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Type Reconstruction
with First-Class Polymorphic Values

James William O'Toole Jr.*
David K. Giffordt

Abstract 1 Combining Generic and

We present the first type reconstruction system which First-Class Polymorphism
combines the implicit typing of ML with the full
power of the explicitly typed second-order polymorphic Type reconstruction relieves the programmer of the bur-
lambda calculus. The system will accept ML-style pro- den of providing type information while retaining the
grams, explicitly typed programs, and programs that benefits of strongly-typed languages, including supe-
use explicit types for all first-class polymorphic values. rior performance, documentation, and safety. However,
We accomplish this flexibility by providing both generic present systems for type reconstruction, such as the ML
and explicitly-quantified polymorphic types, as well as type system [Milner78], do not permit the use of first-
operators which convert between these two forms of class polymorphic values. Explicitly-typed languages,
polymorphism. This type reconstruction system is an such as FX-87 [Gifford87], do permit first-class poly-
integral part of the FX-89 programming language. We morphic values, but they do not provide the program-
present a type reconstruction algorithm for the system. mer with the convenience of implicitly-typed languages
The type reconstruction algorithm is proven sound and such as ML.
complete with respect to the formal typing rules. The FX-89 programming language is a revision and

Categories and Subject Descriptions: D.l.m [Pro- extension of FX-87. FX-89 is based on a type recon-

gramming Techniques] - Miscellaneous: First-Class struction system that combines the flexibility of ML

Polymorphism; D.3.1 [Programming Languages] - with the full typing ability of the explicitly typed second

Formal Definitions and Theory; D.3.3 [Programming order lambda calculus. This reconstruction system will

Languages] - Language Constructs: Implicit Typing; accept ML-style programs, explicitly-typed programs,

D.3.4 [Programming Languages] - Processors: Corn- and programs that use explicit types for all first-class

pilers. polymorphic values.

In this paper we describe both the theoretical basis
General Terms: Languages, Type Theory, Polymor- of the FX-89 type reconstruction system and our type
phism. reconstruction algorithm. The algorithm described in
Additional Key Words and Phrases: type systems, effect the paper has been implemented.
systems, type inference, type reconstruction, FX-89.

In order to simplify our presentation we will restrict

our attention to a simplified version of FX-89 which

we will call IFX. The full FX-89 language includes

*Nalional Science Foundation Graduate Fellow side-effects, modules, oneofs, references, and other data
IThis research was supported by the Defense Advanced Re- types. These constructs can be added to the type infer-

search Projects Agency of the Department of Defense and was ence system described below.
monitored by the Office of Naval Research under contract num-
ber N00014-83-K-0125. In the remainder of this paper we discuss the previous El
Authors' address: MIT Laboratory for Computer Science, 545 work in this area (Section 2), introduce IFX (Section 3), El
Ttchnology Square, Cambridge, Massachusetts 02139.
E-mail: James@zermatt.cs.mit.sdu present a system of type reconstruction rules (Section

4), describe an algorithm which reconstructs IFX types

(Section 5), prove the correctness of the algorithm (Sec-

tion 6), briefly discuss possible extensions (Section 7),
and conclude with some observations on our result (Sec-

tion 8).
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2 Previous Work This example is not well-typed in MTS because no
generic polymorphism is provided. This example is well-

[Milner78] presents a typing system based on type typed in ML because the variables twice and id are

schemes in which the let construct provides generic assigned generic types, and these generic types are au-

polymorphism. ML, as presented in [Damas82, uss tomatically instantiated as necessary. In general, ML

generic type variables to express polymorphism. The programs cannot be typed by MTS without the addi-

ML type discipline is not as powerful as the type disci- tion of extensive explicit type abstraction and instan-

pline of the second-order polymorphic lambda calculus tiation information. The explicit typing of NTS, and
[Forune31.Typ quntiier ar no exlict i ML the implicit instantiation of the functions cons and f,[Fortune83l. Type quantifiers ate not explicit in ML,

and it is therefore not possible to express the type of a perit:
function which expects a polymorphic value as an argu-
ment. For this reason, we say that ML does not provide (lambda (f : Vt.t -- t)
first-class polymorphism. (cons (f 0) (f true)))

[McCracken84] introduced a type recorctruction sys- The second example is not well-typed in ML, because
tern for the second-order polymorphic lambda calculus. the lambda-bound variable f must have two incompat-
McCracken's system did not provide the generic let ible types within the body of the lambda. In ML, A
construct of ML, although it did attempt to support the lambda-bound variable cannot be given a generic type
automatic instantiation of explicitly typed polymorphic within the body of the lambda because the type Ian-
functions in application position. Both [McCracken84] guage is not capable of expressing the resulting function
and [Leivant83] attempted to provide automatic type type of the lambda, which must contain an explicit type
abstraction in more general type systems, but these re- quantifier. First-class polymorphism allows the variable
sults are flawed (see sections 4.5 and 4.6). f to be assigned an explicitly quantified polymorphic

The general partial polymorphic type inference prob- type.
lem was shown to be undecidable by [Boehm85l. More Our system permits both of the above examples. Mc-
recent work [Kfoury88] has shown that conservative ex- Cracken introduced the close operator to allow the pro-
tensions to ML providing restricted polymorphism are grammer to indicate where type abstraction should oc-
possible, but has not provided a practical type recon- cur without having to specify precisely what those type
struction algorithm. Recently, [Pfenning881 related the abstractions should be. A discussion of the formal typ-
comrnlexity of the partial type reconstruction problem ing rule for the close operator and why our modifica-
for the second-order polymorphic lambda calculus to tion to the rule in [McCracken84] is necessary appears
that of second-order unification, which is well-known to in sections 4.5 and 4.6.
be und,cidable [Goldfarb8 1]. Unlike McCracken's system, our type system contains

We believe our type reconstruction method is the first both ML-style generic types and explicitly quantified
to combine the implicit typing of ML with the full power types, and we therefore require that the programmer
of tde second-order polymorphic lambda calculus. We .. cate where explicit quantifiers ohold be removed
accomplish this flexibility by providing both generic and r, .. a type. The following example illustrates the use
explicitly-quantified polymorphic types, as well as op- of both explicit and generic polymorphism:
erators which convert between these two forms of poly-
morphisni. The difficulty of second-order unification is (lambda (g : Vt.t --* t)
avoided via syntactic restrictions that define the types (let ((twice (lambda (f x)
which may be omitted by the programmer. (f (f x))))

BIlow are some examples which illustrate the relative (g (open g)))
power of the ML typing system, McCracken's typing (cons (twice g 0)
system (MTS), and our system (IFX). The let binding (twice g true))))

. construct of ML permits generic type abstraction and
instantiation of twice and id: The open operator is used to convert an explicitly

quantified polymorphic type into ar ML-style generic
polymorphic type, and close is used to make the op-

(let ((twice (lambda (f x) (f (f X)) posite conversion.

(id (lambda Cr) )))
(cons (twice id 0) (twice id true)))
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In sum, the major advantages of our type reconstruc- The type of a function encodes the type of its argument
tion system are: and its result. If the type of the argument is monomor-

phic, then it may be omitted. The type Vt.v represents
* Programmers may write without using explicit type the type of polymorphic values abstracted over the type

specifications. ML-style programs may be used parameter t.
without modification in our type system. In the expression domain, just as lambda abstracts

" Programmers may write using fully explicit type E over the ordinary variable I of type U, plambda ab-
specifications. Explicitly-typed programs may be stracts E over the type identifier I to yield a polymor-
used without modification in our type system. phic value. A polymorphic value is instantiated with

the proj construct. The close and open constructs
" Programmers may use explicit types where desir- provide automatic type abstraction and instantiation.

able for documentation or other purposes, and omit As an example, we give below the code of the poly-
them where they would decrease readability. morphic compose function that composes the function

I with the function g:
" First-class polymorphic values can be used, pro-

vided that their types are declared. Thus, modules
can be first-class values in our system. Program- (close
mers may use the open and close operators to sim- (lambda (g)
plify the use of first-class polymorphic values. (lambda (g)(lambda (x)

g (I x))))))

3 IFX: A Typed Language Note that compose is automatically abstracted over

the argument and result types of the functions f and g.
For pedagogical purposes we will study type reconstruc- The type of compose is:
tion for IFX, a simplified version of FX-89. FX-89 is a
polymorphic typed language that allows side-effects and compose : Vtsr.(t -- s) --* (s ---* r) -+ t - r
first-class functions. Its syntax and most of its standard
operations are strongly inspired by Scheme [Rees861. The types of f, g, and x were omitted from the program
The language IFX has the following Type and Expres- text, but could equally well have been included by the
sion domains (where I is the domain of identifiers, and programmer.
vi are the primitive types):

: I ::= Identifiers
r P Primitive types 4 Type Reconstruction System
v U P primitive type

I type identifier We present the typing system of IFX as as formal de-
U --+ U function duction system consisting of a set of type reconstruction
VI 1...I,.U polymorphic type rules. The type system contains generic (i.e. general)

type variables, and distinguishes between these generic
e :E = I variable type variables and the type identifiers which appear in

(lambda (I) E) lambda user-supplied types. The type system also distinguishes
(lambda (I : U) E) abstraction between monomorphic and polymorphic types:
(E E) application
(let (I E) E) generic-let a G := General type variables
(plambda (I...) E) type p : N ::= P primitive type

abstraction I type identifier
(close E) type G general type variable

closure M --+ M function
(proj E U...) projection
(open E) automatic r : T := P primitive type

projection I type identifier
G general type variable

The type domain U contains the types which are sup- T --+ T function
pied by the programmer in explicit type declarations. VI1 ...I,.T polymorphic type

3



The IFX typing rules make use of an important dis- We use FGV(r) to refer to the free general type vari-
tinction between the M and T type domains. The rules ables of r, and FTV(r) to refer to the free type identi-
are designed so that M types may be omitted from fiers of r. Similarly, FGV(A) refers to the free general
formal arguiient type declarations, but T types may type variables of the type schemes in the assignment A.
not. Thus, the different levels in our type syntax spec- We define Gen(A, r), as follows:
ify the restrictions on the input programs. The use of
syntactically-specified restrictions is intended to com- Definition (Generalization). The generalization
municate clearly to the programmer the limitations of of r with respect to A (written Gen(A, r)), is the type
the type reconstruction system. scheme q = Vaj.', where {ai) = FGV(r) - FGV(A).

4.1 Type Schemes

The IFX type system supports the generic polymor- 4.2 The Deduction System

phism found in ML, as well as the explicit polymorphism
found in Reynolds' second-order polymorphic lambda The type reconstruction rules of IFX .'_ as fellows:

calculus. In order to provide generic polymorphism, we
define type schemes, which represent the generic (i.e. LAMBDA
general) type of a variable which is permitted multiple
instantiations: A. + (z : v) F e : r

Al-(lambda (z:v) e):v-tr

Definition (Type Scheme). A type scheme 17 is a APPL
term of the form APP:Val .. eta .%A F- e : Ta --- r

A I- ea:

where a,...a,, are the generic variables of r E T. A l- (e e.) : r,

PLAMBDA
We distinguish V and V deliberately: V binds the

generic type variables of a type scheme, and V binds A -e : r
type variables within a type. A -e : r' = Gen(A, r) >- Gen(A, r')

Definition (Alpha-renaming). Types r and r' are ti 0 FTV(A)

alpha-reilamable (written 7- = r') iff some renaming of A F (planbda (ti) e) : Vti.T

type variables bound in r produces r'.
PROJ

A F- e : Vti.r
Definition (Instantiation). The type r' is an in- A F (proj e vi) :r[vj/tj]
stance of the scheme r = V&a...an." (written r/ >- r') iff
there are monomorphic P1...n such that r[pi/ai] -r'. The above rules describe the typing requirements of
(,Ve extend >- to type schemes by 77 -71' iff Vr : r7 _ value abstraction, value application, type abstraction,
r = 7 -r.) and type application.

The following rules describe the typing requirements
Note that only M types may be substituted to produce of our open/close operators, ML-style generic let, and
instantiations, and that we assume that substitution the automatic type application of polymorphic func-
takes place with renaming of any bound type variables tions. These typing rules permit convenient use of poly-
to avoid capture. The result of substituting p for t in morphic values. Note that only M types are synthe-
r will be written T[p/t]. The type scheme 17 = V.T, sized by the reconstruction rules, as the omitted types of
having no generic type variables, will occasionally be lambda-bound variables, or as type parameters in open
abbreviated as r. or generic variable instantiation. The T types, contain-

We first present the inference rub's for explicitly typed ing explicit quantifiers, must be provided explicitly.

termis. A type assignment A maps each variable in its
domain to a type scheme. We will use A, to refer to OPEN
the type assignment A with the assignment for variable A F- e : Vt,.r
x removed. A F (open e) : r~p,/ti]

4



CLOSE 4.5 Discussion of the CLOSE Rule
A -e:r

A e : r' #. Gen(A, r) >- Gen(A, r') The open and close operators provide the program-
{a} = FGV(r) - FGV(A) mer with the means to convert types between the ex-

A F (close e) :Vai.r plicitly quantified style and the generic polymorphism
style. The open operator converts an explicitly quan-

VARINST tified polymorphic type into one of its instantiations.
(Z : Vai.r) E A Using open can be understood as requesting a type ap-
A - x : T[pJ/ai] plication to automatically determined M type param-

ILET eters. Therefore, open is more convenient to use than

A F eb :b proj, but proj must be used when application to T

A F eb : rb= Gen(A, rb) t Gen(A, rT) types is desired.

A= + (z : Gen(A, rb)) - e: r The close operator takes an expression whose type

A F- (let (x eb) e) : r contains unbound general type variables, and performs
type abstraction with respect to those type variables.

ILAMBDA The IFX operator close has the same intended seman-

A. + (z :,u) i- e :r tics as McCracken's type closure operator, with one im-

A F- (lambda (z) e) : r - r portant difference: the IFX close operator acts only on
the most general type of the expression. This restriction

IAPPL is enforced by the CLOSE rule, which contains as an an-
A F e : Vt i.(r -- r,.) tecedent that the type used for the closure be the most

A F e. . 7a general type of the expression. This restriction was not
ra = " [pi/ti] included in [McCracken84], and precludes the complete-

A - (e ea) : rpi/t] ness of the typechecking algorithm W presented in that
work.

4.3 Generic let
4.6 Only the Most General Type

The ILET and VARINST rules provide the ML-style

generic let. ILET associates a generic type scheme The difficulty with the CLOSE rule (and similarly
with the let-bound variable, and VARJNST permits PLAMBDA and ILET), is that in the absence of the
each occurence of the variable to be independently as- most general type restriction, a more specific type may
signed any instance of its generic type scheme. The be chosen, leading to a difference in the form of the
convenience of automatic generalization and instantia- explicitly quantified polymorphic type. Consider the
tion are provided by these two rules. In IFX, the typing following simple example:
rules permit this convenience with the caveat that the
automatically deduced type parameters be M types. (proj (close (lambda (z) z)) s r).

The typing power of the ILET rule is equivalent to The algorithm given in [McCracken84], and our algo-
that provided by rewriting the let expression in the rithm, will fail on the above example. The reason is
usual way, while making use of open and close: that the natural typing of (close (lambda (z) x))

((lambda (z : r) e[(open z)/z]) (close eb)). is Vt.t -+ t, which cannot be applied to two types (s
and r), but only to a single type. Without the most

However, this transformation is not pure syntactic general typc restriction in the CLOSE rule, the rule
sugar, because it requires r, the explicitly polymorphic would indicate that we may instead deduce the type
type of the bound variable. (tl - t 2) - t t 2 for (lambda (z) z). This type

would be closed to produce Vt1 t2.(tl -- t2 ) - tl - t2,

4.4 Implicit Projection which could be applied to the two types s and r.

The CLOSE typing rule in IFX imposes the require-
The IAPPL rule illustrates how implicit type applica- ment that the type closed be the most general type of
tion of polymorphic functions may be provided. The the body. This antecedent solves the problem described
implicit instantiation is achieved by making use of the above. Also, for purposes of disambiguation, the type
open operator to obtain a generic type. The application variables are bound in the same order in which they
(e ea) is typed by IAPPL as if written ((open e) ca). appear in the type of the expression. These conditions

5



ensure that the explicitly polymorphic type of a close e. We say that S is a valid M-substitution for A and e
expression is "frozen," and will have a fixed polymor- if S maps type variables in FGV(A) to M types which
phic structure which: do not contain any BTV(E).

" Can be relied upon by the programmer; so that Lemma (Substitution). Given a type assignment A,
there is no ambiguity as to the form of the type. expression e, type r, and a valid M-substitution S:

" Avoids the need to extend the instantiation relation A I- e : r =;. SA F- e : Sr
to structurally different polymorphic types.

Proof: By structural induction on e. 0]
* Allows the type reconstruction algorithm to com-

pute the unique most general type when processing
a close expression. Lemma (Extended Unification). There exists an

algorithm U(r, r1) with these properties:

This bst item guarantees that the algorithm need make
no arbitrary choices thus avoiding the need for back- * Supports alpha-renaming of bound type variables,
tracking. including generic variables.

. Matches unification variables only with M types.

5 A Type Reconstruction * Returns an M-substitution unifying r and -' or
fails, according to the usual unification rule defined

Algorithm by __.

The type reconstruction algorithm, R, computes types If there exists an M-substitution unifying r and r', then

for IFX expressions that are consistent with the deduc- U(r, r') will return the most general unifying substitu-

tive rule system in section 4. Algorithm R manipu- tion:Sr Sr
lates type expressions which contain unification vari-
ables. We have chosen to represent unification variables =
explicitly, to avoid any possible confusion regarding the U(r, r') --*
status of particular type variables occurring within type gr = Sr
expressions. To summarize the notation: =lP :(P ' 5),

t Explicitly quantified, bound type variable, and otherwise U(r, r') will fail:

a Generic type variable, implicitly bound. VS : Sr 9 Sr'

tu Monomorphic type, possibly generic, omittable. =:
U('r, T') - failure.

r Unrestricted type.
Proof: Straightforward. 0a

v Unification variable, which represents an M type

being reconstructed. Algorithm R. The reconstruction algorithm is defined

Because a v represents an M type, it cannot be unified as a recursive procedure. Algorithm R(A,e) takes the

with type expressions containing V. type assignment A and the input expression e, and com-
putes (S, r). The algorithm fails if any of the invoca-

Our type reconstruction algorithm makes extensive tions of the unification algorithm fail, if any of the recur-
use of a unification algorithm for this type system. sive invocations of R fail, or if failure is specifically in-
Our unification algorithm and its implementation are dicated in the algorithm text, given below. The substi-
based on the work of [Morris68,Hindley69]. As in [Mc- tution S is an M-substitution on FGV(A). The substi-
Cracken84], we require that the unification algorithm tution incorporates any information about the types of
be extended to support alpha-renaming of bound type the variables in dom(A) which is discovered by travers-
variables, including generic type variables. To state the ing the expression e. The design is such that r is the
substtution lemma correctly, we must prevent the pos- most general type of e under the assignment SA, and S

bility of user type identifier capture, so we make use of is the minimal substitution on FGV(A) which permits
BTV(e), the type identifiers bound by plambda within e to be typed.

6



R(A,e) case e of: 6 Formal Properties of the

if (z: /c.r) A then fail Reconstruction Algorithm
return (0, 7[pi/ai])

where vi are fresh. An algorithm is a type reconstruction algorithm for
IFXiff the algorithm has certain properties: termina-

(proj e vi) tion, soundness, and completeness. Each of these prop-

let (S, r) = R(A, e) erties may be viewed as a guarantee to the programmer

if r 6 Vti.r' then fail about the behavior of the algorithm:

return (S, r'[Vi/ti]).
The algorithm will always halt, either failing, or

(plambda (ti) e) providing a type of the program.
let (S, r) = R(A, e)
if any ti E FTV(SA) then fail * If the algorithm computes a type for the program,
return (S,Vti.r). then the program can be proved to have that type

according to the formal rules of IFX.

(lambda (z : v) e) * If the program has some type according to the for-
let (S, r,) = R(A + (x : v), e) mal rules of IFX, then the algorithm will compute
return (S, v -- I. T,). the most general type of the program.

(lambda (W) e)
let (S, r) = R(A + (x: v), e) We prove that Algorithm R has each of these three prop-

where v is fresh erties. For convenience, we will write R(A, e) --- (S, r)

return (S, SP -- r). when we mean "Algorithm R halts on input A and e,
yielding S and r."

(e e.)

let (S,-m) = R(A,e)
let (S.,,r) = R(SA,e.) 6.1 Termination of Algorithm R
if Tm = Vti.-r' then

!nt .- = ?[vi/ti] whre vi arc fiesh Theorem (Termination). Algorithm R terminates on

else all (finite) inputs.

let r = rn Proof: Observe that Algorithm R is a syntax-directed
if r 0 r" --, r, then fail algorithm. R(A, e) recursively traverses the syntax of
let V = U(SrTf , ra) the input expression e, which is finite. Algorithm R
return (VSaS, VSar,). invokes the unification algorithm finitely many times,

and each invocation must terminate, because all type

let (S, r) = R(A, e) expressions in IFX are finite. 0

if r I Vti.r' then fail
return (S,r',[i/ti]) 6.2 Correctness of Algorithm R

where vi are fresh.

The notions of soundness and completeness of a typing
(close e) algorithm with respect to a formal typing system are

let (S, r) = R(A, e) well-known. The most general type restriction in the
let {i) = FGV(T) - FGV(SA) antecedents of several of the IFX typing rules compli-
return (S,Vai.r). cate the proofs of the soundness and completeness of

R. Specifically, the soundness of R and the complete-
(let (Z eb) e) ness of R cannot be proved independently, as is usually

let (Sb, rb) = R(A, eb) done [Damas85]. Consider, for example, the expression
let {ai} = FGV(n) - FGV(SbA) (close e). R on (close e) cannot be sound unless
let (S, r) = R(SbA + (x : Vai.rb), e) the type computed by R for e satisfies the most gen-
return (SSb,r). eral type restriction, which means R must be complete.

endcase. Similarly, the soundness of R is used to prove its com-

pleteness.

7



The argument is not circular, but mutually recursive, corresponding case in Algorithm R. In each case, the
In other words, the soundness and completeness of R antecedents of the typing rule permit the use of the in-
must be proved together, by structural induction. duction hypothesis. The behavior of R on input e then

follows from the application of the inductive hypothesis
to the recursive calls to R on component expressions of

6.3 Soundness of Algorithm R e, and the unification lemma.

We show that Algorithm R is sound with respect to the The detailed proof of the inductive step for (close e)

formal typing system in this sense: illustrates the use of the induction hypothesis, the con-
nection with the tandem proof of soundness, and the
importance of the most general type restriction as an

Theorem (Syntactic Soundness). Given any type antecedent of the CLOSE rule:
assignment A and expression e, if Algorithm R on input
A and e computes the substitution S and the type r, Case CLOSE. Given that
then e has type r under the assignment SA:

R(A,e) - (S,r) SA h- (close e) : Va,.r, (1)

we will show:

SA -e : r. R(A, (close e)) -. (S,Vai.f), (2)

Proof sketch: By structural induction on e, in tandem and demonstate the existence of a substitution P' such
with the proof of completeness. Assume, by induction, that:
that R is both sound and complete when applied to the P'SA SA (3)
component expressions of e. For each possible case of P'Gen(SA,Vaj.f) >" Gen(SA,Vcq.r). (4)
Algorithm R, there is a corresponding inference rule in
IFX. In each case, the antecedents of the inference rule
follow from the inductive hypothesis and the unification The IFX deduction rule for (close e) proving (1) is
lemma, o CLOSE, so therefore

SA t- e : r (5)

6.4 Completeness of Algorithm R {a} FGV(r) - FGV(SA) (6)

We show that Algorithm R is complete with respect to SA F- e : 7': Gen(S.A, r) >- Gen(SA, r'). (7)
the formal typing system in the following sense: By the inductive hypothesis on (5), there exists a sub-

stitution P such that:
Theorem (Syntactic Completeness). if e has
type r under assignment SA, where S is a valid M- R(A,e)--.(,,') (8)
substitution for A and e, then R(A, e) will compute a
substitution S and a type f, such that SA is more gen- PSA " SA (9)
eral than SA, and t" is more general than r: PGen(SA, f) > Gen(SA, r) (10)

SA I- e : r SA-e:" (11)

In order to show (4), we will use the most general
R(A, e) -- (5, t) type restriction to show that the two type schemes in

311 : (PSA :- SA) A (PGen(A) - Gen(SA, r)). (10) are =. By the substitution lemma, it follows from
-P - (9) and (11) that

Proof sketch: By structural induction on e, in tan- SA = PSA " e : Pf (12)
dern with the proof ofsoundness. Assume, by induction,
that It is both sound and complete when applied to the But r satisfies the most general type restriction (7), so
component expressions of e. Given that SA F e : r, the above implies
the final step in the formal deduction uses a typing
rule of IFX. For each possible typing rule, there is a Gen(SA,r) ,- Gen(SA, Pt). (13)



Combining (10) and (13) we have ILETREC

PGen(SA, f) t Gen(SA, r) t Gen(SA, PI'). (14) Az + (z :) - eb :

Now dorn(P) C FGV(SA), so by definition of Gen, it is A, + (x : p') h eb : p' #, Gen(A., p) _- Gen(A,p')

clear that A, + (z : Gen(A, p)) I- e r
A I- (letrec CU eb) e) :r

PGen(A, i) _ Gen(PSA, P-). (15)

Thus, by (9) and (15), the niddle of (14) is excluded, The LETREC rule requires that the programmer spec-
so that the type schemes of (14) are all _, specifically ify the type, but provides no generic polymorphism.

The ILETREC rule provides generic polymorphism, but
PGen(SA, l) Gen(SA, r). (16) does not permit T types for the bound variable. Neither

rule permits the bound variable to be generic within its
We must show that Algorithm R on (close e) com- own defining expression. We believe that algorithm R

putes a substitution and a type having the proper- extends to these rules in a straightforward manner.
ties specified in the theorem. By definition of R on
(close e), it follows from (8) that The following rule combines the good features of the

above rules:
R(A, (close e)) - (S,V,.f ), (17)

where {aj} - FGV(-) - FGV(SA). We must also find LR2
a substitution P' such that:

A, + (z : 7b) - eb : rb

P';A_ SA (18) A, + (z : r-) - eb : r6 - Gen(A,, m) t Gen(A., ,r)
P'Gen(.,ai%.G) Gcn(SA,Vai.r). (19) A. + (x : Gen(A, in)) H e :r

-- A F (letrec (z eb) e) : r
We choose P' = P and observe that (18) follows from
(9). By the choice of {a%} and {ai, it is obvious that
the Gen operations in (19) do not bind any generic type The LR2 rule permits the omission of the T type of the

variables. Therefore, (19) reduces to (16), by the defi- bound variab!e. We have not extended Algorithm R to

nition of >-. We have shown (2), (3), and (4), and this compute types consistent with rule LR2. Whether such

completes the proof. C3 types can be computed is an open question.

7 Possible Extensions 7.2 Implicit Projection

The typing system of IFX may be extended to provide a The version of our IAPPL rule presented in [Mc-
richer type language. For example, the FX-89 design in- Cracken84] does not restrict the type arguments to be
cludes static side-effect information, module values, the M types, but rather requires that all type arguments ap-
usual sum and product types, and recursive definitions, pear in the types of the formal subroutine arguments:
Various extensions are briefly discussed.

7.1 Recursive Definitions IPA
A - e : Vt,.(r! -- r,.)

An important omission from the IFX typing rules is A F e. : r,
any means to define values recursively. The following {} c FTV(rf)
two rules provide both implicitly and explicitly typed = r1 [ri/t]
versions of letrec: A H (e e0 ) :

LE'THIEC This extension corresponds to a straightforward modi-

A, + (x : vb) c : Vb fication to algorithni R and the unification algorithm.

A; + (x : vb) - e : r lowever, the completeness of the resulting algorithm

A H (letrec (X : Vb eb) e) : r remains an open question.



7.3 Type Closure w.r.t. fect specifications can be included in such a classifica-
User Type Identifiers tion; such an approach is adopted by the current design

of FX-89.
The CLOSE rule of IFX does not permit closure
with respect to type variables which appear in user-
supplied types. For this reason, the type variables which 7.5 Applicative Types
the programmer chooses to write explicitly must alse
be abstracted explicitly, via plambda. For example, In FX-87, type abstraction is permitted only when the
(close (lambda (x,) )) : Vt.t--* t, but we do not side-effect specifications ensure that the polymorphic
have (close (lambda (x t) x)) Vt.t -. t and in- expression is referentially transparent. [Tofte87] takes a
stead inust write (plambda () (lambda (x : t) x)). different approach, based on the concept of applicative

The type reconstruction algorithm R can be mod- types. Tofte classifies certain expressions as ezpansive,
and permits type abstraction of these expressions onlyedtopeform type closuifiers widthe resectitothes- with respect to applicative type variables. This type ab-user-supplied type identifiers, and the resulting flexi- staioruepmtsdfrntyeabrcinshn

biliy my b desrabe. nforunaely we avenot straction rule permits different type abstractions thanbility may be desirable. Unfortunately, we have not

found a typing rule for close which both permits does the FX-87 pure-plambda rule.

(close (lambda (x : t) x)) : Vt.t - t and prevents A thorough comparison of these two abstraction rules
is beyond the scope of this paper. [Tofte87] treats the is-

(lambda (y) sue of type abstraction in the presence of mutable data.
(close (lambda x) We believe that the imperative typing discipline intro-

(lambda (w : t) duced in [Tofte87] could be combined with the type re-
((lambda (z) x) y))))) construction system we have presented.

:t- Vs.(s-- t- s )

The difnculty is that if the rule for close does 7.6 IFX as a Design Point
pernit abstraction with respect to user-supplied type
identifiers, then the behavior of close depends upon The language IFX may be viewed as one point in a de-
the choice of omitted M types on lambda-bound vari- sign space of languages. The rules comprising IFX pro-
ables. Particular choices of omitted M types will enlarge vide certain language constructs which define the be-
FTV(A), thus preventing some type abstractions. havior and interactions of generic and explicitly poly-

In the above example, if y is assigned the type t, then morphic types. However, other typing rules are alsc
t is not abstractable by the close appearing in the possible. For example, the VARINST rule could be
body, because it appears free in the type assignment. changed to (in effect) automatically open any lambda-
lhowever, the modified algorithm R would not assign bound variable, except where some syntactic device ap-
y the type t, because the type of y is not constrained pears.
by the example. Therefore, closure with respect to t The particular rules chosen will influence the pro-
would be performed. This problem does not occur with grammer's use of polymorphism, as some usages are
generic type variables, because they cannot appear in made more convenient than others. Choosing among
the types supplied by the programmer. This may be such design alternatives is an engineering decision which
sen by comparing the definitions of the type domains may
U and T. require empirical investigation.

7.4 Effect specifications 8 Conclusion

[lie type language of FX-7 provides side-effect specifi- We have developed a type reconstruction system which
cations, which permit a fine-grained description of allo- combines the convenience of ML-style typing with the
cation, access, aiid mutation actions performed during full explicit typing power of the second-order polymor-
the evaluation of an expression. These effect specifica- phic lambdA calculus. The system permits the coexis-
tions are attached to function types, in order to permit tence in the type domain of generic and explicitly poly-
accurate checking at the timec of compilation. morphic types, and provides operators with which the

The IFX typing rules permit monomorphic types to programmer may control conversions between the two
ie ornitted from formal argument type declarations. Ef- forms of polymorphism. We have introduced the "most
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general type" restriction for type abstractions, permit- [Leivant83] Leivant, D., "Polymorphic Type Infer-
ting the use of a unification-based typing algorithm. ence", Proceedings of the 10th Annual Symposium
A practical type reconstruction algorithm for this lan- on Principles of Programming Languages, 1983.
guage has been exhibited and its correctness has beenproven. [Lucassen871 Lucasen, J. M., Types and Effects: To-

wards the Integration of Functional and Imperative

Programming, Ph.D. Thesis MIT/LCS/TR-408,
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