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Abstract

This paper surveys a variety of recent results addressing the problem of range
queries in computational geometry. The major contribution of this paper is in iden-
tifying three general methods for range queries in computational geometry and in
classifying many of the recent results into one or more of these approaches. The
three methods discussed in this paper are random sampling, search-tree tables, and
space-partition trees. This survey assumes some familiarity with basic computational
geometry concepts and techniques.

1 Introduction

A widely studied area of algorithmic design concerns the construction of efficient data
structures for maintaining a database of records that supports various types of queries. A

variety of sophisticated data structures and algorithmic techniques for database queries

have been recently developed.

A rather general class of database queries is the class of range queries. A range query
is a request to identify the records in a database, with keys falling in a certain range.
When each record has one key, there are various schemes for efficiently processing such

range queries (balanced binary trees are a typical example). The problem becomes more

complicated, however, when records have d > 1 keys and range queries involve general

ranges in the d-dimensional space of keys. Multidimensional range queries, and in par-
ticular orthogonal range queries, where ranges are generalized rectangles in d dimensions,

received a considerable amount of attention (see (2, 3, 4, 5, 19, 22, 23, 24, 28, 29]).

This research was supported in part by the Defense Advance Research Projects Agency under Contract
NOOO14-87-K-0825.



Recently, the problem of multidimensional range queries was also intensively studied
in the domain of computational geometry. The problem of range queries in computational
geometry can be informally described as follows: given a collection of n geometrical objects
in the d-dimensional Euclidean space, store them in a data structure, such that when given
a range (subset) of the d-dimensional Euclideani space, the objects falling in that range
can be quickly identified. The n geometrical objects are considered to be tile records of
a database, and the subset of the space is the query range. A formal definition of range
queries is given in Section 3.

Throughout this paper we consider a prototypical example, the half-space range query
problem. There are two important variants of this problem, half-space counting and half-
space reporting. The half-space counting problem can be stated as follows: given 71 points
in the d-dimensional Euclidean space Ed, organize them in a data structure, such that
the number of points in a query half-space can be quickly determined. The half-space
reporting problem is similar, except that the points in the query half-space need to be
actually reported. Other common variants involve checking whether there exists a point
that falls in the query half-space, checking whether all the points fall in the query half-
space, and finding a point that minimizes a given function with respect to the query
half-space. In Section 3, we define these types of queries more precisely.

Ranges in computational geometry are usually defined by analytic curves, and can
thus be quite general. However, efficient algorithms and data structures for processing
the corresponding range queries are known only for some specific types of ranges. These
types of ranges include half-spaces, hyperrectangular (orthogonal) ranges, hyperspherical
ranges, simplicial ranges, and polyhedral ranges with a bounded number of faces. Although
it seems at first that these different types of ranges have little in common, it is possible,
for example, to transform some types of range queries to others. These transformations
usually involve mapping objects in the d-dimensional Euclidean space to points in some
higher dimensional Euclidean space. Some examples of these transformations are given in
[17, 35, 36]. Dobkin & Edelsbrunner [17], for instance, showed that a variety of queries in
E2 involving points intersecting triangles, segments intersecting segments, and polygons
intersecting polygons, as well as related problems in E 3 , can be reduced to half-space
range queries. Yao [35] showed that polyhedral range queries can be solved by a sequence
of half-space range queries, and that circular region queries in E 2 , ..,e reduced to half-
space range queries in E3 . Yao & Yao [36] gave a general scheme oi , 'lucing a variety of
geometrical queries in E' to range queries in higher dimensional Euclidean spaces.

Efficient algorithms for range queries are of primary interest in the field of compu-
tational geometry. Besides being important in their own right, many other problems in
computational geometry either use range queries as subroutines or use generalized versions
of range queries. Examples include constructing order-k Voronoi diagrams in the plane
(Lee [27]), finding a Minimal Spanning Tree in Ed (Yao [33]), various geometric intersec-
tion problems in E2 and E3 (Dobkin & Edelsbrunner [17]), polytope-polytope inlaetsection
in Ed and the nearest neighbor problem (Yao & Yao [36]). Some types of range queries can
be themselves reduced to other problems in computational geonie"iy. i'or example. the
problem of half-space queries can be solved by reducing it to the point location problem
and building a data structure for point location searches. This reduction forms the lasisit
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of some algorithms for the half-space query problem discussed in Section 5.

The term "efficient algorithms for range queries" needs a little clarification. The nat ural
complexity parameter of an algorithm for range queries is n. the number of objects in the
database. We generally assume that the database of objects will be queried many times.
such that it is worth to initially invest the time for preprocessing the objects and to
allocate the storage for the data structure. A solution to a range query problem is usually
evaluated by its query time, its storage, and its preprocessing time. The main interest is
in sublinear query time, since for most range queries we can determine in constant time
whether an object falls in a specified range, which leads to a straightforward linear query
time algorithm (exhaustive search). When discussing the query time, it is important to
distinguish between range counting queries and range reporting queries. In the former
case, for example, there are algorithms with sublinear query time, which is independent
of the answer size. In the latter case, however, the query time contains two components,
the search time and the number of points reported. The query time for range reporting
problems, is thus of the form O(f(n) + k), where f(n), the search time, may be sublinear
and independent of the specific query, and k, the report time, is dependent on the specific
query. The storage requirement is usually polynomial in n. There is a particular class
of algorithms for range queries, which we discuss in Section 6, that achieves the optimal,
linear storage. The preprocessing time is usually also polynomial in n, but is considered
as less important measure of an algorithm, as it represents only a one-time effort. Some
relationships between the query time and the storage are presented in section 7.

In this paper, we study the problem of range queries in computational geometry. In
particular, we focus on half-space ;nd simplicial range queries, which constitute a rather
large class of range queries. We describe, compare, and analyze three general methods for
processing certain classes of range queries in computational geometry. The three methods
are random sampling, search-tree tables, and space-partition trees. In the course of dis-
cussing these three techniques, we survey and classify a variety of results for range query
problems in computational geometry. The different methods may be sometimes combined
and can be related in some cases. All the results presented use the Real Random Access
Machine model of computation, which is the most commonly used model in computational
geometry. This model is an extension of the usual RAM model with unlimited precision
real arithmetic operations and storage in constant time.

The remainder of this paper in organized as follows. Section 2 introduces commonly
used geometric notations and some relevant problems and techniques in computational
geometry. In Section 3, we define the notion of a range query in abstract range spaces and
discuss some properties of range spaces and range queries. Section 4 presents the method
of random sampling for range queries. In Section 5, we describe the method of search-
tree tables for range queries. Section 6 discusses the method of space-partition trees for
range queries. In Section 7, we present some lower bounds on the query time and storage
requirements of algorithms for range queries. Finally, Section 8 summarizes and compares
the different methods.

3



2 Geometric Fundamentals

In this section we introduce commonly used geometric notations, define some terms ,pecific
to our discussion, and describe some relevant techniques in computational geometry. 'rhe
reader may wish to only skim this section at first, in order to become familiar with the
notations used in this paper, and later refer to specific terms as necessary.

Spaces, Points, and Point Sets. We use Ed to denote the real d-dirnensional Euclidean
space with the standard metric L2 . Points of Ed are d-dimensional vectors over the reals.
For a point set A C Ed, we use aff A to denote the affine closure of A, and we use dimA
to denote the affine dimension of A. A k-flat is a point set A C Ed, with A = aff.A and
k = dimA.

Hyperplanes and Half-Spaces. A hyperplane h in Ed is a (d - 1)-flat, defined by the
equation Ei=, aixi + b = 0 for some values of a,, a2 ,.. ., ad. The hyperplane h separates Ed
into a right open half-space h+ , defined by Ed 1 aixi + b > 0 and a left open half-space h-,
defined by E1 aixi- + b < 0. We use h* to refer to either one of these two open half-spaces,
and h* to refer to either one of the closed half-spaces. We use the notation Hd to denote
the collection of all hyperplanes in Ed, the notation H; to denote all the open half-spaces
in Ed, and the notation /1 to denote all the closed half-spaces in Ed.

General Position Assumption. In computational geometry it is usually assumed that
the points are in general position. This means that all points are distinct, no three points
are collinear, no four points are coplanar, and in general, no k + I points lie in the same
(k- 1)-flat, for k > 1. This is not a restrictive assumption, as small random perturbations
assure the above conditions with probability 1. Similarly, hyperplanes are assumed to be
in general position, that is, the intersection of any r < d hyperplanes in Ed is a k-flat of
dimension k = d - r.

Convex Set, Convex Hull, and k-Set. A domain A C Ed is convex if for any two
points x, y E A, the line segment between x and y is entirely contained in A. The convex
hull of a point set A is the boundary of the minimal convex domain in Ed containing A.
A k-set of a point set A is any subset B C A of cardiriality JBI = k, such that there is a
hyperplane h, separating B from A - B, that is, B = A n h*.

Polyhedral Sets and Polytopes. A polyhedral set is the intersection of a inote nl lumber
of closed half-spaces, and a polytope is a bounded polyhedral set. A face of a polyhedral
set P is the intersection of P with one or more of the hyperplanes defining it. Vertices,
edges, and facets of a polyhedral set of dimension d are faces of affine dimensions 0. 1, and
d- 1, respectively.

Complex. A complex is a collection of polyhedral sets, such that every face of a polyhedral
set in the complex is also in the complex, and the intersection of two polyhedral sets in
the complex is a face shared by each of them.

Simplex and Triangulation. A k-simplex in Ed (for k < d) is the convex hull of k + I
affinely independent points. Any r-dimensional face of a k,-simplex is an r-simplex. When
the dimension of the k-simplex is not important, we refer to it as just a simplex. A
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triangulation A(C) of a complex C is a refinement of C into simplicial regions, such that
each polyhedral set of dimension k in A(C) is a k-simplex.

Arrangement of Hyperplanes. For a collection 11 of 7? hyperplanes in Ed, the arrange-
ment of H, .A(H), is the complex generated by the cells defined by the hyperplanes of H.
For representing arrangements, we usually keep lists of polyhedral regions and neighbor-
hood relations. For d > 0 and n > 0, we define Dd(n) to be k= ) if d < n and 2"
otherwise. For a collection H of n hyperplanes in general position in Ed, the arrangement
A(H) has 'd(n) cells. Furthermore, if h is any other hyperplane in Ed, then the number
of cells in the arrangement A(H) intersected by h is at most 4 dai(n).

Point Hyperplane Duality. Points in Ed can be transformed to hyperplanes in Hd and
vice-versa. The most common of these transformations, lough transformation, maps a
point (a,, a2, ... ,ad) in Ed to the hyperplane _k 1 aix, + = 0 in Hd, and conversely.
The duality relationship between points and hyperplanes allows a problem ini the points
space to be solved by first transforming the points into the hyperplanes domain, and then
solving a related problem in the dual space. Similarly, in the other direction, problems on
hyperplanes can be transformed into related problems on points.

Point Location Problem. Given an underlying partition of the space into regions (e.g.
Voronoi diagrams, grids, o. arrangements of hyperplanes), the point location problem is to
identify the region in which a query point falls.

3 Range Spaces and Range Queries

In this section we formally define the notions of range space and range query and present
some properties of range spaces. We relate these notions and properties to range queries
in computational geometry.

We first define the notion of a range space. The following definition is from Haussler
& Welzl [251 and is based on the pioneering work by Vapnik & Chervonenkis [30].

Definition 1 A range space T is a pair (V, IZ), where V is a set and 1Z is a set of subsets
of V. Members of V are called elements or points of T and members of 1Z are called ranges
of T. The range space T is finite if V is finite.

In the domain of computational geometry, we usually use the range space T = (Ed, ?),
where elements of T are points in the d-dimensional Euclidean space, and 1Z is some family
of regions in Ed.

We next present the definition of the Vapnik-Chervonenkis dimension of an abstract
range space. Recently, it became evident that the notion of the V-C dimension of a range
space is an important and useful parameter of the space.

Definition 2 Let T = (V, I) be a range space and let X C V be a finite set of elements
of T. We denote by [ire(X) the set of all subsets of X that can be obtained by intersecting
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X with a range of T, that is , H,(X) { Xnl : Y :E }. If II,(X) =-V_ ,then we say

that X is shattered by 1?. The Vapnik-Chervonenkis dimension of T (or simply the V-C
dimension) is the largest integer d such that there exist a subset X of V of cardinality d
that is shattered by 1R. If no such maximal d exists, we say the dimension of T is infinite.

Applying Definition 2 to range spaces in computational geometry gives some interesting
results. For example, the V-C dimension of the range space T = (Ed , H;), consisting
of all open half-spaces as ranges, is d + 1. As another example, the V-C dimension of

= (E 2 , C3 ), consisting of all triangular regions in the Euclidean plane, is 7. The latter
example can be verified by noticing that any subset of 7 points, equally spaced on the
circumference of a circle in E 2 , can be separated from the other points by drawing an
appropriate triangle that surrounds them. For 8 points in E2 , it is no longer possible to
separate any subset of them with a triangle.

We now introduce a formal definition for the notion of a range query in range spaces.
This definition is a combination of ideas from Fredman [24] and Htaussler & Welzl [25].

Definition 3 Let T = (V, R) be a range space, (S, +) be a commutative semigroup, and
f be a function f : V x R --* S. A database is a finite set X C V. A range qucry Q on
a database X C V and a range Y E 1Z is defined as Q(X, Y) = ZxCX f(x, Y), where the
sum is the semigroup sum.

The interpretation of Definition 3 in the domain of computational geometry is as follows.
A database X is a finite set of points from Ed. A range query is defined on a database X
and a range (subset) of Ed. The general outcome of a range query is considered as a value
from some commutative semigroup (,5, +). The function f maps any pair (x, Y) of a point
and a range to some element in S. The choice of the function f and the semigroup (S, +)
depends on the intended purpose of the data structure. Several examples of selecting f
and (S, +) for commonly used range queries are listed below.

" For counting the number of elements of X in the range Y, we define f(x, 1") to be I
if x is in range Y and 0 otherwise. We choose (S, +) to be (Z, +), the integers with
the usual addition operation

" For reporting the elements of X in the range Y, we define f(x, Y) to be {x} if .r
is in range Y and 0 otherwise. We choose (S, +) to be (2 X, U), the collection of all
subsets of X with the set union operation.

" For checking whether there exists an element of X in the range Y, we define f(X, 1")
to be I if x is in range Y and 0 otherwise. We choose (S, +) to be ({0, 11 ,V).

" For checking whether all the elements of X are in the range V, we define f(x.. V) to
be I if x is in range V and 0 otherwise. We choose (S, +) to be ({0, 1} ,A).

" For computing the minimal value of some real function g(.r, V) over all eleients of
X and the range Y, we (]efine f(.r, V) -= q(x., 1). 'e choose (,;, +) to he (R. min).
thu reals with the niinimum operation.
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The definition of range queries is rather general; all the types of range queries mentioned
in the introduction are special cases of Definition 3. For all these range queries we use
the range space 'T = (Ed, 7Z) mentioned above. The ranges 7Z of T can be chosen as
half-spaces defined by hyperplanes in Ed, hyperrectangular (orthogonal) regions defined
by 2d real numbers, hyperspherical regions defined by their center point in Ed and their
radius, simplicial regions defined by d + 1 points in Ed, and polyhedral regions defined by
a finite collection of hyperplanes in Ed.

In the rest of the paper, we restrict ourselves to half-space and simplex queries, and
comment on how some of the results can be extended to other ranges. As was mentioned
in the introduction, some range queries can be reduced to half-space queries, and thus
half-space queries constitute a rather general class of range queries.

4 Random Sampling

In this section, we discuss the technique of randomly sampling the database of points to
approximate the number of points in a query range. The usefulness of random sampling
methods in computational geometry has been recently demonstrated by Clarkson for a
variety of problems (see [11, 12, 13, 14]). Random sampling for range queries was also
used by Ilaussler & Welzl in [25].

The main idea behind the use of random sampling is that a sample may give useful
approximate information about the sampled set. For example, consider the half-space
counting problem on a database X of n points in Ed. When a query half-space h* from H;
is introduced, we can pick a sample Z C X consisting of n independently drawn points
from the n database points. The idea is that the fraction of the m sample points that fall
in the query range h* is a good approximation for the fraction of the points of X that lie
in the half-space h*. Of course, the quality of the approximation improves as the size of
the sample set Z increases.

To make the analysis simpler, we assume that m << n, that is, we pick a small fraction
of the points of X. Suppose that r out of the n points of X lie in the range h*, and define
p = r/n. The probability that a randomly picked point from X falls in the range h*
is thus p. We define the random variable W to be the number of points of the random
sample Z that fall in the range h*. Since the m sample points are picked independently,
and because we assume that m << n, the random variable IV has a binomial distribution
with probability p. The expected value of VV is It = mp = mr/n and the variance is
012 = mp(1 - p) = mr(n - r)/n 2 . Chebychev's inequality then gives us

Pr {W mr- > k} < mP( P)

or equivalently that

Pr W - r > < M nP)

fl M I I I II ] i



We can now get a bound for the probability that the fraction W/rn is an estimate of r/n.
to within an accuracy of e

Pr 1 I- : I >1 4f 2m

The interpretation of this inequality is that for a sample of size m > 1/(4c2 6), the fraction
Wim approximates the fraction r/n to within an accuracy of c, with probability at least
1-6. Notice that the analysis is not limited to half-space counting queries; it applies to any
range counting query in any range space, provided that we pick the random sample anew
with every query. This discussion and analysis give rise to a data structure for approximate
range counting that achieves 0(1) query time (actually 0(m) query time, but we assume
that m is a constant), and uses O(n) storage to store the n database points. There is no
preprocessing required, and thus the preprocessing time for such a data structure is also
0(1). The main drawback of this data structure is that we have to pick a new random
sample for each query. We would prefer to have the random sample picked once, and use
the same sample to approximate successive range queries.

The problem of using one random sample for approximating several range queries has
been studied in Statistics. Vapnik & Chervonenkis in [30] derived general conditions,
under which several probabilities can be uniformly estimated using one random sample.
The following definition of an E-approximation was introduced by Vapnik & Chervonenkis.

Definition 4 Let T = (V, RZ) be a range space and let X be a database. For any 0 < e < 1
and Z C X, we say that Z is an c-approximation of X (for 1?), if for all Y E 7? we have

lXnYl _znYI .

lxi Iz -
Vapnik & Chervonenkis also showed that -approximations can be constructed using

random samples. They provided an upper bound on the size of a random sample needed to
construct an c-approximation of database X with probability at least 1 - 6, for any range
space with V-C dimension d. More precisely, they proved that if T = (V,JZ) is a range
space of V-C dimension d, X is a database, and c and 6 are real numbers, 0 < C, 6 < 1, then
a random sample Z of X of size m will be an c-approximation of X for 1? with probability
at least 1 - 6, provided

n >- d I

for some positive real constant c.

From the result of Vapnik & Chervonenkis, it follows that for any database X, there is
an c-approximation Z of size at most (c/c 2 )(dlg(d/c)) + 1, which is independent of the size
of X. For example, if X is a set of points in E2 , then there exists a 0.01-approximation Z for
half-plane range queries, such that IZI = 2,525,039. Similarly, there are c-approximations
of 0(1) size for all the range queries discussed in the introduction.

m .n I IIli 8



These ideas can be used to construct a data structure for range queries, that achieves
0(1) query time and uses only 0(1) storage. Furthermore, the preprocessing, which in-
volves obtaining an c-approximation by randomly sampling the database, can also be done
in 0(1) expected time. This data structure, however, can only support approximate so-
lutions for range queries. In addition, it can only be used for range counting queries and
not for other kinds of queries (like reporting or minimizing). Finally, although the sample
is of constant size, for most range spaces, the constants are quite large.

1'he technique of random sampling can be also employed to obtain data structures
that enable exact solutions to range queries. This was demonstrated by Clarkson [12].
who used random sampling to construct a search-tree based data structure for the point
location problem in Ed. Another use of random sampling was later demonstrated by
Haussler & Welzl in [25], to construct a space-partition-tree based data structure for half-
space and simplicial range queries. Their scheme, which we describe in Section 6, uses the
notion of an c-net, which is related to the notion of an c-approximation o' 130].

Definition 5 Let T = (V,1Z) be a range space, X a database, and 0 < c < 1. Then Rx.,
denotes the set of all Y E 1Z that contain strictly more than c JX I points from X, that is,
IX n Y/ IXI > c. A subset Z of X is an c-net of X (for RZ) if Z contains a point in each
Y E lx,,.

It is easily seen that every c-approximation of X is also an c-net of X. The converse,
however, is not true. In general, the size of an c-net can be much smaller then the size of
an c-approximation. Haussler & Welzl showed that c-nets can also be constructed using
random sampling. They provided an upper bound on the size of a random sample needed
to construct an c-net of database X with probability at least 1 - 6, for any range space
with V-C dimension d. The random sample Z should be formed by m independent draws
from X, where

m>max{ lg(), •dg (8d)}

From this discussion it follows that for any database X, there is an c-net Z of size at
most (8d/c) lg(8d/c). Notice that an (-net of X is required to be a subset of Y. Thus. for
example, for any database X in Ed and for half-spaces as ranges, any 0-net must contain
all the extreme points of X. However, if we lift the requirement that the points of the
c-net are a subset of X, there always exist d + 1 points in Ed that contain X in the convex
domain defined by them. These points, then, would constitute a 0-net of X of size d + 1.

5 Search-Tree Tables

In this section, we describe the method of search-tree tables for range queries and demon-
strate its use. A search-tree table is the underlying data structure of many algorithms
that achieve polylogarithmic search time. This search time usually comes at the expense
of polynornially large storage.

9



The main idea behind the search-tree tables method is that for a finite set of points
(a database) and for certain types of range queries, there are only polynomially many
possible solutions. Therefore, for certain kinds of range queries on a given datab,se,
one can initially store all the poszole solutions in a table, and when a query range is
introduced, the appropriate entry in the table (an be located. The organization of t hese
tables is usually based on search trees, which enables achieving polylogarithnfic search

time. The storage required by these data structures is polynominal in n, the size of the
database. The preprocessing time is usually also polynomial in n.

In order to reduce the amount of storage, some algorithms, based on search-trec tables,
do not store entire solutions in table entries. Rather, table entries contain partial informa-
tion about the solution and pointers for further search in the table. These data structures,
achieving smaller storage, are more appropriate for range reporting queries than for range
counting queries. Recall that for range reporting queries, the search time is only one corn-
ponent of the query time, with the other component being the report time. The data
structures described in this section will be analyzed in terms of their search time, ignoring
the report time component. Recen.Yy, Chazelle [61 proposed a technique called filtering
search, that reduces the total query time of certain range reporting queries, by attempting
to match the search time and report time components of the query time.

The simplest example of search-tree tables is probably 1-dimensional binary search
trees. The typical range query in 1 dimension is to determine the keys in some interval.
Balanced binary search trees achieve logarithmic search time and require linear storage.
Binary search trees do not contain entire solutions to range queries in their leaves, but
still enable retrieving intervals. Threaded binary search trees are a more typical example
of a data structure that stores partial solutions and pointers in leaves. There are several
generalizations of the 1-dimensional search trees to higher dimensions. Multidimensional
search trees were investigated mainly in the context of database queries (see [2, 3, 4, 19,
28, 29]). These data structures support orthogonal range queries in d dimensions. The
storage is typically O(n lgd- it) with a search time of O(Igd n). Notice, however, that these
multidimensional search trees are dynamic, that is, they support insertions and deletions
as well as orthogonal range queries.

The more general problem of half-space range queries has a natural representation as a
search problem. There is a duality relationship between half-space range queries and point
location problems. Using the Hough transformation (see Section 2), a set X of n points
in Ed is mapped to a collection Hx of n hyperplanes from ld. The problem of reporting
the points of X that lie above some query hyperplane h transforms to the problem of
reporting the hyperplanes of Hx that lie above the dual point Ph of h. If the arrangement
A(Hx) of the hyperplanes Hx is given, then the latter problem can be solved by locating
the cell in the arrangement A(IIx) containing Ph, thereby reducing the half-space range
query problem to the point location problem.

The above reduction motivates a data structure for half-space range queries that rep-
resents the n database points by storing the arrangement of the dual n hyperplanes. The
preprocessing involves computing the arrangement of the n dual !'yperplanes and storing
the solutions at the arrangement's cells. Each cell can contain a list (or a count) of the
hypcrplanes above and below it. This scheme requires O(nd+ ) storage for a data sl md uri
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for half-space range queries in Ed, since there are 0(n ' ) cells in a general arrangement of n
hyperplanes in Ed and each cell stores 0(n) information. An alternative data structure can
be designed, where each cell only contains the "name" of a hyperplane bounding it from
above (defining a facet of the cell), and a pointer to the cell on the other side of that facet.
In this data structure it is required to first locate the cell containing the query point, and
then to traverse a list of cells in the arrangement and report the appropriate hyperplanes.
The search time accounts only for the time it takes to locate the first cell, while the time
it takes to traverse the list is considered part of the report time. This scheme reduces the
storage requirement to O(nd).

This discussion shows that efficient solutions for the point location problem in Ed also
yield efficient solutions for half-space queries. In 2 dimensions, the point location problem
can be solved in O(lg n) time by searching a planar subdivision tree (Kirkpatrick [261).
This forms the basis of the 0(nS)-storage, O(Ign)-search-time data structure for half-
plane queries described by Edelsbrunner & Kirkpatrick [20]. This scheme can be modified
as described above to use only 0(n 2 ) storage. However, an optimal 0(n)-storage, O(lg n)-
search-time data structure for the half-plane reporting problem was obtained by Chazelle,
Guibas, & Lee [9]. Their method, however, only solves the half-plane reporting problem
and is not extendible to other ranges in the plane.

A variety of other data structures for range queries, based on search-tree tables, ap-
pear in the literature. An 0(n(lg n)8 (lg Ig n)4)-storage, O(lg n)-search-time data structure
for the half-space reporting problem in E3 was presented by Chazelle & Preparata in [10].
Their method again reduces the half-space range problem to a 3-dimensional point location
problem. The small storage in their scheme is achieved by bounding the number of k-sets
of an arbitrary point set in E'. Improving the bound on the number of k-sets in E3 , Clark-
son [14] was able to improve the storage requirement for the half-space reporting problem
in E3 to 0(n(lgn)2 lglgn), while retaining the O(Ign) search time. In [20] Edelsbrun-
ner, Kirkpatrick, and Maurer demonstrated an 0(n')-storage, O(lg n)-search-time data
structure for triangular range queries in the plane.

A general data structure for the half-space reporting problem in d-dimensions, based
on search-tree tables, was given by Cole & Yap [16]. We illustrate their technique in E2 ,
and comment about its generalization to Ed. Given a database X of n points in the plane,
we draw a vertical line L to the right of the points in X. For any pair of points p, q from
X we compute the intersection point of the line through p and q with the base line L.
These (n) intersection points divide L into (n) + 1 intervals with the following property.
Consider rotating a test line P from slope -co to slope oo about some fixed point r on
L. This test line P meet the points of X in some order, which we associate with the
intersection point r. Te. the orders of the points of X associated with any two points
in a given interval on . the same. This leads to the following data structure. With
each of the (n) + 1 intarvals ,,r L, we store the order of the points of X as seen from that
interval. These O(n2 1 inter /41s are organized in a search tree, such that for any line h in
E2 , the interval in which h intersects L can be found in O(lg n) time. When given a query
half-plane h*, we find the intersection interval of h with L and scan the list of points of X,
stored with that interval, until we meet the first point of X that lies below h. This gives
an 0(n3 )-storage, O(lg n)-search-time data structure for the half-plane reporting problem.
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(Actually, the storage can be reduced to 0(n2 ).) This data structure can be generalized
to handle half-space reporting problems for Ed in 0(2dlgn) search time and 0(dn2 - ' )

storage.

An improved data structure for half-space range queries, based on search-tree tables,
is obtained from a new scheme of searching arrangements of hyperplanes in Ed, presented
by Clarkson [12]. The data structure for the point location problem in an arrangement of
hyperplanes is constructed using random sampling. The resulting algorithm achieves an
O(lg n) query search time, and uses O(nd+,) storage. The probabilistic construction of the
data structure takes O(nd+c) expected time. We next describe the essential ideas of the
arrangement-searching algorithm.

In order to search the arrangement A(H) of a collection H of n hyperplanes, we use the
triangulation A(A(H)), which is a recursive refinement of A(H) into simplicial regions.
Rather then finding a cell C of A(H) containing the point, we find a simplex S which is a
refinement of C. We search A(A(H)) by first searching A(A(J)), the triangulation of the
arrangement of a small subset J of H. After locating the simplex S of A(A(J)) containing
the query point, we find the subset H* of the hyperplanes of H that intersect the simplex S,
and continue the search with these hyperplanes. (This is a generalization of the scheme for
point location in the plane presented by Kirkpatrick [26].) The construction of Clarkson's
search tree is probabilistic. At each level of the tree, we pick a random sample of the
current set of hyperplanes. For each simplex in the triangulation, we determine the set of
hyperplanes intersecting it, and recursively build a search tree for that simplex with these
hyperplanes. Clarkson showed that samples that generate a tree of logarithmic depth can
be each found in 0(1) expected time.

A deterministic construction of the search-tree-table based data structure of Clarkson
for the point location problem was recently presented by Chazelle & Friedman [8]. This
data structure achieves an O(lg n) search time, uses O(nd) storage, and can be deterministi-
cally constructed in O(n 2 +d(d+ 3 )/ 2 / lg n) time. Recently, a new algorithm for the half-space
reporting problem in Ed was discovered by Clarkson [14]. This algorithm employs another
data structure, based on search-tree tables, that achieves an O(lg n) search time, and uses
O(nld/2]+c) expected storage.

6 Space-Partition Trees

In this section, we describe the method of space-partition trees for range queries and
demonstrate its use. A space-partition tree is the underlying data structure of many
algorithms that use linear storage and achieve sublinear query time. The sublinear query
time is achieved by using divide and conquer to search only part of the space-partition
tree.

Space-partition trees can be informally described as follows. Given a database X of the
range space T = (V, 1?), we construct a rooted tree P with IXI leaves and with a bounded
number of children per node. Each node p of the I ree P represents some region rcg(p) of
the space. The root represents the whole space and the region represented by each internal
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node in the tree is the disjoint union of the regions represented by its children. Thus, at
every level of the tree P, the disjoint union of the regions represented by all the nodes at
that level is the whole space. With every node p of P, we associate a set set(p) of points
of X. This set is simply the set of points of X that fall in the region represented by p
(that is, set(p) = X n reg(p)). This guarantees that for an internal node p with children

PIP 2 ,...,pk, we have set(p) = set(pl)Uset(p2)U... Uset(pk), where the union is disjoint.
This recursive partitioning the space is terminated when the set associated with a leaf p
is a singleton, that is, set(p) = {}, for some x E X. In other words, the bottom level
regions each contain a single element of X.

Space-partition trees can be used for solving range counting problems on a range space
T = (V i). Suppose that P is a space-partition tree for a database X of T. With any
node p of P, we store the number of points in set(p). To solve a range counting query for
a range Y E 1?., we search P using the following divide and conquer scheme, starting at
the root.

1. If reg(p) C Y, add Iset(p)l to the count and do not continue with p's children.

2. If reg(p) fl Y = @, do not change the count and do not continue with p's children.

3. If reg(p) crosses Y, that is, neither reg(p) C Y nor reg(p) n Y = 0, then continue the
query recursively with p's children.

The usefulness of space-partition trees for range queries depends on a number of factors.
First, we need to guarantee that a space-partition tree for range counting queries requires
only linear storage, by storing only 0(1) information per node and having the number of
nodes be linear in n. In particular, we do not need to store set(p) itself at node p. Second,
note that the query time depends on the number of nodes visited in the search; thus, to
achieve sublinear query time for a range Y, we need to guarantee that only a fraction of
the children of each node p are explored, that is, that the range Y crosses only a fraction
of the regions represented by p's children. This property, however, does not have to hold
for every single node of P; it is enough to guarantee it for all nodes of depth greater than
or equal to some constant r. Third, for a node p and a range Y, we need to be able to
determine quickly (in 0(1) time) whether reg(p) is a subset of Y, whether reg(p) and Y
are disjoint, or whether Y crosses reg(p).

The issues discussed above restrict the types of ranges for which range queries can
be solved efficiently using space-partition trees. We described above how to solve range
counting queries using a constant amount of information per node. Range reporting queries
can be solved similarly by recursively visiting all the descendants of a node p for which
reg(p) is fully contained in the query range Y. The query time, however, for range reporting
queries has the additional term of k, the number of points reported. The other variants of
range queries mentioned in Section 3 can be solved similarly. We also observe that space-
partition trees can only be used for range spaces of finite V-C dimension. In range spaces
with infinite V-C dimension, there are arbitrarily large finite sets of points (databases)
that do not have good space-partition trees. This observation is based on the fact that
in range spaces with infinite V-C dimension there is no recursive partition of the space
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that guarantees that arbitrary ranges cross only a small fraction of the partition's regions.
Welzi [311 recently proved that the converse also holds, specifically, that range spaces with

finite V-C dimension have good partition trees. Finally, we comment that the problem of

determining the relationship between an arbitrary range Y and the region represented by
a node p can be quite difficult in general.

We now present a variety of space-partition trees that were developed for answering
certain kinds of range queries. The simplest space-partition trees for range queries are
probably binary search trees. In 1 dimension, half-spaces, orthogonal ranges, circular
ranges, simplex, and polyhedral range, all reduce to intervals. Queries of this type can be
answered by exploring at most 1 of the 2 children of every node, leading to an O(lg n) query
time with linear storage, achieved by a number of balanced binary search trees schemes.

One generalization of binary search trees to d > 2 dimensions are quad trees (see [5, 22,
28]). These trees recursively partition a region in Ed into 2 d subregions by bisecting the
region along the d respective dimensions. It is important to note that quad trees do not

necessarily give good space-partition trees for an arbitrary point set X in Ed. Whenever
good space-partition quad trees exist, however, they are quite efficient for orthogonal
range queries, achieving 0(n11/d) query time with linear storage. The O(n- 1 /d) query
time follows from the observation that orthogonal ranges cross at most 2 d

- of the 2 d

subregions represented by a quad-tree node.

The first construction of space-partition trees for half-plane and polygonal range queries
in E 2 was presented by Willard [32]. Willard described a J-way polygon tree, which is a
recursive partition of the plane by J lines into 2J polygonal regions, each containing
approximately n/(2J) of the n database points. Willard's polygon tree has the property
that any line in the plane intersects (crosses) at most J+ 1 of the 2J subregions represented
by any node in the space-partition tree. In addition, for any polygon in the plane, there
is some depth r of the tree, such that the polygon intersects at most J + 1 of the 2J
subregions represented by any node at depth greater than or equal to r. These properties
lead to an Q(nlo2J(J+l)) query time with linear storage for half-plane and polygonal range
queries. This query time is minimized for J = 3, for which the 3-way polygon tree achieves
0(nI1,4) = 0(n ° '77 4 ) query time. The preprocessing time for constructing a 3-way polygon
tree is 0(n 2).

Extending Willard's ideas for the 3-dimensional case, Yao [35] showed that a space-
partition tree can be constructed for any point set in E 3 . Yao demonstrated an octant-trfr#
for half-space and polyhedral range queries that uses linear storage and has an ()
query time. The octant-tree is a recursive partition of a region in E3 by 3 planes into
8 subregions of dimension 3 and a few other subregions of lower dimension. Each of
the 8 subregions of dimension 3 is guaranteed to contain at least 1/24 of the points of
the parent region. Any plane in E 3 intersects at most 7 of the 8 subregion- represented
by a node in the octant-tree. When the lower dimensional subregions are also taken
into account, the query time is shown to be O(n°'9s). Following Yao's result, Dobkin,
Edelsbrunner, and Yao [18] showed that using the same ideas, the query time can be
improved to O(no'sg g7 ) = 0(n 936 ). The preprocessing time of Yao's approach was 0(n 4 ),
which was later improved to 0(n 2 lg'°n) by Cole, Sharir, and Yap [15].
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The first general scheme of space-partition trees for any dimensional Euclidean space
E' was presented by Yao & Yao in [36]. They treated a variety of range queries and some
other optimization queries under one class of geometric generic queries, and demonstrate a
general scheme of solving generic queries in linear storage and sublinear query time. They
showed that any finite point set X in Ed has a regular space-partition tree P of degree 2 d

with the following property. For any internal node p of P and any child q of p we have

iset(q)] < (1/2 d) Iset(p)j, and any hyperplane h in Ed intersects at most 2 d- subregions
of children of p. This leads to a linear storage, sublinear query-time scheme for half-space
range queries in any dimensional Euclidean space. The query time of Yao & Yao's scheme
is O(n l g(2d -1)/d) for half-space and polyhedral range queries in Ed.

Unfortunately, Yao & Yao's scheme is not constructive. But, although Yao & Yao do
not provide a practical scheme for constructing the balanced space-partition tree in Ed,

their result is of primary importance, as it demonstrates that such balanced space-partition
trees exist for any finite point set in Ed.

The best known query-time bounds for linear-storage data structures for half-space and
simplicial range counting queries in E-, for d > 2, were presented by Haussler & Welzl
[25]. (A better query-time for E2 was recently given by Welzl [31].) Their construction of
space-partition trees uses random sampling and is based on the notion of c-nets introduced
in Section 3. Their scheme achieves O(n") query time, for a > d(d-1) . The construction

of the space-partition tree is probabilistic and takes O(n lg n) expected time.

The partition trees of Haussler & Welzl, called (f, v)-partition trees, are a variant of
the space-partition trees described above. The main difference is that in (E,v)-partition
trees, the region represented by an internal node p is not divided into subregions containing
approximately the same number of points. Rather, the subdivision of the region reg(p)
in (e, v)-partition trees is determined as follows. A subset points(p) of v > d points from
set(p) is selected, and the O(vd) hyperplanes, each passing through exactly d of these v
points, are computed. The arrangement of these O(vd) hyperplanes is determined and
stored at node p as arr(p). For each cell f in arr(p) with f n set(p) 0, there is a child pj
with reg(pf) = f n reg(p). When the number of points in set(p) is at most v, the recursive
refinement terminates, that is, p is a leaf node.

In an (E, v)-partition tree, the subdivision of the region represented by an internal node
p depends on the selection of the v points from set(p). A desired subdivision has the
following property: for any hyperplane h in Ed, the total number of points of set(p) in all
cells of arr(p) intersected by h, is at most f Iset(p)1. This condition is immediately satisfied
for c = 1, but we are interested in smaller values of c. Intuitively, the smaller the value of
c is, the smaller the number of children of an internal node p that need be explored. The

existence of (,, v)-partition trees for any value of 0 < f < 1 is based on the existence of
E-nets for some specific ranges (namely, (d + 1)-corridors) of X.

The bounds of [25] are not optimal. Recently, it was shown by Welzl [31] that half-
plane and triangular range queries in E' can be solved with linear storage and O (V/'T Alg3 n)
query time. Welzl's algorithm also employs a space-partition tree based on c-nets. These
space-time bounds for triangular ranges are optimal up to a polylog factor (see Section 7
for corresponding lower bounds).
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7 Lower Bounds

In this section we present some lower bounds on the query time and the storage require-
ments of various types of range queries.

Dynamic Data Structures for Orthogonal Range Queries. Investigating the com-
plexity of dynamic data structures that support range queries as well as insertion and
deletion, Fredman [231 presented some lower bounds for orthogonal range queries. He
showed that the time complexity of performing a sequence of n intermixed manipulations
with d-dimensional keys is fQ(n lgd n). This lower bound is tight for dynamic data structures
for orthogonal range queries as was shown by Fredman & Bentley [31 and by Lueker [29].

Dynamic Data Structures for Half-plane, Circular, and Parabolic Ranges in E2 .
Generalizing the above lower bounds to half-plane ranges, circular ranges, and parabolic
ranges, Fredman showed in [24] an Q(n4.'3) lower bound on the worst case time complexity
of processing a sequence of n manipulations. These bounds show that the orthogonal range
queries are intrinsically much easier the the latter range queries.

Static Data Structures for Circular Ranges in E2 and Half-Space Ranges in E3.
In [34] Yao showed that any static data structure for circular ranges in E2 , that uses 0(n)
storage, must have an £(n') query time, for some f > 0. Since circular range queries in E 2

can be reduced to half-space range queries in E 3 (see Yao [35]), the same bound applies
for half-space range queries in E 3 .

Static Data Structures for Simplex Counting Queries. In [71 Chazelle proved a
family of lower bounds involving the query time and the storage complexities of simplex
counting range queries. For dimension d = 2, if the storage complexity of an algorithm
is 0(m), then the query time complexity is shown to be Q(n/Vl/i). More generally, in
dimension d > 2, the query time complexity is Q((n/ Ig n)/ml/d). These bounds hold with
high probability for a random point set, and are thus valid in the worst case as well as in
the average case.

These bounds imply, for instance, that if the storage is restricted to be linear, then the
query time for d = 2 is 1l(v/i). For d > 2 dimensions, the query time is I2(nl-/d/lgn).
On the other hand, for the query time to be polylogarithmic in n, the storage has to be
f2(n d- ,) in Ed, for d > 2. It is important to emphasize that these bounds are only for the
simplex counting problem.

Static Data Structures for Simplex Reporting Queries. The bounds for the simplex
reporting problem are different than those for the simplex counting problem, since the
query time has two components, the search time and the report time. For a slightly
weaker machine model, Chazelle [7] proved that if the query time is O(gb n + k), where
k is the number of points reported and b > 1, then the storage requirement is Q(n d-),

where d is the dimension of the space.

This lower bound is quite surprising, since it implies that in E2 , a polylogarithmiC
query time for the simplex "eporting problem requires f2(n 2 - ) storage. For the half-plane
reporting problem, however, there is an algorithm by Chazelle, Guibas, and Lee [91 that,
uses 0(n) storage and its query time is O(lg n + k). This demonstrates that simplex range
queries are intrinsically harder than half-space range queries.
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8 Conclusions

In this section we summarize the three methods for range queries and conclude with some
possible research directions.

Summary of Methods. The three methods, random sampling, search-tree tables, and
space-partition trees have different tradeoffs between query time, storage requirement,
preprocessing, and their applicability to different types of range queries. When only ap-
proximate solutions are required, random sampling seems to be the method of choice.
Furthermore, random sampling applies to a large variety of ranges, with relatively little
preprocessing. Both search-tree tables and space-partition trees can be used for exact
counting and reporting queries. Search-tree tables, when applicable, are a better choice
for reporting queries, since their search time is polylogarithmic. Space-partition trees,
however, achieve linear storage and sublinear query time, which may be the desired trade-
off for a variety of range counting queries. The following table summarizes the important
characteristics of the three methods. The constants in the table satisfy a, b, c, p, q > 1 and
0< <1.

Random Search-Tree Space-Partition
Sampling Tables Trees

Query time 0(1) O(lga n) O(n0 )
Storage 0(1) 0(nb) O(n)
Preprocessing 0(1) O(nP) O(nQ)

Exact answer no yes yes
Range spaces finite V-C dimension 0(nC) solutions finite V-C dimension
Query type counting counting/reporting counting/reporting

The three methods are not completely unrelated. Both search-tree tables and space-
partition trees can be considered as possible generalizations of 1-dimensional binary trees.
A 1-dimensional binary tree can be thought of as a search tree, with solutions stored at its
leaves, which is the underlying scheme of search-tree tables. Alternatively, a 1-dimensional
binary tree can be thought of as a recursive partition of the 1-dimensional space into two
half spaces, which is the underlying scheme of space-partition trees. In addition, it is
sometimes possible to combine two methods, as was demonstrated for random sampling
and search-tree tables, and for random sampling and space-partition trees. In these cases,
random sampling was used in the construction of the data structure but not in processing
the queries.

Tight Upper and Lower Bounds. Almost all the types of range queries mentioned in
this paper do not have matching upper and lower bounds. The bounds are tight only for
orthogonal range queries. Tighter bounds are certainly of both theoretical and practical
significance.

Dynamic Data Structures for Range Queries. With the exception of orthogonal
range queries, no optimal dynamic data structures are known for general range queries
in d dimensions. Since dynamic data structures are of primary significance, the design of
efficient dynamic data structures for range queries is an important direction of research.
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Reductions of Range Queries. As was mentioned in the introduction, some types of
range queries can be reduced to others. These reductions usually involve transformations
of objects from a d-dimensional Euclidean space to an Euclidean space of higher dimension.
Other such reductions and relations between different types of ranges are of interest.
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