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An Introduction to Input/Output Automata

Nancy A. Lynch and Mark R. Tuttle
Massachusetts Institute of Technology

Cambridge, Mass. 021391

November 18, 1988

1. Introduction
The input/output automaton model has recently been defined, in [LT1,LT2], as a tool for modeling

concurrent and distributed discrete event systems of the sorts arising in computer science. Since its
introduction, the model has been used for describing and reasoning about several different types of
systems, including network resource allocation algorithms, communication algorithms, concurrent
database systems, shared atomic objects, and dataflow architectures.

This paper is intended to introduce researchers to the model. It is organized as follows. Section 2
contains an overview of the model. Section 3 defines the model formally and examines several illustrative
examples concerning candy vending machines. Section 4 contains a second example, a leader election
algorithm. Finally, Section 5 contains a survey c some of the uses that have so far been made of the
model.

2. Overview of the Model
I/O automata provide an appropriate model for discrete event systems consisting of concurrently-

operating components. Such systems are often characterized by the fact that, instead of simply
computing some function of their input and halting, they continuously receive input from and react to their
environment. Although I/O automata can be used to model synchronous systems, they are best suited
for modeling systems in which the components operate asynchronously.

Each system component is modeled as an I/O automaton, which is essentially a (possibly infinite state)

automaton with an action labeling each transition. A fundamental property of our model is that we make a
very clear distinction between those actions whose performance is under the control of the automaton

and those actions whose performance is under the control of its environment. An automaton's actions are
classified as either "input", "output", or "internal". An automaton generates output and internal actions
autonomously, and transmits output instantaneously to its environment. In contrast, the automaton's
input is generated by the environment and transmitted instantaneously to the automaton. Our distinction
between input and other actions is fundamental, based on who determines when the action is performed:
an automaton can establish restrictions on when it will perform an output or internal action, but it is unable
to block the performance of an input action.2

The fact that our automata are unable to block inputs distinguishes our model from CSP

'This research was supported in part by the National Science Foundation under Grant CCR-86-11442, by the Office of Naval
Research under Contract N00014-85-K-0168 and by the Defense Advanced Research Projects Agency (DARPA) under Contract
N00014-83-K-0125. The second author was also supported by a GTE Graduate Fellowship and an IBM Graduate Fellowship.

2The shared-memory model described in [LF] has had a strong influence on the present work. In particular, the inability to block
inputs appears as the 'read-anything" property in (LFI. .e
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(Communicating Sequential Processes) [Ho]. There, input blocking is used for two purposes: as a way of
blocking the activity of the environment and as a way of eliminating undesirable inputs. Our model-does
not allow an automaton to block its environment or eliminate undesirable inputs. Suppose, however, that
we only wish to guarantee that an automaton exhibits some behavior when the environment observes

certain restrictions on the production of inputs. Instead of allowing the automaton to block the bad inputs,
we permit these inputs to occur, but permit the automaton to exhibit arbitrary behavior when they do. Our

correctness conditions are often of the form "if the environment behaves correctly, then the automaton
behaves correctly." Alternatively, our correctness condition may require the automaton to detect bad
inputs and respond to them with error messages. In either case, we have simple ways of dealing with

input restrictions without including input-blocking in the model.

1/O automata may be nondeterministic, and indeed the nondeterminism is an important part of the
model's descriptive power. Describing algorithms as nondeterministically as possible tends to make
results about the algorithms quite general, since many results about nondeterministic algorithms apply a

fcrtion to all algorithms obtained by restncting the nondeterministic choices. Moreover, the use of
nondeterminism helps to avoid cluttering algorithm descriptions and proofs with inessential details.

I/O automata can be composed to yield other I/O automata. When we compose a collection of

automata, we identify the same-named actions of the different automata. Our composition guarantees
that if one automaton has ic as an output action, then ic is an input action of all remaining automata having
it as an action. As a result, an automaton generating an output action does so autonomously, and this
output is transmitted instantaneously to all other automata having the same action as an input. All such

components are passive recipients of the input, and take steps simultaneously with the output step. As in
CSF, we use simultaneous performance of actions to synchronize components, but we permit only one
component to determine when the action occurs.

When I/0 automata are run, they generate "executions" (alternating sequences of states and actions).
Among all the executions of an automaton, we are primarly interested in the "fair" executions - those

that permit each of the automaton's primitive components to have infinitely many chances to perform
output or internal actions. The fair executions of an automaton give rise to the "fair behaviors" of the

automaton - the subsequences of the fair executions that consist of external (that is, input and output)
actions. It is this set of sequences that we believe embodies the interesting behavior of an I/0

automaton; thus, our semantics is a 'trace" semantics. The set of fair behaviors of an I/0 automaton can
consist of both finite and infinite sequences of actions, and is not x . ssarily closed under the operation
of taking prefixes.

A "problem" to be solved by an I/0 automaton is formalized essentially as an arbitrary set of (finite and
infinite) sequences of external actions. Our notion of what it means for an automaton to "solve" a problem

is particularly simple: essentially, an automaton is said to "solve" a problem P provided that its set of fair

behaviors is a subset of P. It might not be obvious to the reader that this definition is nontrivial; for
example, if an automaton had no fair behaviors, then our definition would say that it is a solution to every
problem. However, this anomaly does not arise, since our definitions imply that every automaton has a
nonempty set of fair behaviors. Since an automaton cannot block its input, for every possible pattern of
inputs that might arrive from the environment, the automaton is required to provide some response such

that the resulting sequence of actions is in the problem set P. That is, the automaton is required to

respond appropriately to every possible input pattern.
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The model permits description of algorithms and systems at different levels of abstraction. Abstraction
mappings are defined, mapping automata that include implementation detail to more abstract automata
that suppress some of the detail. Such mappings can be used as aids in correctness proofs for
algorithms: if automaton A is an image of B under an appropriate abstraction mapping and A solves
problem P, then 0 also solves P.

The model allows very cateful and readable descriptions of particular concurrent algorithms. We have
developed a simple language for describing automata, based on "precondition" and "effect" specifications
for actions. This notation, similar to DijKstra's "guarded commands," has proved sufficient for describing
all algorithms we have attempted so far. However, the model does not depend on this manner of
describing automata; for example, the model is general enough to serve as a formal basis for languages
that include more elaborate constructs for sequential flow of control.

Our model also allows precise statements of the problems that are to be solved by modules in
concurrent systems. As described above, such problems are formulated as sets of finite and infinite
sequences of external actions. We have not so far developed any particular language or notation for
describing such sets, but have used a variety of notations (e.g., temporal logic or generating automata) as
they have seemed convenient. Again, our model is general enough to serve as an operational model for
many different languages describing sets of action sequences.

The model can be used as a formal basis for algorithm correctness proofs - proofs that particular
algorithms solve particular problems in the sense described above. In fact, a current major thrust of our
research involves producing correctness proofs for substantial-sized and complex concurrent algorithms.
We use a variety of techniques for such proofs, primarily based on notions of composition and
abstraction. In every case, we try to utilize the modularity that is suggested by informal descriptions of the
algorithm in our formal correctness proofs. So far, our proofs have been done by hand, but it appears
that machine-checking of some of our proofs might be possible using current automatic proof technology.

The model ran also be used for carrying out complexity analysis, proving upper and lower bounds on
the complexity of solving particular problems, and proving impossibility results.

3. The Input/Output Automaton Model
In this section we formally define our model of computation, show how t can be used to model a

system, how it can be used to construct a problem specification, and how it can be used to prove that a
system satisfies a specification.

3.1. Inpit/Output Automata
We begin with the definition of an automaton. As previously mentioned, an automaton's actions are

partiiioned into sets of input, output, and internal actions. This set of actions and its partition determines
an interface between the automaton and its environment. We refer to this interface as the action
signature of the automaton. Formally, an action signature S is a partition of a set acts(S) of actions into
three disjoint sets in(S), out(S), and int(S) of input actions, output actions, and internal actions,
respectively. We denote by ext(S) = in(S) u out(S) the set of external actions, those actions visible to the
environment of any automaton have S as its action signature. An external action signature is an action
signature S with no internal actions; that is, int(S) = 0 or acts(S) = ext(S). Given an action signature S,
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we define extsig(S) to be the external action signature S' with in(S') = in(S) and out(S') = out(S). We
denote by local(S) = out(S) u int(S) the set of locally-controlled actions, those actions under the local
control of any automaton having S as its action signature. Given an automaton A with action signature S,
we will frequently abuse notation and denote in(S) by in(A), etc.

An input/output automaton A (also called an I/0 automaton or simply an automaton) consists of five

components:
" an action signature sig(A),

" a set states(A) of states,

" a nonempty set start(A) ; states(A) of start states,

" a transition relation steps(A) r states(A) x acts(A) x states(A) with the property that for every
state s' and input action n there is a transition (s',is) in steps(A), and

" an equivalence relation part(A) partitioning the set local(A) into at most a countable number
of equivalence classes.

Since the equivalence relation part(A) is used only in the definition of fair computation in Section 3.3,
we will ignore it for now. It is used to identify the primitive components of the system being modeled by

the automaton: each class is thought of as the set of actions under the local control of one system
component.

Each element of an automaton's transition relation represents a possible step in the computation of the
system the automaton models. We refer to an element (s',is) of steps(A) as a step of A. If (s',l,s) is a
step of A, then n is said to be enabled in s'. Since every input action is enabled in every state, automata
are said to be input-enabled. This means that the automaton is unable to block its input, which is one of
the fundamental assumptions made in our model (the other being that the performance of an action is
controlled by at most one system component).

When an automaton "runs," it generates a string representing an execution of the system the

automaton models. An execution fragment of A is a finite sequence S0,7Cl,Sl,7C2,.,7Cn,Sn or an infinite
sequence soXI,s 1 i 2 .... of alternating states and actions of A such that (si,/ti+i,si+l) is a step of A for
every i. An execution is an execution fragment beginning with a start state. We denote the set of
executions of A by execs(A), and the set of finite executions of A by finexecs(A). We say that a state is
reachable if it is the final state of a finite execution.

While an execution represents a system computation, we are often interested only in the sequence of

actions performed during the course of the computation, and not in the states through which the
computation passes. The schedule of an execution fragment a is the subsequence of a consisting of the
actions appearing in a, and is denoted by sched(a). We say that P3 is a schedule of an automaton A if 03 is
the schedule of an execution of A. We denote the set of schedules of A by scheds(A), and the set of finite
schedules of A by finscheds(A). The behavior of an execution or schedule ax of A is the subsequence of a
consisting of external actions, and is denoted by beh(d). Intuitively, beh(a) is the externally observable
portion of a, the sequence of actions the external environment might observe during a. We say that f3 is a
behavior of A if 3 is the behavior of an execution of A. We denote the set of behaviors of A by behs(A)
and the set of finite behaviors of A by finbehs(A).

We remark that since the same action may occur several times in an execution or a schedule, it is
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sometimes convenient to distinguish the different occurrences. On these occasions we refer to a

particular occurrence of an action as an event.

We will be illustrating many of our definitions using simple examples of candy machines and their

customers. We hope that, since this class of examples is so popular in the CSP literature, they will

provide an interesting comparison of the models. In the remainder of this section, we define automata

modeling these candy machines and customers.

Our three candy machines CM-1, CM-2, and CM-3 differ only in their transition relations. We begin
with the definition of CM-i. This candy machine has the following action signature.

Input actions: PUSH1, PUSH2
Output actions: SKYBAR, HEATHBAR, ALMONDJOY
V Irnal actions: none

We will sometimes abbreviate the two push actions as 1 and 2, and the three dispensation actions as S,
H and A. The partition part(CM-1) places all three output actions S, H, and A in the same equivalence

class. The state of CM-1 consists of one variable "buttonpushed," which takes on values 0, 1 and 2. In
the initial state, "buttonpushed" is set to 0. We describe the transition relation for CM-1 by giving a
precondition and an effect for every action i: the triple (s',ic,s) is a step of CM-1 exactly if the precondition

of n is satisfied by s' and s is the result of transforming s' as determined by the effects of n. We omit the
precondition for an action when this precondition is true. The transition relation for CM-1 is as follows:

PUSHI
Effect buttonpushed -- 1

PUSH2
Effect: button-pushed -- 2

SKYBAR
Precondition: buttonpushed = 1
Effect: buttonpushed +- 0

HEATHBAR
Precondition: buttonpushed = 2
Effect: buttonpushed +- 0

ALMONDJOY
Precondition: buttonpushed = 2
Effect: buttonpushed *- 0

When the customer pushes button 1, CM-1 can dispense a SKYBAR. When the customer pushes button
2, CM-1 can dispense either a HEATHBAR or an ALMONDJOY, but not both. The choice between H and
A is made nondeterministically by CM-1.

Candy machine CM-2 is identical to CM-1, except that its HEATHBAR action has "false" as its
precondition. This candy machine never dispenses HEATHBARs, but is able to dispense SKYBARs and
ALMONDJOYs.

Candy machine CM-3 is identical to CM-1 except that all three candy dispensation actions have "false"

as their precondition. It never dispenses candy, which must disappoint a number of its customers.

Like our candy machines, our three customers CUST-1, CUST-2, and CUST-3 are also quite similar.
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Customer CUST-1 continues to request candy bars ad infinitum, nondeterministically choosing which
button to push. Its action signature is the "complement" of the candy machines':

Input actions: SKYBAR, HEATHBAR, ALMONDJOY
Output actions: PUSH1, PUSH2
Internal actions: none

The state of CUST-1 consists of one variable 'waiting", which takes on values "yes" and "no". In the
initial state, "waiting" is set to "no". CUST-1's actions are as follows.

SKYBAR
Effect: waiting - no

HEATHBAR
Effect: waiting -- no

ALMONDJOY
Effect: waiting - no

PUSH1
Precondition: waiting = no
Effect: waiting +- yes

PUSH2
Precondition: waiting = no
Effect: waiting +- yes

This customer is very patient: after pushing a button, it waits for a candy bar before pushing a button a
second time. The partition part(CUST-1) of this customer's locally-controlled actions puts PUSH1 and
PUSH2 together in one equivalence class.

Customer CUST-2 is somewhat more selective than CUST-1. It pushes button 2 repeatedly just until
the machine dispenses a HEATHBAR, and then pushes button 1 forever. Formally, CUST-2 has another
variable "heathbarreceived" in its state in addition to "waiting". This variable takes on values "yes" and
"no", initially "no". The actions of CUST-2 that differ from those of CUST-1 are as follows:

HEATHBAR
Effect: waiting -- no; heathbarreceived -- yes

PUSH1
Precondition: waiting = no; heathbarreceived = yes
Effect: waiting 4- yes

PUSH2
Precondition: waiting = no; heathbarreceived = no
Effect: waiting -- yes

Customer CUST-3 is similar to CUST-1 except that it may make a transition to a "satiated" state from
which it no longer requests any candy bars. Formally, CUST-3's state has an additional "satiated"
variable besides the "waiting" variable of CUST-1. It takes on values "yes" or "no", initially "no". CUST-3
has an additional internal action BECOMESATIATED, defined as follows.

BECOMESATIATED
Precondition: satiated = no; waiting = no
Effect: satiated +- yes

Also, each of PUSH1 and PUSH2 has the additional precondition "satiated - no*. Again, part(CUST-3)
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puts all three locally-controlled actions PUSH1, PUSH2, and BECOMESATIATED in the ;ame

equivalence class.

3.2. ComposItIon
We can construct an automaton modeling a complex system by composing automata modeling the

simpler system components. The essence of this composition is quite sirnple: when we compose a
collection of automata, we identify an output action ic of one automaton with the input action x of each
automa.on having it as an input action. Consequently, when one automaton having n as an output action
performs nt. all automata having it as an action perform it simultaneously (automata not having n as an
action do nothing). For example, in the composition of CM-1 and CUST-1, we identify the output action
PUSH1 of the customer with the input action PUSHI of the candy machine. The occurrence of PUSH1
causes both the candy machine and the customer to perform PUSH1, causing buttonpushed to be set to
1 in the candy machine's local state, and waiting to be set to "yes" in the customer's local state. This
synchronization models a form of communication from the customer to the candy machine.

We impose certain restrictions on the composition of automata. Since internal actions of an automaton
A are intended to be unobservable by any other automaton B, we cannot allow A to be composed with B
unless the internal actions of A are disjoint from the actions of B, since otherwise one of A's internal
actions could force B to take a step. Furthermore, in keeping with our philosophy that at most one system
component controls the performance of any given action, we cannot allow A and B to be composed
unless the output actions of A and B form disjoint sets. Finally, since we do not preclude the possibility of
composing a countable collection of automata, each action of a composition must be an action of only
finitely many of the composition's components. One motivation for this restriction is Milner's motivation

for ruling out infinite products in CCS [M]: if each automaton in an infinite product has n as an action,
then an infinite amount of work is performed by a single action 7t, which we consider unreasonable. Since
we do not have a recursion operation as CCS does, however, we require infinite products in order to
model systems that can create processes dynamically.

Since tne action signature of a compobition (the cofaposition's iiterface with its environment) is
determined unique!y by the action signatures of its components, it is convenient to define a composition
of action signatures before defining the composition of automata. The preceding discussion motivates
the following definition. A countable collection {Si)i,. of action signatures is said to be strongly
compatiblP if for all i, j E I satisfying i * j we have

1. out(S) rn out(Sj) = 0,

2. int(S) rn acts(Sj) = 0, and

3. no action is contained in infinitely many sets acts(Si).
We say that a collection of automata are strongly compatible if their action signatures are strongly

compatible. CM-1 and CUST-1, for example, are strongly compatible.

When we compose a collection of automa*a, internal actions of the components become internal
actions of the composition, output actions become output actions, and all other actions (each of which

3Such a collection is said to be compat.ePe if it satisfies the first two of the three properties listed Some of the results below follow
simply from compatibility, while others require strong compatibility. Here, we simplify matters by considenng the stronger definition
only. The consequences of the two definitions are described more carefully in [LT1.



7

can ornly an input action of a component) become input actions. For example, all actions become output
actions in the composition of CM-1 and CUST-i. Notice that this composition does not hide actions such
as PUSH ! representing communication between components CM-1 and CUST-1 by making them internal
actions of tne composition CM-1-CUST-I. As motivation for this decision, consider one automaton A
'aving rc as an output actions and two automata B, and B2 having n as an input action. Notice that it is

essentiaily a broadcast from A to B, and B2 in the composition A-BlB 2 of the three automata. Notice,
qowever, that if we hide communication, then the composition (A-B,)-B2 would not be the same as the
comrp,csition A-B1 82 since t would be made internal to A.B1 before composing with B2, and hence it

wo-Id no onger be a broadcast to both B1 and B2. This is problematic if we want to reason about the
,yster- A 8 B2 in a modular way by first reasoning abot A-B1 and then reasoning about A-B1 .B2. We

wJ'-:.- a-otrer operation to hide such communication actions explicitly.

T , 7 preceding discussion motivates the following definitions. The composition S = FT S, of a
IElI

co..r'I-i coiiection of strongly compatible action signatures {S}E is defined to be the action signature
with

t in(S) = i in(Si) - L-IE iout(S),

• :-tS) -- E out(S), and

i nt(S) = QE int(Si).
The composition A = Fli A of a countable collection of strongly compatible automata {A}),, is the
automaton defined as follows:4

" sig(A) = TIIE sig(Ai),

* states(A) = FTIE I states(A),

" start(A) = -, , start(A,),

" tepsA) is the set of triples s such that, for all i EI, if nt e acts(Ai) then (E[i],it, 2i]) e
steps(A), and if t acts(Ai) then 91[i] = 94i), and

" part(A) = JiE part(A,).
When I is the finite set (1 ...,n}, we often denote F-i, Ai by AI.....A, .

Notice that since the automata A1 are input-enabled, so is their composition. The partition of the
composition's iocally-controlled actions is formed by taking the union of the components' partitions (that
is, each equivalence class of each component becomes an equivalence class of the composition). For
example, since CM-i's partition has one class {S,H,A) and CUST-i's partition has one class {1,2}, the
oartition of CM-1.CUST-1 has two classes .q.H,A and {1,2). This corresponds to our intuition that this
partition identifies the primitive components (e.g., CM-1 and CUST-1) of the system modeled by an
automaton. Again, we ignore this partition until we define fair computation in the next section.

Three basic results relate the executions, schedules, and behaviors of a composition to those of the
composition's components. The first says, for example, that an execution of a composition induces
executions of the component automata. Given an execution a = 907c,91... of A, let alA, be the sequence
obtained by deleting ijg, when it is not an action of Ai and replacing the remaining 9, by gi].

Proposition 1: Let (Ai}iEi be a strongly compatible collection of automata and let A = r1i, A. if

4 Here start(A) and states(A) are defined in terms of the ordinary Cartesian product, while sig(A) is defined in terms of the
composition of actions signatures just defined. Also, we use the notation g[i] to denote the ith component of the state vector s.
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a - execs(A) *"- cjA e execs(Ai) for every i I. Moreover, the same result holds if execs is
replaced b% f',execs, scheds, finscheds, behs, or finbehs.

Certair, converses of the preceding proposition are also true. The following proposition says that

executions of component automata can often be pasted together to form an execution of the composition.

Proposition 2: Let (A,)},c be a strongly compatible collection of automata and let A = flciAi.
Suppose a, is an execution of A, for every i e 1, and suppose 03 is a sequence of actions in
acts(A) such that 131A, = sched(tx) for every i EI. Then there is an execution a of A such that P =
scrned(a) and c = aA, for every i c I. Moreover, the same result holds when acts and sched are
replacea by ext and beh, respectively.

As a corollary, schedules and behaviors of component automata can also be pasted together to form

scnedules and behaviors of the composition.

Proposition 3: Let (A1},i be a strongly compatible collection of automata and let A = rFiElA.
Let 13 be a sequence of actions in acts(A). If PJA i c scheds(A,) for every i c I, then P e
screds(A). Moreover, the same result holds when acts and scheds are replaced by ext and
belhs, respectively.

As promised, we now define an operation that "hides" actions of an automaton by converting them to
internal actions. We begin with a hiding operation for action signatures: if S is an action signature and Z

_ acts(S), then hideL(S) = S' where in(S') = in(S) - 1, out(S') = out(S) - Y and int(S') = int(S) u 1. We
now define a hiding operation for automata: if A is an automaton and I ( acts(A), then hide (A) is the

automaton A' obtained from A by replacing sig(A) with sig(A') = hide,(sig(A)).

3.3. Fairness

Consider CUST-4, a particularly greedy version of CUST-1 in which all actions have tne precondition
"true-" that is, the customer does not wait for a candy bar before pressing a button again. One behavior
of the composition CM-i .CUST-4 is the infinite sequence 1111 ... in which the customer repeatedly
pushes button 1 without giving the candy machine a chance to dispense a candy bar. Clearly the only
time the candy machine can do its job is when it is treated fairly; that is, when it is given a chance to
respond to its input. For this reason, we are in general only interested in the executions of a composition
in which all components are treated fairly. While what it means for a component to be treated fairly may

vary from context to context, it seems that any reasonable definition should have the property that
infinitely often the component is given the opportunity to perform one of its locally-controlled actions (cf.
[FJ). In this section we define such a notion of fairness.

As we Mave mentioned, the partition of an automaton's locally-controlled actions is intended to capture

some of the structure of the system the automaton is modeling. Each class of actions is intended to
represent the set of locally-controlled actions of some system component. Notice that the locally-

controlled actions of CM-1 and CUST-4 are (S,H,A} and {1,2}, respectively, and that the partition of the
locally-controlled actions of CM-1CUST-4 has two equivalence classes {S,H,A} and {1,2). The definition
of automaton composition guarantees that an equival'.nco class of a component automaton becomes an

equivalence class of a composition, and hence that composition retains the essential structure of the

system's primitive components.5 In our model, therefore, being fair to each component means being fair

51t might be argued that retaining this partition is a bad thing to do since it destroys some aspects of abstraction Notice, however,

that any reasonable definition of fairness must Iad to some breakdown of abstraction since being fair means beino fair to the
primitive components which must somehow be modeled
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to each equivalence class of locally-controlled actions. This motivates the following definition.

A fair execution of an automaton A is defined to be an execution a of A such that the following
conditions hold for each class C of part(A):

1. If a is finite, then no action of C is enabled in the final state of a.

2. It a is infinite, then either a contains infinitely many events from C, or a contains infinitely
many occurrences of states in which no action of C is enabled.

This says that a fair execution gives fair turns to each class C of part(A), and therefore to each
component of the system being modeled. Infinitely often the automaton attempts to perform an action
from the class C. On each attempt, either an action of C is performed, or no action from C can be
performed since no action from C is enabled. For example, we may view a finite fair execution as an
execution at the end of which the automaton repeatedly cycles through the classes in round-robin order
attempting to perform an action from each class, but failing each time since no action is enabled from the
final state. Returning to thi. composition CM-1 .CUST-4, we see that 111... is not a fair behavior since the
output action S of CM-1 is enabled in every state (except the first) and yet never performed. On the other
hand, 11 Si 1S... is a fair behavior of the composition since infinitely often an output action of CM-1 is
performed and infinitely often an output action of CUST-4 is performed. Considering the composition
CM-i.CUST-3, notice that any finite execution ending with the action BECOMESATIATED is a fair
execution since from the state following this action no action of the composition is enabled. (In fact, these
are precisely the fair finite executions of this composition.)

We denote the set of fair executions of A by fairexecs(A). We say that 03 is a fair schedule of A if P is
the schedule of a fair execution of A, and we denote the set of fair schedules of A by fairscheds(A). We
say that 03 is a fair behavior of A if 0 is the behavior of a fair execution of A, and we denote the set of fair
behaviors of A by fairbehs(A). For example, the schedule consisting of the single internal action
BECOME_SATIATED is a fair schedule of CM-1 .CUST-3, and hence the empty schedule consisting of no
actions is a fair behavior of this composition.

We can prove the following analogues to Propositions 1-3 in the preceding section:

Proposition 4: Let {Ai)iI be a strongly compatible collection of automata and let A = rIiEA. If
a E fairexecs(A) then alA E fairexecs(A) for every i E I. Moreover, the same result holds if
fairexecs is replaced by fairscheds or fairbehs.
Proposition 5: Let {A1}i I be a strongly compatible collection of automata and let A = r-iEjA).
Suppose a1 is a fair execution of A, for every i E I, and suppose 03 is a sequence of actions in
acts(A) such that JPlAi = sched(o) for every i r I. Then there is a fair execution a of A such that
3 = sched(a) and a1 = alA for every i E I. Moreover, the same result holds when acts and sched
are replaced by ext and beh, respectively.
Proposition 6: Let {Aj}1, I be a strongly compatible collection of automata and let A = -i,,IAI.
Let 3 be a sequence of actions in acts(A). If 131Ai r fairscheds(Ai) for every i c I, then 3 E
fairscheds(A). Moreover, the same result holds when acts and fairscheds are replaced by ext
and fairbehs, respectively.

We state these results because analogous results often do not hold in other models. As we will see in
the following section, the fact that the fair behavior of a composition is uniquely determined by the fair
behavior of the components makes it possible to reason about the fair behavior of a system in a modular
way. The proofs of these propositions are nearly identical to the proofs of Propositions 1-3. The one
additional key fact needed is the fact that a component automaton determines by itself when one of its



10

locally-controlled actions may be performed.

3.4. Problem Specification
We wdnt to say that a problem specification is simply a set of allowable "behaviors," and that an

automaton solves the specification if each of its "behaviors" is contained in this set. The automaton

solves the problem in the sense that every "behavior, it exhibits is a "behavior allowed by the problem

specification (but notice that there is no single "behavior" the automaton is req:';red to exhibit). The

appropriate notion of "behavior" (e.g., finite behavior, infinite behavior, fair behavior, etc.) used in such a

definition depends to some extent on the nature of t:ie problem specification.

It is often useful to differentiate between two types of specifications since different techniques are

usually used to prove that such specifications are satisfied [Lal]. Safety properties are informally

characterized by the fact that tney specify a property that must hold in every state of a computation.

Since an infinite computation satisfies a safety property if and only if every finite prefix of the computation

does so, the notion of "behavior" most useful in this context seems to be finite behaviors. Liveness

properties are informally characterized by the fact that they specify events that must eventually be

performed. A reliable candy machine, for example, should satisfy the liveness condition that if a button is

pushed, then a candy bar (of the correct type) is eventually dispensed. Clearly this is a property of infinite

behaviors, and not finite behaviors. In fact, this is a property that can only be satisfied by fair behaviors,
since a candy machine cannot dispense the required candy bar if it is not given the chance to do so. The

notion of "behavior" most useful in this context, therefore, seems to be fair behaviors.

Consequently, we would like to say that a specification is a set of allowable behaviors, and that an

automaton solves the specification if all finite or fair behaviors (depending on the context) of the

automaton are contained in the set. In addition to a set of allowable behaviors, however, a problem

specification must specify the required interface between a solution and its environment. That is, we want
a problem specification to be a set of behaviors together with an action signature.

We therefore define a schedule module H to consist of two components:

" an action signature sig(H), and

" a set scheds(H) of schedules.
Each schedule in scheds(H) is a finite or infinite sequence of actions of H. We denote by finscheds(H) the

set of finite schedules of H. The behavior of a schedule {3 of H is the subsequence of f3 consisting of

external actions, and ;s denoted by beh13). We say that 13 is a behavior of H if 3 is the behavior of a

schedule of H. We denote the set of behaviors of H by behs(H) and the set of finite behaviors of H by
finbehs(H). We extend the definitions of fair schedules and fair behaviors to schedule modules in a trivial

way, letting fairscheds(h1 = scheds(H) and fairbehs(H) = behs(H). We will use the term module to refer to

either an automaton or a schedule module.

There are several mi3 -:if schedule modules that we often wish to associate with an automaton. They

correspond to the au -;, .n's schedules, finite schedules, fair schedules, behaviors, finite behaviors and

fair behaviors. For each a,'-tomaton A, let Scheds(A), Finscheds(A) and Fairscheds(A) be the schedule

modules having action sk ...,ure sig(A) and having schedules scheds(A), finscheds(A) and fairscheds(A),

respectively. Also, for each module M (either an automaton or schedule module), let Behs(M),

Finbehs(M) and Fairbehs(M) be the schedule modules having the external action signature extsig(M) and
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having schedules behs(M), finbehs(M) and fairbehs(M), respectively. (Here and elsewhere, we follow the

convention of denoting sets of schedules with lower case names and corresponding schedule modules
with corresponding upper case names.)

It is convenient to define two operations for schedule modules. Corresponding to our composition

operation for automata, we define the composition of a countable collection of strongly compatible
schedule modules (HJi. , to be the schedule module H = F 1 iEH i where:

" sig(H) = fliE1 sig(H),

" scheds(H) is the set of sequences 3 of actions of H such that PIH i is a schedule of Hi for
every i e I.

The following proposition shows how composition of schedule modules corresponds to composition of

automata.

Proposition 7: Let {Ai}i I be a strongly compatible collection of automata and let A = rl, A,.
Then Scheds(A) = rl 1 Scheds(Ai), Fairscheds(A) = il Fairscheds(Ai), Behs(A) = r'i,,Behs(Ai)
and Fairbehs(A) = fTirFairbehs(Ai).

Corresponding to our hiding operation for automata, we define hide hide,(H) to be the schedule module

H' obtained from H by replacing sig(H) with sig(H') = hide,(sig(H)).

Finally, we are ready to define a problem specification and what it means for an automaton to satisfy a

specification. A problem is simply a schedule module P. An automaton A solves8 a problem P if A and P
have the same external action signature and fairbehs(A) c fairbehs(P). An automaton A implements a

problem P if A and P have the same external action signature (that is, the same external interface) and
finbehs(A) c finbehs(P). Notice that if A solves P, then A cannot be a trivial solution of P since the fact

that A is input-enabled ensures that fairbehs(A) contains a response by A to every possible sequence of
input actions. For analogous reasons, the same is true if A implements P.

Since we may want to carry out correctness proofs hierarchically in several stages, it is convenient to
state the definitions of "solves" and "implements" more generally. For example, we may want to prove
that one automaton solves a problem by showing that the automaton "solves" another automaton, which

in turn "solves" another automaton, and so on, until some final automaton solves the original problem.
Therefore, let M and M' be modules (either automata cr schedule modules) with the same external action
signature. We say that M solves M' if fairbehs(M) c fairbehs(M') and that M implements M' if finbehs(M)

c finbehs(M').

To illustrate these definitions, let us consider some interesting specifications of correct candy machine

behavior.

Some basic requirements for a candy machine can be described by the schedule module SAFE-CM.
SAFE-CM has the same action signature as CM-1, and has as its set of schedules the set of sequences

over the symbols 1,2,S,H,A satisfying the following condition: every S is immediately preceded by a 1,

and every A or H is immediately preceded by a 2.

In order to show that CM-1 is a safe candy machine (that is, that it implements the problem described

by SAFE-CM), we must show that all finite behaviors of CM-1 satisfy the given requirement. We proceed

6This concept is called satisfying in [LTI].
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by induction on the length of a behavior, using an inductive hypothesis that characterizes the state of

CM-1 in terms of the preceding events: button_pushed = 1 if the last event in the sequence is PUSH1,

buttonpushed = 2 if the last event in the sequence is PUSH2, and button_pushed = 0 otherwise (that is,
if the sequence is empty or the last event is a dispensation event). The inductive step considers cases

based on the five possible actions. For instance, if SKYBAR occurs, its precondition implies that

buttonpushed = 1 just prior to the dispensation; thus, the immediately preceding symbol in the sequence

is 1, as needed The other cases are similar. It follows that CM-1 implements SAFE-CM, and hence that

CM-1 is a safe candy machine. In fact, the same proof also shows that CM-1 solves SAFE-CM.

It is also easy to see that CM-2 is a safe candy machine. However, saying that CM-1 and CM-2 are

safe candy machines is not really saying enough, since the same is also true for CM-3. CM-3's finite

behaviors are just the finite sequences of l's and 2's, which trivially satisfy the required condition.

Although CM-3 is a safe candy machine, it is not a very interesting one. Therefore, we give a stronger

specification below. In order to do this, we need an additional definition.

Since an automaton cannot block input actions, in discussing correct candy machine behavior it is

helpful to consider certain "well-formedness" conditions on the interaction between the machine and its

environment. For example, we may want to restrict attention to interactions in which push and

dispensation events alternate strictly. Define a sequence of candy machine actions to be well-formed if it
consists of alternating input and output (push and dispensation) actions, starting with an input action.
Notice that CM-1 has behaviors, in fact fair behaviors, that are not well-formed. For example, 11S1S...
is a non-well-formed fair behavior of CM-1. This is because CM-1 does not have the power to insure that
its environment satisfies the well-formedness condition.

A stronger set of requirements than SAFE-CM can be described by the schedule module LIVE-CM.

LIVE-CM has the same action signature as CM-1. Its set of sequences are those that are safe candy
machine sequences and that in addition satisfy the following condition: "If the sequence is well-formed,
then every 1 event is followed by a later S event, and every 2 event is followed by a later H or A event. '7

That is, every request for a candy bar is eventually satisfied by a candy bar of the correct type.

Let us consider wh!ch of our candy machines are live candy machines; that is, which candy machines

solve LIVE-CM. CM-3 is not a live candy machine because it has fair behaviors, such as the sequence

consisting of the single event 1, that do not satisfy this condition. (This sequence satisfies the well-

formedness hypothesis, but does not satisfy the liveness conclusion.) On the other hand, CM-1 is a live
candy machine, which we can prove as follows. Suppose not; then there is a fair behavior of CM-1 that is
well-formed and that contains a push event that is not followed by any later dispensation event of the

correct type. By well-formedness and the fact that CM-1 is a safe candy machine, the only possibility is
that the sequence is finite and ends with the given push event. Say, for example, that the push event is

PUSH1. Then by the state characterization given above, the state after the given schedule has

buttonpushed = 1. Then the SKYBAR dispensation action is enabled in this state. But the definition of a

fair execution implies that no action of CM-1 can be enabled in the final state, which yields a
contradiction. CM-2 is also a live candy machine, even though it has less nondeterminism than CM-1.
The proof is similar to that for CM-1.

7This can be formalized in terms of temporal logic.
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Notice that wnile CM-1 and CM-2 both solve LIVE-CM, neither implements LIVE-CM since there are
finite behaviors of both machines ending with the push of a button that are not contained in LIVE-CM.

Conversely, while it can be shown that CUST-3 implements CUST-1, CUST-3 does not solve CUST-1
since there are fair behaviors of CUST-3, such as the empty sequence, that are not fair behaviors of
CUST-t. In general, given an automaton A and a problem P, it is not the case that if A solves P then A
implements P, nor is it the case that if A implements P then A solves P.

One might ask the technical question whether it might be reasonable to eliminate the well-formedness
hypothesis in the live candy machine behavior specification. If we did this, then we would arrive at a
stronger specification for a live candy machine, one that requires that the machine must always issue
candy sometime after each push, regardless of whether the pushes happen in a well-formed manner.
While this might be a reasonable requirement for a candy machine, CM-1 does not satisfy it. For consider
the (non-well-formed) behavior 12H12H12H... of CM-1. This contains 1 events that are not followed by S
events. However, it is a fair behavior of CM-1 since infinitely often an action from the single class {S,A,H}
of part(CM-1) is performed. Consequently, CM-1 does not satisfy the proposed stronger specification.

As we have seen, there are many ways to argue that an automaton A solves a problem P. We now turn

our attention to two more general techniques.

3.4.1. Proof Techniques: Modular Decomposttlon

One common technique for reasoning about the behavior of an automaton is modular decomposition,
in which we reason about the behavior of a composition by reasoning about the behavior of the
component automata individually.

It is often the case that an automaton behaves correctly only in the context of certain restrictions on its

input. These restrictions may be guaranteed in the context of the composition with other automata
comprising the remainder of the system, or may be restrictions defined by a problem statement describing
conditions under which a solution is required to behave correctly. (Recall, for example, the well-
formedness conditions defined earlier for candy machines.) A useful notion for discussing such
restrictions is that of a module "preserving" a property of behaviors: as long as the environment does not
violate this property, neither does the module.

In practice, this notion is of most interest when the property is prefix-closed, and when the property
does not concern the module's internal actions. A set of sequences P is said to be prefix-closed if 3 E P
whenever both 03 is a prefix of x and c e P. For example, the set of well-formed sequences defined for
candy machines is prefix-closed. A module M (either an automaton or schedule module) is said to be
prefix-closed provided that finbehs(M) is prefix-closed. For example, the schedule module SAFE-CM is
prefix-closed, and every automaton is prefix-closed. Let M be a prefix-closed module and let P be a
nonempty, prefix-closed set of sequences of actions from a set 0 satisfying 10 n int(M) = 0. We say that
M preserves Pif O1j0 e ?whenever 010 e P, n e out(M), and PICM e finbehs(M).

It is not hard to see, for example, that in this sense the candy machine CM-1 preserves well-

formedness: although the customer may press a button twice without waiting for a candy bar to be
dispensed, the candy machine dispenses a candy bar only if a button has been pressed since the last
candy bar was dispensed. In general, if a module preserves a property , then the module is not the first
to violate P as long as the environment only provides inputs such that the cumulative behavior satisfies
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, the module will only perform outputs such that the cumulative behavior satisfies P. This definition,
however, deserves closer inspection. First, notice that we consider only sequences 03 with the property
that {3iIM e finbehs(M). This implies that we consider only sequences P that contain no internal actions
of M. Second, notice that we require sequences 13 to satisfy only 0310 E Prather than the stronger property
3 E P. Suppose, for example, that Pis a property of the actions () at one of two interfaces to the module
M. In this case, it may be that for no 3 E Pand xt e out(M) is it the case that P3nIM e finbehs(M), since all
finite behaviors of M containing outputs include activity at both interfaces to M. By considering 03 satisfying
only 14) i I, we consider all sequences determining finite behaviors of M that, at the interface
concerning 0, do not violate the property P.

One can prove that a composition preserves a property by showing that each of the component
automata preserves the property:

Proposition 8: Let {Ai} i E I be a strongly compatible collection of automata and let A = n i . I
Al If A, preserves Pfor every iE I, then A preserves P.

For example, since CM-1 and CUST-1 both preserve well-formedness, the composition C[M-1CUST-1
does so as well.

In fact, we can prove a slightly stronger result. An automaton is said to be closed if it has no input
actions. In other words, it rn', ' Is a closed system that does not interact with its environment.

Proposition 9: Let A be a closed automaton. Let P be a set of sequences over (). If A
preserves P, then finbehs(A)ID Q P.

In the special case that (D is the set of external actions of A, the conclusion of this proposition reduces
to the fact that finbehs(A) P. The proof of the proposition depends on the fact that (D does not contain
any of A's input actions, and hence that if the property P is violated then it is not an input action of A
committing the violation. In fact, this proposition follows as a corollary from the following slightly more
general statement: If A preserves Pand in(A) n () = 0, then finbehs(A)l(4) P.

Combining Propositions 8 and 9, we have the following tecnnique for proving that an automaton
implements a problem:

Corollary 10: Let (A,), be a strongly compatible collection of automata with the property that
A = r i E I A, is a closed automaton. Let P be a problem with the external action signature of
A. If A, preserves finbehs(P) for all i e I, then A implements P.

That is, if we can prove that each component Ai preserves the external behavior required by the
problem P, then we will have shown that the composition A preserves the desired external behavior; and
since A has no input actions that could be responsible for violating the behavior required by P, it follows
that all finite behaviors of A are behaviors of P.

A similar technique follows from the following proposition:

Proposition 11: Let {A }i I be a collection of strongly compatible automata, and let {Pi} i be
a collection of problems. If A, solves Pi for every i, then r, . A solves fli , 1Pi•

This says we can prove that the composition of the automata {Ai) i E I solves a problem by proving that
each component Ai solves a problem Pi and then proving that the composition of the problems {Pi}i , I
solves the original problem. For example, consider proving that every fair behavior of the composition of
CM-1 and CUST-1 is an infinite well-formed sequence of actions in which each dispensation action
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dispenses an appropriate candy. Let LIVE-CUST be the schedule module whose signature is the same
as CUST-1 's, and whose schedules are exactly those in which (i) the customer is not the first to violate
well-formedness, and (ii) if the sequence is well-formed, then it is either infinite or else finite and ending
with a push event. Then it is easy to see that CUST-1 solves LIVE-CUST. We have already argued that
CM-1 solves the schedule module LIVE-CM described earlier. So it suffices to prove that every behavior
of the composition of LIVE-CUST and LIVE-CM is an infinite well-formed sequence of actions in which
each dispensation action dispenses an appropriate candy. This is not difficult to show: well-formedness
holds because neither component is the first to violate it, appropriate responses follow from the
specification of LIVE-CM, and the sequence is infinite because neither component stops at its own turn.

3.4.2. Proof Techniques: Hierarchical Decomposition
A second common technique for proving that an automaton solves a problem is hierarchical

decomposition in which we prove that the given automaton solves a second, that the second solves a
third, and so on until the final automaton solves the given problem. One way of proving that one
automaton A solves another automaton B is to establish a relationship between the states of A and B and
use this relationship to argue that the fair behaviors of A are fair behaviors of B. One helpful such
relationship is a possibilities mapping, which we now define.

We define an extended step of an automaton A to be a triple of the form (s',,s), where s' and s are
states of A, P is a finite sequence of actions of A, and there is an execution fragment of A having s' as its
first state, s as its last state, and 03 as its schedule. (This execution fragment might consist of only a
single state, in the case that 3 is the empty sequence.) Suppose A and B are automata with the same
external action signature, and suppose f is a mapping from states(A) to the power set of states(B). That
is, if s is a state of A then f(s) is a set of states of B. The mapping f is said to be a possibilities mapping
from A to B provided the following conditions hold:

1. For every start state so of A, there is a start state to of B such that to e f(so).

2. If s' is a reachable state of A, t' e f(s') is a reachable state of B, and (s',lr,s) is a step of A,
then there is an extended step (t',y,t) of B such that

a. -yext(B) = xrext(A), and

b. t c f(s).

It is easy to show, for example, that there is a possibilities mapping f from CUST-2 to CUST-1 that
maps each state s of CUST-2 to the singleton set containing the state of OUST-1 that only contains the
"waiting" variable of s.

The existence of a possibilities mapping from A to B, together with additional results relating the fair
behaviors of A and B, can be used to prove that A solves B. Some such additional results are given in

[LT1] and [WLLJ. For example, using our possibilities mapping from CUST-2 to CUST-1 we can prove
that CUST-2 actually solves OUST-1. A straightforward proof can be based directly on the definition of
fair execution and the fact that for every state s of CUST-2, some output action is enabled in s for CUST-2
exactly if some output action is enabled in the single state in f(s) for CUST-1.

In cases in which we are only interested in finite behaviors and not fair behaviors, the following simple
result is often useful.

Proposition 12: Suppose that A and B are automata with the same external action signature.
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If there is a possibilities mapping from A to B, then A implements B.

So, for example, the existence of the possibilities mapping f from CUST-2 to CUST-1 implies that
CUST-2 implements CUST-1.

4. Choosing a Ring Leader
In this section we sketch a more sophisticated example than the candy machines studied in the

previous section, the election of a leader in a ring of processors. This example exhibits much more

interesting concurrent activity than the candy machine example. It shows how one can use the model to

reason about interesting concurrent algorithms, and suggests how the model can be used to carry out

complexity analysis and prove lower bound and impossibility results.

We assume a ring of n processors, each starting with a unique identifier chosen from a universal totally
ordered identifier set I. Each processor can communicate with each of its neighbors in the ring, using a
pair of one-way channels. The processors do not know the size of the ring, nor the specific subset of I
that is actually being used as identifiers. The object is for the processors to choose a unique leader from
among themselves. This problem has been widely studied in the area of distributed algorithms.

Each processor and each communication channel is modeled as an I/O automaton. Each channel

automaton has input actions of the form SEND(M) and output actions of the form RECEIVE(M). 8 Its state
is a multiset, consisting of those messages that have been sent but not yet received; initially, the multiset
is empty. The transition relation is as follows:

SEND(M)
Effect: messages -- messages Q (MI

RECEIVE(M)
Precondition: M e messages
Effect: messages +-- messages - (M)

The partition puts all output actions (all RECEIVE actions) in the same equivalence class; this has the

effect of hypothesizing that if there is a message to be delivered, then some message is eventually
delivered.

Each processor is also modeled as an I/O automaton, having SEND output actions and RECEIVE input

actions. In addition, it has a LEADER output action by which it can announce that it has been chosen as

the leader processor. It may also have internal actions.

A collection of channel and processor automata is composed into a single system automaton, and then

the hiding operator is used to produce a new system automaton in which the only external actions are

LEADER actions. The problem to be solved by the system can be described by the schedule module
whose external action signature has no input actions and only LEADER output actions, and whose set of

schedules consists of the set of sequences of length exactly 1. That is, in a correct behavior, exactly one
LEADER event occurs.

8Since the model uses a global naming scheme, the actual action names would have to be subscripted with information
identifying the particular channel.
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We now describe a particular algorithm for solving this proble.i, based on that of LeLann [Le] and
Chang and Roberts [CR]. Each processor sends its identifier clockwise around the ring. When a
processor receives an identifier, if the identifier is less than its own, the processor discards the received
identifier. If it is greater than its own, the processor passes the received identifier clockwise. If it is equal
to its own, the processor performs a LEADER output action.

In more detail, the state of a processor with identifier i has a variable "pending" which holds a subset of
I, initially {i). It also has a variable "leader-status", which takes on values from {"unknown", "elected",
"announced") and has initial value "unknown". The actions are defined as follows:

RECEIVE(j), j E I
Effect: if j > i then pending <- pending {

if j = i then leader-status <-- "elected"

SENDO), j c I
Precondition: j e pending
Effect: pending <- pending- {)

LEADER
Precondition: leader-status = "elected"
Effect: leader-status +- "announced"

The partition puts all output actions in the same equivalence class. It is not hard to carry out a
correctness proof of this algorithm using the model. The safety proof (that is, that no more than one
LEADER event ever occurs) involves proving an invariant assertion relating the identifiers that appear in
different places in the ring, both as processor id's and in messages. More specifically, it must be shown
that if i < j, then a processor with identifier i, a processor with identifier j, and a message containing
identifier i cannot appear in that order, reading clockwise around the ring.

In order to prove liveness (that is, that some LEADER event eventually occurs), another invariant is
used, expressing conservation of the message corresponding to the maximum identifier. Then a "variant
function" is defined, describing the progress that has been made toward election of a leader: for each
state, the value of the variant function in that state is the sum of the distances of all id's back to their
originating processors, measured in a clockwise direction. At every point where the value of the variant
function is nonzero, any action that occurs (other than the LEADER action) can be shown to decrease its
value. Furthermore, at every point where the value of the variant function is nonzero, some action is
enabled. Thus, the function value eventually reaches zero, and hence a LEADER event eventually
occurs.

The model can be used to carry out complexity analysis. For any execution of the algorithm, the
number of SEND or RECEIVE events can be used as a measure of the amount of communication; it is
not hard to prove that 2n 2 is a worst-case upper bound on this number. Also, for any execution, time can
be measured as follows. Assign a "real time" to each event, as large as possible, subject to the
requirement that for each class of the partition, the time between successive "turns" for that class is at
most 1. Then the difference between the real time assigned to the LEADER event and the start time can
be taken as a time measure for the entire execution. Since 2n 2 is a worst-case upper bound on the
number of SEND and RECEIVE events, it is not hard to see that 2n 2 + 1 is a worst-case upper bound for
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this time measure. 9

The given algorithm is not optimal in its communication requirements; for example, [P] contains an
algorithm with an O(n log n) upper bound. The algorithm in [P] can also be formalized and analyzed
using our model. Also, [Bu} proves an Q(n log n) lower bound on the worst-case amount of
communication; this result also is describable in our model.

5. Other Applications
The model has been used to describe and reason about many different kinds of algorithms, both in

systems applications and in the algorithms research literature. In this section, we describe some of these
uses.

5.1. Network Resource Allocatlon
Our first use of the model was for describing network resource allocation algorithms. [LT1] presents a

network arbiter design and proves its correctness using I/O automata. The algorithm is based on a
resource performing a treewalk of a spanning tree of the network graph. The conditions proved include
safety properties (mutual exclusion) and liveness properties (no lockout).

The correctness proof is done in three levels of abstraction. The problem definition is presented as a
hig;,-;vel s,.;i,tjule module, in which inputs are requests and returns and outputs are grants, all for a
particular resource. The intermediate level is a description of the algorithm in terms of graph theory,
formalized as an automaton together with a restricted set of executions. Finally, the complete distributed
algorithm is described as a composition of automata at the lowest level. It is shown that each level solves
the level above it, and thus that the distributed algorithm solves the arbiter problem.

Most of the interesting reasoning about the algorithm is done at the intermediate level, in terms of
graphs. This reasoning is close to the intuitive reasoning one would normally use to understand and
explain the algorithm. The interesting work involves showing that the intermediate level solves the high-
level problem statement. Showing that the lowest level solves the intermediate level is a long but
straightforward case analysis.

[LT1] also contains an analysis of the time complexity of the algorithm, demonstrating an O(n) worst-
case upper bound, where n is the number of nodes in the network, and an O(d) worst-case upper bound
when requests do not overlap, where d is the diameter of the network. The time analysis proof follows the
proof of "no lockout" very closely, suggesting that there may be a more general correspondence between
liveness proofs and proofs of upper bounds on time.

We have also used the model to study other network resource allocation algorithms. For example, in
[LW], we give an algorithm for the "Drinking Philosophers" problem: in this problem, users request sets of
resources by name, with the same user possibly requesting different sets of resources each time it makes
a request. [CM2] contains an algorithm for this problem, constructed by modifying a particular Dining
Philosophers algorithm. Our algorithm, based on the one in [CM2], is described as a composition of

9The standard analysis of this algorithm ar ins an 0(n) upper bound, by assuming all messages are delivered within time 1
regardless of the congestion of the messaae channels We do not assume this, and so obtain a quadratic bound
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automata that solve the Dining Philosophers problem and automata that carry out additional bookkeeping.
Our use of con ,.sition allows us to use any Dining Philosophers algorithm as a "subroutine;" some
choices can be shown to yield better time performance for the resulting Drinking Philosophers algorithm
than is yielded by the algorithm of [CM2].

5.2. Synchronizers
In [A], Awerbuch describes a synchronizer algorithm - a distributed algorithm designed to convert

programs written for synchronous networks into versions that can be used in asynchronous networks. In
this algorithm, the network nodes are partitioned into clusters, and different strategies are used to
synchronize within clusters and among clusters. The algorithm is clever, but complex, and is presented
without formal proof. In [FLS], we provide a new presentation and a proof for Awerbuch's algorithm. The
algorithm is decomposed into separate automata for intercluster and intracluster synchronization. The
intercluster synchronizer is further decomposed into a piece executing at each node. In fact, Awerbuch's
actual program for each node is described as the composition of two automata, one participating in

intercluster and one in intracluster synchronization.

5.3. Communication
In [WLL], we present a correctness proof for the intricate distributed minimum spanning tree algorithm

of [GHS]. The techniques used are based on the hierarchical structure used in [LTI]. However, instead
of a linear hierarchy of algorithms, we use a lattice of algorithms. The complete algorithm has several
different projections onto higher level "subalgorithms", where each subalgorithm represents one task
performed by the main algorithm. The proof involves showing that the subalgorithms all solve the
minimum spanning tree problem and that the full algorithm "solves" all of the subalgorithms. In showing
the latter, we make use of many properties of the separate subalgorithms. We develop the basic theory
needed for lattice-structured proofs; some work on a similar theory appears in [LaS].

Another proof of the correctness of the algorithm of [GHS] appears in [CG]. This proof uses techniques
closely related to the notion of communication-closed layers [EF], and it based on a model which is
essentially the same as the I/O automaton model.

More recently, we have used I/O automata to characterize correct behavior for physical channels and
data links [LMF]. We prove that certain types of data link behavior can be implemented in terms of certain
types of physical channels, while other types cannot. Preliminary results show that interesting data link
behavior seems to require at least some stable storage (whereas previous work shows that a single
stable bit at each end suffices). Also, under certain technical assumptions, the data link protocol must
use unbounded size headers to achieve reasonable behavior, in case the underlying physical channels
are not FIFO.

5.4. Concurrency Control
We have been using the model as the formal foundation for a new theory of atomic transactions.

Transactions arose originally in database systems, but are now used as a basic construct for general
data-oriented distributed programming. Use of transactions in general-purpose languages has required
their extension to allow nesting; nested transactions permit more concurrency than single-level
transactions, and permit localized handling of failures.
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In [LM], we use I/O automata to model nested transactions, state the correctness conditions that they

must satisfy, describe an exclusive locking algorithm for nested transactions, and carry out a correctness
proof. In later papers, we extend this treatment to more general locking algorithms and timestamp-based

algorithms. We also prove correctness of algorithms for management of "orphan" transactions -

transactions that continue to execute even though some ancestor in the transaction nesting structure has
been aborted. We are able to use I/O automata to decompose the orphan algorithms so that concurrency

control and recovery are handled by one module, and orphan management is handled by another.
Correctness properties for the two kinds of modules are proved separately, and then combined to yield
correctness properties for the complete algorithm.

We have had similar success in describing correctness of algorithms for replicated data management.
We are able to decompose certain replicated data algorithms into modules that handle concurrency

control and recovery at the level of individual data replicas and modules that implement the data
replication algorithm. A book [LMWF] is now in progress, describing this theory.

Althoughi the model has proved to be a very usable tool for describing hese results, its full power has
not yet been used in this work. In particular, only finite executions have so far been considered, and only

safety properties have been proved.

5.5. Shared Atomic Objects
A topic of recent research interest has been the study of wait-free implementability of concurrently-

accessible atomic objects in terms of other atomic objects. An object is said to be atomic, roughly

speaking, if it responds to concurrent invocations of operations as if the operations were executed
indivisibly at some time between the invocation and response times. So far, most of the work has
focused on read-write registers for use by various numbers of readers and writers. Many of the

algorithms are very complex and difficult to understand precisely.

The paper [La2], which initiated this research area, contains an interesting formal model based on
partial orderings of operations. However, most of the subsequent papers do not use Lamport's model,
but instead include their own models and definitions. The multiplicity of models has contributed to making
the papers very difficult to read.

In [BI], Bloom uses the I/O automaton model as the basis for stating correctness conditions for atomic
read-write registers, for describing a new algorithm (which implements 2-writer n-reader registers from

1-writer n+1 -reader registers) and for proving the algorithm correct. He describes the solution as a
composition of automata for each of the reader and writer protocols and automata for the 1-writer
registers used in the implementation. The combination is shown to implement the desired 2-writer
register. The work is rigorous and clear; we hope that a similar presentation will help clarify some of the

other algorithms.

New work by Schaffer [S] uses the I/O automaton model to point out errors in a published register
algorithm, modify the algorithm, and prove the correctness of the modified algorithm. New work by
Herlihy on impossibility results for atomic object implementations [He] also uses the I/O automaton model.
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5.6. Dataf low
In iLS], vie 'r : t z emantics of dataflow networks in terms of 1/0 automata. We define the

notion ol deet~c hat is, th.at th~e sequence of output actions is uniquely defined by the sequence
of input actions), a ncticon t~tis considered important in dataflow computation. We state a theorem that
expresses m-ir- iw;..h about dataflow networks [K] - ihat the semantics of networks of
determinate cc rnporie'uls can re uniouely defined using the least fixed point operator applied to certain
equations invlvCMng ne ,anor of vie indivdual comporients. We then prove a theorem showing the
equivaiernce Y cn emanlics ind Kalln's fixedoint semantics. In fact, the work of [LS]
geneiali?, lc., , v,' H'o~rriate !C( 3: tomat used in 11S] to model processes compute all
contin,.-3 i,, or. c 1 zrccs compute a more restricted class of functions.

5.7. Real 71me Crr~:,t rig
Firpflv s,--!- -ce'- ._cr-,c qests Fomle ways ,r~ which time can be introduced into tPe 1/0

autornato,, Drch __-6 s dn , Lyrcr r:as suggested [Ly] some peliminary ideas on how
the P.a.Cm.e~m~ cc n be ose -mcde: ard reason about real-time computing.
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