)

M(ar? P1)
(If (Var? P2)

(Var-Var-Match P1 P2 Env)
(Var-Pat-Match P1 P2 Env)))

((VAr? P2) (Var-Pat-Match P2 P1 Env))
((Constant? P1)
(If (Constant? P2)

(If (Same-Constant? P1 P2)
Env

'NoMatch)
'NoMatch))

((Constant? P2) 'NoMatch)
CT (Uni y (Cdr P1)

(Cdr P2)
(Unify (Car P1) (Car P2) Env)))))

CODE WIIDOW

Suspects due to dependency analysis:
Eq Var? Constant? Car Unify Cdr

Split analysis exonerates:
Eq Var? Constant?

IrTERACTION V IDOW

Frame 1.1 shows DEBUSSI forming an initial set of suspects by tracing dependen-
cies from the bug manifestation at the output of Unify. Two factors contribute to
this output: the data flow that is used to compute the value, and the conditional
control flow that causes the value to be computed.

The output of Unify is computed in the final clause of the Cond statement. This
final clause consumes data supplied by the inputs to Unify, and produces its result
via calls to Car, Cdr and Unify. Since the output depends on their results, the
indicated calls to Car, Cdr and Unify are suspected, because of their contribution to
the pattern of data flow.

The final clause of the Cond was executed because all previous tests within the
Cond failed. If any of them had succeeded, the output to Unify might have been
computed differently. Thus the calls to Eq, Var? and Constant? are suspected
because of their contribution to the overall pattern of control flow.

Note that in the interaction window, multiple calls to a function are summarized
as a single reference to that function. For example, two calls on Var? are suspected
after dependency analysis. Rather than trying to distinguish between these calls in

2.4. LOCALIZING A NON-FATAL BUG 17

the interaction window, DEBUSSI simply refers to Var?, and uses the code window
to differentiate between the offending calls.

DEBUSSI reasons about conditional control flow by performing split analysis, i.e.,
exploring what happens when splits "go the other way." (Conditional statements will
often be referred to as "control flow splits," or just "splits.") For example, consider
the first call to Eq in Unify. Eq returns Nil, causing its consequent in the Cond
statement to be passed over. If Eq had been buggy, then replacing it with another
predicate that returned T would cause its consequent in the Cond statement to be
executed. If a bug manifestation still arises even after making this quasi-repair, then
Eq must not have been buggy in the first place. As shown in the frame via the
underlined calls, split analysis also exonerates calls to Var? and Constant?.

Split analysis is essentially the same technique as constraint suspension [4] in
hardware troubleshooting, since their common purpose is coaxing a reasoning sys-
tem to create additional dependencies. The underlying reasoning technique in split
analysis is "proof by cases," where the cases to consider are the two outcomes of the
control flow split.

18 CHAPTER 2. LOCALIZATION SCENARIOS

Frame 2

Function call: (Unify '((? X)) '((? X)) Nil)
Returned (incorrect) value: (? X) W? X))

(Defun Unify (P1 P2 Env)
(Cond ((Eq Env 'NoMatch) 'NoMatch)

((Var? P1)
(If (Var? P2)

(Var-Var-Match P1 P2 Env)
(Var-Pat-Match P1 P2 Env)))

((Var? P2) (Var-Pat-Match P2 P1 Env))
((Constant? P1)
(If (Constant? P2)

(If (Same-Constant? P1 P2)
Env

'NoMatch)
'NoMatch))

((Constant? P2) 'NoMatch)
(T (-- (Cdr P1)

(Cdr P2)
(Unity (Car P1) (Car P2) Env)))))

CODE WINDOW

Function call: (Unify Nil Nil '(CM? X) (? X))))
Returned (incorrect) value: (C(? X) . (? X)))

Was Unify called correctly? lo
Enter violated conditions: Arg3tActual3

INTERACTON WINDOW

Frame 2 illustrates DEBUSSI querying the user for additional information. In the
previous frame, dependency and split analysis significantly reduce the number of sus-
pects. But without additional information DEBUSSI is unable to further localize the
bug. By querying the user, DEBUSSI incrementally obtains specification information,
which can be applied to the task of reducing the number of suspects.

The suspect for a query must be chosen carefully. DEBUSSI uses heuristics to
balance the desire to minimize the amount of user interaction with the desire to obtain
as much new information as possible. A useful tactic is to avoid asking about suspects
that are not likely to be buggy. For example, Car and Cdr are Lisp primitives, which
can be buggy only by being called improperly. Therefore, in this example, DEBUSSI
chooses one of the calls to Unify for its query.

DEBUSSI asks if Unify was called correctly. The user answers that it was not. By
being able to decide whether or not Unify was called correctly, the user has revealed
that he possesses some bit of extra knowledge about the program. DEBUSSi elicits
this information by asking the user to supply a violated condition.

2.4. LOCALIZING A NON-FATAL BUG 19

The user supplies the violated condition Arg3AActua13. As a convenience to the
user, DEBUSSI establishes a lexical environment for queries wherein arguments and
their values can be referred to by distinguised symbols (e.g., Arg3 denotes the third
argument to Unify, and Actu&13 denotes the value supplied as the third argument).
Thus the condition supplied by the user says the third argument given to the recursive
call to Unify should not have been the value which was actually supplied.

This query allows DEBUSSI to further localize the bug. In particular, because
neither call to Cdr contributes to the incorrect argument to Unify, they are both
exonerated.

20 CHAPTER 2. LOCALIZATION SCENARIOS

Frame 3

Function call: (Unify '(W? X)) '((? X)) Nil)
Returned (incorrect) value: (W? X) W? X))

(Defun Unify (P1 P2 Env)
(Cond ((Eq Env 'NoMatch) 'NoMatch)

((Var? P1)
(If (Var? P2)

(Var-Var-Match P1 P2 Env)
(Var-Pat-Match P1 P2 Env)))

((Var? P2) (Var-Pat-Match P2 P1 Env))
((Constant? P1)

(If (Constant? P2)
(If (Same-Constant? P1 P2)

Env
'NoMatch)

'NoMatch))
((Constant? P2) 'NoMatch)
(T (Unify (Cdr P1)

(Cdr P2)
(Unif (Car P1) (Car P2) Env)))))

CODE WINDOW

Dependency analysis exonerates:
Unify Cdr

Function call: (Unify '? X) 'C? X) Nil)
Returned (incorrect) value: (((? X) . ? X)))

Was Unify called correctly? Yes
A bug is within the call to Unify. Zooming in...

INTERACTION WINDOW

The boxed call to Unify supplies the third argument to the underlined call to
Unify. Since the previous query indicated that the third argument to underlined call
was incorrect, DEBUSSI need not ask the user about the output of the boxed call to
Unify. DEBUSSI proceeds to ask if the other call to Unify was made with the correct
arguments, and the user answers that it was. Any call that produces an incorrect
output given correct inputs is buggy, so DEBUSSI concludes that bug is within Unify.
Having localized a bug to a particular function call, DEBUSSI continues by expanding
the function call in line ("zooming in"), and attempting to localize the bug to some
lower-level function call.

In the process of localizing the bug to this call to Unify, DEBUSSI has obtained a
new test case for Unify, i.e., that (Unify '(? X) ' (? X) Nil) should produce an
output of Nil. This is an example of how DEBUSSI incrementally acquires partial
specification information.

2.4. LOCALIZING A NON-FATAL BUG 21

Frame 3.1 (Not Shown to the User)

Function call: (Unify '(? X) '(? X) Nil)
Returned (incorrect) value: ((C? X) . (? X)))

(Defun Unify (P1 P2 Env)
(Cond ((K_ Env 'NoMatch) 'NoMatch)

((a? P)
(If (Var? P2)

(Var-Var-Match P1 P2 Env)
(Var-Pat-Match Pi P2 Env)))

((Var? P2) (Var-Pat-Match P2 P1 Env))
((Constant? P1)

(If (Constant? P2)
(If (Same-Constant? P1 P2)

Env
'NoMatch)

'NoMatch))
((Constant? P2) 'NoMatch)
(T (Unify (Cdr P1)

(Cdr P2)
(Unify (Car Pi) (Car P2) Env)))))

CODE WINDOW

Suspects due to dependency analysis:
Eq Var? Var-Var-Match

Split analysis exonerates:
Eq Var?

A bug is within the call to Var-Var-Match. Zooming in...
INTERACTION WINDOW

In Frame 3.1, DEBUSSI repeats the process of dependency and split analysis on the
next recursive call to Unify. Vithin this call, Var-Var-Match is suspected because of
data flow dependence. Because the execution of Var-Var-Hatch was determined by
the outcomes of Eq and Var?, they are suspected through control flow dependence.

Split analysis exonerates all of the suspects except Var-Var-Match. Thus DE-
BUSSI concludes that the bug is within Var-Var-Match, and continues onward by
attempting to localize the bug within Var-Var-Match.

22 CHAPTER 2. LOCALIZATION SCENARIOS

Frame 3.2 (Not Shown to the User)

Function call: (Var-Var-Match '(? X) '(? X) Nil)
Returned (incorrect) value: ((? X) (? X)))

(Defun Var-Var-Match (VI V2 Env)
(If (Eq V1 V2)

Env
(Let ((E1 (Lookup V1 Env))

(B2 (Looku V2 Env)))
(If (Null El)(If (Null! B2)

(Extend Vi V2 Env)
(Unify V1 (Binding-Val B2) Env))

(Unify (Binding-Val Bi)
(If (Null B2)

V2
(Binding-Val B2))

Env)))))
CODE WINDOW

Suspects due to dependency analysis:
Eq Lookup Null Extend

Split analysis exonerates:
Null

Dependency analysis exonerates:
Lookup

INTERACTION WINDOW

Frame 3.2 again demonstrates DEBUSSI's use of dependency analysis and split
analysis, with split analysis exonerating both calls to Null. As an indirect result of
Null's exoneration, the two calls to Lookup are also exonerated. For example, the first
call to Null is the sole consumer of the output produced by the first call to Lookup.
When Null is exonerated, the data produced by Lookup no longer contributes to the
bug manifestation, so Lookup may also be exonerated.

2.4. LOCALIZING A NON-FATAL BUG 23

Frame 4

Function call: (Var-Var-Match '(? X) '? X) Nil)
Returned (incorrect) value: ((? X) . (X)))

(Defun Var-Var-Hatch (VI V2 Env)
(If (Eq VI V2)

Env
(Let ((El (Lookup V1 Env))

(B2 (Lookup V2 Env)))
(If (Null B1)

(If (Null B2)
(IEx~dl V1 V2 Env)

(Unify V1 (Binding-Val B2) Env))
(Unify (Binding-Val B)

(If (Null B2)
V2

(Binding-Val B2))
Env)))))

CODE WINDOW

Function call: (Extend '(? X) '(? X) Nil)
Returned (incorrect) value: (((? X) . (? X)))

Was Extend called correctly? No
Enter violated conditions: -Executed(Ertend)

Dependency analysis exonerates:
Extend

A bug is within the call to Eq.
Returned (incorrect) value: Nil

INTERACTION WINDOW

The bug is localized in Frame 4. DEBUSSI knows that Extend returned an incor-
rect value from the test case. It does not know, however, whether Extend was called
correctly. The user responds that Extend was not called correctly because, in this
test case, Extend should not have been called at all. This fact is stated in the violated
condition -Executed(Extend). This final query leaves Eq as the sole suspect, and
DEBUSSI thereby concludes that the bug must lie in Eq.

The bug with Eq is attributable to the way Common Lisp tests for equality. Eq
returns T only when the two items being compared point to the same location in
memory. In Var-Var-Match, the items in question are lists that represent pattern
variables. Even if these lists appear the same when printed, there is no guarantee
that they refer to the same memory location. Thus Eq is the wrong predicate for
comparing two variables.

24 CHAPTER 2. LOCALIZATION SCENARIOS

The predicate which should have been used in Var-Var-Match is Equal, which
returns T when the two items being compared have the same printed representation.
This means that when two variables print the same, they are the same for the purposes
of matching.

This type of bug is quite common in Lisp programming. A practical implementa-
tion of Unify would almost certainly employ a "read macro" to simplify the typing
of variables. Specifically, the Lisp reader would be customized to make tokens like ?X
expand into (? X). A programmer who didn't know about this customization would
perceive variables such as ?X to be Lisp "atoms," and would therefore see no fault in
comparing two variables via Eq.

2.5 Localizing a Fatal Bug

Recall that there are two bugs in the implementation of Unify. The first bug
involved Eq, and manifested itself by producing an incorrect output. After fixing the
first bug, the user tests Unify with a different test case.

2.5. LOCALIZING A FATAL BUG 25

Frame 5
(Defun Unify (P1 P2 Env)

(Cond ((Eq Env 'NoMatch) 'NoMatch)
((Var? P1)

(If (Var? P2)
(Var-Var-Match PI P2 Env)

(Var-Pat-Match P1 P2 Env)))
((Var? P2) (Var-Pat-Match P2 P1 Env))
((Constant? P1)
(If (Constant? P2)

(If (Same-Constant? Pi P2)
Env

'NoMatch)
'NoMatch))

((Constant? P2) 'NoMatch)
(T (Unify (Cdr P1)

(Cdr P2)
(Unify (Car P1) (Car P2) Env)))))

CODE WINDOW

> (Unify ,(0 1) 10 Y) IM(? X) -)

Trap: The first argument given to the CAR instruction, ?,
was not a locative, a cons, or NIL.

4 Show Backtrace
Binding-Value - Var-Var-Match + Unify

* (Correct-Output-Is '(((? X) . 1) ((? Y) . 1)))
INTERACTION WINDOW

The user tests Unify, resulting in a run-time error. Examining the stack indicates
that the error occured within a call to Binding-Value. It is incorrect to assume that
the bug lies in some function call on the stack. For example, the program may have
bombed because some previously executed function supplied Binding-Value with an
incorrect argument. Or it may have bombed because some control-flow split caused
Binding-Value to be executed unexpectedly. In these situations the culprit has
already completed its execution, and will therefore not appear on the runtime stack.

What appears on the runtime stack is of little importance to DEBUSSI's localiza-
tion strategies. DEBUSSI looks for suspects by analyzing the dependencies that lead
to a bug manifestation. If Binding-Value was indeed supplied with a bad argument,
then this fact will show up in the underlying dependency structure, not on the stack.

Just as in the previous example, the user invokes DEBUSSi by specifying the
expected program output with a call to Correct-Output-Is. Note that the Lisp
runtime environment has been enhanced to allow DEBUSSI to be invoked in the
midst of a runtime error.

26 CHAPTER 2. LOCALIZATION SCENARIOS

Frame 5.1 (Not Shown to the User)

Function call: (Unify '(? X) '(? Y) '((? X) 1)))
A run-time error occurred in Unify.

(Defun Unify (P1 P2 Env)
(Cond ((ga Env 'NoMatch) 'NoMatch)

((VarT. P1)
(If (wr. P2)

(1Lf.r-ar-Miih P1 P2 Env)
(Var-Pat-Match P1 P2 Env)))

((Var? P2) (Var-Pat-Match P2 P1 Env))
((Constant? P1)

(If (Constant? P2)
(If (Same-Constant? P1 P2)

Env
'NoMatch)

'NoMatch))
((Constant? P2) 'NoMatch)
(T (Unify (Cdr P1)

(Cdr P2)
(Unify (Car PI) (Car P2) Env)))))

CODE WINDOW

Suspects due to dependency analysis:
Eq Var? Var-Var-Match

Split analysis exonerates:
Eq Var?

A bug is within the call to Var-Var-Match. Zooming in...
& INERACTION WINDOW

Frame 5.1 indicates that Var-Var-Match is the only suspect to withstand depen-
dency analysis and split analysis. DEBUSSI therefore concludes that the bug must be
within it. As previously stated, the fact that Var-Var-Match is the next function on
the runtime stack is merely coincidental. DEBUSSI focuses on Var-Var-Match as a
result of its reasoning about dependencies.

2.5. LOCALIZING A FATAL BUG 27

Frame 6

Function call: (Var-Var-Match '(? X) '(? Y) '((C? X))))
A run-time error occurred in Var-Var-Match.

(Defun Var-Var-Match (VI V2 Env)
(If (Egual Vi V2)

Env
(Let ((Bi ([--F- V1 Env))

(B2 (tookup V2 Env)))
(If (Null B)

(If (Null B2)
(Extend V1 V2 Env)

(Unify V1 (Binding-Val B2) Env))
(Unify (Binding-Val B)

(If (Null' B2)
V2

(Binding-Val B2))
Env)))))

CODE WINDOW

Suspects due to dependency analysis:
Equal Lookup Null Binding-Val

Split analysis exonerates:
Equal Null

Function call: (Lookup ? X) (((? X) 1)))
Returned value: ?
Did Lookup return the right result? lo

A bug is within the call to Lookup. Zooming in...
INTERACTION WINDOW

In Frame 6, the first call to Lookup is suspected, while the second call is not.
This happens because in this particular execution, there were no consumers for the
second call's output. In other words, the bug in Var-Var-Match did not depend on
the second call to Lookup. Since Lookup is a user-written function, DEBUSSI chooses
it for a query.

The first call to Lookup is already known to be called correctly by virtue of the test
case. However, the user indicates that the value returned by Lookup is not correct.
Thus the bug is further localized, and DEBUSSI focuses on Lookup.

28 CHAPTER 2. LOCALIZATION SCENARIOS

Frame 7

Function call: (Lookup '(? X) '((? X) . 1)))
Returned (incorrect) value: ?

(Defun Lookup (Var Env)
(Cond ((Njul Env) Nil)

((faUAI Var (Bndinga (Cu Env))) (Ial Var))
(T (Lookup Var (Cdr Env)))))

CODE VIDORW

Suspects due to dependency analysis:
Null Equal Car Binding-Var

Split analysis exonerates:
Null Equal

Dependency analysis exonerates:
Car Binding-Var

A bug is within the call to Car.
Returned (incorrect) value: ?

IFTERACTION W IDOW

Dependency and split analysis rule out all suspects except Binding-Var and the
two calls to Car. But the only function call that depends on Binding-Var and the
first call on Car is Equal. Since Equal has been exonerated, Binding-Var and Car
can be exonerated as well. This leaves only one suspect, the second call to Car.

Car is buggy because it was called with the wrong argument. Within Lookup,
Car should have returned (Car Env) instead of (Car Var). The purpose in calling
(Car Env) is to return the binding pair associated with a given variable, so that
callers of Lookup can use Binding-Var and Binding-Val to examine its result. Call-
ing (Car Var) merely returns a question mark "?," which is obviously not the intent
of Lookup.

Note that the error in this function is in its data flow, and not in its use of Car.
Reparing this bug involves replacing the Var argument to Car with Env. As will be
discussed in Chapter 3, DEBUSSl is not particularly adept at localizing errors in data
flow. In this particular example, however, the bug was localized because DEBUSSI
was able to find a language primitive that returned an incorrect result given correct

arguments.

2.6 A Partially Implemented Program

This final scenario demonstrates how DEBUSS localizes bugs in a partially imple-
mented program. The process of debugging partially implemented programs high-
lights DEBUSSI's use of automated reasoning in the symbolic evaluation of specifi-
cations. Furthermore, the scenario illustrates the advantages gained by the ability

2.6. A PARTIALLY IMPLEMENTED PROGRAM 29

to debug programs in early stages of their design. The ability to debug partially
implemented programs is due to DEBUSSI's dependency directed approach.

The example used in this scenario is a program that computes (at the level of a
video game) the estimated time to arrival (ETA) of a "space ship" to an "asteroid."
ETA is defined to mean the finite, positive amount of time that will elapse before
a space ship arrives at an asteroid. If the space ship will never arrive, or if it has
already arrived, then the ETA is undefined.

The space ship is represented as a point in space i8 moving in a straight line at
a constant velocity V-,, via the equation

11 = Yo + V-,t.

The asteroid is represented as a circle in space centered at ', and having radius
r. Points 1 on the surface of the asteroid will satisfy the equation

Ili- ali = r2.

Just like the space ship, the asteroid moves in a straight line at a constant velocity

= Xo + Vat.

The problem is made simpler by shifting the frame of reference to make the
asteroid stationary at the origin. After this change in reference, the surface of the
asteroid is described by

Iii ll' = r 2

and the motion of the space ship is described by

, = 0 + t,

where
XO = Xo , and

u = 1,- V.
Determining the ETA between the space ship and asteroid requires determining

value(s) of t where the trajectory of the space ship intersects the surface of the
asteroid. These values can be found by substituting the equation describing the
motion of the ship into the equation describing the surface of the asteroid

1112 r'

Substituting for , and rearranging terms yields the following quadratic in t,
which we call the "intersection equation."

liI12 t2 + 2io. t + I1yoll2 - r2 = 0

30 CHAPTER 2. LOCALIZATION SCENARIOS

Case 1: 2 positive real roots Case e: I zero, I positive real root

Case 8: 1 negative, 1 positive real root Case 4: 1 zero, I negative real root

...
.. ...

Case 5: e negative real roots Case 6: 2 imaginary roots

...

Figure 2.3: Interpretation of solutions to the intersection equation

Solving the intersection equation yields two complex time values, which must
be correctly interpreted in order to find the true ETA. Figure 2.3 depicts how the
initial position and velocity of the space ship determine the two solutions to the
intersection equation. Most of the cases in the figure are situations where the ETA
is undefined. Cases 2 and 3 place the space ship at a physically implausible location
within the asteroid; these cases will never be encountered in the normal execution
of the program. In cases 4 and 5 the space ship has already arrived at the asteroid.
Finally, in case 6, the space ship misses the asteroid entirely.

2.6. A PARTIALLY IMPLEMENTED PROGRAM 31

Type Ship-Data
Parts Origin: Vector,

Velocity: Vector

Type Asteroid-Data
Parts Origin: Vector,

Velocity: Vector,
Radius: Number

IOSpec ETA-To-Asteroid
Inputs Ship: Ship-Data, Asteroid: Asteroid-Data
Outputs ETA: Real-Or-Undefined
Poetconditions

Real(ETA) + ETA > 0

IOSpec Quadratic-Roots
Inputs A: Number, B: Number, C: Number
Outputs Rooti: Complex, Root2: Complex
Postcondit ions

Rooti - (-B + Sqrt(B-2 - 4*A*C)) / (2*A)
Root2 - (-B - Sqrt(B-2 - 4*A*C)) / (2*A)

Figure 2.4: Programmer-Defined Partial Specifications for ETA-To-Asteroid

The only situation that will yield a valid ETA is shown in case 1. In this case,
the ETA is the smaller of the two positive real roots. This yields the general rule
for finding the ETA: The ETA is the smallest positive real root of the intersection

equation.
Figure 2.4 shows the partial specifications (written by the programmer) for the

program that will compute the ETA. The first two specifications define data types
that will be used in the program. Ship-Data describes a space ship in terms of its
origin and velocity, and Asteroid-Data describes an asteroid in terms of its origin,
velocity and radius.

The third specification in the Figure is for ETA-To-Asteroid, the top-level func-
tion that will determine the ETA. This specification is partial. It makes no mention
of how the ETA is computed, only stating that if the ETA is real, it must be greater
than zero.

The implementation of ETA-To-Asteroid will require a function to find the roots
of a quadratic equation. Rather than write the function right away, the programmer
supplies a specification for it. This specification, Quadratic-Roots, is the fourth I/O
specification shown in Figure 2.4.

Figure 2.5 describes other data types and functions that will be used in the im-

32 CHAPTER 2. LOCALIZATION SCENARIOS

Type Number
Includes Real, Integer, Imaginary

Type Complex
Parts Re: Real, Im: Imaginary;

Type Vector

Function Vector+ (X: Vector, Y: Vector) : Vector

Function Vector- (X: Vector, Y: Vector) : Vector

Function Vector-Dot X: Vector, Y: Vector) : Number

Function Vector-Scale (N: Number, X: Vector) : Vector

Figure 2.5: Predefined auxiliary specifications

(Defstruct (Ship)
Origin Velocity)

(Defstruct (Asteroid)
Origin Velocity Radius)

(Defun ETA-To-Asteroid (Ship Asteroid)
(Let* ((Origin (Vector- (Origin Ship) (Origin Asteroid)))

(Velocity (Vector- (Velocity Ship) (Velocity Asteroid)))
(A (Vector-Dot Velocity Velocity))
(B (* 2 (Vector-Dot Origin Velocity))"
(C (- (Vector-Dot Origin Origin)

(* (Radius Asteroid) (Radius Asteroid)))))
(Multiple-Value-Bind (Rootl Root2)

(Quadratic-Roots A B C)
(Kin (Abs Rootl) (Abs Root2)))))

Figure 2.6: Implementation of ETA-To-Asteroid

2.6. A PARTIALLY IMPLEMENTED PROGRAM 33

plementation of ETA-To-Asteroid. They are assumed to be part of some predefined
library that is available to the programmer. In the figure, Number denotes any real,
integer or imaginary number, Complex represents a complex number consisting of
real and imaginary parts, and Vector represents a vector of unspecified dimension.

The final functions in Figure 2.5 perform vector operations. Vector+ and Vector-
perform vector addition and subtraction. Vector-Dot performs a vector dot-product,
and Vector-Scale multiplies a vector by a scalar.

The implementation of ETA-To-Asteroid is shown in Figure 2.6. (By convention,
the name of the function which implements an I/O specification will have the same
name as the specification.) Some of the functions used in this program, such as
Quadratic-Roots, are not yet implemented, and exist only as specifications. Other
functions, such as Vector+, are implemented (in the library) but details about their
specification and implementation are not presented here.

The last line of ETA-To-Asteroid is meant by programmer to determine the
smallest positive root found by Quadratic-Roots. It is in fact a naive and incor-
rect implementation, because it disregards the possibility of a root being negative
or imaginary. DEBUSSI is able to localize this bug despite the incompleteness and
abstractness of the program. This illustrates the utility of dependency-directed lo-
calization for debugging programs in the early stages of their development.

34 CHAPTER 2. LOCALIZATION SCENARIOS

Frame 8

(Defun ETA-To-Asteroid (Ship Asteroid)
(Let* ((Origin (Vector- (Origin Ship) (Origin Asteroid)))

(Velocity (Vector- (Velocity Ship) (Velocity Asteroid)))
(A (Vector-Dot Velocity Velocity))
(B (* 2 (Vector-Dot Origin Velocity)))
(C (- (Vector-Dot Origin Origin)

(* (Radius Asteroid) (Radius Asteroid)))))
(Multiple-Value-Bind (Root1 Root2)

(Quadratic-Roots A B C)
(Min (Abs Rootl) (Abs Root2)))))

CODE WINDOW

> (Symbolic-Mode)
Declare N: Real
Declare ROID: Asteroid-Data
Origln(ROID) - [0)
Velocity(RDID) = [N]
Radius(RID) = X
Declare VOYAGER: Ship-Data
Drigin(VOTAmE) - [11
Vlocity(VOTAGER) - [11

INTERACTION WINDOW

In Frame 8, the user is testing ETA-To-Asteroid. Since the program is only
partially implemented, the user cannot test it with concrete data. Instead, he chooses
a test case that deals with underspecified and abstract data.

In order to describe the abstract test case, the user needs to consult with the
reasoning system. This is initiated by the call to Symbolic-Mode, to which the
system responds by changing the prompt to a double-colon ": :".

The user defines the abstract test data as follows. N is an arbitrary real number.
ROID is an asteroid at the origin with radius equal to N, and velocity equal to the
one-dimensional vector (N]. (Vectors are denoted by square brackets.) VOYAGER is
a space ship with origin and velocity equal to [N]. This data establishes the initial
conditions leading to Case 4 in Figure 2.3.

2.6. A PARTIALLY IMPLEMENTED PROGRAM 35

Frame 9

Function call: (ETA-To-Asteroid VOYAGER ROID)
A specification violation occurred within ETA-To-Asteroid

(Defun ETA-To-Asteroid (Ship Asteroid)
(Let* ((Origin (Vector- (Origin Ship) (Origin Asteroid)))

(Velocity (Vector- (Velocity Ship) (Velocity Asteroid)))
(A (Vector-Dot Velocity Velocity))
(B (* 2 (Vector-Dot Origin Velocity)))
(C C- (Vector-Dot Origin Origin)

(* (Radius Asteroid) (Radius Asteroid)))))
(Multiple-Value-Bind (Root1 Root2)

(Quadratic-Roots A B C)
(Min (Abs Root1) (Abs Root2)))))

CODE WINDOW

Run (ETA-To-Asteroid VOYAGER ROID)

Specification violation:
(ETA-To-Asteroid VOYAGER ROID) = 0

is in conflict with postcondition of ETA-To-Asteroid
Real(ETA) 4 ETA > 0

Supects due to dependency analysis:
Vector- Vector-Dot - * Min Abs Quadratic-Roots

INTERACTION WINDOW

The user types "Run (ETA-To-Asteroid VOYAGER ROID)," asking the reasoning
system to make whatever deductions it can based on its available specification in-
formation. These deductions will involve abstract algebraic reasoning, such as rec-
ognizing identities like X+0=X. Abstract reasoning allows DEBUSSI to simulate the
execution of the partially implemented program in the absence of explicit numerical
values.

A bug manifestation arises as a conflict between the value produced by the simu-
lation of ETA-To-Asteroid and its partial specification. Simulation produces a result
of zero, yet the specification dictates that the result be greater than zero.

DEBUSSI depends on an automated reasoning system to perform all deductions.
This reasoning system records dependencies that explain how one deduction follows
from another. These dependencies are analyzed by DEBUSSI to find an initial set of
suspects.

36 CHAPTER 2. LOCALIZATION SCENARIOS

Frame 10

Function call: (ETA-To-Asteroid VOYAGER ROID)
A specification violation occurred within ETA-To-Asteroid

(Defun ETA-To-Asteroid (Ship Asteroid)
(Let* ((Origin (Vector- (Origin Ship) (Origin Asteroid)))

(Velocity (Vector- (Velocity Ship) (Velocity Asteroid)))
(A (Vec:tor-Dot Velocity Velocity))
(B (1 2 (Vector-Dot Origin Velocity)))
(C (M (Vector-Dot Origin Origin)

(* (Radius Asteroid) (Radius Asteroid)))))
(Multiple-Value-Bind (Rootl Root2)

(aatic-loots A B C)
(min (Abs Rootl) (Abs Root2)))))

CODE WINDOW

Function call: (Quadratic-Roots (* N N) (* 2 (* N N)) 0)
Returned values: 0 -2

Was Quadratic-Roots called correctly? Yes
Did Quadratic-Roots return the right result? Yes

Dependency analysis exonerates:
Quadratic-Roots Vector- Vector-Dot - *

INTERACTION WINDOW

Quadratic-Roots is the only user-defined function among the suspects, so it is
the first choice for a query. This query reveals that DEBUSSI is mixing reasoning
between symbolic and literal data, because the arguments to Quadratic-Roots are
presented as symbolic values such as (* N N), and the returned values are presented
as actual numbers.

The following illustrates the kind of algebraic simplification used by DEBUSSI in
determining the first solution to Quadratic-Roots

Rootl - (-(2*N*N) + Sqrt((2*N*N)2 - 4*(N*N)*O)) / (2*(N*N))
- (-(2*N*N) + Sqrt((2*N*N)-2 - 0) / (2*(N*N))
- (-(2*N*N) + Sqrt((2*N*N)2)) / (2*(N*N))
- (-(2*N*N) + (2*NN)) / (2*(N*N))
-o / (2*(N*N))

Rooti - 0

2.6, A PARTIALLY IMPLEMENTED PROGRAM 37

Frame 11

Function call: (ETA-To-Asteroid VOYAGER ROID)
A specification violation occurred within ETA-To-Asteroid

(Defun ETA-To-Asteroid (Ship Asteroid)
(Let* ((Origin (Vector- (Origin Ship) (Origin Asteroid)))

(Velocity (Vector- (Velocity Ship) (Velocity Asteroid)))
(A (Vector-Dot Velocity Velocity))
(B (* 2 (Vector-Dot Origin Velocity)))
(C (- (Vector-Dot Origin Origin)

(* (Radius Asteroid) (Radius Asteroid)))))
(Multiple-Value-Bind (Rootl Root2)

(Quadratic-Roots A B C)
(]J (Abs Rootl) (Abs Root2)))))

CODE WINDOW

Function call: (Min 0 2)
Returned (incorrect) value: 0

Was Min called correctly? No
Enter violated conditions: ArglA0

Dependency analysis exonerates:
Min Abs

A bug is within the call to Abs.
Returned (incorrect) value: 0

INTERACTION WINDOW

In Frame 11, a query about a call to Min leads to the localization of the bug to
a call to Abs. Seeing the call to Min makes the user realize that he oversimplifed
the task of finding the smallest positive root. Allowing Min to be called with a zero
argument leads to the possiblity of ETA-To-Asteroid returning zero, which would
violate the specification that the ETA be positive. As a result of this new information,
DEBUSSI can localize the bug to the call to Abs.

Localizing the bug to Abs illustrates how DEBUSSI deals with multiple bugs. The
problem in ETA-To-Asteroid actually involves both of the calls to Abs and the call
to Min. Rather than attempting to prove that these three function calls conspire
to violate ETA-To-Asteroid's specification, DEBUSSI adopts a "one bug at a time"
strategy, finding one function call that contributes to the bug manifestation.

38 CHAPTER 2. LOCALIZATION SCENARIOS

Frame 12

(Defun ETA-To-Asteroid (Ship Asteroid)
(Let* ((Origin (Vector- (Origin Ship) (Origin Asteroid)))

(Velocity (Vector- (Velocity Ship) (Velocity Asteroid)))
(A (Vector-Dot Velocity Velocity))
(B (* 2 (Vector-Dot Origin Velocity)))
(C (- (Vector-Dot Origin Origin)

(* (Radius Asteroid) (Radius Asteroid)))))
(Multiple-Value-Bind (Rootl Root2)

(Quadratic-Roots A B C)
(VHEN (AND (LEALP ROTI) (REALP ROOT2))

(COND
((AND (PLUSP ROOTI) (PLUSP ROOT2)) (MIN ROOTI ROOT2))
((PLUSP ROOT1) ROOT)
((PLUSP ROOT2) ROOT2))))))

CODE WINDOW

Finished editing ETA-To-Asteroid.

:: Run (ETA-To-Asteroid VOYAGER ROID)
(ETA-To-Asteroid VOYAGER ROID) = Nil

ZITERACTION WINDOW

In Frame 12, the user has finished correcting the bug. (The new code is shown
in the code window in a slanted font.) Retesting ETA-To-Asteroid with the orig-
inal test case now produces the expected answer, Nil. Since the postcondition of
ETA-To-Asteroid only describes its behavior in the case where its result is a num-
ber, returning Nil does not violate its partial specification.

m ! ! | %k

Chapter 3

The Details

The previous chapter presented DEBUSSI as it appears from the user's perspective.
From this point of view, DEBUSSI operates on programs as source code, and bug
manifestations are incorrect concrete or symbolic values. To the user, bug localization
involves reasoning about the variables and control constructs in source code.

DEBUSSI's bug localization techniques are much more general, however. Within
DEBUSSI, programs are represented in the Plan Calculus [2, 13, 16]. Bug manifes-
tations are contradictions in the reasoning system that arise when specifications are
violated. Bug localization involves reasoning about the dependencies that lead to a
contradiction.

The same techniques used by DEBUSSI to debug fully implemented programs can
also be applied to partially implemented programs. Similarly, the techniques that
allow reasoning about concrete data (e.g., Foo = 3) also allow reasoning about more
abstract specifications (e.g., Foo > 0).

An important part of DEBUSSI's bug localization methodology is its query mech-
anism. Queries allow DEBUSSI to incrementally acquire partial specification informa-
tion. DEBUSSI uses this new information to narrow down the set of suspects as well as
to increase its knowledge of the buggy program. An ideal query is one which is easily
answered by the user, results in the immediate conviction of a suspect, and gathers
significant new specification information. DEBUSSI uses a variety of heuristics in an
attempt to approximate this ideal.

This chapter first describes the Plan Calculus, the representation for programs
used by DEBUSSI. A diagrammatic notation for the Plan Calculus is used as an aid
in visualizing DEBUSSI's dependency-directed reasoning techniques.

The bulk of the chapter demonstrates and generalizes DEBUSSI's localization tech-
niques. The end result is a domain-independent view of bug localization. In domain-
independent debugging, bugs are localized solely by reasoning about dependencies-
the dependencies are supplied by the domain.

Next, the chapter gives a brief overview of DEBUSSI's localization algorithm. An

39

40 CHAPTER 3. THE DETAILS

important part of this discussion is how the algorithm deals with multiple bugs.
The chapter concludes with a discussion of the various heuristics that comprise

DEBUSSI's query mechanism.

3.1 The Plan Calculus

DEBUSSI does not operate on programs as source code. It uses the Plan Calculus
[13, 16], in which programs are modeled as plans. A plan consists of a structural com-
ponent, shown via a plan diagram, and a logical component, consisting of annotations
and constraints on the plan diagram.

Plan diagrams are primarily used as tools for visualizing a program's structure and
illustrating dependency-directed reasoning. The implementation of the Plan Calculus
in Cake that is used by DEBUSSI does not represent plan diagrams directly. Instead,
it uses logical predicates to express the information conveyed via plan diagrams.

There are several advantages in using the Plan Calculus to represent programs.
First, the Plan Calculus abstracts away from syntactic details about a program,
making DEBUSSI essentially programming language independent. The Plan Calcu-
lus separates the meaningful operations performed by a program from "connective
tissue," such as variable binding constructs. Second, the Plan Calculus is a wide-
spectrum representation, allowing DEBUSSI to operate on partially implemented pro-
grams (mixtures of specifications and implemented code).

Figure 3.1 shows the plan diagram for Unify (from the scenario in Chapter 2).
Solid arrows in the diagram represent data flow. Hatched arrows represent control
flow. The data flow arcs entering the plan diagram from the top correspond to the
arguments to Unify. The data flow arc exiting the plan from the bottom corresponds
to the result produced by Unify.

Boxes in the diagram represent computation steps. Some boxes, such as Car
and Vax-Var-Match, are instances of I/0 specifications, corresponding to simple
function calls. Other boxes, such as Variable? and Constant?, are instances of
split specifications, corresponding to functions called in conditionals. Note that each
split has two control flow outputs labeled T and F, corresponding to the success and
failure of the split's condition. Finally, Join boxes represent the recombination of
control flow after a split. Joins are a part of the program's data flow and control flow
structure.

Reasoning about plans in DEBUSSI is done using Cake [15], a hybrid knowledge
representation and reasoning system developed for the Programmer's Apprentice.
Cake has two features that make it especially appropriate to debugging. First, it
includes a truth maintenance system, allowing it to manage the changing and po-
tentially contradictory information inherent in buggy programs. Second, it supports
reasoning with a mixture of concrete and abstract information.

3. 1. THE PLAN CALCULUS 41

Variable V.:P ar iale? orUn f

T Fl T nFimm lmm

42 CHAPTER 3. THE DETAILS

r.]
Variable.

Figure~ 3.:CnrlFwdpneyfr nyfrmes seiFre2

• "- -,i lll IVar m iabl i 'able. il

3.1. THE PLAN CALCULUS 43

r-fMach

VariablVeabi

IF T F

Vet. Vat- Eztead.If- ZztA-If-usa.
Match APosi~e PoasiucT

T FF

same.
Comant Ca car

T F NUs~e

NT Fuify
jon No etchAa

T F Cdr d

No fk

T F
join

T F
Join

Fiur 33:Daaflw epndnc orUnfyfrm et as i Fam

44 CHAPTER 3. THE DETAILS

3.2 Visualizing Dependencies

To illustrate some of the mechanisms that underlie DEBUSSI, we now show how
the techniques presented in the scenarios operate on plan diagrams. This section
demonstrates dependency tracing as it operates on the plan diagram for Unify. (This
task was done in Frame 2 of the scenario.)

In Figures 3.2 and 3.3, dependency analysis is visualized as tracing "wires" from
the output of a program "upstream" towards the inputs. In the figures, the result of
this dependency tracing is indicated via darkened arcs and boxes. Thus every box
that is darkened in these figures is a suspect due to dependency analysis.

Figure 3.2 illustrates control flow dependency. A function F has control flow
dependence on a function G if the outcome of G determines whether or not F is to
be executed. For example, in the figure, the first call on Car depends on Constant?
because Car was executed as a direct result of the outcome of Constant?. Control
flow dependence is transitive, e.g., Car also has control flow dependence on Eq.

Figure 3.3 illustrates data flow dependency. A function F has data flow depen-
dence on a function G if F consumes data produced by G. In the figure, the first
instance of Unify depends on the first call to Car because it directly consumes data
produced by Car. Data flow dependence is also transitive, e.g., the second instance
of Unify also depends on Car.

3.3 Dependency-Directed Bug Localization

Bug localization is not a task unique to programming. DEBUSSI's bug localization
techniques do not assume that the artifact being debugged is a program. DEBUSSI's
view is that a bug is a contradiction in the reasoning system, and a suspect is a
premise that underlies that contradiction. The goal of bug localization is to find the
smallest set of premises that lead to the contradiction.

This section illustrates the generality of DEBUSSI's localization techniques. The
illustrative example will be a program, but the reasoning techniques do not explicitly
rely on data and control flow to establish dependencies. Earlier chapters of this
report demonstrate the effects of various localization strategies at the source code
level. This section gets to the heart of these strategies by demonstrating how they
actually operate on dependency structures in the reasoning system.

Figure 3.4 depicts a simple plan diagram and the program it represents. This
plan is the basis for this section's discussion of dependency-directed bug localization.

Small numbers next to the data flow arcs in the plan diagram indicate values
produced by the program at run time. Reading the figure, we see that the program
was tested on an initial input of zero, and produced 3 as a result. This is in conflict
with the program's partial specification, which says that the program should produce
an output of 2 for an input of zero.

3.3. DEPENDENCY-DIRECTED BUG LOCALIZATION 45

P

I (Defun P (x)
I (If (Q x)

I (B (Ax4)
(C x)))

N AI I

C IOSpOc P
' :--.7Inputs X: n

Outputs Reunt: AnyB Postconditions
X-0 -> Result=2

I~ FT

L

Figure 3.4: A simple Lisp program, partial specification and plan

The violated program specification leads to a contradiction in the reasoning sys-
tem. The contradiction and its underlying dependency structure is shown in Fig-
ure 3.5. A node in the graph represents a deduction made by the reasoning system;
the children of a node represent the logical support for their parent. For example,
the deductions Output(P) = 3 and Output(P) = 2 lead to the contradiction at the
root (top) of the dependency graph.

In the figure, equality is interpreted as meaning data flow. For example, the node
Input(B) = Output(A) describes the data flow into B from A. Also, the outcome
of control flow splits is represented in the figure via the predicates Succeeds(.) and
Fails(.).

The fringe of a dependency graph represents the supporting premises for the
graph's root. These premises have been boxed in the figure, and are as follows:
Specification of A, Specification of B, Specification of Q, which describe what A,
B and Q compute; Implementation of P, which describes the control and data flow
structure of P, Specification of P, which describes Ps specifications; and Input(P)=O,
which is the initial test case for the program.

DEBUSSI forms an initial set of suspects from the premises that underlie the
contradiction; in the figure, the suspects are enclosed in heavy boxes. By convention,

46 CHAPTER 3. THE DETAILS

'Contradiction*

OiaputA)= OuputP)=

Outupuu&(P)2

Specific:SpeciIicatiB)=
off P

Outtptt())2=Outpt(())
Input(B)

of A OOttutt(A)

Izapu(A) Input(A In t P) A
Output(P)Output(B)

Figure~~~~~~~~~Ip 3.:DpnenygahfoB)ald etc

3.3. DEPENDENCY-DIRECTED BUG LOCALIZATION 47

some of the premises are disregarded as suspects; these are enclosed in light boxes
in the figure. Some premises, such as the program's specification and test data, are
disregarded because they are assumed to be "unbreakable." Other premises, such
as the program's data flow, are disregarded as a way to simplify the localization
task. (See Chapter 5 for more detail.) The initial suspects shown in Figure 3.5 are
Specification of A, Specification of B, and Specification of Q.

Suppose that DEBUSSI queries the user about B, and the user replies B's argument
is incorrect, i.e., Input(B) # 2. The result of this query is that DEBUSSI obtains new
information about the Implementation of P, namely

Jnput(P) = 0 -+ Input(B) 5 2.

As shown in Figure 3.6, the information obtained via the query changes the bug
manifestation. Prior to the query, the bug manifested itself at the output of P via
the contradiction

Output(P) = 2 contradicts Output(P) = 3.

As a result of the query, the bug manifests itself at the output of A via the contra-
diction

Output(A) =2 contradicts Ovtput(A) #2.

Because the bug manifestation has changed, the suspect set (premises underlying
the manifestation) also changes. A comparison of Figures 3.5 and 3.6 illustrates how
this change leads to the exoneration of B. The suspects which appear in Figure 3.6
are Specification of A and Specification of Q. Since Specification of B appears in
Figure 3.5 but not in Figure 3.6, we have effectively exonerated B.

Now consider the effect of split analysis on control-flow splits in the program. Q is
one such split, and the result of performing split analysis on it is shown in Figure 3.7.
Split analysis results in a substantial change in the dependency graph, particularly
in the absence of Specification of Q and the presence of Specification of C.

Earlier in this report, split analysis was presented as a process where DEBUSSI
determines what would happen if a control flow split "went the other way." This
is a view taken from the domain for programming. In terms of domain-independent
debugging, split analysis is a technique whereby DEBEUSSI coaxes the reasoning system
to perform additional deduction and find alternate proofs.

In split analysis, DEBUSSI retracts the definition of a control flow split, and then
asks the reasoning system to rederive the contradiction. (This rederivation is done
via reasoning by cases on the outcome of the split.) If the contradiction can be
demonstrated without the definition of a particular control flow split, then DEBUSSI
can conclude that the split is not a cause for the bug.

Several nodes in the dependency graph reveal how DEBUSSI reasons about the
possible outcomes of a split. For example,

Succeeds(Q) e Fails(Q)

48 CHAPTER 3. THE DETAILS

*Cont idict son

Outppuf4A) #

Input(A)=Input(P)

Ihput(B)#2 Input(B)=
Output(A)

Input(A)=4npUt(P) A
Output(P)=Output(B) r

Inpu~#20
SUCCeeds(Q) IptB*

Input QP)=0

Input(A =lnput(P) A Ipty
Output 1P =Output(B)

Figure 3.6: Dependency graph after query exonerates B

3.3. DEPENDENCY-DIRECTED BUG LOCALIZATION 49

Output(P)=1Otp(P2

....Oup ut(P)O

OOutput(P)=2

Specijicationnput S=0fcto IptA O
of~~~ot C P)=2nutt.,-

OOutputAA1=2

Input(A)=lnput(P)A tI~ (C)=u(P

of pu of A I Inpu(BtOu=put(P)Out (At02

, =Outpt(B 0 nIutpA (P)t(O

Inut(put(utP =I ~lsQ nput(C lptPOutput(P=Output(B Output) PLOtpt

Figure ~ ~ ~ ~ ~ ~~ nptB)0 3.7: DeednygrpB)e pltaayi eoeae

50 CHAPTER 3. THE DETAILS

describes how the test Q can either succeed or fail, but not both. One consequence
of this fact is

Output(P) = Output(B) e Output(P) = Output(C),

which describes how the output of P is ultimately computed by B or by C.
As shown in Figure 3.7, the definition of Q is not required in order to bring about

a contradiction at the output of P. Furthermore, the contradiction which arises is
different from the initial contradiction shown in Figure 3.5.

Notice that C appears as a premise supporting the contradiction, yet is not added
to the suspect set. This is because C's role is to support the notion of Q "going the
other way." If Q bad failed instead of succeeded, C would have been executed, thus
C appears in the dependency graph.

Since a contradiction arises independently of the outcome of Q, Q can be exon-
erated, with the end result that DEBUSSI localizes the bug to A. The dependency
graph in Figure 3.6 indicates that both Input(A) = 0 and Output(A) :# 2 depend
only on the specifications, implementation and test case for P. This means no fur-
ther questions need to be asked about A, since there is already enough information
available to prove that A was called correctly and returned the wrong answer. Thus
DEBUSSI will conclude that the bug must be in the call to A.

3.4 Multiple Bugs

DEBUSSI adopts a multi-pass strategy for localizing multiple bugs. The goal
of a single debugging session is to localize one bug. As discussed in Chapter 1,
DEBUSSI repeatedly performs dependency analysis, split analysis and querying until
the suspect set is either empty or a singleton. If a single suspect remains, and it
corresponds to a call to a language primitive, then DEBUSSI concludes that that call
is a bug. If a single suspect remains, and it corresponds to a call to a user-written
function, then DEBUSSI expands the call and attempts to find a bug inside it.

If the suspect set is empty, then the program may contain multiple bugs (or it
may contain buggy data flow or control flow). Multiple bugs can cause an an empty
suspect set because of the way DEBUSSI performs split analysis. Programs that have
more than one buggy split cause split analysis to fail by exonerating all the buggy
splits.

Note that the process of considering multiple bugs has not been incorporated into
the current implementation of DEBUSSI. When the suspect set is found to be empty,
DEBUSSI will conclude that a bug is at some undetermined place within the enclosing
function call, i.e., the function call that was last expanded in-line.

If DEBUSSI is to consider multiple bugs, any time the suspect set is found to
be empty the localization process should begin anew with the goal of localizing two
bugs. If the attempt to find a pair of bugs also yields an empty suspect set, then the

3.4. MULTIPLE BUGS 51

process should repeat with the goal of localizing three bugs. Increasing numbers of
bugs should be considered until the number of bugs equals the number of (possibly
buggy) function calls.

One justification for DEBUSSI to avoid considering multiple bugs is the cost in-
volved. For example, localizing a pair of bugs among n suspects requires testing all
possible pairs that can be chosen out of those n-, or

(n ' = n! _ =0(n')2 - (n 2)!=

combinations. Furthermore, the cost of split analysis grows exponentially in the
number of bugs. Considering b bugs requires permuting the outcomes of b splits, and
there are 2b such permutations.

Another justification for focusing on one bug at a time is the observation that
most multiple bug situations are "factorable" into several independent single bugs. In
other words, we believe that programs where several bugs interact to hide each other's
presence (such as Both-Odd) are relatively rare. Thus DEBUSSI attempts to localize
a single "factor" of a multiple bug. knowing the tradeoff between the probability of
encountering an unfactorable bug and the cost of having to localize it.

(Defun Both-Odd (X Y)
(If (EvenP X)

(If (EvenP Y)
T

Nil)
Nil))

To illustrate how split analysis causes DEBUSSI to arrive at an empty suspect set,
consider the buggy Both-Odd function shown above. Both-Odd is supposed to return
T when both X and Y are odd, but instead, it returns T when both are even. Both-Odd
has two bugs, namely that both calls to EvenP should be calls to OddP.

Recalling that DEBUSSI initially seeks to localize a single bug, consider what
happens when we execute (Both-Odd 3 5), expecting T as an answer. Dependency
analysis would first conclude that only suspect is the first call to EvenP. This returns
Nil, causing the program to return Nil. During split analysis, the first call to EvenP
would be made to return T, resulting in the execution of the second call to EvenP.
This second call to EvenP would then return Nil, causing the incorrect value of Nil
to be produced by the program. Thus split analysis on the first call to EvenP would
cause it to be exonerated. Since this call to EvenP was the only suspect, the suspect
set is now empty.

Another issue which influences the treatment of multiple software bugs is the
difference between a function's definition and a function's usage. A function can be

52 CHAPTER 3. THE DETAILS

buggy because it is implemented incorrectly, or it can be buggy because it is the
wrong function for the given task. Complications arise when a function having a
single bug in its implementation is called several times by a program. The buggy
function may produce a bug manifestation whenever it's called, thereby causing the
program which uses it to appear to have several bugs.

Furthermore, given a set of bug manifestations, it is difficult to determine whether
they are all attributable to a single implementation error or several usage errors. For
example, suppose that three bug manifestations are found in a program, and they
all occur at calls to Func. If Func is implemented incorrectly, then the program has
exactly one bug. But if the first, second and third calls to Func should have really
been calls to Foo, Bar and Baz, then the program has three bugs.

What saves DEBUSSI from these complications is that discerning between imple-
mentation and usage errors can be delayed until repair-time. For the purposes of bug
localization, it is safe to assume that all bugs are in usage, i.e., all function calls are
independent of each other. Once a particular call to function has been found to be
buggy, the user can choose between repairing that particular call and redefining the
function's definition.

3.5 Query Selection Heuristics

Queries are a way for DEBUSSI to obtain new specification information. Since the
primary goal of DEBUSSI is to localize the bug as quickly as possible, the number of
queries should be kept to a minimum. This need to minimize queries opposes the
need to avoid overtaxing the user, because reducing the number of queries means
increasing the amount of information that must be obtained per query. DEBUSSI
employs a variety of heuristic methods in an attempt to find a middle-ground.

The remainder of this section describes the heuristics used by DEBUSSI for choos-
ing queries. Heuristics are presented in order of their empirically determined useful-
ness. Note that these heuristics need not be used independently of one another. In
fact, the current implementation of DEBUSSI uses a combination of them.

3.5.1 Binary Search

This heuristic implements the familiar "divide and conquer" concept. In binary
search, the suspect chosen for the query one which lies near the "middle" of the
partial order determined by the program's data flow. The logic behind this is that
if the suspect is found to be called correctly, i.e., if its precondition is satisfied, then
everything which precedes it by data flow can be exonerated. Thus a middle suspect
has the potential to halve the number of suspects.

The strength of this heuristic is that it will localize the bug in time logarithmic
in the number of executed program steps. The weakness of it is that it presents the

3.5. QUERY SELECTION HEURISTICS 53

user with scattershot questions that may cause confusion. For example, DEBUSSI
may ask a question which, in the user's mind, very nearly localizes the bug. The
next query may seem to break the chain of thought established by the first, leading
the user to believe that DEBUSSI is confused. Or, even worse, the next query may
involve a function call that is so deeply "buried" within the program that the user
will be completely unable to answer the question.

3.5.2 Avoid Language Primitives

Programmers are usually protected from details of how language primitives are
implemented. Thus when a call to a language primitive is found to be buggy, the only
way to repair it is to replace it with a call to some other function. In other words,
it is usually pointless to consider situations such as "Append has been implemented
incorrectly."

The purpose of this heuristic is to bias DEBUSSI towards finding implementation
errors in user-written code. Since language primitives are neither user-written nor
subject to implementation errors, they should be avoided when choosing queries.

3.5.3 Maximal Data Flow Cover

This heuristic favors suspects that are most dependent on other sus-
pects. For example, a suspect that accepts a large number of arguments
and whose output fans out to many other suspects would be a good

A query candidate according to this heuristic. Each data flow arc intro-
duces a dependency between the data's producer and consumer. Thus

B suspects with the most data flow throughput introduce the most new
dependencies.

C] This approach is greedy, because its maximization strategy is based
solely on local information about each suspect. It therefore has the po-
tential to choose a query that appears good locally but is actually a

D poor choice globally. For example, in the plan shown to the left, the
maximal data flow cover heuristic would favor A because its fanout of

E 4 represents the highest data flow throughput in the plan. But in fact
E A is not a good choice, because no suspect in the plan precedes it. In

other words, A is a poor choice because it doesn't depend on any other
suspects.

3.5.4 Sequential Stepping

This heuristic is familiar to any programmer who has used conventional debugging
tools. Sequential stepping means examining suspects in the order in which they are
executed. More generally, it means examining suspects in the order defined by their

54 CHAPTER 3. THE DETAILS

data flow structure. In DEBUSSI, this heuristic is used as a tie-breaker in sections of
code where no suspect looks any more desirable than another.

The advantage of this approach is that it asks the user questions that follow an
obvious (though naive) train of thought, thereby avoiding the scattershot questions
which plague the binary search heuristic. The disadvantage of this approach is that
it doesn't do anything that the user couldn't also do himself, e.g., with a conventional
stepper.

Chapter 4

Related Work

4.1 Hardware Troubleshooting

This research was initially motivated by the apparent similarity between hardware
troubleshooting and software bug localization. In hardware troubleshooting, the task
is to find the failed component in a circuit that accounts for some observed misbe-
havior [4]. We believed that strategies that are useful for hardware troubleshooting
could be applied to bug localization.

There are three important differences between circuits and programs. First, unlike
circuits, programs rarely come with complete specifications of their behavior. Second,
unlike circuits, the cost of probing internal values of programs is low [6]. As the
following discussion will reveal, these two differences will balance each other.

A third difference between circuits and programs stems from the difference be-
tween a function call and a function definition. When a function call is found to be
buggy, repairing it may either involve replacing it with a different function call, or
redefining the function. In circuits, the only way to repair a buggy components is to
replace it, i.e., one cannot "redefine" an AND gate.

In the following discussion, "device" will denote some component of a circuit or
program. For example, an AND-gate is a device, as is a square-root subroutine.
"Wiring" will denote the connection between t wo devices via data flow (in programs)
or physical wires (in circuits). (Wiring is simply the kind of dependency that circuits
and programs have in common). A "network" is one more devices that are wired
together.

4.1.1 The Role of Specifications

A bug manifestation is a disagreement between specifications and observations.
Typical hardware bug manifestations are "Voltage at Y is not 5 V" or "Resistor R7 is
burning." There is an obvious parallel between these and software bug manifestations
like "The value of Y is not 5.0" or "Program bombed in APPEND."

55

56 CHAPTER 4. RELATED WORK

Automated hardware troubleshooting techniques assume the presence of detailed
specifications. Hardware specifications are typically given as simulation and inference
rules. Simulation rules make forward deductions: they allow the outputs of a device
to be determined from its inputs. Inference rules make backward deductions: they
allow one or more inputs of a device to be determined from its outputs and other
inputs.

Software debugging techniques cannot assume that a program is well specified. A
program may be unfamiliar, providing no specifications other than its behavior when
executed. Or a program may be only partially specified, describing behavior in a
broad sense, but omitting details that are needed to find bugs.

Bugs are easier to detect in the presence of detailed specifications, because having
more specifications means increasing the likelihood that some specification can be
violated. This would seem to imply that it's easier to detect bugs in circuits, since
they are usually more completely specified than programs. Unfortunately, in circuits,
the leverage supplied by increased specification information is offset by the difficulty
of making observations.

4.1.2 The Cost of Internal Probing

Values at the inputs and outputs of components of circuits or programs are de-
terined by probing. In hardware, probing denotes the physical act of placing an
instrument in contact with a wire in the circuit. In software, probing denotes the
installation of instrumentation code to record values.

The amount of effort required to perform a probe differs dramatically between
circuits and programs. Due to physical constraints, probing circuits is often very
expensive, if not impossible. For example, several components of a circuit may lie
within a single physical package, effectively shielded from observation. Also, a circuit
board may be deeply buried within a chassis, preventing a probe from making physical
contact.

The cost of probing software is more mental than physical, because unlike circuits,
programs are relatively free of physical constraint. Physically, editing a low level
subroutine is just as easy as editing a top level control loop. But mentally, editing
low level routines requires the programmer to consider implementation details he
would rather accept on faith.

4.2 Hardware Troubleshooting Approaches

This section discusses the hardware troubleshooting strategies that inspired the
design of DEBUSSI. In the course of the discussion, differences between circuits and
programs are shown to influence the applicability of these strategies to software bug
locaiization.

4.3. OVERVIEW OF SOFTWARE DEBUGGING 57

Davis [4] proposes a methodology for diagnosing circuits based on reasoning about
their structure and behavior. Davis' approach introduces the notion of dependency
tracing as a way to determine suspects, and the technique of probing intermediate
values as a way to collect new information. Also in this approach is constraint
suspension, a technique whereby suspects are automatically exonerated.

Probes in Davis' system are analogous and complementary to queries in DEBUSSI.
The difference in character between probes and queries is directly attributable to the
availability of intermediate results in a program, and to the lack of specifications in
a program. Davis' system probes intermediate circuit values to collect new observa-
tions, while DEBUSSl queries the user to collect new specifications. Davis' system
compares its new observations to easily obtained specifications, while DEBUSSI com-
pares its new specifications to easily obtained observations.

Davis' system has a technique for automatically exonerating suspects, called con-
straint suspension, where one explores the hypothesis that a circuit component is
broken by retracting all the rules that govern its behavior. If the hardware diagnosis
machinery is able to demonstrate a fault in the system without knowing how that
particular component works, then the component can be exonerated.

Constraint suspension is incorporated in the process of split analysis, where DE-
BUSSI explores the hypothesis that a control flow split is buggy. The first step in split
analysis is retracting the specification of the control flow split. Next, the reasoning
system is asked to find an alternate derivation of the bug manifestation by "reasoning
by cases" about the split's outcome. If an alternate derivation can be found, then
the split can be exonerated.

The underlying goal of constraint suspension and split analysis is to coax an
automated reasoning system to find an alternate, smaller support set for a bug man-
ifestation. To find this new support, the reasoning system will often need detailed
specifications. In hardware, these specifications abound, so constraint suspension
is applicable to virtually any component. In software, specifications are limited, so
constraint suspension can only be applied to functions that have very clear-cut char-
acteristics. One such example is control flow splits, which all share the characteristic
that they must either succeed or fail.

4.3 Overview of Software Debugging

Automatic program debugging has been an active area of research in Artificial
Intelligence. The design of new debugging systems (this research included) is in part
inspired by the successes and failures of old debugging systems.

Debugging systems differ in the way they represent programs. Some systems
operate directly on the syntax of the programming language, and are thus designated
to be language dependent. Other systems attempt to model programs in a language
independent way, via some graphical representation or logical formalism.

58 CHAPTER 4. RELATED WORK

Debuggers also differ in the way they reason about programs. Experience-based
systems have libraries of heuristics that describe how to find common bugs. Other
systems reason from first-principles, using only knowledge about the program to find
bugs.

Debugging systems typically perform one or more of the following tasks: program
recognition, bug detection, bug localization, bug explanation and bug correction.
These tasks are usually done in the order mentioned. Systems that worry more
about program testing tend to perform fewer of these tasks (i.e., only recognition
and detection). Systems that tutor students must perform all of these tasks.

DEBUSSI can be described in terms of these three aspects. DEBUSSI is language
independent, by virtue of the Plan Calculus [14J representation. It reasons about
programs from first principles via its use of simple constraints. DEBUSSI localizes
bugs and has some ability to explain bugs.

Several criteria are used to evaluate debugging systems. The first is generality.
An ideal debugging system should be able to detect many types of bugs. It should
be able to understand a variety of programs. Finally, it should be able to understand
alternate implementations of the same algorithm.

Another criterion is degree of automation. The user of the debugging system
should be required to do as little work as possible. If the user is an expert programmer,
he should not have to answer questions about mundane details of his program. And
if the user is a student, he should not have to interpret cryptic error messages.

Some debugging systems claim cognitive plausibility. The way a debugging system
models programs should somehow parallel the programmer's own mental model. For
example, a debugging system that will be used by experts shouldn't model a program
at the syntactic level, because experts rarely make syntactic errors (i.e., an expert
in Pascal will rarely omit a semicolon). But a debugging system that will be used
by students must view a program at least partly syntactically, since that's the way
students view programs.

DEBUSSI can be evaluated by these criteria. It is general, because any program
or bug can be expressed in terms of first principles. It is highly automated, in that
control flow analysis and constraint suspension require no user interaction. And it is
cognitively plausible, because everyone must resort to first principles when they have
no experience.

4.4 Tutoring Systems

One application of automatic program debugging is the tutoring of novice pro-
grammers. Tutoring systems are usually experience based, i.e., they maintain a li-
brary of algorithm descriptions that serve as templates for correct student programs.
A tutoring system will compare a student's code to the appropriate algorithm descrip-
tion, transforming one or the other to account for minor implementation differences.

4.4. TUTORING SYSTEMS .59

If a student's program cannot be matched to the algorithm description, experience-
based bug detection is invoked. One by one, a collection of bug experts, each knowing
the symptoms and cure for a specific bug, examines the code. When able, an expert
modifies the buggy code to correct the bug and allow matching to continue.

It is important that a tutoring system provide good explanations. A good expla-
nation describes the cause of a bug rather than its symptom. If a student understands
how a bug arises, he or she can learn how to program defensively and prevent the
bug from appearing again.

A tutoring system should also have cognitively plausible model because it's not
only debugging programs, it's debugging the mind of the student. Any bug in a
program can be traced to a specific misunderstanding in the mind of the student. A
good debugging model makes this relationship explicit.

In Ruth's system [20], Program Generation Models (PGMS) describe algorithms
by modeling the decisions made in writing a program. A PGM is like a context free
grammar. Where context-free grammars derive valid strings in a language, PGMs
derive valid implementations of an algorithm. A recursive descent parser called the
Action List Matcher attempts to match a program to a PGM.

When the Action List Matcher is unable to parse a section of code, a bug has
been found. Some bugs, such as loops that repeat the wrong number of times, require
only minor changes in the source code to be corrected. These bugs are heuristically
detected and corrected, thereby allowing the parse to continue. Other bugs, such
as missing control structures, can only be corrected by major changes to the source
code. These bugs indicate either that the wrong PGM is being matched with the
program, or that the program is grossly incorrect.

PGMs are not guaranteed to represent all possible implementations of a given
algorithm. If a student has a syntactically mangled implementation that happens
to work, Ruth's system might consider the program incorrect. And if the student
devises some clever new implementation of an algorithm, the PGM might not be able
to derive it.

Adam and Laurent's LAURA [1] represents algorithms as program models. A
program model is a supposedly correct implementation of an algorithm. Program
models are written by the teacher in a traditional iterative language (FORTRAN).

LAURA converts the student's program and the program model into labeled
control-flow graphs. During this process, a variety of transformations are system-
atically applied to canonicalize graph structure. LAURA then compares the two
graphs, applying additional transformations in an attempt to make the graphs as
similar as possible. Finally, any remaining differences are diagnosed from a set of
known errors.

LAURA does not suggest corrections for errors, nor does it refer to syntactic

60 CHAPTER 4. RELATED WORK

elements of the program in its error messages. Instead, it presents the program model
along with an annotated transformed version of the student's program. Examples
of the annotations LAURA provides are "Line 15 in program 1 is unidentifiable" or
"Different conditions on the arcs coming from lines 10 and 109."

The actual utility of presenting the student with annotated rewritten programs
is questionable. An inexperienced student may not be able to understand why the
rewritten version of his program is more correct than the original. And the vague
annotations LAURA provides do not tell enough about what is actually wrong with
the code. The student would learn more from a message like "Bad initialization of
variable N in line 3" than he would from "Undefined instruction in line 3."

Program models in LAURA share the same shortcomings as PGM's in Ruth's
system. An implementation of an algorithm may be correct even though its structure
differs significantly from the program model.

Murray's TALUS [12] combines heuristic and formal methods. Heuristic methods
are used to recognize algorithms, to guess at the possible locations of bugs and to
suggest corrections for bugs. Formal methods are used to verify the equivalence of
program fragments, to detect bugs and to prove or disprove heuristic conjectures.

TALUS views all programs, either student or teacher written, as collections of
functions. Functions have abstract features such as recursion type and termination
conditions. The measure of similarity between two functions is the number of abstract
features they share. The measure of similarity between two programs is a weighted
sum of the similarities of their component functions.

The first stage of debugging in TALUS is algorithm recognition. TALUS performs
a best first search through all known algorithms to find the one algorithm that is most
similar to the student's solution. Transformations are applied to facilitate matching
with algorithms that have several functional decompositions.

The second stage of debugging is bug detection. In this stage, functions are
represented as binary trees, with internal nodes representing conditional tests and leaf
nodes representing function terminations or recursions. The set of conditions which
must be true to reach a given leaf node defines a test case for that node. TALUS
supplies each test case to both the student's solution and the matched algorithm. If
the resulting returned values do not agree, a bug has been found.

The third and final stage of debugging in TALUS is bug correction. Top level
expressions in the student's code fragment are replaced with their counterparts in
the teacher's algorithm. When the two code fragments are found to be functionally
equivalent, the bug has been completely corrected.

Representing an algorithm as a collection of abstract properties has several ad-
vantages. Algorithms are matched on the basis of abstract nonsyntactic features, so
syntactically unconventional implementations will always be recognized. The proper-
ties which describe programs are language independent; with the appropriate parsers,

4.5. DEBUGGING SYSTEMS 61

algorithms and solutions can be written in any programming language. Bug descrip-
tions drawn from abstract properties can replace a symptom with its cause (i.e., a
message like "The loop variable X has been incorrectly initialized" describes a cause,
whereas "The DO loop over variable X repeats 1 time too many" describes a symp-
tom).

Johnson and Soloway's PROUST [8] debugs programs by reconstructing the
goals of the student and identifying the elements of the program that were meant to
realize the goals. This process is claimed to correspond to the actual thoughts of the
student as he or she writes a program.

PROUST uses programming plans to represent common implementation frag-
ments, both correct and buggy. For example, the "counter plan" describes the code
where a variable is assigned an initial value and then incremented within the body
of a loop. Programming plans are founded on the theory that expert programmers
reason in terms of familiar algorithmic fragments, as opposed to primitive language
constructs.

A programming task can be broken down into subtasks. A goal decomposition
of a program describes the hierarchical structure of its subtasks, how its subtasks
interact, and the mapping of subtask goals to the plans which implement them.
PROUST relates programs to goals by matching plans from the goal decomposition
to the program's code.

A problem description in PROUST can give rise to many correct and incorrect
implementations. The initial description of the problem may have several goal de-
compositions, and each subtask in a goal decomposition may be implemented by
several different plans.

PROUST avoids searching through all implementations of a task by using heuris-
tics that describe which plans and goals will occur together. Thus goals are decom-
posed at the same time as plans are analyzed. As PROUST begins to understand a
program, it establishes expectations to confirm its current line of reasoning. When
an expectation fails, PROUST tries an alternate interpretation for the program.

PROUST is most useful as a tutoring tool. By attempting to capture the cognitive
processes in program synthesis, it can assist a misguided student by appealing to his
or her deeper understanding of program design. This is a feature missing in LAURA
or TALUS, which simply present the bug in the code and suggest a repair.

4.5 Debugging Systems

Daniel Shapiro's Sniffer system [21] uses expert knowledge about programming
to understand specific errors. Sniffer recognizes programs by identifying familiar
algorithmic fragments, or programming cliches [14, 17, 24] in the code. Knowledge
about bugs is encoded in bug experts, which generate detailed reports about errors.

62 CHAPTER 4. RELATED WORK

A debugging session in Sniffer proceeds as follows. The user asks Sniffer to execute
his program. As the program runs, Sniffer constructs an execution history containing
information about when and where variables were modified, and what paths of control
flow were taken.

The user interrupts execution at the first sign of trouble. He uses a time rover
to search the program's execution history for bug symptoms and to localize the bug
to a particular section of code. Once the location of the bug has been found, the
programmer asks the sniffer system for a report.

The sniffer system performs two functions. First, it employs a cliche finder to
recognize the familiar parts of the buggy code. Then bug experts are invoked to
determine the exact nature of the bug. Bug experts use the time rover to verify
symptoms for the bugs they specialize in.

Finally, Sniffer produces a detailed report about the bug. This report summarizes
the error, analyzes the intended function of the code, and discusses how the bug
manifested itself at runtime.

An advantage of Sniffer is its well defined modularity. In theory, one could easily
augment the knowledge base of either the cliche finder or the sniffer system to suit
any domain of possible bugs.

Because Sniffer is not given any specification information, it can neither detect nor
localize bugs. This places unreasonable demands on the user, especially in large soft-
ware systems. Bugs can manifest themselves in subtle ways in large systems, making
their detection difficult. The number of components in a large system complicates
the task of tracing a bug to its source.

Lukey's PUDSY [11] understands a program by building a description of the
program. These descriptions can be compared to specifications to find bugs. Bugs
occur where descriptions disagree with specifications.

Building a program description in PUDSY proceeds as follows. First, the program
is grouped into chunks. A chunk is a schema for a common computation. A common
type of chunk is a loop that finds an array's maximum element. PUDSY determines
the data flow in and out of each chunk, and the data flow between chunks.

Next, PUDSY looks for debugging clues by using constraints on what "rational"
programs look like. One such constraint is that a variable rarely appears in the
left hand side of two consecutive assignment statements. Another constraint is that
variable names are meaningful: a variable named min usually finds a minimum
element. Violations of these constraints are usually noted for later use, but in some
instances they can be used to immediately debug a section of code.

Describing a program in PUDSY is viewed as a stepwise process, where each
step performs some transformation on the current description. An initial description
of a chunk is made by trying to recognize it as an instance of a known schema.
Every schema that can be recognized by PUDSY comes with a logical assertion that

4.5. DEBUGGING SYSTEMS 63

describes it. Assertions are combined by reasoning about program control and data
flow. For example, a chunk that appears in the body of a loop can be quantified over
the loop variable.

If the final program description does not agree with its specification, a bug has
been found. PUDSY applies backtracing to determine the source of the bug. In
backtracing, the inverse of each description-building transformation is applied to the
program's specification. For example, if a transformation quantified an assertion
in the description, backtracing would remove the equivalent quantification from the
specification. In this way PUDSY can find the first point where descriptions and
specifications disagree.

PUDSY's methodology for finding bugs is useful and reliable. Comparing com-
plete specifications to descriptions will always find a bug if there is one. And looking
for discourse clues in variable names is good way to detect low level differences be-
tween what the programmer meant to do and what he did by mistake.

Ehud Shapiro's system [22] debugs Prolog programs from first principles. Shapiro's
system is very similar to this research in its use of first-principles reasoning. Three
types of bugs are considered by his system: termination with incorrect output, when
the output value of a deterministic procedure is incorrect; finite failure, when none of
the outputs of a nondeterministic procedure are correct; and nontermination, when
the program enters an infinite loop.

A debugging session in Shapiro's system consists of a question and answer session
with the user. If some input causes a program to terminate with incorrect output,
the system will selectively ask the user about the correctness of intermediate results
of the computation. An approach termed divide and query performs a binary search
on the steps of the computation to quickly focus in on the source of the bug.

Debugging a finite failure condition proceeds in a similar way. In this case, since
the buggy procedure is nondeterministic, the debugger asks the user to supply all
known solutions to intermediate results (making what is called an existential query).

Nontermination is debugged in several ways. First, the program can be run with
bounds on space or time, on the assumption that exceeding these bounds implies
that the program does not terminate. Also, well founded orderings can be defined
on a procedure. An example of a well founded ordering is that consecutive calls to a
divide and conquer procedure have decreasing parameter size.

DEBUSSi differs from Shapiro's system in several ways. First, DEBUSSI local-
izes bugs by reasoning about dependencies, while Shapiro's system localizes bugs by
reasoning about execution traces. This point is illustrated by the following example.

64 CHAPTER 4. RELATED WORK

(Defun Wasted-Effort (X Y)
(Setq Y (F (G (H Y))))
(P X))

If Wasted-Effort returned an incorrect value, Shapiro's system would suspect
the calls to F, G, H and P because they all were executed. The only true suspect,
however, is P, because it's the only function that the output depends on. So by
employing dependency-directed reasoning, DEBUSSI is able to keep a tighter focus on

the set of possible suspects.
Another important difference between DEBUSSI and Shapiro's system is DE-

BUSSI's use of automated reasoning. One could argue that Shapiro's system, by
virtue of being built on top of Prolog, also uses automated reasoning. But Cake,
the reasoning system used by DEBUSSI, is more general-purpose than Prolog. For
example, Cake's truth maintenance machinery allows DEBUSSI to perform split anal-
ysis on conditional control flow. Also, Cake's type system allows DEBUSSI to detect
abstract type conflicts in programs. Neither of these two reasoning techniques are
available as part of the basic machinery of Prolog.

A final difference between the two systems is how they might scale to large pro-
grams. DEBUSSI is able to reason about programs hierarchically, treating complex
functions as black boxes whose internal structure may more may not be important.
By exploiting this hierarchy, DEBUSSI is able to focus its automated reasoning on
one function at a time, and is therefore better suited for debugging large programs.

Korel's PELAS [9] is a system that is very similar to DEBUSS. In PELAS,
bugs are localized by a combination of interactive queries and a dependency-directed
error locating mechanism. In fact, the only feature that differentiates DEBUSS from
PELAS is DEBUSSI's use of a general-purpose automated reasoning system.

Korel characterizes three kinds of influences (or dependencies) between a pro-
gram's instructions. These are data influence, control influence and potential influ-
ence. Data and control influence are identical to the ideas of data and control flow
dependency presented in Chapter 3 of this report. Potential influence represents the
sections of code that are bypassed by the unexecuted half of a control flow split.

PELAS localizes bugs by backtracing through the dependency network estab-
lished by these three influences, starting at the observed incorrect program output.
Each backtracing step acts to localize the bug to a point further "upstream" in the
dependency network. Backtracing iterates until a single faulty program instruction
has been found.

Differences between PELAS and DEBUSS stem from the comparative power of
their respective reasoning engines. For example, PELAS' "error-locating module"
limits the information it can obtain to knowledge of whether particular variables are
correct or not. Thus queries in PELAS can refer only to particular values of variables.

4.6. RELATED WORK IN THE PROGRAMMER'S APPRENTICE 65

Contrast this with Cake, which supports abstract reasoning about program structure
and behavior, thereby allowing queries to refer to arbitrary properties of the buggy
program.

Another difference between PELAS and DEBUSSI is DEBUSSI's use of split anal-
ysis. Because of split analysis, DEBUSSI is able to ask the user fewer questions than
PELAS, thereby localizing bugs more quickly.

N. K. Gupta and Seviora's Message Trace Analyzer 151 uses an expert systems
approach for debugging real time processes. Each process is modeled by a finite
state machine that interacts with other processes by sending messages. The system
constructs a structured model of interprocess communication called the context tree.
The construction of the context tree is done through a multilevel subgoaling process.
Components of the context tree are tested for failure by heuristic rules and state
machine simulation.

The approach taken in the Message Trace Analyzer does not lend itself to the
general debugging of traditional serial software systems. Debugging based solely on
interprocess communication is akin to a pure I/O based debugging approach. In a
complex software system, simple I/O discrepancies could have many equally valid
explanations. One needs to understand the internal behavior of a program (or at
least how it can be decomposed into simpler parts) in order to debug it.

One promising feature in the Message Trace Analyzer is its separation of general
knowledge of real time systems from specific domain knowledge (the domain being
telephone switching systems). This parallels the need for a software debugger to
separate first principles programming knowledge from the knowledge of specific algo-
rithms. A debugger that can maintain both types of knowledge and can intelligently
decide to use one or the other would be quite useful indeed.

Harandi's Knowledge Based Programming Assistant [7] is another expert-
systems approach. In this system, heuristic information is used to find many compile-
time and run-time errors with well-defined symptoms. These heuristics are specified
as situation/action pairs. The situation specifies bug symptoms and program infor-
mation, and the action describes probable causes for the error and possible cures.

The apparent intent of [7) is to present a description of the knowledge base struc-
ture and inference system operation. Unfortunately, none of the actual rules for
debugging are presented in the work.

4.6 Related Work in The Programmer's Apprentice

Waters [25] observes that two approaches have been traditionally used in the
verification and debugging process, testing and inspection. Both approaches have
problems when a large system must be dealt with. The utility of testing is limited

66 CHAPTER 4. RELATED WORK

by the imagination of the programmer who designs the tests. If the programmer
cannot envision some unexpected error condition, he will not devise a test for it. The
power of inspection is limited by the complexity of subprogram interactions in a large
system. A programmer that inspects code to verify its correctness might not have
the insight to consider the interaction of two seemingly unrelated subroutines.

Constraint modeling is a third way to verify and debug programs. The program
is modeled as a network of constraints. The choice of what aspects of the program
to model and what constraints to use is left up to the programmer. By perform-
ing constraint propagati.n on this network, bugs can be found that might not be
found using testing or inspection. Waters concludes that the three approaches of
testing, inspection and constraint modeling are mutually orthogonal, and are best
used together in system verification.

Constraint modeling is the primary strategy used by DEBUSSI and by most hard-
ware troubleshooters. Constraints are given by the specifications of the components of
the program and their interconnections. Bugs are found by detecting contradictions
(discrepancies) in this constraint network. Testing is used as a secondary strategy,
as a method for determining an initial set of contradictions.

Chapman's Program Testing Assistant [31 helps programmers develop and
maintain program test cases. The programmer tests functions in his program by
specifying an expression to execute on some test data, along with correct results
and success criteria. Each test case is associated with the set of functions it verifies
through a set of abstract features. If any of those functions change, the test is re-run.
If a success criterion is not met the programmer is warned of the error.

Wills' Program Recognizer [26] applies flow-graph parsing to the recognition
of programs as plans in the plan calculus. A program is first transformed into a
surface plan by control and data flow analysis. Surface plans represent programs in
terms of functional boxes, data flow, control flow and constraints (DEBUSSI represents
programs as surface plans). This surface plan is then translated into an extended
flow graph (a type of labeled, acyclic, directed graph) to better facilitate subsequent
matching. Flow graphs are parsed against a library of common structures to de-
termine familiar program fragments. During the parse the original -graph may be
transformed to eliminate constraint violations.

Program recognition has always been considered an integral part of debugging.
Wills' program recognizer factors this task out of the debugging process, allowing
future research to concentrate more on bug localization and correction.

Levitin (10] explores the meaning and uses of errors in programming. A roughly
day-long coding assignment in CLU (a strongly typed high-level language) was given
to several volunteers. Versions of the program files were examined after the comple-

4.6. RELATED WORK IN THE PROGRAMMER'S APPRENTICE 67

tion of the project to determine the quantity and nature of bugs encountered. Bugs
were classified by such names as missing guard, missing declaration, and malformed
update. Levitin concludes from this experiment that a general method for describing
bugs is needed, one that works equally well for any programming task.

The method for describing bugs proposed by Levitin describes a bug as a vector
in a space of categories. Each category has a metric associated with it that describes
how the bug relates to that category. The categories chosen are severity of error,
how serious the error is to the development process; locus of error, at what level
of thought process the programmer erred; and intent of error, the realization of the
programmer that a mistake was being made.

The metrics proposed vary depending on the category. Locus of error is measured
across the spectrum from specification to implementation. Severity of error can be
measured in amount of code changed, amount of time taken, or combinations of
these and similar metrics. Intent of error is quantified based on the stage of the
design process where the programmer decided to ignore some assumption about the
program, and when the programmer realized the exact nature of the assumptions
being violated.

Chapter 5

Limitations and Future Work

DEBUSSi has proven to be effective for localizing bugs in modestly sized programs. It
utilizes several important techniques: reasoning about superficial properties of pro-
grams, manipulating dependencies in a truth maintenance system, and incremental
acquisition of specification information.

DEBUSSI is not without its limitations. This chapter critically reexamines DE-
BUSSI, indicating where it's capabilities are limited. Then each limitation is addressed
to illuminate how each one can be overcome. Finally, some extensions to DEBUSSI
are discussed.

DEBUSSI is unable to localize errors in data flow. For example, suppose that a
program calls Cons with its arguments reversed, and the buggy call is presented to
the user as follows:

Function call: (Cons '(Apple Orange) 'Banana)
Returned (incorrect) value: ((Apple Orange) . Banana)

Was Cons called correctly? So
Enter violated conditions: Actual2=Argl.
Enter violated conditions: Actuali=hrg2

IFERCTION WINDOV

The user is only allowed to specify what values should have been supplied as
arguments to Cons. As a result, DEBUSSI attempts to localize the bug to either the
function that produced ' (Apple Orange), or the function that produced 'Banana.
But in fact neither of these functions are at fault, so DEBUSSI will only be able to
localize the bug to the function call that encloses the call to Cons.

A first step towards allowing DEBUSSI to localize errors in data flow is to define
some method for the user to discern between data values and data now, and some
logical predicates to describe common properties of data flow. With these extensions,
the query presented above would appear as follows:

68

69

Function call: (Cons '(Apple Orange) 'Banana)
Returned (incorrect) value: ((Apple Orange) . Banana)

Was Cons called correctly? So
Enter violated conditions: DFlow(Source(Value2) ,Arg1).
Enter violated conditions: DFlow(Source(Valuel) ,Arg2)

ITERACTION WINDOW

In this hypothetical extension to DEBUSSI, the user utilizes the predicates DFlov
and Source to specify, for example, that Argi should be accepting data flow from
the same source as Value2.

DEBUSSI is limited by its query heuristics, which are too arbitrary and empirical.
Some of the arbitrariness is revealed through the negative qualities of the various
heuristics. For example, "binary search" has the tendency to ask scattershot ques-
tions, and the "avoid language primitives" tends to perform poorly in the case of
simple "typographical error" bugs.

One possible way to improve DEBUSSI's query-finding ability is to give it more
domain knowledge, such as a library of programming cliches [19]. A programming
cich6 is a familiar algorithmic fragment which can be compared to sections to the
buggy program the detect a bug. (This is the debugging approach taken by Shapiro
in the SNIFFER system [21].)

In choosing queries, it would also be useful to ask the user questions that are
phrased at the proper level of abstraction and in the proper language for the domain.
For example, suppose that while debugging a numerical program, DEBUSSI queries
the user about some subprogram Foo, which exhibited the behavior Foo(2)=3. Rather
than asking if 3 is the correct output for input 2,, DEBUSSI could ask about some
abstract property that 3 satisfies. For example, DEBUSSI could ask if the output
of Foo should be odd, or if the output should be prime, or if the output should be
greater than the input. Finding appropriate properties can be done by inspecting
conditional statements in the program, e.g., if the program uses EvenP, then DEBUSSI
should ask if numerical values are even.

This ability would be desirable because it would improve the quality of specifica-
tion information obtained. Foo(2)=3 is indeed a partial specification for Foo, but it's
only appropriate fr- the situations when Foo's input is 2. But Odd(Qutput(Foo)) is
appropriate for all inputs to Foo, and is thus a more desirable specification.

Although Lisp was chosen as the initial target language, DEBUssi lacks an abstract
model of Lisp semantics. The lack of this model is the reason why DEBUSSl requires
programs to be side-effect free.

We believe that incorporating a more complete model of Lisp semantics will not
change the nature of DEBUSSI's localization techniques. In fact, a more complete

70 CHAPTER 5. LIMITATIONS AND FUTURE WORK

model of Lisp is certain to augment the kinds of dependencies that will underlie
bugs, and will thereby increase the power of DEBUSSI's localization techniques. Such
a model already exists, and it is presented in detail in [14]. Implementing this model
is a current undertaking of the Programmer's Apprentice project.

DEBUSSI is limited by its single-fault assumption, and any further enhancement of
DEBUSS must involve expanding its repetoire to multiply-bugged programs. Several
research directions need to be explored before this can happen. First, we need to
better understand the difference between errors in a function's usage and errors in a
function's definition. Second, we need to better understand the interactions between
split analysis and other localization methods. Finally, we need to explore multiple
bugs as they appear in a program's data flow and control flow.

A useful addition to DEBUSSI would be explanation capabilities. This means being
able to justify a given query to the user during the debugging session, and providing
a summary of the localization at the end of the session. Note that explanations can
be read directly off the dependency structure for the bug manifestation. Formatting
these explanations in a way that is meaningful to the user is nontrivial.

Perhaps the broadest long term goal is to integrate DEBUSS into the Program-
mer's Apprentice. The user could edit programs using a knowledge-based editor [24],
or could write source code by hand and then convert it to plans. Test cases, recalled
from earlier stages of a program's design [3], would be used to elicit bug manifesta-
tions. After DEBUSSI localizes bugs, bug correction would be done with the assistance
of a Design Apprentice [18].

The key issue in integrating a debugging tool such as DEBUSSI in the Program-
mer's Apprentice is determining the best use of program design knowledge. One
possible use of design information has been alluded to already in the discussion of
query selection. A programs's design will typically have information about its do-
main. This information can be used to influence the choice of queries, and to phrase
queries in the language of the domain.

Bibliography

[1] Anne Adam and Jean-Pierre Laurent. LAURA, A System to Debug Student
Programs. Artificial Intelligence, 15(1):75-122, November 1980.

(2] Daniel Brotsky and Charles Rich. Issues in the Design of Hybrid Knowledge
Representation and Reasoning Systems. In Proc. of the Workshop on Theoretical
Issues in Natural Language Understanding, Halifax, Nova Scotia, May 1985.

[3] David Chapman. A Program Testing Assistant. Communications of the ACM,
25(9), September 1982.

[4] Randall Davis. Diagnostic Reasoning Based on Structure and Behavior. Al
Memo 739, MIT Artificial Intelligence Laboratory, June 1984.

[5] N. K. Gupta and R. E. Seviora. An Expert System Approach to Real Time Sys-
tem Debugging. In Proceedings of the First Conference on Artificial Intelligence
Applications. IEEE Computer Society Press, December 1985.

[6] Walter Hamscher and Randall Davis. Issues in Model Based Troubleshooting.
AI Memo 893, MIT Artificial Intelligence Laboratory, March 1987.

[7] Mehdi T. Harandi. Knowledge-Based Program Debugging: A Heuristic Model.
In Proceedings of SOFTFAIR. IEEE Computer Society Press, July 1983.

181 W. Lewis Johnson and Elliot Soloway. PROUST: Knowledge-Based Program
Understanding. IEEE Transactions on Software Engineering, 11(3):267-275,
March 1985. Reprinted in Rich, C. and Waters, R. C., editors, Readings in
Artificial Intelligence and Software Engineering, Morgan Kaufman, 1986.

[9] Bogdan Korel. PELAS - Program Error-Locating Assistant System. IEEE Trans-
actions on Software Engineering, 14(9):1253-1260, September 1988.

[10] Samuel M. Levitin. Toward a Richer Language for Describing Software Errors.
MIT-AL Working Paper 270, May 1985.

71

72 BIBLIOGRAPHY

[11 F. J. Lukey. Understanding and Debugging Programs. International Journal on
Man-Machine Studies, 14:189-202, February 1980.

[12] William R. Murray. Heuristic and Formal Methods in Automatic Program De-
bugging. In Proceedings of the IJCAI, August 1985.

[13 Charles Rich. A Formal Representation for Plans in the Programmer's Appren-
tice. In Proceedings of the IJCAI, August 1981.

[14] Charles Rich. Inspection Methods in Programming. AI-TR 604, MIT Artificial
Intelligence Laboratory, June 1981. PhD Thesis.

[15] Charles Rich. The Layered Architecture of a System for Reasoning about Pro-
grams. In Proceedings of the IJCAI, August 1985.

[16] Charles Rich. Inspection Methods in Programming: Cliches and Plans. AI-TR
1005, MIT Artificial Intelligence Laboratory, December 1987.

[17] Charles Rich and Richard C. Waters. Abstraction, Inspection and Debugging in
Programming. Al Memo 634, MIT Artificial Intelligence Laboratory, June 1981.

[18] Charles Rich and Richard C. Waters. A Scenario Illustrating a Proposed Pro-
gram Design Apprentice. Al Memo 933A, MIT Artificial Intelligence Laboratory,
January 1987.

[19] Charles Rich and Richard C. Waters. The Programmer's Apprentice: A Re-
search Overview. IEEE Computer, 21(11):10-25, November 1988. Reprinted
in D. Partridge, editor, Artificial Intelligence and Software Engineering, Ablex,
Norwood, NJ, 1989. Also published as MIT Al Memo 1004.

[201 Gregory R. Ruth. Intelligent Program Analysis. In Readings in Artificial Intel-
ligence and Software Engineering, pages 431-441. Morgan Kaufmann, 1986.

[21] Daniel G. Shapiro. Sniffer: A System that Understands Bugs. Al Memo 638,
MIT Artificial Intelligence Laboratory, June 1981. MS Thesis.

[22] Ehud Y. Shapiro. Algorithmic Program Debugging. Yale RR 237, Yale Univer-
sity, Department of Computer Science, May 1982. PhD Thesis.

[23] Jr. Steele, Guy Lewis. Common LISP: The Language. Digital Press, 1984.

[24] Richard C. Waters. KBEmacs: A Step Towards the Programmer's Apprentice.
AI-TR 753, MIT Artificial Intelligence Laboratory, May 1985.

[25] Richard C. Waters. System Validation via Constraint Modeling. Al Memo 1020,
MIT Artificial Intelligence Laboratory, February 1988.

BIBLIOGRAPHY 73

[26 Linda M. Wills. Automated Program Recognition. AI-TR 904, MIT Artificial
Intelligence Laboratory, February 1987. MS Thesis.

[27] Patrick H. Winston and Berthold K.P. Horn. LISP. Addison-Wesley, Reading,
MA, third edition, 1984.

