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1 Introduction

The organization of communication among chips is a major concern in the design of an
electronic system. Because of the costs associated with wiring and packaging, it is generally
desirable to minimize the number of wires and the number of pins per chip in an architec-
ture. This paper investigates how busses (multiple-pin wires) can be employed to efficiently
impIOment various communication patterns among a set of chips. Other theoretical studies

V of bussed interconnections can be found in [1, 3, 4, 5, 7, 12, 21, 24, 25, 29].
P"haps the simplest example of the advantage of bussed interconnections is the use of

sinle shar:ed bus to communicate between any pair of chips connected to the bus in one
tdock tick. Cormunicating between any pair of chips in one clock tick can be implemented
with two-pin wires, but any such scheme requires (n) wires and n - 1 pins per chip.1 Of
course, a two-pin interconnection scheme may be able to implement more communication
patterns, but if we are only interested in communication between individual pairs, the
additional power, which comes at a high cost, is wasted.

An example that better illustrates the ideas in this paper comes from the problem of
building a fast cyclic shifter (sometimes called a barrel shifter) on n chips. Initially, each
chip c contains a one-bit value ec. The function of the shifter is to move each bit E, to chip
c + s (mod n) in one clock tick, where s can be any value between 0 and n - 1.

Any cyclic shifter that uses only two-pin wires requires at least (2) wires and n -1 pins
per chip in order to shift in one clock tick because each chip must be able to communicate
directly with each of the other n - 1 chips. Using busses, however, we can do much better.
Figure 1 gives an architecture for a cyclic shifter on 13 chips which uses 13 busses and only
4 pins per chip. To realize a shift by 8, for example, each chip writes its bit to pin 3 and
reads from pin 1. The reader may verify that all other cyclic shifts among the chips are
possible in one clock tick. (In Section 4, we give a general method for constructing such
cyclic shifters based on finite projective planes.)

0 1 2 3 10 f 2 10 1 1

1 - -- I.f 1 . .I1

I If I - I ...---

Figure 1: A cyclic shifter on 13 chips that uses 13 busses. Each chip has 4 pins, and each bus
has 4 chips connected to it. This cyclic shifter is based on the difference cover {0, 1,3, 9} for Z13.

The cyclic shifter of Figure 1 has the advantage of uniformity. All chips have exactly
the same number of pins, and to accomplish each of the 13 permutations specified by the

1Unless otherwise specified, we count only data pins in our analysis and omit consideration of the pins
for control, clock, power, and ground since they are needed by all implementations.
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problem, all chips write to (and read from) pins with identical labels. For all busses, the
number of pins per bus is 4, which is the same as the number of pins per chip. Moreover,
the connections between chips and busses follow a periodic pattern. The uniformity of the
architecture leads to simplicity in the control of the system. Four control wires from a
central controller are sufficient to determine each of the 13 shifts-two wires for specifying
the number of the pin on which to write, and two for the pin to read-which is the
minimum possible. Thus, our control scheme uses the minimum number of control pins,
and the on-chip decoding logic is straightforward and identical for all the chips.

Cyclic shifters for general n can be constructed using an idea from combinatorial math-
ematics related to difference sets [18, p. 1213. (See also [6, 14, 16, 22, 26].)

Definition 1 A subset D C Z,, of the integers modulo n is a difference cover for Z, if for
all s E Z,,, there exist di, dj E D such that s = di - dj (mod n).

That is, every integer in Z, can be represented as the difference modulo n of two integers
in D. For example, the set D = {0, 1,3, 9} is a difference cover for Z13 , since

0 = 0-0

1 =1-0

2 =3-1

3 =3-0

4 -0-9

5 =1-9

6 = 9-3

7 = 3-9

8 = 9-1

9 = 9-0
10 = 0-3

11 = 1-3

12 = 0-1,

where all subtractions are performed modulo 13.

Given a difference cover for Z,, with k elements, a cyclic shifter on n chips with n busses
and k pins per chip can be constructed. Suppose D = {do, d1 ,...,dkj} is a difference
cover for Z,. In the cyclic shifter, chip c connects via its pin i to bus c + d, (mod n), for
all c = 0,1,...,n - 1 and i = 0,1,...,k - 1. To see that any cyclic shift on the n chips
can be uniformly realized, consider a cyclic shift by s. Since D is a difference cover for Zn.
there exist di, dj E D such that s = di - dj (mod n). To realize the shift by s, each chip
writes to pin i and reads from pin j. Chip c therefore writes onto bus c+ di, and bus c + d,
is read by chip (c + dj) - dj = c + s. No collisions occur because each bus has exactly one
pin labeled i and one pin labeled j connected to it, as can be verified.

The remainder of this paper explores permutation architectures, the properties of'
multiple-pin interconnections, and related combinatorial mathematics. In Section 2 we
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define a permutation architecture, introduce the notion of uniformity, and prove some ba-
sic properties of architectures that employ busses to realize arbitrary sets of permutations.
Section 3 defines the notion of a difference cover for a set of permutations, relates it to
the notion of a uniform permutation architecture, and proves some properties of difference
covers. In Section 4 we show how to build cyclic shifters that are provably efficient. Sec-
tion 5 investigates how to design small difference covers for any set of permutations that
forms a finite group. In Section 6 we extend the discussion to uniform architectures that
realize permutations in more than one clock tick. We present a variety of extensions to the
results of the paper in Section 7. Finally, in Section 8 we discuss questions left open by
our research. An appendix of standard notations and definitions is included for reference.
Notations and definitions more specific to the content of the paper are provided in context.

2 Permutation architectures

In this section we formally define the notion of a permutation architecture, and we make
precise the notion of uniformity. We also prove some basic properties of permutation
architectures that realize arbitrary sets of permutations. The definitions in this section are
somewhat intricate and tedious, and are indicative of the difficulties faced in the design of
efficient permutation architectures. In the next section, however, we use these definitions
to show that reasoning about i- iiform permutation architectures is essentially equivalent
to reasoning about difference covers, a simpler and more elegant mathematical notion. The
remainder of the paper then uses the simpler notion.

For convenience, we adopt a few notational conventions. We use multiplicative notation
to denote composition of permutations. The inverse of a permutation ir is denoted by
r- 1. Composition of functions is performed in right-')-left order, so that 7irr 2 is defined

by 7rir2 x = ri(r 2(x)). The identity permutation on n elements is denoted by I, , or
by I if the number of elements is unimportant. For a permutation set 4 , we denote
by (I - the set of all the inverses of the permutations of 4 , i.e. 0-1 = {d-' : 6 E )-}.
For two permutation sets 4b and TI, the notation 4P* is used to denote the permutation
set {tOk: 0 E (P and 0 e 'j}. We use the notation [n] to denote the set of n integers
10, 1,... , n- 1}.

We first define the notion of a permutation architecture.

Definition 2 A permutation architecture is a 6-tuple A = (C, B, P, CHIP, BUS, LABEL) as
follows.

1. C is a set of chips;

2. B is a set of busses;

3. P is a set of pins;

4. CHIP is a function CHIP : P --+ C:
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5. BUS is a function BUS : P --+ B;

6. LABEL is a function LABEL : P -4 N, where if x,y E P, x 4 y, and cIIIP(x)
CHIP(y), then LABEL(x) # LABEL(y).

The set C contains all the chips in the architecture, and the set B contains all the busses.
Which chips are connected to which busses is determined by the pins they have in common;
the set P contains all the pins. The function CHIP determines which pins belong to which
chips. Similarly, the function BUS determines which pins are interconnected by which bus.
The function LABEL names the pins on the chips by natural numbers such that all pins on
a given chip have distinct labels, which we shall sometimes call pin numbers.

Our formal definition of a permutation architecture omits several subsystems that tech-
nically should be included, but whose inclusion is not germane to our study. These sub-
systems include a control network that specifies what permutation is to be performed and
clocking circuitry for synchronization. Our focus is on the structure of the bussed inter-
connections for permuting the data, and thus our definition encompasses only this aspect
of the architecture.

We now define what it means for a permutation architecture to realize a permutation.

Definition 3 A permutation architecture A = (C, B, P, CHIP, BUS, LABEL) realizes a per-
mutation 7r : C -- C if there exist two functions WRITE, : C -+ P and READ, : C --* P,
such that for any chips c, ci, c2 E C, we have:

1. CHIP(READ,,(c)) = CHIP(WRITE,,(c)) = C;

2. BUS(WRITE,(C)) = BUS(READ, (7r(c)));

3. cl 5# c2 implies BUS(WRITE,(cl)) -# BUS(WRITE,,(c 2)).

The architecture uniformly realizes r if, in addition:

4. LABEL(WRITEr(Cl)) = LABEL(WRITE,(c 2));

5. LABEL(READ,(cl)) = LABEL(READ,(C 2)).

We say a permutation architecture realizes a set [1 of permutations if it realizes every
permutation in II. We say it uniformly realizes 11 if it uniformly realizes every permutation
in i.

Intuitively, for a permutation ir, the functions WRITE, and READ, identify the write
pin and the read pin for each chip. Condition 1 makes sure that each chip writes and reads
pins that are connected to it. Condition 2 ensures that the bus to which chip c writes is
read by chip ir(c). Condition 3 guarantees that no collisions occur, that is, no two data
transfers use the same bus. The architecture uniformly realizes a permutation (Conditions
4 and 5) if all chips write to pins with the same pin number and read from pins with the
same pin number, as in the cyclic shifter from Figure 1.
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Our definition of a permutation architecture implies that "complete" permutations are
to be realized, that is, every chip sends exactly one datum and receives exactly one datum.
Moreover, an interconnection is required even when a chip sends a datum to itself. Since
no collisions occur, the number of busses in the architecture must be at least the number
of chips. This observation leads directly to the following theorem.

Theorem 1 In any permutation architecture that realizes some nonempty permutation set
[1, the average number of pins per bus is at most the average number of pins per chip.

Proof. Let A = (C, B, P, CHIP, BUS, LABEL) be a permutation ard±itecture for H1. The
average number of pins per chip is IPI I Cl, and the average number of pins per bus is
IPI / IBI. Condition 3 of Definition 3 says that for any permutation 7r E HI, any two distinct
chips are mapped to distinct busses. Consequently, we get that JBI > lCl, which proves
the theorem. U

Under the assumption that no interconnection is needed for a chip to send data to
itself, Theorem 1 is no longer applicable. A similar theorem can be proved for this model,
however, which involves the number of fixed points in the permutations realized by the
architecture. Specifically, suppose the architecture realizes a set I of permutations. Define
the rank of a permutation 7r E H1 as RANK(lt) = l{c E C : r(c) # c}I, and define the rank
of the permutation set I as RANK(fl) = max,.n RANK(ir). The analogue to Theorem 1
states that the ratio between the average number of pins per bus and the average number
of pins per chip is at most ICI /RANK(II).

In any architecture A that uniformly realizes a permutation set R, the number of pins
that are actually used to uniformly realize 11 is the same for all chips, and additional pins
on a chip are unused. Furthermore, the number of busses used in realizing any permutation
7r E II is equal to the number of chips. These observations lead to the following definition
of a uniform architecture.

Definition 4 A uniform permutation architecture for a permutation set H1 is a permuta-
tion architecture A = (C, B, P, CHIP, BUS, LABEL) such that:

1. A uniformly realizes H;

2. 1IxEP:cHIP(p)=clIl=I{xEP:CHIP(p)=c 2}l for any two chips c,, c2 E C;

3. BI = Cl;

4. if x # y and LABEL(x) = LABEL(y), then BUS(x) #- BUS(y).

Thus, all the chips in a uniform permutation architecture have the same number of pins
(Condition 2), the number of busses is equal to the number of chips (Condition 3), and
the labels of the pins on any bus are distinct (Condition 4).

The following theorem demonstrates that any permutation architecture that uniformly
realizes some permutation set H1 can be made into a uniform architecture.
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Theorem 2 Let A = (C, B, P,CIP, BUS, LABEL) be a permutation architecture that tuni-
formly realizes the permutation set II, and let k be the smallest number of pins on any
chip in C. Then there is a uniform architecture A' = (C', B', P', CHIP', BUS', LABEL') for
II with at most k pins per chip.

Proof. We construct the uniform architecture A' from the permutation architecture
A in two steps. First, we construct an intermediate permutation architecture
A" = (C", B", P", CHIP", BUS", LABEL") by removing extraneous pins from chips in A
such that all chips end up with the same number of pins per chip and such that each pin
plays a role in uniformly realizing 11. Then, the busses of A" are reorganized to produce
the architecture A' in such a way that the number of busses in A' is equal to the number
of chips. We assume that the permutation set [I is nonempty, since otherwise the theorem
is trivial.

In the first step, we remove pins that are unused in uniformly realizing 1I. Since A
uniformly realizes H, each permutation ir E [ can be associated with a distinct pair (i.j)
of pin labels corresponding to the labels that all chips write to and read from in order to
realize 7r. A pin is unused if its label does not appear in any of these 1111 pairs. Removing
the unused pins results in the architecture A" in which all chips have the same number
of pins, since each chip has exactly one pin for each label used in uniformly realizing H.
The permutation architecture A" uniformly realizes 1I, and furthermore, each pin is used
in uniformly realizing some 7r E II. If we let s denote the number of pins per chip in A".
then we have s < k, since originally at least one chip had k pins and no pins were added.

In the second step, we reorganize the busses of A" to produce the uniform architecture
A' in which the number of busses is equal to the number of chips. For any permutation
architecture that realizes a nonempty permutation set, the number of busses is never
smaller that the number of chips. Assume without loss of generality that C" = [n].
B" = [m], and range(LABEL") = [s]. The theorem is proved if the architecture A" uses
only n = IC"I busses, but in general, the architecture might use m > n busses.

We define a collection of mappings T = {V'o, {',.. •,o- -1}, where for each 0 < i < s- 1.
the mapping Vj : [n] --- [m] is defined to be Oi(c) = b if and only if chip c E C" is connected
via its pin number i to bus b E B". The elements of T are indeed mappings since each
chip has a pin numbered i for each 0 < i < s - 1. The mappings are injective (one-to-ct,e).
since otherwise two pins with the same pin number would be connected to the same bus.
and both pins could not be used to uniformly realize permutations, thereby violating the
construction of A" in the first step. The collection kI is a multiset, since it may be that
two different pin numbers i # j define the same mapping (i.e. O'i = Oj). The key idea is
that any permutation is implemented by each chip writing to pin i and reading from pin j,
thereby employing the mapping 4'i to write data from the n chips to n distinct busses, and
the inverse of the mapping ,j to read data from the same n busses back to the n chips.

We now show how to reorganize the busses of A" in order to construct a uniform
architecture A'. We partition T into I equivalence classes T(0 U T' U ... U qVI'_ such that
V'i and ,j are in the same equivalence class ri, if and only if range(V') = range(/,,). This
partitioning has the property that if ir E 1, then there exists an r such that 7r = it' L',
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where 0j, Oj E IY,. (Recall that the inverse of an injective mapping b : [n] -- [in] is defined
as the mapping 0' : range(O) --+ [n] such that if k(c) = b, then V,-1 (b) = c.) For each 0 <
r < 1- 1, pick a bijection (one-to-one, onto) f- : range(C) - [n], where 0 is any mapping in
qV,. (We can pick a bijection, since 0 is injective, which implies Irange(O)l = n.) We define
the architecture A' by C' = C", B' = [n], P' = P", CHIP' = CHIP", LABEL' = LABEL", and
for any pin x E P' such that V)LABEL'(.) E %P, we define BUS'(x) = f,(BUS"(x)).

The architecture A' has exactly s pins per chip and satisfies B'! = IC'j = n, thereby
satisfying Conditions 2 and 3 of Definition 4. We show Condition 4 holds by considering
any two pins x and y with LABEL'(x) = LABEL'(y) = i. We have BUS'(x) = fr(BUS"(x))

and BUS'(y) = f,(BUS"(y)) for some f, as defined in the previous paragraph. Since fr is
an injective mapping and because Condition 4 of Definition 4 holds for A", we then have
x y implies BUS'(x) # BUS'(y).

It remains to show that Condition 1 of Definition 4 holds, that is, that A' uniformly
realizes H. Consider any permutation 7r E H. Since A" uniformly realizes H, there exists a
pair of pin labels (i,j) such that ir is realized in A" by each chip writing to its pin numbered
i and reading from its pin numbered j. We use the same pin labels (i,j) to realize the
permutation 7r in A'. Conditions 1, 4, and 5 of Definition 3 are immediately satisfied. To
verify Conditions 2 and 3 we use the following observation. In architecture A" chip c is
connected via its pin labeled h to bus h(c), while in architecture A' it is connected to
bus fr(Oh(c)), where ?Ph E 'P,.. Condition 2 now holds since r = 0i = (frkj)-1 (f tp).

Condition 3 holds since f7 ?,L is a permutation on [n]. We therefore conclude that A" is a
uniform architecture for rI with at most k pins per chip. U

The next theorem provides a lower bound on the number of pins per chip in any uniform
architecture for a permutation set 1H. (A related theorem due to C. Fiduccia appears in
[20, p. 308].)

Theorem 3 Let A = (C, B, P, CHIP, BUS, LABEL) be a uniform permutation architecture
for a permutation set H'. Then the number of pins per chip in A is at least [IVij.

Proof. Because architecture A realizes H1 uniformly, we can associate each 7r E II with a
pair (i,j) of pin numbers such that r is realized by each chip writing to its pin labeled
i and reading from its pin labeled j. Since A is uniform, each chip has exactly JPI / CI
pins, and the number of such pairs is (IPI / ICI) 2. No two permutations can be associated
with the same pair, and thus, we have (IP/eICI) 2 > IHI or JP1/ICl > V9/ ./

A permutation architecture can often nonuniformly realize many more permutations
than the square of the number of pins per chip. As an example, consider a "crossbar"
architecture of n chips and n busses where each chip is connected to each bus. This
architecture can nonuniformly realize all n! permutations, which is much greater than n2 .
the square of the number of pins per chip. In Section 7 we discuss some of the capabilities
of nonuniform permutation architectures.

8



3 Difference covers

In this section, we present our main theorems which establish the relationship between
difference covers for permutation sel- and uniform permutation architectures. We also
prove some lemmas concerning difference covers for Cartesian products of permutation
sets. Finally, we present an alternative representation for difference covers called substring
covers based on similar notions in the literature of difference sets.

We first provide a generalization of Definition 1 to arbitrary sets of permutations.

Definition 5 A difference cover for a permutation set I is a set 0) = {0, 0 1 . ... Ok-l}

of permutations such that for each 7r E 1 there exist 0j, Oj E 4) such that r = 0; Oi.

Equivalently, we can use our product-of-sets notation to say that (D is a difference cover
for rI if 4-'4 D IT.

The following two theorems show how difference covers and uniform architectures are
related. Theorem 4 describes how to design a uniform architecture for a permutation set
1H when a difference cover for II is given. Theorem 5 presents a construction of a difference
cover for a permutation set [1 from a uniform architecture for IH.

Theorem 4 Let 11 be a permutation set, and let 4) be a difference cover for 11 such that
1-01 = k. Then there exists a uniform architecture for I with k pins per chip.

Proof. Let 4) = {0,1, ... ,€ k-}, and assume that [I is a set of permutations on n
objects. We construct a permutation architecture for H with n busses and k pins per
chip. We name the chips and busses of the architecture by natural numbers, and the pins
by pairs of natural numbers. The architecture A = (C, B, P, CHIP, BUS, LABEL) is defined
as C = [n], B = [n], P = [n] x [k], CHIP(c,) - c, LABEL(c,) = i, and BUS(c, ) =

OLABEL(ci)(CHIP(c,i)) O ¢i(c). That is, chip c is connected via its pin number i to bus
,i (c).

To see formally that this architecture uniformly realizes H, let 7r E I be a permutation.
and let Oi, Oj E 4 be elements of the difference cover for H such that 7r = €0-1,0. Define the
write function for r as WRITE.(c) = (c, i) and define the read function for 7r as RE-AD,(c) =
(c,j). (Note that i and j are always in the range 0 through k - 1.) We now verify that
the five Conditions of Definition 3 are satisfied. Condition 1 holds since for any chip
c E C we have CHIP(WRITEr(c)) = CHIP(c,i) = c, and CHIP(READ,(c)) = CHIP(c,j) = c.

Condition 2 is satisfied since for any chip c E C we have

BUS(WRITE,(c)) = BUS(c,i)

Oi q(c)
=
=
= BUS(r(c),j)

- BUS(READr(7ir(c))).

9



Condition 3 holds because if BUS(WRITE,(cl)) = BUS(WRITE, (C2)) for any two chips
c1, c2 E C, then we have Oi(cl) = Oi(c 2), which implies that cl = c2, since €i is invertible.
Conditions 4 and 5 both hold since LABEL(WRITEr(c)) = i and LABEL(READ,(c)) = j for
all chips c E C. We therefore conclude that the architecture A uniformly realizes H. The
architecture is uniform, but Theorem 2 obviates the need to show this fact. N

Given a difference cover of small cardinality, Theorem 4 says we can construct a uniform
architecture with few pins per chip. In fact, the reverse is true as well, as the following
theorem shows.

Theorem 5 Let H be a permutation set, and let A be a uniform architecture for H with
k pins per chip. Then l has a difference cover 4D such that 14I < k.

Proof. Given a uniform architecture A = (C, B, P, CHIP, BUS, LABEL) for the permutation
set Ii, where k is the number of pins on each chip, we construct a difference cover 0 for I1
as follows. Assume without loss of generality that C = B = [n] and range(LABEL) = [k].
For each pin number i, where i = 0,..., k - 1, we define Oi by Oi(c) = b if and only if
chip c is connected via its pin number i to bus b. We now define the difference cover 0 to
be the set 4D = {0, 4  -,..., Ok-1}. (The set 0 may have less than k elements, since some
permutations may be repeated among the ¢j's.)

To see that 0 is a difference cover for II, consider any permutation 7r E H. Since A
uniformly realizes 7r, there exists a pair of pin labels (i,j) such that 7r is realized by each
chip writing to its pin numbered i and reading from its pin numbered j. The labels i and j
satisfy i = LABEL(WRITE,(c)) and j = LABEL(READr(C)) for an all chips c E C, as follows
from Conditions 4 and 5 of Definition 3. Conditions 1 and 3 of Definition 3 imply that
Oi and Oj are both permutations, and therefore there are Oh, 01 E 0 such that Oh -
and e1 = Oj. Finally, Condition 2 of Definition 3 implies that ir = 0j-I€i = -11h , which

proves that 4 is indeed a difference cover for . 0

Theorems 4 and 5 show that uniform architectures and difference covers are very closely
related. Thus, when designing a uniform permutation architecture for a set of permuta-
tions, it suffices to focus on the problem of constructing a good difference cover for that
set.

The structure of a permutation set can be helpful in obtaining a difference cover for it.
In Sections 4 and 5, we investigate the construction of difference covers for cyclic groups
of permutations and for groups in general. Here, we examine permutation sets formed by
Cartesian products.

Definition 6 Let H-I be a set of permutations from X 1 to X 1 , and let I2 be a set of
permutations from X 2 to X 2. Th" Cartesian product I = H1 X H2 is the set of permutations
from X, X X 2 to X 1 x X 2 defi"ne, s 1 [ = {(7r,, r2 ) : 7r E 11, 7r2 E 112I. Operations on the
elements of H1 are performed c -. ,nentwise.

10



The Cartesian product 11, X H12 is isomorphic to the Cartesian product 112 x 1. The
Cartesian product H1 = 1i1 x 12 is an abelian permutation set if and only if both VIl and
112 are abelian permutation sets.

The next two lemmas provide bounds on the size of difference covers for Cartesian prod-
ucts of permutation sets. (Similar lemmas hold for composition products of permutation
sets.)

Lemma 6 Let 1 be a permutation set on n, objects, and let 112 be a permutation set on
n2 objects. Then the Cartesian product R = 11X × 112, which is a permutation set on n, " 2
objects, has a difference cover of size [rill + 11121.

Proof. Let 4) be the union of {(r'-1,I.2 ): 7r, E III} and {(I,,,r 2): 7r2 E I12}. Each per-

mutation r = (7r1 ,7r2) E I, can be represented as ( 1 , ,r 2 ) = (71-', I,) - ' " (I,, r 2), where
both (ir 1 , 1,2) and (I,,,, 7r2) are in 4). Thus ib is a difference cover for 11, and the size of (D
is exactly I1I-l + 11I21. 0

Lemma 7 Let 11, be a permutation set on n, objects with a difference cover 4), and let 1-12
be a permutation set on n2 objects with a difference cover (P2. Then the Cartesian product
't = Ol X 02 is a difference cover for l = 1I1 x 112.

Proof. For each 7r = (rl, r 2) E 11, there exist Oi, l E 4)i such that 7r, = , and
there exist Oi2, 0, E 62 such that r 2 = €€2 . We then have (rl, r 2) = ( i €,, ) =

(i 1 (l( I ,i2)'where both (Oil,€2) and (0j,, Oj) are in 4 = 4P X 2. and hence 4
is a difference cover for 11. M

To demonstrate both the use of difference covers and Lemma 7, we present in Figure 2 a
uniform permutation architecture due to C. Fiduccia [10] for realizing shifts in
a two-dimensional array. The architecture uniformly realizes the permutation set
11 = {I, N, E, S, W, NE, SE, NW, SW} of eight compass directions plus the identity 1. We
introduce two permutation sets 11, = {I, N, S}, 112 = {I, E, W}, and corresponding differ-
ence covers 4)1 = {I, S} and 02 = {I, E}. The Cartesian product 11, X 112 is 11, and the set
of permutations 4) = 61 4D2 ={S, SE, E, I} is a difference cover for 11.

We conclude this section by defining the notion of a substring cover for a permutation
set II, which is equivalent to the notion of a difference cover. (A similar notion for difference
sets is well known in the literature [6, 26].)

Definition 7 An ordered list E = (aO, Ol,.. .,ak1) of permutations is a subst ring cover
for a permutation set 11 if

1. OOl ... ak- = I, and

2. for all 7- E 11, there exist 0 < i,j < k - 1 such that 7r = OiO+...ia, where the
arithmetic in the indices is performed modulo k.

11
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Figure 2: A uniform architecture due to C. Fiduccia [10] based on the difference cover {S, SE, E, I}
for the permutation set II = {I, N,E, S,W, NE,SE, NW,SW}.

The substring cover Z is a list of permutations such that all the permutations in IH can
be represented as a composition of a substring of permutations of Z. The following two
theorems show that the notions of a substring cover and difference cover are equivalent.

Theorem 8 Let LI be a permutation set on n elements, and let E be a k-element substring
cover for H. Then IH has a difference cover 4) with at most k elements.

Proof. Given a k-element substring cover E= (qo~o, ,... ,0.k-i/ for H, a difference cover
with at most k elements can be constructed. For each 0 < i < k - 1 we define , =

o'o'1 ... •o0. If a permutation ir can be represented as ir = o'i0+1 "" . o, then ir = 7¢.
By construction, the difference cover , has at most k elements. 1

Theorem 9 Let II be a permutation set on n elements, and let E be a k-element dfference
cover for H. Then H1 has a substring cover b with k elements.

Proof. Given a k-element difference cover E = {0', 'l,.. . , k-1 } for H, we build a sub-
string cover k for H by defining str = i c for all 0 < i < k - 1. The product O k-1
yields the identity permutaton. For each r E H, if r = oa- .then 7r = 0i+1 0+2 " .

Therefore r is a substring cover for H with k elements.

Referring back to the example of the eight compass directions, we prnqent a substring
cover for the permutation set H- = {I, N, E, S, W, NE, SE, NW, SW}. T ,ubstring cover

12



E = (S, E, N, W) is constructed from the difference cover = {S, SE, E, I) that was used
in the architecture of Figure 2. Each of the eight compass directions can be realized as a
substring of the list E = (S, E, N, W).

Figure 3: A uniform architecture due to C. Feynman [15] based on the difference cover {N, E, I}
for the permutations set II = {I, N, E,S,W}.

As another example, consider the permutation set II = {I, N, B, S, W} of the shifts in
a 2-dimensional array corresponding to the four compass directions. This permutation set 1
has a difference cover = {N, E, I} and a corresponding substring cover = (N, SE, W).
Consequently, there is a uniform architecture for realizing the four compass directions
with three pins per chip, as has been observed by C. Feynman [15, pp. 437-438]. Fig-
ure 3 presents a uniform architecture based on the difference cover 1 = {N, B, I} for the
permutation set HI = {I, N, E,S,W}.

4 Cyclic shifters

This section describes uniform architectures for realizing cyclic shifts among n chips in
one clock tick. We first present a difference cover of size O(v'f) for the set of all n
cyclic shifts on n elements, and we give an area-efficient layout for the corresponding
permutation architecture suitable for implementation as a printed-circuit board. When '

can be expressed as n = q2 + q + 1, where q is a power of a prime, we improve the bound
on the size of a difference cover for all cyclic shifts on n elements to the optimal value of

13
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[Vnil. Finally, we prove that for any cyclic shifter that operates in one clock tick (even a

nonuniform one), the average number of pins per chip is at least rVK].

The first permutation architecture for cyclic shifters that we present is based on the
construction in the following simple theorem.

Theorem 10 The set of n cyclic shifts on n elements has a difference cover of size at
most 2 [v'f1 - 1.

Proof. Since the set of n cyclic shifts on n elements forms a group, and since this group is
isomorphic to the group Z,,, we shall construct a difference cover D for Z,. For convenience.
let m = [V#1. Define two sets A= {0,1,...,m- 1} and B= {0,m,2m,...,(rn- 1)m.
and let the difference cover D be defined by D = A U B. Each element s E Z,, can be
realized as s = b - a (mod n), where a E A and b E B by taking a = m - (s mod m) and
b = [s/mi . m, as can be verified. The size of the difference cover D is 2m - 1 = 2 rv/- l - 1,
since the element 0 occurs in both A and B. U

The difference cover constructed in the proof of Theorem 10 corresponds to an archi-
tecture with a regular, area-efficient layout, as shown in Figure 4. The n chips of the
architecture are laid out in an array consisting of m = Vrn- rows, each containing v1W_
chips. (For simplicity, we assume that n is a square.) Each chip has pins 0, 1,... , m - 1
on the top side, and pins m, m + 1,...,2m - 1 on the left side. Each bus consists of
one vertical segment and one or two horizontal segments. Each wiring channel consists of
m = V/-y tracks, where each track is used to lay out segments of busses. When n is not
a square, a cyclic shifter on n chips can be laid out in a similar fashion, with each wiring
channel having at most 2 fV/'n] tracks. The side of the layout is therefore 0(n), since
there are [VWf1 chips and [vy] wiring channels along the side. The area of the layout is
0(n 2), which is asymptotically optimal since any architecture that can realize any of the
cyclic-shift permutations in one clock tick requires area Q(n 2) [30, p. 56].

Remark. The bound of 2 [/'n - 1 pins per chip can be improved to (v2-+ o(1)) V.
See Section 8.

Occasionally, it is desirable to implement a subset of the cyclic shifts on n elements. The
following corollary to Theorem 10 shows that when the shift amounts form an arithmetic
sequence, a small difference cover exists.

Corollary 11 Let a, b, and p be integers modulo n. For each r E [p], define 7r, to be the
permutation on [n] that maps each c E [n] to c + a + rb (mod n). Then the permutation set
{ ir: r E pj I has a difference cover of size 2 V

Proof. As in the proof of Theorem 10, we construct two sets A and B whose union is
the desired difference cover. The sets are A = {0, b, 2b,... , (m - 1)b} and B = {a, a + mb,
a + 2mb,..., a + (m - 1)mb}, where m = UV/' I •

Returning to the problem of implementing all n cyclic shifts on n elements, the follow-
ing theorem demonstrates that for certain values of n, the optimal rv-nl bound can be
obtained.

14
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Figure 4: A layout for a cyclic shifter with n =16 chips. Each chip and each bus has 7 pins.
Each bus is constructed of one vertical segment and either one or two horizontal segments.

Theorem 12 The set of n cyclic shifts on n elements has a difference cover of size [<I/
if n = q2 + q + 1, where q is a power of a prime.

Proof. As in the proof of Theorem 10, the problem is equivalent to that of constructing
a difference cover D for Z. When n is the size of a projective plane (n = q2 + q + 1.
where q is a power of a prime), this problem is equivalent to the problem of constructing a
difference set. The difference set we give is due to Singer; a proof of its correctness is given
in Hall [18, P. 1291. Let x be a primitive root of the Galois field GF(q3 ), and let F(y) be
any irreducible cubic polynomial over the Galois field GF(q). We construct a difference
cover D for Z,, from the set [n] by choosing those i e [n] such that the power xt can be
written in the form x' = ax + b (mod F(x)) for some a, b E GF(q). U

The construction of a uniform architecture based on a projective plane can be inter-
preted as follows. The n points of the projective plane correspond to the n chips and the
n lines of the projective plane correspond to the n busses. Each line contains q ± 1 points.
which means that each bus is connected to q + 1 chips. Each point is incident on q + 1
lines, which means that each chip is connected to q ± 1 different busses through its q + I
pins. For example, Figure 1 demonstrates a uniform architecture based on the projective
plane of size 13.
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Theorems similar to Tlheorem 10 (but without application to architecture) appear in
the combinatorics literature: see, for example, (22]. Bus connection networks based on
projective planes have also been studied by Bermond, Bond, and Scal6 [4] and by Mick-
unas [25], who observed that projective planes can be used to construct hypergraphs of
diameter one.

Uniform architectures for cyclic shifters based on projective planes achieve the minimal
number of pins per chip among all uniform cyclic shifters. We now prove a lower bound of
F/iil on the average number of pins per rhip for any permutation architecture that realizes
all the cyclic shifts. This lower bound applies to all permutation architectures, including
nonuniform ones, and shows that uniform cyclic shifters based on projective planes are
optimal among all cyclic shifters that operate in a single clock tick.

Theorem 13 Let A = (C, B, P, CHIP, BUS, LABEL) be a permutation architecture for the
n cyclic shifts on n chips. Then the average number of pins per chip is at at least Fv/if1.

Proof. The average number of pins per chip is P /n. We shall prove that JP > n FVn1]
which implies the theorem. We adopt the following conventions for notational convenience:

1. The set of busses is B = {bo, i,..., bm._}. We denote by ki the number of pins
connected to bus bi, that is, ki = 1{p E P : BUS(p) = bi}J.

2. The busses that have at least [v /1f pins each are indexed first, that is, if there are
r busses with at least [v/ui] pins each, then k, > [vni- for i = 0,... ,r - 1 and
ki < fv/nf] for i = r,.. ., m- 1.

The thrust of the proof is to count the number of distinct data transfers when the
architecture realizes each of the n - 1 nontrivial shifts in turn. (The identity permutation
is a trivial shift.) Each chip can be mapped to each other chip by one of the cyclic shifts,
i.e., the cyclic shifts form a transitive group of permutations. Considering only the n - 1
nontrivial shifts, there are exactly n(n- 1) distinct data transfers that must be implemented
through interconnections in the architecture.

We compute an upper bound on the number of distinct data transfers that the busses
can implement. Each of the first r busses b0,..., b,_1 can be employed to realize at most
one distinct data transfer in each of the n - 1 nontrivial shifts. Thus, at most r(n - 1)
distinct data transfers can be carried out by the first r busses. Any other bus b,, where
r < i < m - 1, can realize at most ki(k i - 1) distinct nontrivial data transfers, since it has
only ki pins connected to it. Thus, the total number of distinct data transfers that the
busses can realize is

rn-i

r(n - 1) + E ki(k, - 1)
i ~r

which must be larger than n(n - 1) if all nontrivial shifts are to be realized. Hence, we
have

ki(k, - 1) >_ (n - r)(n -1)
i=r
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We can use this inequality to bound the number of pins on all busses with fewer than
fV/i I pins. We have k,- 1 < fv/i - 2 for i - r,..., m - 1, and thus

M-1 1 M-1
nk, _ ri k,(k,-1)

> (n - r)(n -1I)
- r i 1-2

(n -r) [V\/

We now bound the total number of pins in the architecture from below. We have

rn-i

IPI = E k
i=O

r -I rn- 1= i E + k,
i=O i=r,r [ n n-r ,n

which proves the theorem. U

5 Difference covers for groups

In this section we show that small difference covers for abelian and nonabelian permutation
groups exist. Specifically, for any permutation group II with p elements, we show how to
construct a difference cover with O(Vp/Tj-) elements. In the case where [1 is abelian, we
apply the decomposition theorem for finite abelian groups and the results for cyclic shifters
in Section 4 to sharpen this bound to O(y/,), which is optimal to within a constant factor.

As the first result of this section, we give a method for constructing a small difference
cover for an arbitrary permutation group.

Theorem 14 Let II be an arbitrary group with p elements. Then I' has a difference corer
b of size at most v'=PP + 1.

Proof. We construct a difference cover incrementally starting with a partial difference
cover 01 = {II. At each step of the construction, we select an element Oj+j E rl such
that U {i+1})1 maximizes 1,7'(tj U {7r})I over all 7r E II. We then define the new
partial difference cover as 4i+j = Ii, {Ui+1 .

The analysis of this construction is in three parts. We first determine a lower bound on
the number of elements of II that are not covered by the partial difference cover 4, but are
covered by D+j. We then develop a recurrence to upper bound the number of elements
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of the group H that are not covered at the ith step. Finally, we solve the recurrence to
determine that the number k of iterations needed to cover all elements in H is at most
VI-np+ 1.

We first determine how many new elements of 11 are covered when 4, is augmented with
0j+1 to produce ¢ +i, for i > 1. Let the set Ai be the set of elements that are not covered
by the partial difference cover 0j, which can be defined as A i = Hi - Iii c. Consider
triples of the form (0, 6, ir) such that 0 E C, 6 E Ai, 7r E H, and Ob = 7r. Observe that for
any fixed 7r E H and J E A,, there is at most one triple of the form (0, 6, ir) in the set of
triples, namely (irb - ', 6, 7r) when ir - 1 E 1,. For a fixed ir, the number of triples (4, , ,r)
in the set of triples is a lower bound on the number of elements covered by D, U {r} but
not by 4i, since we have 6 = 0-17r and b E Ai = i - 1-4bi. For each 4 E 10i and b E -A,
there is exactly one triple in the set of triples, and thus there are exactly 'DI- -I, triples.
Since there are at most I[ distinct permutations appearing as the third coordinate of a
triple, the permutation 0j+1 that appears most often must appear at least Iji. • Al / 111
times, and hence at least this many elements are covered by 0j+1 that are not covered by
(Di.

We can now bound the number of elements not covered by 0j+1 in terms of the number
of elements not covered by 4, by

A+1,4 1  A l~~ - I'D~i. Al~

=

<p1H-(i 
)

j=1 \

When we obtain Izl < 1 for some k, the partial difference cover Ok is a difference cover
for I1 because Ak is empty. Thus, 40k is a difference cover when

k -Q 1  ( j. ) 1
=1-P

or equivalently, when
k - I A

lnp + E-- In 1- <0.

Using the inequality ln(1 + x) < x, we have

In p + In 1- _ lnp-Z "

-- j=1 P

1 k-1
- Inp--Ej

P j=1



< In (k-1) 2

2p
< 0.

Thus, 4Dk is a difference cover when k > p + 1. U
This proof of Theorem 14 provides a construction which can be implemented as an

deterministic, polynomial-time algorithm with O(p 2 1gp) algebraic steps. We could also
have proved the theorem by relying on the result of Babai and Erd6s [2] that an' group
has a small set of generators, but this method would have produced only an existential
(nonconstructive) result.

We have shown that there are difference covers of size O(V'pTi-) for general permuta-
tion groups with p elements. We now show that if the group is abelian, difference covers
of size O(.,/ ) exist.

Theorem 15 For any abelian group II with p elements, there exists a difference cover (D
of size at most 3,f"-.

Proof. Assume without loss of generality that p > 1. By the decomposition theorem for
finite abelian groups [23, p. 133], any abelian group II is isomorphic to a cross product of
cyclic groups

[ LZ ZP1 X ZP2 X ... X Zk,

where PIP2 ... Pk = p, and each pi > 2. Let i be the unique index such that PIP2 p,-i K
vI and Pi+1m+2""Pk < v/P, and let m = [Vi/'/pIp2.. pil. Using the argument of

Theorem 10, we first construct a difference cover for Zp, from the union of two sets A, and
B,, where )A) :< m and IB! : __ Lpi/mJ, such that each element of Zp, can be expressed in
the form b - a (modpi) or a - b (modpi), where a E Ai and b E Bi.

We now construct a difference cover for II ZP1 x ZP2 x ... X ZPk from the union of
two sets A and B, where

A -, ZP3 X ZP2 X ... X Z,_, x A,,

and
B -Bi x Z,+, X 4v+2 X ... X ZPk.

That A U B is a difference cover for 11 follows from essentially the same argument as is
used in Lemma 7.

The size of the difference cover A U B is )AI + IBI. The size of A is

IAI = pip2 ... pi- 1 AI

!5 PIP2 .. "pi-I m/

<2~
!5 P +PP...'Pi-1
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Similarly, the size of B is

IBI = JBi Pi+lP,+2 ... Pk

: [pi/mJ Pi+lPi+2 * * * Pk
<_(Pi/ [X/P/PIP2""..Pi-1])Pi+1Pi+2""..

< (PIP2"..P/V'P)Pi+1Pi+2" "Pk

Consequently, the size of the difference cover for H1 is at most 3vU"f .

6 Multiple clock ticks

In this section we discuss uniform permutation architectures that realize permutations in
several clock ticks. By using more than one clock tick, further savings in the number of
pins per chip can be obtained. We generalize the notion of a difference cover to handle
multiple clock ticks, and describe a cyclic shifter on n chips with only 0(n'/2t) pins per
chip that operates in t ticks.

We first generalize the notion of a difference cover to handle realization of permutations
in t > 1 clock ticks.

Definition 8 A t-difference cover for a permutation set II is a set 4) of permutations such
that ( D-)t 1 1.

Using a t-difference cover 4) for the permutation set 1-, any permutation r E I can be
expressed as the composition of t differences of permutations from '0. The next lemma
relates t-difference covers to permutation architectures that realize permutations in t clock
ticks.

Lemma 16 Let 4) be a t-difference cover with k elements for a permutation set [I. Then
there is a permutation architecture with k pins per chip that uniformly realizes 1- in t clock
ticks.

Proof. We define the permutation set E = 0 4. Let A = (C, B, P, CHIP, BUS, LABEL)
be the permutation architecture, based on the difference cover 4D, that uniformly realizes
E. Hence, the permutation architecture A can uniformly realize any o E E in one clock
tick. Each permutation 7r E II can be expressed as 7r = at-lat-2... o, where 0i E E for
0 < i < t - 1, since we have VY = (4 -14 )t D I. In order to realize 7r in t clock ticks, the
permutation architecture A uniformly realizes ai in clock tick i for 0 < i < t - 1. U

Lemma 16 claims that the problem of uniformly realizing a permutation set 11 in t
clock ticks can be reduced to finding a permutation set E such that E t D H, and then
finding a difference cover for E. The great advantage of using more than one clock tick is
in the further savings in the number of pins per chip. The following theorem, for example.
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describes a construction of a t-difference cover of size O(nl/2t) for the set of cyclic shifts
on n objects. This result can be used to build a uniform architecture on n chips with unly
Q(nh/2t) pins per chip that can realize any cyclic shift on the n chips in t clock ticks.

Theorem 17 For any n > 1 and t > 1, the permutation set of all the n cyclic shifts on n
objects has a t-difference cover of size Q(nl/2 t).

Proof. For the purpose of the proof, we denote the permutation set of all the n cyclic
shifts on n objects by [,,. (We remind that fn ; Zn.) We first treat the case for those
n such that there exists an integer m satisfying n i t < m < 4n 1 t and gcd(m, n) = 1. We

then use this case to extend the proof to all values of n.

Since gcd(m,n) = 1, there exists an m - ' E Z, such that m . m - = 1 (mod n). For
each r E [m], define the permutation a,: [n] --* [n] as uT(c) = n'(c + r) (mod n), and
define the permutation a' : [n] --* [n] as ao(c) = m t (c + r) (mod n). Next define the
permutation set E = {o'} U {a}. The set {aT} is an arithmetic sequence of cyclic shifts
on n elements (as in Corollary 11) followed by the fixed permutation corresponding to
multiplication by m 1 , and thus {a} has a difference cover of size O(v'm). Similarly, the
set {a'} has a difference cover of size O(VxI). Combining the two difference covers for
{a,} and {a'}, we get a difference cover 4) of size O(V/m") = O(nl12t) for E.

We now show the inclusion V D H. Let 7r E 1, be a permutation of a cyclic shift by
s. We express the shift amount s E [n] as s = so + sIm +... + stImt - , where s, E [rn]
for 0 < i < t - 1. The permutation ir can be described as

Sr(c) = c+s (modn)

= c+ S0 + sIm + + stlm t- l (modn)

= mt-n (st + m-1 (st-2 + + I-' (so + c))) (modn)
- .
= a I asl_2

which proves that ir E V. Hence, we get the inclusion VY D 1,,, which together with the
fact that there is a difference cover 4 of size 0(nl/' t) for E, proves the theorem for the
case when there exists an integer m satisfying n' I t < m < 4n"/t and gcd(m, n) = I.

Such an m need not exist for every n and every t, however. We can overcome this
difficulty by factoring n = nln2 such that n, consists of no even-indexed primes (3, 7, 13.
... ) and n 2 consists of no odd-indexed primes (2, 5, 11, ... ). Since we have gcd(nl, n 2) = 1,
we can use the Chinese remainders theorem to express Zn as a Cartesian product Z,I/t
Zn X Zn2. We let m, be the first even-indexed prime at least as large as n' , and let
m 2 be the first odd-indexed prime at least as large as n"' . Bertrand's postulate [19.
p. 343] guarantees that for every x, there is a prime between x and 2x, which means

mi E [n /t, 4n'/] for j = 1,2. (Tighter bounds are possible.)

We can now use the previous construction to construct a t-difference cover D of size
O(n}121) for Zn,, which is isomorphic to H,,,, and a t-difference cover 4)2 of size O(n 1/2t)

for Zn2, which is isomorphic to 11,12, Using the same technique as in the proof of Lemma 7,
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we can construct a t-difference cover of size 0(n/2t) • O(n 1/2t) = Q(nl/2t) for Zn, x Zn,

One can rather straightforwardly use Corollary 11 to obtain a t-difference cover of size
O(tnh/2t). Based on the representation of the shift amount s = so + sim + . + stimt,
one can come with t separate difference covers, each of size O(nl/2t), for the t separate
sequences of arithmetic shifts by {smi : s E [m]} for 0 < i < t - 1. Theorem 17 avoids
the extra factor of t by constructing only one such difference cover and using its elements
for each one of the t differences.

7 Extensions

This section contains some additional results on permutation architectures and difference
covers. We describe efficient, uniform architectures that can realize the permutations
implemented by various popular interconnection networks, including multidimensional
meshes, hypercubes, and shuffle-exchange networks. We examine nonuniform permuta-
tion architectures, and adapt some combinatorial results in the literature to apply to
permutation architectures. A result of DeBruijn leads to a nonuniform architecture with
O(V'/_1T ) pins per chip that can realize all n! permutations on n chips.

7.1 Specific networks

By using busses, many popular interconnection networks can be realized with fewer pins
than conventionally proposed. Here, we mention a few.

The permutation architectures for realizing compass shifts on two-dimensional arrays
can be extended in a natural fashion to d-dimensional arrays. For the d-dimensional
analogue of the shifts {I, N, E, S, W), there is a uniform architecture that uses only d + 1
pins per chip to implement the 2d + 1 permutations. For the d-dimensional analogue of
the shifts {, N, E, S, W, NE, SE, NW, SW}, there is a uniform architecture that uses only
2 d pins per chip to implement the 3 d permutations. (These two results were independently
discovered by C. Fiduccia [11, 12).)

A Boolean hypercube of dimension d is a degenerate case of a d-dimensional array.
Only d + 1 pins per chip are required by a permutation architecture that uses busses,
whereas 2d pins per chip are needed if point-to-point wires are used. (To realize a swap
of information across a dimension in one clock tick, each chip requires two pins for that
dimension: one to read and one to write.)

A permutation architecture that implements the permutations Shuffle, Inverse Shuffle.
and Exchange can be constructed with three pins per chip instead of the usual four, and
it can implement the Shuffle-Exchange and Inverse Shuffle-Exchange permutations in one
tick as well.
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7.2 Average number of pins per chip

Theorem 13 presents a lower bound on the average number of pins per chip in any cyclic
shifter that operates in one clock tick. The following theorem is a natural extension of
Theorem 13 for a general set of permutations.

Theorem 18 Let R be a permutation set on n objects with p permutations and with tobtl
of T nontrivial data transfers, and let A = (C, B, P, CHIP, BUS, LABEL) be any permutation
architecture for realizing Ii. Then the average number of pins per chip is at least T/?Vn .

Proof. As in the proof of Theorem 13, we prove that JP > T/v./p which implies the
theorem. We make similar notational conventions:

1. The set of busses is B = {b0, b,...,b-1}. We denote by ki the number of pins
connected to bus bi.

2. The r busses that have at least Yp pins each are indexed first, that is ki > ,' for
i =0,..., r- 1 and ki < V for i= r,.., m- 1.

We count the number of distinct data transfers that cali be accomplished by each bus.
Each of the first r busses can be employed to realize at most p out of the T nontrivial data
transfers, since it can be used at most once for each of the p permutation. Any other bus
b,, where r < i < m- 1, can realize at most ki(ki - 1) out of the T nontrivial data transfers,
since it has only k, pins connected to it. We need to have 7' ki(ki - 1) _ T- rp, which
implies

,,- > T - rpE3k, >

i=r VP
= T

The number of pins in the architecture can now be bounded as follows:
m-1

IPI = ki
i=O
r-1 m-I= Ek, + E k,
i=0 i=r

(T\

T

Theorem 18 demonstrates that uniform architectures can achieve the optimal number
(to within a constant factor) of pins per chip for certain classes of permutation sets.
When there are relatively few permutations that are responsible for many nontrivial data
transfers, the average number of pins per chip is high. The set of cyclic shifts is an example
of this kind of permutation set.
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7.3 Nonuniform architectures

When the uniformity condition on permutation architectures is dropped, one can do much
better in terms of the number of pins per chip. The complexity of control may increase
substantially, however, due to the irregular communication patterns and the number of
possible permutations realizable for some of the architectures. Nevertheless, from a math-
ematical point of view, nonuniform architectures are quite interesting.

In fact, nonuniform architectures have been studied quite extensively in the mathe-
matics literature in the guise of partitioning problems. For the problem of realizing all n!
permutations on n chips, a result due to de Bruijn, Erd6s, and Spencer (31, p. 106-108
implies that O(v/'1i"T ) pins per chip suffice. The nonuniform architecture that achieves
this bound is constructed probabilistically, however. It is an open problem to obtain this
bound deterministically. The best deterministic construction to date is due to Feldman.
Friedman, and Pippenger [9] and uses O(n 2/1) pins per chip.

8 Further research

In this section we list a few of the problems that have been left open by our research. We
also describe briefly some further work brought on by an earlier version [20] of our work.

In Section 4 we described a difference cover of size 2 [v/WJ - 1 for the cyclic group Z,,
and proved that when n is the order of a projective plane, there is a difference cover of
size fv'7]. It seems reasonable that any cyclic group Z, might actually have a difference
cover of size X/7- + o(/fi), but we have been unable to prove or disprove this conjecture.
Mills and Wiedemann [271 have computed a table of minimal difference covers for all the
cyclic groups of cardinality up to 110. For any value of n up to 110, the difference cover
they find has at most [v/'f1 + 2 elements. They also provide [28] a "folk theorem" that
establishes a stronger upper bound for the general case than 2 [v/l - 1.

Theorem 19 The set of n cyclic shifts on n elements has a difference cover of size (V2_+
o(1)) n_

Sketch of proof. [28] Let q be the smallest prime such that 1 = q2 + q + 1 > n/2. We
have q = (1 + o(1))v/r1, since for large x, there exists a prime between x and x + o(x).
Let {do, di,..., dq} be a difference cover for integers, chosen as in Theorem 12. It can be
verified that the set {do, dl,..., dq} U {do + 1, d +l..., dq + 1} forms a difference cover for
Z". M

Another interesting problem related to cyclic shifters involves finding an area-efficient
VLSI layout of the cyclic shifter based on projective planes. In section 4 we presented an
area-efficient layout using a difference cover whose size is twice the optimal size. Is there
a good layout for the pin-optimal design?

In Section 5, we showed that any abelian group of p elements has a difference cover
of size O(Vp), and we showed that any group of p elements has a difference cover of siZC
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O(V/_Ij ). Finkelstein, Kleitman and Leighton [13J have recently improved our result for
general groups to O(vI). Their proof uses a folk theorem [8] that every simple group
of nonprime order p has a subgroup of size at least I'" The folk theorem is proved by
checking each type of group in the classification theorem [17, pp. 135-136]. It would be
interesting to know if there is a more direct proof that every group has a difference cover
of size O(Vfp).

To implement cyclic shifters that operate in t clock ticks, we showed how to construct
a t-difference cover for Z,, of size 0(nI/2t). A simpler construction achieves the bound
O(tnl/2t). Theorem 13 gives a lower bound of [rft] on the average number of pins per
chip for a cyclic shifter that operates in one clock tick. It may be possible to prove a lower
bound of fl(n'/ 2t ) on the average number of pins per chip when an architecture operates in
t clock ticks, but we were unable to extend the argument. We were also unable to extend
either of these constructions to give good t-difference covers for groups, either general or
abelian. It would be interesting to know whether any abelian group of permutations with
p permutations has a t-difference cover of size O(tnl/ 2t), for any t > 1.

We have concentrated primarily on permutation sets that have good structure, specif-
ically group properties. It would be interesting to identify other structural properties of
permutation sets besides group properties that allow small difference covers to exist.

Appendix

For completeness, we include definitions of common mathematical notations and algebraic
terms used in the paper. Definitions specific to the content of the paper are included in
context.

We adopt the following notations:

* IXI denotes the size of the set X.

* [n] denotes the set of n integers {1, 2,.. ., n}.

* [xj (floor of x) denotes the largest integer that is smaller than or equal to x.

* [x] (ceiling of x) denotes the smallest integer that is larger than or equal to x.

e lg x denotes log 2 X.

* In x denotes log, x.

* (n) denotes n!

For two asymptotically positive functions f(n) and g(n), we write:

9 f(n) = o(g(n)) if lim. f(n)/g(n) = 0.

* f(n) = O(g(n)) if there exists c > 0 and no, such that f(n) <_ cg(n) for all n > no.
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e f(n) = fl(g(n)) if there exists c > 0 and no, such that f(n) cg(n) for all n > no.

* f(n) = e(g(n)) if both f(n) = O(g(n)) and f(n) = 11(g(n)).

Let f : A -- B be a function.

" f is injective (one to one) if a #- b implies f(a) # f(b).

" f is surjective (onto) if for all b E B, there exists some a E A such that b = f(a).

* f is bijective if it is injective and surjective.

A group is a set of elements G with a binary operation E, such that the following
properties hold.

" Closure: For every a, b E G, we have a ( b E G.

" Associativity: For every a, b, c E G, we have a D (b D c) = (a D b) E c.

* Identity: There exists an element e E G such that a E e = e e a = a for all a E G.

* Inverse: For every a E G, there exists an element a -1 E G such that a e a-1 =

a- ED a = e.

An abelian group is a group G with an additional property:

* Commutativity: For every a, b E G, we have a e b = b E a.

We often use the notations:

@ ab to denote a E b,

@ ak to denote a E a E.. E a (k times),

* a- k to denote (a-I)k.

A cyclic group G is a group in which there exists a E G such that G = fak : k integer}.
Cyclic groups are abelian. The notation Z, denotes the cyclic group of residues modulo
n, with modular addition as the group operation. A permutation on a set X is a bijective
function from X to X. All the possible permutations on X form a group with functional
composition as the group operation.
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