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1. INTRODUCTION

The aim of this report is to present new elements in a rigorous least-
squares adjustment of geodetic quantities. Although the initial emphasis was on
the satellite-to satellite tracking (SST), the adjustment aspects developed
during the course of the study are broad enough to be applicable to a variety of
problems in physical sciences. The body of the report is thus reserved for the
nonlinear least-squares method with or without constraints, whereas the SST
model and its adjustment are described in Appendix A. The constraints are
considered to be in general nonlinear; linear constraints joined to a linear
model are presented merely as a special case. A relatively new category of

constraints, termed inequality constraints, is treated in Appendix B.

The SST model, when considered without any approximations or deformations,
such as the smoothing and differentiation of the original observations, appears
to have the form of the general adjustment model. The latter usually features
the observables and the parameters interwoven in nonlinear relationships.
However, the observables in the SST model have special characteristics allowing
for a substantial simplification. In particular, they are present in linear
combinations involving merely two observables per equation. A simple linear
transformation of the observables, which affects the original observations, the
adjusted observations, and the residuals in the same fashion, changes the
general model into the parametric adjustment model. The latter is treated here
in a nonlinear form. One can thus avoid the approximations caused by the
truncation of second- and higher-order terms in the model's Taylor-series
expansion, as is done in the standard linearized approach. The transformation
of ohbservables leading to the parametric model can be useful not only in view of
the rigorous least-squares adjustment of the SST, but in the treatment of other

kinds of geodetic data as well.

The above transformation has allowed the analysis to shift focus from the
general adjustment model, linear or nonlinear, to the nonlinear parametric
adjustment model. The linear version of the latter follows as a simple special
case; it has been thoroughly analyzed and extensively used over the past several
decades. The least -squares adjustment of the nonlinear parametric model is the
subject of Chapter 2, summarizing the recent development contained in the AFGL

report [Blaha, 1989). This development is based on analogies between




adjustments and geometry which have led to the conception of an isomorphic

geometrical setup.

In some adjustment problems the parametric model is subject to constraints,
i.e., conditions to be fulfilled by its parameters. As an illustration related
to the SST, une notices that althcough equation (2) in Appendix A does not
contain any constraints among the parameters, certain types of constraints may
be needed in conjunction with the geopotential representation used by the model,
and with other factors. In an early treatment of the SST, Schwarz [1970]
considers the gravity field split into the reference field described by an (N.N)
spherical-harmonic expansion, and the residual field described by density-layer
parameters. Because of the initial stipulation that the density layer solution
should not affect any of the (N*I)2 coefficients in the underlying spherical-
harmonic model, he concludes that (N+1)2 constraints should be included, at
least in theory. Clearly, this notion is not tied only to the density-layer
parameters since similar reasoning applies also with regard to other localized

representations of the residual gravity field.

In analogy to an adjustment model jitself. a set of constraints can also be
linear or nonlinear. A constrained least-squares adjustment, where the emphasis
is on nonlinear constraints, is developed in Chapter 3 herein. This endeavor is
again based on the isomorphism between adjustments and geometry. The geometric
derivations leading to the final adjustment formulas are carried out with the
aid of tensor structure and notation. It should be mentioned that all the
constraints considered so far, whether linear or nonlinear, are the familiar

equality constraints.

However, recent years have witnessed an increasing interest in applications
of linear inequality constraints, which can be used with advantage in the
problems where the smoothing effect of the standard least-squares method is
undesirable. The concept of inequality constraints is instrumental in reducing
the solution space to a band, as is described by Fritsch [1987] in conjunction
with a linear parametric adjustment model. This, in turn, allows one to
minimize the maximum error and thus to accommodate the worst case. Appendix B
herein presents the least-squares algorithm applicable to linear models with
linear inequality constraints, which is developed using again an isomorphic

geometrical setup with tensor structure and notation.

]




2. NONLINEAR PARAMETRIC LEAST-SQUARES ADJUSTMENT

2.1 Mathematical Background

The parametric adjustment model expresses each of the observables in terms
of parameters, where the structure linking the two groups of variables is, in
general, nonlinear. The number of observables is denoted by n and the number of
parameters by u, where n must be greater than u for an adjustment to take place.

The adjustment model is written as

L2 - px? .

where La and Xa are the sets (column-vectors) of adjusted observations and
adjusted parameters, respectively. This chapter describes the resolution of a
nonl inear model through an isomorphic geometrical setup with tensor structure
and notation. Such efforts date back to [Blaha, 1984], which treats a linear or
linearized adjustment model. Later papers and reports, such as [Blaha, 1987},
contain an initial analysis of a nonlinear model. The most recent development

in this area is described in [Blaha, 1989].

In a standard adjustment approach, a nonlinear adjustment model is subject
to the Taylor series expansion based on an initial set of parametric values, Xo.
The terms in the second and higher powers of the parametric corrections are
neglected, resulting in the familiar (linearized) observation equations. 1In

matrix notation, the latter are expressed by
V=AaX+1,

where A is the design matrix, x=x2-x" is the column-vector of parametric

b is the column--vector of residuals, and L=L°-Lb is the

corrections, V=La-L
column-vector of constant terms, with L°=F(x°) representing observables
consistent with the initial set of parameters, and Lb containing the actual

observations. The linearized model is subjected to the least-squares criterion

VT PV = minimum ,

where P is the weight matrix of observations. This criterion leads to the

formation of the familiar normal equations.




If the original adjustment model is nonlinear, the resolutifon of the
linearized model does not yield the final answers. The process is usually
repeated with new, updated parameters and the corresponding changes in A and L.
However, the variance-covariance matrix of observations, I. as well as the
weight matrix P, adopted as P=2h], are constant. Thus, the matrix of normal
equations, N=ATPA. changes only due to A, and the column-vector representing
the right-hand side of normal equations, Uf«»ATPL, changes only due to A and L.
The computation of the updated parametric values through a new X reqguires the
formation and the inversion of a new N in each itcration. or a mathematically
equivalent procedure. When X becomes sufficiently close to zero the iterative
process is terminated. As its by-product, the latest matrix N‘l is adopted as

the variance-covariance matrix of adjusted parameters.

The functional relationship between the observables and the parameters
lends itself to a geometrical interpretation and treatment involving spaces and

surfaces generalized to higher dimensions. In particular. the formulation

X = <F?y . r-1.2,....n, a=1.2,...,u,

representing the parametric adjustment model, can be linked to the Gauss form of
a surface in relation to the surrounding space, where xr are the space
coordinates and u® are the surface coordinates. The Gauss form of a two-
dimensional surface (u=2) embedded in a three-dimensional flat space (n=3) is
described, together with two other forms, in Chapter 6 of [Hotine, 1969]. In
[Blaha, 1984], both the n-dimensional "observational" space and the u
dimensional "meodel" surface were considered flat. The latter was thus in
reality a hyperplane. Although the model surface is now intrinsically a curved
space, the surrounding space is again flat, and, as is shown below, jts

coordinate system is characterized by a constant metric tensor.

In denoting the n observables by xr. r-1,2.... . n, and the u unknown
a .
parameters by v , a=1,2,....,u, we can represent a nonlinear parametric

adjustment model by
8

r

X =X {u) =x_ + Ar Aua
o [4 4

r a
(1/2) naﬁ Au Au
+ (1/6) OZBT T Auﬁ Aur LN {1a)

AW = u - u , {1b)




where u: represents an initial set of parameters and x2=xr(ug) represents
the observables consistent with this set. The lower-case Roman indices range
from 1 to n, and the lower-case Greek indices range from 1 to u. Tensor

symbolism implies the summation convention over the dummy (repeating) indices.

In the geometrical context, the first equality in (la) represents the Gauss
form of a u-dimensional surface embedded in an n-dimensional space. The surface
is endowed with the coordinate system (ua}. a=1,2,..., u and is referred to as
the model surface, and the space is endowed with the coordinate system {xr).
r=1,2,....n, and is referred to as the observational space. The second equality
in (1a) is the Taylor series expansion of x° from the "initial” point P lying in
the model surface, whose model-surface coordinates are ug and whose

observational -space coordinates are xr. The notation identifying the partial
B_.r
Mg

evident. The actual observations can be thought of as describing the point Q in

derivatives at P, such as axr/auaéA;. azxr/au“au etc., is self-
the observational space, which, due to measuring errors, does not lie in the
known model surface. The task at hand consists in detecaining, from the

observed point Q, a model-surface point satisfying the least-squares criterion.

In the adjustment context, the variance-covariance and the weight matrices
of observations depend on the quality of measurements. They are independent of
the adjustment model, of the initial set of parameters, of the outcome of
observations, etc. Thus, for a given observational mode they are constant. In
the "traditiona'" identification of [Blaha, 1984]), variance-covariance matrices
correspond to associated metric tensors, and weight matrices correspond to
metric tensors. Accordingly, we represent the variance-covariance matrix of
observations by the observational-space associated metric tensor grs' and the
weight matrix of observations by the observational-space metric tensor gsr' and
state that both tensors are independent of the form of the model surface, of the

initial point P. of the observed point Q, etc., leading to the simplification

gqr = constant . (2)

One could also attribute the tensors grs and Bop to the point Q and state that
the geometrical setup must account for Q located anywhere in the observational

space. In turn, (2) implies that the observational space must be flat.

QN




If the set Gir denotes the coordinate differences between the observed
point Q and the desired model-surface point denoted P, it corresponds to the

negative residuals, and the least-squares criterion corresponds to

532 - 638 €, 6x" = minimum . (3)

The quadratic form (3) ruiresents the square of the distance between Q and ?P.
Therefore, the desired "least-squares” point P must be the foot-point of the
straight line dropped orthogonally from Q onto the model surface. We note that
if any other adjustment condition were used in lieu of the least-squares
criterion, the minimum-distance property (3) would not exist and the geometric-
tensorial treatment of the adjustment theory would probably be much more complex

if not impossible.

2.2 Summary of the Geometrical Development

A convenient approach for resolving noniinear least-squares problems
consists in using an isomorphic geometrical setup with tensor structure and
notation. Such a link is highlighted by the consideration that the least
squares criterion gives rise to a minimum distance property. Among the basic
correspondences, the number of observations. n, and the number of parameters. u,
define the dimensionality of the observational space and of the model surface,
respectively. Since the constant variance covariance matrix of observations, &.
corresponds to the associated metric tensor grs' and the weight matrix of
observations, adopted as Xﬁl, corresponds to the metric tensor G the

observational space is endowed with a coordinate system (xr) such that

rs
gsr = constant g = constant

The set Lb of actual observations corresponds to the set xg of observational-
space coordinates describing the point Q Al]l possible sets of adjusted
observations (subject to no criterion) correspand to the Gauss form of the model

surface endowed with a coordinate system (ua}:

xr = xr(ua) \ r - 1,2,.. .. n . a = 1,2,..., u

The final set of adjusted parameters. Xa, corresponds to a particular set

u® of model- surface coordinates describing the liast squares point P.  The set

H




of initial parameters, Xo. corresponds to the set ug of model-surface
coordinates describing the initial point P. The final set of parametric
corrections, X, then corresponds to Aua=ua-uz; these quantities are assumed
to be small (termed first-order). The final set of adjusted observations,

r r a .
=X (u ) of observational-space

La=F(Xa), corresponds to a particular set x
coordinates describing the least-squares point P. The initial point P is
described by these coordinates as x;:xr(uZ), reflecting its counterpart

LO:F(XO). fhe set of negative constant terms, ~L=Lb-F(Xo). corresponds to the

contravariant vector 6xr=ngx;. while the set of negative residuals,

-V:Lb~La. corresponds to the contravariant vector 5§r=xg—xr. The Initial
design matrix. A, which in standard observation equations, V=AX+L, relates the
parametric corrections to the residuals., corresponds to the design tensor
A;=axr/aua evaluated at P. 0On the other hand, the standard adjustment

approach does not have equivalents of Q; and 0; ., which form three- and

B Br

four dimensional arrays., respectively, and contain the second- and the third-

order partial derivatives of xT with respect to ua. evaluated at P.

The geometrical approach is based on a direct exploitation of the relation

S

" -r
A5 g éx =0 , (4)

where AZ represents the design tensor evaluated at the least-squares point

P, and equation (4) itself represents the orthogonality condition at P. The
outcome of the geometrical development is considered in two methods, called
geometrical and extended geometrical. 1[It is contrasted to the standard method
treating nonlinear models in a linearized form. The algorithms associated with
all three methods are presented below in the form of the first iteration, and in

the form of the second and subsequent iterations.

In tensor notation, the initial matrix of normal equations corresponds to

the model -surface metric tensor a at the initial point P, and the initial

. Ba
right-hand side of normal equations corresponds to the model-surface covariant
vector Asdx at P, where
B s
s r . r
aBa = As Byp Aa . 6xS gsr 6x

The parametric corrections stemming from the first iteration are symbolized by
(Aua), and they give rise to an updated point (P). The latter is described by

the model -surface coordinates (ua):UZ*(Aua). The quantities belonging to (P)




will likewise be written in parentheses. The parametric corrections obtained in
the second i1teration will be denoted A(Aua). and they will give rise to a new
updated point determined via (ua)+A(Aua). The notation used in conjunction with

the second iteration will be retained also for any further iterations.

Standard method. Under the assumption that both sets au® and 8x" contain

small gquantities (first-order), the first iteration in the standard method reads

S

a (Aua) = Aﬁ dxs . (5a)

Ba
representing the initial normal equations. The second and further iterations

follow the same principle:

S

8

a -
(ag, ) Alau™) = (Ag) (6x ) . (5b)

8

Geometrical method. Under the same assumption as above (both sets au” and

6xr contain small quantities), the first iteration utilizes the same formula as

its standard counterpart, namely

S

g )

However, the second and further iterations proceed according to

o (au®) = A 5x_ . (6a)

o = (8% QZa] A(au®) = (AZ) (6x ) . (6b)

representing the modified normal equations. The triply-indexed quantity Q

[(a

S
Ba’

formed by second-order partial derivatives of the observables with respect to

the parameters, is evaluated only at the initial point P.

Extended geometrical method. Although the assumption regarding au® 1s

unchanged, this method is tailored for sx" containing relatively large

quantities, for which ibhe first jteration reads

s .
Ba 8 6xs . (7a)

Compared to the geometrical method, the current algorithm is seen to utilize

s a,
(a, - st Qﬁa] {Au ) = A

second-order partial derivatives and to give rise to the modified normal
equatic .. already in its first iteration. The formula for the second and

furtr- v "terations is given as

Ba

S

Bay

8

(au’)] aad®) - (A

( ) - (x ) @ (6x ) ® y (ox ), (7Tb)

Sa
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representing the modified normal equations at updated stages. Here use is made
of o3 contalning third-order partial derivatives. This guantity is

Bay
evaluated only at P, similar in this respect to an. We note that the
8

quantity inside the brackets of (7b) could be replaced by (a
sa) would represent the second-order partjal derivatives evaluated at

B8
. an updated point.

where (Q

The standard adjustment algorithm, represented by the relations (5a,b)
above, results in the projection of the point Q onto the model plane passing
through the initial point P, followed by the projection of Q onto a new model
plane passing through an updated point (P), etc. The orthogonality condition
(4) is then fulfilled essentjially as a by-product of these projections. By
contrast, the geometrical approach actively seeks to fulfill it at every step.

A one--step solution producing the least-squares point P directly is hindered
only by the necessity to truncate certain terms, but not to the extent of making
the entire model linear (see the above equations 6b and 7a,b). The matrix of
modified normal equations generated in the process is positive-definite, similar

in this respect to the matrix of normal equations in the standard method.

Encouraging results have been obtained in the numerical example presented
in the Appendix of (Blaha, 1989), illustrating convergence properties of an
adjustment of a third-order polynomial in four variables. Although the standard
method converged slowly in one of four analyzed cases and diverged in two
others, the geometrical method converged in two and three iterations,
respectively. The extended geometrical method further reduced the number of
iterations from three to two. It is expected that in most nonlinear cases the
presence of second-order partial derivatives will translate into two iterations
in the geometrical method as compared to several iterations needed by the

standard method.




3. ADJUSTMENT WITH NONLINEAR CONSTRAINTS

3.1 1Initial Relations in Matrix Notation

This chapter is concerned with the introduction of nonlinear constraints
into a nonlinear least-squares adjustment model. In standard adjustment

notation, a set of s constraints among u parameters is symbolized by
6(x%) =0, .

where X° represents the set (column-vector) of adjusted parameters. The usual
approach consists in expanding these constraints i{n the Taylor series using an

initial set of parametric values, symbolized by Xx°. It then follows that
a
G(X') = "c + CX+ ... =0,
where

- o - .
Wc = 6(X) , C = (ab/a)()0 .

"

and where x=x°—x° is a set of parametric corrections. The subscript "o
indicates that the matrix C is evaluated using the elements of X°. This matrix
has the dimensions sxu, while the column vectors Wc and X contain 8 and u
elements, respectively. 1In a standard (linearized) approach, the terams

symbolized above by dots are omitted.

Here, as well as in standard adjustment theory, the constraints are
considered independent, in the sense that the constraint matrix C has the full
row rank s. However, the standard theory proceeds in general with WC#O. By
contrast, the current nonlinear development will benefit from such initial
values X° for which it holds true that

G(x°) =0 . (8)

In this case, only u-s of the u values in x° can be chosen independently.
Although a set X% for which c(x°)#o would also be acceptable, the computations
which below will lead to G(x°)=0 would eventually have to be performed as well,

and the resulting formulas would be more cumbersome and less tractable.

A simple iterative algorithm leading to G(x°)=0 can be presented as
follows. First, the matrix C is partitioned into [C1 02]. where the submatrices

C, and 02 have the dimensions sx(u-s) and sxs, respectively. The submatrix C

1 2

10
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can be considered nonsingular without any loss of generality, since, if needed,
the parameters could always be rearranged beforehand for this condition to be
satisfied. The vector x° is similarly partitioned into the subsets denoted

temporarily xl and X which contain u-s and s elements, respectively. The

2'
elements of x] are chosen independently, and are thus held fixed throughout.

The remaining elements, grouped in X are subject to change. We symbolize

2’
their initial choice by Xg to accommodate the iterative indices below. The
first iteration ylelds corrections grouped in Axé, resulting in an improved

vector denoted X_. After an i-th iteration., this vector becomes

[
0O e DD
t
[y

i
+ AX2

If the corrections become negligible and the iterative process is terminated

after n {terations, the values in X" are adopted as the elements of X In

2 2
joining this vector to the independently chosen vector Xl' one obtains the
desired vector x°.

The model before the i-th iteration can be presented as follows:

6(x°) = G(X . X)) = c(xl.xé'l) . c;'l (X, - xé"l) e ... =0,

resulting in the i-th solution:

-1 _ -1
2

-1 i-1
) G(XI.X2 ) +

Upon neglecting the higher-order terms represented by the dots, one obtains

b B | i-1 _ed-1-1 i-1
sz e X2 X2 = (L2 ) G(xl.x2 )
If the values in Ax; are not deemed negligible, the matrix 02 is updated upon
evaluating ac/axz with the new values X;, and is denoted C;. Similarly,

one forms an updated vector c(xl,x;) and proceeds to the iteration i+1. After
the final x° has been computed by this or a similar procedure, an actual

nonlinear least-squares adjustment with constraints can take place.




3.2 Parametric Elimination Due to Constraints

As we have seen in (1a.b) of Chapter 2, the nonlinear parametric adjustment

model can be written as

r.« _r .« r ,a r a , B ]
X (u’) X (uo) + Aa Au + (1/2) QaB au AwT o+ L, (9a)
where
Mm% = u® -, (9b)
0
with r=1,2,...,n, a=1,2,...,u; and where
r _ r a roo_ 2. r a_. §
Aa = (3ax /3u )o . QaB = (37x /du du )o .

All lower-case Greek letters vary in the fashion prescribed above for a. A
similar convention applies for other kinds of indices as well (lower-case Roman
letters, etc.). The subscript "o" indicates the evaluation at the initial pnint

P lying in the wmodel surface.
The s nonlinear constraints joined to this model are represented by
' (u®) =0 . (10a)

where L=1,2,...,s. This equation can be regarded as the functional form of a
surface, generalized to higher dimensions. In referring to (8) in the preceding

section, one also has
GL(uz) -0, (10b)

where the values uz. a=1,2,...,u, are known. The functional form (10a)
restricts the final least-squares point, whose model-surface coordinates are ua.
to a certain lower-dimensional surface embedded in the model surface. From
{10b) it follows that the initial point P also belongs to this lower-dimensional
surface, which will be called "model subsurface”. This is apparent from the

right-hand sides of (10a,b), which contain the same sets of constants (zeros).

The current development is organized along the following lines. First, the

coordinate set (u“}. «=1,2,...,u, {8 partitioned into (uA.uK}. A=1,2,...,u-8,
K=1,2,...,8. This allows (10a) to be written as
el u¥y - 0, (11)
12




representing the functional form of the model subsurface. Subject to the
conditjon stated explicitly in the sequel, (11) makes it possible to express the

last s coordinates in terms of the first u s coordinates:

uK uK(nA) . (12)

Equation (12) is the Monge form of the model subsurface embedded in the model
surface, where uA, A=1.2,...,u-s, are the subsurface coordinates (independent

variables). The substitution of (12) into (11) yields

L A K A
u

gL(uA) : G (u ,alu)) 0, (13)

which is an identity in the model subsurface. Thus, further identities follow:

agL/auA =0, azyL’%uAauQ =0, ... . (14a.b)

>

leading to a relation for uK(uA). In this way, the parameters uK. K=1,2,..., s,

will have been effectively eliminated.

Expressed in the Taylor series, (10a) reads

G (n®) = cf; a® - (172) H;‘ﬁ A o - S0,

where advantage has been taken of (10b). and where

CL = (acL/au“) . HL (626L/8ua8n
a 0 af

B)
0

In using the partition of (ua} and the symmetry of partial derivatives in the

lower -case Greek ijudices, oue develops this equation as

L, A K I A I K L A Q

3 z C v C ‘ ;

G (u ,u)) LA Au K Au (1.2) [HAQ Al AU

A K L K M . .
+ 2 HKK Au Au ¢+ HKM Au Au ] + ... = 0, (15a)
where
AuA - uA R AuK - uK , (15b.c)
o 0

and where "2' uﬁ, the model surface coordinates of P, are known (see the
relation 10b and the statement below it). Equation (13a) corresponds to the

step represented by (11). 1In evoking (12), we next formulate the Taylor series

for uK~

K K A o KA
. 2 LN 6
Au A A A ¢ {1721 Q AQ Au Au (16)




where

K K, . A Ko 2K A0
A N (3u /3u )U . Q AQ (¢ u/du 2u )” .

The partial derivatives are again symmetric io the per!inent indices.

The substitution of (16) into (15a) in view of the step (13) yields

Aty = el At L ok A'i A

H1
e
e
p=t
-
~

. J K A Q
(172) LK Q AQ Au A

(1/2) HKO a® an® ol A A KA

+

+

K A M Q) )
A Au A Q Au P ¢ B

(1/2) H;M A
This identity is immediately confirmed at P. Upon differentjating it in
succession in accordance with the step (14a,b), and rearranging the free as well

as the dummy indices, it follows that

L A |3 L K L K 1 Q
3 / 2 ; + [ ' - C )' +
g /du CA FK A A FK { AQ Au HAO Au
L. K . L Q K
¢ HAK A 0 Au HQK Au A
I. K o.M )
HKM A Q Au A A - o . (17)

aagL/auAauQ = CL Q'K - HL + HL A'K + HL A'i

Atk

KM Q LU § B (18)

where the dots represcnt terms containing Aun, AuQAuw. etc. There is no need to

present partial derivatives of higher order than those featured in (17), (18).

The evaluation of (17) and (18) at P yields, respectively,

K KL
TSN WA (19)
K K L L ML LN M
Cap = = 0y, [Hyg " Hoy Al v oy + Hyy Alg) AL (20)
where
M LM
n cp - 8y

The last equation represents the condition mentioned below (11). In matrix
notation, this condition states that the matrix [DT] is the inverse of [C;].
which in turn implies that the matrix [ck CLJ of dimensions sxu must have

the full row rank s, and, therefore, that the constraints must be linearly




independent . In the affirmative. an eventual rearvanging of parameters wil)

ensure that the matrix [C;j is regular (i.e., square and nonsingular). This
subject has already been discussed in Section 3.1. and has led to (10b). Upon
substituting (19). (20). and higher ovder partial derivatives (pot listed) into

{16), one obtains a relationship for uK is has been indicated below (l14a.b).

K . . , , .
Next. Au from (16) is substituted into (9a). Upon the realization that

r a r A r K
A A + A

N Au A Au AK A

r a 8 v A Q r A K r K M
OQB AuT Au QAQ A Au 2 QAK Al Au QKM A A,

this substitution yields

r r r r K A r I K
- . ' / - 1
X x“ (AA AK A A) Au (1/2) (QM2 AK 0 AQ
r K r K M A N
.o RO 61 ' ' +
2 QAK A 0 em A A A Q) At Au (21}
K K . v
where A X Y] AQ are known from (19), (20), The symbols x  and

r . .
X, In (21) are interpreted as

r

X = xr(”a) = X (uA,uK(uA)) s x'(uA)

r r a
X = X (u ) =
0 0

ro.
where x0 is known.

Equation (21) is now reformulated to read

~r. A ~r A ~r A , ~T A {2

X (u) X (uo) + AA Au (1/2) QAQ Aw AU e L (22)
where the sets of implicit partial dervivatives at P, ndmé1y

-r ~r A ~r 2~r .. A, Q

- 3 p 3

AA {(dx . Au )0 . QAQ (3 x /eu Au h)
follow readily from (21):

~r . r ro K

AA = AA AK A A (23a}

~ b r r K I K r K M

- . ‘ : . A 23
a0 " %0 T % Tan 0 2 kAt T AA Voo (23b)

; . ) a
Whereas equation (9a) represents o nonlinear model in the parameters u .

equation

(22} represents a nonlinear model

. A
in the parameters u .




A2, w-s. In geometrical terms, 0" are the model surface coordinates of
the point depicting the unconstrained least squares solution, and uA are the
model subsurface coordinates of the point depicting the constrained least-
squares solution. The constrained solution can be carried out using the
geometrical algorithms described in Section 2.2 (see the geometrical method or
the extended geometrical method). However, having eliminated the s parameters

K
. one now has a smaller system to resolve.

3.3 Linear Constraints as a Special Case

In this section, we consider linear constraints in conjunction with the
parametric adjustment model. which can be evither linear, or nonlinear as in

Chapter 2. Linear constraints (10a) would imply

from which it would follow that

K
0o - 4
.).() o . ... (2 )

This outcome would lead to a simplification ia the formuia (23b}. where the

~1
second term in the expression giving Q«Q would be zero.

Should the parametric model itself be linear, we would further have

This. in conjunction with (24), would yield

-

AQ:O,.... (25)

In such a case, (22) would hecome

T B T A At (26a)
wihere
AT AU At Ak (26h)

A TA K7 A

Equations (26a,b) represent a linear parametric adjustment model, where the

. ro or . a
original design tensor Au is replaced by A\. and the original set Au is
replaced by AuA. As in the preceding section, this system is smaller than the

- . K
original one, due to the elimination of the parameters u




The above elimination can be contirmed in the standard adjustment notation

as follows. 1In a linear model, the exact observation equations read

V:AX:* L, (27)

where L=L°-LP and x-X"-X". as defincd earlier. The design matrix A is now

. « . .
constant regardless ol the set X' The linear constraints are expressed by
., a
G(X') = p+CX =0, (28a)

where p is a known constant set of s elements and. in analogy to A. the matrix C

is constant . In agreement with (8), we use the initial values Xn such that
6(x°y s p-cx¥ 0. (28b)

. [}] .
and state that only a u-s subset of X can be chosen independently. [n

partitioning € as in Section 3.1, i.e., C:[C 09]. and partitioning x¢ similarly

1
as XOE[X?T XZT]T. where X? is the chosen subset. from (28h) we have
0 -1 0
JER + N [¢
X2 C2 (p Cl X]) . (29)

Due to (28a.b), we can write

cX=0. (30)
. T T.T , .
In partitioniug X'[X1 X2] from (30) we deduce. similar to (29):
P I
Xz = C2 L] xl ‘ (31)
If A in (27) is partitioned in accordance with X as [A] A2]. it follows that
. Vv - AI X1 + A2 X2 « L

However., the substitution of (31) into this relation yields
VA X -, (32a)
where

A A, - A_C_ €, . (32b)

The matrices C21 and Fl have already been used in forming Xg in (29). We

observe that the system (32a.b) corresponds to (26b) together with (19).




4. CONCLUSION

Many geodetic problems are either presented in the form of a parametric
model. or can acquire this form upon a simple linear transformation of
vbservables. A good example of this transformation is offered by the SST
adjustment model. The variance covariance mat>ix of the original observatiouns
in such cases must be transformed accordingly, if the rigor of the adjustment is
not to be compromised. The most widely aceepled method of adjustment, the
least-squares method, is used in practice for models that are linear, or have
been linearized. By contrast. the least-squares approach presented herein
focuses on the nonlinear parametric adjustment model which may, furthermore,

contain a set of nonlinear constraints among the parameters.

The resolution of the nonlinear parametric adjustment model without
constraints is addressed through an isomorphic geometrical setup with tensor
structure and notation, represented by a u dimensional model surface embedded in
a flat n-dimensional observational space. The n observations correspond to the
observational -space coordinates of the point Q, the u initial parameters
correspond to the model-surface coordinates of the initial point P, and the u
adjusted parameters correspond to the model surface coordinates of the least-
squares point P. The least squares criterion results in a minimum distance
property implying that the vector PQ must be orthogonal to the model surface.
The geometrical setup leads to the solution of modified normal equatjons,
characterized by a positive definite matrix The latter contains second -order
and, optionally. third-order partial derivatives of the observables with respect
to the parameters. This approach significantly shortqns the convergence process

as compared to the standard (linearized) method.

The nonlinear parametric adjustment model with nonlinear constraints is
also resolved through geometrical analogies. In this sttuation, a point
representing the least squares solution is restricted te lie ip the model
suhsurface, i.e., a surface of smaller dimensions than the model surface in
which it is embedded. The geometrical approach leads to the replacement of the
model surface by the model subsurface. and to the treatment of the observational
point Q with respect to the new suvface in the manner that resulted in the
(uaresteicted) least-squares poiat P. Accordingly. the constrained least-

squares point i3 the result of an orthogona! prejection of Q onto the model




subsurface. In the adjustment terminology, this approach eliminai:8 s of the
original u parameters, where s is also the number of constraints. The remaining
parameters are resolved by the method of the nonlinear parametric least -squares

adjustment without constraints., where all the arrays must be properly mlified.

A special class of constraints is represented by inequality constraints,
which are treated here in a linear form, and are considered in conjunction with
a linear parametric adjustment model. The isomorphic peometrical setup is now
partly simplified, in the sense that general surfaces are replaced by
hyperplanes. The topic of 1nequality constraints differs from jts equality
counterpart in that anly some constraints {(termed binding) ave retained and
subsequently enforced as equality constraints. whereas the remaining constraints
(called nonhinding) are ignored. The most difficult question. then, is to
determine which of the constraints should be retained as binding. In the
geometrical context, this problem is addressed by orthogonally projecting the
point representing the unrestricted least squares solution from an ocvigiaal
model hyperplane onto appropriate hyperplanes of lower dimensions. Since
orthogonal projections result in the shortest possible distance between the
unrestricted least squares point and the final constrained point. the solutijon

belongs to the least sruares category.

The geometi icel approach to inequality constraints s compared with the
standard resolution of the same least squares problem via quadratic programming.
A numerica!) example with four parameters s solved by both methods., leading to
identical results. The main difterence between the two methods is conceptual.
The former attributes a clearcut peometrical meaning to every adjustment
quantity, and reaches the coastrained least squares solution in accordance with
geometrical principles. The latter is based on algebraic principles, the key
element of which is the Gauss Jardan pivotiang. On the operational Jevel, the
numerical systems treated by the geometrical algorithm become progressively
smaller after each orthogonal projection along a given path. By contrast, the
size of surch systems treated by the quadratic programming algorithm remains
constant. Another advantage of the geometrical approach consists in an early

detection of a piath leading to a non least squares solution.




APPENDIX A

RIGOROUS ADJUSTMENT
OF SATELLITE-TO-SATELLITE TRACKING DATA

In this appendix., we describe the adjustment model of the satellite-to-
satellite tracking (SST), and, subsequently, a nonlinear least-squares method
consistent with such a model. The observations in the SST, whether in the high-
low or the low-low configurations, are the relative velocities between two
satellites. These range-rate data, the error characteristics of which are
assumed to be known, serve in the determination of the detailed gravity field of

the earth.

SST Adjustment Model

In terms of the adjustment model, the observables are represented by
intersatellite range rates and the unknown parameters are represented by
selected gravity field parameters and other desired quantities. In a standard
procedure, applied to a variety of problems in physical sciences, the adjustment
model is linearized, whereupon range-rate observations give rise to observation
equations. This system can then be resolved by the parametric methud (also
called the observation equation method) of the least-sguares theory. It should
be pointed out, however, that the intersateilite range rate does not provide a
direct measure of the potential at the satellite positions. A more direct
relationship would be obtained if the observables were intersatellite velocity

rates, i.e., relative accelerations between two satellites.

This point is jllustrated in fnertial Cartesian coordinates with familiar
vector notations (here the vectors are underlined). With i=1,2, gj is the
position vector of the satelljte i, gj is its velocity vector., R is the
magnitude of the relative-position vector between the two satellites, e is
their unit relative-position vector, and R is their range rate. The latter is

the projection of the relative velocity vector onto the relative-position

vector:
R= (X, - K )-e
e = (&2 xl)/R R = IX2 Xll




The quantity central to the determination of the gravity field is the time
derivative of R, obtained by numerical differentiation. The new quantity ﬁ.
i.e., the relative acceleration between the two satellites, can be directly
related to the potential at satellite positions. The acceleration vector is

numerically equal to the gradient of the gravitational potential. We thus have

R = dR/dt = a + b ,
where
a = (vV, - vV, )-e .
. . . . 2
b = [(2(_2 - Kl)'(ﬁz - 51) - R7}/R

Here Vl denotes the potential at the satellite position { and 2!1 is the
gradient of Vj. The main contribution of the relative acceleration between the
two satellites is contained in the term a, which is the projection of the

relative-acceleration vector onto the relative-position vector.

Although the relative acceleration R is highly suitable for modeling the
gravitational potential as evidenced by the term a above, it is not an observed
but a derived quantity. 1t is usuvally obtained by a curve-fitting procedure,
i.e., by the filtering and the smoothing of the original observations R.
followed by a numerical differentiation with respect to time. There exist
different methods, such as the spline method, for converting the original
relative-velocity observations R into the relative-acceleration "observations"
R. Various aspects of such methods are described, for example, in [Rummel et
al., 1976] and in [Hajela, 1977]. During this mathematical treatment, the
original data are modified (by curve fitting), and the modified data are then
transformed into gquantities of a different kind (by numerical differentiation).
The resulting data are not unique, i.e., a different data set is obtained with
each different method used. As a consequence of the accumulated modifications
of the original data, the original error characteristics are lost. The
variance-covariance matrix of the new data set entering the least-squares

adjustment must be then supplied in some approximate fashion.

A more rigorous approach would be to utjilize the original observations
together with their variance-covariance matrix. This can be done by
differencing the range-rate observations at some suftable time intervals. 1In

particular, one has
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[R(t+At) - R(1)]/At = R(t) + o ,
o = (1/2)(dR/dt)at -«
In considering the previous outcome, the SST adjustment model becomes
[R(t+at) - R(t)]/at = (ZV, - 9V, ):e + 0+ b . (1)
This model relates a combination of observations (two per equation) to the

parameters of the gravity field and to the small corrections o and b.

Transformation of the SST Adjustment Model

An adjustment model represented by a system of equations encompassing both

the observables and the parameters is described in general by

£(x?.12) =0, (2)

where, according to the standard adjustment notation, x*=x°+Xx and La=Lb+V. The

o

sets (column-vectors) Xa. X, and X contain the values of adjusted parameters,

initial parameters, and parametric corrections, respectively; and the sets La.
Lb. and V represent adjusted observations, actual observations, and residuals,
respectively. It is an ongoing practice that a model such as (2) is linearized
upon neglecting higher-order terms in its Taylor serjes expansion. This gives

rise to the matrix equation

AX+BV+W=0, (3)

where A=3f/0X and B=3f/3L, both evaluated with x° and Lb, and where

W=f(XO,Lb). The matrices A and B are assumed to have the full column rank and
the full row rank, respectively. Equation (3) characterizes the standard setup
of the general adjustment method, which is resolved in accordance with the

least-squares principle.

The neglect of higher-order terms in the Taylor series expansion of a
nonlinear model represents the greatest simplification and, at the same time,
the greatest shortcoming of the standard adjustment theory. The price to pay
for such a simplification is represented either by non-rigorous results if the

solution is not iterated, or by the necessity to iterate the least-squares
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algorithm. Depending on how severe is the model's nonlinearity, the iterative

process may be slow to converge. Thus. in theory, equation (3) should read
AX+BV+W+ .., =0, (4)

where the dots represent the contribution of nonlinear terms due. in general, to

the model's nonlinearity in both the observables and the parameters.

If, however, the observables (hbut not the parameters) are combined in a

linear fashion, (2) can be written in a different functional form, namely

-a a

2 - BL? - r(xY . (5)

where the symbol ia represents "transformed adjusted observations”. The new
matrix B is again assumed to have the full row rank. Since La=Lb+V and
ia=ib+9, where Eb symbolizes "transformed observations” and v symbolizes

"transformed residuals”, one has

iP-gLb . V=BV . (6a.b)

If the model (5) is now linearized in the parameters, it results in the

following system of observation equations:

V=AX+1L, (7)
where

A = 0F/3X = design matrix (evaluated with the initial set Xo).

X =x2 - x° = vector of parametric corrections, and

L= F(x°) - b - F(x°) - B 1P - vector of constant terms.

The variance-covariance matrix L of transformed observations ﬁb is

formed rigorously from (6a) as
£f-8Bz8T, (8)

where L is the variance-covariance matrix of the actual observations Lb. The

adjustment of the linearized parametric model (7) would proceed with the proper
variance-covariance matrix from (8), whose inverse would be the weight matrix of
transformed observations and would be used in the formation of normal equations.

The shortcoming associated with the Jinearization of a nonlinear adjustment




model has been discussed at the outset of this section. Thus., in theory,

equation (7) should read
V=AX=+ ... +1L, (9)

where the dots represent the contribution of nonlinear terms due to the model's

nonlinearity in the parameters.

The SST adjustment model presented in (1) has the form equivalent to (9).
This stems from the fact that the observations represented by the left-hand side
of (1) conform to the linear pattern {6a). In particular, the left-hand side of
an i-th equation is formed as (1/At)x(observation i+1) -(1/At)x{observation i).

With a constant At, the matrix B would have the form

-1 1 ¢ 0 . ..]
B = (1/74t) 0O 1 1 0

...I
!
|
!

J

With the aid of this matrix and of the rigorous variance-covariance matrix I of
range -rate measurements, one forms the rigorous variance-covariance matrix T

as indicated in (8), which is then to be used in the parametric least-squares
adjustment of the SST model.

The SST model is in general nonlinear in the parameters, with the degree of
nonlinearity depending on the type of parameters expressing the desired
components of the earth's gravity field and other phenomena. This, together
with the above outcome, has compelled the analysis to shift focus from the
general adjustment model to the nonlinear parametric adjustment model. With the
provision of using the proper variance-covariance matrix from (8). the overbars

are dropped and the parametric model is written as

2 - rx) - RxX%) AKX s . (10)

This model is alternately presented in the form (9). which now reads

V=AX=+...+1L, (11)
where
a h ,
V=1 - L = vector of residuals,
A = 3F/3X - design matrix (evaluated with the initial set Xo).
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a .
X =X - x° = vector of parametric corrections, and

P(Xo) ~ Lb = vector of constant terms.

[
]

The variance-covariance and the weight matrices of observations are denoted [
and P, respectively, where P=E-1. There exist an infinite number of sets La
consistent with the model (10). Of these, the least-squares principle selects
the one fulfilling VTPV=minjmnm.
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APPENDIX B

LINEAR PARAMETRIC ADJUSTMENT MODEL
WITH LINEAR INEQUALITY CONSTRAINTS

Introduction to Adjustment with Inequality Constraints

When used in conjunction with a parametric adjustment model, inequality
constraints limit the domain of selected parameters or functions thereof.
Qualitatively, this property reminds one of the familiar equality constraints,
where the individual signs - would now be replaced by the signs 2 or <.

However, a set of inequality coonstraints is in general less restrictive than its
equalit: counterpart because only a subset of the former changes into a subset
of the latter in the course of adjustment computations. The constraints having
this property (i.e., whose signs 3 or < have changed into the sign =) are called
binding: their number may range from zero to the total number of the original
constraints. The remaining constraints are called nonbinding, and they have no

effect on the adjustment.

The basic, and perhaps the most common, kind of inegquality constraints
consists of upper or lower bounds imposed on linear combinations of parameters,
including the class of upper or lower bounds impused on selected parameters
themselves. An imposition of known lower bounds on selected parameters, for
example. can be an important asset if this is dictated by physical or
mathematical reality. One cannot include such vague information into the
adjustment process by weighting the parameters in question, since this would
necessitate their a priori estimates as well as the variance-covariance matrix
assaciated with such estimates. On the other hand, discarding this or similar
information might lead to results incongsistent with the reality. One can then
decide to either forego the inclusion of inequality constraints in the hope that
such an inconsistency will be small or nonexistent due to appropriate measuring
and modeling techniques, or to incorporate these constraints into a rigorous

Jeast -squares adjustment and thereby transform the hope into certainty.

Adjustment using bounds on specific parameters or their combinations is
increasingly finding its niche in geodesy, photogrammetry. oceanography, and in

many other sciences. For example, one of the most recent photogrammetric




applications is concerned with digital object reconstruction. It has been noted
that the standard (linear) least squares method is often insufficient because of
its smoothing effect. A suitable alternative has been considered in terms of
"Chebyshev formulation”, which represents a generalization of this method. In
recent reports and papers, such as [Fritsch, 1987], this formulation is achieved
by using the concept of least-squares adjustment with inequality constraints,
where both the parametric model! and the constraints are linear. The purpose of
such a development is to reduce the solution space to a band, which, in turn,
allows one to minimize the maximum error, i.e., to accommodate the worst case.
According to Fritsch {1987}, the inequality-constrained least-squares adjustment

was introduced into geodesy by B. Schaffrin in 1981.

As a plausible oceanographic illustration with bounds imposed on the
parameters, we mention the action spectral density of fluctuations of sea
surface elevation, which is a non-negative quantity over all spectral bands.
The sea surface fluctuations have been studied by Snyder [1988), who utilizes
the linear relation A=2Ai6i. where A is the action spectral density, Ai are
parameters (to be det.rmined from observations), Gj are basis functions, and
where the summation extends over the spectral bands considered, i=1,2,... . In
a convenient approach, the spectral representation is adopted as piecewise
continuous, such that Gj=1 inside the i-th spectral band and Gi=0 elsewhere.
The key consideration pertinent to our discussion resides in the fact that
should A30 hold true everywhere, all of the parameters Ai are required to be
non-negative. Thus, the condition Aizo. i=1,2,.... represents a basic case of

linear inequality constraints.

Motivated by the above considerations, the present study has focused on
linear inequality constraints. Due to complexities associated with nonlinear
least -squares adjustment, certain aspects of which are treated in [Blaha, 1989],
the analysis has been further restricted to applications involving linear
parametric adjustment. Upon taking advantage of a geometrical setup reflecting
the situation where a linear model is to be resolved in conjunction with linear
inequality constraints, a new, vet relatively simple algorithm has been derived
producing a unique least squares estimate. A similar isomorphic geometrical
setup can undoubtedly serve in the future in resolving also nonlinear adjustment

models In conjunction with linear and even nonlinear inequality constraints.

——-—-‘




Matrix Formulation of Linear Ineguality Constraints

In this section, we present some of the outcome of the study which wil) be
described in the AFGL Scientific Report No. 2, Linear Parametric Adjfustment
Model with Linear Fquality and Inequallity tonstraints. Although the algorithm
for resolving the linear adjustment model with linear inequality constraints has
been derived using geometry with tensor structure and notation, here the results
are presented in the standard matrix notation The inequality constraints have
the form of lower bounds, since upper-bound constraints can be transformed into

lower -bound constraints upon multiplying the pertinent inequality by -1.
The linear parametric adjustment model, before the introduction of any
constraints, reads

e tPev-oaxe?,

where the columnp-vector Lu contains n adjusted observations, Lb contains n
actual observations, V contains n residuals, LY contains n constant values, and
the column-vector X contajns u parameters, u<n. The symbo) A denotes the design
matrix of dimensions nxu, assumed to have the full column rank u. The above

relation is often written in the form of observation equations

V=AX=+*1L, (1)
where L=L°—Lb. When subjected to the least-squares criterion

V' PV = minimum , (2)

where P is the weight matrix of observations adopterd as the inverse of L, the

variance-covajyiance matrix of observations, (1) yields the normal equations

NX-=U, (3a)
with

N = AT P A, u - - AT P L . (3b,c)

here N is a positive-definite matrix of dimensions uxu and U is a column-vector

of v elements.

The scope of a study conpcerned with linear inequality constraints can be

narrowed down in two ways. Fitst, the constraints can be treated in the form

0, (4)

A\

C X




where C is a matrix of dimensions sxu, with s<€u, assumed to have the full row
rank 8. Since, in general, X=x* XO. where Xa symbolizes the adjusted
parameters and x° symbolizes the initial values of parameters, the cases such as
CX2c, where ¢ is a constant vector of s elements, can be transformed into (4)
upon properly medifying the values in XO.

The second simplification can be achieved through a unique linear
parametric transformation carrying the vector X into a vector Y, likewise
composed of u elements. In particular, upon partitioning X and Y into u-s and s

elements, and attributing the subsets a prime and a double prime, respectively,

we have
y' - X',
Y* = C' X' +C" X" 2 0 ,
where C has similarly been partitioned into the submatrices C' and C". The

second equation above is egquivalent to (4). From these relations one can

express X' and X" in terms of Y' and Y", and use the result in (1), yielding
V=A"Y + 1L,

where A' follows from A and from the transformation coefficients. We note that
C" has been assumed to be a regular matrix (i.e., square and nonsingular). Due
to the full row rank of C, this assumption is justified, either initially or
upon renumbering the parameters. After the vector Y and its variance-covariance
matrix £ have been determined, the parametric transformation yields the

Y
original vector X, and the law of variance-covdariance propagation yields Ex.

In order to reduce the aumber of symbols, we change the notation from A' to

A, and from Y to X. The last two equations are then transcribed as
V=AX+1L, (5a)
X"z 0, (5b)

where X" is a subset of X. If X" comprises the full set X, the adjustment modei

with constraints becomes
vV - AX + L, (6a)

Xz 0 . {6b)




This is, in fact, the basic problem discussed in the previous section, where all
the parameters were required to be non-negative. However, this case is quite
suitable for a general treatment of linear inequality constraints, since
disregarding the pertinent u-s constraints in (6b) leads to the system (5a,b),

which, in turn, is equivalent to the system (1). (4).

Qutline of the Geometrical Approach

The derivations summarized in this section will appear in the above-cited
report. In the geometrical context, the n observations grouped in Lb correspond
to the coordinates of the "observational point” Q lying in an n-dimensional flat
"observational space”. Since the metric tensors of all the manifolds considered
here are constant (due to the linear setup), we can interpret coordinates of a
point as contravariant companents of its pasition vector, and coordinate lines
as oblique Cartesian axes with constant individual scales. The matrices I and P
{constant) correspond respectively to the associated metric tensor and to the
metric tensor of the observational space. The u initial patrametric values in x°
correspond to the coordinates of the "initial point” Po. The latter lies in the
known u-dimensional flat "model surface”, also called "model hyperplane", which
is embedded in the observational space. In an unrestricted least-squares (L.S)
adjustment, the adjusted parameters Xa correspond to the point denoted P, which
likewise lies in the model surface. The adjustment notation X then designates
the contravariant components of the vector POP. Due to constant metric tensors
of the observational space and of the model surface, vectors in these manifolds
can be freely parallel-transported to any location. This allows us to identify

Pn. throughout the analysis, with the coordinate origin in the model surface.

The unrestricted L.S. solution represented by the point P is obtained by
projecting the observational point Q onto the known u-dimensional model
hyperplane. Here the term “projection” will always be synonymous with
"orthogonal projection”. The L.S. solution subject to inequality constraints
would be obtained by projecting Q onto another surface., as yet unknowh, and
generating the point denoted P. Clearly, in the ahsence of constraints, or in
the presence of only nonbinding constraints, P and P would coincide. But
since, in general, the constraints (5b) or (6b) limit the solution point to a

region of the u-dimensional model hyperplane, the point P must be transferred in

30




some way into this "admissible” region. At the same time, iu order to fulfill

the [..S. criterion, the new point must coincide with P.

The above discussion indicates that the point P, itself the result of a
projection, must be further projected onto an "envelope” delimiting the
admissible region. The transfer of P inside this region, or onto its envelope
other than by a projection, would be inconsistent with the L.S. principle,
which, in the geometrical context, translates into the shortest-distance
principle. The form of (5b) or (6b) allows us to consider the "sides" of the
above envelope as portions of lower dimensional hyperplanes embedded in the
mode] hyperplane and spanned by combinations of coordinate axes. We will solve
the inequality-constrained L.S. adjustment by projecting the unrestricted L.S.
point P from the known u-dimensional model hyperplane onto a lower-dimensional

"embedded hyperplane”, thereby generating the point P. in such a way that
a) the latter hyperplane has the highest dimensionality possible;

b) the line connecting P and P does not pass through any part of the

admissible region; and
¢) the point P is consistent with the inequality constraints.

The thus generated constrained L.S. point P is identical to the point which
would be obtained via an orthogonal projection of the observational point @

directly onto the (unknown) lower dimensional hyperplane.

The determination of the unrestricted ..$. paint P corresponds, in the
ad justment context, to the solution of the normal equations (3a-c). If the
parameters show conflict with the counstraints represented by (5h) or (6b), P
must be projected as discussed above. The geometrical algorithm developed for

this purpose proceeds in accordance with the strategy summarized as fullows:

1) Only the conflicting (negative) elements of X will induce projections.
(Since it can be shown that any permutation of a given sequence of projections
yields the same point, a sequence where only negative components have induced
projections can be imagined in a different permutation, which now may include
projections corresponding to positive components. This specific sequence would

also yield the above point, but such arrangements are strictly avoided.)

2) The projections are "closely nested”, in the sense that a point lying in a

given hyperplane can only be projected onto a hyperplane whose dimensionality is




lower by one. This process is repeated until the constrained L.S. point P is

reached. or until a given sequence is rejected.

The point P can be reached along different routes, or "branches”. formed
by allowable permutations in a successful sequence of projections. Similarly,
one or more non-1..S. points (to be rejected) may he reached by many branches.

It is thus important to avoid branches that are essentially repetitious. To
this end. the geometrical algorithm will keep track, at each level, of the
permutations that have already taken place. The level m is defined as the stage
in the algorithm where the number of consecutive projections has reached m, and
the dimensionality of the latest hyperplane is um. If, for example, a given
branch includes the projections symbolized by the letters a, b, and ¢, another
branch containing the projections ¢, a, b will be discarded at the third level.
As another example, if the projection seguence g, h is rejected, the sequence h,
p. q. g will be automatically rejected since it contains the forbidden

combination g and h.

One of the crucial efements in the geometrical algorithm is the early
detection of branches that should be rejected. The rejection criterion will be
provided by a "guide vector” of u elements, which will contain the differences,
in model -surface covariant components, between a projected point and the
unconstrained L.S. point P. It can be shown that the elements in the guide
vector must be 20, otherwise the pertinent branch leads to a non-L.S. point.
This property can be first demonstrated for the constrained L.S. point P,
which can be thought of as lying in a u-m dimensional hyperplane. Since P is
the result of an appropriate orthogonal projection (composed of m "closely
nested” projections) of P onto this hyperplane, a v-dimensional sphere¢ centered
at P and having the smallest possible radius touches the hyperplane at P. At
this stage, we introduce a u-1 dimensional hyperplane, called the P divider,
which is tangent to this sphere at P and generates two u-dimensional half
spaces. The P-divider itself contains the u-m dimensional hyperplans of the

puoint P.

If all the coordinate axes are parallel transported from the origin to P,
u-m of them will lie in the above u-m dimensional hyperplane (always containing
the axes of coordinates not subject to constraints), and the remaining m must
lie in the half -space excluding the point P. But this means that the cosine of

the angles formed by the vector PP and by any of the u coordinate axes must be

A
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either 0 (with regard to the u-m axes spanning the u-m dimensional hyperplane of
ﬁ), or larger than zero (with regard to the remaining m axes). This, in turn,
leads to u-m zeros and to m values larger than zero in the corresponding entries

of the guide vector formed for the constrained L.S. point P.

The intermediate points formed by the projections that ultimately generate
P can be thought of as a sequence of nested L.S. problems with certain
constraints removed. Therefore, the entries of the guide vectors associated
with the intermediate points along a given branch must be 20, otherwise this
branch will not result in the L.S. point P and should be rejected. Since a
(u-dimensional) sphere touches a hyperplane of any dimensions in one point only,
there can be only one L.S. point P. In conclusion, if any branch reaches a
point for which all components subject to constraints are 20, and for which all
guide-vector entries are 20, this point is P. The unique L.S. solution has

thus been found and all the remaining branches should be discontinued.

Description of the Geometrical Algorithm

The unrestricted L..S. solution X (1.e., a column-vector of u elements

corresponding to the point P) is computed from (3a) as

X=N"Lu. (7)

It would have been formally more appropriate to denote the unrestricted L.S.

solution by a different symbol, e.g. X(O)

, and to reserve the symbol X for the
constralned IL.S. solution. However, the geometrical algorithm will be described
more conveniently with the unrestricted solution represented by X. and with the
constrained solution attributed superscripts in parentheses. We now partition X
into u-1 elements and into the remaining one element, for example the last, and
partition the column-vector ! in the same way. <imilrrly, *the matriyv N is
partitioned into the leading submatrix of dimensions (u-1)x(u-1) and into the
remaining submatrices of dimensions, clockwise, (u-1)x<1, 1x1 (a single number),
and 1x(u 1). These partitions are symbolized by

;-”11‘ TN N
t

, N - . (8a,b,c)
LNHI Nuu
-

where x”, Uu’ and N”” are single numbers.

x;[rxl.!. v -




It should be borne in mind that the subscript "1" does not correspond to

one element, or to the first element, but to 4 set of u-1 elements, here the
first u-1 of u elements. On the other hand, the subsecript "u” pertains to one
element, here the last of u elements. Since the matrix N is positive-definite,

so are its diagonal submatrices N and Nuu; here, in particular, Nuu>o' The

11

submatrices Nu and Nlu are transposes of each other A computational advantage

1
stemming from an arrangement such as (8c) is that

-1
= /
“uu 1’Nuu ’ (8d)

the reciprocal value of a number. Most importantly, partitions of this kind
correspond to the geometrical strategy of closely nested projections. The
formulas presented in matrix notation in the remainder of this section have been
developed via geometry, although some of them can be derived. in a more tedious

manner, also by algebraic means.

If the unrestricted L.S. solution produces xu<0, the constraint xu:o may
be vinding. Henceforth we assume the constrajnts (6b), or (5b) where Xu belongs
to the set X“. Thus, a reference to an element as being "negative” implies
"conflicting negative”. Should the above constraint be indeed binding, it would
induce a projection onto the appropriate hyperplane of dimensions u-1. This
possibility should be scrutinized in an appropriate branch. As an example, in a
three-dimensional model hyperplane with oblique Cartesian axes {x,y,z}, an
unconstrained result z<0 (with respect to Po as the origin) would induce the

projection of P onto the plane {x,y} in one of possible branches.

In considering Xu as the last paramcter, the projection of P onto the
hyperplane spanned by the first u-1 coordinate axes can be shown to be
equivalent to solving

(1) -1, (1)
X N by A
(1)

0 . {9a.b}

) contains u-1 elements and X&I) is a single

-1
number. The variance-covariance matrices for these two subsets are N11 and

0, respectively. However, instead of inverting N]1 at the first level, and

tnverting progressively smaller matrices at further levels, one can take

where, in analogy to (8a}, X

advantage of the property paralleling (8d) and deduce

N-l . Nll N1 (18" N .
11 (10)
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1 uu ul . -1 C .
“, N, and N are submatrices of N . the latter is imagined to

where N11, N
pe partitioned in a complete analogy to {8c), except that the superscripts now

replace the subscripts.

We next attribute to X 4 superscript in parentheses, indicating the level
of the algorithm, i.e., the number of projections effectuated up to and

including the current step. This notation has already been used In (9a,b) above

for the first level of projections. In general, the notation X{m) identifies
a vector of u-m elements obtained at the m-th level: the remaining m elements in
the complete vector X(m) are zero. The elements brought to zero by successive

projections are not, in general, the last elements in given partitions as was
assumed in (8a-d) and (9a.b) for convenience. Instead. they are the negative
elements which have effectively induced such projections. However, their
location in X or its subsequent partitions does not alter the architecture of
formulas such as (10). We only have to make sure that Nuu corresponds to the
negative element inducing the (next) projection. It is now denoted Nii, where
the generic index "i"” svmbolizes the negative element In question. Clearly, Nij
may correspond to the last element as well, provided the latter turns out to be
negative, and provided we are treating the branch where this element actually
induces a projection. This reflects the possibility that there may exist other

negative elements in X, each of which may induce a legitimate (non-repetitious)

projection and thereby create a separate branch.

The submatrices of the type Nli will also be attributed a superscript

in parentheses, likewise indicating the level of projections. Thus, N{i is

written as N(1). to be potentially partitioned into the submatrices denoted
N(l)ll, N(])IJ, N(])Jl. and N(I)ll. and equation (10) is rewritten as
NS RIS L e o (it ! (11)

The lack of superscripts in parentheses on the right-hand side of (11) is

equivalent to a superscript "(0)”. This means that no modification has taken
place as yet, and, accordingly, that N]], Nll. NJ', and Nl] are submatrices of

the original matrix N ]. In general. we have

(m) N(m iy r\.(m 1)1 (m~1)1i] N(m 1)i1

[1/N . (12)

N




(m) (m 1)11

are (n-m)x(u-m). The dimensions of N are
{m 1)11i (m 1)i1
and N

where the dimensions of N

the same, while the dimensions of N
v(m )it

are respectively (u m)x}

and 1x(u m). Predictably, is a single number regardless of m.

Although the vector U has served in obtaining the unrestricted L.S.

solution in (7), it will not be used in any capacity for any other task. This
stems from the fact that the geometrical algorithm avoids new matrix inversions,
such as featured in (9a), and takes advantage instead of the relations such as
(12), involving relatively very few scalar multiplications. 1In lieu of (9a),

the first-level solution is given by the algorithm as

(1) _ o gli oy gld
X XK, - N NT) X (13)

and in lieu of inverting Nl]' one can obtain the variance-covariance matrix
associated with this solution as in (11}). In general, the m-th level solution

is given by the algorithm as

X(m) N X(m«l) B N(m--l)li [I/N(m-])ii] X?m-l)

1 1 i . (14)

{m)

with the corresponding variance-covariance matrix N presented in (12). The

{m)

remaining m elements in X are zero, and the pertinent variance-covariance

matrix is a zero matrix.

We notice that not only does the path from (11) to (12) involve relatively
few scalar multiplications as has already been mentioned, but these operations

take place in successively smaller systems. A similar statement applies also
(1) (m)
1 ) I
in all of the above formulas identifies a negative element of the solution

when proceeding from X to X We reiterate that the generic index "i"
vector at a given level. This element is necessarily different from level to
level. In fact, once a negative element has been suppressed by a projection, it

becomes zero and remains fixed at that value.

Without the aild of the guide vector, we would attempt to reach the
constrained L.S. solution subject to (6b), for example, by examining various
branches while avoiding equivalent (i.e., essentially repetitious) paths. This °
would lead to one or more solutions at a given level, e.g. the level m, the
elements of which would be all non-negative. The values of AVTPV due to each *
projection along an individual path would be accumulated and added to the value
of VTPV from (2), associated with the unrestricted adjustment. The decisions as

to whether a given outcome is a L.S. solution, and as to which branches can be

u



discontinued at what level, would then be made based on the accumulated VTPV.

The increment in VTPV due to the m-th projection is very simple to compute (ii

is, in fact, already partially evaluated in equation 14):

T ... {m

AV PV (m-1)id

2

Y. ][x‘i"““l ‘ (15a)

Based on (15a), the accumulated VrPV is computed as

(m) T T (1)

VI PV + AV PV (2) Tpy(m

VTPV ‘-AVTPV + ... + AV PV . (15b)

(m’>o, all the branches where the accumulated

If a certain branch yielded X
value of VTPV has surpassed the current value (15b) for this solution would be
discarded. The remaining branches would be continued, since the accumulated
VTPV in one or more of them could be smaller than the current value (even though
they might entail more than m projections). If the latter should occur, it
would indicate, in turn, that the current branch has resulted in a non-L.S.
solution. In spite of the simplicity of (15a,b), this strategy has the drawback
that it discards a branch "after the fact”, i.e., after an additional projection

has been computed.

In this context, the guide vector acts as an invisible arm reaching forward
into the next projection and detecting a possible cause for rejection (when one
or more of the vector's elements are negative). Suppose that the current m-th
:m)' obtained upon using N(m_l). etc.,

according to (14). Suppose further that some of the elements in X;m) are

level has resulted in the solution X

negative. However, instead of a complete formulation of one distinct matrix

N(m) associated with each negative element in view of computing distinct vectors

g{m+1)
1

element of each such matrix N

and giving rise to distinct branches, we compute only one diagonal

(m)‘

For the sake of {llustration, we consider one (possibly the only) negative

element of xfm)

(m)
X

. which we symbolize by "j", i.e., we consider the element
<0. (The negative element at the previous level was X§m~])') The
current negative element X;m) has the potential to generate the branch "j" at
the next level, numbered m+1. This branch, if treated, will require the
knowledge of the pertinent matrix N(m) in order to compute the solution vector
X:m*1). However., we only compute the j-th diagonal element of N(m). which is
needed as a buildlng block of the guide vector at this stage. In denoting it

N(m)JJ and consulting (12), we deduce that
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N(m)JJ N(m 1) [N(m l)JilzllKN(m l)ii] . (16)

)

The remaining elements of N'm for the branch "j" will be computed only if this

branch is not rejected by the guide vector.

We are now in a position to complete the formation of the guide vector. As
has been explained, this vector's role is to examine, from a given level, a
potential projection to be performed at the next level. The guide vector is the

most easily formed at the level 1, although at this level it cannot provide any

[

service as will become clear presently. In assuming that the element "i" in the
original vector X is negative, Xi<0, and in proceeding along this branch, one
can show that all the entries of the gulde vector at the first level are zero

except for the entry "i", which is positive. The latter is obtained as

Gi(l) - (1/N“)(-x].) >0 . (17)

(1)

Since G 20 by construction, it is incapablie of rejecting its branch.

We confirm the above assertion for a three dimensional model hyperplane
with oblique Cartesian axes {(x,y,z}, where an unrestricted L.S. point P has
7z<0. The projection of P onto the plane {x,y} generates the point P', for which
the first two covariant components of the guide vector are zero. Regardless of
whether P' falls inside the desired (sub-)region x#0, y2?0, the corresponding
P'-divider is identical with the plane {x,y}, while the z-axis points away from
the half-space of P; the latter point is "below"” the plane {(x,y} by virtue of
z<0. But since the z-axis and the guide vector are pointing into the same half-
space, the third covariant component of this vector is positive. Similarly, P
having a negative i-th coordinate may be projected from a u-dimensional madel
hyperplane onto a u-1 dimensional embedded hyperplane, generating P' as well as
the corresponding P'-divider. The latter coincides with the embedded hyperplane
and thus contains u-1 of the u coordinate axes, while the remaining axis "1i"

points away from the half space of P.

"

;l) is negative, j.e., Xgl)<0.

Before proceeding to the full-scale computalion at the second level (branch "j")

(1) (2)' we compute the guide vector G(a,

We next suppose that the element "j” of X

necessitating N in order to produce X

for such a solution in order to determine whether this branch should not be

(2)

discarded altogether. The vector G will have two entries different from zero
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("i” and "j"), while all its remaining entries will be zero. The entry "j" will

be positive, computed in analogy to (17):

G;Z) . []/N(I)JJ][—XSI)I >0, (18)

(1143

where N would be obtained from the formula (16) with m=1. The entry "i" is

composed of two parts, namely the previous entry "i" plus a simple correction:

(2)
6

(1)

- 6, (il N (19)

;(2)
J
(2)
i
is rejected. Otherwise one proceeds to complete N

turns out to be negative (due to the correction), the branch "i", "j
(1) (2)

If G
leading to X

[f, in this case, an element "k" of the solution X(z) is negative, i.e., if

(2) (3)

%

vector will have three nonzero entries, "i", "j", and "k”". The entry "k" is

<0, we generate the guide vector G to test the third level. This

positive, computed in analogy to (17) or (18):

(2)kk

(3) | _x(2)
6.0 = [N H-x, "1 >0, (20)

where N(2)kk

would be readily obtained from (16) with m=2 and with j and k
replacing 1 and j, respectively. The entry "j" is composed of the previous
entry "j" plus a simple correction (one term):
0@ .
J

621 - (1) 1K )

(21)

(1133 (1)

Clearly, the elements N etc., are available from the previous

level (see the statements following equation 19). Finally, the entry "i" is

composed of the previous entry "i" plus a correction consisting of two terms:

ik G(3)

63 - 62 o gty all 0;3’ ol (22)

i i

It is noteworthy that all the building blocks needed in (20)-(22) are available,

(2)kk

whether beforehand or sequentially, with the exception of N ., which requires

a very simple computation as indicated above.

The hierarchy in building the guide vector at higher levels is now quite
apparent. The most recent entry in G(m) is always positive, and its computation

requires an element obtainable via (16). The next most recent (nonzero) entry

in ¢{® is the corresponding entry in g(m-1)

(m)

plus one correction term. The

following entry in G is the corresponding entry in G(m'l) plus two correction
(m)

terms, etc. The correction terms in the last nonzero entry of G contain
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elements of the original matrix N'l. i.e., elements belonging to the level "0".
[f any entry in G(Q) is negative at any level, €¢-2,3,....,m,..., the pertinent
branch is rejected. We recall that if any branch contains a permutation of a
sequence of projections already rejected, such a branch should be discarded

without testing.

Numerical Example Solved by the Geometrical Algorithm

The simple example below is presented at the level of normal equations

(3a), where the inequality constraints have the form (6b):

NX=1U, (23a)
X >0 . (23b)
The number of parameters is four, 1.e., u-4. The matrix N and the vector U are
given as
1 0.5 0 -3.15 0.6751
N = 0.5 1 1 0 , v = 0.35 . (24a.,b)
0] 1 4 4 0.2
~3.75 0 4 25 -5.1

The matrix N is positive-definite, and as such can be decompused into the

product TTT. where the (real) matrix T is regular, upper-triangular.

The unrestricted L.S. solution, denoted X in agreement with an earlier

convention, follows from (23a):
X =N U . (25)

In particular, we have

944 432 -40 148 1.6

N1 (1/173)] 432 444 55 6|, X-| 0.8 |. (26a,b)
40 -55 75 -18 0.35
148 -56 -18 32 0.5

The positive definite matrix N" can be obtained from N as T_](T‘I)T. where T

was introduced above; '!‘-l (real) is likewise regular and upper-triangular.

an




In applying the geometrical algorithm of the previous section, we replace
](l) (l)k' x(l)Q. x(l)m]T
when we need to identify specific elements. Thus, in the branch 1 below, k=2,

the compact notation X by a more explicit notation [X

¢=3, and m=4. This kind of superscript notation will be used at any level
(including the level 0), but only in conjunction with various vectors "X" and
their subsets. Since X1=~1.6 and X4=~0.5. the level 1 will give rise to two
branches, namely branch 1 (named after the element X]) and branch 4 (named after
the element X4). Branch 1 will correspond to the possibly binding constraint

1 (1)1

X" =0, or, more precisely, X 0, and to the projection of the unrestricted

L.S. point P onto the three-dimensional hyperplane spanned by the second, third,

(1)
1 is

3' X4]T

and fourth coordinate axes. As has been just described, the vector X
[x(l)z, x(1)3' x“”]T

., while the corresponding vector X1 is [Xz, X
=[0.8, 0.35, »O.S]T. The solution X

(1)
; 1
i.e., where Xi is X"'--1.6. Similar comments with self-evident modifications

then follows from (13), where i=1,

apply also for the branch 4, where i-4.

(1)
1
the unique constrained L.S. solution would be achieved. 1In this case, the guide

(1) (1)
1

(1) (1)1

If the branch 1 resulted in X >0, and thus X 20 (due to X =0),

vector G composed of G from (17) and of u-1 zerus would be unnecessary
(all its entries would be 20). However, (17) would be a stepping stone in the

computation of AVTPV as given by (15a), since

AVTPV (-X,) . (27)

(1) _ (1)
i i

where Xj is X1=~1.6 as above, with similar relationships occurring at higher
levels as well. On the other hand, if the branch 1 does not lead to such a
quick solution, guide vectors for the next level should be formed for all

possible new branches.

Branch 1. In accordance with the above description, we form

X(l)2 0.8 -432 0.067797

X(])3 0.35; - (1/173)| -40((173/944)(-1.6) = 0.282203

X(])4 -0.5 148 -0.249153
(1)4

From X <0, we conclude that at least one more level will be needed. The next

level (i.e., the leve] 2) will give rise to the bhranch 1,4. However, before
and G(z). the latter to

proceeding any further, we form the guide vectors G(l)




test whether the branch 1,4, and thus the entire branch 1, should not be

rejected. First, (17) yields

Gil) = (173/944)x1.6 = 0.293220

from which it follows that AVTPV(I)

N(])44

=0.469153. In view of 0(2), we compute

via (16) with m=1. upon the substitution i=1 and j=4:

N4 (1/198) (32 - 148%/044) - 0.050847

With this eatry, (18) and (19} yield

022’ = (1/0.050847)x0.249153 = 4.9 |
G;Z’ = 0.293220 - (173/944)(148/173)x4.9 = -0.475.

Accordingly, the entire branch 1 is rejected.

Branch 4. This branch corresponds to the possibly binding constraint

X(1)4=0. In analogy to the preceding procedure, we have
x(1)1 1.6 148 0.7125
X(l)2 0.8 - (1/173)}} -561(173/32)(-0.5) = ] -0.075
X(])3 0.35 -18 0.06875

The only possible branch at the level 2 is 4,2. We notice that since the branch
1,4 was rejected above, so would be the branch 4,1; but the latter would now
correspond to "projecting a positive component”, which had been eliminated from
{1) (2)

the strategy. In view of the guide vectors G and G , WCe compute

G;I) = (173/32)x0.5 = 2.703125 ,

T,o(1)

from which it follows immediately that AV PV =1.351562. Further, with m=1

and the substitution i=4 and j=2, equation (16) yields

122 _ (4 173) (440 562732y - 2

With this element, it follows from (18) and (19) that

G;z) = (1/2)x0.075 - 0.0375
G;a’ = 2,703125 - (173/32)(-56/173)x0.0375 = 2.76875 .




Thus, the branch 4,2 at the level 2 will not be rejected. Furthermore, upon

(2) (2)_
2

considering (15a), the above result for G ylelds AVTPV =0.002813.

Branch 4,2. This branch corresponds to the possibly binding constraint
x(2)2=0 (1)

We first use (11) with i=4 to compute N , which will serve to
evaluate x(z’:
. ¢
944 -432 -40 148
N(l) = (1/173)({-432 444 -55| - | -56{(1/32)[{148 -56 -18]} ,
-40 -55 75 -18
1.5 -1 0.25

N(], =1 -1 2 -0.5 J .

0.25 -0.5 0.375

This result is the same as the inverse of the (3x3) leading submatrix of N in

({24a). However, the above scheme is much more economical, amounting to only a

few scalar multiplications (advantage should be taken of the symmetry of N_I,
N(l). etc.).
With N(l) available, the solution ng) follows from (14) as
x(2)1 0.7125 -1] 0.675-]
= - {1/2)(-0.075) =
x(2)3 | 0.06875 -0.5] o.osJ

Since these values are positive, the constrained L.S. solution has been

achieved, namely

(2) . (0.675 0 0.05 OJT

X
According to (15b), the accumulated VTPV is
VTPV(Z) = VTPV + 1.351562 + 0.002813 = VTPV + 1.354375

We note that if the algorithm started with the branch 4. branch 4,2 would yield

the unique constrained L..S. solution and branch 1 would be skipped altogether.
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Description of the Quadratic Programming Algorithm

The 1..8. adjustment of a linear parametric model with linear inequality

constraints can be treated by the method of guadratic propgramming presented in

(Rard. 1974], Section 6-2. 1In principle. the problem formulated on page 147

therein seeks to minimize the quadratic function Q in the parameters X, namely
QUX) =X NXK-2X U+, (28a)
subject to the inequality constraints
CX 20 . {28b)

The dimensions of N, C, X, and U are respectively uxu, sxu, uxl, and uxl. This
task is equivalent to minimizing VTPV as in (2), subject to the constraints
(28b). Accordingly, in terms of our notation, ¢ in (28a) cortresponds to LTPL.
It should be mentioned that the notation in [Bard, 1974]) differs from that
employed herein in several respects. For example, v corresponds here to X, R-1

corresponds to N, q corresponds to ], etc.

As in (25), we denote the unrestricted [..S. solution by X and write

x-N1u

The algorithm presented by Bard [1974] is transcribed below in our notation.
1) Form the matrix E of dimensions sx(s+1):

-1.T

E=[W 2z} =[CN C

0

cX) (29)
W is a matrix of dimensions sxs, and v is a column-vector of s elements.

2) In conjunction with E, form the vector k of s elements, whose entries are

initially set to unity.

3) Find the "i" for which ziki-=a=minimum; initially, a will be the smallest

element of z. If a20, go to step 5.

4) If a<0, execute the Gauss Jordap pivot on the element (i,i) of E, and R

change the sign of ki' With the notation t:ﬂl/Ei this pivoting consists

i
of two basic steps, where "-+" symbnlizes the replacement of elements:

a) For all the elements of E except the i-th row and the i-th column:

E - E - E F t

pq Py pi ig
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b) For all the remaining clements, starting with the i-th row except

the element (i,1i):

-»

t

hiq Eiq

continuing with the i th column except the element (i,i):

E - -E .t
pi pi

and ending with the element (i,i):

E.. -t
ii

In fact, the three parts of the current iten "b” could be

performed in any order.

The new matrix E and the new vector k replace their previous counterparts,
and, accordingly, are denoted again E and k. Within E, the symbols W and z

are preserved as well. After the above replacements, return to step 3.

5) Suppuse s' of the s elements in k are -1 (the others being +1). Form the
matrix C' of dimensions s'xu from C, upon grouping the rows of the latter
corresponding to the elements -1 in k. This procedure eliminates the rows
of C corresponding to +1 in k, which represent nonbinding constraints. in
the same way, form the column-vecigr z' of 8' elements from z (z is the
last column in the most recent matrix E). The constrained L.S. solution,

denoted X', is given as

x' - N1 (U o T z') . (30)

Numerical Example Solved by the Quadratic-Programming Algorithm

The example used in this illustration is the one solved previously by the

geometrical algorithm. Accordingly, C-1, s=u=4, and, from (29).

E = (W z] - (N1 X]

The values of N ! and X are given in (26a,b). Thus, the initial matrix E and

the inttial vector k are

oS
N




5.456647
E - [-2.497110
-0.231214
0.855491

From this setup,

iterations,

-2.497110

2.566474
-0.317919
-0.323699

the constrained L.S.

0.231214
-0.317919
0.433526
0.104046

3 of the guadratic-programming algorithm.

[teration 1.

(v 1),
0.183263
E - 0.457627
0.042373
~-0.156780

0.805491
-0.323699
-0.104046

0.184971

solution will be

re 1

, 0.8 |, k -1

Lo oas 1

L 0.5 IJ
reached in four

in the sense that the computations will pass four times through step

The Gauss -Jordan pivot will be executed on the above element

-0.457627
1.423729
-0.423729
0.067797

for which t=1/5.456647-0.183263.

-0.042373
-0.423729

0.423729

~0.067797

The matrix E and the vector k become

0.156780
0.067797

t

{

{

]
~0.067797

1

|

0.050847

0.293220
0.067797} . k =
0.282203
-0.249153

This iteration corresponds to the branch 1 of the geometrical solution.

Iteration 2.

which t=1/0.050847-19.666667,

0.666667
0.666667
-0.166667
-3.083333

This iteration would
if this branch had been executed.

have treated a smaller system at this stage, namely a 3x3 system.

-0.666667
1.333333
~-0.333333
1.333333

correspond to

0.166667
-0.333333
0.333333
-1.333333

~3.083333
-1.333333
1.333333
19.666667

the branch 1.4 of

I 0.475 -1
Lo |, k=| 1
| .0.05 1
L 4.9 -1

b b s

—

The pivoting will take place on the ahbove element (4,4), for

the pgeometrical so'ution,

We nole that the geometrical algorithm would

By contlruast,

the quadratic-programming algorithm treats essentially a 4x4 system at every

iteration.

We have seen that the guide vector allows the geometrical algorithm

to avoid the (wasteful) execution of the branch 1,4, and directs it instead to

the remaining branch 4.

lteration 3.

which t=1/0.666667-1.5.

to the Gauss--Jordan

This
pivot.

The pivoting will take place on the above element (1,1), for

is the second time the element (1,1) is subject

4t

g



1.5 -1 0.25 4.625 0.7125 1
E - 1 2 ‘0.5 1.75 : 0.075 , k = 1
0.25 ~0.5 0.375 0.5625 : 0.06875 1
4.625 -1.175 0.5625 5.40625 : 2.703125 -1

This iteration corresponds to the branch 4 of the geometrical solution.

Iteration 4. The pivoting in this last iteration will take place on the

above element (2,2), for which t 0.5,

1 0.5 0 3.75 1 0.675 1
E=1-05 0.5 -0.25 0.875 1 -0.0375 | . k = | -1
0 0.25  0.25 1 . 0.05 i
3.75 0.875 -1 6.9375 | -2.76875 1

This iteratjon corresponds to the hranch 4,2 of the geometrical solution, which
yielded the constrained L.S. solution. From the above E and k, the quadratic-

programming algorithm stipulates that

0 1 0 O ~-0.0375

¢ 0 g 1 2.76875

In using U from (24b), we obtain
*V'r ] s T
U - c' z' - [0.675 0.3875 0.2 2.33125] .
Finally, (30) yields

X -NYqu .oty [0.875 0 0.05 0)7 .
whose first and third elements have already appeared at their respective places
in the last column of E above. This solution X' agrees with the final result

X‘z) obtained in the branch 4,2 of the geometrical solution.
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