
UNCLASSIFIED ,',
_.,SECUR]1' CLASSIFC.A'ION OF 1M5 PAll wf Ae Dm EnIeIed

REPORT DOCUMENTAIION PAGE ,,rm:'vo.r7 E

1. REPORI UMBER 12. GOV1 ACCESSINi NO. . IECIPIELN'S CA7ALOG NUmER

0a A. TZ1L (*flSIVbt'tie) 5. TYPL OF RIPORI & PLRIOD COVERD

Ada Coitpiler Validation Summary Report: 13 january .1989-1 December 199(
R.R. Software, Inc., JANUS/Ada 2.1.1, PC's Limited 6. PLRFORMIkG'bR.G R[POI NUMBEiR
386 (Host and Target), 890113WI.10021

7. AU1NOR(s) I. COhTAACT OR 6RANI NUE[Rjs)

Wright-Patterson AFB
Dayton, OH, USA

1. PIRFORR50',MANIZA71Oh Ahl ADDRLSS 10. PRDCRAm [LENENT. PRr2'E. iAS.~ARLA & VORK UhIT NULJ'I.LRS

Wright-Patterson
AFB

Dayton, OH, USA

11. COMTRO LIWG OFiCE NAM! Ahn A O RSS 12. REPORI DAIL
Ada Joint Program Office 13 January 1989
United Statrs De partment of Defense 13 nury 1989
Washington, DC 20301-3081 1. 12-

14. MOhITORhN AGEKY NAME & ADDR[SS(If dtferentfrom Controllirg Ot ice) 15. SCURIhv CLASS (ofthiSrepor)

UNCLASSIFIED
Wright-Pattersonayton.O, A AB 15. E ASr1CAIO,'DOw%,RAD1h

Dayton, OH, USA hLDOJL N/A

16. DISTRIBYTIOh SIATEMEN1 (ofth(sReport)

Approved for public release; distribution unlimited.

17. S1SERIB210N $TAOiEiYl (oftheabsr& cienterfd,,ock2C ifotHerent from Report)

UNCLAS IFIEDD T I C
1. SUPF,EME;h ,A;i NOTES

AUGO0 4 1989

15. KEY,.)R"S (Co,'tinue on reverse sa , fneceU&,) anodenrif) bybo(,a number)

Ada Progra.-ming language, Ada Compiler Validation Surary Rep:rt, Ada
Corpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MUL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRAC T (Continue on reverse sde if necessary ,endeftit) b, block number)

JANUS/Ada 2.1.1, R.R. Software, Inc., Wright-Patterson AFB, PC's Limited 386 under
MS DOS 3.10 (Host and Target), ACVC 1.1C-

)
DD .'M 1473 tOijoh, or I NO 65 IS oBSO..LIE

I JAN 73 S/N 0102-L,-021-6601 UNCLASSIFrED
i S[9,11Y CLASSIrICAIION Or. IhIS PAOL (.t eeDkt*red;

Ada Compiler Validation Summary Report:

Compiler Name: JANUS/Ada 2.1.1

Certificate Number: 890113W1.10021

Host: PC's Limited 386 under MS DOS 3.10

Target: PC's Limited 386 under MS DOS 3.10

Testing Completed 13 January 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB, OH 45433-6503

' alidation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
William S. Ritchie
Acting Director
Department of Defense
Washington DC 20301

AVF Control Number: AVF-VSR-217.0289
88-09-23-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890113W1.10021
R.R. Software, Inc.

JANUS/Ada 2.1.1
PC's Limited 386 Host and Target

Completion of On-Site Testing:
13 January 1989

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB, OH 45433-65ni

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: JANUS/Ada 2.1.1

Certificate Number: 890113W1.10021

Host: PC's Limited 386 under MS DOS 3.10

Target: PC's Limited 386 under MS DOS 3.10

Testing Completed 13 January 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB, OH 454 33-6503

Dr. John F. Kramer

Ada Validation Organization r

Alexandria VA 22311

Ada Joint Program Office
William S. Ritchie Accession For
Acting Director NTIS GRA&I
Department of Defense DTIC TAB 0
Washington DC 20301 Unannounced 0

Justilfioatto-

By

Distributlon/

Avallabilltr Codas
Avail and/or

Dist Special

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2
1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . • 3-5
3.7 ADDITIONAL TESTING INFORMATION3-6
3.7.1 Prevalidation 3-6
3.7.2 Test Method 3-6
3.7.3 Test Site3-8

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report tVSRf- describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results o9fItaing this compiler using the Ada Compiler
Validation Capability -ACVC)>An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. J/rhe Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.'>

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.-

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The test-ng also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPuSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the result-; of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

1-1

INTRODUCTION

" To attempt to identify any language constructs supported by the

compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 13 January 1989 at Madison WI.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconfirmities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB, OH 45433-6503

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-2

" INTRODUCTI ON

1.3 REFERENCES

Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

INTRODUCTION

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compile:' generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check

test conformity to the Ada Standard. A test may be incorrect
because it has an invalid test-objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada

programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at c-mpile time and the program executes
to produce a ?ASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

1-4

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and eiecution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations '.n the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-5

INTRODUCTION

customized according to implementation-specific values--for example, an
. legal file name. A list of the values used for this validation 4s
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementaticn is validated. A tezt that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: JANUS/Ada 2.1.1

ACVC Version: 1.10

Certificate Number: 890113W1.10021

Host Computer:

Machine: PC's Limited 386

Operating System: MS DOS 3.10

Memory Size: 2048 Kbytes

Target Computer:

Machine: PC's Limited 386

Operating System: MS DOS 3.10

Memory Size: 2048 Kbytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 17 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler rejects tests containing block statements nested
to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to six
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
LONG INTEGER and LONGFLOAT in the package STANDARD. (See
tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) Not all of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments f subtypes are performed with the same preuision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses no extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) NUMERIC ERROR is raised when a literal operand in a comparison
is outside the range of predefined Integer, when a literal
operand in a membership test is outside the range of
predefined Integer, when a literal operand in a comparison is
greater than SYSTEM.MAX INT, when a literal operand in a
membership test is greater than SYSTEM.MAX INT and no
exception is raised when a literal operand in a comparison is
outside the range of the integer type's base type. (See test
C45232A.)

(5) NUMERICERROR is raised when a literal operand in a fixed
point membership test is outside the range of the base type
and no exception is raised when a literal operand in a fixed
point comparison is outside the range of the base type. (See
test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round away
from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static univesal
real expressions is round away from zero. (See test C4A01 '.)

e. Array types.

An implementation i5 allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT. For this
implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception. (See test
C36003A.)

2-3

CONFIGURATION INFORMATION

(2) CONSTRAINT ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAXINT + 2 components. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises STORAGE ERROR when the array objects are declared.
(See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT ERROR when the
length of a dimension is calculated and exceeds INTEGER'LAST.
(See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated i. its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that index subtype checks are made as choices
are evaluated. (See tests C43207A and C43207B.)

2-4

CONFIGURATION INFORMATION

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is not supported for functions or
procedures. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA3004E..F (2 tests).)

i. Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

(3) Generic subprogram declarations and bodies can bo compiled in
separate compilations. (See tests CA1012A and CA2009F.)

(4) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CA1012A.)

(5) Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test CA2009F.)

(6) Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC32C-D.)

(7) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(8) Generic non-library package bodies as subunits can be compiled
in separate compilations. (See test CA2009C.)

(9) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

2-5

CONFIGURATION INFORMATION

J. Input and output.

(1) The package SEQUENTIAL IO can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE24010.)

(3) Modes IN FILE and OUT FILE are supported for SEQUENTIAL 10.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes IN FILE, OUT FILE, and INOUT FILE are supported for
DIRECT I . (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE3102E and CE31021..K (3 tests).)

(6) RESET and DELETE operations are supported for SEQUENTIALIO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECT_10. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3 14A.)

(9) Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

(10) Temporary sequential files are not given names and not deleted
when closed. (See test CE2108A.)

(11) Temporary direct files are not given names and not deleted
when closed. (See test CE2108C.)

(12) Temporary text files are not given names and not deleted when
closed. (See test CE3112A.)

(13) Only one internal file can be associated with each external
file for sequential files when at least one of the internal
files has write access. (See tests CE2107A..E (5 tests),
CE2102L, CE2110B, and CE2111D.)

(14) Only one internal file can be associated with each external
file for direct files when at least one of the internal files
has write access. (See tests CE2107F..H (3 tests), CE2110D
and CE2111H.)

2-6

CONFIGURATION INFORMATION

(15) Only one internal file can be associated with each external
file for text files when at least one of the internal files
has write access. (See tests CE3111A..E (5 tests), CE3114B,
and CE3115A.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 36 tests had been withdrawn because of test errors. The AI.
determined that 380 tests were inapplicable to this implementation. Ail
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implemzntation. Modifications to the code, processing, or gradin-
for 36 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 128 1131 1959 10 29 44 3301

Inapplicable 1 7 358 7 5 2 380

Withdrawn 1 2 33 0 0 0 36

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 199 576 544 240 170 99 160 332 131 36 251 281 282 3301

N/A 14 73 136 8 2 0 6 1 6 0 1 94 39 380

Wdrn 0 1 0 0 0 0 0 1 0 0 1 29 4 36

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 36 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

A39005G B97102E BC3009B CD2A62D CD2A63A..D CD2A66A..D
CD2A73A..D CD2A76A..D CD2A81G CD2A83G CD2A84M..N CD50110
CD2B15C CD7205C CD5007B CD7105A CD7203B CD7204B
CD7205D CE21071 CE3111C CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attewpted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 380 tests were inapplicable for the
reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tosts)

3-2

TEST INFORMATION

C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORTFLOAT.

c. The following 30 tests are not applicable because this
implementation does not support 'STORAGESIZE representation
clauses for access types:

A39005C C87B62B CD1009J CD1009R CD1009S
CD1C03C CD2A83A CD2A83B CD2A83C CD2A83E
CD2A83F CD2A84B CD2A84C CD2A84D CD2A84E
CD2A84F CD2A84G CD2A84H CD2A841 CD2A84K

CD2A84L CD2B11B CD2B11C CD2B11D CD2B11E
CD2B11F CD2B11G CD2B15B CD2B16A ED2A86A

d. The following 16 tests are not applicable because this

implementation does not support a predefined type SHORTINTEGER:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D B86001V
CD7101E

e. B86001X, C45231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONGINTEGER, or SHORTINTEGER.

f. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

g. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

h. C45531M..P (4 tests) and C455324..P (4 tests) are not applicable
because the value of SYSTEM.MAXMANTISSA is less than 32.

i. D55AO3E..H (4 tests) use 31 levels of loop nesting which exceeds
the capacity of the compiler.

j. D56001B uses 65 levels of block nesting which exceeds the capacity
of the compiler.

k. D64005F..G (2 tests) are not applicable because this
implementation does not support nesting 10 levels of recursive
procedure calls.

3-3

TEST INFORMATION

1. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

m. LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma
INLINE.

n. CC1223A ccntains an expression that is expected to be static, but
which this implementation treats as non-static; thus, this
implementation raises an exception rather than providing exact
evaluation. The AVO agreed that this issue of staticness within a
generic unit requires further review.

o. The following 51 tests are not applicable because this
implementation does not support 'SIZE representation clauses for
floating point, one dimensional array, and record types:

CD1009C CD2A41A CD2A41B CD2A41E CD2A42A
CD2A42B CD2A42C CD2A42D CD2A42E CD2A42F
CD2A42G CD2A42H CD2A42I CD2A42J CD2A61A
CD2A61B CD2A61C CD2A61D CD2A61F CD2A61H
CD2A61I CD2A61J CD2A61K CD2A61L CD2A62A
CD2A62B CD2A62C CD2A64A CD2A64B CD2A64C
CD2A64D CD2A65A CD2A65B CD2A65C CD2A65D
CD2A71A CD2A71B CD2A71C CD2A71D CD2A72A
CD2A72B CD2A72C CD2A72D CD2A74A CD2A74B
CD2A74C CD2A74D CD2A75A CD2A75B CD2A75C
CD2A75D

p. The following 13 tests are not applicable because this
implementation does not support record representation clauses:

CD1009N CD1009X CD1009Y CD1009Z CD1C03H
CD1C04E CD4031A CD4041A CD4051A CD4051B
CD4051C CD4051D ED1D04A

q. CE2102D..F (3 tests), CE2102I..J (2 tests), CE2102N..W (10 tests),
CE3102E..Z (3 tests), and CE31021..K (3 tests) are not applicable
because this implementation supports CREATE (all modes), OPEN (all
modes), and RESET "to the same mode) for sequential, direct, and
text files.

r. CE2107B..E (4 tests), CE2107L, CE2110B, CE2111D, CE2107G..H (2
tests), CE2110D, CE2111H, CE3111B, CE3111D..E (2 tests), CE3114B,
and CE3115A are not applicable because this implementation does
not permit the association of multiple internal files with the
same external file when one of the internal files has write access
to the external file. The proper exception is raised when
multiple access is attempted.

3-4

TEST INFORMA-ION

s. EE2201D and EE2401D are not applicable because USE ERROR is raised
when trying to create a file with unconstrained array types.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 36 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B22003A B24007A B24009A B25002A B26005A B27005A
B29001A B37106A B49003A B49005A B51001A B53003A
B55A01A B63001A B63001B B91001H BA1101A BA1101C
BA1101E BA3006A BA3006B BA3007B BA3008A BA30083
BA3013A BC2001D BC2001E BC3005B

The following modifications were made to compensate for legitimate
implementation behavior:

a. At the recommendation of the AVO, a "PRAGMA ELABORATE (REPOFT):"
was added at the beginning of C39005A ;o ensure that the
elaboration of the routines in package REPORT takes place before
these routines are called.

b. At the recommendation of the AVO, the variables V and W on line 41
of test CD2C11A were initialized to 5.0 due to PRORA1_ERROR being
raised when an attempt is made to use the uninitialized variables.

c. At the recommendation of the AVO, LONG :NTEGER'IMAGE was
substituted for INTEGER'IMAGE in test EDT006C since
SYSTEM.MEMORYSIZE is outside the range of INTEGER for this
implementation.

d. At the recommendation of the AVO, the lines which check whether
temporary files can be created in tests CE2108B, CE2108D, and
CE3112B were commented out because of the way in which temporary

3-5

TEST INFORMATION

file names are constructed.

The following tests were graded using a modified evaluation criteria:

a. In test C34006D, the meaning of 'SIZE applied to a type is not

clear. The test is graded PASSED provided the only failure
messages arise from the requirements on the value of T'SIZE, where
T is a type.

b. CE3804G writes, then reads, a floating-point literal and tests the
input value against a textually identical literal; this
implementation stores the numeric literal with greater precision
than it uses for objects of the type, and because the literal is
not a model number the test for equality at line 121 fails. The
AVO ruled that CE3804G should be counted as passed, for all of its
other checks were passed.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the JANUS/Ada 2.1.1 compiler was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated thal the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the JANUS/Ada 2.1.1 compiler using ACVC Version 1.10 was

conducted on-site by a validation team from the AVF. The configuration in
which the testing was performed is described by the following designations
of hardware and software components:

Host computer: PC's Limited 386
Host operating system: MS DOS 3.10
Target computer: PC's Limited 386
Target operating system: MS DOS 3.10
Compiler: JANUS/Ada 2.1.1

A set of 45 diskettes containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precisions was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
diskettes. Tests requiring modifications during the prevalidation testing

3-6

TEST INFORMATION

were included in their modified form on the diskettes.

The contents of the diskettes were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was
compiled, linked, and all executable tests were run on the PC's Limited
386. Results were printed from the host computer.

The compiler was tested using command scripts provided by R.R. Software,
Inc. and reviewed by the validation team. The compiler was tested using
the following default option settings:

OPTION EFFECT

/B Error messages are verbose.

/F Library calls are generated for floating
point operations.

/L No listing file is generated.

/0 Memory model 0 is used.

The JRL file is put on the same disk as the

input file.

/X Extra symbol table information is not generated.*

/Z Optimization is done only where so specified
by pragmas.

The following option settings were used instead of the defaults:

OPTION EFFECT

/uiet error messages - suppresses user prompting

on errors.

/W Warnings off - warnings were suppressed mainly
because of the confusing warnings that the
validation tests produce.

/T Trimming code on - this directs the compiler to
generate code which allows the linker to trim
unused subprograms.

/D Debugging code off - this directs the compiler
not to generate any debugging code (generally
line numbers & walkbacks).

/SH Used to re-direct the compiler scratch files

3-7

TEST INFORMATION

into a RAM disk (disk H), thus speeding up the
compiles.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
diskette and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Testing was conducted at Madison WI and was completed on 13 January 1989.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

R.R. Software, Inc. has submitted the following
Declaration of Conformance concerning the JANUS/Ada
2.1.1 compiler.

A-i

DECLARATION OF COUFORMANCI

Compiler Implementor: R.R. Software Inc.
AdaValidation Facility: A.SD/SCEL, Wright-Pauzerson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Use Configuration

Base Compiler Name: JANUS/Ada Version: Version 2.1.1
Host Architecture ISA: PC's Limited 386 OS&VER #: MS DOS 3.2
Target Architecture ISA: PC'S Limuited 386 OS&VER #: MS DOS 3.1

Inplementor' s Declaration

I, the undersigned, representing R.R. Software Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that R.R. Software Inc. is
the owner of record of the Ada language compiler(s) listed above and, as such,
is responsible for maintaining said compiler(s) in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's
corporate name.

Date -L .

J/ames A.Stewart, General Manager

Owner's Declaration

I, the undersigned, representing R.R. Software Inc., take full responsibility
for implementation and maintenance of the Ada compiler(s) listed above, and
agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as defined by
the Ada Joint Program Office. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada
Language Standard ANSI/MIL-STD- 1815A.

Date6

James A. Stewart, General Manager

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the JANUS/Ada 2.1.1 compiler, as described in this
Appendix, are provided by R.R. Software, Inc.. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONGINTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range
-((2.0*128) - (2.0"'104)) .. ((2.0"'128) - (2.0*104));

type LONG FLOAT is digits 15 range
-((2.0"1024) - (2.0**971)) .. ((2.0**1024) - (2.0"'971));

type DURATION is delta 1.0/4096.0 range
-((2.0**31) - 1.0)/4096.0 .. ((2.0**31) - 1.0)/40 96.0;

end STANDARD;

B-I

Appendix F: Implementation Dependpn,-i.s

F Implementation Dependencies

This apprr.rdx specifies certain system-dependent characterlstics of J!,.TUS'Ada,
-ersln 2.1.1, for a 386 Pharlap target.

F.A Implementation Dependent Pragmas

In addition to the requirei Ada pragmas, JANUS'Ada also provides several othorg.
Some of these pragmas have a textual range. Such pragmas set some value of
importance to the compiler, usually a flag that may be On or Off. The value to be
used by the compiler at a given point in a program depends on the parameter of
the most recent relevant pragma in the text of the program. For flags, if the
parameter is the identifier On, then the flag Is on; if the parameter is the
Identifier Off, then the flag is off; If no such pragma has occirred, then a default
value is used.

The range of a pragma - even a pragma that usually has a textual range - may
vary if the pragma is not inside a compilation unit. This matters only if you put
multiple compilation units in a file. The following rules apply:

1) If a pragma is inside a compilation unit, it affects only that unit.
2) If a pragma is outside a compilation unit, it affects all following

compilation units in the compilation.
Certain required Ada pragmas, such as INLINE, would follow different rules;
however, as it turns out, JANUS,'Ada Ignores all pragmas that would follow
different rules.

The following system-dependent pragmas are defined by JANUS,'Ada. Unless
otherwise stated, they may occur anywhere that a pragma may occur.

ALLCHECKS Takes one of two identifiers On or Off as its argument, and has a
textual range. If the argument Is Off, then this pragma causes
suppression of arithmetic checking (like pragma ARITHCHECK - see
below), range checking (like pragma RANGECHECK - see below),
storage error checking, and elaboration checking. If the argument is
On, then these checks are all performed as usual. Note that pragma
ALLCHECKS does not affect the status of the DEBUG pragma; for the
fastest run time code (and the worst run time checking), both
ALL-CHECKS and DEBUG should be turned Off and the pragma
OPTIMIZE (Time) should be used. Note also that ALL-CHECKS does not
affect the status of the ENUMTAB pragma. Combining check
suppression using the pragma ALLCHECKS and using the pragma
SUPPRESS may cause unexpected results; it should not be done.

B-2

Appendl:l F: Implementation Dependencies

However, ALLCHECKS may be combined with the JAN'S'Ada pragnmas
ARITHCHECK and RA%'GECHECK; -hichever relevant pragma hns
occurred most recently "xill determine whether a given check :s
performed. ALLCHECKS is on b. default. Turning any checks off n.."
cause unpredictable results if execution would have caused the
rnrresponding assumpticn to b;- violated. Checks should be off on': t "n
fully debugged and tested programs. After checks are turned off, full
testing should again be dione, since any program that handles an
exception may expect results that will not occur if no checking Is
done.

.Nlr',"CK Takes one of the two identifiers On or Off as Its argument, and has a
textual range. Where ARITHCHECK is on, the compiler is permitted to
(and generally does) not generate checks for situations where it is
permitted to raise NUMERICERROR; these checks include 3verflow
checking and checking for division by zero. Combining check
suppression using the pragma ARITHCHECK and using the pragma
SUPPRESS may cause unexpected results; it should not be done.
However, ARITHCHECK may be combined with the JANUS/Ada pragma
ALL_CHECKS; whichever pragma has occurred most recently will be
effective. ARITHCHECK is on by default. Turning any checks off may
cause unpredictable results If execution would have caused the
corresponding assumption to be violated. Checks should be off only in
fully debugged and tested programs. After checks are turned off, full
testing should again be done, since any program that handles an
exception may expect results that will not occur If no checking is
done.

CLEANUP Takes an integer literal in the range 0..3 as Its argument, and has a
textual range. Using this pragma allows the JANUS'Ada run-time
system to be less than meticulous about recovering temporary memory
space it uses. This pragma can allow for smaller and faster code, but
can be dangerous; certain constructs can cause memory to be used up
very quickly. The smaller the parameter, the more danger is permitted.
A value of 3 - the default value - causes the run-time system to be
its usual immaculate self. A value of 0 causes no reclamation of
temporary space. Values of I and 2 allow compromising between
"cleanliness" and speed. Using values other than 3 adds some risk of
your program running out of memory, especially in loops which contain
certain constructs.

B-3

Appendix F: Implementation Dependencies

Takes one of the two ldentlflprs On or If, as Its argum-rt, a-d has a
textual range. This praga contrc s the goneration ,f line rnmber
code and procedure name co,,. '7her DER"G is on, such code is
generated. When DEBUG is off, n, line rumbrr crde -,r procedure
names are generated. This inf,.rmatlon is used b. the wakbhack which
i- generated after a run-time error (e.g., an inhandled e::cept!, i)

%.e walk. -k i still g nrated :;hen DEBG Is off, but the line

nuibers -ill he incorrect, and no subprogram rames will be printed.
rDEBT'G's tnltial state can be set by the command line, if no explicit
#,ption is given, then DEBUG is initially on. Turning DEBUG off saves
space, but causes the loss of much of JANUS.'Ada's power in
describing run-time errors.

"r,tes:
DEBUG should only be turned off when the program has no errors. The
Information provided on an error when DEBUG is off is not very
useful.

If DEBUG is on at the beginning of a subprogram or package
specification, then it must be on at the end of the specification.
Conversely, if DEBUG is off at the beginning of such a specification,
it must be off at the end. If you want DEBUG to be off for an entire
compilation, then you can either put a DEBUG pragma in the context
clause of the compilation or you can use the appropriate compiler
option.

ENUMTAB Takes one of the two identifiers On or Off as Its argument, and has a
textual range. This pragma controls the generation of enumeration
tables. Enumeration tables are used for the attributes IMAGE, VALUE,
and WIDTH, and hence to input and output enumeration values. The
tables are generated when ENUMTAB Is on. The state of the ENUMTAB
flag Is significant only at enumeration type definitions. If this pragma
Is used to prevent generation of a type's enumeration tables, then
using the three mentioned attributes causes an erroneous program,
with unpredictable results; furthermore, the type sh'ould not be used
as a generic actual discrete type, and In particular
TEXTIO.ENUMERATION_1O should not be Instantiated for the type. If
the enumeration type Is not needed for any of these purposes, the
tables, which use a lot of space, are unnecessary. ENUMTAB is on by
default.

B-4

Appendix F: Implementation Dependencies

PAnELENGTH
This pragma takes a s Ine Integer lltrral as Its argliment. It -
that a page break shou]M be added to the listing after each
occurrence of the given number of lines. The default page !eng.h i
32000, so that no page brcal-s arc generated for most programs. Each
page starts with a header that looks like the following:

J;UUS,'^,DA Version 2.1.1 compi1ing file on date at tiza

RANGECHErKTakes one of the two identifiers On or Off as its argument, and has a
textual range. Where RANGECHECK is off, the compiler is permitte1 ,.-,
(and generally does) not generatp checks for situations where It is
expected to raise CONSTRAINTERROR; these !herks include null
pointer checking, discriminant checking, index checking, irray length
checking, and range checking. Combining check suppression using th.I
pragma RANGECHECK and using the pragma SUPPRESS may cause
unexpected results; it should not be done. However, RANGECHECK may
be combined with the JANUS'Ada pragma ALLCHECKS; whichever
pragma has occurred most recently will be effective. RANGECHECK is
on by default. Turning any checks off may cause unpredictable results
If execution would have caused the corresponding assumption to be
violated. Checks should be off only in fully debugged and tested
programs. After checks are turned off, full testing should again be
done, since any program that handles an exception may expect results
that will not occur if no checking is done.

SYSLIB This pragma tells the compiler that the current unit is one of the
standard JANUS,'Ada system libraries. It takes as a parameter an
integer literal in the range I .. 15; only the values 1 through 4 are
currently used. For example, system library number 2 provides floating
point support. Do not use this pragma unless you are writing a
package to replace one of the standard JANUS.'Ada system libraries.

VERBOSE Takes On or Off as its argument, and has a textual range. VERBOSE
controls the amount of output on an error. If VERBOSE Is on, the two
lines preceding the error are printed, with an arrow pointing at the
error. If VERBOSE is off, only the line number Is printed.

VERBOSE(Off):

Line 16 at Position 5
ERROR Identifier is not defined

B-5

Appendix F: Implementation Depen.en.rIcs

VERBOSE(On):

15: if X = 10 then
16: Z := 10;

ERROR Identifier is not defined

The rpason for this option Is that an error message :ith VERBOSE cnr
can take a long time to be generated, especIally in a large program.
VERBOSE's Initial condition can be set by the compiler command line.

Several required Aia pragmas may have surprising effects In JA'NUS'Ada. The
PIr p.ITY pragma may only take the value 0, since that Is the cnly value in the
range System.Priority. Specifying any OPTIMIZE pragma turns on optimization,
otherwise, optimization is only done If specified on the compiler's command line.
-The SUPPRESS pragma Is Ignored unless It only has one parameter. Also, the
following pragmas are always ignored: CONTROLLED, INLINE, MEMORY_STZE, PACK,
SHARED, STORAGEUNIT, and SYSTEM NAME. Pragma CONTROLLED Is always Ignored
because JANUS'Ada does no automatic garbage collection; thus, the effect of
pragma CONTROLLED already applies to all access types. Pragma SHARED Is
similarly Ignored: JANUS/Ada's non-preemptive task scheduling gives the
appropriate effect to all variables. The pragmas INLINE, PACK, and SUPPRESS (with
two parameters) all provide recommendations to the compiler; as Ada allows, the
recommendations are Ignored. The pragmas MEMORYSIZE, STORAGEUNIT, and
SYSTEM_NAME all attempt to make changes to constants in the System package; in
each case, JANUS'Ada allows only one value, so that the pragma Is ignored.

F.2 Implementation Dependent Attributes

TA" US'Ada does not provide any attributes other than the required Ada
attributes.

P.3 Specification- of the Package SYSTEM

The package System for JANUS/Ada has the following definition.

8-6

Appendix F: Implementatlon Dependencies

package System is

-- System package for JANUS/Ada

-- Types to define type Address.
type OffsetType is new LongIntegar;
type V ::! is range 0 .. 65536;
for Vord'Si:e use 16;
type Address is record

Offset OffsetType;
Segment : Vord;

end record;
Function "+" (Left : Address; Right : OffsetType) Return Address;
Function "+" (Left : OffsetType; Right : Address) Return Address;
Function "-" (Left : Address; Right : OffsetType) Return Address;
Function "-" Left, Right : Address) Return Offset Type;

type Name is (MS.DOS2);

SystemjName : constant Name := MSDOS2;

StorageUnit : constant 8;
MemorySize : constant 65536;

-- Note: The actual memory size of a program is determined
-- dynamically; this is the maximum number of bytes in the data
-- segment.

-- System Dependent Named Numbers:
MinInt : constant := -2147 483 648;
maxInt : constant := 2 47_483647;
"lax-Digits : constant := 15;
MaxMantissa : constant :- 31;
FineDelta : constant := 2#1.0#E-31;

-- equivalently, 4.656612873077392578125E-10
Tick constant :- 0.01; -- Some machines have less accuracy;

-- for example, the IBM PC actually ticks about
-- every 0.06 seconds.

-- Other System Dependent Declarations
subtype Priority is Integer range 0..0;

type Byte is range 0 .. 255;
for Byte'Size use 8;

B-7

Appendix F: Implementation Dependencies

end System;

The t%.re Byte in the System packag4,+ crrespords t3 the 8-bit machine byte. The
t-p.; ,.:.r. ~is a 16-bit Unsigned Integer t'po, corrr.spor. ing to a macl.ne wnrd.

F.4 Restrictions on Representation Clauses

If T is a discrete type, or a fixed point type, then the size expression car give
any , va'ue between I and 1000 bits (subject, of course, to allowing enough bits ftr
cvery p;ssihl- value). For other types, the enpression must give the default size
f r T.

A length -.lause that specifies T'STORAGESIZE for an access type is not
supported; J-NUS'Ada uses a single large common heap.

A length clause that specifies T'STORAGE_SIZE for a task type T Is supported.
Any integer value can be specified. Values smaller than 256 will be rounded up to
256 (the minimum T'StorageSize), as the Ada standard does not allow raising an
exception in this case.

A length clause that specifies T'SMALL for a fixed point type must give a value
(subject to the Ada restrictions) In the range

2.0 ** (-99) .. 2.0 ** 99,"
inclusive.

An enumeration representation clause for a type T may give any integer values
within the range System.Min.Int .. System.Max_Int. If a size length clause Is not
given for the type, the type's size is determined from the literals given. (If all of
the literals fit In a byte, then Byte'Slze is used; similarly for Integer and
Long.!nteger).

The expression in an alignment clause in a record representation clause must
equal 1.

A component clause must give a storage place that Is equivalent to the default
value of the POSITION attribute for such a component.

A component clause must give a range that starts at zero and extends to one less
than the size of the component.

B-8

Appendix F: Implementation Dependencies

.,TA'.T''Ada supports address clauses on most objerts. Address clauses are n.,t
A1,- r,.i nn parameters, generic formal paramete.rs, and renrimed objects. T -, -

szddr.ss given for an object address rlhuse may he a y 1tgal v.lue of t;pe
't.r. ,Adress. It will be interpreted as an absolute machino address, utsing th9.

.%eowment part as a selector If in the prntected mode. It is the user's responsihilitv
t.-. e.ns.ure that the value given makes sense (i.e., points at memory, dces rnnt
:,',ariay other PTh ,,ts, t.) No other address clAuses are supported.

P.5 Implementation Defined Names

.TA%'S'Ada uses no Implementation generated names.

F.6 Address Clause Expressions

The address given for an object address clause may be any legal value of typeSyvstem.Address. It will be interpreted as an absolute machine address, using the

segment part as a selector if in the protected mode. It is the user's responsibility
to ensure that the value glven makes sense (i.e., points at memory, does not
overlay other objects, etc.)

F.7 Unchecked-Conversion Restrictions

We first make the following definitions:
A type or subtype is said to be a simple ty'pe or a simple subtype (respectively)
If it is a scalar (sub)type, an access (sub)type, a task (sub)type, or if it satisfles
the following two conditions:

1) If It Is an array type or subtype, then It Is constrained and its index
constraint is static; and

2) If it is a composite type or subtype, then all of its subcomponents have a
simple subtype.

A (sub)type which does not meet these conditions Is called non-simple.
Discriminated records can be simple; variant records can be simple. However,
constraints which depend on discriminants are non-simple (because they art
non-static).

IAN.,ISAda Imposes the following restriction on Instantiations of
tncheckedConversion: for such an instantiation to be legal, both the source

B-9

.ppendl- F: Implementaition Dependencies

actual subtype and the target actual subtype must be simple subtypes, and the'.
must h.ve the same size.

F.8 Implementation Dependencies of IO

The syntax Df an ortVrr ! file name deppnds 3r. the op.ratIng syster, being used
S,-,me external files do not really specify llsk files; these are called dev;'.es
!evices are specified by spocial file names, and are treated specially by s.;rn of
the T'O rnlutines.

The syntax of an MS-DOS 2.x or .3.xx filename is:

[d:][path]filename[.ext)

where "d:" Is an optional disk name; "path" is an optional path consisting of
directory names, each followed by a backslash; "filename" Is the filename
'maximum 8 characters); and ".ext" Is the extension (or file type). See your
?.'S-DOS manual for a complete description. In addition, the following special
device names are recognized:

STI: MS-DOS standard input. The same as Standard jnput. Input is buffered
by lines, and all MS-DOS line editing characters may be used. Can
only be read.

STO: MS-DOS standard output. The same as StandardOutput. Can only be
written.

ERR: MS-DOS standard error. The output to this device cannot be
redirected. Can only be written.

CON: The console device. Single character Input with echoing. Due to the
design of MS-DOS, this device can be redirected. Can be read and
written.

AUX: The auxiliary device. Can be read or written.
LST: The list (printer) device. Can only be written.-
KBD: The console Input device. No character interpretation is performed,

and there is no character echo. Again, the Input to this device can
be redirected, so it does not always refer to the physical keyboard.

The MS-DOS device files may also be used (CON, AUX, and PRN without
colons ':'). For compatibility reasons, we do not recommend the use of these
names.

B-10

Appendix F: implementation Dependencies

The MS-DOS 2.%x version of the T'C) system will do a search of the 1efaul,
serch path (set by the DOS PATH ,cmmand) if the fllow'ng conditions are
met:

1) No disk name or path Is presnt In the file name; and
2) The name Is not that of a device.

Alternatively you n iy think .f the search being done if the f I! n.ime d-c
not ,-,nta~n any of the characters '.', '/', or ".'.

The default search path cannot be changed while the program Is running, -is
the path Is copied by the JA.N\S'Ada program when it starts running.

%'ote:
Creates will never cause a path search as they must work in the curren.
directory.

Upon normal completion of a program, any open external files are closed.
Nevertheless, to provide portability, we recommend explicitly closing any files that
are used.

Sharing external files between multiple file objects causes the corresponding
external file to be opened multiple times by the operating system. The effects of
this are defined by your operating system. This external file sharing is only
allowed if all internal files associated with a single external file are opened only
for reading (mode InFile), and no internal file Is Created. Use_Error Is raised if
these requirements are violated. A Reset to a writing mode of a file alreaa.
opened for reading also raise Use-Error if the external file also is shared by
another Internal file.

Binary 1'O of values of access types will give meaningless results and should not
be done. Binary I'O of types which are not simple types (see definition in Section
F.7, above) will raise Use-Error when the file is opened. Such types require
specification of the block size in the form, a capability which is not yet
supported.

The form parameter for Sequential_1O and DirectIO is always expected to be the
null string.

The type Count in the generic package DirectIO is defined to have the range 0
32767.

Ada specifies the existence of special markers called terminators In a text file.
JANUS.'Ada defines the line terminator to be <LF> (line feed), with or without an

B-11

Appendix F: Implementation Dependencies

aditinaI <CR> (carriage return). The page terrinatz" is the <FF (form feed)
..hara-ter; If It Is not preceded by a fLF>, a line t~rminator is also assumed.

The f',!P terminator Is the end-of-fi!!e r.turn,1 hy tho hst operating system. If no
!1,ne and.'or page terminator dirpctly preondes the file term.'nator, they arP
assu,-_-d. If the form "Z" is used, the <Ctrl' -7 character alsc represents tl-.

enl-of-,'lle. This form 'is not, necessary to correctI:y read files produced with
J.-\\'S'Ada and most other programs, but may be occasionally necessary. The only
legal forms fo;r text fIlps are "" (the null string) and "Z". All other forms raise
ISEERR OR.

If the form is "", the <Ctrl>-Z character is ignored on input. The <CR> charnoter
Is always Ignored on input. (They will not be returned by Get, for instance). '.l
other control characters are sent directly to the user. Output of control characters
does not affect the la.'cut that Text_1O generates. In particular, output of a <LF>
hefore a New rage does not suppress the NewLine caused by the NewPage.

On output, the *Z" form causes the end-of-file to be marked by a <Ctrl>-Z;
otherwise, no explicit end-of-file character Is used. The character pair (CR> <LF)"
is written to represent the line terminator. Because <CR> Is ignored on Input, this
is compatible with input.

The type Text_10 Count has the range 0 .. 32767; the type TextIO.Field also has
the range 0 .. 32767.

IOExceptons.USE ERROR Is raised if something cannot be done because of the
external file system; such situations arise when one attempts:

- to create or open an external file for writing when the external file is
already open (via a different internal file).

- to create or open an external file when the external file is already open for
writing (via a different internal file).

- to reset a file to a writing mode when the external file is already open (via
a different internal file).

- to write to a full disk (Write, Close);
- to create a file in a full directory (Create);
- to have more files open than the OS allows (Open, Create);
- to open a device with an illegal mode;
- to create, reset, or delete a device;
- to create a file where a protected file (i.e., a directory or read-only file)

already exists;
- to delete a protected file;
- to use an illegal form (Open, Create); or
- to open a file for a non-simple type without specifying the block size;
- to open a device for direct I/O.

B-12

Appendix F: 1Mplementation Dependencies

1OExceptons.DEVICEERROR Is raised If a hardware Prror oth,'r than th ..s
c-vered by U'SEERROR occurs. Thes situations, should never oc,'ir, but may c,-

:-i-e .)*casicns. For example, DEVICFERRfR is raised when:
- A f"e is not found in a Close or a Delrte;
- r I< error occurs on a direct Read or Write; or
- a sPli Prror t)crurs on a sequential Er.i_(1,_Fi1e.

The ,h."ps .tnndard.Pcsitive and Standard.'Zatura, used by some T'.) roitir.ps,
have the mnmum value 32767.

No packag . LcwLeveliO Is provided.

F.9 Running the compiler and linker

The JANUS'Ada compiler Is Invoked using the following format:

JAtLJS [d:] filename [.ext] I/option)

where filename Is an MS DOS file name with optional disk name Id:], optional
extension [.ext, and compiler options {/optioni. If no disk name Is specified, the
current disk Is assumed. If no extension is specified, .PKG is assumed.

The compiler options are:
B Brief error messages. The line In error Is not printed (equivalent to turning

off praoma VERBOSE).
D Don't generate debugging code (equivalent to turning off pragma DEBUG)
F Use In-line 8087 instructions for Floating point operations. By default the

compiler generates library calls for floating point operations. The 8087 may
be used to execute the library calls. A floating point support library Is still
required, even though this option is used.

L Create a listing file with name filename.PRN on the same disk as filename.
The listing file will be a listing of only the last compilation unit in a file.

Ld Create a listing file on specified disk '. Choices are 'A' through 'W'.
Ox Object code memory model. X is 0 for the 80386 system. Other memory

models are not supported. (Since this model 'limits' a program to 4 Gigabytes
of Code and 4 Gigabytes of Data, this is not a concern). Memory model 0 Is
assumed If this option is not given.

B-13

Appendix F: Implementation Deperdencies

Q Quiet error messages. This opt!.r. causis The cnmpiler not t wait for the
user to Interact after an errnr !n he usual rne, the -ompiler will prompt
the user after each error to asl, if the ccmpilartln sho,:d be ahorted. This
:.p.ion Is useful if the user want, t.- take a ,iffo hreak while the .. ,, r
Is working, since all user prompts nrr suppressed. The errors (if any) will
n,'* stay on the screen when tbis option Is used; therefore, the ccnsole
traffic should be sent to the printer or to a fIle. Be warned that certalr
syntax errors can cause the compiler to print many error messages for earh
and every line in the program. A lot of paper could be used this way! Note
that the .'Q option disallows disk swapping, even if the 'S option is given.

Rd Route the JRL file to the specified disk 'd'. Choices are 'A' through 'W'. The
default is the same disk as filename.

Sd Route Scratch flies to specified disk. This option is useful if you hav a
RAM disk or if your disk does not have much free space. The use of this
option also allows disk swapping to load package specification (.SYM) fili-s.
Normally, after both the compiler and source file disks are searched for SY".1
files, an error is produced if they are not all found. However, when the 'S
option Is used, the compiler disk may be removed and replaced by a disk to
search. The linker has a similar option, which allows the development of
large programs on systems with a small disk capacity. Note that disk
swapping is not enabled by the 'S option if the ,'Q (quiet option) Is also
given. The .'Q option Is intended for batch mode compiles, and its purpose
conflicts with the disk swapping. The main problem is that when the 'S
option is used to put scratch files on a RAM disk, a batch file may stop
walting for a missing .SYM or ERROR.MSG file; such behavior would not be
appropriate when .'Q is specified.

T Generate information which allows trimming unused subprograms from the
code. This option tells the compiler to generate information which can be
used by the remove subprograms from the final code. This option increases

-the size of the .JRL files produced. We recommend that it be used on
reusable libraries of code (like trig. libraries or stack packages) - that is
those compilations for which It Is likely that some subprograms are not
called.

W Don't print any warning messages. For more control of warning messages, use
the following option form (Wx).

Wx Print only warnings of level less than the specified digit 'x'. The given
value of x may be from 1 to 9. The more warnings you are willing to see,
the higher the number you should give.

N Handle eXtra symbol table information. This is for the use of debuggers and
other future tools. This option requires large quantities of memory and disk
space, and thus should be avoided If possible.

Z Turn on optimization. This has the same effect as if the pragma OPTIMIZE
were set to SPACE throughout your compilation.

8-14

Appendlx F: Implementation Dependencies

The default values for the command line options are:
31 vrr-)r messages are verbose.
D/ Dlbug code is generated.
r %P.ihr.iry calls are generated for floating point operations.
T. ':-, 'lsting file is generated.
1) M.rnnry model 0 is used.
Q Th. compi!,t: primp-s for abort after every Prror.

71-.,1 .'RI. file !s pur .n the same .Isk as the Irp:,t fil,.
S Sc'ratch files are put on the same disk as the compiler.
T No trimming code is produced.
IW A! warnings are printed.
.x. 7ra symbol table Information is not generated.
7 Cpti-mizition is done only where so specified by pragmas.

Leading spaces are disregarded between the filename and the call to JANUS.
Spaces are otherwise not recommended on the command line. The presence of
blanks to separate the options or between the filename and the extension will be
ignored.

Examples:
JANUS test/Q/L
JANUS test.runfW4
JANUS test
JANUS test .run /B /VWL

The compiler produces a SYM (SYMbol table information) file -when a specification
is compiled, and a SRL or JRL (Specification ReLocatable or Janus ReLocatable) file
when a body is compiled. To make an executable program, the appropriate SRL and
JRL files must be linked (combined) with the run-time libraries. This is
accomplished by running the JANUS'Ada linker, JLINK.

The JANIS.'Ada linker Is Invoked using the following format:

JLINK Ed:] filename (/option)

Here "fllename" Is the name of the SRL or JRL file created when the main program
was compiled (without the .SRL or .JRL extension) with optional disk name Id:],
and compiler options {/optionj. The filename usually corresponds to the first eight
letters of the name of your main program. A disk may be specified where the files
;re to be found. See the linker manual for more detailed directions. We summarize
here, however, a few of the most commonly used linking options:

B-15

Appendix F: Implementation Depndnr1i

E Create an EXP file. This nption has not effect on the 80386 linker !!t
.lways creates an EXP file).

Fn Use software floating point (the dpfaiilt).
F2 ".,. hardware (80387) floating point.
L !))splay lots of Information about the loading process.
n0 Usa memory model 0 (the d.fault); sep the desrription of the''0 n0pticn in

tbP. compiler, above.
Q !'se quiet error messages; I.e., d w'," walt for the user to tntpraot after an

error.
T Trim unused subprograms from the code. This option tells the linIker to

remove subprograms which are never called from the final output file. This
option rtduc.s space usage of the final file by as much as .30K.

Examples:
JLINK test
JUNK test /Q/L
JUNK test/L/F2

Note that If you do not have a hardware floating point chip, then you generally
will not need to use any linker options.

8-16

Nppend"lx F: Implementation Dependencies

Th': p t. intentionally left blank

B-17

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below:

Name and Meaning Value

$ACC SIZE 16
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG_IDI l..199 => 'A',200 => 'I'
An identifier the size of the
maximum input line length which
is.identical to $BIG ID2 except
for the last character.

$BIG_1D2 l..199 => 'A',200 => '2'
An identifier the size of the
maximum input line length which
is identical to $BIG IDI except
for the last character.

$BIGID3 1..99 => 'A',100 => '3',101..200 => 'A'
An identifier the size of the
maximum input line length which
is identical to $BIG ID4 except
for a character near the middle.

C-I

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 1..99 => 'A',100 => '4',101..200 => 'A'
An identifier the size of the
maximum input line length which
is identical to $BIG ID3 except
for a character near the middle.

$BIGINT LIT 1..197 => '0',198..200 => "298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT 1..194 => '0',195..200 :> "69.0E1"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRINGI 1 => '"',2..101 => 'A',102 => 'll
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDI.

$BIGSTRING2 1 => '"',2..100 => 'A',101 => '1',102 => "
A string literal which when
catenated to the end of
BIG STRING1 yields the image of
BIGIDi.

$BLANKS I..180 =>
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 32_767
A universal integer
literal whose value is
TEXTI0.COUNT'LAST.

$DEFAULT MEM SIZE 65536
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULT STOR UNIT 8
An integer literal whose value
is SYSTEN.STORAGEUNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME MSDOS2
The vaTue of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC 0.000_000_000_465_661_287_307_739_257_812_5
A real literal whose valu- is
SYSTEM.FINEDELTA.

$FIELDLAST 32767
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXEDNAME NOTAPPLICABLE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NOT APPLICABLE
The name of a predefined
floating-point type other than
FLOAT, SHORT FLOAT, or
LONGFLOAT.

$GREATER THANDURATION 300_000.0
A universal real literal that
lies betqeen DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THAN DURATION BASE LAST 1.0E6
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 0
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIOR!TY.

$ILLEGAL EXTERNAL FILE NAMEl \NODIRECTORY\FILENAME
An external file name which
contains invalid characters.

$ILLEGAL EXTERNALFILENAME2 <BADV >
An external file name which
is too long.

$INTEGER FIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

$INTECER LAST 32767

A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS_1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -305_000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THANDURATIONBASE FIRST -1.0E6

A universal real literal that is
less than DURATION'BASE'FIRST.

$LOW PRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA DOC 31
An integer literal whose value
is SYSTE4.MAX MANTISSA.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAX_ IN_LEN 200
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINT PLUS 1 2147483648
A universal integer literal
whose value is SYSTEM.M.XINT+1.

$MAXLEN INT BASED LITERAL 1..2 => "2:",3..197 => '0',
A universal integer based 198..200 => "11:"
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value

$MAX LEN REAL BASED LITERAL 1.3 => "16:",4..196 => '0',
A universal real based literal 197..200 => "F.E:"
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX INLEN long.

$MAXSTRING LITERAL 1 => '"',2..199 => 'A',200 => '"'

A string literal of size
MAXINLEN, including the quote
characters.

$MININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

$MINTASK SIZE 16
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOTAPPLICABLE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT NTEGER,
LONG FLOAT, or LONG_INTEGER.

$NAME LIST MS_DOS2
A list of enumeration literals
in the type SYST4.NAME,
separated by commas.

$NEGBASEDINT 16#FFFFFFFF#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NEWMEMSIZE 65536
An integer literal whose value
is a permitted argument for
pragma MEMORYSIZE, other than
$DEFAULT MEMSIZE. If there is
no other value, then use
$DEFAULTMEMSIZE.

c-5

Irv

TEST PARAMETERS

Name and Meaning Value

$NEWSTOR UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGEUNIT, other than
$DEFAULT STOP UNIT. If there is
no other permitted value, then
use value of SYSTM.STORAGEUNIT.

$NEWSYS_NAME MS DOS2
A value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 16
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 0.01
A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 36 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. A39005G has been withdrawn because it unreasonably expects a
component clause to pack an array component into a minimum size
(line 30).

b. B97102E has been withdrawn because it contains an unintended
illegality: a select statement contains a null statement at the
place of a selective wait alternative (line 31).

c. BC3009B has been withdrawn because it wrongly expects that
circular instantiations will be detected in several compilation
units even though none of the units is illegal with respect to the
units it depends on; by AI-00256, the illegality need not be
detected until exasgution is attempted (line 95).

d. CD2A62D has been withdrawn because it wrongly requires that an
array object's size be no greater than 10, although its subtype's
size was specified to be 40 (line 137).

e. CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests] have
been withdrawn because they wrongly attempt to check the size of
objects of a derived type (for which a 'SIZE length clause is
given) by passing them to a derived sub-program (which implicitly
converts them to the parent type (Ada standard 3.4:12)).
Additionally, they use the 'SIZE length clause and attribute,
whose interpretation is considered problematic by the WG9 ARG.

f. CD2A81G, CD2A83G, CD2A84M and N, and CD50110 have been withdrawn
because they assume that dependent tasks will terminate while the
main program executes a loop that simply tests for task
termination! this is not the case, and the main program may loop
indefinitely (lines 74, 85, 86 and 96, 86 and 96, and 58,

D-I

WITHDRAWN TESTS

respectively).

g. CD2B15C and CD7205C have been withdrawn because they expect that a
'STORAGE SIZE length clause provides precise control over the
number of designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

h. CD5007B has been withdrawn because it wrongly expects an

implicitly declared subprogram to be at the the address that is
specified for an unrelated subprogram (line 303).

i. CD7105A has been withdrawn because it requires that successive
calls to CALENDAR.CLOCK change by at least SYSTEM.TICK; however,
by Commentary AI-00201, it is only the expected frequency of
change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

J. CD7203B and CD7204B have been withdrawn because they use the 'SIZE
length clause and attribute, whose interpretation is considered
problematic by the WG9 ARG.

k. CD7205D has been withdrawn because it checks an invalid test
objective: it treats the specification of storage to be reserved
for a task's activation as though it were like the specification
of storage for a collection.

1. CE21071 has been withdrawn because it requires that objects of two
similar scalar types be distinguished when read from a
file--DATA ERROR is expected to be raised by an attempt to read
one object as of the other type. However, it is not clear exactly
how the Ada standard 14.2.4:4 is to be interpreted; thus, this
test objective is not considered valid. (line 90)

m. CE3111C has been withdrawn because it requires certain behavior
when two files are associated with the same external file;
however, this is not required by the Ada standard.

n. CE3301A has been withdrawn because it contains several calls to
END OF LINE and END OF PAGE that have no parameter: these calls
were intended to specify a file, not to refer to STANDARD INPUT
(lines 103, 107, 118, 132, and 136).

o. CE3411B has been withdrawn because it requires that a text file's
column number be set to COUNT'LAST in order to check that
LAYOUT ERROR is raised by a subsequent PUT operation. But the
former operation will generally raise an exception due to a lack
of available disk space, and the test would thus encumber
validation testing.

D-2

