y

AD-A210 817

UNCLASSIFIED SN ATEE
,’sccun'v CLASSIFICATION OF THIS PALE (Whren Data fotowd‘% i

REPORT DOCUMENTATION PAGE ppoiaD DUTRICTIONS
1. REPORT NUMBLR j2. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUmMBER
4. TITLE (anc Sudttie) 5. YYPL Of REPORY & PERIOD COVERED
Ada Compiler Validation Summary Report: 13 Jan. 1980 -] nec. 190N
R.K. Software, Inc., JANUS/Ada 2.1.1, Compaq Deskpro ®. PLRFORMING DRG. REPORT WUMBLR
286 (Host & Target), 890113W1.10019 |
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMEER(s)
wright-Patterson AFB
Dayton, OH, USA
8. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PRCJIECT, TASK
AREA & WORK UN]T NUMBERS
Wright-Patterson AFB
Dayton, OH, USA
1kdcow'3tm_m{c (i;rxu NAME 3:2;90&:55 12. REPORT DATE
a Join rogram ice 13 January 1989
United States Department of Defense ‘TrﬂanWTW%has
Washington, DC 20201-3081 52 p.
14. MONITORING AGENCY NAME & ADDRESS(/f d:fferent from Controliing Office) 15, SECUR]ITY CLASS (of thisreport)
UNCLASSIFIED

Wright-Patterson AFB

15s. CLASSIFICATION/DOWNGRADING
Dayton, OH, USA CEEEDS! v °

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMINT (of the absmractentered inBiock 20 1f oitferent from Report)

UNCLASSIFIED DTlC

s : ELECTE
. SUPPLEMINTARY NOTL
T s Aueousesn

cuB

e —— -

16. XKEYWORDS (Continue onreverse si0¢ i necessany and identify by block number)

Ada Procramming language, Ada Compiler Validation Summary Report, Ada
Cormpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVD, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRALT (Continue onreverse side if necessary and dentify by block aumber)

JANUS/Ada 2.1.1, R.R, Software, Inc., Wright-Patterson AF¥B, Compaq Mesknro 2%

under MS DOS 3.10 (Host.& Target), ACVC 1.10

oo 3 i
DD PO% 1473 EDITION OF 1 NOV 65 1S DBSOLETE ’
13a0 73 S/N 0102-LF-014-660) UNCLASSIFIED

SECURITY CLASSITICATION OF THIS PAGE (wwhen Dats Entered)
. Pa % f‘

i - - M ~ s

AVF Control Number: AVF-VSR-219.0289
88-09-23-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890113W1.10019
R.R. Software, Inc.
JANUS/Ada 2.1.1
Compag Deskpro 286 Host and Target

Completion of On-Site Testing:
13 January 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFR, OH U5433-6503

Prepared For:
Ada Joint Program (ffice
United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: JANUS/Ada 2.1.1

Certificate Number: 890113w1.10019

Host: Compaq Deskpro 286 under MS DOS 3.10

Target: Compaq Deskpro 286 under MS DOS 3.10
Testing Completed 13 January 1989 Using ACVC 1.10

This report has been reviewed and is approved.

%‘f«, f %&“

Ada Validation Facility

Steven P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB, OH 45433-6503

AN

Aa Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

)L)._iﬁi ¢ /"\ /Z_ﬁ((..__;__.
Ada Joint Program Q0ffice

William S. Ritchie

Acting Director

Department of Defense

Washington DC 20301

Ada Compiler Validation Summary Report:

Compiler Name: JANUS/Ada 2.1.1

Certificate Number: 890113W1.10019

Host: Compag Deskpro 286 under MS DOS 3.10

Target: Compaq Deskpro 286 under MS DOS 3.10
Testing Completed 13 January 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Moe LI

Ada Validation Facility

Steven P, Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB, OH H45433-6503

Ada Validation Organizatio

Dr. John F. Kramer

Institute for Defense lyses
Alexandria VA 22311

Y

Ada Joint Program Office

William S. Ritchie
Acting Director | Accession PFor
Department of Defense] NTIS GRA&I v
Washington DC 20301 DTIC TAB ()
Unannounced O
Justifioat lon____.___J
By. .
| Distribution/

Availability Codes

. (Avail and/er |
\\) Diat

) Specllal
pY

N
'/)ol

//
s

AN

h(/)

CHAPTER 1

b ed b b -2
.
N Ewh -

CHAPTER 2

N
.
N -

CHAPTER

(#V]

WWwWwwwwwwww
L]
WN =

e o @ .
N3OV EWND -

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT
USE OF THIS VALIDATION SUMMARY REPORT

REFERENCES « ¢« « ¢« ¢ ¢ ¢ v ¢« & & &
DEFINITION OF TERMS &
ACVC TEST CLASSES ¢ ¢ ¢ « ¢ ¢ o« »

CONFIGURATION INFORMATION

CONFIGURATION TESTED . « « o« » o &
IMPLEMENTATION CHARACTERISTICS . .

TEST INFORMATION

TEST RESULTS « ¢ ¢ « s o s o o o &
SUMMARY OF TEST RESULTS BY CLASS .
SUMMARY OF TEST RESULTS BY CHAPTER
WITHDRAWN TESTS . . + « « « &« « &
INAPPLICABLE TESTS « « . .

TEST, PROCESSING, AND EVALUATION MODIFICATIONS

ADDITIONAL TESTING INFORMATION . .
Prevalidation . . . « ¢« ¢ « o &
Test Method + ¢ « « &
Test Site . & ¢ ¢ ¢ ¢ ¢ « o o &

DECLARATION OF CONFORMANCE
APPENDIX F OF THE Ada STANDARD
TEST PARAMETERS

WITHDRAWN TESTS

PO S G e
t 1
EZWW N -

L L
ORI NNN 2

wwwwwtiuwwww

CHAPTER 1

INTRODUCTION

/’\‘

This Validation Summary Report <t¥SRX describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within’ it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability. (ACVC). “~An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard;;

Even though all validated Ada compilers conform to the -Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum 1length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristices of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

—— -

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements 1legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that 1is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

F—

-\

l)‘

» INTRODUCTION

t
[

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, 1Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 13 January 1989 at Madison WI.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is prrrided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Pregziraw Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB, OH 45433-6503

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Orgamization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-2

INTRODUCTION

1.3 REFERENCES

Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-18154, February 1983 and ISO 8652-1987.

Ada Compiler Validation Procedures and Guidelines, Ada Jcint

Program Office, 1 January 1987,

Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1986.

Ada Compiler Validation Capability User's Guide, December 1986,

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard

Applicant

AVF

AVO

Compiler

Failed test

Host

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-18154, February 1983 and ISO 8652-1987.

The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, ‘ncluding
cross-compilers, translators, and interpreters.

An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

1-3

INTRODUCTION

Tnapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test ¢ check
semantics. For example, a Class A test checks that reserved words of
another language {(other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal 1language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

1-4

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. 1If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test 1is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message Dbefore any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT-and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE resulis. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-5

INTRODUCTION

customized according to implementation-specifiec values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard Dby either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation 1s wvalidated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:
Compiler: JANUS/Ada 2.1.1
ACVC Version: 1.10
Certificate Number: 890113W1.10019
Host Computer:
Machine: Compaq Deskpro 286
Operating System: MS DOS 3.10

Memory Size: 2176 Kbytes

Target Computer:
Machine: Compaq Deskpro 286
Operating System: MS DOS 3.10

Memory Size: 2176 Kbytes

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers i1s to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other c¢lasses also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 17 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler rejects tests containing block statements nested
to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to six
levels. (See tests D6UOOSE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
LONG_INTEGER and LONG_FLOAT in the package STANDARD. (See
tests B86001T..Z (7 tests).)

¢. Expression evzluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) Not all of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed wit!l: the same precision
o the base type. (See test C35712B.)

(3) ™+ 3 implementation uses no extra bits for extra precision and
uses no extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) NUMERIC_ERROR is raised when a literal operand in a comparison

is outside the range of predefined Integer, when a literal
operand in a membership test is outside the range of
predefined Integer, when a literal operand in a comparison is
greater than SYSTEM.MAX INT, when a literal operand in a
membership test is greater than SYSTEM.MAX_INT and no
exception is raised when a literal operand in a comparison is
outside the range of the integer type's base type. (See test
CUs52324.)

(5) NUMERIC_ERROR is raised when a literal operand in a fixed
point membership test is outside the range of the base type
and no exception is raised when a literal operand in a fixed
point comparison is outside the range of the base type. (See
test CU52524.)

(6) Underflow is gradual. (See tests CU552HA..Z (26 tests).)

Rounding.

The method by which values are rounded in type conversions is not
defined by the language, While the ACVC tests do not specifically
attempt to determine the method of rounding, ¢the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests CH6012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round away
from zero. (See tests CU6012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test CHAD1UA.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT ERROR for an array having a ‘'LENGTH that exceeds
STANDARD. INTEGER'LAST and/or SYSTEM.MAX_INT. For this
implementation:

(1) Declaration of an array type or subtype declaration with more

than SYSTEM.MAX INT components raises no exception. (See test
£360034.)

2-3

CONFIGURATION INFORMATION

(2)
(3)

(u)

(5)

(6)

(7

(8)

CONSTRAINT_ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC_ERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX_INT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises STORAGE_ERROR when the array objects are declared.
(See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT_ERROR when the
length of a dimension is calculated and exceeds INTEGER’LAST.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test E52103Y.)

In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression's subtype 1is compatible
with the target's subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Discriminated types.

(M

In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

Aggregates.

(1)

In the evaluation of a multi-dimensional aggregate, the test
results indicate that index subtype checks are made as choices
are evaluated. (See tests CU3207A and C43207B.)

2-4

CONFIGURATION INFORMATION

(2) 1In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test EL3211B.)

Pragmas.

(1) The pragma INLINE is not supported for functions or
procedures. (See tests LA3004A..B (2 tests), EA3004C..D (2
tests), and CA300U4E..F (2 tests).)

Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

(3) Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

(4) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CA1012A.)

(5) Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test CA2009F.)

(6) Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(7) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(8) Generic non-library package bodies as subunits can be compiled
in separate compilations. (See test CA2009C.)

(9) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

.

CONFIGURATION INFORMATION

J.

Input and output.

(1)

(2)

(3)

(%)

(5)

(6)

n

(8)

(9)

(10)

(11)

(14)

The package SEQUENTIAL_IO can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

Modes IN _FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Modes IN_FILE, OUT_FILE, and INOUT FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files. (See
tests CE3102E and CE3102I..K (3 tests).)

RESET and DELETE operations are supported for SEQUENTIAL IO.
(See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text files.
(See tests CE3102F..C (2 tests), CE3104C, CE3110A, and
CE3114A.)

Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

Temporary sequential files are not given names and not deleted
when closed. (See test CE21084.)

Temporary direct files are not given names and not deleted
when closed. (See test CE2108C.)

Temporary text files are not given names and not deleted when
closed. (See test CE31124.)

Only one internal file can be associated with each external
file for sequential files when at least one of the internal
files has write access. (See tests CE2107A..E (5 tests),
CE2102L, CE2110B, and CE2111D.)

Only one internal file can be associated with each external
file for direct files when at least one of the internal files
has write access. (See tests CE2107F..H (3 tests), CE2110D
and CE21114.)

2-6

(15)

CONFIGURATION INFORMATION

Only one internal file can be associated with each external
file for text files when at least one of the internal files
has write access. (See tests CE3111A..E (5 tests), CE31148,

and CE3115A.)

2-17

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 36 tests had been withdrawn because of test errors. The AVF
determined that 380 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 36 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 128 1131 13958 10 29 44 3301

Inapplicable 1 7 358 7 5 2 380

Withdrawn 1 2 33 0 0 0 36

TOTAL 130 1140 2350 17 34 46 3717

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 Y 5 6 7 8 9 10 11 12 13 14

Passed 199 576 544 240 170 99 160 332 131 36 251 281 282 3301
N/A w73 136 8 2 0 6 1 6 0 1 94 39 380
Wdrn 0 1 0 0 0 0 0 1 0 0 1 29 4 36

TOTAL 213 650 680 2u8 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 36 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

A39005G B97102E BC3009B CD2A62D CD2A63A..D CD2A66A..D

CD2AT3A..D CD2AT6A..D CD2AB1G CD2A83G CD2ABUM..N CD50110
CD2B15C CD7205C CD5007B CD71054 CD7203B CD7204B
CD7205D CE21071I CE3111C CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicablie or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt 1is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 380 tests were inapplicable for the
reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..2 (15 tests)

TEST INFORMATION

C4S241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
cuss524L..Z (15 tests) Ccus621L..Z (15 tests)
CU5681L..Y (14 tests) C46012L..2Z (15 tests)

C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

The following 30 tests are not applicable because this
implementation does not support 'STORAGE_SIZE representation
clauses for access types:

A39005C C87B62B CD1009J CD1009R CD1009S
CD1C03C CD2A83A CD2A83B CD2A83C CD2A83E
CD2483F CD2A84B CD2ABUC CD2AB4D CD2ABHE
CD2ABUF CD2A8YG CD2A8BYR CD2A84I CD2A84K
CD2A8LL CD2B11B CD2B11C CD2B11D CD2B11E
CD2B11F CD2B11G CD2B15B CD2B16A ED2A86A

The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT_INTEGER:

Cli5231B CU5304B C45502B Ci5503B c45504B

C45504E Cu5611B Ch5613B CH5614B C45631B
C45632B B52004E C55B0TB BS5BO9D B86001V
CD7101E

B86001X, Cu5231D, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

BB86001Z is not applicable because this implementation supports no
predefined floating-point ¢type with 2a name <¢ther than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

CUS5531M..P (4 tests) and CUS53M..P (U4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 32.

DSSA03E..H (4 tests) use 31 levels of loop nesting which exceeds
the capacity of the compiler.

D56OQ1B uses 65 levels of block nesting which exceeds the capacity
of the compiler.

D6UOOSF. .G (2 tests) are not applicable because this

implementation does not support nesting 10 levels of recursive
procedure calls.

3-3

TEST INFORMATION

1.

m.

C96005B is aot applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

LA3004A, LA3004B, EA3O0LC, EA3004D, CA30CHE, and CA3004F are not
applicable because this implementation does not support pragma
INLINE.

CC1223A contains an expression that is expected to be static, but
which this implementation treats as non-static; thus, this
implementation raises an exception rather than providing exact
evaluation. The AVO agreed that this issue of staticness within a
generic unit requires further review.

The following 51 tests are not applicable because this
implementation does not support 'SIZE representation clauses for
floating point, one dimensional array, and record types:

CD1009C CD2Al41A CD2AU1B CD2AU1E CD2A42A
CD2A42B ch2ab2c CD2A42D CD2A42E CD2AK2F
CD2AU2G CD2AU2H CD2A42I CD2Ak2J CD2A614A
CD2A61B CD2A61C CD2461D CD2A61F CD2A61H
CD2A611 CD2461J CD2A61K CD2A61L CD2A62A
CD2A62B CD2462C CD2A64A CD2A64B CD2A64C
CD2A6UD CD2A654 CD2A65B CD2A65C CD2A65D
CD2AT1A CD2A71B CD2ATIC CD2AT1D CD2AT24A
CD2AT2B CD2AT2C CD2AT2D CD2AT74A CD2AT4B
CD2AT4C CD2ATY4D CD2AT5A CD2AT5B CD2AT75C
CD2A75D

The following 13 tests are not applicable because this
implementation does not support record representation clauses:

CD1009N CD1009X CD1009Y CD10092 CD1CO3H
CD1COLE CD4031A cpuouia CD40514A CD40518B
CD4051C CD4051D ED1DO4A

CE2102D..F (2 tests), CE2102I..J (2 tests), CE2102N..W (10 tests),
CE3102E..G (3 tests), and CE3102I..K (3 tests) are not applicable
because this implementation supports CREATE (all modes), OPEN (all
modes), and RESET (to the same mode) for sequential, direct, and
text files.

CE2107B..E (4 tests), CE2107L, CE2110B, CE2111D, CE2107G..H (2
tests), CE2110D, CE2111H, CE3111B, CE3111D..E (2 tests), CE3114B,
and CE3115A are not applicable because this implementation does
not permit the association of multiple internal files with the
same external file when one of the internal files has write access
to the external file. The proper exception is raised when
multiple access is attempted.

3-4

TEST INFORMATION

s. EE2201D and EE2401D are not applicable because USE_ERROR is raised
when trying to create a file with unconstrained array types.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 36 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B22003A B2400OTA B24009A B250024A B26005A B270054
B29001A B37106A B49003A B49005A B510014 B530034A
B55A014 B63001A B63001B B91001H BA1107A BA1101C
BA1101E BA30064A BA3006B BA3007B BA3008A BA3008B
BA3013A BC2001D BC2001E BC30058

The following modifications were made to compensate for legitimate
implementation behavior:

a. At the recommendation of the AVO, a "PRAGMA ELABORATE (EZPORT):"
was added at the beginning of C390054 %to ensure that the
elaboration of the routines in package REPORT takec ©place before

these routines are callec.

b. At the recommendation of the AVQ, the variables V and W on 1line U1
of test CD2C11A were initialized to 5.0 due to PROGRAM ZRROR being

raised when an attempt is made to use the uninitialized variables.

¢c. At the recommendation of the AVO, LONG_INTEGER'TMAGE was
substituted for INTEGER' IMAGE in test ED7006C since
SYSTEM.MEMORY_SIZE is outside the range of INTEGER for <his
implementation.

d. At the recommendation of the AV0O, the lines which check whether

temporary files can be created in tests CE2108B, CE2108D, and
CE3112B were commented out because of the way in which temporary

3-5

TEST INFORMATION
file names are constructed.
The following tests were graded using a modified evaluation eriteria:

a. In test C34006D, the meaning of 'SIZE applied to a type is not
clear. The test is graded PASSED provided the only failure
messages arise from the requirements on the value of T'SIZE, where
T is a type.

b. CE3804G writes, then reads, a floating-point literal and tests the
input value against a textually identical literal; this
implementation stores the numeric literal with greater precision
than it wuses for objects of the type, and because the literal is
not a model number the test for equality at line 121 fails. The
AVO ruled that CE3804G should be counted as passed, for all of its
other checks were passed.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the ~ JANUS/Ada 2.1.1 compiler was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the JANUS/Ada 2.1.1 compiler using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration in
which the testing was performed is described by the following designations
of hardware and software components:

Host computer: Compaq Deskpro 286
Host operating system: MS DOS 3.10

Target computer: Compaq Deskpro 286
Target operating system: MS DOS 3.10
Compiler: JANUS/Ada 2.1.1

A set of U5 diskettes containing all tests except for withdrawn tests and
tests requiring unsupported floating-point p-ecisions was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
diskettes. Tests requiring modifications during the prevalidation testing

3-6

TEST INFORMATION

were included in their modified form on the diskettes.

The contents of the diskettes were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was
compiled, 1linked, and all executable tests were run on the Compaq Deskpro
286. Results were printed from the host computer.

The compiler was tested using command scripts provided by R.R. Software,
Inc. and reviewed by the validation team. The compiler was tested using
the following default option settings:

OPTION EFFECT
/B Error messages are verbose.
/¥ Library calls are generated for floating
point operations.
/L No listing file is generated.
/0 Memory model 0 is used.
/R The JRL file is put on the same disk as the

input file.

/X Extra symbol table information is not generated.
/2 Optimization is done only where so specified
by pragmas.

The following option settings were used instead of the defaults:

OPTION EFFECT
/Q Quiet error messages - supbresses user prompting
on errors.
/W Warnings off - warnings were suppressed mainly

because of the confusing warnings that the
validation tests produce.

/T Trimming code on - this directs the compiler to
generate code which allows the linker to trim
unused subprograns.

/D Debugging code off - this directs the compiler
not to generate any debugging code (generally
line numbers & walkbacks).

/SF Used to re-direct the compiler scratch files

3-7

TEST INFORMATION
into a RAM disk (disk F), thus speeding up the
cormpiles.
Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on

diskette and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Testing was conducted at Madison WI and was completed on 13 January 1989.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

R.R. Software, Inc. has submitted the following
Declaration of Conformance concerning the JANUS/Ada
2.1.1 compiler.

DECLARATION OF CONFORMAMNCI

Compiler Implementor: R.R. Software Inc.
Ada®Validation Facility: ASD/SCEL, Wright-Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: JANUS/Ada Version: Version 2.1.1
Host Architecture ISA:Compaq Deskpro 286 OS&VER #: MS DOS 3.1
Target Architecture ISA:Compaq Deskpra286- OS&VER #: MS DOS 3.1

Implementor's Declaration

I, the undersigned, representing R.R. Software Inc., have implemented no
deliberate extensions to the Ada lLanguage Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that R.R. Software Inc. 4is
the owner of record of the Ada language compiler(s) listed above and, as such,
is responsible for maintaining said compiler(s) in conformance to
ANSI/MIL.-STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the owner's

corporate name.

Date; ?gL//Cz?jr

.R. Software Inc.
James .A. Stewart, General Manager

Owner's Declaration

I, the undersigned, representing R.R. Software Inc., take full responsibility
for implementation and maintenance of the Ada compiler(s) listed above, and
agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as defined by
the Ada Joint Program Office. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada

:)%-4’

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

+R. Software Inc.
James A. Stewart, General Manager

L4

A-2

AVF Control Number: AVF-VSR-218.0589
88-09-23-RRS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890113wW1.10020
R.R. Software, Inc.
JANUS/Ada 2.1.1
Compaq Deskpro 386/25 Host and Target

Completion of On-Site Testing:
13 January 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB, OH 45433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

Appendix F:‘Implementation Dependencies

F Implementation Dependencies

This appendix specifies certain system-dependent characteristics of JANUS’Ada,
version 2.1.1, for an 80x86 target system.

F.1 Implementation Dependent Pragmas

In addition to the required Ada pragmas, JANUS/Ada also provides several others.
Some of these pragmas have a textual range. Such pragmas set some value of
Importance to the compiler, usually a flag that may be On or Off. The value to be
used by the compiler at a given point in a program depends on the parameter of
the most recent relevant pragma in the text of the program. For flags, if the
parameter is the identifier On, then the flag is on; if the parameter is the
identifier Off, then the flag is off, if no such pragma has occurred, then a default
value is used.

The range of a pragma - even a pragma that usually has a textual range - may
vary if the pragma is not inside a compilation unit. This matters only if you put
multiple compilation units in a file. The fcillowing rules apply:

1) If a pragma is inside a compilation unit, it affects only that unit.

2) If a pragma is outside a compilation unit, it affects all following

compilation units in the compilation.

Certain required Ada pragmas, such as INLINE, would follow different rules;
however, as it turns out, JANUS/Ada ignores all pragmas that would follow
different rules.

The following system~dependent pragmas are defined by JANUS’Ada. Unless
otherwise stated, they may occur anywhere that a pragma may occur.

ATI_CUECES Takes one of two identifiers On or Cff as ifs arzument, and has s
textual range. If the argument is Off, then this pragma canses

suppression of arithmetic checking (like pragma ARITHCHURECK - see
below), range checking (like pragma RANGECIECK - see below),

storage error checking, and elaboration checking. If the argument is
On, then these checks are all performed as usual. Note that pragma
ALL_CHECKS does not affect the status of the DEBUG pragma; for the
fastest run time c¢ode (and the worst run time checking), both
ALL_CUECKS and DEBUG should be turned Off and the pragma
OPTIMIZE (Time) should be used. Note also that ALL_CHECKS does not
affect the status of the ENUMTAB pragma. Combining check
suppression using the pragma ALL_CHECKS and using the pragma
SUPFRESS may cause unexpected resnlts; it should not be done.

B-2

Appendix F: Implementation Dependencies

However, ALL_CHECKS may be combined with the JANUS/Ada pragmas
ARITHCHECK and RANGECHECK; whichever relevant pragma has
occurred most recently will determine whether a given check is
performed. ALL_CHECKS is on by default. Turning any checks off may
cause unpredictable results if execution would have caused the
corresponding assumption to be violated. Checks should be off only in
fully debugged and tested programs. After checks are turned off, full
testing should again be done, since any program that handles an
exception may expect results that will not occur if no checking is
done.

ARITHCHECK Takes one of the two identifiers On or Off as its argument, and has a

CLEANTP

textual range. Where ARITHCHECK is on, the compiler is permitted to
(and generally does) not generate checks for situations where it is
permitted to raise UMERIC_ERROR; these checks include overflow
checking and checking for division by =zero. Combining check
suppression using the pragma ARITHCHECK and using the pragma
SUPPRESS may cause unexpected results; it should not be done.
However, ARITHCHECK may be combined with the JANUS/Ada pragma
ALL_CHECKS; whichever pragma has occurred most recently will be
effective. ARITHCHECK is on by default. Turning any checks off may
cause unpredictable results if execution would have caused the
corresponding assumption to be violated. Checks should be off only in
fully debugged and tested programs. After checks are turned off, full
testing should again be done, since any program that handles an

exception may expect results that will not occur if no checking is
done.

Takes an integer literal in the range 0..3 as its argument, and has a
textual range. Using this pragma allows the JANUS’Ada rin-time
syvstem to be Jess than meticulous about recovering temporary memory
spaca it uses. This pragma can allow for smaller and faster eode, but
can be dangerous; certajin constructs can cause memory to be used up
very quickly. The smaller the parameter, the more danger is permitted.
A value of & - the default value - causes the run-time system to be
its usual immaculate self. A value of © causes no reclamation of
temporary space. Values of 1 and 2 allow compromising between
"cleanliness” and speed. Using values other than 3 adds some risk of
your program running out of memory, especially in loops which contain
certain constriucts.

B-3

DEBUG

ENUMTAB

Appendix F: Implementation Dependencies

Takes one of the two identifiers On or Off as its argument, and has a
textual range. This pragma controls the generation of line number
code and procedure name code. When DEBUG is on, such code is
generated. When DEBUG is off, no line number code or procedure
names are generated. This information is used by the walkback which
is generated after a run-time error (e.g., an unhandled exception).
The walkback is still generated when DEBUG is off, but the line
numbers will be incorrect, and no subprogram names will be printed.
DEBUG's initial state can be set by the command line; if no explicit
option is given, then DEBUG is initially on. Turning DEBUG off saves
space, but causes the loss of much of JANUS/Ada's power in
describing run-time errors.

Notes:
DEBUG should only be turned off when the program has no errors. The

information provided on an error when DEBUG is off is not very
useful.

If DEBUG is on at the beginning of a subprogram or package
specification, then it must be on at the end of the specification.
Conversely, if DEBUG is off at the beginning of such a specification,
it must be off at the end. If you want DEBUG toc be off for an entire
compilation, then you can either put a DEBUG pragma in the context
clause of the compilation or you can use the appropriate compiler
option.

Takes one of the two identifiers On or Off as its argument, and has a
textual range. This pragma controls the generation of enumeration
tables. Enumeration tables are used for the attributes TMAGE, VALUE,
and WIDTH, and hence to input and output enumeration valiues. The
tables are generated when ENUMTAB is on. The state of the ENUMTAB
flag is significant only at enumeration type definitions. If this pragma
is used to prevent generation of a type's enumeration tablas, then
using the three mentinned attributes causes an erronecus program,
with nnpredictable results; furthermore, the type should not be used
as a generic actual discrete type. and in particular
TEXT_IO.ENUMERATION_T0O should not be instantiated for the type. If
the enumeration type is not needed for any of thease purpcses, the
tables. which use a lot of space, ars unnecessary. ENUMTAB is on by
default.

B-4

» Appendix F: Implementation Dependencies

SYSLIB

-
%)

BOSE

PAGE_LENGTH

This pragma takes a single integer literal as its argument. It says
that a page break should be added to the listing after each
occurrence of the given number of lines. The default page length is
32000, so that no page breaks are generated for most programs. Each
page starts with a header that looks like the following:

JANUS/ADA Version 2.1.1 compiling file on date at time

RANGECHECKTakes one of the two identifiers On or Off as its argument, and has a

textual range. Where RANGECHECK is off, the compiler is permitted to
(and generally does) not generate checks for situations where it is
expected to raise CONSTRAINT_ERROR; these checks include null
pointer checking, discriminant checking, index checking, array length
checking, and range checking. Combining check suppression using the
pragma RANGECHECK and using the pragma SUPPRESS may cause
unexpected results; it should not be done. However, RANGECHECK may
be combined with the JANUS/Ada pragma ALL_CHECKS; whichever
pragma has occurred most recently will be effective. RANGECHECK is
on by default. Turning any checks off may cause unpredictable results
if execution would have caused the corresponding assumption to be
violated. Checks should be off only in fully debugged and tested
programs. After checks are turned off, full testing should again be
done, since any program that handles an exception may expect results
that will not occur if no checking is done.

This pragma tells the compiler that the current unit is one of the
standard JANUS/Ada system libraries. It takes as a parameter an
integer literal in the range 1 .. 15; only the wvalues 1 through 4 are
currently used. For example, system library number 2 provides floating
point support. Do not use this pragma unless you are writing a
package to replace one of the standard JANUS’Ada system libraries.

Takes On or Cff as its argument, and has a textual! range. VERBOSE
contrels the amount of output on an errcr. If VERBOSE is on, the two
lines preceding the error are printed, with an arrow pointing at the
error. If VERBOSE is off, only the line number is printed.
VERBOSE(Off):

Line 16 at Position 5
ERROR Identifier is not defined

B-5

Appendix F:.Implementation Dependencies

VERBOSE(On):

15: if X = 10 then
16: Z := 10;

ERROR Identifier is not defined

The reason for this option is that an error message with VERBOSE on
can take a long time to be generated, especially in a large program.
VERBOSE's initial condition can be set by the compiler command line.

Several required Ada pragmas may have surprising effects in JANUS’Ada. The
PRIORITY pragma may only take the value 0, since that is the only value in the
range System.Priority. Specifying any OPTIMIZE pragma turns on optimization;
otherwise, optimization is only done if specified on the compiler's command line.
The SUPPRESS pragma is ignored unless it only has one parameter. Also, the
following pragmas are always ignored: CONTROLLED, INLINE, MEMORY_SIZE, PACK,
SHARED, STORAGE_UNIT, and SYSTEM_NAME. Pragma CONTROLLED is always ignored
because JANUS/Ada does no automatic garbage collection; thus, the effect of
pragma CONTROLLED already applies to all access types. Pragma SHARED is
similarly ignored: JANUS’Ada's non-preemptive task scheduling gives the
appropriate effect to all variables. The pragmas INLINE, PACK, and SUPPRESS (with
two parameters) all provide recommendations to the compiler; as Ada allows, the
recommendations are ignored. The pragmas MEMORY_SIZE, STORAGE_UNIT, and
SYSTEM_NAME all attempt to make changes to constants in the System package; in
each case, JANUS/Ada allows only one value, so that the pragma is ignored.

F.2 Implementation Dependent Attributes

JTANTS’Ada does not provide any attributas ather than the required Ada
attributes.

F.3 Specification of the Package SYSTEM

The package System for JANTIS’Ada has the following definition.

Apbendix F: Implementation Dependencies

package System is
-- System package for JANUS/Ada

-- Types to define type Address.
type Word is range 0 .. 65536;
for Word'Size use 16;
type Offset_Type is new Word;
type Address is record
Offset : Offset_Type;
Segment : Word;
end record;
Function "+" (Left : Address; Right : Offset_Type) Return Address;
Function "+" (Left : Offset_Type; Right : Address) Return Address;
Function "-" (Left : Address; Right : Offset_Type) Return Address;
Function "-" (Left, Right : Address) Return Offset_Type;

type Name is (MS_D0S2):
System_Name : constant Name := MS_DO0S2;

Storage_Unit : constant := §;

Yemory_Size : constant := 65536;
-- Note: The actual menory size of a program is determined
~- dynamically; this is the maximum number of bytes in the data
~- segnment.

-- System Dependent Named Numbers:
Min_Int : constant := -2_147_483_6483;
Max_Int : constant := 2_147_433_647;
Max_Digits : constant := 1E;
Max_Mantissa : constant : 1;
Fine_Delta : comstant := 231.04#E-31;
-- equivalently, 4.656612873077292573125E-1¢C
Tick : comstant := 0.01; -- Some machines have less accuracy;
-- for example, the IB! PC actually ticks about
-- gvery 0.0€ seconds.

Lo~

2% I

~- Other System Dependant Declarations
subtype Priority is Integer range 0..0;

type Byte is range 0 .. 255;
for Byta'Size use 8;

B-7

Appendix F:.Implementation Dependencies

end System;

The type Byte in the System package corresponds to the 8-bit machine byte. The
type Word is a 16-bit Unsigned Integer type, corresponding to a machine word.

F.4 Restrictions on Representation Clauses

If T is a discrete type, or a fixed point type, then the size expression can give
any value between 1 and 1000 bits (subject, of course, to allowing enough bits for

every possible value). For other types, the expression must give the default size
for T.

A length clause that specifies T'STORAGE_SIZE for an access type is not
supported; JANUS/Ada uses a single large common heap.

A length clause that specifies T'STORAGE_SIZE for a task type T is supported.
Any integer value can be specified. Values smaller than 256 will be rounded up to
256 (the minimum T'Storage_Size), as the Ada standard does not allow raising an
exception in this case.

A length clause that specifies T'SMALL for a fixed point type must give a value
(subject to the Ada restrictions) in the range

2.0 ** (-99) .. 2.0 ** 99,
inclusive.

An enumeration representation clause for a type T may give any integer values
within the range System.Min_Int .. System.Max_Int. If a sire length clause is not
given Tor the type, the type's size is determined from the literals given. (If all of
the literals fit in a by*e, then Byte'Size is used; similarly for Integer anid
Lonz_Tnteger).

The expression in an alignment clause in a record reprasentation clause must
equal 1.

A component clause must Zive a storage place that is equivalent te the defaunlt
valite of the POSITION attribute for such a component.

A component clause must give a range that starts at zero and extends to one less
than the size of the component.

B-8

Appendix F: Implementation Dependencies

JANUS/Ada supports address clauses on most objects. Address clauses are not
allowed on parameters, generic formal parameters, and renamed objects. The
address given for an object address clause may be any legal value of type
System.Address. It will be interpreted as an absolute machine address, using the
segment part as a selector if in the protected mode. It is the user's responsibility
to ensure that the value given makes sense (i.e., points at memory, does not
overlay other objects, etc.) No other address clauses are supported.

F.5 Implementation Defined Names
JANUS/Ada uses no implementation generated names.

F.6 Address Clause Expressions

The address given for an object address clause may be any legal value of type
System.Address. It will be interpreted as an absolute machine address, using the
segment part as a selector if in the protected mode. It is the user's responsibility
to ensure that the value given makes sense (i.e., points at memory, does not
overlay other objects, etc.)

F.7 Unchecked_Conversion Restrictions

We first make the following definitions:
A type or subtype is said to be a simple typn or a simple subtype (respectively)
if it is a scalar (sub)type, an access (subltype, a task (sub)type, or if it satisfies
the following two conditions:
1Y TIf it is an array ftype or subtype, then it is constrained and its index
constraint is static; and

2) If it is a composite type or subtype, then all of its subeomponents have a
simple subtype.

A (sub)type which does not meet these conditions is called non-simple.
Discriminated records can be simple; variant records can be simple. However,

constraints which depend on diseriminants are non-simple (because they are
non-static).

JANUS Ada imposes the following restriction on instantiations of
Unchecked_Conversion: for such an instantiation to be legal, both the source

B-9

Appendix F: Implementation Dependencies

actual subtype and the target actual subtype must be simple subtypes, and they
must have the same size.

F.8 Implementation Dependencies of 1/0

The syntax of an external file name depends on the operating system being used.
Some external files do not really specify disk files; these are called devices.
Devices are specified by special file names, and are treated specially by some of
the 1/0 routines.

The syntax of an MS-DOS 2.xx or 3.xx filename is:
[d:][path]filename[.ext]

where "d:" is an optional disk name; "path” is an optional path consisting of
directory names, each followed by a backslash; "filename" is the filename
(maximum 8 characters); and ".ext" is the extension (or file type). See your
MS~DOS manual for a complete description. In addition, the following special
device names are recognized:

STI: MS-DOS standard input. The same as Standard_Input. Input is buffered
by lines, and all MS-DOS line editing characters may be used. Can
only be read.

STO: MS-DOS standard output. The same as Standard_Output. Can only be
written.

FRR: MS-DOS standard error. The output to this device cannot be
redirected. Can only be written.

CON: The console device. Single character input with echoing. Due2 to the
desizn of MS-DOS, this device can he redirected. Can be read and
written.

AUX: The auxiliary device. Can be read or written.

LLST: The list (printer) device. Can only be written.

KDD: The console input device. No character interpretation is performed,
and there is no character echo. Again, the input to this device can
be redirected, so it does not alwals refer to the physical kevhaard.

The MS-DOS device files may also bhe used (CON, AUX, and PRN without

colons ':'). For compatibility reasons, we do not recommend the use of these
names.

B-10

Appendix F: Implementation Dependencies

The MS-DOS 2.xx version of the I/0 system will do a search of the default

search path (set by the DOS PATH command) if the following conditions are
met:

1) No disk name or path is present in the file name; and
2) The name is not that of a device.

Alternatively, you may think of the search being done if the file name does
not contain any of the characters "', '/', or "\".

The default search path cannot be changed while the program is running, as
the path is copied by the JANUS/Ada program when it starts running.

Note:
Creates will never cause a path search as they must work in the current
directory.

Upon normal completion of a program, any open external files are closed.
Nevertheless, to provide portability, we recommend explicitly closing any files that
are used.

Sharing external files between multiple file objects causes the corresponding
external file to be opened multiple times by the operating syvstem. The effects of
this are defined by your operating system. This external file sharing is only
allowed if all internal files associated with a single exterral file are opened only
for reading (mode In_File), and no internal file is Created. Use_Error is raised if
these requirements are violated. A Reset to a writing mode of a file already

opened for reading also raise Use_Error if the external file alsc is shared by
another internal file.

Binary 1'0 of valies of access types will give meanirZless results and should not
be dane. Binary 1’0 of types which are not simple types (see definition in Saortion
F.7, above) will raise Use_Error when the file is copened. Such types require
specification of the block size in the form, a capability which is not yet
supported.

The form parameter for Sequential_TO and Direct_I0 is alwvayvs expected to be the
null string.

The type Count in the generic package Direct_I0Q is defined to have the range 0 ..

32767

rLt r .,

Ada specifies the existence of special markers called terminators in a text file.
JANUS "Ada defines the line terminator to be <LF> (line feed}), with or without an

Appendix F: Implementation Dependencies

additional <CR> (carriage return). The page terminator is the <FF> (form feed)
character; if it is not preceded by a <LF>, a line terminator is also assumed.

The file terminator is the end-of-file returned by the host operating system. If no
line and/or page terminator directly precedes the file terminator, they are
assumed. If the form "Z" is wused, the <Ctrl>-Z character also represents the
end-of-file. This form is not necessary to correctly read files produced with
JANUS/Ada and most other programs, but may be occasionally necessary. The only

legal forms for text files are "" (the null string) and "Z". All other forms raise
USE_ERROR.

If the form is "", the <Ctr1>-Z character is ignored on input. The <CR> character
is always ignored on input. {They will not be returned by Get, for instance). All
other control characters are sent directly to the user. Cutput of control characters
does not affect the layout that Text_IO generates. In particular, output of a <LF>
before a New_Page does not suppress the New_Line caused by the New_Page.

On output, the "Z" form causes the end-of-file to be marked by a <KCtri>-Z;
otherwise, no explicit end-of-file character is used. The character pair <CR> <LF>
is written to represent the line terminator. Because <(CR> is ignored on input, this
is compatible with input.

The type Text_IO.Count has the range 0 .. 32767; the type Text_lO.Field also has
the range 0 .. 32767.

10_Exceptions.I'SE_ERROR is raised if something cannot be done bhecause of the
external file system; such situations arise when one attempts:
- to create or open an external file for writing when the external file is
already open (via a different internal file).
- to create or open an external file when the external file is already open for
wvriting (via a different internal file).
- to reset a file to a writing mode when the extzrnal e is already open (via
o diffeorent interna! file).
- ta write to a full disk (Vrite, Close);
- to create a file in a full directory (Create);
- to have more files open than the 0S allows (Open, Create);
- to open a device with an illegal mode;
- to create, reset, ar delete a device;
- tu create a file where a protected file (i.e., a directory or read-only file)
already exists;
- to delete a protected file;
- to use an illegal form (Open, Create); or
- to open a file for a non-simple type without specifying the block sine;
- to open a device for direct 1°0.

B-12

Api)endix F: Implementation Dependencies

10_Exceptions.DEVICE_ERROR is raised if a hardware error other than those
covered by USE_ERROR occurs. These situations should never occur, but may on
rare occasions. For example, DEVICE_ERROR is raised when:

a file is not found in a Close or a Delete;
a seek error occurs on a direct Read or Write; or
a seek error occurs on a sequential End_Of_File.

The subtypes Standard.Positive and Standard.Natural, used by some /0O routines,
have the maximum value 32767,

No package Low_Level_lIO is provided.

F.9

Running the compiler and linker

The JANUS/Ada compiler is invoked using the following format:

JANUS [d:] filename [.ext] {/option!

where filename is an MS/DOS file name with optional disk name [d:], optional
extension [.ext], and compiler options {’option}. If no disk name is specified, the
current disk is assumed. If no extension is specified, .PKG is assumed.

The compiler options are:

B

D
F

rd

REAN

Brief error messages. The line in error is not printed (equivalent to turning
off pragma VERBOSE).

Don't generate debugging code (equivalent te turning off pragma NDEBUG)

Use in=-line 8087 instructions for Floating point operations. By default the
rompiler generates library eallzs for floating point operations. The 8087 may
be used to executs the library ecalls. A floating point suppert library is still
reqiiired, even thongh this rption is used.

Create a listing file with name filename.PRN on the same disk as filename.
The listing file vill be a listing of only the last compilation unit in a file.
Create a listing file on specified disk 'd’. Choices are 'A’' through ‘W',

Object code memory model. X is ¢ or 1. Memecry model G creates faster,
smaller code, but limits all code in all units of a program to one MS-DCS
segment (i.e., 63 kilobytes); Memory model 1 allows code size limited only by
your raachine and operating system. See the linker (JLINK) manual for more
information. Memory model ¢ is assumed if this option is not given. The
compiler records the memory model for which each library unit was compiled,
and it will complain if any mismatches occur. Thus, the compiler enforces
that if it is run using the /01 option, then all of the withed units must
have been compiled with the same option.

B-13

Rd

Sd

w

e

Appendix F: Implementation Dependencies

Quiet error messages. This option causes the compiler not to wait for the
user to interact after an error. In the usual mode, the compiler will prompt
the user after each error to ask if the compilation should be aborted. This
option is useful if the user wants to take a coffee break while the compiler
is working, since all user prompts are suppressed. The errors (if any) will
not stay on the screen when this option is used; therefore, the console
traffic should be sent to the printer or to a file. Be warned that certain
syntax errors can cause the compiler to print many error messages for each
and every line in the program. A lot of paper could be used this way! Note
that the /Q option disallows disk swapping, even if the /S option is given.
Route the JRL file to the specified disk 'd'. Choices are 'A' through 'W'. The
default is the same disk as filename.

Route Scratch files to specified disk. This option is useful if you have a
RAM disk or if your disk does not have much free space. The use of this
option also allows disk swapping to load package specification (.SYM) files.
Normally, after both the compiler and source file disks are searched for .SYM
files, an error is produced if they are not all found. However, when the /S
option is used, the compiler disk may be removed and replaced by a disk to
search. The linker has a similar option, which allows the development of
large programs on systems with a small disk capacity. Note that disk
swapping is not enabled by the /S option if the /Q (quiet option) is also
given. The /Q option is intended for batch mode compiles, and its purpose
conflicts with the disk swapping. The main problem is that when the /S
option is used to put scratch files on a RAM disk, a batch file may stop
waiting for a missing .SYM or ERROR.MSG file; such behavior would not be
appropriate when /Q is specified.

Generate information which allows trimming unused subprograms from the
code. This option tells the compiler to generate informaticn which can bhe
used by the remove subprograms from the final code. This option increases
the size of the .JRL files produced. We recommend that it be nsed on
reusable libraries of code (like trig. libraries or stack packages) - that is
thnsa ecompilatinons for -which it is likely that some subpreograms arc not
called. -y

Don't print any warning messages. For more control of warning massanges, use
the following option form (Wx).

Print only warnings of level less than the specificd dizit 'xX'. The Ziven
value of x may be from 1 to 9. The more warnings you are willing to soe,
the higher the numher you should give.

Handle eXtra symbol table information. This option is for the use of the
JSeope debuggzer and other tools. This option requires larze quantities of
memory and disk space, and thus should be avoided if passible.

Turn on optimization. This has the same effect as if the pragma OPTINMITR
were set to SPACE throughout your compilation.

B-14

Appendix F: Implementation Dependencies

The default values for the command line options are:

Error messages are verbose.

Debug code is generated.

Library calls are generated for floating point operations.
No listing file is generated.

Memory model 0 is used.

The compiler prompts for abort after every error.

The JRL file is put on the same disk as the input file.
Scratch files are put on the same disk as the compiler.
No trimming code is produced.

All warnings are printed.

Extra symbol table information is not generated.
Optimization is done only where so specified by pragmas.

NY“aInwOoOrmMow

Leading spaces are disregarded between the filename and the call to JANUS.
Spaces are otherwise not recommended on the command line. The presence of

blanks to separate the options or between the filename and the extension will be
ignored.

Examples:
JANUS test/Q/L
JANUS test.run/Vv4
JaNUS test
JANUS test .run /B /W/L

The compiler produces a SYM (SYVbol table information) file when a specification
is compiled, and a SRL or JRL (Specification Rel.ocatable or Janus RaLocatable) file
when a body is compiled. To make an executable program, the appropriate SRIL and
JRL files must be Jinked (combined) with the run-time libraries. This is
arroteplished by running the JANUS’Ada linker, JLINK,

The JANTS'Ada linker is involked using the following format:
SLIVK [d:] filename [/option}

Here "filename” is the name of the SRL or JRL file created when the main program
was compiled (without the .SRL or .JRL extension) with opticnal disk name [d:],
and compiler options {‘option]. The filename usually corresponds tc the first eight
letters of the name of your main program. A disk may be specified where the files
are to be found. See the linker manual for more detailed directions. We summarize

here, however, a fer of the most commonly used linking options:

B-15

#

Appendix F: Implementation Dependencies

E Create an EXE file. This is assumed if the /01 option Is given. This allows
allow a slightly larger total program size if memory model is used.

FO Use software floating point (the default).

F2 Use hardware (8087) floating point.

L Display lots of information about the loading process.

00 Use memory model 0 (the default); see the description of the /O option in
the compiler, above.

01 Use memory model 1.

Q Use quiet error messages; i.e., don't wait for the user to interact after an
error.

T Trim unused subprograms from the code. This option tells the linker to
remove subprograms which are never called from the final output file. This
option reduces space usage of the final file by as much as 30K.

Examples:

JLINK test
JLINK test /Q/L
JLINK test/01/L/F2

Note that if vou do not have a hardware floating point chip, and if you are using
memory model 0, then you generally will not need to use any linker options.

B-16

———‘

Appendix F: Implementation Dependencies

A}

This page intentionally left blank

B-17

APPENDIX C
TEST PARAMETERS

Certain tests in the ACVC make use of implementation-~dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
helow:

Name and Meaning Value

$ACC_SIZE 16
An integer 1literal whose value
is the number of bits sufficient
to hold any value of an access

type.

$BIG_ID1 1..199 => 'A',200 => '7!
An identifier the size of the
maximum input line length which
is identical to $BIG_ID2 except
for the last character.

$BIG_ID2 1..199 => 'A',200 => '2°
An identifier the size of the
maximum input line length which
is identical to $BIG_ID1 except
for the last character.

$BIG_ID3 1..99 => 'A',100 => '3',101..200 => 'A’

An identifier the size of the
maximum input line length which
is identical to $BIG_IDU except
for a character near the middle.

C-1

TEST PARAMETERS

Name and Meaning

$BIG_ID4
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT_LIT
An integer literal of value 298
with enough 1leading zeroes so
that it 1is the size of the
maximum line length.

$BIG_REAL_LIT
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG_STRING!
A string 1literal which when
catenated with BIG_STRING2
yields the image of BIG_ID1.

$BIG_STRING2
A string 1literal which when

catenated to the end of
BIG_STRING1 yields the image of
BIG_ID1.

$BLANKS

A sequence of blanks twenty
characters 1less than the size
of the maximum line length.

$COUNT_LAST
A universal integer
literal whose value is

TEXT_IO.COUNT'LAST.

$DEFAULT _MEM_SIZE
An integer literal whose value
is SYSTEM.MEMORY_SIZE.

$DEFAULT_STOR_UNIT
An integer literal whose value
is SYSTEM.STORAGE UNIT.

Value

1..99 => '4',100 => '4',101..200 => ‘A"

1..197 => '0',198..200 => "298"

1..194 => '0',195..200 => "69.0E1"

12> ™M0.2,.101 => 'A',102 =>

13> 1M1 .2,.100 => 'A',101 => 11,102 => '

1..180 => ' !

32 767

65536

TEST PARAMETERS

Name and Meaning Value

$DEFAULT_SYS_NAME MS_DOs2
The value of the constant
SYSTEM.SYSTEM_NAME.

$DELTA_DOC 0.000_000_000_465_661_287_307_739_257_812_5
A real literal whose value is
SYSTEM.FINE_DELTA.

$FIELD_LAST 32_767
A universal integer
literal whose value is

TEXT_IO.FIELD'LAST.

$FIXED_NAME NOT_APPLICABLE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT_NAME NOT_APPLICABLE
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.

$GREATER_THAN_DURATION 300_000.0
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER_THAN_DURATION_BASE_LAST 1.0Eb
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH_PRIORITY 0
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL_EXTERNAL_FILE_NAME1 \NODIRECTORY\FILENAME
An external file name which
contains invalid characters.

$ILLEGAL_EXTERNAL_FILE_NAMEZ <BAD| ">
An external file name which
is too 1long.

$INTEGER_FIRST -32768

A universal integer 1literal
whose wvalue is INTEGER'FIRST.

C-3

o7

TEST PARAMETERS

Name and Meaning

$INTEGER_LAST
A universal integer 1literal
whose value is INTEGER'LAST.

$INTEGER_LAST_PLUS_1
A universal integer 1literal
whose value is INTEGER'LAST + 1.

$LESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN_LEN
Maximum input line length
permitted by the implementation.

$MAX_INT
A universal integer 1literal
whose value i1s SYSTEM.MAX INT.

$MAX_INT_PLUS_1
A universal integer 1literal
whose value is SYSTEM.MAX_INT+1.

$MAX_LEN_INT_BASED_LITERAL
A universal integer based
literal whose value is 2#11#
with enough 1leading =zeroes in
the mantissa to be MAX IN LEN
long.

c-4

Value

32767

32768

-305_000.0

-1.0E6

31

15

200

2147483647

2147483648

1-.2 => "2:",3-.197 => '0',
1980.200 => "11:"

Name and Meaning

$MAX_LEN_REAL_BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading 2zeroes in the
mantissa to be MAX_IN_LEN long.

$MAX_STRING_LITERAL
A string literal of
MAX IN LEN, including the
characters.

size
quote

$MIN_INT
A universal
whose value is

integer 1literal
SYSTEM.MIN_INT.

$MIN_TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,

LONG_FLOAT, or LONG_INTEGER.
$NAME LIST

A list of enumeration 1literals

in the type SYSTEM.NAME,

separated by commas.

$NEG_BASED_INT

A Dbased integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.
$NEW_MEM_SIZE

An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT MEM SIZE. 1If there is
no other value, then use

$DEFAULT_MEM_SIZE.

c-5

TEST PARAMETERS

Value

1..3 => "16:",4..196 => '0',
1970 0200 => "F-E:"

T => m™m1,2,.199 => 'A',200 => M

-2147483648

16

NOT_APPLICABLE

MS_DOS2

16#FFFF_FFFF#

65536

TEST PARAMETERS

Name and Meaning

$NEW_STOR_UNIT
An integer literal whose value
is a permitted argument for
pragma STORAGE_UNIT, other than
$DEFAULT_STOR_UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE_UNIT.

$NEW_SYS_NAME
A value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If
there is only one value of that
type, then use that value.

$TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK
A real literal whose value is
SYSTEM.TICK.

Value

MS_DO0S2

16

0001

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 36 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
Al-ddadd is to an Ada Commentary.

A39005G has been withdrawn because it unreasonably expects a
component clause to pack an array component into a2 minimum size
(1ine 30).

B97102E has been withdrawn because it contains an unintended
illegality: a select statement contains a null statement at the
place of a selective wait alternative (line 31).

BC3009B has been withdrawn because it wrongly expects that
circular instantiations will be detected in several compilation
units even though none of the units is illegal with respect to the
units it depends on; by AI-00256, the illegality need not be
detected until execution is attempted (line 95).

CD2A62D has been withdrawn because it wrongly requires that an
array object's size be no greater than 10, although its subtype's
size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2AT3A..D, CD2AT6A..D [16 tests] have
been withdrawn because they wrongly attempt to check the size of
objects of a derived type (for which a 'SIZE 1length clause is
given) by passing them to a derived sub-program (which implicitly
converts them to the parent type (Ada standard 3.4:18)).
Additionally, they use the 'SIZE length clause and attribute,
whose interpretation is considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84M and N, and CD50110 have been withdrawn
because they assume that dependent tasks will terminate while the
main program executes a loop that simply tests for task
termination; this is not the case, and the main program may loop
indefinitely (lines 74, 85, 86 and 66, 86 and 96, and 58,

D=1

WITHDRAWN TESTS

respectively).

CD2B15C and CD7205C have been withdrawn because they expect that a
'STORAGE_SIZE length clause provices precise control over the
number of designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

CD5007B has been withdrawn because it wrongly expects an
implicitly declared subprogram to be at the the address that is
specified for an unrelated subprogram (line 303).

CD7105A has been withdrawn because it requires that successive
calls to CALENDAR.CLOCK change by at least SYSTEM.TICK; however,
by Commentary AI-00201, it is only the expected frequency of
change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

CD7203B and CD7204B have been withdrawn because they use the 'SIZE
length c¢lause and attribute, whose interpretation is considered
problematic by the WG9 ARG.

CD7205D has been withdrawn because it checks an invalid test
objective: it treats the specification of storage to be reserved
for a task's activation as though it were like the specification
of storage for a collection.

CE2107- has been withdrawn because it requires that objects of two
similar scalar types be distinguished when read from a
file--DATA_ERROR is expected to be raised by an attempt to read
one object as of the other type. However, it is not clear exactly
how the Ada standard 14.2.4:4 is to be interpreted; thus, this
test objective is not considered wvalid. line 90)

CE317:C has been withdrawn because it requires certain behavior
when two files are associated with the same external file;
however, this is not required by the Ada standard.

CE3301A has been withdrawn because it contains several call to
END_OF_LINE and END_OF PAGE that have no parameter: these calls
were intended to specify a file, not to refer to STANDARD_INPUT
(lines 103, 107, 118, 132, and 136).

CE3411B has been withdrawn because it requires that a text file's
column number be set to COUNT'LAST in order to check that
LAYOUT_ERROR is raised by a subsequent PUT operation. But the
former operation will generally raise an exception due to a lack
of available disk space, and the test would thus encumber
validation testing.

D-2

