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1. INTRODUCTION

The aim of this report is to present new elements in a rigorous least-

squares adjustment of geodetic quantities. Although the initial emphasis was on

the satellite-to satellite tracking (SST), the adjustment aspects developed

during the course of the study are broad enough to be applicable to a variety of

problems In physical sciences. The body of the report is thus reserved for the

nonlinear least-squares method with or without constraints, whereas the SST

model and its adjustment are described in Appendix A. The constraints are

considered to be in general nonlinear; linear constraints joined to a linear

model are presented merely as a special case. A relatively new category of

constraints, termed inequality constraints, is treated in Appendix B.

The SST model, when considered without any approximations or deformations,

such as the smoothing and differentiation of the original observations, appears

to have the form of the general adjustment model. The latter usually features

the observables and the parameters interwoven in nonlinear relationships.

However, the observables In the SST model have special characteristics allowing

for a substantial simplification. In particular, they are present in linear

combinations involving merely two observables per equation. A simple linear

transformation of the observables, which affects the original observations, the

adjusted observations, and the residuals in the same fashion, changes the

general model into the parametric adjustment. model. The latter is treated here

In a nonlinear form. One can thus avoid the approximations caused by the

truncation of second- and higher order terms in the model's Taylor-series

expansion, as is done in the standard linearized approach. The transformation

of observables leading to the parametric model can be useful not only In view of

the rigorous least-squares adjustment. of the SST, but in the treatment of other

kinds of geodetic data as well.

The above transformation has allowed the analysis to shift focus from the

general adjustment model, linear or nonlinear, to the nonlinear parametric

adjustment model. The linear version of the latter follows as a simple special

case: it has been thoroughly analyzed and extensively used over the past several

decades. The least-squares adjustment of the nonlinear parametric model is the

subject of Chapter 2, summarizing the recent development contained In the AFGL

report [Blaha, 19891. This development is based on analogies between



adjustments and geometry which have led to the conception of an isomorphic

geometrical setup.

In some adjustment problems the parametric model is subject to constraints,

i.e., conditions to be fulfilled by its parameters. As an illustration related

to the SST, one notices that although equation (2) in Appendix A does not

contain any constraints among the parameters, certain types of constraints may

be needed in conjunction with the geopotential representation used by the model,

and with other factors. In an early treatment of the SST, Schwarz [1970]

considers the gravity field split into the reference field described by an (NN)

spherical-harmonic expansion, and the residual field described by density-layer

parameters. Because of the Initial stipulation that the density layer solution

should not affect any of the (N-I) 2 coefficients in the underlying spherical-

harmonic model, he concludes that (N+1) 2 constraints should be included, at

least in theory. Clearly, this notion is not tied only to the density-layer

parameters since similar reasoning applies also with regard to other localized

representations of the residual gravity field.

In analogy to an adjustment model itself, a set of constraints can also be

linear or nonlinear. A constrained least-squares adjustment, where the emphasis

is on nonlinear constraints, is developed in Chapter 3 herein. This endeavor is

again based on the isomorphism between adjustments and geometry. The geometric

derivations leading to the final adjustment formulas are carried out with the

aid of tensor structure and notation. It should be mentioned that all the

constraints considered so far, whether linear or nonlinear, are the familiar

equality constraints.

However, recent years have witnessed an increasing interest in applications

of linear Inequality constraints, which can be used with advantage in the

problems where the smoothing effect of the standard least-squares method is

undesirable. The concept of inequality constraints is instrumental in reducing

the solution space to a band, as is described by Fritsch [19871 in conjunction

with a linear parametric adjustment model. This, in turn, allows one to

minimize the maximum error and thus to accommodate the worst case. Appendix B

herein presents the least-squares algorithm applicable to linear models with

linear inequality constraints, which is developed using again an isomorphic

geometrical setup with tensor structure and notation.
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2. NONLINEAR PARAMETRIC LEAST-SQUARES ADJUSTMENT

2.1 Mathematical Background

The parametric adjustment model expresses each of the observables in terms

of parameters, where the structure linking the two groups of variables is, in

general, nonlinear. The number of observables is dpnoted by n and the number of

parameters by u, where n must be greater than u for an adjustment to take place.

The adjustment model is written as

1a  =F(Xa)

where La and Xa are the sets (column-vectors) of adjusted observations and

adjusted parameters, respectively. This chapter describes the resolution of a

nonlinear model through an isomorphic geometrical setup with tensor structure

and notation. Such efforts date back to (Blaha, 1984], which treats a linear or

linearized adjustment model. Later papers and reports, such as [Blaha, 1987],

contain an initial analysis of a nonlinear model. The most recent development

in this area is described in [Blaha, 1989].

In a standard adjustment approach, a nonlinear adjustment model is subject

to the Taylor series expansion based on an initial set of parametric values, X°.

The terms in the second and higher powers of the parametric corrections are

neglected, resulting in the familiar (linearized) observation equations. In

matrix notation, the latter are expressed by

V = A X + I,

where A is the design matrix, x=X -x is the column-vector of parametric

corrections, VzLa-L b is the column-vector of residuals, and L=L -Lb is the

column-vector of constant terms, with L°=F(X° ) representing observables

consistent with the initial set of parameters, and Lb containing the actual

observations. The linearized model is subjected to the least-squares criterion

VT P V = minimum ,

where P Is the weight matrix of observations. This criterion leads to the

formation of the familiar normal equations.



If the original adjustment mode] is nonlinear, the resolution of thl

linearized model does not yield the final answers. The process I!; usual]ly

repeated with new, updated parameters and the corresponding changes in A and L.

However, the variance-covariance matrix of observations, F, as well as the
-I

weight matrix P, adopted as P=E are constant. Thus, the matrix of normal

equations, N=AT PA, changes only due to A. and the column-vector representing

the right-hand side of normal equations, U- A TPL. changes only due to A and L.

The computation of the updated parametric values through a new X requires the

formation and the inversion of a new N in each itcration, or a mathematically

equivalent procedure. When X becomes sufficiently close to zero the iterative
-l

process is terminated. As its by-product, the latest matrix N is adopted as

the varlance-covariance matrix of adjusted parameters.

The functional relationship between the observables and the parameters

lends itself to a geometrical interpretation and treatment involving spaces and

surfaces generalized to higher dimensions. In particular. the formulation

r r ua
x = x (u r =  1,2,....n a =  1,2,....u

representing the parametric adjustment model, can be linked to the Gauss form of
r

a surface in relation to the surrounding space, where x are the space
a

coordinates and u are the surface coordinates. The Gauss form of a two-

dimensional surface (u=2) embedded in a three-dimensional flat space (n=3) is

described, together with two other forms, in Chapter 6 of [Hotine, 19691. In

[Blaha, 19841, both the n-dimensional "observational" space and the il

dimensional "model" surface were considered flat. The latter was thus in

reality a hyperplane. Although the model surface is now intrinsically a curved

space, the surrounding space is again flat, and, ds is shown hf-lnw, Its

coordinate system is characterized by a constant metric tensor.

r
In denoting the n observables by x r 1.2 ... n, and the u unknown

parameters by u a, a=1,2. u, we can represent a nonlinear parametric

adjustment model by

r r a r r a r ar

x x (u) = x(1/2) 0 r Aua Au
0 a 0

+ (1/6) 0 " ,.Au a $ u + ... . (Ia

a = u ua (b)
0

4



a r r awhere u represents an initial set of parameters and x =x (u0 ) represents

the observables consistent with this set. The lower-case Roman indices range

from I to n. and the lower-case Greek indices range from I to u. Tensor

symbolism Implies the summation convention over the dummy (repeating) indices.

In the geometrical context, the first equality in (la) represents the Gauss

form of a u--dimensional surface embedded in an n--dimensional space. The surface

is endowed with the coordinate system (ua ), a=1,2,. u and is referred to as

the model surface, and the space is endowed with the coordinate system (xr )
r=1,2 . n, and is referred to as the observational space. The second equality

in (a) is the Taylor series expansion of x r from the "initial" point P lying in
a

the model surface, whose model-surface coordinates are u and whose
0r

observational-space coordinates are x . The notation identifying the partial
0

derivatives at P, such as axr/aU1 Ar a 2xr/ au r  etc, is self-
a a. ievident. The actual observations can be thought of as describing the point Q in

the observational space, which, due to measuring errors, does not lie in the

known model surface. The task at hand consists in determining, from the

observed point Q, a model-surface point satisfying the least-squares criterion.

In the adjustment context, the variance-covariance and the weight matrices

of observations depend on the quality of measurements. They are independent of

the adjustment model, of the initial set of parameters, of the outcome of

observations, etc. Thus, for a giveni observational mode they are constant. In

the "traditional" identification of [Blaha, 19841, variance-covariance matrices

correspond to associated metric tensors, and weight matrices correspond to

metric tensors. Accordingly, we represent the variance-covariance matrix of
rs

observations by the observational-space associated metric tensor g , and the

weight matrix of observations by the observational-space metric tensor gsr' and

state that both tensors are independent of the form of the model surface, of the

initial point P. of the observed point Q, etc., leading to the simplification

gsr = constant . (2)

One could also attribute the tensors grs and gsr to the point Q and state that

the geometrical setup must account for Q located anywhere in the observational

space. In turn, (2) implies that the observational space must be flat.

, , , n , l l ll l I II IIII I I



If the set x r denotes the coordinate differences between the observed

point Q and the desired model-surface point denoted P. It corresponds to the

negative residuals, and the least-squares criterion corresponds to

5 2 S __3
62 : x gsr 6x = minimum.

The quadratic form (3) ri.-resents the square of the distance between Q and P.

Therefore, the desired "least-squares" point P must be the foot-point of the

straight line dropped orthogonally from Q onto the model surface. We note that

if any othcr adjustment condition were used In lieu of the least-squares

criterion, the minimum-distance property (3) would not exist and the geometric-

tensorial treatment of the adjustment theory would probably be much more complex

If not impossible.

2.2 Summary of the Geometrical Development

A convenient approach for resolving nonlinear least-squares problems

consists in using an isomorphic geometrical setup with tensor structure and

notation. Such a link is highlighted by the consideration that the least

squares criterion gives rise to a minimum distance property. Among the basic

correspondences, the number of observations. n, and the number of parameters, u,

define the dimensionality of the observational space and of the model surface.

respectively. Since the constant variance covariance matrix of observations, 1.
rs

corresponds to the associated metric tensor g . and the weight matrix of

observations, adopted as C corresponds to the metric tensor gsr' the

observational space is endowed with a coordinate system {xJ) such that

gsr constant , g rs constant

The set L of actual observations corresponds to the set x of observational-
Q

space coordinates describing the point Q All possible sets of adjusted

observations (subject to no criterion) correspond to th-! Gauss form of the model

surface endowed with a coordinate system (uaI

r r Ua
x =x(u) r 1,2 ... a 1.2-....u

The final set of adjusted parameters. X corresponds to a particular set
at of model-surface coordinates describing the h1,;st squares point P. The set

II i n ln I I I l



of initial parameters, X0 . corresponds to the set ua of model-surface
0

coordinates describing the initial point P. The final set of parametric

corrections, X, then corresponds to Aua .u a_-u a ; these quantities are assumed
0

to be small (termed first-order). The final set of adjusted observations,ar ra

l1a=F(Xa), corresponds to a particular set x ,xr (u ) of observational-space

coordinates describing the least-squares point P. The initial point P is
r r a

described by these coordinates as x 0!x (u ), reflecting its counterpart
0 0 )

I.° zF(X°). fhe set of negative constant terms, -L=L -F(X°), corresponds to the

contravariant vector 6xr=xr x r while the set of negative residuals,
b a Q o -r r r-VL b--L . corresponds to the contravariant vector ft =x Qx The Initial

design matrix. A, which In standard observation equations, V-AX-L, relates the

parametric corrections to the residuals, corresponds to the design tensor

Ar=axr./aua evaluated at P. On the other hand. the standard adjustment
a

approach does not have equivalents of 0r and 0r which form three- and00 and , ,

four dimensional arrays. respectively, and contain the second- and the third-
r wiha

order partial derivativeofxwith respect to u , evaluated at P.

The geoketrical approach is based on a direct exploitation of the relation

-s 6xr . 0 (4)
s sr

where A represents the design tensor evaluated at the least-squares point

P, and equation (4) itself represents the orthogonality condition at P. The

outcome of the geometrical development Is considered in two methods, called

geometrical and extended geometrical. It is contrasted to the standard method

treating nonlinear models in a linearized form. The algorithms associated with

all three methods are presented below in the form of the first iteration, and in

the form of the second and subsequent Iterations.

In tensor notation, the initial matrix of normal equations corresponds to

the model-surface metric tensor aPa at the initial point P, and the initial

right-hand side of normal equations corresponds to the model-surface covariant

vector AS6x at P, where

s r r
a A gsr Aa A6x 8s x

The parametric corrections stemming from the first Iteration are symbolized by

(Aua), and they give rise to an updated point (P). The latter is described by

the model-surface coordinates (u I.ua (Au a). The quantities belonging to (P)
0



will likewise be written in parentheses. The parametric corrections obtained in

the second iteration will be denoted A(Aua), and they will give rise to a new

updated point determined via (u} )A(Au ). The notation used in conjunction with

the second iteration will be retained also for any further iterations.

Standard method. Under the assumptiou that both sets Au and 6xr contain

small quantities (first-order), the first Iteration in the standard method reads

a (Aua) = As 6x (5a)

representing the initial normal equations. The second and further iterations

follow the same principle:

(a ) A(AuU) = (A) (4x) (5b)

Geometrical method. Under the same assumption as above (both sets Aua and

axr contain small quantities), the first iteration utilizes the same formula as

its standard counterpart, namely

aa (Aua ) = A' 6x (6a)

However, the second and further Iterations proceed according to

[(a ) - (bx fs I A(A)) (A' (x (6b)
Oa s Oa 0

representing the modified normal equations. The triply-indexed quantity '

formed by second-order partial derivatives of the observables with respect to

the parameters, is evaluated only at the initial point P.

Extended geometrical method. Although the assumption regarding Aua is

unchanged, this method is tailored for bxr containing relatively large

quantities, for which L.e first iteration reads

(a - 6x OS I (Au*) = A' 6x (7a)

Compared to the geometrical method, the current algorithm is seen to utilize

second-order partial derivatives and to giv," rise to the modified normal

equatiz.• already in its first iteration. The formula for the second and

furtr r terations is given as

Ox (dx (6x s (Aii)J A(Au a (An) (6x) , (7b)

Oa, 8 Pa s Oa-(ni ll 0 s



representing the modified normal equations at updated stages. Here use is made

of *s  containing third-order partial derivatives. This quantity is

evaluated only at P. similar in this respect to We note that the

quantity inside the brackets of (7b) could be replaced by (a )-(6X )(QOa)

Paawhere (QS ) would represent the second--order partial derivatives evaluated at

an updated point.

The standard adjustment algorithm, represented by the relations (5a,b)

above, results in the projection of the point Q onto the model plane passing

through the Initial point P, followed by the projection of Q onto a new model

plane passing through an updated point (P), etc. The orthogonality condition

(4) is then fulfilled essentially as a by-product of these projections. By

contrast, the geometrical approach actively seeks to fulfill it at every step.

A one-step solution producing the least-squares point P directly is hindered

only by the necessity to truncate certain terms, but not to the extent of making

the entire model linear (see the above equations 6b and 7a,b). The matrix of

modified normal equations generated in the process is positive-definite, similar

in this respect to the matrix of normal equations in the standard method.

Encouraging results have been obtained in the numerical example presented

in the Appendix of [Blaha, 19891, illustrating convergence properties of an

adjustment of a third-order polynomial in four variables. Although the standard

method converged slowly in one of four analyzed cases and diverged in two

others, the geometrical method converged in two and three iterations,

respectively. The extended geometrical method further reduced the number of

iterations from three to two. It is expected that in most nonlinear cases the

presence of second-order partial derivatives will translate into two iterations

in the geometrical method as compared to several iterations needed by the

standard method.

9



3. ADJUSTNENT WITH NONLINEAR CONSTRAINTS

3.1 Initial Relations in Matrix Notation

This chapter is concerned with the introduction of nonlinear constraints

into a nonlinear least-squares adjustment model. In standard adjustment

notation, a set of s constraints among u parameters is symbolized by

G(Xa ) = 0

where Xa represents the set (column-vector) of adjusted parameters. The usual

approach consists in expanding these constraints in the Taylor series using an

Initial set of parametric values, symbolized by X°. It then follows that

G(Xa) = W +CX+ ... =0 ,c

where

Wc = G(X), C (8/aX)o

and where X=Xa-X0 is a set of parametric corrections. The subscript "o"

indicates that the matrix C is evaluated using the elements of X°. This matrix

has the dimensions sxu, while the column vectors W and X contain s and uC

elements, respectively. In a standard (linearized) approach, the terms

symbolized above by dots are omitted.

Here, as well as in standard adjustment theory, the constraints are

considered independent, in the sense that the constraint matrix C has the full

row rank s. However, the standard theory proceeds in general with W #0. Byc

contrast, the current nonlinear development will benefit from such initial

values X for which it holds true that

G(X0) = 0 . (8)

In this case, only u-s of the u values in X can be chosen independently.

Although a set X° for which G(X° )O would also be acceptable, the computations

which below will lead to G(X0 )=O would eventually have to be performed as well,

and the resulting formulas would be more cumbersome and less tractable.

A simple Iterative algorithm leading to G(X )=O can be presented as

follows. First, the matrix C is partitioned Into [CI C2], where the submatrices

C1 and C2 have the dimensions sx(u--s) and sxs, respectively. The submatrix C2

10



can be considered nonsingular without any loss of generality, since, If needed,

the parameters could always be rearranged beforehand for this condition to be

satisfied. The vector X° Is similarly partitioned into the subsets denoted

temporarily X and X which contain u-s and s elements, respectively. The

elements of X1 are chosen independently, and are thus held fixed throughout.

The remaining elements, grouped in X2 ' are subject to change. We symbolize
0

their initial choice by X2 to accommodate the iterative indices below. The

first iteration yields corrections grouped in AX' resulting in an improved

vector denoted X1. After an i-th iteration, this vector becomes

X =  X 2 + AX .
2 2 2

If the corrections become negligible and the iterative process is terminatedn
after n iterations, the values in X are adopted as the elements of X2. In

joining this vector to the independently chosen vector X1 , one obtains the

desired vector X° ,

The model before the I-th iteration can be presented as follows:

i(0  ( -1 1-1 i-1
G(X ° )  ' G(XIX2) = G(X 1 ,X2  ) + C2  (X2  - + .1.1. = 0

resulting in the i-th solution:

1-I i-1 -l i-1
X2 - X2  (C ) G(X1 ,X2  ) +

Upon neglecting the higher-order terms represented by the dots, one obtains

I I 1-1 -(C - )- G(X1 -1AX X 2 -X 2  =

2 2 2 -( 2  ) GXX 2

If the values in AX are not deemed negligible, the matrix C is updated upon
2 .12

evaluating aG/ax 2 with the new values X , and is denoted C2 Similarly,

one forms an updated vector G(X1 ,XI) and proceeds to the iteration i+1. After

the final X0 has been computed by this or a similar procedure, an actual

nonlinear least-squares adjustment with constraints can take place.

Ii



3.2 Parametric Elimination Due to Constraints

As we have seen in (lab) of Chapter 2, the nonlinear parametric adjustment

model can be written as
r r A r a r a

x (u a ) . r(uo) + A ru a + (1/2) a u u +. (9a)
0 a(

where

= u - u a (9b)
0

with r=1,2 .... n, a=1,2 .... u; and where

Ar = (axr/aua) 0r = u/2 r Uo)f
A o a13 (x

All lower-case Greek letters vary in the fashion prescribed above for a. A

similar convention applies for other kinds of indices as well (lower-case Roman

letters, etc.). The subscript "o" Indicates the evaluation at the Initial pnint

P lying in the model surface.

The s nonlinear constraints joined to this model are represented by

GLa(U) . 0 . (1Oa)

where L=l.2, .. ,s. This equation can be regarded as the functional form of a

surface, generalized to higher dimensions. In referring to (8) in the preceding

section, one also has

o L(u ) = 0 (b)
0

where the values uo , a=l,2,....u, are known. The functional form (10a)
0a

restricts the final least-squares point, whose model-surface coordinates are u

to a certain lower-dimensional surface embedded in the model surface. From

(lOb) it follows that the initial point P also belongs to this lower-dimensional

surface, which will be called "model subsurface". This is apparent from the

right-hand sides of (1Oab), which contain the same sets of constants (zeros).

The current development is organized along the following lines. First, the
coordinate set (u, a=1,2,....u, is partitioned into (uA. uK A-3.2. u-s.

K=1,2. s. This allows (10a) to be written as

G (u , ) = 0 , (11)

12



representing the functtonal form of the model substurfare. Subject to the

condition stated explicitly in the squel , (11) makes it possible to express the

last s coordinates In terms of the first u s coordinates:

u u ( A ) . (12)

Equation (12) is the Monge form of the model subsurface embedded in the model
A

surface, where u , A=I,2 .... ,u--s, are the subsurface coordinates (intdependent

variables). The substitution of (12) into (Ill) yields

L (u G A K A (13)

which is an identity in the model subsurface. Thus, further identities follow:
;L A _ 321.L

3g l/ollA o 0 gl":inAu 0 (4a.b)

K A Kleading to a relation for u (t ), In this way, the parameters u , K=12 ..... s,

will have been effectively eliminated.

Expressed in the Taylor series, (lOa) reads

G 1 a(il a L Au a L (112) HL  Al At  
... 0,

a - api

where advantage has been taken of (lOb), and where

L  (G11 a"/ 1 H 2OC oa ('tl I - 2Hl/a i ; "l (a) oi . ... .

In using the partition of (o0  an(I the symmetry of partial derivatives in the

lower-case Greek Indices, onte develops this equat ion as

.L A K I1 N\ 1 K 1. A(Lu2 (u U A Au(Lu C A AK K L K M

+ 2 AuA AuK + HL uK Au ... 0 (15a)
AK KM~

where

A A K -KAu UA
, UU U (15b, c)0 o

A K
and where ii u . the model surface coordinates of P. are known (see the0 0)

relation lo and the statement below it). Equation (15a) corresponds to the

step represented by (11). In evoking (12), we next formulate the Taylor series
K

for ii :
K K A + lO )K A (u

AuK " A' A (,2) 0 Au A u ... . (16)
A AO



where

K K A 2K AGA (a u /3 Lu ) A' () Q U -"n 1 ) 0 .

The partial derivatives are again symmetric in the pert i ienI Indices.

The substitution of (16) into (15a) in viow of the step (13) yields
IA . .* ,K uA ( ,2 , ,K hA (u2

g (ifA) = C11 Alu ( A Au (1/2) C' IW A u
A K A K M

(1/2) HA Au A Au 0 N A' K i
AO AK ' (2

IK K AA ,M Q -
(1/2) ' A u A ' Au .. ..

KM A A"AQ

This identity is immediately (-onfirmed ait P. lPpon dlifferentiiting it il

succession In accordance with the step (14a,b), and rearrangting the free as well

as the dummy indices, it follows that

,g L/auA C ,C A'K C, K AUl H, AuA K A K .AO A(

L AK QuG L A 01 K
H AK A 0 A HOK A A

H' K A ,M 0 (17)
KM Q A

2.L A 0 1.t AH l A HK A K(3 y'a t l C K AO AO AK O OK A

H1  A'M A'K (18)+ KM A0 A "

where the dots represent terms containing Au , Au( Au , etc. There is no need to

present partial derivatives of higher order than those featutred inl (17), (18).

The evaluation of (17) and (18) at P yields, respectively,

A'K IK I,
A' 1) C , (19)
A 1 A'

(K _ K L , L A M , L . ,N A M.
0' 1 [If)I D H' M ) (HL + IN ) A' (20)
A , 1, An Am QM M' A' A

where

M L M
L K K

The last equation represents the condition mentioned below (11). In matrix

notation, this condition slates that the matrix ID Ml, is the inverse of [CL

which In tUrn Implies that the matrix ['' ACKj of dimensions sxu Must have
the full row rank s, and, therefore, that the constraints mlist be linearly

- I I I I I III II II I I I* I



independetit InI the• af' irmat iye. ain eventuaIdl r'ea rralivg of para'meters will

ensure that the maI ix i-s rr'gnli a o. sq a re a ii d nonsinguIa) This

subject has already been dise:usseld In SOct ion 3.1, and has led to (lOb) Upon

substituting (19), (?O), dnd higihf- order part ial derivatives (not listed) into

KK
1)6) , one obtains it rei [ttonship for u i , tislts beenr indicated belI w ( .4a b) .

Next. AnK from ( 16) is suhst iitt ed into (g9i). Upon the realization that

A r AuO r A A  ,A r K
a A K

0 r ,A (t Au - 9 \ (1 Al ru0 20 L A AlK Q 1 Al K AiM
cl AD AK KM

this !uhstitution yields

r r Ar r K A r r Kx X A, AK  A' ) A I (1/2) (0 M AK  0 1'AINo A" ,K A AO K M

2 Q A R) " AX A' ) Ali Au (21)AK Q "K.4 A Q
K Kwhere A' A .. . are known from (19), (20) ..... The symbols x and

x in (21) are interpreted as0

1' Pa r A K N Ar

r r a A K A -r A
- x (11 (t i f ( 0 x (11

r
where x is known.

0

Equation (21 ) is now reformulatpd 14 read

-r A - r A Ar A 6r A (
xrlu) xr(u)A)  '(1/2)0nAn AX (I (k 4- *Ai (1/2) f A LI Au A 't l,, '' (22)

u A AO2,(2

where the sets if implicit part ial derivat i\,es at 1', ii.siely

*r _ r A-r 2-r, AA (dx ;u ) (2 ( 7 l I( all

follow readily from (21):

1r r V ,K
AA AA ' K A' A (23a)

I, 0 r I A K 2 K r K AM
AQ Q Al K AW AK 0 Q KM A'A A' Q (2,3)

Whtrfa. equa t i on (9a ) ropreselit s a lnl Ii Ii nealt modelI in t hI' par amot r. u

a -1,2..... , qllot ioil (2) Irepr-esen t o lion I i npar model ini the pitrameters C



I

A ,2. 1i s. In geometrild I terms , t v t he model stirfat', m(Oild i 1t e" of

the point depicting the unconstr i,,ed lest squares ;olut i(on, and u are thf

Model SIIbSurface coordinates of the point depicting the .ons tsrained least-

S(tLrares soIit i (n. The con st rin i ned so Iut ion can hi caYir id out us ing the

geometr i cal al go' it lims desc r i Ied in Sect i on 2 .2 ( see t he peome I ri caI method or

the extended geometrical method). ) owever. haviVig el imilnatv tdhe s parameters
K

it , one now has a snialler syst em to resolve.

3.3 Linear ConstrajnL as a Special Case

In this section, we consider Ilnear const raJnts in coniolliction with the

parametric adjustment model. whi ch cain be' ,ither linear, or nonlinear a.t; in

Chapter 2 Lioear constraints (1Ot) would imply

from which it would foll ow tht

!, K 0 (24)

This outcome would lead to a simplification in the formula (231)). where the

second term in the expression giving fA would b, zero.
At)

Should the parametric model itself be lin-ar, we would further have

0 r 0

This. in conjunction with (24). would yield

- r =o .(25)

Ini such a case, (22) would tier{oiwi

-r A -r N -r A
xx ( I A Au (26a)

,r :- A" A' A' K (26)

A A K A

Equa II oins (26a. b) represen a t inar parametric adjustment model, where the

original design tensor A is replaced by and the original set Au a is
A

replaced by Au . As in thi' pieceding sct t,,.,, h is system is ;mallr than the
Ko'riginl] One, dire to he" ci ii at iOl or f' ar'amfet er's ii



The above el iminaI ion call be cwiif irmed in the standar(i adjustment riotat ion

as follows. In a linear model, the exact observation equations read

V z A X L, (27)

whreL= °  b an a o
where -L and X X -X. as defined earlier. The design matrix A is now

constant regardless of the set X0 . The linear constraints are expressed by

G(Xi p C X 0 , (28a)

where p is a known constant set of s elements and. in analogy to A, the matrix C

is constant Ii agreement with (1), we iise the ilit ji values X such that

G(X0) 9 p C Xo 0 , (28h)

and state that only a U-s subset of X" can be chosen independently In

partitioning C as in Section 3.1. i.e., (z[C 1 C2]. and partitioning X° similarly

0. oT oTT o
as X -[X1  X2 I where X 1 is the chosen subset, from (28b) we have1 2 11

X -C (p + C X ) (29)
2 21 1

Dup to (28a,b). we can write

C X = 0 . (30)

In part itloigX[XT X TI T from (30) we deduce, similar to (29):
1  2

X2  -C2  C I  X 1  (31)

If A in (27) is partitioned in ac(ordance with X as (AI A 2. it follows that

ip. V A A X 1 A1 2 X2  ' L .

However. the subst itution of (31) into this relation yields

V A X " (32a)

where

A A -A 2 C (32b)

The matrices C and C have already been tised in, formirig X0 i (29) . We
2 1 2

observe that the system (32a.b) corresponds to (26b) together with (19).

17



4. CONCLUSION

Many geodetic problems are either presented it) the form of a parametric

model, or can acquire this form upon a simple linear transformation ol

observables. A good example of this transformation is offered by the SS'r

adjustment model. The variance covariunce mat-ix of the original observations

in such cases must be transformed accordingly, if the rigor of the adjustment is

not to be compromised, The most widely a1 repi i'd method of adjustment, the

least-squares method, is used in practice for models that are linear, or have

been linearized. By contrast, the least-squares approach presented herein

focnses on the nonlinear parametric adjustment model which may, furthermore.

contain a set of nonlinear constraints among the parameters.

The resolution of the nonlinear parametric adjustment model without

constraints is addressed through an isomorphic geometrical setup with tensor

structure and notation, represented by a u dimensional model surface embedded in

a flat n-dimensional observational space. The n observations correspond to the

observational-space coordinates of the point Q, the u initial parameters

correspond to the model-surface coordinates of the initial point P, and the u

adjusted parameters correspond to the model surface conrdinates of the least-

squares point P. The least squares criterion r-esults in a minimum distance

property implying that the vector PQ must be orthogonal to the model surface.

The geometrical setup leads to the solution of modified normal equations,

characterized by a positive-definite matrix The latter contains second-order

and, optionally, third-order partial derivatives of the observables with respect

to the parameters. This approach significantly shortens the converge.e process

as compared to the standard (linearized) method.

The nonlinear paramett ic adjustment model with nonlinear constraints is

ai')o resolved through geometrical analogie. In this situation, a point

representing the least squares soltition is restr icted to li in the model

subs.ttcface, i.e., a surface of smaller dimensions than the mmdel surface in

which it is embedded. The geometrical approach leads to the replacement of the

model surface by the model slh.surface, and to the treatment of the observational

point Q with respect to the new sufia(e in thi mainer that resulted in the

(itresctrie'ted) least-sipiari; point P. Atcordingly, the constrained least--

squares point i-; the result of ;in orthogonal prc new'tion of Q onto the model



subsurface. In the adjustment terminology, this approach el iminal-s s of the

original u parameter,;, where s is ilso the number of constraints. !'h e emniint,

parameters are resolved by the method of the nonliinear parametric least-squares

adjustment without constra ints. where all the sirrays must he properly c,,'lified.

A special class of constraints is represented hy inequality constraints,

which are treated her, in a linear form, and ate(' ,insidered in conjunction with

a linear parametric adjustment model. The isomo)r)iph j 1me t'i c-A setuop is now

partly simplifivd, in the sense that genera i surfa ,ew ite replaceud by

hyperplanes. The topic of neoiali ', constraints differs from its equaliiy

counterptrt in that only some constiiw-;t (eI t -d med billding ) ale ret aill ed and

subsequetitly enforced as eqiality crstraints. where,,s the remainincg constraint s

(called iioiithinding) are ignored. rhe most diff icult question, then, is to

determine which of t he constrainits should be retained as binding;. In the

geometricall context , this problem is addressed by orthogonally projecting the

point representing the unrestri'ted !east squares solcirion from an origici]

model hyperplane on to appropriate, hyperplaies(f of 1ower dimensions. Sine

orthogontl projections result in the shortest possible distance between the

unrestricted least squpares poin t and the f inaI constriained point, the solution

belongs to the least sfqiuares categro'y.

The gecmmetl (c I pproach to irqli'tc i ty cons rtr iclt s is compared with the

sLandard resol ution of the same, Ieast s(quares problem via quadratic programming.

A numeri cal example with focur pat;ime tcis is solved by bcth methods , leading to

identical results. '[he main difleronc-e between the two methods is conceptual

The former altributes ai r iict.(ut .conctrival m(,:ii ig tc every adjostment

qusantir.y, and rp ehe the coios tr,i inld lIeast squares soluttion in arcordace with

geometrical principles. rhe iatt-.r is hase.d (in algebraic principles, the key

element of which is th Gauss .lot'dll pivotilyr.. Oft tie ope-rat iona level, the

numerical sys tems t reated by the geometrica I a Igor ithmn become progressive ly

smaller after each orthogonal pro jection along a given path. By c;ontrast, the

size of such systems treated by the quadratic programming algorithm rem,|ins

constant. Another .advant age of the geometrical approach consists in an early

detecti nrc of a pith leadinig to a non !a,st squares solutioll.



APPENDIX A

RIGOROUS ADJUSTMENT

OF SATELLITE-TO-SATELLITE TRACKING DATA

In this appendix, we describe the adjustment model of the satellite-to-

satellite tracking (SST), and, subsequently, a nonlinear least-squares method

consistent with such a model. The observations in the SST, whether in the high-

low or the low-low configurations, are the relative velocities between two

satellites. These range-rate data, the error characteristics of which are

assumed to be known, serve in the determination of the detailed gravity field of

the earth.

SST Adjustment Model

In terms of the adjustment model, the observables are represented by

intersatellite range rates and the unknown parameters are represented by

selected gravity field parameters and other desired quantities. In a standard

procedure, applied to a variety of problems in physical sciences, the adjustment

model is linearized, whereupon range-rate observations give rise to observation

equations. This system can then be resolved by the parametric method (also

called the observation equation method) of the least-squares theory. It should

be pointed out, however, that the Intersatellite range rate does not provide a

direct measure of the potential at the satellite positions. A more direct

relationship would be obtained if the observables were Intersatellite velocity

rates, i.e., relative accelerations between two satellites.

This point is illustrated in inertial Cartesian coordinates with familiar

vector notations (here the vectors are underlined). With i=1,2, X. is the

position vector of the satellite I, X. is its velocity vector, R is the

mignitude of the relative-posltion vector between the two satellites, e is

their unit relative-position vector, and R is their range rate. The latter is

the projection of the relatlve-velocity vector onto the relative-position

vector:

k -

E (X 2 X )/R R = IX2  X1

20



The quantity central to the determination of the gravity field is the time

derivative of R, obtained by numerical differentiation. The new quantity R,

i.e., the relative acceleration between the two satellites, can be directly

related to the potential at satellite positions. The acceleration vector is

numerically equal to the gradient of the gravitational potential. We thus have

R dR/dt = a i- b

where

a (_V2  V.

b = ((2 X)'( 2  kl) - R2 1/R

Here V denotes the potential at the satellite position I and vV I is the

gradient of V.. The main contribution of the relative acceleration between the

two satellites is contained in the term a, which is the projection of the

relative-acceleration vector onto the relative-position vector.

Although the relative acceleration R is highly suitable for modeling the

gravitational potential as evidenced by the term a above, it is not an observed

but a derived quantity. It Is usually obtained by a curve-fitting procedure,

i.e., by the filtering and the smoothing of the original observations R,

followed by a numerical differentiation with respect to time. There exist

different methods, such as the spline method, for converting the original

relative-velocity observations R Into the relative--acceleration "observations"

R. Various aspects of such methods are described, for example, in [Rummel et

al., 19761 and In [Hajela, 19771. During this mathematical treatment, the

original data are modified (by curve fitting), and the modified data are then

transformed into quantities of a different kind (by numerical differentiation).

The resulting data are not unique, i.e., a different data set is obtained with

each different method used. As a consequence of the accumulated modifications

of the original data, the original error characteristics are lost. The

variance-covariance matrix of the new data set entering the least-squares

adjustment must be then supplied in some approximate fashion.

A more rigorous approach would be to utilize the original observations

together with their variance-covariance matrix. This can be done by

differencing the range-rate observations at some suitable time intervals. In

particular, one has
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[(t*,t) - R(t)]/At = R(t) + o

o - (1/2)(dR/dt)At ..

In considering the previous outcome, the SST adjustment model becomes

[R(t+At) - R(t)]/At' = (V 2 - vV1 )-t 0 + b (])

This model relates a combination of observations (two per equation) to the

parameters of the gravity field and to the small corrections o and b.

Transformation of the SST Adjustment Model

An adjustment model represented by a system of equations encompassing both

the observables and the parameters is described in general by

f(Xa,L a ) = 0 , (2)

where, according to the standard adjustment notation, Xa. 0X° and La= Lb +V. The

sets (column-vectors) Xa. X° . and X contain the values of adjusted parameters.
a

initial parameters, and parametric corrections, respectively; and the sets L
b
L , and V represent adjusted observations, actual observations, and residuals,

respectively. It Is an ongoing practice that a model such as (2) Is linearized

upon neglecting higher-order terms in its Taylor series expansion. This gives

rise to the matrix equation

A X + B V + W = 0 . (3)

0 b
where A=af/aX and B=af/aL. both evaluated with X and L , and where

W=f(XL b ). The matrices A and B are assumed to have the full column rank and

the full row rank, respectively. Equation (3) characterizes the standard setup

of the general adjustment method, which is resolved in accordance with the

least-squares principle.

The neglect of higher-order terms in the Taylor series expansion of a

nonlinear model represents the greatest simplification and, at the same time,

the greatest shortcoming of the standard adjustment theory. The price to pay

for such a simplification is represented either by non-rigorous results if the

solution is not iterated, or by the necessity to iterate the least-squares
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algorithm. Depending on how severv is the model's nonlinearity, the iterative

process may be slow to converge. Thus. in theory, equation (3) should read

A X * B V + W + ... = , (4)

where the dots represent the contribution of nonlinear terms due, in general, to

the model's nonlinearity In both the observables and the parameters.

If, however, the observables (but not the parameters) are combined in a

linear fashion, (2) can be written in a different functional form, namely

1a -_ B I a  =  F(Xa )  (5)

-awhere the symbol L represents "transformed adjusted observations". The new

matrix B is again assumed to have the full row rank. Since L a=Lb +V and

L a=b+ V, where L b symbolizes "transformed observations" and V symbolizes

"transformed residuals", one has

-b b
L =B L, V = B V (6a,b)

If the model (5) is now linearized In the parameters, it results in the

following system of observation equations:

V A X + L , (7)

where

A aF/ax = design matrix (evaluated with the initial set X ),

X X a X0 = vector of parametric corrections, and

L =FiX° ) _ Lb = F(X) - B Ib = vector of constant terms.

The variance-covariance matrix E of transformed observations Lb is

formed rigorously from (6a) as

I= B BT, (8)

b
where E is the variance-covariance matrix of the actual observations Lb . The

adjustment of the linearized parametric model (7) would proceed with the proper

variance-covarlance matrix from (8). whose inverse would be the weight matrix of

transformed observations and would be used in the formation of normal equations.

The shortcoming associated with the linearization of a nonlinear adjustment
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model has been discussed at the outset of this section. Thus. in theory,

equation (7) should read

V= A X + . + L ,(9)

where the dots represent the contribution of nonlinear terms due to the model's

nonlinearity in the parameters.

The SST adjustment model presented in (1) has the form equivalent to (9).

This stems from the fact that the observations represented by the left-hand side

of (1) conform to the linear pattern (6a). In particular, the left-hand side of

an l-th equation is formed as (]/At)x(observation ii-() I/At)x(observation i).

With a constant At, the matrix B would have the form

1 o 0 ...
B = (1/At) [0 1 1 0 ...

With the aid of this matrix and of the rigorous variance-covariance matrix E of

range-rate measurements, one forms the rigorous variance-covarlance matrix E

as indicated in (8), which is then to be used in the parametric least-squares

adjustment of the SST model.

The SST model is in general nonlinear in the parameters, with the degree of

nonlinearity depending on the type of parameters expressing the desired

components of the earth's gravity field and other phenomena. This, together

with the above outcome, has compelled the analysis to shift focus from the

general adjustment model to the nonlinear parametric adjustment model. With the

provision of using the proper variance-covariance matrix from (8), the overbars

are dropped and the parametric model is written as

La . F(Xa) = F(X° ) + A X + (10)

This model Is alternately presented in the form (9), which now reads

V =A X + .. +, ()

where

V = a . L = vector of residuals,

A 3F/8X r design matrix (evaluated with the initial set K0 ),
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X = X a _ X° 
- vector of parametric corrections, and

o b
L = F(X° ) -, = vector of contant terms.

The variance-covariance and the weight matrices of observations are denoted E

and P, respectively, where P=E There exist an infinite number of sets La

consistent with the model (10). Of these, the least-squares principle selects

the one fulfilling V TPV=minlmum.
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APPENDIX B

LINEAR PARAMETRIC ADJUSTMENT MODEL

WITH LINEAR INEQUALITY CONSTRAINTS

Introduction to Adjustment with Inequality Constraints

When used in conjunction with a parametric adjustment model, inequality

constraints limit the domain of selected parameters or functions thereof.

Qualitatively, this property reminds one of the familiar equality constraints,

where the individual signs - would now be replaced by the signs o or 4.

However. a set of inequality constraints is in general less restrictive than its

equalit; counterpart because only a subset of the former changes into a subset

of the latter in the course of adjustment computations. The constraints having

this property (i.e., whose signs ) or < have changed into the sign =) are called

binding; their number may range from zero to the total number of the original

constraints. The remaining constraints are called nonbinding, and they have no

effect on the adjustment.

The basic, and perhaps the most common, kind of inequality constraints

consists of upper or lower bounds imposed on linear combinations of parameters,

including the class of upper or lower bounds imposed on selected parameters

themselves. An imposition of known lower bounds on selected parameters, for

example, can be an important asset if this is dictated by physical or

mathematical reality. One cannot include such vague information Into the

adjustment process by weighting the parameters in question, since this would

necessitate their a priori estimates as well as the variance-covariance matrix

associated with such estimates. On the other hand, discarding this or similar

information might lead to results inconsistent with the reality. One can then

decide to either forego the inclusion of inequality constraints in the hope that

such an inconsistency will be small or nonexistent due to appropriate measuring

and modeling techniques, or to incorporate these constraints into a rigorous

least-squares adjustment and thereby transform the hope Into certainty.

Adjustment using bounds on specific parameters or their combinations is

Increasingly finding its niche in geodesy, photogrammetry. oceanography, and in

many other sciences. For example, one of the most recent photogrammetric



applications is concerned with digital object reconstruction. It has been noted

that the standard (linear) least squares method is often insufficient because of

Its smoothing effect. A suitable alternative has been considered in terms of

"Chebyshev formulation", which rvpresents a generalization of this method. In

recent reports and papers, such as [Fritsch, 1987], this formulation is achieved

by using the concept of least-squares adjustment with inequality constraints,

where both the parametric model and the constraints are linear. The purpose of

such a development Is to reduce the solution space to a band, which, in turn,

allows one to minimize the maximum error, i.e., to accommodate the worst case.

According to Fritsch 19871, the inequality-constrained least-squares adjustment

was introduced into geodesy by B. Schaffrfn in 1981.

As a plausible oceanographic illustration with bounds imposed on the

parameters, we mention the action spectral density of fluctuations of sea

surface elevation, which is a non-negative quantity over all Spectral bands.

The sea surface fluctuations have been studied by Snyder [1988), who utilizes

the linear relation A=EA iG i , where A is the action spectral density, A are

parameters (to be det.rmlned from observations), G. are basis functions, and
I

where the summation extends over the spectral bands considered, i=1,2...... In

a convenient approach, the spectral representation is adopted as piecewise

continuous, such that G.=l inside the i--th spectral band and G.=O elsewhere.I I

The key consideration pertinent to our discussion resides In the fact that

should A)O hold true everywhere, all of the parameters A. are required to be

non-negative. Thus, the condition A.)O. i=1,2,..... represents a basic case of

linear inequality constraints.

Motivated by the above considerations, the present study has focused on

linear inequality constraints. Due to complexities associated with nonlinear

least-squares adjustment, certain aspects of which are treated in (Blaha, 1989],

the analysis has been further restricted to applications involving linear

parametric adjustment. Upon taking advantage of a geometrical setup reflecting

the situation where a linear model Is to be resolved in conjunction with linear

inequality constraints, a new, yet relatively simple algorithm has been derived

producing a unique least squares estimate. A similar isomorphic geometrical

setup can undoubtedly serve in the future in resolving also nonlinear adjustment

models in conjunction with linear and even nonlinear inequality constraints.



Matrix Formulation of Linear Ineqjuality Constraints

In this section, we present some of the outcome of the study which will be

described in the AFGL Scientific Report No. 2, Linear Parametric Adjustmont

Model with Linear Equality and Inequality Constraints. Although the algorithm

for resolving the linear adjustment model with linear inequality constraints has

beeen derived using geometry with tensor structure and notation, here the results

are presented In the standard matrix notation The inequality constraints have

the form of lower bounds, since upper-bound constraints can be transformed into

lower-bound constraints upon multiplying the pertinent inequality by -I.

The linear parametric adjustment model, before the introduction of ally

constraints, reads

La Lb +VA+ 0
,

La - Lb + V = A X + L °

where the column-vector L contains n adjusted observation%, Lb contains n

actual observations, V contains n residuals, contains n constant values, and

the column--vector X contains u parameters. ,i<n. The symbol A denotes the design

matrix of dimensions nxu, assumed to hav the full column rank u. The above

relation is often written iti the form of observation equations

V = A X + 1, , (1)

where L=L°-L b . When subjected to the least -squares critterion

V P V = minimum . (2)

where P is the weight matrix of observations adopted as the inverse of E. the

variance-covariance matrix of observations, (I) yields the normal equations

N X - , (3a)

with

N = A P , 0 AT P L, (3b,c)

here N is a positive-definite matrix of dimensions uxu and U is a column-vector

of u elements.

The scope of a study concernfed with linear inequality constraints can be

narrowed down in two ways. First, the constraints can be treated in the form

U'X 0 , (4)

I I I I I



where C is a matrix of dimensions sxu, with s4u, assumed to have the full row

rank s. Since, in general, X Xa X° . where X a symbol izes the adjusted

parameters and X0 symbolizes the initial values of parameters, the cases such as

CXc, where c is a constant vector of s elements, can be transformed into (4)

upon properly modifying the values in X

The second simplification can be achieved through a unique linear

parametric transformation carrying thel vector X into a vector Y, likewise

composed of u elements. In particular, upon partitioning X and Y into u-s and s

elements, and attributing the subsets a prime and a double prime, respectively,

we have

y, X , ,

Y"V C' X' 4 C" X" > 0

where C has similarly been partitioned into the submatrices C' and C". The

second equation above is equivalent to (4). From these relations one can

express ' and X" in terms of Y' and Y", and use the result in (1), yielding

V = A' Y L 1, ,

where A' follows from A and from the transformation coefficients. We note that

C" has been assumed to be a regular matrix (i.e., square and nonsingular). Due

to the full row rank of C, this assumption is Justified, either initially or

upon renumbering the parameters. After the vector Y and its variance-covariance

matrix Ey have been determined, the parametric transformation yields the

original vector X, and the law of variance-covariance propagation yields X.

In order to reduce the number of symbols, we change the notation from A' to

A, and from Y to X. The last two equations are thein transcribed as

V A X I, , (5a)

X o , (5b)

where X" is a subset of X. If X" comprises the full set X, the adjustment model

with constraints becomes

V A X I, , (6a)

X > 0 (6b)

'9



This is, in fact, the basic problem disctssed in the previous section, where all

the parameters were required to be non-negative. However, this case is quite

suitable for a general treatment of linear inequality constraints, since

disregarding the pertinent u--s constraints in (6b) leads to the system (5a,b),

which, in turn, is equivalent to the system (1). (4).

Outline of the Geometrical Approach

The derivations summarized in this section will appear in the above-cited

report. In the geometrical context, the n observations grouped in Lb correspond

to the coordinates of the "observational point" Q lying in an n-dimensional flat

"observational space". Since the metric tensors (if all the manifolds considered

here are constant (due to the linear setup), we can Interpret coordinates of a

point as contravariant components of its position vector, and coordinate lines

as oblique Cartesian axes with constant individual scales. The matrices E and P

(constant) correspond respectively to the associated metric tensor and to the

metric tensor of the observational space. The u initial parametric values In X °

correspond to the coordinates of the "initial point" P . The latter lies In theo

known u-dimensional flat "model surface", also called "model hyperplane", which

is embedded in the observational space. In an unrestricted least-squares (I.S)

adjustment, the adjusted parameters Xa correspond to the point denoted P, which

likewise lies in the model surface. The adjustment notation X then designates

the contravariant components of the vector P P. Due to constant metric tensorso

of the observational space and of the model surface, vectors in these manifolds

can be freely parallel-transported to any location. This allows us to identify

P . throughout the analysis, with the coordinate origin In the model surface.
0

The unrestricted L.S. solution represented by the point P is obtained by

projecting the observational point Q onto the known u-dimensional model

hyperplane. Here the term "projection" will always be synonymous with

"orthogonal projection". The L.S. solution subject to inequality constraints

would be obtained by projecting Q onto another surface, as yet unknowni, and

generating the point denoted P. Clearly, in the absence of constraints, or in

the presence of only nonbinding constraints, P and P would coincide. But

since, in general, the constraints (5b) or (6b) limit the solution point to a

region of the i-dimensional model hyperplauv, the point P must he transferred in
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some way into this "admissible" region. At the same time, in order to fulfill

the L.S. criterion, the new point must coincide with P.

The above discussion Indicates that the point P, itself the result of a

projection, must be further projected onto an "envelope" delimiting the

admissible region. The transfer of P inside this region, or onto its envelope

other than by a projection, would be inconsistent with the L.S. principle,

which, in the geometrical context, translates into the shortest-distance

principle. The form of (5b) or (6b) allows us to consider the "sides" of the

above envelope as portions of lower dimensional hyperplanes embedded in the

model hyperplane and spanned by combinations of coordinate axes. We will solve

the inequality-constrained L.S. adjustment by projecting the unrestricted L.S.

point P from the known u--dimensional model hyp,,rplane onto a lower-dimensional

"embedded hyperplane", thereby generating the point P. in such a way that

a) the latter hyperplane has the highest dimensionality possible;

b) the line connecting P and P does not pass through any part of the

admissible region; and

c) the point P is consistent with the inequality constraints.

The thus generated constrained L.S. point P is identical to the point which

would be obtained via an orthogonal projection of the observational point Q

directly onto the (unknown) lower dimensional hyperplane.

The determination of the unrestricted L.S. point P corresponds, in the

adjustment context, to the solution of the normal equations (3a-c). If the

parameters show conflict with the constraints represented by (5b) or (6b), P

must be projected as discussed above. The geometrical algorithm developed for

this purpose proceeds in accordance with the strategy summarized as follows:

1) Only the conflicting (negative) elements of X will induce projections.

(Since it can be shown that any permutation of a given sequence of projections

yields the same point, a sequence where only negative components have induced

projections can be imagined In a different permutation, which now may include

projections corresponding to positive components. This specific sequence would

also yield the above point, but such arrangements are strictly avoided.)

2) The projections are "closely nested", in the sense that a point lying in a

given hyperplane can only be projected onto a hyperplane whose dimensionality is



lower by one. T'his process is repeated until the constrained L.S. point P is

reached, or until a given sequence is rejected.

The point P can be reached along different routes, or "branches", formed

by allowable permutations in a successful sequence of projections. Similarly,

one or more non 1,.S. points (to be rejected) may he reached by many branches.

It is thus important to avoid branches that are essentially repetitJous. To

this end, the geometrical algorithm will keep track, at each leve, of the

permutations that have already taken place. The level m is defined as the stage

in the algorithm where the number of consecut ive projections has reached m, and

the dimensionality of the latest hyperplane is urm. If. for example, a given

branch includes the projections symbolized by the letters a. b, and c, another

branch containing the projections c, a, b will be discarded at the third level.

As another example, if the projection sequence g, h is rejected, the sequence h.

p. q. g will be automatically rejected since it contains the forbidden

combination g and h.

One of the crucial elements in the geometrical algorithm is the early

detection of branches that should be rejected. The rejection criterion will be

provided by a "guide vector" of u elements, which will contain the differences,

in model-surface covariant components, between a projected point and the

unconstrained L.S. point P. It can be shown that the elements in the guide

vector must be >0, otherwise the pertinent branch leads to a non-L.S. point.

This property can be first demonstrated for the constrained L.S. point P,

which can be thought of as lying in a u-m dimensional hyperplane. Since P is

the result of an appropriate orthogonal projection (composed of m "closely

nested" projections) of P onto this hyperplane, a u-dimensional sphere centered

at P and having the smallest possible radius touches the hyperplane at P. At

this stage, we introduce a u-1 dimensional hyperplan,, called the P divider,

which is tangent to this sphere at P and generates two u-dimensional half

spaces. The P-divider itself contains the u-m dimensional hyperplan, of the

point P.

If all the coordinate axes are parallel transported from the origin to K.

u-m of them will lie in the above "-r dimensional hyperplane (always containing

the axes of coordinates not subject to constraints), and the remaining m must

lie in the half-space excluding the point P. Rut this means that the cosine of

the angles formed by the vector PP and by aziy of the u coordinate axes must be



either 0 (with regard to the u-m axes spanning the u-m dimensional hyperplane of

P), or larger than zero (with regard to the remaining m axes). This, in turn,

leads to u-m zeros and to m value'; larger than zero in the corresponding entries

of the guide vector formed for the constrained L.S. point P.

The intermediate points formed by the projections that ultimately generate

P can be thought of as a sequence of nested L.S. problems with certain

constraints removed. Therefore, the entries of the guide vectors associated

with the intermediate points along a given branch must be >O, otherwise this

branch will not result in the L.S. point P and should be rejected. Since a

(u-dimensional) sphere touches a hyperplane of any dimensions in one point only,

there can be only one L.S. point P. Jn conclusion, if any branch reaches a

point for which all components subject to constraints are >0, and for which all

guide-vector entries are -O), this point is P. The unique L.S. solution has

thus been found and all the remaining branches should be discontinued.

Description of the Geometrical Algorithm

The unrestricted I,.S. solution X (i.e., a column-vector of u elements

corresponding to the point P) is computed from (3a) as

-1
X N . (7)

It would have been formally more appropriate to denote the unrestricted L.S.

solution by a different symbol, e.g. X , and to reserve the symbol X for the

constrained L.S. solution. However, the geometrical algorithm will be described

more conveniently with the unrestricted solution represented by X. and with the

constrained solution attributed superscripts in parentheses. We now partition X

into u-1 elements and Into the remaining one element, for example the last, and

partition the column-vector 1! in the same way. mii1-'y, The ,,r!' N is

partitioned into the leading submatrix of dimensions (u 1)x(u-1) and into the

remaining submatrices of dimensions, clockwise, (u -I11, 1x1 (a single number),

and lx(u 1). These partitions at' symbolized by

]u .
(Si b,c)

_ IIJ N ,,, N IML L~
where X , and N are sinigle numbers.wh r 0li inntl



It should be borne in mind that the s bscript "1" does not correspond to

one element, or to the first element, but to t set of n-I cI ements, here the

first u-I of u elements. On the other hand, the subscript "u" pertains to one

element, here the last of I elements. Since the matrix N is positive--definite,

so are its diagonal submatrict-s N1 and Nuu; here, in particular, Nu >0. The

submatrices N and N II are transposes of each other A computational advnjtage

stemming from an arrangement such as NO) is that

-1
N = 1/N (8d)
tl UU n

the reciprocal value of a number. Most importantly, partitions of this kind

correspond to the geometrical strategy of closely nested projections. The

formulas presented in matrix notation in the remainder of this section have been

developed via geometry, although some of them can be derived, in a more tedious

manner, also by algebraic means.

If the unrestricted L.S. solution produces X <0, the constraint X .O may

be binding. Henceforth we assume the constraints (6b), or (5b) where X belongsU

to the set X". Thus, a reference to an element as being "negative" implies

"°conflicting negative". Should the above constraint be indeed binding, it would

induce a projection onto the appropriate hyperplane of dimensions u-1. This

possibility should be scrutinized In an appropriate branch. As an example, in a

three-dimensional model hyperplane with oblique Cartesian axes {x,y,z}, an

unconstrained result z<O (with respect to P as the origin) would induce theo

projection of P onto the plane ix,y) in one of possible branches.

In considering X as the last. parameter, the projection of P onto theu

hyperplane spanned by the first u-I coordinate axes can be shown to be

eqoJvalent to solving

( ) -1 (1)

where, in analogy to (8a), X contains u-I elements and X( 1) is a singleweeinaaoyt(8, I u -

number. The varlance-covarlance matrices for these two subsets are N 1 and

0, respectively. However, instead of Inverting N11 at the first level, and

Inverting progressively smaller matrices at further levels, one can take

advantage of the property paralleling (8d) and deduce

Nl N N I I u) l
II (10)



11 l uu u I

where N N ,N . and N are submatrices of N the latter is imagined to

be partitioned in a complete analogy to (8c), except that the superscripts now

replace the subscripts.

We next attribute to X a superscript in parentheses, indicating the level

of the algorithm, i.e., the number of projections effectuated up to and

including the current step. This notation has already been used in (9a,b) above

for the first level of projections. In general, the notation X(M) identifies

a vector of u-m elements obtained at the m-th level: the remaining m elements in

the complete vector X (M are zero. The elements brought to zero by successive

projections are not, in general, the last elements in given partitions as was

assumed in (8a-d) and (9a,b) for convenience. Instead, they are the negative

elements which have effectively induced such projections. However, their

location In X or its subsequent partitions does not alter the architecture of

formulas such as (10). We only have to make sure that N ul corresponds to the

iiinegative element Inducing the (next) projection. It is now denoted N , where

the generic index "i" symbolizes the negative element in question. Clearly, N

may correspond to the last element as well, provided the latter turns out to be

negative, and provided we are treating the branch where this element actually

Induces a projection. This reflects the possibility that there may exist other

negative elements In X, each of which may induce a legitimate (non-repetitious)

projection and thereby create a separate branch.

The submatrices of the type N1 will also be attributed a superscript
-1

in parentheses, likewise indicating the level of projections. Thus, N is
written as N . to be potentially partitioned into the submatrices denoted
N (1)11 N i N1 l1' i and N'M i l

N. and equation (10) is rewritten as

N( 1  N1  N i  (1/Nii  N i  (11)

The lack of superscripts in parentheses on the right-hand side of (11) is

equivalent to a superscript "(0)". This means that no modification has taken
11 Ii ii Ai

place as yet, and, accordingly, that N , N , N , and N are submatrices of

the original matrix N In general, we have

N(M) (m l (m 1)1i 1/N -l ] N m )il

N N II [ 1N NI (12)



where the dimensions of N ( R) are (u-m)x (u-m). The dimensions of N (m 1)11 are

the same, whlile the dimensions of N 1)1i and N (m  1 are respect ye] y (u a)x I

and lx (it m) . Predictably, N u i is a single number r.gardl ess of in.

Although the vector U has served in obtaining the unrestricted L.S.

solution in (7), it will not be used in any capacity for any other task. This

stems from the fact that the geometrical algorithm avoids new matrix inversions,

such as featured in (9a), and takes advantage instead of the relations such as

(12), involving relatively very few scalar multiplications. In lieu of (9a),

the first-level solution is given by the algorithm as

x X N ii (1,'N ) X i  (13)

and in lieu of inverting N1 1 , one can obtain the variance-covariane matrix

associated with this solution as in (11). In general, the m-th level solution

is given by the algorithm as

X( M ) = (M-1) - N m l)1i [11N(m-l)ii] x(m-l) (14)
1 1 tl

with the corresponding variance-covariance matrix N (m ) presented in (12). The

remaining m elements in X (M ) are zero, and the pertinent variance-covariance

matrix is a zero matrix.

We notice that not only does the path from (11) to (12) Involve relatively

few scalar multiplications as has already been mentioned, but these operations

take place in successively smaller systems. A similar statement applies also

when proceeding from X 1 to X (m) We reiterate that the generic index "I"

in all of the above formulas identifies a negative element of the solution

vector at a given level. This element is necessarily different from level to

level. In fact, once a negative element has been suppressed by a projection, it

becomes zero and remains fixed at that value.

Without the aid of the guide vector, we would attempt to reach the

cohstrained L.S. solution subject to (6b), for example, by examining various

branches while avoiding equivalent (i.e., essentially repetitious) paths. This

would lead to one or more solutions at a given level, e.g. the level m, the

elements of which would be all non-negative. The values of AVTPV due to each

projection along an individual path would he accumulated and added to the value

of V TPV from (2), associated with the unrestricted ddjustment. The decisions as

to whether a given outcome is a L.S. solution, and as to which branches can be

3 5,



discontinued at what level, would then be made based on the accumulated vT pv.

The Increment in V TPV due to the m-th projection is very simple to compute (il

is, in fact, already partially evaluated in equation 14):

Tp(i) W (m-1)ij](-) 2 (15a)
AV PV [1/N~ [x I(15a)

Based on (15a), the accumulated V~'PV is computed as

V PV - P - AV P A PV ... AVTPV(1bTpv(in) : Tv MT Av (1) MT Avpv 2  .. + vp(in) (15b)

If a certain branch yielded X W) O, all the branches where the accumulated

value of V TPV has surpassed the current value (15b) for this solution would be

discarded. The remaining branches would be continued, since the accumulated

V TPV in one or more of them could be smaller than the current value (even though

they might entail more than m projections). If the latter should occur, it

would indicate, in turn, that the current branch has resulted in a non-L.S.

solution. In spite of the simplicity of (15a,b), this strategy has the drawback

that it discards a branch "after the fact", i.e., after an additional projection

has been computed.

In this context, the guide vector acts as an invisible arm reaching forward

into the next projection and detecting a possible cause for rejection (when one

or more of the vector's elements are negative). Suppose that the current m-th

(in (rn-1)
level has resulted in the solution X I,) obtained upon using N , etc.,

according to (14). Suppose further that some of the elements in X are

negative. However, Instead of a complete formulation of one distinct matrix

N(m associated with each negative element in view of computing distinct vectors

X(m+l) and giving rise to distinct branches, we compute only one diagonal

element of each such matrix N

For the sake of illustration, we consider one (possibly the only) negative

element of X , which we symbolize by "j", i.e., we consider the element

m<0. (The negative element at the previous level was Xm l) The

current negative element X( m ) has the potential to generate the branch "j" at
J

the next level, numbered mvl. This branch, if treated, will require the

knowledge (if the pertinent matrix N W in order to compute the solution vector

(m+l) towever, we only compute the j-th diagonal element of N which isX 1  Hoee eol opt h

needed as a building block of the guide vector at this stage. In denoting It

N m j j and consulting (12), we dIeduce that
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N M)Jj N(m Mi fNIM I ),Ji 1 : ( m I (16)

ira)

The remaining elements of N for the branch "j" will be computed only if this

branch is not rejected by the guide vector.

We are now in a position to complete the formation of the guide vector. As

has been explained, this vector's role is tti examine, from a given level, a

potential projection to be performed at the next level. The guide vector is the

most easily formed at the level 1, although at this level it cannot provide any

service as will become clear presently. In assuming that the element "i" in the

original vector X is negative, X.<O, and in proceeding along this branch, oneI

can show that all the entries of the guide vector at the first level are zero

except for the entry "i", which is positive. The latter is obtained as

(. = (I/N i)(-X.) > 0 . (17)1 1

Since G() ;O by construction, it. is incapable of rejecting its branch.

We confirm the above assertion for a three dimensional model hyperplane

with oblique Cartesian axes (x,y,z), where an unrestricted L.S. point P has

z<O. The projection of P onto the plane (x,y} generates the point P'. for which

the first two covariant components of the guide vector are zero. Regardless of

whether P' falls inside the desired (sub-)region x:O, y)O, the corresponding

P'-divider is Identical with the plane Ix,y}. while the z-axis points away from

the half-space of P; the latter point is "below" the plane (x,y} by virtue of

z<O. But since the z-axis and the guide vector are pointing into the same half-

space, the third covariant component of this vector is positive. Similarly, P

having a negative i-th coordinate may be projected from a u-dimensional model

hyperplane onto a u-1 dimensional embedded hyperplane, generating P' as well as

the corresponding P'-divider. The latter coincides with the embedded hyperplane

and thus contains u-I of the u coordinate axes, while the remaining axis "1"

points away from the half space of P.

We next suppose that the element "j" of X is negative, i.e., X <0.

Before proceeding to the full-scale computation at the second level (branch "j")

(1) ~ (2)(2
necessitating N in order to produce X , we compute the guide vector G

for such a solution in order to determine whether this branch should not be

discarded altogether. The vector (;(2) will have two entries different. from zero
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("1" and "j"), while all its remaining entries will be zero. The entry "j" will

be positive, computed in analogy to (17):

G (2 ) _.(1~ j X() > 0 .(18)

where N l j j would be obtained from the formula (16) with m=1. The entry "i" is

composed of two parts, namely the previous entry "i" plus a simple correction:

G I2 = G ill (11N l) N"l G;21 (19)
11 j

If G 2 ) turns out to be negative (due to the correction), the branch "i', "j"
1 (1) (2)is rejected. Otherwise one proceeds to complete N , leading to X

If, in this case, an element "k" of the solution X(2) is negative, i.e., if
(2)( 3 )
' <0, we generate the guide vector G to test the third level. This

vector will have three nonzero entries, "I", "J", and "k". The entry "k" is

positive, computed in analogy to (17) or (18):

()(2)kk(2

G( 3k = [1/Nl k][-Xk2)] > 0 ,(20)

where N(2 )k k would be readily obtained from (16) with m:2 and with j and k

replacing I and j, respectively. The entry "j" is composed of the previous

entry "j" plus a simple correction (one term):

G(3 )  . - [1/N lC 1
J  N(1 )ik G (3 )  (21)

J jk

Clearly, the elements N N(l)Jk, etc., are available from the previous

level (see the statements following equation 19). Finally, the entry "i" is

composed of the previous entry "i" plus a correction consisting of two terms:

G(3) = G (2)_ (1/N l)[Nl G1,3) 4 Nlk G(3) (22)

I I k
It Is noteworthy that all the building blocks needed in (20)-(22) are available,

whether beforehand or sequentially, with the exception of N 2 )k k , which requires

a very simple computation as indicated above.

The hierarchy in building the guide vector at higher levels is now quite

apparent. The most recent entry in 6 W is always positive, and its computation

requires an element obtainable via (16). The next most recent (nonzero) entry

in G m ) is the corresponding entry In G m -l) plus one correction term. The

following entry in G W is the corresponding entry in G(.(m1) plus two correction

terms, etc. The correction terms in the last nonzero entry of G(m) contain
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-l

elements of the original matrix N i.e., elements belonging to the level "0".

If any entry in G(e) Is negative at any level. £-2,3. m .... the pertinent

branch Is rejected. We recall that if any branch contains a permutation of a

sequence of projections already rejected, such a branch should be discarded

without testing.

Numerical Example Solved by the Geometrical Algorithm

The simple example below is presented at the level of normal equations

(3a), where the inequality constraints have the form (6b):

N X = U . (23a)

X 0. (23b)

The number of parameters is four, i.e., u-4. The matrix N and the vector U are

given as

N 1 0.5 0 -3.753 0.67]N = 0.,5 1 1 0 U = 0.35 (24a,b)

0 1 4 40.2

L 3.75 0 4 25 5.1

The matrix N is positive-definite, and as such can be decomposed into the

product T TT, where the (real) matrix T is regular, upper--triangular.

The unrestricted L.S. solution, denoted X in agreement with an earlier

convention, follows from (23a):

X = N -1 U. (25)

In particular, we have

-l944 432 -40 1481 [-1.61N -_ (1/173) -432 444 -55 56 , X 0.8 (28a,b)

-40 -55 75 -18 05

L 148 -56 -18 32

-1I -1 -I1T
The positive definite matrix N can be obtained from N as T (T- ) where T

was Introduced above; T -1 (real) is likewise regular and upper-triangular.
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In applying the geometrical algorithm of the previous section, we replace

(1) (1)k X(I)m]T
theby a more explicit notation [X

when we need to identify specific elements. Thus, In the branch 1 below, k=2,

9=3, and m=4. This kind of superscript notation will be used at any level

(including the level 0), but only in conjunction with various vectors "X" and

1 4
their subsets. Since X _lI.6 and X =-0.5, the level 1 will give rise to two

branches, namely branch 1 (named after the element X I) and branch 4 (named after

the element X 4). Branch 1 will correspond to the possibly binding constraint

X=0, or, more precisely, X ()10 -, and to the projection of the unrestricted

L.S. point P onto the three-dimensional hyperplane spanned by the second, third,

and fourth coordinate axes. As has been just described, the vector X 1  is

[X ( 1 )2 , X 1 1 3  x(,)4]T while the corresponding vector XI is [X 2 , X3 , X4 ]T

=[0.8, 0.35, -0.5]T  The solution X then follows from (13), where i=1,I--0 0. 5
i.e., where X. is X --1.6. Similar comments with self-evident modificationsI

apply also for the branch 4, where i-4.

If the branch 1 resulted in X(1)>O, and thus X( )O (due to X (1)1=0),
I

the unique constrained L.S. solution would be achieved. In this case, the guide

vector GO) composed of G (1) from (17) and of u-1 zeros would be unnecessary
1

(all its entries would be ;0). However, (17) would be a stepping stone in the

computation of AV TPV as given by (15a), since

AvTpv(l) = G ( 1 )  (_X (27)

where Xt is X1 = -l.6 as above, with similar relationships occurring at higher

levels as well. On the other hand, if the branch I does not lead to such a

quick solution, guide vectors for the next level should be formed for all

possible new branches.

Branch 1. In accordance with the above description, we form

[x(1)21 0.81 [-4321 [0.0677971
X ( 1 )3  0.35 (1/173) -40 (173/944)(-1.6) = 01282203]

x( 1 ) 4  -O.5 148 -0.249153.

From X (1)4<0, we conclude that at least. one more level will be needed. The next

level (i.e., the level 2) will give rise to the branch 1,4. However, before

C(1) (2)proceeding any further, we form the guide vectors G and 6 ( 2  the latter to
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test whether the branch 1,4, and thus the entire branch 1, shotild not be

rejected. First, (17) yields
G 1  (173/944)xl.6 - 0.293220

from which it follows that AvTPV() 0469153. In view of G(2) we compute

IN( 1 4 4 via (16) with m=l. upon the substitution i=1 and jz4:

(M44 2
N ( (1/173)(32- 148 /944) - 0.050847

With this entry, (18) and (19) yield

(2)
G = (1/0.050847)xO.249153 4.9G4 =

G 2  = 0.293220 - (173/944)(148/173)x4.9 =-0.75.

Accordingly, the entire branch I is rejected.

Branch 4. This branch corresponds to the possibly binding constraint

X( 1 ) 4 0. In analogy to the preceding procedure, we have

[xl) [i1.6 - 148] 0.7125 1
x(l2 0.8 - (1/1713)1-56 (173/32)1-0.5) -0.075

lx(1)3 0.35 1-18 0.06875]

The only possible branch at the level 2 is 4,2. We notice that since the branch

1,4 was rejected above, so would be the branch 4,1; but the latter would now

correspond to "projecting a positive component", which had been eliminated from

the strategy. In view of the guide vectors G ( 1 ) and G 2 ) , we compute

G -
1 ) = (173/32)xO.5 =2.703125

4

from which It follows immediately that AvTPv 1 )= 1 . 3 5 1 5 6 2 . Further, with m=l

and the substitution i=4 and j=2, equation (16) yields

N(1)22 = (1/173)(444 56 232) -- 2

With this element, It follows from (18) and (19) that

G(2) = (1/2)xO.075 - 0.0375

(2)

G42) = 2.703125- (173/32)(-56/173)x0.0375 = 2.76875
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Thus, the branch 4,2 at the level 2 will not be rejected. Furthermore, upon
(2)T ()considering (15a), the above result for G yields AvTpv( 2 ) =0.002813.

Branch 4,2. This branch corresponds to the possibly binding constraint

x 0=." We first use (11) with iz4 to compute N which will serve to

evaluate X(
2 )

44 -432 -40 1481

NM (1/173)i -432 444 - 56 (1/32148 -56 -181)

-40 -55 75 -18

[1.5 -1 0.25]

N K25  2 -0.5

L0.25 -0.5 0.375I

This result is the same as the inverse of the (3x3) leading submatrix of N in

(24a). However, the above scheme is much more economical, amounting to only a

few scalar multiplications (advantage should be taken of the symmetry of N- 1 ,

N )etc.).

With N 1 ) available, the solution X( follows from (14) as

XM0725 - [-1](1/2)(-0.075) =-- .75

(L2)5 3]F10
×(21 LO06087 -0. 0.5

Since these values are positive, the constrained L.S. solution has been

achieved, namel y

x(2) (0.675 0 0.05 0 1T

According to (15b), the accumulated V TPV is

vTpv ( 2 ) = vTpv + 1.351562 - 0.002813 = vTpv , 1.354375

We note that if the algorithm started with the branch 4, branch 4,2 would yield

the unique constrained L.S. solution and branch 1 would be skipped altogether.
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escription of hI m Agi ,m

The I..S adjustment of a linear parametric mmi.*l with I near I nequa 1 ty

constraints atin be treated by the method of quadra ic progr;olrnmirig presented in

[Bard, 19741, Section 6-2. In principle. the problem formtilatid on page 147

therein seeks to minimize the quadratic: fitet ion Q in the parameters X, namely

Q(X) = XT N X - 2 XT U + r (28a)

subject to the inequality constraints

C X ; 0 (28b)

The dimensions of N, C, X, and U are respectively tXU, sXu, uxi, and uxl. This

task is equivalent to minimizing vTpv as iii (2), subject to the constraints

(28b). Accordingly, in terms of our notation, c in (28a) corresponds to LT PL.

It should be mentioned that the notation in [Bard. 1974] differs from that

employed herein in several respects. Fot exampl, v corresponds here to X. R

corresponds to N, q corresponds to U, etc.

As in (25), we denote the unrestricted [.S. solution by X and write

-l
X = N .

The algorithm presented by Bard [19741 is transcribed below in our notation.

1) Form the matrix E of dimensions sx(s*1):

F [W z) = [CN-IC T  CX] ; (29)

W is a matrix of dimensions sxs, and z is a column-vector of s elements.

2) Tn conjunction with E, form the vector k of s elements, whose entries are

initially set to unity.

3) Find the "F" for which ziki~a=minimum; initially, a will be the smallest

element of z. If a;O, go to step 5.

4) If a<O, execute the Gauss Jordan pivot on the element (i,i) of E, and

change the sign of k i . With the notation t- iEii, this pivoting consists

of two basic steps, where "-" symbolizes the replacement of elements:

a) For all the elements of E except the i--th row and the i -th column:

E E E , E. t
pq pM p I4q
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b) For aIll the remaining e!lements, start ing with the i-th row except

the element (Li):

E. -, E t ;
iq i1q

cont inuinp with the i lh cllumni except the element (i,i

E * -E t ;p1 pi

and ending with the element (i,i):

E.. - t
11

In fa(ct, the three pait ; of thL currerit i ter.. "h" ro) Id be

performed In any order.

The new matrix E and the new vector k replace their previous counterparts,

and, accordingly, are denoted again E and k. Within E, the symbols W and z

are preserved as well. After the above replacements, return to step 3.

5) Suppose s' of the s elements In k are -1 (the others being t-1). Form the

matrix C' of dimensions s'xu from C, upon grouping the rows of the latter

corresponding to the elements -1 In k. This procedure eliminates the rows

of C corresponding to +1 in k, which represent nonbinding constraints. In

the same way, form the column-vecLor z' of s' elements from z (z is the

last column in the most recent matrix E). The constrained L.S. solution,

denoted X', Is given as

X' - N -I  (! C IT z') (30)

Numerical Example Solved by the Quadratic-Programming Alg-orithm

The example used in this illistratlon is the one solved previously by the

geometrical algorithm. Accordingly, C-I, s~u=4, and, from (29),

-1
E = (W z] -7 [N X]

The values of N 1 and X are given in (26a,b). Thus, the initial matrix E and

the Initial vector k are
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5.456647 2.497110 0.231214 0.855491 1.6

E -K2 4 9 7110 2.566474 -0.317919 -0.323699 n.8 k H
-0.231214 -0.317919 0.433526 -0.104046 ) 35

L 0,855491 -0.323699 0.104046 0.184971 -0.5 1

From this setup, the constrained I,.S. solution will ,he reached in four

iterations, in the sense that the computations will pass four times through step

3 of the quadratic--programming algorithm.

Iteration 1. The Gauss-Jordan pivot will be executed on the above element

(1 1). for which t=1/5.456647-0.183263. The matrix E and the vector k become

0.183263 -0.457627 -0.042373 0.156780 -0.2932201 -1

F 0.457627 1,423729 -0.423729 0.067797 0.067797k. k I

0.042373 -0.423729 0.423729 --0.067797 0.282203| 1

L-0.156780 0.067797 -0.067797 0.050847 1-0.249153J

This iteration corresponds t(o the branch I of the geometrical solution.

Iteration 2, The pivoting will take place on the above element (4,4), for

wbich t=1I/0.050847= 19.666667.

0.666667 -0.666667 0.166667 -3.083333 0.475 -1

E = 0.666667 1.333333 -0.333333 -1.333333 0.4 k Ij]

-0.166667 --0.333333 0.333333 1.333333 -0.05 1

-3.083333 1.333333 -1.333333 19.666667 -4.9 -1

This iteration would correspond to the branch 1.4 of the geometrical sclution,

if this branch had been executed. We note that the geometrical algorithm would

have treated a smaller system at this stage, namely a 3×8 system. By contrast,

the quadratic-programming algorithm treats essentially a 4x4 system at every

iteration. We have seen that the guide vector allows the geometrical algorithm

to avoid the (wasteful) execution of the branch 1.4, and directs it instead to

the remaining branch 4.

Iteration 3. The pivoting will take place on the above element (1,1), for

which t=1/0.666667=1.5. This is the second time the element (1,1) is subject

to the Gauss--Jordan pivot.

i Lm mai



1. 1 0.25 4.625 0.7125 1E - 1 2 .0.5 1.75 0 75k t

0.25 --0.5 0. 375 O05625 0}.0{6H75I.625 -1.75 0.5625 5.40625 2.703125J

This Iteration corresponds to the branch 4 of the geometrical sol utioll.

Iteration 4. The pivoting in this last iteration will take place on the

above element (2,2), for which t 0 5.

1 0.5 0 3.75 10,675 1
E = --0 5 n 5 -0.25 0.875 --0.03775 k -

0.25 0.25 1 0.05 I
3.75 0.875 -! 6.9375 -2. 76375_

This iteration corresponds to the branch 4,2 of the geometrical solution, which

yielded the constrained L.S. solution. From the above E and k, the quadratic-

programming algorithm stipulates that

1 010 --0.03751

0 
z

0 0 2. 768751

In using U from (24b), we obtain

1] 'r z' - [0.675 0.3875 0.2 2.33125)

Finally, (30) yields

X N I ( I C T z') [0.675 0 0.05 OJT

whose first and third elements have already appeared at their respective places

in the last column of E above. This solution X' agrees with the final result

xg(2 ) obtained in the branch 4,2 of the geometrical solution.
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