UNCLASSIFIED R

Wwright-Patterson AFB
Dayton, OH, USA

8. PERFORMING ORGANIZATION ANT ADDRESS 10. PROGRAM ELEMENT, PRODECT, TASK

AREA & WORK UNIT NUMBERS
Wright-Patterson AFB
Dayton, OH, USA

- e o -
SECURITY CLASSIFICATION OF THJS PAGE (Wher Dats Entered h’gz:" A e 61543
- REPORT DOCUMENTATION PAGE pp D DeTALCTIONS
m 1. REPORT NUMBLR §2. GOVY ACCESSION NO. 3. RECIPIENY‘S CATALOGC NUMBER
F
m 4. TINLE (anoSubtitie) 5. TYPL OF REPORT 3 PELR]IOD COVERED
o Ada Corpiler Validation Summary Report: 13 January -1989-1 December 199%
R.R. Software, Inc., JANUS/Ada 2.1.1, PC's Limited . PLATORMING DRC. RLPORT Wowi:
’ ’ . . UMBLR
& 386 (Host and Target), 890113wl.10021 - t
< 7. AUTHOR(3) 8. CONTRACT OR GRANT NUMEER(s)
6

xkdcougzo-.,uutc %mc; NAME Aonngpontss 12. RCPORY DATL
a Join rogram ice 1989
United Statrs Department of Defense | anuary. 23
Washington, DC 20301-3082 o
D

14, MONITORING AGENTY NAML & ADDRESS(!f g:fferent from Controliing Otice) 15, SECURITY CLASS (of thisreport)

UNCLASSIFIED
Wright-Patterson AFB 158, QEC}ASS]FICATION DOV SRRDING
Dayton, OH, USA ntoul

16. DISTRIBJTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBJSTION STATEMINY (of the abstractentered inBiock 2C 1f o.Herent from Report)

URCLASSIFIED

DTIC

AUGO 4 1989

rh B

SN ERNEET
o mee s s e .

Ada Programming language, Ada Compiler Valicdation Summary Report, Aca
Corpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

16, SUPPLEMINIASY NDTES

16, KEYwIRDS (Continue onreverse 5:0¢ .Y necessary ano dentify by bioca number)

20. ABSTRALT (Continue Onreverse s.Je if necessary and identify by block number)

JANUS/Ada 2.1.1, R.R. Software, Inc., Wright-Patterson AFB, PC's Limited 386 under
MS DOS 3.10 (Host and Target), ACVC 1.1C

DDt 1473 £DITION OF 3 NOv 65 1S OBSO.ETE
1 AN 73 S/N 0102-LF-014-8601 UNCLASSIFTED

t SLEE&ITY_ t\LASSl'.lC“lOk OF. Thl§ PALE (wsbden Dots bosered)
Wy ; i T

.—7

Ada Compiler Validation Summary Report:

Compiler Name: JANUS/Ada 2.1.1

Certificate Numbers: 890113¥1.10021

Host: PC's Limited 386 under MS DOS 3.10

Target: PC's Limited 386 under MS DOS 3.10

Testing Completed 13 January 1989 Using ACVC 1.10

This report has been reviewed and is approved.

e SN2

Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB, OH L45433-6503

) S —

4 Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

.) i
gl 4 AT
Ada Joint Program Office
William S. Ritchie
Acting Director
Department of Defense

Washington DC 20301

AVF Control Number: AVF-VSR-217.0289
88-09-23-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890113W1.10021
R.R. Software, Inc.
JANUS/Ada 2.1.1
PC's Limited 386 Host and Target

Completion of On-Site Testing:
13 January 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB, OH U45U433-65n2

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

h

Ada Compiler Validation Summary Report:

Compiler Name: JANUS/Ada 2.1.1

Certificate Number: 890113W1.10021

Host: PC's Limited 386 under MS DOS 3.10

Target: PC's Limited 386 under MS DOS 3.10

Testing Completed 13 January 1989 Using ACVC 1.10

This report has been reviewed and is approved.

j{,«v L;/_) m\'

Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB, OH U5433-6503

Ada Validation OrganizationWJ
Dr. John F. Kramer

Institute for Defense Analyfes
Alexandria VA 22311

Ada Joint Program Office 4"”
William S. Ritchie Accession For ya
Acting Director | NTIS GRA&I

Department of Defense DTIC TAB O
Washington DC 20301 Unannounced O

Justifioation

By
Distridution/ __

Avallability Codes
" jAvall atid/ or
Dist Special

',/ u)‘._J v[
i N/z,,‘)zm { |

N

CHAPTER 1

P Sy
. .
VT W

CHAPTER 2

CHAPTER

w

. . e

LD LW WL W W W w
.
_N_NINTONEWN -

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT

REFERENCES
DEFINITION OF TERMS
ACVC TEST CLASSES
CONFIGURATION INFORMATION
CONFIGURATION TESTED
IMPLEMENTATION CHARACTERISTICS . .
TEST INFORMATION

TEST RESULTS « « « & & & & o &« .+ &
SUMMARY OF TEST RESULTS BY CLASS .

SUMMARY OF TEST RESULTS BY CHAPTER

WITHDRAWN TESTS « « .+
INAPPLICABLE TESTS . « +« « « .« .

TEST, PROCESSING, AND EVALUATION MODIFICATIONS .

ADDITIONAL TESTING INFORMATION . .
Prevalidation
Test Method+«
Test Site . ¢« ¢ ¢« ¢ ¢ ¢ ¢ o @

DECLARATION OF CONFORMANCE

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

.

.

. .
wwwwtfjwwwww
OOV NORNN -

— i P md
1
EFWWN

[\S BNV
1
N

CHAPTER 1

INTRODUCTION

R

This Validation Summary Report TVSRR- describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815a.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability;*fﬁGVC)sLT\An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. hﬁhe Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard. .

\~Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--~for example, the
maximum length of identifiers or the maximum values of integer types.
QOther differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.™

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiier oproperly
implements 1legal 1language constructs and that it identifies and rejects
illegal language constructs. The test.ag also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPUSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the resuli. of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

1-1

INTRODUCTION

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Srogram Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 13 January 1989 at Madison WI.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has nc nonconfoyrmities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB, OH U45433-6503

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1=2

' v INTRODUCTION

1.3 REFERENCES

Reference Manual for the Ada Programming Languace,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the

Commentary point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-18154, February 1982 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Comriler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any 1language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test-objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs wWith certain language constructs which cannot be verified at run
time. Tnere are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another languzge (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Clzss A test is
passed if no errors are detected at c¢~mpile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal 1language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

1-4

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indizating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler,
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each (Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled unit are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations 'n the main program or any units referenced by the main
prograa are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two libdrary units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizzticns allowed by the Ada tandard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class T tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-5

INTRODUCTION

customized according to implementation-specific values~-for example, an
-+legal file name. A 1list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementaticn is validated. A test that :s
inapplicable for one validation is not necessarily inappiicable for a
subsequent validatjon. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested
following configuration:
Compiler: JANUS/Ada 2.1.1
ACVC Version: 1.10
Certificate Number: 890113W1.10021
Host Computer:
Machine: PC's Limited 385
Operating System: MS DOS 3.10

Memory Size: 2048 Kbytes

Target Computer:
Machine: PC's Limited 386
Operating System: MS DOS 3.10

Memory Size: 2048 Kbytes

under

the

CONFIGURATION INFORMATION

2.2 TIMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such dimplementation
differences. However, tests in other <c¢lasses also characterize an
implementation. The tests demonstrate the following characteristies:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 17 levels. (See tests DS55A03A..H (8
tests).)

(3) The compiler rejects tests containing block statements nested
to 65 levels. (See test DSEO01B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to six
levels. (See tests DHUOOSE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
LONG_INTEGER and LONG_FLOAT in the package STANDARD. (See
tests B86001T..Z (7 tests).)

¢. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) Not all of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments £ subtypes are performed with the same precvision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses no extra bits for extra range. (See test C35903A.)

CONFIGURATION INFORMATION

(4) NUMERIC_ERROR is raised when a literal operand in a comparison

is outside the range of predefined Integer, when z literal
operand in a membership test 1is outside the range of
predefined Integer, when a literal operand in a comparison is
greater than SYSTEM.MAX_INT, when a 1literal operand in a
membership test is greater than SYSTEM.MAX_INT and no
exception is raised when a literal operand in a comparison is
outside the range of the integer type's base type. (See test
Ci52324A.)

(5) NUMERIC_ERROR is raised when a literal operand in a fixed

point membership test is outside the range of the base type
and no exception is raised when a literal operand in a fixed
point comparison is outside the range of the base type. (See
test ClUs52524.)

(6) Underflow is gradual. (See tests CUS524A..Z (26 tests).)

Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests CU6012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round away

from zero. (See tests CU60124..Z (26 tests).)

(3) The method used for rounding to integer in static unive-sal
real expressions is round away from zero. (See test C4AQ1 ‘.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT_ERROR for an array having a ‘'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

(1) Declaration of an array type or subtype declaration with more

than SYSTEM.MAX_INT components raises no exception. (See test
£360034.)

2-3

CONFIGURATION INFORMATION

(2)

(3)

(%)

(5)

(6)

(7

(8)

CONSTRAINT ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A4.)

NUMERIC_ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX_INT + 2 components. (See test C362028.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises STORAGE_ERROR when the array objects are declared.
(See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT_ERROR when the
length of a dimension is calculated and exceeds INTEGER'LAST.
(See test C52104Y.)

A null array with one dimension of 1length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test ES2103Y.)

In assigning one-dimensional array types, the expression is
evaluated in 1its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C520134.)

In assigning two-dimensional array types, the expression is
not evaluated ir its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Discriminated types.

(1)

In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype 1s compatible
with the target's subtype. (See test C52013A.)

Aggregates.

(1

In the evaluation of a multi-dimensional aggregate, the test
results indicate that index subtype checks are made as choices
are evaluated. (See tests CU3207A and CU3207B.)

2-4

CONFIGURATION INFORMATION

(2) 1In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test EN3211B.)

Pragmas.

(1) The pragma INLINE is not supported for functions or
procedures. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA300UE..F (2 tests).)

Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CAZO09C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

(3) Generic subprogram declarations and bodies can b~ compiled in
separate compilations. (See tests CA1012A and CA2009F.)

(4) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CA1012A.)

—~
wm
~

Generic non-library subprogram bodies c¢an be compiled in
separate compilations from their stubs. (See test CA2009F.)

(6) Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, 3C3204C, and
BC3205D.)

{7) Generic library package specifications and Dbdodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(8) Generic non-library package bodies as subunits can be compiled
in separate compilations. (See test CA2009C.)

(9) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA30114.)

2-5

e

CONFIGURATION INFORMATION

3.

Input and output.

(M

(2)

(3)

(%)

(5)

(6)

(7

(8)

(9)

(10)

(11

(12)

(13)

(14)

The package SEQUENTIAL_IO can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO carn be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2421G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Modes IN FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files. (See
tests CE3102E and CE31021..K (3 tests).)

RESET and DELETE operations are supported for SEQUENTIAL_IO.
(See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text ~files.
(See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

Temporary sequential files are not given names and not deleted
when closed. (See test CE2108A.)

Temporary direct files are not given names and not deleted
when closed. (See test CE2108C.)

Temporary text files are not given names and not deleted when
closed. (See test CE3112A.)

Only one internal file can be associated with each external
file for sequential files when at least one of the internal
files has write access. (See tests CE210TA..E (5 tests),
CE2102L, CE2110B, and CE2111D.)

Only one internal file can be associated with each external
file for direct files when at least one of the internal files
has write access. (See tests CE2107F..H (3 tests), CE2110D
and CE2111H.)

2-6

CONFIGURATION INFORMATION

(15) Only one internal file can be associated with each external
file for text files when at least one of the internal files
has write access. (See tests CE3111A..E (5 tests), CE3114B,
and CE31154.)

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 36 tests had been withdrawn because of test errors. The A'F
determined that 380 tests were inapplicable to this implementation. ELL
inapplicable tests were processed during validation testing except for 271
executable tests that use floating-point precision exceeding that supporsed

-

by the implem=ntation. Modifications to the code, processing, or grading

for 36 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
2 B C D E L

Passed 128 1131 1956 10 29 by 3301

Inarplicable 1 7 388 7 5 2 380

Withdrawn 1 2 33 0 0 0 36

TOTAL 130 1140 2350 17 34 46 3717

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 12 14
Passed 199 576 544 240 170 99 160 332 131 36 251 281 282 2301
N/A W 73 136 8 2 0 6 1 6 0 194 39 380
Wdrn 0 1 0 0 0 0 0] 0 0 129 4 36
TOTAL 213 650 680 248 172 99 166 334 137 36 253 Uuo4 325 3717

3.4 WITHDRAWN TESTS

The following 30 tests were withdrawn from ACVC Versicn 1.10 at the time orf
this validation:

A39005G B9T7102E BC3009B CD2A62D CD2A63A..D CD2A66A..D
CD2AT3A..D CD2AT6A..D CD2A81G CD2A83G CD2A84M..N CD50110
Cb2B15C CDT7205C CDS007B CD7105A CDT7203B CD7204B
CDT205D CE2107I CE3111C CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that 1is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for &a subsequent
attempt. For this validation attempt, 380 tests were inapplicable for the
reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

C35706L..Y (14 tests) C35707L..Y (14 tests)

C35708L..Y (14 tests) €35802L..Z (15 tests)
3-2

C4s241L..Y (14 tests)
CU45421L..Y (14 tests)
c4s524L..Z (15 tests)
C45641L..Y (14 tests)

TEST INFORMATION

Ccis321L..Y (14 tests)
CUs5521L..Z (15 tests)
C45621L..Z (15 tests)
CH6012L..Z (15 tests)

C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

The following 30 tests are not applicable because this

implementation does not support 'STORAGE_SIZE representation

clauses for access types:
A39005C C87B62B CD1009J CD1009R CD1009S
CD1C03C CD2A83A CD2A83B CD2A83C CD2A83E
CD2A83F CD2ABUB CD2ABUC CD2A84D CD2ABYUE
CD2ABYUF CD2A8UG CD2ABLY CD2A84T CD2A8UK
CD24A84L CD2B11B CD2B11C CD2B11D CD2B11E
CD2B11F CD2B11G CD2B15B CD2B16A ED2A86A

The following 16 tests are not applicable because this

implementation does not support a predefined type SHORT_INTEGER:
cus231B Ccu5304B C45502B ClUs5503B Clus504B
CUSS04E C45611B Cls613B CU5614B C45631B
C456328 BS2004E C55BOTB BS5B09D B86001V
CDT101E

B86001X, CUu5231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predefined floating-point ¢type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

CU5531M..P (U4 tests) and CUS532M..P (U4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 32.

DSSA03E..H (U4 tests) use 31 levels of loop nesting which exceeds

the capacity of the compiler.

D56001B uses 65 levels of block nesting which exceeds the capacity
of the compiler.

D640OSF. .G (2
implementation does
procedure calls.

tests)
not

are not applicable because this
support nesting 10 levels of recursive

3-3

TEST INFORMATION

l.

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

LA300O4A, LA3004B, EA3004C, EA3Q0UD, CA300LE, and CA3004F are not
applicable because this implementation does not support pragma
INLINE.

CC1223A ccntains an expression that is expected to be static, but
which this implementation treats as non=-static; thus, this
implementation raises an exception rather <than providing exact
evaluation. The AVO agreed that this issue of staticness within a
generic unit requires further review.

The following 51 tests are not applicable because this
implementation does not support 'SIZE representation clauses for
floating point, one dimensional array, and record types:

cD1009C CD2AU1A CD2A41B CD2A41E CD2A42A
CD2A42B CcDh2Aak2C CD2A42D CD2A42E CD2A42F
CD2A42G CD2AU2H CD2A421 CD2AK2J CD2A61A
CD2A61B CD2A61C CD2A61D CD2A61F CD2A61H
CD2A61I CD2A61J CD2A61K CD2A61L CD2A624A
CD2A62B CD2A62C CD2A6Y4A CD2A64B CD2A64C
CD2A64D CD2A65A CD2A65B CD2A65C CD2A465D
CD2AT1A CD2AT1B CD2AT1C CD2ATID CD2AT72A
CD2A72B CD2AT2C CD2A72D CD2AT4A CD2AT4B
CD2AT4C CD2ATUD CD2ATSA CD2AT5B CD2ATSC

CD2AT5D

The following 13 tests are not applicable because this
implementation does not support record representation clauses:

CD100©°N €D1009X CDh1009Y €D10092Z CD1CO3H
CD1CO4E CD40314 CDUO4 1A CDU40514A Ch40%513
CD40S1C CDU051D ED1D0O4A

CE22102D..%7 (3 tests), CE2102I..J (2 tests), CE2102N..W (10 tests),
CE3102E..Z (3 tests), and CE3102T..K (3 tests) are not applicable
because this implementation supports CREATE (all modes), OPEN (zll
modes), and RESET (to the same mode) for sequential, direct, and
text files.

CE2107B..E (4 tests), CE2107L, CE2110B, CE2111D, CE21073.. (2
tests), CE2110D, CE2111H, CE3111B, CE3111D..E (2 tests), CE3114B,
and CE3115A are not applicable because this implementation does
not permit the association of multiple internal files with the
same external file when one of the internal files has write access
to the external file. The proper exception 1is raised when
multiple access is attempted.

3-4

TEST INFORMATION

s. EE2201D and EE2401D are not applicable because USE_ERROR.is raised
when trying to create a file with unconstrained array tvpes.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 36 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B22003A B24007A B24000A B250024A B26005A B270054
B290014 B371064A B49QOO3A B4G00SA B51001A B53003A
B554014 B630014 B63001B B91001H BA1101A BA1101C
BA1101E BA3006A BA3006B BA3007B BA30084A BA30083
BA3013A BC2001D BC2001E BC3005B

The following modifications were made to compensate for legitimate
implementation behavicr:

a. At the recommendation of the AVO, a "PRAGMA ELABORATE (REPORT):"
was added at the beginning of C39005& %o ensure +hat the
elaboration of the routines in packzge REPORT takes piace before
these routines are called.

b. At the recommendation of the AVO, the variables ¥ and W on line i1
of test CD2C11A were initialized to 5.0 due to PROGRAM_ERROR being
raised when an attempt is made to use the uninitialized variables.

¢c. At the recommendation of the AVO, LONG_INTEGER'IMAGE was
substituted for INTESER' IMAGE in test ED7006C since
SYSTEM.MEMORY_SIZE is outside the range of INTEGER for this
implementation.

d. At the recommendation of the AVO, the lines which check whether

temporary files can be created in tests CE2108B, CE2108D, and
CE3112B were commented out because of the way in which temporary

3-5

—-—r

3

" ' TEST INFORMATION

file names are constructed.

The following tests were graded using a modified evaluation criteria:

a. In test C34006D, the meaning of 'SIZE applied to a type 1is not
clear. The test is graded PASSED provided the only failure
messages arise from the requirements on the value of T'SIZE, where
T is a type.

b. CE3804G writes, then reads, a floating-point literal and tests the
input value against a textually identical 1literal; this
implementation stores the numeric literal with greater precision
than it uses for objects of the type, and because the literal is
not a model number the test for equality at line 121 fails. The
AVO ruled that CE3804G should be counted as passed, for all of its
other checks were passed.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by <the JANUS/Ada 2.1.1 compiler was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the JANUS/Ada 2.1.1 compiler using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration in
which the testing was performed is described by the following designations
of hardware and software components:

Host computer: PC's Limited 386
Host operating system: MS DOS 3.10
Target computer: PC's Limited 386
Target operating system: MS DOS 3.10
Compiler: JANUS/Ada 2.1.1

A set of U5 diskettes containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precisions was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
diskettes. Tests requiring modifications during the prevalidation testing

3-6

TEST INFORMATION

were included in their modified form on the diskettes.

The contents of the diskettes were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was
compiled, 1linked, and all executable tests were run on the PC's Limited
386. Results were printed from the host computer.

The compiler was tested using command scripts previded by R.R. Sof'tware,
Inc. and reviewed by the validation team. The compiler was tested using
the following default option settings:

OPTION EFFECT
/B Error messages are verbose.
/F Library calls are generated for floating

point operations.

/L No listing file is generated.
/0 Memory model 0 is used.
/R The JRL file is put on the same disk as the
input file.
/X Extra symbol table information is not generated.’
/2 Optimization is done only where so specified
by pragmas.

The following option settings were used instead of the defaults:

OPTION EFFECT
/Q Jduiet error messages - suppresses user prompting

on errors.

/W Warnings off - warnings were suppressed mainly
because of the confusing warnings that the
validation tests produce.

/T Trimming code on - this directs the compiler to
generate code which allows the linker to trim
unused subprograms.

/D Debugging code off - this directs the compiler
not to generate any debugging code (generally
line numbers & walkbacks).

/SH Used to re-direct the compiler scratch files

3-7

TEST INFORMATION

into a RAM disk (disk H), thus speeding up the
compiles.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on

diskette and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Testing was conducted at Madison W1 and was completed on 13 January 1989.

APPENDIX A

DECLARATION OF CONFORMANCE

R.R. Software, Inc. has submitted the following
Declaration of Conformance concerning the JANUS/Ada
2.1.1 compiler.

DECLARATION OF CONFORMANCL

Compiler Implementor: R.R. Software Inc.
Ada®Validation Facility: ASD/SCEL, Wright-Patierson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: JANUS/Ada Version: Version 2.1.1
Host Architecture ISA: PC's Limited 386 OS&VER #: MS DOS 3.:
Target Architecture ISA: PC'S Limited 386 OS&VER #: MS DOS 3.1

Implementor's Declaration

I, the undersigned, representing R.R. Software Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that R.R. Software Inc. 1is
the owner of record of the Ada language compiler(s) listed above and, as such,
is responsible for maintaining said compiler(s) in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's

. iy Lo)/ 9.
7/

.R.
James A. Stewart, General Manager

Owner's Declaration

I, the undersigned, representing R.R. Software Inc., take full responsibility
for implementation and maintenance of the Ada compiler(s) listed above, and
agree to the public disclosure of the final Validatlion Summary Report. I
further agree to continue to comply with the Ada trademark policy, as defined by
the Ada Joint Program Office. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada
Language Standard ANSI/MIL-STD-1815A.

. Date; /J/f.ff
.R. Software~inc. M 7 ~
James A. Stewart, General Manager

’

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

A=2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the JANUS/Ada 2.1.17 compiler, as described in this
Appendix, are provided by R.R. Software, Inc.. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG_INTEGER is range -2147483648 .. 2147483647,

type FLOAT is digits 6 range

~((2,0%%128) - (2.0%%104)) .. ((2.0%%128) - (2.0%%104));
type LONG_FLOAT is digits 15 range

-((2.0%%1024) - (2.0%%971)) .. ((2.0%%1024) ~ (2.0%%971));

type DURATION is delta 1.0/4096.0 range
-((2.0%%31) - 1.0)/4096.0 .. ((2.0%#31) - 1.0)/4096.0;

end STANDARD;

Appendix F: Implementation Dependen~izs
F Implementation Dependencies

Ttis appendix specifies certain system~-dependent characteristics of TANUS ‘Ada,
version 2.1.1, for a 386 Pharlap target.

F1 Implementation Dependent Pragmas

In additicn to the required Ada pragmas, JANUS’Ada also provides several others.
Some of these pragmas have a textual range. Such pragmas set some value of
importance to the compiler, usually a flag that may be On or Off. The value to te
used by the compiler at a given point in a program depends on the parameter cf
the most recent relevant pragma In the text of the program. For flags, {f the
parameter is the identifier On, then the flag Is on; If the parameter is the
identifier Off, then the flag is off; if no such pragma has occurred, then a default
value {s used.

The range of a pragma - even a pragma that usually has a textual range - may
vary if the pragma is not inside a compilation unit. This matters only if you put
multiple compilation units in a flle. The following rules apply:

1) If a pragma Is inside a compilation unit, it affects only that unit.

2) If a pragma is outside a compilation unit, it affects all following

compilation units in the compilation.

Certaln required Ada pragmas, such as INLINE, would follow different rules;
hcwever, as it turns out, JANUS’Ada ignores all pragmas that would follow
different rules.

The following system-dependent pragmas are defined by JANUS’Ada. Unless
otherwise stated, they may occur anywhere that a pragma may occur.

ALL_CHECKS Takes one of two Iidentifiers On or Off as its argument, and has a
textual range. If the argument is Off, then this pragma causes
suppression of arithmetic checking (like pragma ARITHCHECK - see
below), range checking (like pragma RANGECHECK -~ see below),
storage error checking, and elaboration checking. If the argument is
On, then these checks are all performed as usual. Note that pragma
ALL_CHECKS does not affect the status of the DEBUG pragma; for the
fastest run time code (and the worst run time checking), both
ALL_CHECKS and DEBUG should be turned Off and the pragma
OPTIMIZE (Time) should be used. Note also that ALL_CHECKS does not
affect the status of the ENUMTAB pragma. Combining check
suppression using the pragma ALL_CHECKS and using the pragma
SUPPRESS may cause unexpected results; it should not be done.

B-2

- e e ————— e N —————————— . = = ¢ e e e ——————

Appendix FE:

ARITHTHECK

CLEANUP

Implementation Dependencies

However, ALL_CHECKS may be combined with the JANU'S’Ada pragmas
ARITHCHECK and RANGECHECK; <whichever relevant pragma has
occurred most recently will determine whether a given check is
performed. ALL_CHECKS is on Yt default. Turrning any checks off may
cause unpredictable results if execution would have caused the
corresponding assumpticn to be violated. Checks should be off cnly in
fully debugged and tested programs. After checks are turned off, full
testing should agaln be done, since any program that handles an
exception may expect results that will not occur if no checking is
done.

Takes one of the two identifiers On or Off as its argument, and has a
textual range. Where ARITHCHECK is on, the compiler is permitted to
(and generally does) not generate checks for situations where it is
permitted to raise NUMERIC_ERROR; these checks include osverflow
checking and checking for division by zero. Combining check
suppression using the pragma ARITHCHECK and using the pragma
SUPPRESS may cause unexpected results; it should not be done.
However, ARITHCHECK may be combined with the JANUS/Ada pragma
ALL_CHECKS; whichever pragma has occurred most recently will be
effective. ARITHCHECK is on by default. Turning any checks off may
cause unpredictable results If execution would have caused the
corresponding assumption to be violated. Checks should be off only in
fully debugged and tested programs. After checks are turned off, full
testing should again be done, since any program that handles an
exception may expect results that will not occur i{f no checking is
done.

Takes an integer literal in the range 0..3 as {ts argument, and has a
textual range. Using this pragma allows the JANUS’Ada run-time
system to be less than meticulous about recovering temporary memory
space it uses. This pragma can allow for smaller and faster code, but
can be dangerous; certain constructs can cause memory to be used up
very quickly. The smaller the parameter, the more danger is permitted.
A value of 3 - the default value - causes the run-time system to be
Its usual immaculate self. A value of 0 causes no reclamation of
temporary space. Values of 1 and 2 allow compromising between
"cleanliness” and speed. Using values other than 3 adds some risk of
your program running out of memory, especially In loops which contain
certaln constructs.

B-3

ENUMTAB

Appendix F: Implementation Dependencles

Takes one of the two identifiers On or Nff as lts argumeart, and has a
textual range. This pragma =controls the zeneration of line rnumter
code and procedure name c¢9daz. Then DERTG is on, such code is
generated. When DEBUG 1is off, nn line rumber code ar procedure
names are generated. This infarmation is used by the walkhack whiczh
is generated after a run-time error (e.z., an unhandled exceptian)
The walkhack s still gzanerated <hen DEBYUG s aoff, but the line
numbers Ti{ll be Incorrect, and no subprogram names w%ill be printed.
DEB!I'G's Initial state can be set by the command line, if noc explicit
spticn Is given, then DEBLG is initially on. Turning DEBUG off saves
space, but causes the lass of much of JANUS’Ada's power in
descriking run-time errors.

Notes:
DEBUG should only be turned off when the program has no errcrs. The
information provided on an error when DEBUG 1is off is not very
useful.

If DEBUG is on at the beginning of a subprogram or package
specification, then it must be on at the end of the specification.
Conversely, if DEBUG Is off at the beginning of such a specification,
it must be off at the end. If you want DEBUG to be off for an entire
compilation, then vou can either put a DEBUG pragma in the context
clause of the compilation or you can use the appropriate ccmpiler
option.

Takes one of the two identifiers On or Off as its argument, and has a
textual range. This pragma controls the generation of enumeration
tables. Enumeration tables are used for the attributes IMAGE, VALUE,
and WIDTH, and hence to input and output enumeration values. The
tables are generated when ENUMTAB is on. The state of the ENUMTAB
flag is significant only at enumeration type definitions. If this pragma
is used to prevent generation of a type's enumeration tables, then
using the three mentioned attributes causes an erroneous program,
with unpredictable results; furthermore, the type should not be used
as a generic actual discrete type, and in particular
TEXT_IO.ENUMERATION_IO should not be instantiated for the type. If
the enumeration type s not needed for any of these purposes, the
tables, which use a lot of space, are unnecessary. ENUMTAB is on by
default.

B-4

Appendix F: Implementation Dependencies

PAGE_LENGTH
This pragma takes a single Integer literal as its argument. It =sars
that a page break shculd be added to the listing after each
occurrance of the given numbaer of lines. The default page lenzth is
32000, so that no page breaks arc generated for most programs. Each
page starts with a header that looks like the fcllewing:
JallUS/ADA Version 2.1.1 compiling file on date at tiae

RANGECHECKTakes one of the two identifiers On or Off as its argument, and has a
textual range. Where RANGECHECK is off, the compiler is permitted ¢
(and generally does) not generate checks for situations where it is
expected to raise CCNSTRAINT_ERROR; these rherks include null
pointer checking, discriminant checking, index cherking, array length
checking, and range checking. Combining check suppression using tho
pragma RANGECHECK and using the pragma SUPPRESS may cause
unexpected results; it should not be done. However, RANGECHECK may
be combined with the JANUS’Ada pragma ALL_CHECKS; whichever
pragma has occurred most recently will be effective. RANGECHECK is
on by default. Turning any checks off may cause unpredictable results
it execution would have caused the corresponding assumption to be
violated. Checks should be off only In fully debugged and tested
programs. After checks are turned off, full testing should again be
done, since any program that handles an exception may expect results
that will not occur if no checking i{s done.

SYSLIB This pragma tells the compiler that the current unit is one of the
standard JANUS’Ada system libraries. It takes as a parameter an
integer literal In the range 1 .. 15; only the values 1 through 1 are
currently used. For example, system library number 2 provides floating
point support. Do not use this pragma unless you are writing a
package to replace one of the standard JANUS’Ada system libraries.

VERBOSE Takes On or Off as its argument, and has a textual range. VERBOSE
controls the amount of output on an error. If VERBOSE is on, the two
lines preceding the error are printed, with an arrow pointing at the
error. If VERBOSE Is off, only the line number is printed.
VERBOSE(Off):

Line 16 at Position 5
ERROR Identifier is not defined

B-5

Appendix F: Implementation Dependencies

VERBOSE(On):

15: if X = 10 tken
16: 2 := 10;

- s - > - - o

ERROR Identifier is nct definzd

The reason for this opticn is that an error message with VERBOSE cr
can take a long time to be generated, especially in a large program.
VERBOSE's initial condition can be set by the compiler command line.

Several required Ada pragmas may have surprising effects in JANUS'Ada. The
PRINPITY pragma may only take the value 0, since that Is the enly value in the
range System.Priority. Specif:ing any OPTIMIZE pragma turns on optimizaticn,
otherwise, optimization is only done if specified on the compiler's command line.
“The SUPPRESS pragma is ignored unless it only has one parameter. Also, the
following pragmas are always ignored: CONTROLLED, INLINE, MEMORY_SIZE, PACK,
SHARED, STORAGE_UNIT, and SYSTEM_NAME. Pragma CONTROLLED is always ignored
because JANUS’'Ada does no automatic garbage collection; thus, the effect of
pragma CONTROLLED already applies to all access types. Pragma SHARED s
similarly lgnored: JANUS/Ada's non-preemptive task scheduling gives the
appropriate effect to all variables. The pragmas INLINE, PACK, and SUPPRESS (with
two parameters) all provide recommendations to the compiler; as Ada allows, the
recommendations are Ignored. The pragmas MEMORY_SIZE, STORAGE_UNIT, and
SYSTEM_NAME all attempt to make changes to constants in the System package; in
each case, JANUS’Ada allows only one vajue, so that the pragma is ignored.

F.2 Implementation Dependent Attributes

JANUS’Ada does not provide any attributes other than the required Ada
attributes.

F.3 Specification of the Package SYSTEM

The package System for JANUS/Ada has the following definition.

B-6

Apperdix F: Implementation Dependencies

package System is
-- System package for JANUS/Adé

-- Types to define type Address.
type Offset_Type is new Leng_Intager;
type ¥crd is range © .. 65536;
for Verd'Size use 16;
type Address is record
Cffsct : Offset_Type;
Segment : Word;
end record;
Function "+" (Left : Address; Right : Offset_Type) Return Address;
Function "+" (Left : Offset_Type; Right : Address) Return Address;
Function "~" (Left : Address; Right : Offset_Type) Return Address;
Function "-" {Left, Right : Address) Return Offset_Type:

type Name is {MS_DOS2);
System_Name : constant Name := MS_DOSZ;

Storage_Unit : constant := §;

Memory_Sizs : constant := 655136;
-~ Note: The actual memory size of a program is determined
-- dynamically; this is the maximum number of bytes in the data
-- segment.

-- System Dependent Named MNumbers:

Min_Int : constant := -2_147_483_6483;

Max_Int : constant := 2_147_483_647;

Max_Digits : constant := 15;

Max_Mantissa : coanstant := 31;

Fine_Delta : conmstant := 2#1.0#E-31;
-- equivalently, 4.656612873077392578125E-10

Tick : comstant := 0.01; -- Some machines have less accuracy;
-- for example, the IBM PC actually ticks about
-- every 0.06 seconds.

~- Other System Dependent Declarations
subtype Priority is Integer range 0..0;

type Byte is range 0 .. 255;
for Byte'Size use 8;

B-7

Appendix F: Implementation Dependencies

end System;

-4

he type Byte In the System packags corresponds to the 8-bit machine byte. The
tops Word is a 16-bit Unsigned Integer type, correspocding to a mackine word.

F.4 Restrictions on Representation Clauses

If T is a discrete type, or a fixed point type, then the size expressicn car give
any value bYetween 1 and 1000 bits (subject, of course, to allowing enough bits for
cvery passibhle value). For other types, the expression must give the default size
for T.

A length clause that specifies T'STORAGE_SIZE for an access type s not
supported; JANUS 'Ada uses a single large common heap.

A length clause that specifies T'STORAGE_SIZE for a task type T Is supported.
Any Integer value can be specified. Values smaller than 256 will be rounded up to
255 (the minimum T'Storage_Size), as the Ada standard does not allow raising an
exception in this case.

A length clause that specifies T'SMALL for a fixed point type must give a value
{subject tc the Ada restrictions) in the range

2.0 ** (-99) .. 2.0 ==» 99 S
inclusive.

An enumeration representation clause for a type T may give any integer values
within the range System.Min_Int .. System.Max_Int. If a size length clause is not
given for the type, the type's size Is determined from the literals given. (If all cf
the literals fit in a byte, then Byte'Size Is used; similarly for Integer and
Long_lInteger).

The expressicn in an alignment clause in a record representation clause must
equal 1.

A component clause must give a storage place that is equivalent to the default
value of the POSITION attribute for such a component.

A component clause must give a range that starts at zero and extends to one less
than the size of the component.

8-8

Appendix F: Implementation Dependencies

JANTUS‘Ada supports address clauses on most objects. Address clauses are nat
allawed on parameters, generic formal parameters, and renamed objects. The
addrass glven for an object address clause may he any legal value of t.pe
Systrem.Address. It will be interpreted as an absolute machine address, using th-
segment part as a selector if In the protected mode. [t is the user’'s responsibility
ts ensure that the value given makes sense (l.e.,, points at memory, dces nrot
svarlay other chjocts, ete)) No other address rlauses are supported.

F.5 Implementation Defined Names
JANUS’Ada uses no implementation generated names.
F.6 Address Clause Expressions

The address given for an object address clause may be any lega! value of type
System.Address. It will be interpreted as an absolute machine address, using the
segment part as a selector if in the protected mode. It is the user's responsibility
to ensure that the value given makes sense (l.e., points at memory, does not
overlay other objects, etc.)

F.7 Unchecked_Conversion Restrictions

We first make the following definitions:
A type or subtype is said to be a simple type or a simple subtype (respectively)
If it is a scalar (sub)type, an access (sub)type, a task (sub)type, or If it satisfies
the following two conditions:
1) If it Is an array type or subtype, then it {s constrained and its index
constraint is static; and
2) If it is a composite type or subtype, then all of its subcomponents have a
simple subtype.

A (sub)type which does not meet these conditions 1is called non-simple.
Discriminated records can be simple; varlant records can be simple. However,
constraints which depend on discriminants are non-simple (because they are
non-static).

JANUS/Ada imposes the following restriction on instantiations of
Unchecked_Conversion: for such an instantiation to be legal, both the source

Appendis F: Implementation Dependencias

acrual subtype and the target actual subtype must be simple subtypes, and they
must have the same size.

rs Implementation Dependencies of 1/0

The syntax of an externa! flle name dapends on the operating system being used.
Some external files do not really specifi Aisk files; these are called detvires
Tevices are specified by special flle names, and are treated specially by scme of
the T'0 routines.

The syntax of an MS~DOS 2.xx3 or 3.xx filename is:

[d:)[path]filenane[.axt]

xhere "d:” Is an optional! disk name; "path” is an optional path consisting of
directory names, each followed by a backslash; "filename” Is the filename
{maximum 8 characters); and ".ext" is the extension (or file type). See your
\S-DOS manual for a complete description. In addition, the following special
device names are recognized:

STI:

STO:

ERR:

CON:

AUX:

LST:

KBD:

MS-DOS standard input. The same as Standard_Input. Input is buffered
by lines, and all MS-DOS line editing characters may be used. Can
only be read.

MS-DOS standard output. The same as Standard_Output. Can only be
written.

MS-DOS standard error. The output to this device cannot be
redirected. Can only be written.

The console device. Single character input with echoing. Due to the
design of MS-DOS, this device can be redirected. Can be read and
written.

The auxliliary device. Can be read or written.

The list (printer) device. Can only be written.-

The console input device. No character interpretation is performed,
and there is no character echo. Again, the input to this device can
be redirected, so it does not always refer to the physical keyboard.

The MS-DOS device flles may also be used (CON, AUX, and PRN without
colons ":'). For compatibility reasons, we do not recommend the use cf these
names.

B-10

Apperdix F: Implementation Dependencies

The MS~DOS 2.xx version of the ''0 system «will do a search of the defaulr
search path (set by the DOS PATH command) if the fcllowing econditions are
met:

1) No disk name or path is present in the file name; and
2) The name is not that of a device.

Alternatively you may think »f the search being done if the file naime dees

. .« s "o

not ~ontain any of the characters *.’, '/, or

The default search path cannot be changed while the program iIs running, as
the path is copied by the JANUS'Ada program when it starts running.

Note:
Creates will never cause a path search as they must work in the current
directory. v

Upon normal completion of a program, any open external files are closed.
Nevertheless, to provide portability, we recommend explicitly closing any files that
are used.

Sharing external flles between multiple flle objects causes the corresponding
external file to be opened multiple times by the operating syvstem. The effects of
this are defined by your operating system. This external file sharing is only
allowed if all internal files associated with a single external file are opened only
for reading (mcde In_File), and no internal file iIs Created. Use_Error is raised if
these requirements are violated. A Reset to a writing mode of a file alreacy
opened for reading also raise Use_Error if the external file also Is shared by
another internal flle.

Binary 1’0 of values of access types will give meaningless results and should not
be done. Binary 1O of types which are not simple types (see definition in Section
F.7, above) will raise Use_Error when the flle is opened. Such types require
specification of the block size in the form, a capabllity which Is not yet
supported.

The form parameter for Sequential_IO and Direct_lIO is always expected to be the
null string.

The type Count in the generic package Direct_I1O is defined to have the range 0 ..
32767.

Ada specifies the existence of special markers called terminators In a text file.
JANUS'Ada defines the line terminator to be <LF> (line feed), with or without an

B-11

Appendix F: Implementation Dependencies

additicna! <CR> (carriage return). The page terminatcr is the <FF> (form feed)
shars-ter; {f it is not preceded by a ‘LF>. a line tarminator is also assumed.

The f'e terminator Is the end=-of-file raturned hy the hast operating system. 1f no
'ine and’'or page terminator directly precedes the file terminater, they are
asstumad. 1P the form "Z" is used, the <Ctr!>-7 character alsc represents the
end-of-lile. This form {s not necessary to correctly read files produced with
JANUS ‘Ada and most other programs, but may be occasionally necessary. The only
legal forms for text files are ™" (the null string) and "2". All other forms raise
USE_ERROR.

if the form is "", the <Ctr1>-Z character is ignored on Input. The <(CR> charnrter
is alxays ignored on input. (They will not be returned by Get, for instance). 1\l
aother control characters are sent directly to the user. Qutput of control characters
does not affect the laycut that Text_lO gzenerates. In particular, output of a <LPF>
hefore a Nex_Page does not suppress the New_Line caused by the New_Page.

On output, the *“Z" form causes the end-of-flle to be marked by a <CtrI>-Z;
otherwise, no explicit end-of-file character Is used. The character pair <CR> <LF>
is written to represent the line terminator. Because <CR> Is ignored on input, this
is compatible with input.

The type Text_IO Count has the range O .. 32767, the type Text_I0.Field also has
the range 0 .. 32767.

10_Exceptions.USE_ERROR 1is raised if something cannot be done because of the
external file system; such situations zrise when one attempts:
- to create or open an externul file for writing when the external file is
already open (via a different i{nternal file).
-~ to create or open an external flle when the external file is already open for
writing (via a different internal file).
~ tn reset a file to a writing mode when the external flle is already open (via
a different internal file).
- to write to a full disk (Write, Close),
- to create a file in a full directory (Create);
- to have more flles open than the 0OS allows (Open, Create);
- to open a device with an illegal mode;
- to create, reset, or delete a device; '
- to create a flle where a protected flle (i.e., a directory or read-only file)
already exists;
- to delete a protected flle;
- to use an illegal form (Open, Create); or
- to open a flle for a non-simple type without specifying the block size;
- to open a device for direct I/0.

B-12

Appendix F: Implementation Dependencies

I0_Exceptions.DEVICE_ERROR 1is raised i a hardware error other than thage
ccvered by USE_ERROR occurs. These situations should never occur, but may cn
rare scocasicns. For example, DEVICE_ERROR is ralsed when:

- a ftle is not found in a Clcse or a Delete;

- a s¢ek error occurs on a direct Read or Write; or

- a seek arror ocecurs on a sequential Ernd_Cf_File.

The snhtipes Standard.Pesitive and Starndard.Natural, used by some !'0D routires,
have the masimum value 22767.

No package Low_Level_I0 s provided.
F.9 Running the compiler and linker

The JANUS 'Ada compiler is invoked using the following format:

JANUS [d:] filerame [.ext] [/option]
whére filename is an MS'DOS file name with optional disk name [d:], optional
extension [.ext!, and compiler options [/option}). If no disk name is specified, the
current disk Is assumed. If no extension is specified, .PKG is assumed.

The compiler options are:

B Brie? arror messages. The line in error is not printed (equivalent to turning
off pragma VERBOSE).

D Don't generate debugging code (equivalent to turning off pragma DEBUG)

F Use in-line 8087 instructions for Floating point operations. By default the

compiler generates library calls for floating point operations. The 8087 may
be used to execute the library calls. A floating point support library is still
required, even though this option is used.

L Create a listing file with name filename.PRN on the same disk as filename.
The listing file will be a listing of only the last compilation unit in a file.

14 Create a listing file on specified disk 'd’. Choices are 'A' through 'W'.

Ox Cbject code memory model. X Is 0 for the 80386 system. Other memory
mndels are not supported. (Since this model 'limits’' a program to 4 Gigabytes
of Code and 4 Gigabytes of Data, this is not a concern). Memory model 0 is
assumed if this option Is not given.

B-13

Rd
Sd

-3

Appendix F: Implementation Dependencies

Quiet error messages. This optizn canuses the compilar not ts wait for the
user to interact after an errsr In *he usual made, the sompiler will prompt
the user after each error to aslk if the ccmpilation shonld be aborted. This
sprinn is useful if the user wants t; take a cnffee break while the compiler
{s working, since all user prompts nsre suppressed. The errors (if any) will
nc* stay on the screen when thils option is used; therefore, the console
traffic should be sent to the printer or to a file. Be warned that certain
syntax errors ran cause the compiler to print many error messages for each
and every line in the program. A lot of paper counld be used this way! Nate
that the 'Q option disallows disk swapping, even if the 'S option is given.
Route the JRL file to the specified disk 'd’. Choices are 'A' through 'W'. The
default is the same disk as filename.

Route Scratch files to specified disk. This option is useful if you haves a
RAM disk or if your disk does not have much free space. The use of this
option also allows disk swapping to load package specification (.SYM) filas.
Normally, after both the compiler and source flle disks are searched fecr .SYV
files, an error is produced if they are not all found. However, when the 'S
option Is used, the compiler disk may be removed and replaced by a disk to
search. The linker has a similar option, which allows the development of
large programs on systems with a small disk capacity. Note that disk
swapping Is not enadbled by the ‘S option if the /Q (qulet option) is also
given. The ‘'Q option is intended for batch mode compiles, and its purpose
conflicts with the disk swapping. The main problem is that when the 'S
aoption Is used to put scratch files on a RAM disk, a batch file may stop
waiting for a missing .SYM or ERROR.MSG file; such behavior would not be
appropriate when ’‘Q is specified.

Generate information which allows trilaming unused subprograms from the
code. This option tells the compiler to generate information which can be
used by the remove subprograms from the final code. This option increases

-the size of the .JRL files produced. We recommend that it be used on

reusable libraries of code (like trig. librarles or stack packages) - that is
those compilations for which It is likely that some subprograms are not
called.

Con't print any warning messages. For more control of warning messages, use
the following option form (Wx).

Print only warnings of level less than the specified digit 'x’. The given
value of x may be from 1 to 9. The more warnings you are willing to see,
the higher the number you should give.

Handle eXtra symbol table Information. This is for the use of debuggers and
other future tools. This option requires large quantities of memory and disk
space, and thus should be avolded If possible.

Turn on optimization. This has the same effect as if the pragma OPTIMIZE
were set to SPACE throughout your compilation.

8-14

k.,,_ - ——— e ————————— e ———— e - e e

Appendix F: Implementation Dependencles

The default values for the command line options are:

Error messages are verbose.

D~bug code is generated.

Litrary calls are generated for floating point cperations,
Vo listing file is generated.

‘lemoary model 0 is used.

The compilar prampts for abart after every arror.

Tre JRL file !'s pur an the same disk as the inpnt file.
Seratch files are put on the same disk as the compiler.
No trimming code is produced.

All warnings are printed.

oxtra symbol table information is not generated.
Optimization is done only where so specified by pragmas.

NAA-INDO DT IUW

Leading spaces are disregarded between the filename and the call to JANUS.
Spaces are ntherwise not recommended on the command line. The presence of
blanks to separate the options or between the filename and the extension will be
ignered. .

Examples:

JANUS test/Q/L

JANUS test.run/w4

JANUS test

JANUS test .run /B /W/L .
The compiler produces a SYM (SYMbol table information) file vhen a specification
is compiled, and a SRL or JRL (Specification RelLocatable or Janus ReLocatable) file
when a body is compiled. To make an executable program, the appropriate SRL and
JRL files must be linked (combined) with the run-time libraries. This {s
accomplished by running the JANUS’Ada linker, JLINK.

The JANTUS’Ada linker is invoked using the following format:
JLINK [d:] filename {/option}

Here "fllename" is the name of the SRL or JRL file created when the main program
was compiled (without the .SRL or .JRL extension) with optional disk name [d:],
and compiler options {/option}. The filename usually corresponds to the first eight
letters of the name of your main program. A disk may be specified where the files
are to be found. See the linker manual for more detailed directions. We summarize
hera, however, a few of the most commonly used linking options:

B-15

e - n ——— —_

Appendix F: Implementation Dependencias

E Create an EXP file. This opticrn has not effect cn the 80386 linker /it
always creates an EXP file).

F0 Use software floating point (the defanlt).

F2 Us2 hardware (80387) floating point.

L Display lots of Information abnut the loading process.

00 IU's> memory model 0 (the default); see the descripticn »f the "'0O aptien in
the compiler, above
"se quiet error messages; i.e., don't wailt for the user to interact after an
arror.

T Trim unused subprograms from the code. This option tells the linker to
reraove subprograms which are never called from the final output file. This
option reducas space nsage of the final! file by as much as 30K.

Examples:

Note that If you do not have a hardware floating point chip, then you

JLINK test
JLINK test /Q/L
JLINK test/L/F2

generally

will not need to use any linker options.

B-16

Appendix F: Implementation Dependenciles

This pages intentionally left blank

B-17

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in 1its file
name . Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below:

Name and Meaning Value

$ACC_SIZE 16
An integer 1literal whose value
is the number of bits sufficient
to hold any value of an access

type.

$BIG_ID1 1..199 => 'A',200 => '1°'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID2 except
for the last character.

$BIG_ID2 1..199 => '4',200 => *2'
An identifier the size of the
maximum input line length which
is identical to $BIG_ID1 except
for the last character.

$BIG_ID3 1..99 => 'A',100 => '3',101..200 =>
An identifier the size of the
maximum input line length which
is identical to $BIG_IDY4 except
for a character near the middle.

TEST PARAMETERS

Name and Meaning Value

$BIG_IDU 1..99 => '4',100 => '4',101..200 => 'A!
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT LIT 1..197 => '0',1698..200 => n298"
An integer 1literal of value 298
with enough 1leading 2zeroes so
that it 1is the size of the
maximum line length.

$BIG_REAL_LIT 1..194 => '0',195,..200 => "69.0E1"
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG_STRING1 1 => "M 2,101 => 'A',102 => v
A string literal which when
catenated with BIG_STRINGZ2
yields the image of BIG_ID1.

$BIG_STRING2 12> "M ,2,.,100 => 'A',101 => 1,102 => '
A string 1literal which when
catenated to the end of
BIG_STRING1 yields the image of
BIG_ID1.
$BLANKS 1..180 => v ¢

A sequence of blanks twenty
characters 1less than the size
of the maximum line length.

$COUNT_LAST 32_767
A universal integer
literal whose value is

TEXT_IO.COUNT'LAST.

$DEFAULT MEM_SIZE 65536
An integer literal whose value
is SYSTEM.MEMORY_SIZE.

$DEFAULT_STOR_UNIT 8

An integer literal whose value
is SYSTEM.STORAGE_UNIT.

Cc-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT_SYS_NAME MS_DOS2
The value of the constant
SYSTEM.SYSTEM_NAME.

$DELTA_DOC 0.000_900_900_&65.661_287_307_739_257_812_5
L real literzl whose value Is
SYSTEM.FINE_DELTA.

$FIELD_LAST 32_767
A universal integer
literal whose value is

TEXT_IO.FIELD'LAST.

$FIXED_NAME NOT_APPLICABLE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT_NAME NOT_APPLICABLE
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.

$GREATER_THAN_DURATION 300_000.0
A universal real 1literal that
lies betveen DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER_THAN_DURATION_BASE_LAST 1.0E6
A universal real literal that is
grezter than DURATION'BASE'LAST.

$HIGH _PRIORITY o
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL~EXTERNAL_FILE_NAME1 \NODIRECTORY\FILENAME
An external file name which
contains invalid characters.

$ILLEGAL_EXTERNAL_FILE_NAMEZ <BAD|"">
An external file name which
is too 1long.

$INTEGER_FIRST -32768

A universal integer 1literal
whose value is INTEGER'FIRST.

c-3

TEST PARAMETERS

Name and Meaning

$INTECER_LAST
A universal integer 1literal
whose value is INTEGER'LAST.

$INTEGER_LAST PLUS_1
A universal integer 1literal
whose value is INTEGER'LAST + 1.

$LESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN_DURATION_BASE_EIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN_LEN
Maximum input line length
permitted by the implementation.

$MAX_INT
A universal integer 1literal
whose value is SYSTEM.MAX_INT.

$MAX_INT_PLUS_1
A universal integer 1literal
whose value is SYSTEM.M:X_ INT+1.

$MAX_LEN_INT_BASED_LITERAL
A universal integer based
literal whose value is 2#11#
with enough 1leading zeroes in
the mantissa to be MAX_ IN LEN
long.

c-4

Value

32767

32768

-305_000.0

-1.0E6

31

15

200

2147483647

2147483648

1..2 => "2:7,3,.197 => '0°',
198..200 => ™11:"

Name and Meaning

$MAX_LEN_REAL_BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

$MAX_STRING_LITERAL
A string literal of
MAX IN_LEN, including the
characters.

size
quote

$MIN_INT
A universal
whose value is

integer 1literal
SYSTEM.MIN_INT.

$MIN_TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT INTEGER,
LONG_FLOAT, or LON7 INTEGER.

$NAME_LIST
A list of enumeration 1literals
in the type SYSTEM.NAME,

separated by commas.

$NEG_BASED INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NEW_MEM_SIZE
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT_MEM_SIZE. If there is
no other value, then use
$DEFAULT_MEM_SIZE.

TEST PARAMETERS

Value

1]
v

1..3 => "16:",”-0196
197..200 => "F,E:"

VOl’

1 2> 1M 2,168 => 141,200 => 't

-2147483648

16

NOT_APPLICABLE

MS_DOS2

16#FFFF_FFFF#

65536

TEST PARAMETERS

Name and Meaning Value

$NEW_STOR_UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE_UNIT, other than
$DEFAULT_STOR_UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE_UNIT.

$NEW_SYS_NAME MS_DOs2
A value of the type SYSTEM.NAME,
other than $DEFAULT_SYS NAME. If
there is only one value of that
type, then use that value.

$TASK_SIZE 16
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN QUT!
parameter.

$TICK 0.01

A real literal whose value is
SYSTEM. TICK.

c-6

L ad

w oV

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 36 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
Al-ddddd is to an Ada Commentary.

a. A39005G has been withdrawn because it unreasonably expects a
component clause ¢to pack an array component into a minimum size
(1ine 30).

b. B97102E has been withdrawn because it contains an unintended
illegality: a select statement contains a null statement at the
place of a selective wait alternative (line 31).

c. BC3009B has been withdrawn because it wrongly expects that
circular instantiations will be detected in several compilation
units even though none of the units is illegal with respect to the
units it depends on; by AI-00256, the illegality need not be
detected until exegution is attempted (line 95).

d. CD2A62D has been withdrawn because it wrongly requires that an
array object's size be no greater than 10, although its subtype's
size was specified to be 40 {line 137).

e. CD2A63A..D, CD2A66A..D, CDZAT3A..D, CD2AT6A..D [6 tests] have
been withdrawn because they wrongly attempt to check the size of
objects of a derived type (for which a 'SIZE length clause 1is
given) by passing them to a derived sub-program (which implicitly
converts them to the parent type (Ada standard 3.4:18)),
Additionally, they use the 'SIZE 1length clause and attribute,
whose interpretation is considered problematic by the WG9 ARG.

f. CD2A81G, CD2483G, CD2a84M and N, and CD50110 have been withdrawn
because they assume that dependent tasks will terminate while the
main program executes a loop that simply tests for task
termination: this is not the case, and the main program may loop
indefinitely (lines 74, 85, 86 and 96, 86 and 96, and 58,

D-1

—v‘

®* by

WITHDRAWN TESTS

respectively).

CD2B15C and CD7205C have been withdrawn because they expect that a

'STORAGE_SIZE length
number of designated objects in a

clause provides precise control over the

collection; the Ada standard

13.2:15 allows that such control must not be expected.

CDS5007TBR has been withdrawn because
implicitly declared

specified for an

CD7105A has been
calls

change

it wrongly expects an
subprogram to be at the the address that is
unrelated subprogram (line 303).

that successive

withdrawn because 1t requires

to CALENDAR.CLOCK change by at least SYSTEM.TICK; however,
by Commentary AI-00201, it 1is
that must be at least SYSTEM.TICK--particular instances of

only the expected frequency of

change may be less (line 29).

CD7203B and CD7204B have been withdrawn because they use the 'SIZE

length clause

and attribute, whose interpretation is considered

problematic by the WG9 ARG.

CDT7205D has been
objective:

of storage for a

CE2107I has been
similar scalar
file--DATA_ERROR
one object as of

how the Ada standard 14.2.4:4 is to be
test objective is not considered valid.

CE3111C has been
when two files
however, this is

CE33014 has been
END_OF_LINE and
were intended to
{(lines 103, 107,

CE3411B has been

column number be
LAYOUT_ERROR is raised by a subsequent PUT operation.

withdrawn because it checks an invalid test

it treats the specification of storage to be reserved
for a task's activation as though it were like the

specification
collection.

withdrawn because it requires that objects of two

types be distinguished when read from a
is expected to be ralsed by an attempt to read
the other type. However, it is not clear exactly
interpreted; thus, this
(line 90)

certain behavior
external file;

withdrawn because it requires
are associated with ¢the same
nct required by the Ada standard.

withdrawn because it contains several calls to
END_OF_PAGE that have no parameter: these calls
specify a file, not to refer to STANDARD_INPUT
118, 132, and 136).

withdrawn because it requires that a text file's
set to COUNT'LAST in order ¢to check that
But the

former operation will generally raise an exception due to a lack

of available

disk

space, and the test would thus encumber

validation testing.

D-2

