
UNCLASSIFIED
SECU :' CLAS51(! A O* , OF TqS VAG((WherDaTa'En'tered___

REPORT DOCUMENTAT ION PAGE -,, wrflo..

i. REPORI %bw iZ. GOVt ACCESSIOk NO. 3. RICIPILhI'S CAIA.O4, hUMb

4. 111LE (5,' e) 5. TYPE OF REPOPI L PLP101 COVERED

0 Ada Compiler Validation Sumxrary Report:A , 16 Dec. 1988 to 16 Dec. 1989
r Limited, AlsyCOMP 006, Version 4.1, IBM 9370 Mod k 0 PER ORmOOR .APO7 NMIBLERI(host & Target), 881216N1.10012

9< 7. AUJIMORls) S. CONTRAC OR 6RAN7 NUNBERi;

National Computing Centre Limited,
Manchester, United Kingdom.

S . PERFORMING ORGAN"ZATIDh AND ADDRESS 10. PRDCRAV ELI[MNI. PR JECY. TASx
AREA ! WORK UNIT NUMBERS

ational Computing Centre Limited,
4anchester, United Kingdom.

i1. COTROLlh; OFFICE NAME AND ADDRESS 1?. REPORT DAIE

Ada Joint Program Office
United States Department of Defense 1. Nz OF
Washington, DC 2301-3081

14. NONITORIN% AGENhY NAME & ADDRSS(Ifdifferentfro nControhungOflice) :5. SECuRIh CLASS (o0thisreport)
UNCLASSIFIED

National Computing Centre Limited, D SCLaS5.rICATO,,'DOW.RADING

Manchester, United Kingdom. .h UL N/A

16. DISTRIBJTION STATEMENT (ofthisReporn)

Approved for public release; distribution unlimited.

17. DISTRISJTI0h STA7EV-.NT (Oftheab.rtenerl57jpelfomPr

UNCLASSIFIED I F 1.ECTE fRo

AUG 0 31989
1a. SUPPdEWENARi NOTES D c 7

is. RE YWDRDS (Cor tnue on reverse sdf i neessary and identify 0), block number)

Ada Programming language, Ada Compiler Validation Surrmary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ARSTRAC T (Continue on reverie Side f necessry and denfy by block number)

Alsys Limited, AlsyCOMP_006, Version 4.1, National Computing Centre Limited, U.K.,
IBM 9370 Model 90 under VN/IS CMS release 5.1 (Host & Target), ACVC 1.10.

3 12

AVF Control Number: AVF-VSR-90502-44

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: #881216N1.10012
Alsys Limited

AlsyCOMP 006 Version 4.1
IBM 9370 Model 90

Completion of On-Site Testing:
16th December 1988

Prepared By:
The National Computing Centre Limited

Testing Services
Oxford Road, Accesior, For
Manchester,

M1 7ED, NT -
United Kingdom Dl, L

U: d

By
Prepared For: DIt '0:. I

Ada Joint Program Office .
United States Department of Defense A .,,Lu .ues

Washington DC 20301-3081 d

/ "

(, ,\~~s

Ada Compiler Validation Summary Report:

Compiler Name : AlsvCOMP_006 Version 4.1

Certificate Number :8B12!£NI.I0012

Host : IBM 9370 Model 90 under
VM/IS CMS release 5.1

Target : IBM 9370 Model 90 under
VM/IS CMS release 5.1

Testing Completed 16th December 1988 Using ACVC 1.10

This report has been reviewed and is approved.

The National Computing Centre Limited
Jane Pink
Testing Services
Oxford Road
Manchester
M1 7ED
United Kingdom

(12kL Z/Y
he&Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

AM JintProgram Office
Dr. John Solomond
Director
Washington D.C. 20301

Ada Compiler Validation Summary Report:

Compiler Name : AlsyCOMP_006 Version 4.1

Certificate Number : #881216NI.10012

Host : IBM 9370 Model 90 under
VM/IS CMS release 5.1

Target : IBM 9370 Model 90 under
VM/IS CMS release 5.1

Testing Completed 16th December 1988 Using ACVC 1.10

This report has been reviewed and is approved.

The National Computing Centre Limited
Jane Pink
Testing Services
Oxford Road
Manchester
M1 7ED
United Kingdom

Ada Validation Organizati

Dr. John F. Kramer 0,1I

Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Washington D.C. 20301

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1

I;:TRODUCTION
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . . 2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 2
1.3 REFERENCES 3
1.4 DEFINITION OF TERMS 3
1.5 ACVC TEST CLASSES 5

CHAPTER 2

CONFIGURATION INFORMATION
2.1 CONFIGURATION TESTED 1
2.2 IMPLEMENTATION CHARACTERISTICS 2

CHAPTER 3

TEST INFORMATION
3.1 TEST RESULTS 1
3.2 SUMMARY OF TEST RESULTS BY CLASS 1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 1
3.4 WITHDRAWN TESTS 2
3.5 INAPPLICABLE TESTS 2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 6
3.7 ADDITIONAL TESTING INFORMATION 7

3.7.1 Prevalidation 7
3.7.2 Test Method 7
3.7.3 Test Site 10

APPENDIX A

DECLARATION OF CONFORMANCE
DECLARATION OF CONFORMANCE 2

APPENDIX B

APPENDIX F OF THE Ada STANDARD
package STANDARD 1
APPENDIX F OF THE Ada STANDARD 2

APPENDIX C

TEST PARAMETERS
MACRO DEFINITIONS.................1

AtsyCOMP_OOA version 4.1 AVF-VSR-90502-44

Vatidation Summary Report Table of Contents Page i of ii

TABLE OF CONTENTS

APPENDIX D

WITHDRAWN TESTS
WITHDRAWN TEST LIST.....................

AlsyCOM4P_006 version 4.1 AVF-VSR-90502-44

Vatidation Surimidry Report Tabte of Contents Page ii of ii

INTRODUCTION

CHAPTER 1

INTRODUCTION

- This Validation Summary Report (VSRJ' describes the extent to
which a specific Ada compiler conforms to the Ada Standard,
ANSI/MIL-STD-1815A. This report explains all technical terms
used within it and thoroughly reports the results of testing
this compiler using the Ada Compiler Validation Capability,

7hCVC-)-, An Ada compiler must be implemented according to the
Ada Standard, and any implementation-dependent features must
conform to the requirements of the Ada Standard. The Ada
Standard must be implemented in its entirety, and nothing can be
implemented that is not in the Standard.-

Even though all validated Ada compilers conform to the Ada
Standard, it must be understood that some differences do exist
between implementations. The Ada Standard permits some
implementation dependencies--for example, the maximum length of
identifiers or the maximum values of integer types. Other
differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation
strategies. All the dependencies observed during the process of
testing this compiler are given in this report.

The information in this report is derived from the test results
produced during validation testing. The validation process
includes submitting a suite of standardized tests, the ACVC, as-.-_
inputs to an Ada compiler and evaluating the results., The
purpose of validating is to ensure conformity of the compiler to
the Ada Standard by testing that the ccmpiler properly
implements legal language constructs and that it identifies and .

rejects illegal language constructs. The testing also
identifies behaviour that is implementation-dependent but
permitted by the Ada Standard. Six classes of tests are used.
These tests are designed to perform checks at compile time, at
link time, and during execution.

ALsyCOMP_006 version 4.1 AVF-VSR-90502-44

Validation Sumnary Report Chapter 1 Page 1 of 7

INTRODUCTION

.i rPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing
performed on an Ada compiler. Testing was carried out for the
-01o:ing purposes:

o To attempt to identify any language constructs
supported by the compiler that do not conform to the
Ada Standard

o To attempt to identify any language constructs not
supported by the compiler but required by the Ada
Standard

o To determine that the implementation-dependent
behaviour is allowed by the Ada Standard

Testing of this compiler was conducted by The National Computing
Centre Limited according to procedures established by the Ada
Joint Program Office and administered by the Ada Validation
Organization (AVO). On-site testing was completed 16th December
1988 at Alsys Limited, Partridge House, Newtown Road, Henley-on-
Thames, Oxfordshire, RG9 lEN, United Kingdom.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country,
the AVO may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the
"Freedom of Information Act" (5 U.S.C.#552). The results of
this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this
report do not represent or warrant that all statements set forth
in this report are accurate and complete, or that the subject
compiler has no nonconformities to the Ada Standard other than
those presented. Copies of this report are available to the
public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

ALsyCOMP_006 version 4.1 AVF-VSR-90502-44

Validation Siawmary Report Chapter 1 Page 2 of 7

INTRODUCTION

or from:

The National Computing Centre Limited
Testing Services
Oxford Road
Manchester
M1 7ED
United Kingdom

Questions regarding this report or the validation test results
should be directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines,
Ada Joint Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers'
Guide,
SofTech Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide,
December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set
of Ada programs that tests the confsrmity of an
Ada compiler to the Ada programming language.

Ada Commentary An Ada Commentary contains all information
relevant to the point addressed by a comment on
the Ada Standard. These comments are given a
unique identification number having the form AI-
ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO
8652-1987.

ALSyCOMP_006 version 4.1 AVF-VSR-90502-44

Vatidation Summary Report Chapter I Page 3 of 7

INTRODUCTION

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is
responsible for conducting compiler validations
according to procedures contained in the Ada
Compiler Validation Procedures and Guidelines.

AVO The Ada Validation Organization. The AVO has
oversight authority over all AVF practices for
the purpose of maintaining a uniform process for
validation of Ada compilers. The AVO provides
administrative and technical support for Ada
validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context
of this report, a compiler is any language
processor, including cross-compilers,
translators, and interpreters.

Failed test An ACVC test for which the compiler generates a
result that demonstrates nonconformity to the
Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language
test that a compiler is not required to support or

may legitimately support in a way other than the
one expected by the test.

Passed test An ACVC test for which a compiler generates the
expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity
regarding a partizular feature or a combination
of features to the Ada Standard. In the context
of this report, the term is used to designate a
single test, which may comprise one or more
files.

AtsyCOMP_006 version 4.. AVF-VSR-90502-44

Validation Summary Report Chapter 1 Page 4 of 7

INTRODUCTION

Withdrawn test An ACVC zest found to be incorrect and not used
to check conformity to the Ada Standard. A test
may be incorrect because it has an invalid test
obj ective, fails to meet its test objective, or
contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The
ACVC contains both legal and illegal Ada programs structured into
six test classes: A, B, C, D, E, and L. The first letter of a
test name identifies the class to which it belongs. Class A, C,
D, and E tests are executable, and special program units are used
to report their results during execution. Class B tests are
expected to produce compilation errors. Class L tests are
expected to produce errors because of the way a program library
is used.

Class A tests check that legal Ada programs can be successfully
compiled and executed. There are no explicit program components
in a Class A test to check semantics. For example, a Class A

test checks that reserved words of another language (other than
those already reserved in the Ada language) are not treated as
reserved words by an Ada compiler. A Class A test is passed if
no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language
usage. Class B tests are not executable. Each test in this
class is compiled and the resulting compilation listing is
examined to verify that every syntax or semantic error in the
test is detected. A Class B test is passed if every illegal
construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking and
produces a PASSED, FAILED, or NOT APPLICABLE message indicating
the result when it is executed.

Class D tests check the compilation and execution capacities of
a compiler. Since there are no capacity requirements placed on
a compiler by the Ada Standard for some parameters--for example,
the number of identifiers permitted in a compilation or the
number of units in a library--a compiler may refuse to compile
a Class D test and still be a conforming compiler. Therefore,
if a Class D test fails to compile because the capacity of the

ALsyCOMP_006 version 4.1 AVF-VSR-90502-44

VaLidation Summary Report Chapter 1 Page 5 of 7

INTRODUCTION

compiler is exceeded, the test is classified as inapchicable.
If a Class D test compiles successfully, it is sclf-checning and
produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject
programs containing some features addressed by Class E tests
during compilation. Therefore, a Class E test is passed by a
compiler if it is compiled successfully and executes to produce
a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs
involving multiple, separately compiled units are detected and
not allowed to execute. Class L tests are compiled separately
and execution is attempted. A Class L test passes if it is
rejected at link time--that is, an attempt to execute the main
program must generate an error message before ary declarations
in the main program or any units referenced by the main program
are elaborated. In some cases an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure
CHECK FILE, support the self-checking features of the executable
tests. The package REPORT provides the mechanism by which
executable tests report PASSED, FAILED, or NOT APPLICABLE
results. It also provides a set of identity functions used to
defeat some compiler optimizations allowed by the Ad . Standard
that would circumvent a test objective. The procedure CHECKFILE
is used to check the contents of text files written by some of
the Class C tests for chapter 14 of the Ada Standard. The
operation of REPORT and CHECK FILE is checked by a set of
executable tests. These tests prcduce messages that are examined
to verify that the units are operating correctly. if these units
are not operating correctly, then the validation is not
attempted.

The text of the tests in the ACVC follow conventions that are
intended to ensure that the tests are reasonably portable without
modification. For example, the tests make use of only the basic
set of 55 characters, contain lines with a maximum length of 72
characters, use small numeric values, and place features that may
not be supported by all implementations in separate tests.
However, some tests contain values that require the test to be
customized according to implementation-specific values--for
example, an illegal file name. A list of the values used for
this validation is provided in Appendix C.

ALsyCOMP_006 version 4.1 AVF-VSR-90502-44

Validation SLinary Report Chapter 1 Page 6 of 7

INTRODUCTION

A compiler must correctly process each of the tests in the suite
and demonstrate conformity to the Ada Standard by either meeting
the pass criteria given for the test or by showing that the test
is inapplicable to the implementation. The applicability of a
test to an implementation is considered each time the
implementation is validated. A test that is inapplicable for one
validation is not necessarily inapplicable for a subsequent
validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is
withdrawn from the ACVC and, therefore, is not used in testing
a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

AlsyCMP_006 version 4.1 AVF-VSR-90502-44

VaLidation Summary Report Chapter I Page 7 of 7

CONFIGURATION INFORMATION

CHAPTER 2

CONFICURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested
under the following configuration:

Compiler : AlsyCOMP_006 Version 4.1

ACVC Version : 1.10

Certificate Number : #881216N1.10012

Host Computer

Machine : IBM 9370 Model 90

Operating System : VM/IS CMS release 5.1

Memory Size : 8 Mbytes

Target Computer

Machine : IBM 9370 Model 90

Operating System : VM/IS CMS release 5.1

Memory Size : 1 Mbyte

Although the memory size is different between the Host computer
and the Target computer, this validation was conducted on the
same machine. Two user ID's were used, one to compile and bind
the tests and the other to execute the tests.

AlsyCOMP_006 version 4.1 AVF-VSR-90502-44

Validation Summary Report Chapter 2 Page 1 of 7

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the
behaviour of a compiler in those areas of the Ada Standard that
permit implementations to differ. Class D and E tests
specifically check for such implementation differences. However,
tests in other classes also characterize an implementation. The
tests demonstrate the following characteristics:

o Capacities.

The compiler correctly processes a compilation
containing 723 variables in the same declarative part.
(See test D29002K.)

The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H
(8 tests).)

The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

The compiler correctly processes tests containing
recursive procedures separately compiled as subunits
nested to 17 levels. (See tests D64005E..G (3 tests).)

o Predefined types.

This implementation supports the additional predefined
types SHORT INTEGER, SHORT SHORTINTEGER, SHORT FLOAT
and LONGFLOAT in the package STANDARD. (See -tests
B86001T..Z (7 tests).)

o Expression evaluation.

The order in which expressions are evaluated and the
time at which constraints are checked are not defined
by the language. While the ACVC tests do not
specifically attempt to determine the order of
evaluation of expressions, test results indicate the
following:

No default initialization expressions for record
components are evaluated before any value is checked
to belong to a component's subtype. (See test C32117A.)

ALsyCQ9P_006 version 4.1 AVF-VSR-90502-44

Validation Sumnary Report Chapter 2 Page 2 of 7

CONFIGURATION INFORMATION

Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

This implementation uses no extra bits for extra
precision and uses all extra bits for extra range. (See
test C35903A.)

NUMERICERROR is raised when an integer literal operand
in a comparison or membership test is outside the range
of the base type. (See test C45232A.)

NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside
the range of the base type. (See test C45252A.)

Underflow is not gradual. (See tests C45524A..Z (26
tests).)

o Rounding.

The method by which values are rounded in type
conversions is not defined by the language. While the
ACVC tests do not specifically attempt to determine the
method of rounding, test results indicate the
following:

The method used for rounding to integer is round away
from zero. (See tests C46012A..Z (26 tests).)

The method used for rounding to longest integer is
round away from zero. (See tests C46012A..Z (26
tests).)

The method used for rounding to integer in static
universal real expressions is round away from zero.
(See test C4AO14A.)

o Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that
exceeds STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.
For this implementation:

AlsyC(MP_006 version 4.1 AVF-VSR-9OO2-44

Varidation Summary Report Chapter 2 Page 3 of 7

CONFIGURATION INFORMATION

Declaration of an array type or subtype declaraticn
.... more than SYS7E7L. VAX INT components raises
NUMERICERROR. (See test C36003A.)

N:UMERIC ERROR is raised when an array type with
INTEGER'LAST + 2 components is declared. (See test
C36202A.)

NUMERIC ERROR is raised when an array type with
SYSTEM.MAX INT + 2 components is declared. (See test
C36202B.)

A packed BOOLEAN array having a 'LENGTH exceedirn
INTEGER'LAST raises NUMERIC ERROR when the array type
is declared. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when
subtypes are declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or
CONSTRAINT ERROR either when declared or assigned.
Alternatively, an implementation may accept the
declaration. However, lengths must match in array
slice assignments. This implementation raises
NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

In assigning one-dimensional array types, the
expression appears to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether
the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

In assigning two-dimensional array types, the
expression does not appear to be evaluated in its
entirety before CONSTPAINT ERROR is raised when
checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

o Discriminated types.

In assigning record types with discriminants, the
expression appears to be evaluated in its entirety
before CONSTRAINTERROR is raised when checking whether

ALsyCOMP_006 version 4.1 AVF-VSR-90502-44

Validation Summary Report Chapter 2 Page 4 of 7

CONFIGURATION INFORMATION

the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

o Aggregates.

In the evaluation of a multi-dimensional aggregate,
all choices appear to be evaluated before checking
against the index type. (See tests C43207A and
C43207B.)

In the evaluation of an aggregate containing
subaggregates, not all choices are evaluated before
being checked for identical bounds. (See test E43212B.)

CONSTRAINT ERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-
null aggregate does not belong to an index subtype.
(See test E43211B.)

o Pragmas.

The pragma INLINE is supported for function or
procedure calls within a body. The pragma INLINE for
function calls within a declaration is not supported.
(See tests LA3004A. . B (2 tests), EA3004C. . D (2 tests),
and CA3004E..F (2 tests).)

o Generics.

Generic specifications and bodies can be compiled in
separate compilations. (See tests CAI012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be compiled
in separate compilations. (See test CA3011A.)

Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CA1012A
and CA2009F.)

Generic library subprogram specifications and bodies
can be compiled in separate compilations. (See test
CAI012A.)

AtsyCOMP_006 version 4.1 AVF-VSR-90502-44

VaLidation Summary Report Chapter 2 Page 5 of 7

CONFIGURATION INFORMATION

Generic non-library subprogram bodies can be compiled
in separate compilations from their stubs. (See test
CA2009F.)

Generic package declarations and bodies can be compiled
in separate compilations. (See tests CA2009C, BC3204C,
and BC3205D.)

Generic library package specifications and bodies can
be compiled in separate compilations. (See tests
BC3204C and BC3205D.)

Generic non-library package bodies as subunits can be
compiled in separate compilations. (See test CA2009C.)

Generic unit bodies and their subunits can be compiled
in separate compilations. (See test CA3011A.)

o Input and output.

The package SEQUENTIAL_10 can be instantiated with
unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

The package DIRECT 10 cannot be instantiated with
unconstrained array types or record types with
discriminants without defaults. (See tests AE2101H,
EE2401D, and EE2401G.)

Modes IN FILE and OUT FILE are supported for
SEQUENTIALIO. (See tests CE2102D..E (2 tests),
CE2102N, and CE2102P.)

Modes IN FILE, OUT FILE, and INOUT FILE are supported
for DIRECT 10. (See tests CE2102F, CE2102I..J (2
tests), CE2102R, CE2102T, and CE2102V.)

Modes IN FILE and OUT FILE are supported for text
files. (See tests CE3102E and CE3102I..K (2 tests).)

RESET and DELETE operations are supported for
SEQUENTIALIO. (See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for
DIRECTIO. (See tests CE2102K and CE2102Y.)

AlsyCOMP_006 version 4.1 AVF-VSR-90502-44

Vatidation Summary Report Chapter 2 Page 6 of 7

I I |lnli~m nn Nilla mia MENEMH

CONFIGURATION INFORMATION

RESET and DELETE operations are supported for text
.iles. (See tests CE21C2F..G (2 tests), CE3104C,
CE3110A, and CE3114A.)

Overwriting to a sequential file does not truncate the
file. (See test CE2208B.)

Temporary sequential files are given names and deleted
when closed. (See test CE2108A.)

Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

Temporary text files are given names and deleted when
closed. (See test CE3112A.)

More than one internal file can be associated with
each external file for sequential files when reading
only. (See tests CE2107A..E (5 tests), CE2102L,
CE2110B, and CE2111D.)

More than one internal file can be associated with
each external file for direct files when reading only.
(See tests CE2107F. .1 (4 tests), CE2110D and CE2111H.)

More than one internal file can be associated with each
external file for text files when reading only. (See
tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

AtsyCOqP_006 version 4.1 AVF-VSR-90502-44

Vatidation Summary Report Chapter 2 Page 7 of 7

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this
compiler was tested, 36 tests had been withdrawn because of test
errors. The AVF determined that 342 tests were inapplicable to
this implementation. All inapplicable tests were processed
during validation testing except for 159 executable tests that
use floating-point precision exceeding that supported by the
implementation. Modifications to the code, processing, or
grading for 45 tests were required to successfully demonstrate
the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 128 1133 1983 17 32 6 3339

InappLicabLe 1 5 334 0 2 0 342

withdrmm 1 2 33 0 0 0 36

TOTAL 130 1140 2350 17 34 4 3717

3.3 SUMMARY OF TEST RESULTS BY CHAPTER
RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 202 593 569 245 172 99 162 333 137 36 252 258 281 3339

IrnppL 11 56 111 3 0 0 4 0 0 0 0 117 40 342

Udrn 0 1 0 0 0 0 0 1 0 0 1 29 4 36

TOTAL 213 650 680 248 172 99 166 334 137 36 253 40 325 3717

ALsyCOMP_006 version 4.1 AVF-VSR-90502-"

Validation Summary Report Chapter 3 Page 1 of 10

TEST INFORMATION

3.4 WITHDRAWN TESTS

The following 36 tests were withdrawn from ACVC Version 1.10 at
the time of this validation:

A39005G B97102E
BC3009B CD2A62D
CD2A63A..D (4 tests) CD2A66A..D (4 tests)
CD2A73A..D (4 tests) CD2A76A..D (4 tests)
CD2A81G CD2A83G
CD2A84M..N (2 tests) CD50110
CD2B15C CD7205C
CD5007B CD7105A
CD7203B CD7204B
CD7205D CE2107I
CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was
withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use
of features that a compiler is not required by the Ada Standard
to support. Others may depend on the result of another test that
is either inapplicable or withdrawn. The applicability of a test
to an implementation is considered each time a validation is
attempted. A test that is inapplicable for one validation
attempt is not necessarily inapplicable for a subsequent attempt.
For this validation attempt, 342 tests were inapplicable for the
reasons indicated:

o The following 159 tests are not applicable because they
have floating-point type declarations requiring more
digits than SYSTEM.MAXDIGITS:

C241130..Y (11 tests) C357050..Y (11 tests)
C357060..Y (11 tests) C357070..Y (11 tests)
C357080..Y (11 tests) C358020..Z (12 tests)
C452410..Y (11 tests) C453210..Y (11 tests)
C454210..Y (11 tests) C455210..Z (12 tests)
C455240..Z (12 tests) C456210..Z (12 tests)
C456410..Y (11 tests) C460120..Z (12 tests)

AtsyCOMP_006 version 4.1 AVF-VSR-9502-"

VaLidation Summary Report Chapter 3 Page 2 of 10

TEST INFORMATION

o The following 16 tests are not applicable because this
implementation does not support a predefined type
LONGINTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD7101F

o C45531M..P (4 tests), C45532M..P (4 tests) are not
applicable because the size of a matissa of a fixed
point type is limited to 31 bits.

o B86001Y is not applicable because this implementation
supports no predefined fixed-point type other than
DURATION.

o B86001Z is not applicable because this implementation
supports no predefined floating-point type with a name
other than FLOAT, LONG_FLOAT, or SHORTFLOAT.

o C86001F is not applicable because, for this
implementation, the package TEXT 10 is dependent upon
package SYSTEM. This test redefines package SYSTEM,
making package TEXT_IO, and hence package REPORT,
obsolete.

o CDIO09C, CD2A41A. .E (5 tests) and CD2A42A..J (10 tests)
are not applicable because SIZE clause on FLOAT is not
supported.

o The following 26 tests are all inapplicable for this
implementation because length clauses on a type derived
from a private type are not supported outside the
defining package.

CDlC04A CD2A21C CD2A21D CD2A22C CD2A22D
CD2A22G CD2A22H CD2A31C CD2A31D CD2A32C
CD2A32D CD2A32G CD2A32H CD2A51C CD2A51D
CD2A52C CD2A52D CD2A52G CD2A52H CD2A53D
CD2A54D CD2A54H CD2A72A CD2A72B CD2A75A
CD2A75B

o CDlC04B, CD1C04E and CD4051A. .D (4 tests) are not
applicable because representation clauses on derived
records or derived tasks are not supported.

AlsyCOMP_006 version 4.1 AVF-VSR-90502-44

Validation Summary Report Chapter 3 Page 3 of 10

TEST INFORMATION

o The following 25 tests are inapplicable because LENGTH
clause on an array or record would require change of
representation of the components or elements.

CD2A61A..D (4 tests) CD2A61F
CD2A61H..L (5 tests) CD2A62Rk.C (3 tests)
CD2A71A..D (4 tests) CD2A72C..D (2 tests)
CD2A74A..D (4 tests) CD2A75C..D (2 tests)

o CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not
applicable because the minimum size for a 'SIZE clause
applied to the access type is 32 bits.

o The following 30 tests are not applicable because
ADDRESS clauses for constants are not supported.

CD5011B CD5011D CD5011F CD5011H CD5011L
CD5011N CD5011R CD5011S CD5012C CD5012D
CD5012G CD5012H CD5012L CD5013B CD5013D
CD5013F CD5013H CD5013L CD5013N CD5013R
CD5014B CD5014D CD5014F CD5014H CD5014J
CD5014L CD5014N CD5014R CD5014U CD5014W

o CD5012J, CD5013S and CD5014S are not applicable because
ADDRESS clauses for tasks are not supported.

o AE21OlH, EE2401D and EE2401G use instantiations of
package DIRECT 10 with unconstrained array types and
record types with discriminants without defaults.
These instantiations are rejected by this compiler.

o CE2102D is inapplicable because this implementation
supports CREATE with INFILE mode for SEQUENTIALIO.

o CE2102E is inapplicable because this implementation
supports CREATE with OUTFILE mode for SEQUENTIAL_10.

o CE2102F is inapplicable because this implementation
supports CREATE with INOUTFILE mode for DIRECTIO.

o CE2102I is inapplicable because this implementation
supports CREATE with INFILE mode for DIRECTIO.

o CE2102J is inapplicable because this implementation
supports CREATE with OUTFILE mode for DIRECTIO.

o CE2102N is inapplicable because this implementation
supports OPEN with INFILE mode for SEQUENTIALIO.

ALsyCOMP 006 version 4.1 AVF-VSR-9502-"

VaLidation Suwery Report Chapter 3 Page 4 of 10

TEST INFORMATION

o CE21020 is inapplicable because this implementation
supports RESET with INFILE mode for SEQUENTIALIO.

o CE2102P is inapplicable because this implementation
supports OPEN with OUTFILE mode for SEQUENTIALIO.

o CE2102Q is inapplicable because this implementation
supports RESET with OUTFILE mode for SEQUENTIALIO.

o CE2102R is inapplicable because this implementation
supports OPEN with INOUTFILE mode for DIRECT_10.

o CE2102S is inapplicable because this implementation
supports RESET with INOUTFILE mode for DIRECTIO.

o CE2102T is inapplicable because this implementation
supports OPEN with INFILE mode for DIRECTIO.

o CE2102U is inapplicable because this implementation
supports RESET with INFILE mode for DIRECTIO.

o CE2102V is inapplicable because this implementation
supports OPEN with OUTFILE mode for DIRECTIO.

o CE2102W is inapplicable because this implementation
supports RESET with OUTFILE mode for DIRECTIO.

o CE2107B..E (4 tests), CE2107L, CE2110B and CE2111D are
not applicable because multiple internal files cannot
be associated with the same external file when one or
more files is writing for sequential files. The proper
exception is raised when multiple access is attempted.

o CE2107G..H (2 tests), CE2110D and CE2111H are not
applicable because multiple internal files cannot be
associated with the same external file when one or more
files is writing for direct files. The proper
exception is raised when multiple access is attempted.

o CE3102E is inapplicable because this implementation
supports CREATE with INFILE mode for text files.

o CE3102F is inapplicable because this implementation
supports RESET for text files.

o CE3102G is inapplicable because this implementation
supports deletion of an external file for text files.

AlsyCOMP 006 version 4.1 AVF-VSR-9502-"

Validation Sumnry Report Chapter 3 Page 5 of 10

TEST INFORMATION

0 CE3102I is inapplicable because this implementation
supports CREATE with OUTFILE mode for text files.

o CE3102J is inapplicable because this implementation
supports OPEN with INFILE mode for text files.

o CE3102K is inapplicable because this implementation
supports OPEN with OUTFILE mode for text files.

o CE3111B, CE3111D. .E (2 tests), CE3114B, and CE3115A are
not applicable because multiple internal files cannot
be associated with the same external file when one or
more files is writing for text files. The proper
exception is raised when multiple access is attempted.

3.6 TEST. PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of
code, processing, or evaluation in order to compensate for
legitimate implementation behavior. Modifications are made by
the AVF in cases where legitimate implementation behavior
prevents the successful completion of an (otherwise) applicable
test. Examples of such modifications include: adding a length
clause to alter the default size of a collection; splitting a
Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the
test (such as raising one exception instead of another).

Modifications were required for 45 tests.

The following tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B23004A B24007A B24009A B26005A B28003A
B28003C B32202A B32202B B32202C B33001A
B37004A B45102A B61012A B62001B B62001C
B62001D B74304A B74401F B74401R B91004A
B95069A B95069B B97103A BA11OB BC2001D
BC3009C BD5005B

The following tests were split in order to show that features not
supported caused errors to be raised.

CD2A62A..B (2 tests) CD2A72A..B (2 tests)
CD2A75A..B (2 tests) CD2A84B..I (8 tests)

ALsyCOMP_006 version 4.1 AVF-VSR-90502-44

VaLidation Summary Report Chapter 3 Page 6 of 10

TEST INFORMATION

EA3004D, when processed, produces only two of the expected three
errors: the implementation fails to detect an error on line 27
of file EA3004D6M. This is because the pragma INLINE has no
effect when its object is within a package specification. The
task was reordered to compile files D2 and D3 after file D5 (the
re-compilation of the "with"ed package that makes the various
earlier units obsolete), the re-ordered test executed and
produced the expected NOTAPPLICABLE result (as though INLINE
were not supported at all). The re-ordering of EA3004D test
files was: 0-1-4-5-2-3-6. The AVO ruled that the test should be
counted as passed.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the AlsyCOMP_006 Version 4.1 was submitted to the AVF
by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable
tests, and the compiler exhibited the expected behavior on all
inapplicable tests.

3.7.2 Test Method

Testing of the AlsyCOMP 006 using ACVC Version 1.10 was conducted
on-site by a validation team from the AVF. The configuration in
which the testing was performed is described by the following
designations of hardware and software components:

Host computer : IBM 9370
Host operating system : VM/IS CMS release 5.1
Target computer : IBM 9370
Target operating system : VM/IS CMS release 5.1
Compiler : AlsyCOMP_006 Version 4.1
Pre-linker AlsyCOMP_006 Version 4.1
Assembler : AlsyCOMP_006 Version 4.1
Linker : VM/IS CMS release 5.1
Runtime System : AlsyCOMP_006 Version 4.1

A magnetic tape containing all tests except for withdrawn tests
and tests requiring unsupported floating-point precisions was
taken on-site by the validation team for processing. Tests that
make use of implementation-specific values were customized before

ALsyCOMP_006 version 4.1 AVF-VSR-90502-44

VaLidation Sunmary Report Chapter 3 Page 7 of 10

TEST INFORMATION

beinc written to the magnetic tape. Tests requiring
nodiications during the prevalidation testing were not included
in their modified form on the magnetic tape.

The contents of the magnetic tape were not loaded directly onto
the host computer.

The files were loaded onto a Sun 3/160 computer (using UNIX BSD
4.2) which then did all the required splits to the relevant tests
using the UNIX ED editor. These tests were then loaded onto
magnetic tape and transferred to the host machine.

The host machine then proceeded to compile, bind and execute the
tests with the results being transferred back to the Sun machine
for printing. On the host machine, two user IDs were used The
procedure used to transfer the files back to the Sun machine was
provided bu Sun-IBM file transfer software.

The compiler was tested using command scripts provided by Alsys
and reviewed by the validation team. The compiler was tested
using all the following option settings.

OPTION EFFECT

SOURCE => source-name expects the file 'source file' to
contain Ada source code.

LIBRARY => library-name expects this to referance the Ada
library.

ERRORS => 999 maximum number of compilation
errors permitted before the
compiler terminates the
compilation.

LEVEL => CODE a complete compilation takes place,
transferring source code into
object code.

CHECKS => ALL all run time checks are performed.

GENERICS => INLINE places the code generic
instantiations inline in the same
unit as the unit that contains the
instantiation.

OUTPUT => filename writes the output to a file with
name filename.

ALsyCOMP_006 version 4.1 AVF-VSR-90502-44

Validation Sumnary Report Chapter 3 Page 8 of 10

TEST INFORMATION

WARNING => NO does not include the warning
messages in the compilation
listings.

TEXT => YES prints the complete compilation
listing.

DETAIL => YES includes detailed error messages.

ASSEMBLY => NONE does not include any object code
or map information.

CALLS => NORMAL uses the normal mode for subroutine
calls.

REDUCTION => NONE no action is taken with reference
to the optimization of checks or
loops.

OBJECT => PEEPHOLE

TREE => NO does not save the abstract tree
representation.

STACK => 1024 indicate the maximum size of a
stack object that can be placed in
the stack segment.

GLOBAL => 1024 indicate the maximum size of a
global object that can be placed
in the stack segment.

UNNESTED => 16

SHOW => NONE does not include banners in the
listing file.

FILEWIDTH => 80 width of the listing file is 80
characters.

FILELENGTH => NO No maximum page length given.

Tests were compiled, linked, and executed (as appropriate) using
a single computer. Test output, compilation listings, and job
logs were captured on a magnetic tape and archived at the AVF.

AlsyCOMP_006 version 4.1 AVF -VSR -90502-44

VaLidation Sumary Report Chapter 3 Page 9 of 10

TEST INFORMATION

The listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at Alsys Limited, Partridge House, Newtown
Road, Henley-on-Thames, Oxfordshire, RG9 lEN, and was completed
on 16th December 1988.

AtsyCOMP_006 version 4.1 AVF-VSR-90502-44

Validation Summary Report Chapter 3 Page 10 of 10

APPENDIX A

APPENDIX A

DECLARATION OF CONFORMANCE

Alsys Limited has submitted the following Declaration
of Conformance concerning the AlsyCOMP 006.

Alsys Limited AlsyCOMP 006 version 4.1

Validation Summary Report Appendix A Page 1 of 3

APPENDIX A

DECLARATION OF CONFORMANCE

Compiler Implementor: Alsys Limited
Partridge House
Newtown Road
Henley-on-Thames
Oxfordshire RG9 lEN

Ada Validation Facility: The National Computing Centre Limited,
Oxford Road
Manchester
M1 7ED
United Kingdom

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base ConfiQuration

Base Compiler Name: AlsyCOMP_006 version 4.1

Host Architecture ISA: IBM 9370 Model 90
Host Operating System: VM/IS CMS release 5.1

Target Architecture ISA: IBM 9370 Model 90
Target Operating System: VM/IS CMS release 5.1

Implementor's Declaration

I, the undersigned, representing Alsys Limited, have implemented
no deliberate extensions to the Ada Language Standard ANSI/MIL-
STD-1815A in the compiler(s) listed in this declaration. I
declare that Alsys Limited is the owner of record of the Ada
language compiler(s) listed above and, as such, is responsible
for maintaining said compiler(s) in conformance to ANSI/MIL-
STD-1815A. All certificates and registrations for Ada language
compiler(s) listed in this declaration shall be made only in the
owner's corp rate name.

Signed ____ 6v Date I z
Title __ _ _ __ _ _ _ _

ALsys Limited ALsyCOMP_006 version 4.1

VaLidation Summary Report Appendix A Page 2 of 3

APPENDIX A

Owner's Declaration

I, the undersigned, representing Alsys Limited, take full
responsibility for implementation and maintenance of the Ada
compiler(s) listed above, and agree to the public disclosure of
the final Validation Summary Report. I declare that all of the
Ada language compilers listed, and their host/target
performance, are in compliance with the Ada Language Standard
ANSI/MIL-STD-1845A.

Signed A. Date ___ ___ ___

Title ___-___ _ -

Atsys Limited AtsyCOMP_006 version 4.1

Vatidation Summary Report Appendix A Page 3 of 3

APPENDIX B

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the AlsyCOMP_006
Version 4.1, are described in this Appendix provided by Alsys
Limited for this compiler. Any reference in this appendix are
to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD--not a
part of Appendix F--are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type SHORTSHORTINTEGER is range -128 .. 127;

type FLOAT is digits 25 range -7.24E+75 .. 7.24E+75;
type SHORT FLOAT is digits 6 range -7.24E+75 .. 7.24E+75;
type LONGFLOAT is digits 18 range -7.24E+75 .. 7.24E+75;

type DURATION is delta 2.0**-14 range -86400.0 .. 86400.0;

end STANDARD;

AtsyCOMP_006 version 4.1 AVF-VSR-90502-44

Vatidation Sumary Report Appendix B

APPENDIX B

APPENDIX F OF THE Ada STANDARD

AlsyCOf4P_006 version 4.1 AVF-VSR-90502-44

Vaiidation Sumxmary Report Appendix 6

Alsys IBM 370 Ada* Compiler

APPENDIX F

for VM/CMS and MVS

(including MVS/XA)

Implementation - Dependent Characteristics

Version 4.0

Alsys S.A.
29, Avenue de Versailles

78170 La Celle St. Cloud, France

Alsys Inc.
1432 Main Street

Waltham, MA 02154, U.S.A.

Alsys Ltd.
Partridge House. Newtown Road

Henley-on- Thames,
Oxfordshire RG9 1EN, U.K.

*Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

PREFACE

This Als v!, IB.if 37 Ada Compiler Appendix F iF for programmers. software engineers,
project managers. educators and students who want to develop an Ada program for any
IBM System 37%, proctssor that runs VM/CMS. MVS or MVS'XA.

This appendix is required part of the Re':. rence Manual for the Ada Programming
Language. ANSI/MIL-STD 1815A, February 1983 (throughout this appendix, citations in
square brackets refer to this manual). It assumes that the user is already familiar with
the CMS and MVS operating systems, and has access to the following IBM documents:

CMS User Guide. Release 3, SC19-6210

CMS Command and Macro Reference, Release 3, SC19-6209

OS/I'S2 MI'S Overview, GC28-0984

OS/I'S2 System Programming Library: Job Management, GC28-1303

MI'S/370 JCL Reference, GC28-1350

IBM S)'siem/370 Principles of Operation, GA22-7000

IBM System/370 System Summary, GA22-700]

Preface

ii Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MT'S. v4.0

TABLE OF CONTENTS

APPENDIX F 1

1 Implementation-Dependent Pragmas 2

1.1 INLINE 2
1.2 INTERFACE 2
1.2.1 Calling Conventions 2
1.2.2 Parameter-Passing Conventions 3
1.2.3 Parameter Representations 4
1.2.4 Restrictions on Interfaced Subprograms 6
1.3 INTERFACE NAME 6
1.4 INDENT 7
1.5 RMODE 8
1.6 Other Pragmas 8

2 Implementation- Dependent Attributes 10

3 Specification of the Package SYSTEM 11

4 Restrictions on Representation Clauses 12

4.1 Enumeration Types 12
4.2 Integer Types 15
4.3 Floating Point Types 17
4.4 Fixed Point Types 18
4.5 Access Types 21
4.6 Task Types 22
4.7 Array Types 23
4.8 Record Types 26

5 Conventions for Implementation-Generated Names 36

6 Address Clauses 37

6.1 Address Clauses for Objects 37
6.2 Address Clauses for Program Units 37
6.3 Address Clauses for Entries 37

Table of Conients

7 Restrictions on Unchecked Conversions 38

8 Input-Output Packages 39
8.1 NAME Parameter 39
8.1.1 VM/CMS 39
8.1.2 MVS 398.2 FORM Parameter 40
8.3 STANDARD INPUT and STANDARD OUTPUT 46
8.4 USEERROR 46
8.5 Text Terminators 47
8.6 EBCDIC and ASCII 47
8.7 Characteristics of Disk Files 48
8.7.1 TEXT 10 48
8.7.2 SEQUE-NTIAL_10 48
8.7.3 DIRECT_10 48

9 Characteristics of Numeric Types 49
9.1 Integer Types 49
9.2 Floating Point Type Attributes 50
9.3 Attributes of Type DURATION 51

10 Other Implementation-Dependent Characteristics 52
10.1 Characteristics of the Heap 52
10.2 Characteristics of Tasks 52
10.3 Definition of a Main Program 53
10.4 Ordering of Compilation Units 5310.5 Implementation Defined Packages 53
10.5.1 Package EBCDIC 5310.5.2 Package SYSTEM ENVIRONMENT 63
10.5.3 Package RECORD 10 67
10.5.4 Package STRINGS 71

INDEX 75

iv AlsYs IBM 370 Ada Compiler, Appendix F for VM/CMS and M'.S. v4.0

APPENDIX F

Implementation- Dependent Characteristics

This appendix summarises the implementation-dependent characteristics of the Alsys
IBM 370 Ada Compiler for VM/CMS, MVS and MVS/XA. This document should be
considered as the Appendix F to the Reference Manual for the Ada Programming
Language ANSI/MIL-STD 1815 A - January 1983, as appropriate to the Alsys Ada
implementation for the IBM 370 under VM/CMS, MVS and MVS/XA.

Sections I to 8 of this appendix correspond to the various information required in
Appendix F [F]*; sections 9 and 10 provide other information relevant to the Alsys
implementation. The contents of these sections is described below:

I. The form, allowed places, and effect of every implementation-dependent

pragma.

2. The name and type of every implementation-dependent attribute.

3. The specification of the package SYSTEM [13.7].

4. The list of all restrictions on representation clauses [13.1].

5. The conventions used for any implementation-generated names denoting
implementation-dependent components [13.4].

6. The interpretation of expressions that appear in address clauses, including
those for interrupts [13.5].

7. Any restrictions on unchecked conversions [13.10.2].

8. Any implementation-dependent characteristics of the input-output packages
[14].

9. Characteristics of numeric types.

10. Other implementation-dependent characteristics.

Throughout this appendix, the name Ada Run-Time Executive refers to the run-time
library routines provided for all Ada programs. These routines implement the Ada heap,
exceptions, tasking control, I/O, and other utility functions.

Throughout this manual, citations in square brackets refer to the Reference Manual

for the Ada Programming Language, ANSI/MIL-STD-1815A, January 1983.

Appendix F. Implementation-Dependent Characteristics

1 Imp!ementation- Dependent Pragmas

1.1 INLINE

Pragma INLINE is fully supported; however, it is not possible to inline a function called
in a deciarative part.

1.2 INTERFACE

Ada programs can interface to subprograms written in assembler or other languages
through the use of the predefined pragma INTERFACE [13.9] and the implementation-
defined pragma INTERFACENAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which calling and parameter passing conventions will be
generated. Pragma INTERFACE takes the form specified in the Reference Manual:

pragma INTERFACE (languagename, subprogram-name);

where

" language-name is the name of the other language whose calling and
parameter passing conventions are to be used.

" subprogram name is the name used within the Ada program to refer to the
interfaced subprogram.

The only language name currently accepted by pragma INTERFACE is ASSEMBLER.

The language name used in the pragma INTERFACE does not necessarily correspond to
the language used to write the interfaced subprogram. It is used only to tell the
compiler how to generate subprogram calls, that is, which calling conventions and
parameter passing techniques to use.

The language name ASSEMBLER is used to refer to the standard IBM 370 calling and
parameter passing conventions. The programmer can use the language name
ASSEMBLER to interface Ada subprograms with subroutines written in any language
that follows the standard IBM 370 calling conventions.

1.2.1 Calling Conventions

The following calling conventions are required for code to be interfaced to Ada by use
of the pragma interface to ASSEMBLER.

The contents of the general purpose registers 12 and 13 must be restored to their original
values by the interfaced code before returning to Ada.

On entry to the subprogram, register 13 contains the address of a register save area
provided by the caller.

2 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS, v4.0

Registers 15 and 14 contain the entry point address and return address, respectively, of
the called subprogram.

The Ada Run-Time Executive treat any program interruption occurring during the
execution of the body of the subprogram as an exception being raised at the point of
call of the subprogram. The exception raised following a program interruption in
interfaced code is a NUMERICERROF for the following cases:

Fixed-pt overflow
Fixed-pt divide
Decimal overflow *
Dccima! divide
Exponent overflow
Exponent underflow
Significance *
Floating-pt divide

In othet cases, PROGRAM ERROR is raised The classes of interruptions marked with
an asterisk (*) may be masked by setting the program mask. On entry to the interfaced
code exponent underflow and significance interruptions are suppressed. Note that the
program mask should be restored to its original value (i.e. X'C') before returning to Ada
code.

1.2.2 Parameter-Passing Conventions

On entry to the subprogram, register I contains the address of a parameter address list.
Each word in this list is an address corresponding to a parameter. The last word in the
list has its most significant (sign) bit set to indicate the end of the list.

For formal parameters of mode in, which are of scalar or access type, the address passed
is that of a copy of the value of the actual parameter. For all other parameters the
address passed is the address of the actual parameter itself.

Since all non-scalar and non-access parameters to interfaced subprograms are passed by
address, they cannot be protected from modification by the called subprogram, even
though they may be formally declared to be of mode in. It is the programmer's
responsibility to ensure that the semantics of the Ada parameter modes are honoured in
these cases.

If the address of an Ada object is passed explicitly as a parameter to an interfaced
subprogram (i.e. to a formal parameter of type SYSTEM.ADDRESS) it is the address of
the address which is passed in the parameter list: a value of type SYSTEM.ADDRESS
being treated identically to any other scalar value.

If the subprogram is a function, register 0 is used to return the result. Scalar values are
returned in general register 0. Floating point values are returned in floating point
register 0. Non-scalar values are returned by address in general register 0.

No consistency checking is performed between the subprogram parameters declared in
Ada and the corresponding parameters of the interfaced subprogram. It is the
programmer's responsibility to ensure correct access to the parameters.

Appendix F. Implementation-Dependent Characteristics 3

An example of an interfaced subprogram is:

* 64-bit integer addition:

* type DOUBLE is
* record
* HIGH : INTEGER;
* LOW : INTEGER;
* end record
* for DOUBLE use
* record
* HIGH at 0 range 0..31;
* LOW at 4 range 0..31;

* end record;
* procedure ADD (LEFT, RIGHT • in DOUBLE;
* RESULT : out DOUBLE);
ADD CSECT

USING ADD,15
STM 2,6,12(13)
L 2,0(1) Address of LEFT
LM 3,4,0(2) Value of LEFT
L 2,4(1) Address of RIGHT
AL 4,4(2) Add low-order components (no interruption)
BC 12,$1 Branch if no carry
A 3,=F'I' Add carry (NUMERICERROR possible)

$1 A 3,0(2) Add high-order (NUMERICERROR possible)
L 2,8(1) Address of RESULT
STM 3,4,0(2) Value of result
LM 2,6,12(13)
BR 14
LTORG
DROP
END

1.2.3 Parameter Representations

This section describes the representation of values of the types that can be passed as
parameters to an interfaced subprogram. The discussion assumes no representation
clauses have been used to alter the default representations of the types involved.
Chapter 4 describes the effect of representation clauses on the representation of values.

Integer Tvoes [3.5.4]

Ada integer types are represented in two's complement form and occupy 8
(SHORTSHORTINTEGER), 16 (SHORTINTEGER) or 32 (INTEGER) bits.

Boolean Tves [3.5.3]

Booleans are represented as 8 bit values. FALSE is represented by the value 0, and
TRUE is represented by the value I.

4 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS, v4.0

Enumeration Types [3.5.1]

Values of an Ada enumeration type are represented internally as unsigned values
representing their position in the list of enumeration literals defining the type. The first
literal in the list corresponds to a value of zero.

Enumeration types with 256 elements or fewer are represented in 8 bits, those with
between 256 and 65536 (2**16) elements in 16 bits and all others in 32 bits. The
maximum number of values an enumeration type can include is 2 31.

Consequently, the Ada predefined type CHARACTER [3.5.2] is represented in 8 bits,
using the standard ASCII codes [C].

Floating Point Tvoes [3.5.7, 3.5.8]

Ada floating-point values occupy 32 (SHORTFLOAT), 64 (FLOAT) or 128
(LONG__FLOAT) bits, and are held in IBM 370 (short, long or extended floating point)
format.

Fixed Point Types [3.5.9, 3.5.10]

Ada fixed-point types are managed by the Compiler as the product of a signed mantissa
and a constant small. The mantissa is implemented as a 16 or 32 bit integer value.
Small is a compile-time quantity which is the power of two equal or immediately
inferior to the delta specified in the declaration of the type.

The attribute MANTISSA is defined as the smallest number such that:

2 ** MANTISSA >= max (abs (upperbound), abs (lowerbound)) / small

The size of a fixed point type is:

MANTISSA Size

1.. 15 16 bits
16 .. 31 32 bits

Fixed point types requiring a MANTISSA greater than 31 are not supported.

Access Tvyes [3.81

Values of access types are represented internally by the 31-bit address of the designated
object held in a 32 bit word. Users should not alter any bits of this word, including
those which are ignored by the architecture on which the program is running. The value
zero is used to represent null.

Appendix F. Implementation-Dependent Characteristics 5

Array [3.61

Ada arrays are passed by reference; the value passed is the address of the first elenr.:
of the array. The elements of the array are allocated by row. When an array is passed
as a parameter to an interfaced subprogram, the usual consistency checking between the
array bounds declared in the calling program and the subprogram is not enforced. It i!
the programmer's responsibili:y to ensure that the subprogram does not violate the
bounds of the array.

Values of the predefined type STRING [3.6.3] are arrays, and are passed in the same
way: the address of the first character in tme string is passed. Elements of a string are
represented in 8 bits, using the standard ASCII codes.

Record Types [3.7]

Ada records are passed by reference; the value passed is the address of the first
component of the record. Components of a record are aligned on their natural
boundaries (e.g. INTEGER on a word boundary) and the components may be re-ordered
by the compiler so as to minimise the total size of objects of the record type. If a
record contains discriminants or components having a dynamic size, implicit components
may be added to the record. Thus the default layout of the internal structure of the
record may not be inferred directly from its Ada declaration. The use of a
representation clause to control the layout of any record type whose values are to be
passed to interfaced subprograms is recommended.

1.2.4 Restrictions on Interfaced Subprograms

The Ada Run-Time Executive uses the SPIE and ESPIE macros (SVC 14). Interfaced
subprograms should avoid use of this facility, or else restore interruption processing to
its original state before returning to the Ada program. Failure to do so may lead to
unpredictable results.

Similarly, interfaced subprograms must not change the program mask in the Program
Status Word (PSW) of the machine without restoring it before returning.

1.3 INTERFACENAME

Pragma INTERFACE_NAME associates the name of an interfaced subprogram, as
declared in Ada, with its name in the language of origin. If pragma
INTERFACENAME is not used, then the two names are assumed to be identical.

This pragma takes the form

pragma INTERFACENAME (subprogramname, stringliteral);

where

* subprogram_name is the name used within the Ada program to refer to the
interfaced subprogram.

6 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS. v4.0

* string__literal is the name by which the interfaced subprogram is referred to
at link-time.

The use of INTERFACE NAME is optional, and is not needed if a subprogram has the
same name in Ada as in the language of origin. It is useful, for example, if the name of
the subprogram in its original language contains characters that are not permitted if. Ada
identifiers. Ada identifiers can contain only letters, digits and underscores, whereas the
IBM 370 linkage editor/loader allows external names to contain other characters, e.g. the
plus or minus sign. These characters can be specified in the string literal argument of
the pragma INTERFACE NAME.

The pragma INTERFACENAME is allowed at the same places of an Ada program as
the pragma INTERFACE [13.9]. However, the pragma INTERFACE NAME must
always occur after the pragma INTERFACE declaration for the interfaced subprogram.

In order to conform to the naming conventions of the IBM 370 linkage editor/loader, the
link-time name of an interfaced subprogram will be truncated to 8 characters and
converted to upper case.

Example

package SAMPLE DATA is
function SAMPLEDEVICE (X: INTEGER) return INTEGER;
function PROCESSSAMPLE (X : INTEGER) return INTEGER;

private
pragma INTERFACE (ASSEMBLER, SAMPLE_DEVICE);
pragma INTERFACE (ASSEMBLER, PROCESSSAMPLE),
pragma INTERFACENAME (PROCESSSAMPLE, PSAMPLE");

end SAMPLE_DATA;

1.4 INDENT

This pragma is only used with the Alsys Reformatter (AdaReformat); this tool offers the
functionalities of a source reformatter in an Ada environment. The Alsys Reformatter is
currently available only with the Alsys IBM 370 Ada compiler hosted under VM/CMS.

The pragma is placed in the source file and interpreted by the Reformatter.

pragma INDENT(OFF)

The Reformatter does not modify the source lines after the OFF pragma INDENT.

pragma INDENT(ON)

The Reformatter resumes its action after the ON pragma INDENT. Therefore any
source lines that are bracketed by the OFF and ON pragma INDENTs are not modified
by the Alsys Reformatter.

Appendix F, Implementation-Dependent Characteristics 7

1.5 RMODE

Pragma RMODE associates a residence mode with the objects designated by the access
value. belonging to a given access type.

This pragma takes the form:

pragma RMODE (access _typename, residence-mode);

residenccmode ::= A24 J ANY

where

" access_type__name is the name of the access type defining the collection of
objects whose residence mode is to be specified.

" residence mode is the residence mode to be associated with the designated
objects.

A24: Indicates that the designated objects must reside within 24 bit
addressable virtual storage (that is, below the 16 megabyte virtual
storage line under MVS/XA).

ANY: Indicates that the designated objects may reside anywhere in virtual
storage (that is, either above or below the 16 megabyte virtual storage
line under MVS/XA).

Under CMS or MVS on non-extended architecture machines the pragma is effectively
ignored, since only 16 megabytes of virtual address space are available and all virtual
addresses implicitly meet the A24 residence mode criteria.

Under MVS/XA the pragma is significant for data whose residence mode must be
explicitly controlled, e.g. data which is to be passed to non-Ada code via the pragma
INTERFACE.

In the absence of the pragma RMODE, the default residence mode associated with the
objects designated by an access type is ANY.

The access tvp(name must be a simple name. The pragma RMODE and the access type
declaration to which it refers must both occur immediately within the same declarative
part, package specification or task specification; the declaration must occur before the
pragma.

1.6 Other Pragmas

Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses (Chapter 4).

Pragma PRIORITY is accepted with the range of priorities running from I to 10 (see the
definition of the predefined package SYSTEM in Chapter 3). The undefined priority
(no pragma PRIORITY) is treated as though it were less than any defined priority value.

8 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MVS, v4.0

In addition to pragma SUPPRESS, it is possible to suppress all checks in a given

compilation by the use of the Compiler option CHECKS.

The following language defined pragmas are not implemented.

CONTROLLED
MEMORY SIZE
OPTIMIZE
STORAGE UNIT
SYSTEMNAME

Note that all access types are implemented by default as controlled collections as
described in [4.8] (see section 10.1).

Appendix F, Implementation- Dependent Characteristics 9

2 Implementation- Dependent Attributes

In addition to the Representation Attributes of 113.7.2 and [13.7.31, the four attributes
listed in section 5 (Conventions for Implementation-Generated Names), for use in record
representation clauses, and the attributes described below are provided:

T'DESCRIPTORSIZE For a prefix T that denotes a type or subtype, this
attribute yields the size (in bits) required to hold a
descriptor for an object of the type T, allocated on the
heap or written to a file. If T is constrained,
T'DESCRIPTORSIZE will yield the value 0.

T'ISARRAY For a prefix T that denotes a type or subtype, this
attribute yields the value TRUE if T denotes an array
type or an array subtype; otherwise, it yields the value
FALSE.

Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entities do not have meaningful addresses and will therefore cause a
compilation error if used as a prefix to ADDRESS:

" A constant that is implemented as an immediate value i.e. does not have any

space allocated for it.

" A package specification that is not a library unit.

" A package body that is not a library unit or subunit.

10 Alsys IBM 370 Ada Compiler, Appendix F for "M/CMS and MVS, v4.0

3 Specification of the Package SYSTEM

package SYSTEM is

type kAME is (IBP_370);

SYSTEPNAME constant NAME := NAMEIFIRST;

MIN INT constant := -(?**31);

MA(INT constant 2*'31-1;

MEMORY-SIZE constant 2**31;

type ADDRESS is range MIN INT .. MAXINT;

STORAGE-UNIT : constant := 8;

MAX-DIGITS : constant :z 18;

MAXMANTISSA : constant 31;

FINE-DELTA : constant 2#1.0#e-31;

TICK : constant 0.01;

NULLADDRESS : constant ADDRESS := 0;

subtype PRIORITY is INTEGER range 1 .. 10;

-- These subprograms are provided to perform
-- READ/WRITE operations in memory.

generic

type ELEMENTTYPE is private;

function FETCH (FROM : ADDRESS) return ELEMENT_TYPE;

generic

type ELEMENTTYPE is private;

procedure STORE (INTO : ADDRESS; OBJECT : ELEMENT TYPE);

end SYSTEM;

The generic function FETCH may be used to read data objects from given addresses in
store. The generic procedure STORE may be used to write data objects to given
addresses in store.

On the non-extended architecture (AMODE 24) the top byte of a value of type address
is ignored (i.e. does not form part of the address). On an extended architecture (31 bit
addressing) the top bit of a value of type address is similarly ignored.

Appendix F. Implementation-Dependent Characteristics 11

4 Restrictions on Representation Clauses

This section explains how objects are represented and allocated by the Alsys IBM 370
Ada Compiler and how it is possible to control this using representation clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, fioating point.
fixed point, access, task, array and record types. For each class of tyre the
representation of the corresponding objects is described.

Except in the case of array and record types, the description of each class of type is
independent of the others. To understand the representation of an array types it is
necessary to understand first the representation of its components. The same rule
applies to record types.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

" a (predefined) pragma PACK, when the object is an array, an array
component, a record or a record component

" a record representation clause, when the object is a record or a record
component

" a size specification, in any case.

For each class of types the effect of a size specification is described. Interaction
between size specifications, packing and record representation clauses is descr;bed under
array and record types.

Representation clauses on derived record types or derived task types is not supported.

Size representation clauses on types derived from private types are not supported when
the derived type is declared outside the private part of the defining package.

For each class of types the effect of a size specification alone is described. Interference
between size specifications, packing and record representation clauses is described under
array and record types.

4.1 Enumeration Types

Internal codes of enumeration literals

When no enumeration representation clause applies to an enumeration type, the internal
code associated with an enumeration literal is the position number of the enumeration
literal. Then, for an enumeration type with n elements, the internal codes are the
integers 0, 1, 2, .. , n-l.

An enumeration representation clause can be provided to specify the value of each
internal code as described in RM 13.3. The Alsys compiler fully implements enumeration
representation clauses.

12 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MVS, v4.0

As internal codes must be machine integers the internal codes provided by an

enumeration representation clause must be in the range -231 .. 23 -l.

Encoding of enumeration values

An enumeration value is always represented by its internal code in the program
generated by the compiler.

Minimum size of an enumeration subtype

The minimum size of an enumeration subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M
are the values of the internal codes associated with the first and last enumeration values
of the subtype, then its minimum size L is determined as follows. For m >= 0, L is the
smallest positive integer such that M <= 2LI. For m < 0, L is the smallest positive
integer such that -2L- <= m and M <= 2 - -I.

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACK AND WHITE is COLOR range BLACK .. WHITE;
-- The minimum size of BLACKANDWHITE is 2 bits.

subtype BLACK OR WHITE is BLACK ANDWHITE range X.. X;
-- Assuming that X is not static, the minimum size of BLACK OR WHITE is
-- 2 bits (the same as the minimum size of its type mark BLACK_ AND WHITE).

Size of an enumeration subtype

When no size specification is applied to an enumeration type or first named subtype, the
objects of that type or first named subtype are represented as signed machine integers.
The machine provides 8, 16 and 32 bit integers, and the compiler selects automatically
the smallest signed machine integer which can hold each of the internal codes of the
enumeration type (or subtype). The size of the enumeration type and of any of its
subtypes is thus 8, 16 or 32 bits.

Appendix F, Implementation-Dependent Characteristics 13

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to
a first named suttype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies:

type EXTENDED is
-- The usual American ASCII

characters.
NUL. SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS. HT, LF, VT, FF, CR, SO, SI,
DLE, DCI, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FS, GS, RS, US,. .. lo , 1$, , ,,

'2': -Y 141' 925" 169, '7..1, 5, 6-7,

1@1, 'A', 'B', IC., -139, IF, IF, -G-,

H', T, , Kl, 9, MI,'P31, IQ", 'R', IS", IT, lull 'VI, IWI,1x', 111', 'z', 1"' 'V,1 '], 'A', 1. .
9a, 1b' c, d, e, 1' ,a I V"'j, ck' I '1', e.., 9

9h, t, , il k, 99 ml, in" o0,
r " V , IS, It lull v, IV,Ix , 1 \1, 1z, , DEL,

-- Extended characters
LEFT ARROW,
RIGHT ARROW,
UPPERARROW,
LOWERARROW,
UPPERLEFTCORNER,
UPPERRIGHTCORNER,
LOWERRIGHTCORNER,
LOWERLEFTCORNER,

for EXTENDED'SIZE use 8;
-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsignec & bit integers.

The Alsys compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Size of the objects of an enumeration subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.

14 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MVS, v4.0

Alignment of an enumeration subtype

An enumeration subtype is byte aligned if the size of the subtype is less than or equal to
8 bits, halfword aligned if the size of the subtype is less than or equa; to 1b bit- and
word aligned otherwise.

Address of an object of an enumeration subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an enumeration subtype is a multiple of the
alignment of the corresponding subtype.

4.2 Integer Types

Predefined integer types

There are three predefined integer types in the Alsys implementation for IBM 370
machines:

type SHORTSHORTINTEGER is range -2**07 .. 2**07- 1;
type SHORTINTEGER is range -2**15 2**15-1;
type INTEGER is range -2**3 .. 2**31-1;

Selection of the parent of an integer type

An integer type declared by a declaration of the form:

type T is range L .. R;

is implicitly derived from either the SHORT INTEGER or INTEGER predefined
integer type. The compiler automatically selects the predefined integer type whose range
is the shortest that contains the values L to R inclusive. Note that the
SHORT _SHORTINTEGER representation is never automatically selected by: the
compiler.

Encoding of integer values

Binary code is used to represent integer values. Negative numbers are represented using

two's complement.

Minimum size of an integer subtype

The minimum size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form.

Appendix F. Implementation-Dependent Characteristics 15

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M
are the lower and upper bounds of the subtype, then its minimum size L is determined
as follows. For nr >= 0, L is the smallest positive integer such that M <= 2 l. For

< 0. L is the smalhest positive integer that -2 <= m and M <= 2 L- 1

subtype S is INTEGER range 0 .. 7;
-- The minimum size of S is 3 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of its type mark S).

Size of an integer subtype

The sizes of the predefined integer types SHORT _SHORTINTEGER,
SHORTINTEGER and INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly. For example:

type S is range 80 .. 100;
-- S is derived from SHORTINTEGER, its size is 16 bits.

type J is range 0 .. 65535;
-- J is derived from INTEGER, its size is 32 bits.

type N is new J range 80 .. 100;
-- N is indirectly derived from INTEGER, its size is 32 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies:

type S is range 80 .. 100;
for S'SIZE use 32;
-- S is derived from SHORTINTEGER, but its size is 32 bits
-- because of the size specification.

type J is range 0 .. 255;
for J'SIZE use 8;
-- J is derived from SHORT _INTEGER, but its size is 8 bits because
-- of the size specification.

type N is new J range 80 .. 100;
-- N is indirectly derived from SHORTINTEGER, but its size is 8 bits
-- because N inherits the size specification of J.

The Alsys compiler fully implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits.

16 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MVS. v4.0

Si:e o' the orjects of an integer subtype

Provided it- sizc is not constrained ry a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

Alignment of cti integer sunt-ye

An integer subtype is byte aligned if the size of the subtype is less than or equal to 8
bits, halfword aligned if the size of the subtype is less than or equal to 16 bits and word
aligned otherwise.

Address of an object of an integer subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an integer subtype is a multiple of the alignment of
the corresponding subtype.

4.3 Floating Point Types

Predefined floating point types

There are three predefined floating point types in the Alsys implementation for IBM 370
machines:

type SHORT FLOAT is
digits 6 range -2.0**'252*(1.0-2.0"*-24) .. 2.0"'252"(I.0-2.0**-24);

type FLOA' is
digits 15 range -2.0"*252*(I.0-2.0**-56) .. 2.0**252*(1.0-2.0**-56);

type LONGFLOAT is
digits 18 range -2.0**252*(I.0-2.0"*-]12) .. 2.0**252*(I.0-2.0**-112);

Selection of the parent of a floating poin: type

A floating point type declared by a declaration of the form:

type T is digits D [range L .. R];

is implicitly derived from a predefined floating point type. The compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L to R inclusive.

Encoding of floating point values

In the program generated by the compiler, floating point values are represented using
the IBM 370 data formats for single precision, double precision and extended precision
floating point values respectively.

Appendix F. Implementation-Dependent Characteristics 17

Values of the predefined type SHORT _FLOAT are represented using the single
precision format, values of the predefined type FLOAT are represented using the double
precision format and values of the predefined type LONG FLOAT are represented
using the extended precision format. The values of any other floating point type are
represented in the same way as the values of the predefined type from which it derives.
directly or indirectly.

Minimum size of a floating point subtype

The minimum size of a floating point subtype is 32 bits if its base type is
SHORTFLOAT or a type derived from SHORTFLOAT, 64 bits if its base type is
FLOAT or a type derived from FLOAT and 128 bits if its base type is LONGFLOAT
or a type derived from LONGFLOAT.

Size of a floating point subtype

The sizes of the predefined floating point types SHORTFLOAT, FLOAT and
LONGFLOAT are respectively 32 and 64 and 128 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype
using a size specification is its usual size (32, 64 or 128 bits).

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

Alignment of a floating point subtype

A floating point subtype is word aligned if its size is 32 bits and double word aligned
otherwise.

Address of an object of a floating point subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a floating point subtype is a multiple of the
alignment of the corresponding subtype.

4.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by RM 3.5.9.

18 Alsys IBM 370 Ada Compiler, Appendix F for J/M/CMS and MVS, v4.0

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefined fixed point types

To implement fixed point types, the Alsys compiler for IBM 370 machines uses a set of
anonymous predefined types of the form:

type FIXED is delta D range (-2*l15-1)*S .. 2"*15"S;
for FIXED'SMALL use S;

type LONGFIXED is delta D range (-2*31-1)*S .. 2"'31"S;
for LONGFIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fixed point type

A fixed point type declared by a declaration of the form:

type T is delta D range L .. R;

possibly with a small specification:

for T'SMALL use S;

is implicitly derived from a predefined fixed point type. The compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that includes the values L to R inclusive.

Encoding of fixed point values

In the program generated by the compiler, a safe value V of a fixed point subtype F is
represented as the integer:.

V / F'BASE'SMALL

Minimum size of a fixed point subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that
is necessary for representing the values of the range of the subtype using the small of
the base type.

For a static subtype, if it has a null range its minimum size is I. Otherwise, s and S
being the bounds of the subtype, if i and I are the integer representations of m and M,
the smallest and the greatest model numbers of the base type such that s < m and M < S,
then the minimum size L is determined as follows. For i >= 0, L is the smallest positive
integer such that I <- 2 LI. For i < 0, L is the smallest positive integer such that

2 L <- i and I <-

Appendix F, Implementation-Dependent Characteristics 19

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y,
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its tvne mark S).

Size of a fixed point subtype

The sizes of the predefined fixed point types FIXED and LONGFIXED are 16 and 32
bits respectively.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which
it derives directly or indirectly. For example:

type F is delta 0.01 range 0.0 .. 2.0;
-- F is derived from a 16 bit predefined fixed type, its size is 16 bits.

type L is delta 0.01 range 0.0 .. 300.0;
-- L is derived from a 32 bit predefined fixed type, its size is 32 bits.

type N is new L range 0.0 .. 2.0;
-- N is indirectly derived from a 32 bit predefined fixed type, its size is 32 bits.

When a size specification is applied to a fixed point type, this fixed point type and each
of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies:

type F is delta 0.01 range 0.0 .. 2.0;
for FSIZE use 32;
-- F is derived from a 16 bit predefined fixed type, but its size is 32 bits
-- because of the size specification.

type L is delta 0.01 range 0.0 .. 300.0;
for FSIZE use 16;
-- F is derived from a 32 bit predefined fixed type, but its size is 16 bits
-- because of the size specification.

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 32 bits because N inherits the size specification of F.

The Alsys compiler fully implements size specifications. Nevertheless, as fixed point
objects are represented using machine integers, the specified length cannot be greater
than 32 bits.

20 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS, v4.0

Size of the objects of a fixed point -ubtvpe

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

Alignment of a fixed point subtype

A fixed point subtype is byte aligned if its size is less than or equal to 8 bits, halfword
aligned if the size of the subtype is less than or equal to 16 bits and word aligned
otherwise.

Address of an object of a fixed point subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of a fixed point subtype is a multiple of the alignment
of the corresponding subtype.

4.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGESIZE is then 0.

As described in RM 13.2, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type. The Alsys compiler fully
implements this kind of specification.

Encoding o, access values.

Access values are machine addresses.

Minimum size of an access subtype

The minimum size of an access subtype is 32 bits.

Size of an access subtype

The size of an access subtype is 32 bits, the same as its minimum size.

The only size that can be specified for an access type using a size specification is its
usual size (32 bits).

Appendix F, Implementation-Dependent Characteristics 21

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

A, gnment of an access subtype.

A. access subtype is always word aligned.

Address of an object of an access subtype

Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an access subtype is always on a word boundary,
since its subtype is word aligned.

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in RM 13.2, a length clause can be used to specify the storage space for
the activation of each of the tasks of a given type. In this case the value indicated at
bind time is ignored for this task type, and the length clause is obeyed.

It is not allowed to apply such a length clause to a derived type. The same storage space
is reserved for the activation of a task of a derived type as for the activation of a task
of the parent type.

Encoding of task values.

Task values are machine addresses.

Minimum size of a task subtype

The minimum size of a task sbt-,pf is 32 biit.

Size of a task subtype

The size of a task subtype is 32 bits, the same as its minimum size.

A size specification has no effect on a task type. The only size that can be specified
using such a length clause is its minimum size.

22 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MVS, v4.0

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

Alignment of a task subtype

A task subtype is always word aligned.

Address of an object of a task subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of a task subtype is always on a word boundary, since its subtype is word
aligned.

4.7 Array Types

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

Coffponent Gap Conponent Gap Component Gap

Components

If the array is not packed, the size of the components is the size of the subtype of the
components:

type A is array (1 .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMAL DIGIT is range 0 .. 9;
for DECIMALDIGIT'SIZE use 4.
type BINARY CODED DECIMAL is

array (INTEGER range <>) of DECIMALDIGIT;
-- The size of the type DECIMAL DIGIT is 4 bits. Thus in an array of
-- type BINARY CODED DECIMAL each component will be represented on
-- 4 bits as in the usual BCD representation.

Appendix F, Implementation- Dependent Characteristics 23

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components:

type A is array (I .. 8) of BOOLEAN;
pragma PACK(A);
-- The size of the components of A is the minimum size of the type BOOLEAN:
-- I bit.

type DECIMALDIGIT is range 0 .. 9;
type BINARY CODEDDECIMAL is

array (INTEGER range <>) of DECIMAL DIGIT;
pragma PACK(BINARYCODEDDECIMAL);
-- The size of the type DECIMAL DIGIT is 16 bits, but, as
- BINARY CODED DECIMAL is packed, each component of an array of this
-- type will be represented on 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimise access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype:

type R is
record

K: INTEGER; -- INTEGER is word aligned.
B: BOOLEAN; -- BOOLEAN is byte aligned.

end record;
-- Record type R is word aligned. Its size is 40 bits.

type A is array (I .. 10) of R;
-- A gap of three bytes is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will be 640 bits.

LIE] D ii E11
Component Gap Component Gap Component Gap

Array of type A: each subcomponent K has a word offset.

24 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS. v4.0

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted:

type F is
record

K : INTEGER;
B: BOOLEAN;

end record;

type A is array (I .. 10) of R;
pragma PACK(A);
-- There is no gap in an array of type A because
- A is packed.

= The size of an object of type A will be 400 bits.

type NR is new R;
for NR'SIZE use 40;

type B is array (1 .. 10) of NR;
-- There is no gap in an array of type B because
-- NR has a size specification.
-- The size of an object of type B will be 400 bits.

K B' B11 I F K B' I
Component Component Component

Array of type A or B: a subcomponent K can have any byte offset.

Size of an array subtype

The size of an array subtype is obtained by multiplying the number of its components
by the sum of the size of the components and the size of the gaps (if any). If the
subtype is unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

" if it has non-static constraints or is an unconstrained array type with non-
static index subtypes (because the number of components can then only be
determined at run time).

" if the components are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static (because the size of
the components and the size of the gaps can then only be determined at run
time).

Appendix F. Implementation-Dependent Characteristics 25

As has been indicated above, the effect of a pragma PACK on an array type is to
suppress the gaps and to reduce the size of the components. The consequence of packing
an array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compile! ignore, an\
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys compiler.

A size specification applied to an array type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of an array is as expected by
the application.

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of
the object.

Alignment of an array subtype

If no pragma PACK applies to an array subtype and no size specification applies to its
components, the array subtype has the same alignment as the subtype of its components.

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (so that there are no gaps), the alignment of the array subtype is the lesser
of the alignment of the subtype of its components and the relative displacement of the
components.

Address of an object of an array subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of an array subtype is a multiple of the alignment of the corresponding
subtype.

4.8 Record Types

Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in RM 13.4. In the Alsys
implementation for IBM 370 machines there is n.o restriction on the position that can be
specified for a component of a record. If a component is not a record or an array, its
size can be any size from the minimum size to the size of its subtype. If a component is
a record or an array, its size must be the size of its subtype:

26 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS, v4.0

type ACCESS KEY is range 0..15;
-- The size of ACCESSKEY is 16 bits, the minimum size is 4 bits

type CONDITIONS is (ZERO, LESSTHAN, GREATERTHAN, OVERFLOW);
-- The size of CONDITIONS is 8 bits, the minimum size is 2 bits

type PROGEXCEPTION is (FIXOVFL, DECOVFL, EXPUNDFL, SIGNIF);
type PROGMASK is array (PROG EXCEPTION) of BOOLEAN;
pragma PACK (PROG_MASK);
-- The size of PROGMASK is 4 bits

type ADDRESS is range 0..2*24-1;
for ADDRESS'SIZE use 24;
-- ADDRESS represents a 24 bit memory address

type PSW is
record

PERMASK :BOOLEAN;
DATMODE :BOOLEAN;
10_MASK :BOOLEAN;
EXTERNALMASK :BOOLEAN;
PSW KEY ACCESSKEY;
ECMODE BOOLEAN;
MACHINE CHECK :BOOLEAN
WAITSTATE :BOOLEAN;
PROBLEMSTATE :BOOLEAN;
ADDRESSSPACE :BOOLEAN;
CONDITION CODE CONDITIONS;
PROGRAMMASK PROGMASK;
INSTR ADDRESS ADDRESS;

end record;
-- This type can be used to map the program status word of the IBM 370

for PSW use
record at mod 8;

PER MASK at 0 range 1..1;
DATMODE at 0 range 5..5;
10_MASK at 0 range 6..6;
EXTERNALMASK at 0 range 7..7;
PSW KEY at I range 0..3;
ECMODE at I range 4..4;
MACHINECHECK at I range 5..5;
WAITSTATE at I range 6..6;
PROBLEMSTATE at I range 7..7;
ADDRESS SPACE at 2 range 0..0;
CONDITIONCODE at 2 range 2..3;
PROGRAMMASK at 2 range 4..7;
INSTR ADDRESS at 5 range 0..23;

end record;

A record representation clause need not specify the position and the size for every
component.

Appendix F. Implementation-Dependent Characteristics 27

If no component clause applies to a component of a record, its size is the size of its
subtype. Its position is chosen by the compiler so as to optimise access to the components
of the record: the offset of the componen: is chosen as a multiple of the alignment of
the component subtype. Moreover, the compiler chooses the position of the component
sk: as to reduce the number of gaps and thus the size of the record objects.

because of these oltimisations. there is no connection between the order of the
components in a record type declaration and the positions chosen by the compiler for the
components in a record object.

Pragma PACK has no further effect on records. The Alsys compiler always optimises
the layout of records as described above.

In the current version, it is not possible to apply a record representation clause to a
derived type. The same storage representation is used for an object of a derived type as
for an object of the parent type.

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored il
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

Beginning of the record

Compile time offset

DIRECT

Compile time offset
OFFSEl

Run time offset

INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated
at run time and may even depend on the discriminants of the record. We will call these
components dynamic components:

type DEVICE is (SCREEN, PRINTER);

type COLOR is (GREEN, RED, BLUE);

28 Alss IBM 370 Ada Compiler, Appendix F for T'M/CMS and MISS, v4.0

type SERIES is array (POSITIVE range <>) of INTEGER;

tpe GRAPH (L : NATURAL is
record

X SERIESil -- The size of X depends on L
SERIES(. L;, -- The size of Y depend, on L

end record;

Q POSITIVE;

type PICTURE (N: NATURAL; D: DEVICE) is
record

F • GRAPH(N); -- The size of F depends on N
S: GRAPH(Q); -- The size of S depends on Q
case D is

when SCREEN =>
C: COLOUR;

when PRINTER =>
null;

end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the compiler groups the dynamic components together and places
them at the end of the record:

D SCREEN D = PRINTER

N=2 N=1

Beginning of the record
S OFFSET S OFFSET

CormpiLe tine offsets
F OFFSET F OFFSET

N N

D D

Ru tine offsets F

- F - I

The record type PICTURE.- F and S are placed at the end of the record

Appendix F. Implementation-Dependent Characteristics 29

Thanks to this strategy, the only indirect components are dynamic components. but not
all dynamic components are necessarily indirect: if there are dynamic components in a
component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time (the only dynamic components that are direct components are in this
situation):

Beginning of the record
I Y OFFSET

Compile time offset

Compite time offset

Size dependent on discriminant L

Run time offset

Size dependent on discriminant L

The record type GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to
store the size of any value of the record type (the maximum potential offset). The
compiler evaluates an upper bound MS of this size and treats an offset as a component
having an anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid useless
recomputation the compiler stores this information in the record objects, updates it when
the values of the discriminants are modified and uses it when the objects or its
components are accessed. This information is stored in special components called implicit
components.

An implicit component may contain information which is used when the record object
or several of its components are accessed. In this case the component will be included in
any record object (the implicit component is considered to be declared before any
variant part in the record type declaration). There can be two components of this kind;
one is called RECORDSIZE and the other VARIANTINDEX.

30 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MI"S. v4.0

On the other hand an implicit component may be used to access a given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAYDESCRIPTORs or
RECORDDESCRIPTORs.

0 RECORDSIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORD SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORD SIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0 .. MS.

If R is the name of the record type, this implicit component can be denoted in a

component clause by the implementation generated name R'RECORDSIZE.

I VARIANTINDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used
when a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the
possible values of the implicit component VARIANTINDEX.

Appendix F. Implementation -Dependent Characteristics 31

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR),

type DESCRIPTION (KIND: VEHICLE := CAR) is
record

SPEED: INTEGER;
case KIND is

when AIRCRAFT I CAR =>
WHEELS: INTEGER;
case KIND is

when AIRCRAFT => --

WINGSPAN: INTEGER;
when others => -- 2

null;
end case;

when BOAT => -- 3
STEAM : BOOLEAN;

when ROCKET => -- 4
STAGES: INTEGER;

end case;
end record;

The value of the variant index indicates the set of components that arc present in a
record value:

Variant Index Set

1 (KIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (KIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Component I Intervat

KIND - -
SPEED --
WHEELS 1 .. 2
WINGSPAN 1 .. 1
STEAM 3 .. 3
STAGES 4 . 4

The implicit component VARIANT INDEX must be large enough to store the number
V of component lists that don't contain variant parts. The compiler treats this implicit
component as having an anonymous integer type whose range is I .. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANTINDEX.

32 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS, v4.0

* ARRAY DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous array subtype that depends on a discrimin:,nt
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAY _DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind ARRAY _DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the array descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'ARRAYDESCRIPTOR.

a RECORDDESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD DESCRIPTOR is not
described in this documentation. Nevertheless, if a programmer is interested in
specifying the location of a component of this kind using a component clause, he can
obtain the size of the component using the ASSEMBLY parameter in the COMPILE
command.

The compiler treats an implicit component of the kind RECORD DESCRIPTOR as
having an anonymous array type. if C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORDDESCRIPTOR.

Suppression of implicit componenis

The Alsys implementation provides the capability of suppressing the implicit components
RECORD SIZE and/or VARIANTINDEX from a record type. This can be done using
an implementation defined pragma called IMPROVE. The syntax of this pragma is as
follows:

pragma IMPROVE (TIME I SPACE , [ON ->] simplename);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

Appendix F. Implementation-Dependent Characteristics 33

If TIME is specified, the compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the compiler only inserts a VARIANT INDEX or a
RECORDSIZE component if this component appears in a record representation clause
that applies to the record type. A record representation clause can thus be used to keep
one implicit component while suppressing the other.

A pragma IMPROVE that applies tc a given record type can occur anywhere that a
representation clause is allowed for this type.

Size of a record subtype

Unless a component clause specifies that a component of a record type has an offset or a
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to the a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its

components and the sizes of its gaps (if any). This size is not computed at compile time

" when the record subtype has non-static constraints,

* when a component is an array or a record and its size is not computed at
compile time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or of a gap cannot be evaluated exactly at compile time an upper bound of
this size is used hv the compiler to compute the subtype size.

A size specification applied to a record type or first named subtype has no effect. The
only size that can be specified using such a length clause is its usual size. Nevertheless,
such a length clause can be useful to verify that the layout of a record is as expected by
the application.

Size of an object of a record subtype

An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 8 kb. If the size of the subtype is greater than this, the object
has the size necessary to store its current value; storage space is allocated and released as
the discriminants of the record change.

Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype has the
same alignment as the component with the highest alignment requirement.

When a record representation clause that does not contain an alignment clause applies to
its base type, a record subtype has the same alignment as the component with the highest
alignment requirement which has not been overridden by its component clause.

34 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS, v4.0

When a record representation clause that contains an alignment clause applies to its base
type, a record subtype has an alignment that obeys the alignment clause.

Address of an object of a record subtype

Provided its alignment is not constrained by a representation clause, the address of an
object of a record subtype is a multiple of the alignment of the corresponding subtype.

Appendix F, Implementation-Dependent Characteristics 35

5 Conventions for Implementation-Generated Names

Special record components are introduced by the compiler for certain record type
definitions. Such record components are implementation-dependent; they are used by
the compiler to improve the quality of the generated code for certain operations on the
record types. The existence of these components is established by the compiler
depending on implementation-dependent criteria. Attributes have been defined for
referring to them in record representation clauses. An error message is issued by the
compiler if the user refers to an implementation-dependent attribute that does not exist.
If the implementation-dependent component exists, the compiler checks that the storage
location specified in the component clause is compatible with the treatment of this
component and the storage locations of other components. An error message is issued if
this check fails.

There are four such attributes:

T'RECORDSIZE For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the compiler
in a record to store the size of the record object. This
component exists for objects of a record type with
defaulted discriminants when the sizes of the record
objects depend on the values of the discriminants.

T'VARIANTINDEX For a prefix T that -lenotes a record , pe. This attribute
refers to the record component introduced by the compiler
in a record to assist in the efficient implementation of
discriminant checks. This component exists for objects of
a record type with variant type.

C'ARRAYDESCRIPTOR
For a prefix C that denotes a record component of an
array type whose component subtype definition depends on
discriminants. This attribute refers to the record
component introduced by the compiler in a record to store
information on subtypes of components that depend on
discriminants.

C'RECORDDESCRIPTOR
For a prefix C that denotes a record component of a
record type whose component subtype definition depends
on discriminants. This attribute refers to the record
component introduced by the compiler in a record to store
information on subtypes of components that depend on
discriminants.

36 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MAVS, v4.0

6 Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in RM
13.5. When such a clause applies to an object no storage is allocated for it in the
program generated by the compiler. The program accesses the object using the address
specified in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose
size is greater than 8 kb.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented in the current version of the compiler.

Appendix F, Implementation-Dependent Characteristics 37

7 Restrictions on Unchecked Conversions

Unconstrained arrays are not allowed as target types.

Unconstrained record types without defaulted discriminants are not allowed as target
types.

If the source and the target types are each scalar or access types, the sizes of the objects
of the source and target types must be equal. If a composite type is used either as the
source type or as the target type this restriction on the size does not apply.

If the source and the target types are each of scalar or access type or if they are both of

composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

" if an unchecked conversion is achieved of a scalar or access source type to a
composite target type, the result of the function is a copy of the source
operand: the result has the size of the source.

" if an unchecked conversion is achieved of a composii. source type to a scalar
or access target type, the result of the function is a copy of the source
operand: the result has the size of the target.

38 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS. v4.0

8 Input-Output Packages

The predefined input-output packages SEQUENTIAL 10 [14.2.31, DIRECT 10 [14.2.51,
and TEXT_10 [14.3.10] are implemented as described in the Language Reference
Manual as is the package 10 EXCEPTIONS [14.5], which specifies the exceptions that
can be raised by the predefined input-output packages.

The package LOW LEVEL 10 [14.6], which is concerned with low-level machine-
dependent input-output, nas not been implemented.

8.1 NAME Parameter

8.1.1 VM/CMS

The NAME parameter supplied to the Ada procedures CREATE or OPEN [14.2.11 may
represent a CMS file name or DDNAME specified using a FILEDEF command.

The syntax of , CMS file name as specified in the Ada NAME parameter is as follows:

file name ::= fn [ft [fm]] I %ddname

where

fn is the CMS filename

ft is the CMS filetype

fm is the CMS filemode

If the filenames or filetypes exceed 8 characters then they are truncated. As indicated
above, the filetype and filemode fields are not mandatory components of the NAME
parameter. If the filemode is omitted, it defaults to "Al" for files being created; for
files being opened all accessed minidisks are searched and the CMS filemode is set to
that of the first file with the appropriate filename and filetype. If, in addition, the
fi~etype is omitted it defaults to "FILE*. The case of the characters of the filename is
not significant.

The NAME parameter may also be a DDNAME. If the file name parameter starts with
a % character, the remainder of the string (excluding trailing blanks) is taken as a
DDNAME previously specified using the FILEDEF command. If the DDNAME has not
been specified using FILEDEF, NAMEERROR will be raised.

The effect of calling CREATE and DELETE for a file opened using a DDNAME is as
if OPEN or CLOSE (respectively) had been called.

8.1.2 MVS

The NAME parameter supplied to the Ada procedures CREATE or OPEN [14.2.1] may
represent an MVS dataset name or DDNAME.

Appendix F, Implementation-Dependent Characteristics 39

The syntax of an MVS dataset name as specified in the Ada NAME parameter is as
follows:

datase: name ::= [&]dsname[(memher)]
'dsname[(member)]'!
%ddname

where

dsname is the MVS dataset name. If prefixed b\ an ampersand (&) the system
assigns a temporary dataset name.

member is the MVS member, generation or area name.

An unqualified name (not enclosed in apostrophes) is first prefixed by the string (if any)
given as the QUALIFIER parameter in the program PARM field when the program is
run. An intervening period is added if required.

The QUALIFIER parameter may be specified as in the following example:

//STEP20 EXEC PGM=IEB73,PARM='/QUALIFIER(PAYROLL.ADA)'

A fully qualified name (enclosed in apostrophes) is not so prefixed. The result of the
NAME function is always in the form of a fully qualified name, i.e. enclosed in single
quotes.

The NAME parameter may also be a DDNAME. If the file name parameter starts wth
a % character, the remainder of the string (excluding trailing blanks) is taken as a
DDNAME previously allocated. If the DDNAME has not been allocated,
NAMEERROR will be raised.

The effect of calling CREATE and DELETE for a file opened using a DDNAME is as
if OPEN or CLOSE (respectively) had been called.

8.2 FORM Parameter

The FORM parameter comprises a set of attributes formulated according to the lexical
rules of [2], separated by commas. The FORM parameter may be given as a null string
except when DIRECT 10 is instantiated with an unconstrained type; in this case the
RECORDSIZE attribute must be provided. Attributes are comma-separated; blanks
may be inserted between lexical elements as desired. In the descriptions below the
meanings of natural, positive, etc., are as in Ada; attribute keywords (represented in
upper case) are identifiers [2.3] and as such may be specified without regard to case.

USEERROR is raised if the FORM parameter does not conform to these rules.

The attributes are as follows:s

40 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MVS. v4.0

File sharing attribute

This attribute allows control over the sharing of one external file between several
internal files within a single program. In effect it establishes rules for subsequent OPEN
and CREATE calls which specify the same external file. If such rules are violated or if
a different file sharirg attribute is specified in a later OPEN or CREATE call.
USEERROR will be raised. The syntax is as follows:

NOT SHAREDI

SHARED => access mode

where

access-mode::= READERS I SINGLEWRITER I ANY

A file sharing attribute of:

NOTSHARED

implies only one internal file may access the external file.

SHARED => READERS

imposes no restrictions on internal files of mode INFiLE, but prevents any
internal files of mode OUTFILE or INOUTFILE being associated with
the external file.

SHARED => SINGLEWRITER

is as SHARED => READERS, but in addition allows a single internal file of
mode OUTFILE or INOUTFILE.

SHARED => ANY

places no restrictions on external file sharing.

If a file of the same name has previously been opened or created, the default is taken
from that file's sharing attribute, otherwise the default depends on the mode of the file:
for mode IN FILE the default is SHARED => READERS, for modes INOUTFILE
and OUTFILE the default is NOTSHARED.

Record format attribute

This attribute controls the record format (RECFM) of an external file created in Ada.
The attribute may only be used in the FORM parameter of the CREATE command; if
used in the FORM parameter of the OPEN command, USEERROR will be raised.

Appendix F. Implemertation-Dependent Characteristics 41

By default, files are created according to the following rules:

* for TEXT 10. and instantiations of SEQUENTIAL_10 of unconstrained
t' pes, variable-length recorc files (RECFM = V) are created.

" for DIRECT_1%, and instantiations of SEQUENTIAL10 of constrained
types, fixed-length record files (RECFM - F) are created.

Tht ,,ntax of the record format attribute is as follows:

RECFM => VI F

Record size attribute

This attribute controls the logical record length (LRECL) of an external file created in
Ada. The attribute may only be used in the FORM parameter of the CREATE
command; if used in the FORM parameter of the OPEN command, USEERROR will
be raised.

In the case of RECFM F files (see record format attribute) the record size attribute
specifies the record length of each record; in the case of RECFM V files, the record size
attribute specifies the maximum record length.

In the cast of DIRECT IO.CREATE for unconstrained types the user is required to
specify the RECORDSIZE attribute (otherwise USE-ERROR will be raised by the
OPEN or CREATE procedures).

In the case of DIRECT 10 and SEQUENTIAL_10 for constrained types the value given
must not be smaller than ELEMENT TYPE'SIZE / SYSTEM.STORAGEUNIT;
USEERROR will be raised if this rule is violated.

In the czse of DIRECT _10 and SEQUENTIAL 10 for unconstrained types the value
given must not be smaller than ELEMENTTYPE'DESCRIPTORSIZE /
SYSTEM.STORAGEUNIT plus the size of the largest record which is to be read or
written. If a larger record is processed, DATAERROR will be raised by the READ or
WRITE.

In the case of TEXT _10, output lines will be padded to the requisite length with spaces;
this fact should be borne in mind when re-reading files generated using TEXT I0 with
the record size attribute set.

The syntax of the record size attribute is as follows:

RECORDSIZE I LRECL => natural

where natural is a size in bytes.

For input-output of constrained types the default is:

RECORDSIZE => element length

42 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS, v4.0

where

elementlength = ELEMENTTYPE'SIZE SYSTEM.STORAGEUNIT

For input-output of unconstrained types c-pe; than via DIRECT 10. in which case the
RECORD SIZE attribute must be provided b\ the user, variable size record are used
(RECFM V).

Block size attribute

This attribute controls the block size of an external file. The block size must be at least
as large as the record size (if specified) or must obey the same rules for specifying the
record size.

The default is

BLOCKSIZE => record size

for RECFM F files and

BLOCKSIZE => 4096

for RECFM V files.

Carriage control

This attribute applies to TEXT_10 only, and is intended for files destined to be sent to
a printer.

For a file of mode OUT FILE, this attribute causes the output procedures of TEXT 10
to place a carriage control character as the first character of every output record, 'I'
(skip to channel 1) if the record follows a page terminator, or space (skip to next line)
otherwise. Subsequent cnaracters are output as normal as the result -.f calls of the
output subprograms of TEXTIO.

For a file of mode IN FILE, this attribute causes the input procedures of TEXT 10 to
interpret the first character of each record as a carriage control character, as described
in the previous paragraph. Carriage control characters are not explicitly returned as a
result of an input subprogram, but will (for example) affect the result of
ENDOFPAGE.

The user should naturally be careful to ensure the carriage control attribute of a file of

mode IN-FILE has the same value as that specified when creating the file.

The syntax of the carriage control attribute is as follows:

CARRIAGECONTROL [=> boolean]

Appendix F. Implementation -Dependent Characteristics 43

The default is set according to the filetype of the file: if the filetype is LISTING, the
default is CARRIAGE CONTROL => TRUE otherwise the default is
CARRIAGE CONTROL => FALSE. If the attribute alone is specified without a
boolean value it defaults to TRUE.

Truncate

This attribute applies to TEXT _10 files of mode INFILE. and causes the input

procedures of TEXT_10 to remove trailing blanks from records read.

The syntax of the TRUNCATE attribute is as follows:

TRUNCATE [=> boolean]

The default is TRUNCATE => FALSE.

Note that truncation is always performed for TEXT O files for which the record size
attribute is set (i.e. RECFM = F). If the attribute alone is specified without a boolean
value it defaults to TRUE.

Aooend

This attribute may only be used in the FORM parameter of the OPEN command; if used
in the FORM parameter of the CREATE command, USEERROR will be raised.

The affect of this attribute is to cause writing to commence at the end of the existing
file.

The syntax of the APPEND attribute is as follows:

APPEND [=> boolean]

The default is APPEND => FALSE. If the attribute alone is specified without a boolean
value it defaults to TRUE.

Eof string

This attribute applies only to files associated with the terminal opened using TEXTIO,
and controls the logical end of_file string. If a line equal to the logical end ofjile
string is typed in, El-iD OF FILE will become TRUE. If an attempt is made to read
from a file for which ENDOFFILE is TRUE, ENDERROR will be raised.

The syntax of the EOFSTRING attribute is as follows:

EOFSTRING => sequence of_characters

The default is EOFSTRING => /*

The EOFSTRING may not contain commas or spaces.

44 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MVS, v4.0

...

If the END OF FILE function is called, a "look-ahead read" will be required. This
means that (for example) a question-and-answer session at the terminal coded as follows:

while not END OF FILE loop
PU T LINE ("Enter value:");
GET LINE (...

end loop;

Nkill cause the prompt to appear only after the first value has been input. If the example
is recoded without the explicit call to END _OF _FILE (but perhaps within a handler for
ENDERROR) the behaviour will be appropriate.

The following additional FORM parameter attributes apply only to programs run under
MVS.

Unit attribute

This attribute allows control over the unit on which a file is allocated. The syntax is as
follows:

UNIT => unit-name

where unit-name specifies a group name, a device type or a specific unit address.

The default is the local installation specific default.

Volume attribute

This attribute allows con:rol over the volume on which a file is allocated. The syntax is

as follows:

VOLUME => volume-name

where volumename specifies the volume serial number.

The default is the local installation specific default.

Primarv attribute

This attribute allows control over the primary space allocation for a file. The syntax is

as follows:

PRIMARY => natural

where natural is the number of blocks allocated to the file.

The default is the local installation specific default.

Appendix F. Implementation-Dependent Characteristics 45

Secondary attribute

This attribute allows control over the secondary space allocation for a file. The syntax is
as follows:

SECONDARY => natural

where natural is the number of additional blocks allocated to the file if more sracc is
needed.

The default is the local installation specific default.

8.3 STANDARDINPUT and STANDARDOUTPUT

The Ada internal files STANDARD INPUT and STANDARD OUTPUT are associated
with the external files %SYSIN and %SYSOUT, respectively. By default under CMS the
DDNAMEs SYSIN and SYSOUT are defined to be the terminal, but the user may
redefine their assignments using the FILEDEF command before running any program.
Under MVS, the DDNAMES must be allocated before any program is run, whether or
not the corresponding Ada internal files are used.

The Ada internal files STANDARD INPUT and STANDARD OUTPUT are associated
with the DD names SYSIN and SYSOUT, respectively. These DD names must be
defined before any program can be run.

8.4 USEERROR

The following conditions will cause USEERROR to be raised:

" Specifying a FORM parameter whose syntax does not conform to the rules
given above.

" Specifying the EOF _STRING FORM parameter attribute for files other than
TEXT_10 files of mode IN-FILE.

" Specifying the CARRIAGE__CONTROL FORM parameter attribute for files
other than TEXT_10 files.

" Specifying the BLOCK __SIZE FORM parameter attribute to have "alue less
than RECORDSIZE.

" Specifying the RECORD__SIZE FORM parameter attribute to have a value
of zero, or failing to specify RECORDSIZE for instantiations of
DIRECT_O for unconstrained types.

" Specifying a RECORD SIZE FORM parameter attribute to h=-e a value less
than that required to hold the element for instantiations of DIRECTIO and
SEQUENTIALIO for constrained types.

" Violating the file sharing rules state, above.

46 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MVS. v4.0

" For CMS, attempting to write a zero length record to other than the terminal.

" Errors detected whilst reading or writing (e.g. writing to a file on a read-
only disk).

8.5 Text Terminators

Line terminators [14.31 are not implemented using a character, but are implied by the
end of physical record.

Page terminators [14.3] are implemented using the EBCDIC character OC (hexadecimal).

File terminators 114.3] are not implemented using a character, but are implied by the end
of physical file. Note that for terminal input a line consisting of the EOF _STRING (see
8.1.1) is interpreted as a file terminator. Thus, entering such a line to satisfy a read
from the terminal will raise the ENDERROR exception.

The user should avoid the explicit output of the character ASCII.FF [C], as this will not
cause a page break to be emitted. If the user explicitly outputs the character ASCII.LF,
this is treated as a call of NEW LINE [14.3.4].

The following characters have special meaning for VM/SP; this should be borne in mind
when reading from the display terminal:

Character Default VM/SP meaning May be changed using

logical line end symbol CP TERMINAL LINEND
logical escape character CP TERMINAL ESCAPE

@ logical character delete symbol CP TERMINAL CHARDEL

8.6 EBCDIC and ASCII

All I/O using TEXTIO is performed using ASCII/EBCDIC translation. CHARACTER
and STRING values are held internally in ASCII but represented ir external files in
EBCDIC. For SEQUENTIAL 10 and DIRECT 10 no translation takes place, and the
external file contains a binary image of the internal representation of the Ada element
(see section 8.7).

It should be noted that the EBCDIC character set is larger than the (7 bit) ASCII and
that the use of EBCDIC and ASCII control characters may not produce the desired
results when using TEXT_10 (the input and output of control characters is in any case
not defined by the Ada language [14.3]). Furthermore, the user is advised to exercise
caution in the use of BAR (I) and SHARP (#), which are part of the lexis of Ada; if
their use is prevented by translation between ASCII and EBCDIC, EXCLAM (!) and
COLON (:), respectively, should be used instead [2.10].

Various translation tables exist to translate between ASCII and EBCDIC. The predefined
package EBCDIC is provided to allow access to the translat -n facilities used by
TEXT 10 and SYSTEMENVIRONMENT (see Character Code Translation Tables in
the Compiler User's Guide).

Appendix F, Implementation-Dependent Characteristics 47

The specification of this package is given in section 10.5.1.

S.7 Characteristics of Disk Files

A disk flie that has already beer created and is opened takes on the characteristics that
are alreadv associated with that file.

The characteristics of disk fries that are created using the predefined input-output
pazcages are set up as described below.

8.7.1 TEXTIO

" A carriage control character is placed in column I if the CARRIAGE control
attribute is specified in the FORM parameter.

" Data is translated between ASCII and EBCDIC so that the external file is readable
using other Systern/370 tools.

" Under MVS, TEXT_10 files are implemented as DSORG PS (QSAM) datasets.

8.7.2 SEQUENTIAL_10

" No translation is performed between ASCII and EBCDIC; the data in the external
file is a memory image of the elements written, preceded by a descriptor in the case
of unconstrained types.

" Under MVS, SEQUENTIAL_10 files are implemented as DSORG PS (QSAM)
datasets.

8.7.3 DIRECTIO

" No translation is performed between ASCII and EBCDIC; the data in the external
file is a memory image of the elements written, preceded by a descriptor in the case
of unconstrained types.

" Under CMS DIRECT 10 files may be read using SEQUENTIAL_1O (and vice-
versa if a RECORDSIZE component is specified).

" Under MVS, DIRECT_10 files are implemented as DSORG DA (BDAM) datasets.

48 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MVS. v4.0

9 Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as foliows:

SHORTSHORTINTEGER -128 .. 127 -- 2 7 -

SHORTINTEGER -32768 .. 32767 - - 215 -

INTEGER -2147483648 .. 2147483647 -- 2**31 -1

For the packages DIRECT_10 and TEXT_10, the ranges of values for types COUNT
and POSITIVECOUNT are as follows:

COUNT 0 .. 2147483647 -- 2*31 - 1

POSITIVECOUNT 1 .. 2147483647 -- 2**31 -1

For the package TEXT_10, the range of values for the type FIELD is as follows:

FIELD 0 .. 255 -- 2*g-

Appendix F. Implementation-Dependent Characteristics 49

9.2 Floating Point Type Attributes

SHORTFLOAT

Approximate
value

DIGITS 6
MANTISSA 21
EMAX 84
EPSILON 2.0 ** -20 9.54E-07
SMALL 2.0 * -85 2.58E-26
LARGE 2.0 * 84 * (1.0 - 2.0 * -21) 1.93E+25
SAFE EMAX 252
SAFE SMALL 2.0 ** -253 6.91E-77
SAFE LARGE 2.0 ** 127 * (1.0 - 2.0 ** -21) 1.70E+38
FIRST -2.0 ** 252 * (1.0 - 2.0 ** -24) -7.24E+75
LAST 2.0 ** 252 * (1.0 - 2.0 ** -24) 7.24E+75
MACHINERADIX 16
MACHINEMANTISSA 6
MACHINEEMAX 63
MACHINE EMIN -64
MACHINE ROUNDS FALSE
MACHINEOVERFLOWS TRUE
SIZE 32

FLOAT

Approximate
value

DIGITS 15
MAI'TISSA 51
EMAX 204
EPSILON 2.0 ** -50 8.88E- 16
SMALL 2.0 ** -205 1.94E-62
LARGE 2.0 * 204 * (1.0 - 2.0 ** -51) 2.57E+61
SAFE EMAX 252
SAFE SMALL 2.0 * -253 6.91E-77
SAFE LARGE 2.0 * 252 * (1.0 - 2.0 ** -51) 7.24E+75
FIRST -2.0 * 252 * (1.0 - 2.0 * -56) -7.24E+75
LAST 2.0 ** 252 * (1.0 - 2.0 * -56) 7.24E+75
MACHINERADIX 16
MACHINE MANTISSA 14
MACHINEEMAX 63
MACHINEEMIN -64
MACHINEROUNDS FALSE
MACHINEOVERFLOWS TRUE
SIZE 64

50 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MV'S, v4.1

LONGFLOAT

Approximate
value

DIGITS is
MANTISSA 61
ENIAX 24 4
EPSILON 2.0 -60 8.67E- 19
SM01ALL 2.0 -245 1.77E-74
LARGE 2.0 **244 * (1.0 - 2.0 **-61) 2.83E+73
SAFEEMAX 252
SAFESMALL 2.0 -253 6.91E-77
SAFE-LARGE 2.0 252 * (1.0 - 2.0 -61) 7.24E+75
FIRST -2.0 * 252'* (1.0 - 2.0 --112) -7.24E+75
LAST 2.0 ** 252 * (1.0 - 2.0 ' 112) 7.24E+75
MACHINERADIX 16
MACHINEMANTISSA 28
MACHINE EMAX 63
MACHINEEMIN -64
MACHINE ROUNDS FALSE
MACHINE-OVERFLOWS TRUE
SIZE 128

9.3 Attributes of Type DURATION

DURATION'DELTA 2.0 **-14

DURATlON'SMALL 2.0 **-14

DURATION'LARGE 131072.0
DURATION'FIRS7 -86400.0
DURATION'LAST 86400.0

Appendix F, Implementation -Dependent Char..cieristics 5

10 Other Implementation-Dependent Characteristics

10.1 Characteristics of the Heap

All objects created by allocators go into the program heap. In addition, portions of th.
Ada Run-Time Executive's representation of task objects, including the task stacks. are
allocated in the program heap.

All objects on the heap belonging to a given collection have their storage reclaimed or.
exit from the innermost block statement, subprogram body or task body that encloses the
access type declaration associated with the collection. For access types declared at the
library level, this deallocation occurs only on completion of the main program.

There is no further automatic storage reclaimation performed, i.e. in effect all access
types are deemed to be controlled [4.8]. The explicit deallocation of the ob.ect
designated by an access value can be achieved by calling an appropriate instantiatiori of
the generic procedure UNCHECKEDDEALLOCATION.

Space for the heap is initially claimed from the system on program start up and
additional space may be claimed as required when the initial allocation is exhausted.
The size of both the initial allocation and the size of the individual increments claimed
from the system may be controlled by the Binder options SIZE and INCREMENT.
Corresponding run-time options also exist.

On an extended architecture machine space allocated from the program heap may be
above or below the 16 megabyte virtual storage line. The implementation defined
pragma RMODE (see section 1.4) is provided to control the residence mode of objects
allocated from the program heap.

10.2 Characteristics of Tasks

The default task stack size is 16 Kbytes, but by using the Binder option TASK the size
for all task stacks in a program may be set to any size from 4 Kbytes to 16 Mbytes. A
corresponding run-time option also exists.

Timeslicing is implemented for task scheduling. The default time slice is 1000
milliseconds, but by using the Binder option SLICE the time slice may be set to any
multiple of 10 milliseconds. A corresponding run-time option also exists. It is also
possible to use this option to specify no timeslicing, i.e. tasks are scheduled only at
explicit synchronisation points. Timeslicing is started only upon activation of the first
task in the program, so the SLICE option has no effect for sequential programs.

Normal priority rules are followed for preemption, where PRIORITY values run in the
range I .. 0. All tasks with "undefined" priority (no pragma PRIORITY) are considered
to have a priority of 0.

The minimum timeable delay is 10 milliseconds.

The maximum number of active tasks is limited only by memory usage. Tasks release
their storage allocation as soon as they have terminated.

52 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS. v4.0

The acceptor of a rendezvous executes the accept body code in its own stack. A
rendezvous with an empty accept body (e.g. for synchronisation) does not cause a
context switch.

The main program waits for completion of all tasks dependent on library packages
before terminating. Such tasks may select a terminate alternative only after completion
of the main program.

Abnormal completion of an aborted task takes place immediately, except when the
abnormal task is the caller of an entry that is engaged in a rendezvous. Any such task
becomes abnormally completed as soon as the rendezvous is completed.

If a global deadlock situation arises because every task (including the main program) is
waiting for another task, the program is aborted and the state of all tasks is displayed.

10.3 Definition of a Main Program

A main program must be a non-generic, parameterless, library procedure.

10.4 Ordering of Compilation Units

The Alsys IBM 370 Ada Compiler imposes no additional ordering constraints on
compilations beyond those required by the language.

10.5 Implementation Defined Packages

The following packages are defined by the Alsys Ada implementation for the IBM 370
under VM/CMS and MVS

10.5.1 Package EBCDIC

The implementation-defined package EBCDIC provides the user with access to the
ASCII to EBCDIC and EBCDIC to ASCII translation facilities used by the TEXT_10,
SYSTEMENVIRONMENT and RECORD_1O packages.

The specification of package EBCDIC is as follows:

package EBWIC is

type EBCDICCHARACTER is

nut, -- 0 = Oh

so, 1 -- 1lh
stx, -- 2 = 2h

etx, -- 3 3h
E_4,
ht, -- 5 = 5h

E_6,
dleL, 7z 7h

Appendix F, Implementation -Dependent Characteristics 53

E_8

E-9,

E_A,

vt, -- 1' = Og

p-- = OCh

C"- 13 = OOh

so, -- 14 = OEh

si, -- 15 OFh

dLe, -- IOn

dcl, -- 17 11h

dc2, - 18 =12h

dc3, -- 19 =13h

E-14,

ni, "" 21 = 15h

bs, -- 22= 16h

E_17,

can, -- 24= 18h

era, -- 25 =19h

El1A,
ElIB,

EIC,

gs, -- 29 = Dh

rs, -- 30= 1Eh

US, -- 3;1 = lFh

E 2C,

E_21,

ts, "--34 = 22h

E_23,

E_24,

E_25,

etb, - - 38 =26h

E-28,es1c,--3= 7

E_29,

E _2A,

E_26,

E_2C,

enq, -- 45= 2Dh
ack, -- 36 = 2Eh

bet, -- 47= 2h

E_30,

E_31,

syn, - - 50 = 32h
E_33,

E_34,

E35,
E_36,

eot, -- 55 =37h
E_38,

E_39,
E_3A,

E-31B,

cy4, -- 60 = 3Ch

54 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS, v4.0

E_33,
.

nak, -- 61 = 30h

E_3E,

sub, - 63 = 3Fh
S-- 64 = 40h

E_41,

E_42,

E_43,

E_44,
E_45,

E_46,

E_47,

E_48,

E-49,

E4A,
S -- 75 = 48h

'" 76 = 4Ch
(', -- 77= 40h
+, -- 78 = 4Eh

', -- 79 = 4Fh

-- 80 = 50h

E_51,

E_52,

E_53,

E _54,

C_55,
E_56,

E_57,

E-58,

E_59,
0!1, -- 90 = 5Ah
'$, -- 91 = 5Bh

-- 92 = 5Ch
), -- 93 = 5Dh

-- 94 = 5Eh

-- 95 = 5Fh
I-' -- 96 = 60h

-- 97 = 61h

E62,

E63,

E64,

E_65,
EE6,

t_67,

E-68

E-69

E_6A.

--107 = 66h

I', --108 = 6Ch

-, --109 = 60h
' --110 = 6Eh

--111 = 6Fh
E7TO,

E_71,

Appendix F. Implementation-Dependent Characteristics 55

E_72,

E_73,
E_74,

E_75,

E_76,

F_77,

E_78,

--121 = 79h

--122 = 7Ah

--123 = 7Bh

--124 = 7Ch
"' --125 = 7Dh

--126 = 7Eh
lst, --127 = 7Fh

E_80,
Is#, --129 = 81h

'be, --130 = 82h
Ices --131 = 83h

'do, --132 = 84h

lei, --133 = 85h
If', --134 = 86h

Igo, --135 = 87h

the, --136 = 88h
oi', --137 = 89h

E_SA,

E_8B,

E_8C,

E_8E,

E_8F,

E_90,
,jo, --145 = 91h

Ike, --146 = 92h
,its, --147 = 93h
Iii' --148 = 94h

In', --149 = 95h

to' --150 = 96h
'p', --151 = 97h
'q', --152 = 98h

r ' --153 = 99h

E_9A,
E98,

E_9C,

E9E,

E_9F,

E_AO,
'''. --161 = OAlh

'SI --162 = OA2h

its, --163 = OA3h
'U', --164 = OA4h

Iv' --165 = OA5h

'w'S --166 = OA6h

56 Als,'s IBM 370 Ada Compiler, Appendix F for VTM/CMS and MI'S, v4.0

--167 = OA~h
ly"--168 =OA8h

.Z.,--169 = A9'

EAA,

45, --173 = OADh'

EAE,

E_Ar-

E_BO0

EBl,

E_82,

E_B3,

E_84,

E_85,

EB6,

EB7,

EB8,

E_89,

EBA,

EBB,

E _BC,

1]"--189 =0BDh

EBE,

EBF,

1(,, --192 = OC~h

WA, --193 =OClh
'5'. --194 = OC2h

'C,--195 r 0C3h

''*--196 =0C4h

'El, --197 = 0C5h
'F', --198 =OC6h

lGI, --199 = OC~h

'H', --200 = 0C8h
11, -- 201 = OC9h

ECA,

ECS,

ECC,

ECD,

ECE,

EC',

Ip, -- 208 =ODOh
OJI, -- 209 = O~lh

'K', -- 210 = 002h
ILI, -- 211 = 003h

'N', -- 212 a 004h
'N', -- 213 z 005h
'0', -- 214 - 006h

IPI,--215 Ic007h

'o', -- 216 m O08Ih
IRI. -- 217 = 009h

E-DA,

E-DO,

Appendix F Implementation- Dependent Characteristics 57

EODC,

E_DO,

EDE,
EOF,

IV, -- 224 =OEOh

ISI, --226 = OE2h

IT',--227 =OE3h
.U', --228 =OE4h

'V', --229 = OE5h
'W', --230 = OE6h

SX1, --231 = OE7h

syl, --232 =OE8h
IZI, --233 = OE9h

E-EA,

EER,

EEC,

EED,

E_EE,

EEF,
'0', --240 =OFOh

111, --241 = OFlh

121, --242 =OF2h

'3', --243 =OF3h

4', --24" = OF4h

'5', --245 = OF5h

'6', --246 =OF6h

'71, --247 =OF~h

'8', --248 = OFgh
'9', --249 = OF9h

EFA,

EFB,

EFC,

EFO,

EFE,

EFF);

SEL :constant EBCOIC CHARACTER E-4;

RNL :constant EBCDICCHARACTER E-6;

GE :constant EBCDIC CHARACTER E-8;

SPS :constant EBCOIC CHARACTER E-9;

RPT :constant ESCOIC CHARACTER E A;

RES :constant ESCOIC CHARACTER :E-4;

ENP :constant ESCOIC CHARACTER E-4;

POC :constant EBMCDJCCHARACTER E_17;

USS constant EBCDIC CHARACTER :z El1A;

GUI : constant ESCDIC CHARACTER :E1IB;
IFS :constant ESCOIC CHARACTER E_1C;

OS :constant EBCDIC CHARACTER :E-20;

SOS :constant EBCOIC CHARACTER E_21;

UJS :constant EBCOIC CHARACTER :E_23;

BYP :constant EBCOIC CHARACTER :E_24;

INP :constant EBCDIC CHARACTER :E_24;

58 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MI'S, v4.0

LF constant EBM ICCHARACTER E-25;

SA constant EBCOICCHARACTER E_28;

SFE constant EBCDIC CHARACTER E_29;

Sm constant EBCOIC CHARACTER E_2A;

SW constant E&CDICCHARACTER E_2A;

CSP constant EBCDIC_CHARACTER EZB;

MFA constant EBCDICCHARACTEP E_2C;

IR constant EBCDICCHARACTER E-33;
PP constant EBCDICCHARACTER :z E_34;

TRN constant EBCDICCHARACTER E_35;

NBS constant EBCDICCHARACTER E_36;

SBS constant EBCDIC CHARACTER E_38;

IT constant EBCDIC CHARACTER E_39;

RFF constant EBCDIC CHARACTER : E3A;

CU3 constant EBCIC CHARACTER : E_3B;

SP constant EBCIC CHARACTER 1 ';

RSP constant EBCDICCHARACTER E-41;

CENT constant EBCDIC_CHARACTER E_4A;

SHY constant EBDICCHARACTER ECA;

HOOK constant EBCDICCHARACTER ECC;

FORK constant EBCDICCHARACTER ECE;

NSP constant EBCMIC CHARACTER EEl;

CHAIR constant EBCDICCHARACTER E.EC;

EO constant EBCICCHARACTER E FF;
E_0 constant EBCDICCHARACTER nuL;

E_1 constant EBCDICCHARACTER soh;

E_2 constant EBCDIC CHARACTER stx;

E_3 : constant EBCOICCHARACTER etx;

E_5 : constant EBCDICCHARACTER ht;

E_7 : constant EBCDICCHARACTER del;

EB : constant EBCDIC CHARACTER : vt;
EC : constant EBCDICCHARACTER np;

ED : constant EBCMICCHARACTER cr;

EE : constant EBCOICCHARACTER so;

EF : constant EBCDIC CHARACTER si;

E_10 : constant EBMDICCHARACTER dle;

El11 : constant EBCDICCHARACTER : dcl;

E_12 : constant EBCDICCHARACTER :d dc2;

E-13 : constant EBCOICCHARACTER : dc3;
E_15 : constant EBCDICCHARACTER nt;

E_16 : constant EBCICCHARACTER bs;

E_18 : constant EBCICCHARACTER := can;

E_19 : constant EBMDICCHARACTER := am;

EID : constant EBCICCHARACTER : gs;

EIE : constant EBCMIC CHARACTER rs;

EIF : constant EBCMICCHARACTER := us;

E_22 : constant EBCDICCHARACTER : fs;

E_26 : constant EBCMICCHARACTER = etb;

E_27 : constant EBCIC CHARACTER : esc;

E_2D : constant EBMCICCHARACTER :2 enq;

E_2E : constant EBCDICCHARACTER := ack;

E_2F : constant EBCDICCHARACTER : bet;

E_32 : constant EBMDICCHARACTER := syn;

Appendix F. Implementation-Dependent Characteristics 59

E_37 constant ESCOIC CHARACTER :v eat;
E-3C constant EUCOIC CHARACTER :del.;

E-30 constant ESCOICCHARACTER :~nak;

E_3F constant EBM IC CHARACTER:xsb

E-40 :constant EBCDIC-CHARACTER

E-48 constant EBCOIC CHARACTER :

E-4C constant EBCOIC CHARACTER :

E_40 constant EBcC_1CHARACTER ';

E-4E constant EBCDIC CHARACTER :
E-4F :constant EBCDIC CHARACTER:

E-50 constant ESCDIC-CHARACTER 191;

E-5A constant EBCOIC CHARACTER :21'I;

E-58 constant EBCOIC CHARACTER 'S';
E-5C :constant ERCOIC CHARACTER :
E-5D :constant ERCOIC CHARACTER :''

ES5E constant EBCVIC CHARACTER

O5F :constant EBCDIC CHARACTER:
E-60 constant ERCOIC CHARACTER
E-61 constant EBCDIC CHARACTER:2i'

E-68 constant EBCOIC CHARACTER

E-6C :constant ERCOIC CHARACTER 1%1

E 60 constant ERCOIC CHARACTER :z''

E 6E constant ESCOIC CHARACTER :

E-6F : constant EBMCDJCCHARACTER : *";

E-79 : constant EBCOIC CHARACTER
E-7A :constant EBCOIC CHARACTER

E-7B constant EBCOIC CHARACTER W

E-7C :constant EBCDIC CHARACTER 11

E-70 constant ERCOIC CHARACTER 11

E-7E :constant EBCOIC CHARACTER 11

E-7F constant EBcOIC CHARACTER I'll;

E-81 : constant EBMDIC CHARACTER W='a;

E-82 :constant ERCOIC CHARACTER :: l

E-83 :constant ESCOIC CHARACTER :2 c';

E-84 :constant EBCDIC CHARACTER 'd';
E-85 :constant EBMD1C CHARACTER Iel

E-86 : constant EBCVIC CHARACTER I f';

E-87 :constant EBCDIC CHARACTER :: '

E-88 :constant EBCOIC CHARACTER IhI

E-89 :constant ERCOIC CHARACTER ll

E-91 :constant ERCOICCHARACTER :2 I

E-92 :constant ESCOIC CHARACTER II

E-93 :constant ESCOIC CHARACTER :'1'1;

E-94 :constant ESCOIC CHARACTER := l

E-95 :constant ESCOIC CHARACTER :u I';

E-96 :constant EUCOIC CHARACTER :z 'a';
E-97 :constant ESCOIC CHARACTER :z Ip';

E-98 :constant EBCOIC. CHARACTER : q';
E-99 :constant ESCOIC CHARACTER:

E-Al :constant ESCOIC CHARACTER:

E A2 :constant ESCOIC CHARACTER:2';

E-A3 :constant EUCOIC CHARACTER I t';

EMA : constant EUBDIC CHARACTER :a 'u';

60 Alsvs IBM 370 Ada Compiler, Appendix F for VM/CMS and MI'S, v4.0

E-A5 constant EBCDIC CHARACTER:=I;

EA6 constant ESCOIC CHARACTER :w 'wi;
E_A7 constant EBM IC CHARACTER : xI

EA8 constant EBM !C CHARACTER l'

E_A9 constant EBM ICCHARACTER II
E-AD constant EBCOIC CHARACTER III;

EBD constant EBCOIC CHARACTER

E-CO constant EBCOIC CHARACTER ''

EdC constant EBCOIC-CHARACTER 'A;

EC2 constant EBM IC CHARACTER 'B';

EC3 constant EBCOIC CHARACTER ICI;

EC4 :constant EBCDIC CHARACTER '0';

EC5 :constant EUCOIC CHARACTER II

E-C6 :constant ESCOIC CHARACTER IF';

E-C7 :constant EBCOIC CHARACTER : '6;

EC8 :constant EUCOIC CHARACTER IH';

EC9 :constant EBCOIC CHARACTER 11al;

E-DO :constant EUCOIC CHARACTER SP

E 01 constant ESCOIC CHARACTER 'J';

E-02 :constant EBCOIC_CHARACTER 'K';

ED3 :constant ERCOIC CHARACTER II

E-D4 :constant EBCDIC CHARACTER IN';

E-D5 constant ESCOIC CHARACTER IN';

E-D6 :constant EBCDIC CHARACTER '0';

E-D7 :constant EBCOIC CHARACTER := P';

E D8 :constant EBCDIC CHARACTER '0';

ED9 :constant EBCCI C CHARACTER II

EE : constant ESCOIC CHARACTER II

E E2 :constant EUCOIC CHARACTER 'S';

E E3 :constant EBMDIC CHARACTER IT';

E E4 :constant EBCOIC CHARACTER 'U';

E-E5 :constant EBCI)IC CHARACTER I'

E-E6 :constant ESCOIC CHARACTER II

E-E7 :constant EBCDIC CHARACTER II

E E8 :constant EBCOIC CHARACTER II

EE9 :constant ESCOIC CHARACTER 'Z';

EFO :constant EBCDIC CHARACTER '0';

EF1 constant ESCDIC CHARACTER 1';

EJ2 :constant EBCOIC CHARACTER '2';

E F3 :constant ESCOIC CHARACTER '3';
E F4 :constant EUCOIC CHARACTER 11

EF5 :constant EBCDIC CHARACTER '5';

EJ6 :constant EBCOIC CHARACTER '6';
EJ7 :constant EBCOIC CHARACTER '7';

EF8 :constant ESCOIC CHARACTER :z '8';

EJ9 :constant EBCOIC CHARACTER := '9';

type ESCOIC STRING is array (POSITIVE range <>) of ESCDICCHARACTER;

function ASCII TO-EDCOIC (S :STRING) return ERCOIC STRING;
function ASCII TO-ESM IC (C :CHARACTER) return EBCDICCHARACTER;

Appendix F. Implementation -Dependent Characteristics 61

-- CONSTRAINT ERROR is raised if ESTRINGILENGTH /= ASTRING'LENGTH;

procedure ASCIITOEBCDIC (ASTRING : in STRING;

ESTRING : out EBCDIC STRING);

function EBCDIC_TC_ASCII (S EBCDICSTRING) return STRING;

function EBCDIC_TCASCII (I EBCMICCHARACTER) return CHARACTER;

-- CONSTRAINT _ERROR is raised if ESTRINGILENGTH /= ASTRING'LENGTH;

proceoure EBCDICTOASCII (E_STRING in EBCDICSTRING;

A_STRING out STRING);

end EBCDIC;

EBCDICCHARACTER

The type EBCDIC CHARACTER provides an Ada character type [3.5.2] following the
EBCDIC character set encoding.

EBCDICSTRING

The type EBCDIC _STRING provides a une dimensional array of the type
EBCDICCHARACTER, indexed by values of the predefined type POSITIVE.

EBCDICSTRING implements strings of EBCDICCHARACTER in the same way that
the predefined type STRING implements strings of the predefined type CHARACTER.

In many ways EBCDIC _STRINGs may be manipulated exactly as the predefined type
STRING; in particular, string literals and catenations are available.

ASCIITOEBCDIC

The subprograms ASCIITOEBCDIC convert ASCII encoded data to EBCDIC encoded
data.

EBCDICTOASCII

The subprograms EBCDICTOASCII convert EBCDIC encoded data to ASCII encoded
data.

The procedures ASCIITOEBCDIC and EBCDIC_TO_ASCII are much more efficient
than the corresponding functions, as they do not make use of the program heap. If the
in and out string parameters are of different lengths (i.e. ASTRING'LENGTH /=
E_STRING'LENGTH), the procedures will raise the exception CONSTRAINTERROR.

The user may alter the ASCII to EBCDIC and EBCDIC to ASCII mappings used by the
Alsys IBM 370 Ada compiler, as described in the Installation Guides.

62 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MJ'S. v4.0

10.5.2 Package SYSTEMENVIRONNIENT

The implementation-defined package SYSTEMENVIRONMENT enabie: an Ada
program to communicate with the environment ir, which it is executed.

The specification of package SYSTEMENVIRONMENT is as follows:

package SYSTEMNENVIRONMENT is

MVS : constant BOOLEAN := boolean_value;

subtype EXIT-STATUS is INTEGER;

type STACK-MODE is (LIFO, FIFO);

function ARGLINE return STRING;

function ARG LINELENGTH return NATURAL;

procedure ARGLINE (LINE : out STRIN,;

LAST : out NATURAL);

function ARG START return NATURAL;

function ARGCOUNT return NATURAL;

function ARGVALUE (INDEX : in POSITIVE) return STRING;

ARGUMENTERROR : exception;

procedure SETEXIT STATUS (STATUS : in EXITSTATUS);

function GET EXITSTATUS return EXIT-STATUS;

function EXECUTE-COMMAND (COMMAND : in STRING) return EXIT-STATUS;

procedure EXECUTE-COMMAND (COMMAND : in STRING);

procedure STACK (COMMAND : in STRING;

MODE : in STACK MODE := LIFO);

function SENTRIES return NATURAL;

procedure ABORT PRjGRAM (STATUS : in EXIT_STATUS);

function SYSTIME return DURATION;

function USRTIME return DURATION;

function EXISTS (FILE : in STRING) return BOOLEAN;

function LASTEXCEPTIONNAME return STRING;

end SYSTEMENVIRONMENT;

MVS

The MVS boolean provides a convenient way for a user to query at run time whether a
program is running under MVS or VM/CMS. This facility allows for the conditional
execution of operating system specific code.

Appendix F, Implementation- Dependent Characteristics 63

The boolean constant has the value TRUE under MVS and FALSE under VM/CMS.

ARGLINE

The ARGLINE subprograms give access to the CMS command line, the TSO command
line parameters or the program PARM string as specified in the JCL used to run an
MVS program.

The procedure ARG _LINE is more efficient than the corresponding function, as i: does
not make use of the program heap. The out parameter LAST specifies the character in
LINE which holds the last character of the command line. Note, if LINE is not long
enough to hold the command line given, CONSTRAINTERROR will be raised.

Under CMS the command line returned includes the name of the program executed, but
not any run-time options specified.

Under MVS the name of the program executed is not available, but any run-time
options specified are excluded, as under CMS.

ARGSTART

The function ARG START returns the index in the command line of the first
parameter, i.e. ignoring the executed program name, for CMS; for MVS it always rturns
the value 1.

ARGCOUNT

The function ARG _COUNT returns the number of parameters in the command line of
the program. The executed program name which is part of the command line as returned
by ARGLINE under CMS is not included in the count. Thus, ARGCOUNT for a
program without parameters returns zero under both CMS and MVS.

ARGVALUE

The function ARG VALUE returns the specified parameter from the command line.
Parameters are considered to be indexed from 1. The executed program name which is
part of the command line as returned by ARGLINE under CMS is not considered as a
parameter, i.e. ARG VALUE(]) returns the first user parameter. The exception
ARGUMENTERROR is raised if the specified index is greater than ARGCOUNT.

64 Alsys IBM 370 Ada Compiler, Appendix F for J'M/CMS and MVS, v4.0

SEA'_EXITSTATUS

The exit status of the program (returned in register 15 on exit) can be set by a call of
SETEXITSTATUS. Subsequent calls of SET _EXITSTATUS will modify the exit
status- the status finally returned being that specified by the last executed call to
SETEXITSTATUS. If SETEXITSTATUS is no: called, a positive exit code may
be set b% the Ada Rur-Time Executive if an unhandled exception is propagated out of
the main subprogram, or if a deadlock situation is detected, otherwise the value 0 is

The following exit codes relate to unhandled exceptions:

Exception Code Cause of exception

NUMERICERROR:
I divide by zero
2 numeric overflow

CONSTRAINT ERROR:
3 discriminant error
4 lower bound index error
5 upper bound index error
6 length error
7 lower bound range error
8 upper bound range error
9 null access value

STORAGEERROR:
10 frame overflow

(overflow on subprogram entry)
I I stack overflow

(overflow otherwise)
I2 heap overflow

PROGRAMERROR:
13 access before elaboration
14 function left without return

SPURIOUSERROR:
15-20 <an erroneous program>

NUMERICEl:'ROR Z. (other than for the above reasons)
CONSTRAINT-ERROR 22 (other than for the above reasons)

23 anonymously raised exception
(an exception re-raised using the raise
statement without an exception name)

24 <unused>
25 static exception

(an exception raised using the raise
statement with an exception name)

Code 100 is used if a deadlocking situation is detected and the program is aborted as a
result.

Codes 1000-1999 are used to indicate other anomalous conditions in the initialisation of
the program, messages concerning which are displayed on the terminal.

Appendix F. Implementation -Dependent Characteristics 65

GETEXITSTATUS

The function GETEXITSTATUS returns the current exit status.

EXECUTECOMMAND

Under CMS the EXECUTE COMMAND subprograms with a non-null parameter
execute the given CMS SUBSET command. The result of the EXECUTECOMMAND
function is the return code of the command. If a null string is giver, a.. the parameter.
the program exits to the CMS subset level. This allows CMS SUBSET commands to be
executed directly. Issuing the command RETURN from the CMS subset level will
return to the Ada program. The return code of the EXECUTECOMMAND function
with a null COMMAND string is always zero.

Under MVS a call of the EXECUTE COMMAND subprograms has no effect arid the
function always returns the value zero.

STACK

Under CMS the STACK procedure allows a command to be placed on the console stack:
either last-in-first-out (LIFO) or first-in-first-out (FIFO).

Under MVS a call of the STACK procedure has no effect.

SENTRIES

Under CMS, the SENTRIES function returns the number of lines in the program stack.

Under MVS calls to the SENTRIES function always return the value 0.

ABORTPROGRAM

The program may be aborted, returning the specified exit code, by a call of the
ABORTPROGRAM procedure.

SYSTIME, USRTIME

Under CMS the SYSTIME and USRTIME functions allow access to the amount of
system and user time, respectively, used by the program since its execution.

Under MVS a call of either of these functions has no effect and returns the value 0.0.

EXISTS

The EXISTS function returns a boolean to indicate whether the file specified by the file
name string exists or not.

66 Als),s IBM 370 Ada Compiler, Appendix F for VM/CMS and MVS, v4.0

LASS EXCEPTIONNANIE

The function LAST EXCEPTION NAME returns the name of the most recently raised
exception in the current task. It may be used in handlers to identify the exception, e.g.:

-.,hen others =>
TEXT IO.PUT (SYSTEMENVIRONMENT.LASTEXCEPTIONNAME))
TEXTIO.PUTLINE (" raised");

10.5.3 Package RECORD_1O

The implementation-defined package RECORD _10 enables an Ada program to perform
simple, record oriented I/O of an anonymous data type in an efficient manner.

RECORD 10 provides similar facilities to the predefined packages SEQUENTIAL 10
and DIRECT O in a non-generic form. The package is therefore "typeless": the data on
which I/O is being performed being specified via its address and length. It is the
programmer's responsibility to see that the data manipulated by the facilities of
RECORD_10 is handled in a consistent manner.

The specification of package RECORD_10 is as follows:

with SYSTEM, 10_EXCEPTIONS;

package RECORD_10 is

TYPES

type COUNT is range 0..INTEGER'LAST;

subktype POSITIVECOUNT is COUNT range 1..COUNTILAST;

type FILETYPE is Limited private;

type FILE_MODE is (IN-FILE, INOUTFILE, OUTFILE);

type FILEORGANISATION is (SEQUENTIAL, DIRECT);

-- * FILE MANAGEMENT

procedure CREATE (FILE : in out FILE-TYPE;

MODE : in FILE MODE := OUTFILE;

NAME : in STRING :-1;

FORM : in STRING : "";

ORGANISATION : in FILE ORGANISATION : SEQUENTIAL;

TRANSLATE : in BOOLEAN := FALSE);

Appendix F. Implementation- Dependent Characteristics 67

procedure OPEh (FILE in out FILE TYPE;

MODE in FILEMODE;

NAME in STRING;

FORM :r STRINC

OR ANISATI ON i rILEORGAN'SA'ION SEOUENTIA.;

TRANSLATE in BOOLEAh := FALSE);

proceoure CLOSE (FILE ir ou, FILE TYPE);

p'-oceou-e DELETE (FILE ir. out rILE TYPE);

proceoure RESET (FILE in out FILTYPE;

MODE in FILE_MODE);

procedure RESET (FILE in out FILE_TYPE);

function MODE (FILE in FILE-TYPE) return FILEMODE;

function NAME (FILE in FILE-TYPE) return STRING;

function FORM (FILE in FILE-TYPE) return STRING;

function IS OPEN (FIE : in FILE-TYPE) return BOOLEAN;

.. * INPUT / OUTPUT

procedure READ (FILE in FILE-TYPE;

ITEM in SYSTEK.ADDREtS;

LENGTH in out NATURAL);

-- Only for DIRE.T organisation files

procedure REAG (FILE in FILETYPE;

.TEM in SYSTEM.ADDRESS;

LENGTH in out NATURAL;

FROM in POSITIVECOUNT);

procedure WRITE (FILE i- FILETYPE;

ITEM in SYSTEM.ADDRESS;

LENGTH in NATURAL);

-- Only for DIRECT organisation files

procedure WRITE (FILE in FILE-TYPE;

ITEM in SYSTEM.ADDRESS;

LENGTH in NATURAL;

TO in POSITIVECOUNT);

function ENDOFFILE (FILE : in FILE TYPE) return BOOLEAN;

-- OnLy for DIRECT organisation files

procedure SET INDEX (FILE : in FILE TYPE;

TO : in POSITIVE COUNT);

function INDEX (FILE in FILE TYPE) return POSITIVECOUNT;

function SIZE (FILE in FILE-TYPE) return COUNT;

68 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS. v4.0

.. t S.. S fl l t*

-- ' EXCEPTIONS

STATUS ERROR exception renames 1OEXCEPTIONS.STATUS ERROR;
MODE ERROR exception renames 1OEXCEPTIONS.MODE ERROR;

NAME ERROR exception renames 10 EXCEPTIONS.NAME ERROR;

USE-ERROR exception renames 10EXCEPTIOWS.USEERROR;

DEVICE-ERROR exception renames IOEXCEPTIONS.DEVICEERROR;

END-ERROR exception renames 10_EXCEPTIONS.ENDERRO.;
DATA-ERROR exception renames 10EXCEPTIONS.DATAERROR;

private

end RECORDJ10;

The specification of RECORD 10 is similar to that of the predefined generic packages
SEQUENTIAL _O and DIRECT 10. The file management facilities provided are
analogous, with CREATE, OPEN, CLOSE, DELETE and RESET procedures, in addition
to MODE, NAME, FORM and IS _OPEN functions as in the predefined packages. The
syntax and semantics of file names and form strings are identical to thos.- of the
predefined packages, as described in section 8 of this appendix. The CREATE and
OPEN procedures take two additional parameters, as below:

* ORGANISATION

The ORGANISATION parameter specifies the organisation of the file being
created or opened. Two types of organisations may be specified:

SEQUENTIAL

Sequential organised files correspond to files that could be created via an
instantiation of the generic package SEQUENTIAL_10. Records in a
sequential organisation file are variable length according to the length data
written to them. A sequential organisation file is implemented as a QSAM
file under MVS.

A sequential organised file must be written and read sequentially. An
attempt to pass a FILE _TYPE value representing a sequential organised file
to the READ or WRITE procedures with an explicit specification of the file
record to be read or written (FROM or TO parameters), or to use those
subprograms which directly manipulate the file index (SETINDEX, etc.)
will raise USEERROR.

Appendix F, Implementation- Dependent Characteristics 69

DIRECT

Direct organised files correspond to files that could be created via an
instantiation of the generic package DIRECT 10. Records in a direct
organisation file are fixed length according to the record__length form
parameter, which the user must specify when creating a direct organisation
file. Failure to specify the record length form parameter on creating a
direct organisation file will raise USE _ERROR, since there is no Ada type
associated with the file to whose size the record length may default. A
direct organisation file is implemented as a BDAM file under MVS.

a TRANSLATE

The TRANSLATE parameter specifies whether ASCII to EBCDIC translation
is to be performed on the data on output and whether EBCDIC to ASCII
translation is to be correspondingly performed on input.

Use of the TRANSLATE parameter allows records of the external file to
hold character data in an appropriate form for manipulation by other 370
tools expecting EBCDIC encoded character data.

The input output facilities themselves are represented by overloaded READ and WRITE
procedures.

These procedures are analogous to those of SEQUENTIAL1 and DIRECTIO. The
data is specified via its address (ITEM) and length (LENGTH).

The external file is characterised by its RECFM and LRECL attributes. These may be
explicitly controlled via the FORM parameter (see section 8.2) or else default as below:

Organisation Attribute Default

Sequential RECFM V
LRECL 4096

Direct RECFM F
LRECL No default

On output, LENGTH bytes of data are written to the appropriate record of the file from
the address specified. If the LENGTH specified is greater than LRECL then
DATA ERROR is raised. If the LENGTH specified is less than LRECL and RECFM
is F then the data is written at the start of the record. The remaining portion of the
record will contain EBCDIC space characters (i.e. bytes whose value is 16#40#). If the
LENGTH specified is less than LRECL and RECFM is V then a record of exactly
LENGTH bytes is written, the LRECL specifying the maximum permissible record
length.

70 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MVS. v4.0

On input, the appropriate record of the file is read at the address specified. If the
length of the appropriate record of the file is less than LENGTH bytes, the entire record
is read and the actual record length returned in LENGTH. If the length of the
appropriate record of the file i, greater than LENGTH bytes then DATA ERROR is
raised. Note that for a direct organisation file the uninitialised portion of the record is
considered to be part of the record length on input. It is the programmer's responsibility
to read and writt -ecords xia the facilities of RECORD_10 in a consistent manner.

READ and WRITE procedures wit-. explicit specification of the file record to be read or
written (FROM and TO r)arameters) are only applicable to files opened o created with
direct organisation. Application of these procedures to a sequential organisation file will
raise USEERROR.

The remaining input output facilities are analogous tc the corresponding subprograms in
SEQUENTIAL 10 or DIRECT IO, with ENDOFFILE, SETINDEX, INDEX and
SIZE subprograms. END__OF__FILE is applicable to both sequential and direct
organisation files. The remainder, however, are only supported for files opened or
created with direct organisation. Application of these procedures to a sequential
organisation file will raise USEERROR.

All other exceptional conditions raise the corresponding exceptions to those of the
predefmned I/O packages.

10.5.4 Package STRINGS

The implementation-defined package STRINGS is a utility package providing the user
with many commonly required string manipulation facilities.

The specification of packape STRINGS is as follows:

with UNCHECKEDDEALLOCATION;

peckage STRINGS is

-- * TYPESW

type ACCESSSTRING is access STRING;

procedure DEALLOCATE STRING is new UNCHECKED DEALLOCATION (STRING,

ACCESSSTRING);

-- *UTILITIES

function UPPER (C : in CHARACTER) return CHARACTER;

function UPPER (S : in STRING) return STRING;

procedure UPPER (S : in out STRING);

function LOWER (C : in CHARACTER) return CHARACTER;

function LOWER (S : in STRING) return STRING;

Appendix F, Implementation-Dependent Characteristics 71

procedure LOWER (S : in out STRING);

function CAPITAL (S : in STRING) return STRING;
procedure CAPITAL (S : in out STRING);

function REMOVE LEADING BLANKS (S in STRING) return STRING;

function REMOVE TRAILING BLANKS (S in STRING) return STRING;

function TRIM (S : in STRING) return STRING;

function INDEX (C : in CHARACTER;

INTO : in STRING;
START : in POSITIVE :1 1) return NATURAL;

function INDEX (S : in STRING;

INTO : in STRING;

START : in POSITIVE : 1) return NATURAL;

function NOT-INDEX (C : in CHARACTER;

INTO : in STRING;

START : in POSITIVE 1) return NATURAL;

function NOT INDEX (S : in STRING;

INTO : in STRING;

START : in POSITIVE 1) return NATURAL;

function IS ANABBREV (ABBREV : in STRING;

FULL-WORD : in STRING;

IGNORE-CASE : in BOOLEAN TRUE) return BOOLEAN;

function MATCO-PATTERN (S : in STRING;

PATTERN : in STRING;

IGNORE-CASE : in BOOLEAN TRUE) return BOOLEAN;

function &' (LEFT : in STRING; RIGHT : in STRING) return STRING;

function '&' (LEFT : in STRING; RIGHT : in CHARACTER) return STRING;

function '&' (LEFT : in CHARACTER; RIGHT : in STRING) return STRING;

function I& (LEFT : in CHARACTER; RIGHT : in CHARACTER) return STRING;

end STRINGS;

ACCESSSTRING

The ACCESS__STRING type is a convenient declaration of the commonly used access to
string type.

72 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MT'S, v4.0

DEALLOCATESTRING

The DEALLOCATE STRING procedure is an instantiation of
UNCHECKED DEALLOCATION for the type ACCESSSTRING. Note that since the
type ACCESS__STRING is declared at the library level, the scope of the corresponding
collection is only exited at program completion. For this reason, STRING objects
belonging to this collection are never automatically deallocated. It is the programmer's
responsibility to manage the deallocation of objects within this collection.

UPPER

The UPPER subprograms convert any lower case letters in their parameters to the
corresponding upper case letters. Characters which are not lower case letters are
unaffected. The procedure is more efficient than the corresponding function, as it does
not make use of the program heap.

LOWER

The LOWER subprograms convert any upper case letters in their parameters to the
corresponding lower case letters. Characters which are not upper case letters are
unaffected. The procedure is more efficicat than the corres..rnding function, as it does
not make use of the program heap.

CAPITAL

The CAPITAL subprograms "capitalise" their parameters. That is they UPPER the first
character and LOWER all subsequent characters of the string. The procedure is more
efficient than the corresponding function, as it does not make use of the program heap.

REMOVELEADINGBLANKS

The REMOVE__LEADINGBLANKS function returns its parameter string with all
leading spaces removed.

REMOVETRAILINGBLANKS

The REMOVE__TRAILINGBLANKS function returns its parameter string with all
trailing spaces removed.

TRIM

The TRIM function returns its parameter string with all leading and all trailing spaces
removed.

Appendix F Implementation-Dependent Characteristics 73

INDEX

The INDEX subprograms return the index intu the specified string (INTO) of the firs,
character of the first occurrence of a given substring (S) or character (C). The search'
for the substring or character commences at the index specified by START. If the
substring or character is not found, the functions return the valuf- 0. ease is considered
significant.

NOTINDEX

The NOT _INDEX subprograms return the index into the specified string (INTO) of the
first character which does not occur in the given string (S) or does not match the given
character (C). The search for the non-matching character commences at the index
specified by START. If all the characters of the string match, the functions return the
value 0. Case is considered significant.

ISANABBREV

The IS-AN ABBREV function determines whether the string ABBREV is an
abbreviation for the string FULLWORD. Leading and trailing spaces in ABBREV are
first removed and the trimmed string is then considered to be an abbreviation for
FULLWORD if it is a proper prefix of FULLWORD.

The parameter IGNORE-CASE controls whether case is considered significant or not.

MATCHPATTERN

The MATCH PATTERN function determines whether the string S matches the pattern
specified in PATTERN. A pattern is simply a string in which the character '*' is
considered a wild-card which can match any number of any characters.

For example the string "ABCDEFG" is considered to match the pattern "A*G" and the
pattern "ABCD*EFG*"

The parameter IGNORE-CASE controls whether case is considered significant or not.

The package STRINGS also provides overloaded subprograms designated by '&'. These
are identical to the corresponding subprograms declared in package STANDARD, except
that the concatenations are performed out of line. By performing concatenations out of
line the size of the inline generated code is minimised at the expense of execution speed.

74 Alsys IBM 370 Ada Compiler. Appendix F for VM/CMS and MVS. v4.0

INDEX

%SYSIN 46 DD SYSOUT 46
%SYSOUT 46 DDNAME 39, 40

Deadlocking 65
ABORT PROGRAM procedure 66 DEALLOCATESTRING subprogram
ACCESS_ STRING 72 73
Access-typename 8 DESCRIPTORSIZE attribute 10, 42
ADDRESS attribute 10 DIRECTIO 39, 47, 49

restrictions 10 DURATION
Append attribute 44 attributes 51
ARGCOUNT function 64
ARG LINE subprograms 64 EBCDIC 47, 48, 53, 62
ARG START function 64 ASCII TO EBCDIC 62
ARG VALUE function 64 EBCDIC CHARACTER 62
ARRAY DESCRIPTOR attribute 36 EBCDICSTRING 62
ASCII 5, 6, 47, 48, 62 EBCDICTO ASCII 62

form feed 47 EBCDIC CHARACTER 53, 62
line feed 47 EBCDIC STRING 62

ASCIITOEBCDIC 62 EBCDIC TOASCII 62
ASSEMBLER 2 END OFFILE 45
Attributes 10 Enumeration types 5

ARRAY DESCRIPTOR 36 CHARACTER 5
DESCRIPTOR SIZE 10 EOF STRING 47
IS ARRAY 1-O Eof -string attribute 44, 46, 47
RECORD DESCRIPTOR 36 ESPIE 6
RECORD SIZE 36, 40 Exceptions 65
representation attributes 10 EXECUTE COMMAND subprograms
VARIANTINDEX 36 66

EXISTS function 66
BDAM 70 Exit status of program 65
Binder 52
Binder options FIELD 49

SLICE 52 File sharing attribute 41
TASK 52 FILEDEF command 39

Blocksize attribute 43, 46 Fixed point types 5
Boolean types 4 DURATION 51

FLOAT 5, 50
CAPITAL subprograms 73 Floating point types 5, 50
Carriage control attribute 43, 46 attributes 50
CHARACTER 5, 47 FLOAT 5, 50
Characteristics of disk files 48 LONG FLOAT 5, 51
CMS command line 64 SHORT FLOAT 5, 50
CMS file name 39 FORM parameter
CMS subset command 66 for MVS 45
Compilation unit ordering 53 for VM/CMS 40
Console stack 66 FORM parameter attributes
CONSTRAINTERROR 65 append 44
COUNT 49 block-size attribute 43, 46

carriagecontrol 43, 46
DD SYSIN 46 eof string 44, 46, 47

Index 75

file sharing attribute 41
primary attribute 45 Main program
record _format attribute 41 definition 53
record_size attribute 42, 46 MATCH PATTERN subprogram 74
secondary attribute 46 MVS dataset name 39, 40
truncate 44 MVS file name
unit attribute 45 PARM string 40
xolume attribute 45 QUALIFIER parameter 40

Fuliy qualified name 40

NAME parameter
GET_ EXIT_STATUS function 66 for MVS 39, 40

for VM/CMS 39
Implementation-dependent attributes 10 NOT INDEX subprograms 74
Implementation-dependent NOTSHARED 41

characteristics Numeric types
others 52 characteristics 49

Implementation-dependent pragma 2 Fixed point types 51
Implementation-generated names 36 Floating point types 50
IMPROVE 8 integer types 49
INDENT 7 NUMERICERROR 65
INDEX subprograms 74
INLINE 2 PACK 8
Input-Output Parameter representations 4

MVS 39 Access types 5
VM/CMS 39 Array types 6

Input-Output packages 39 Boolean types 4
DIRECT 10 39 Enumeration types 5
10 EXCEPTIONS 39 Fixed point types 5
LOWLEVEL_10 39 Floating point types 5
SEQUENTIAL _10 39 Integer types 4
TEXT 10 39 Record types 6

INTEGER 4, 49 Parameter-passing conventions 3
Integer types 4, 49 PARM string 40, 64

COUNT 49 POSITIVE COUNT 49
FIELD 49 Pragma INLINE 2
INTEGER 4, 49 Pragma INTERFACE 2
POSITIVE COUNT 49 ASSEMBLER 2
SHORT INTEGER 4, 49 languagename 2
SHORTSHORTINTEGER 4, 49 subprogram name 2

INTERFACE 2 Pragma INTERFACE NAME 2
INTERFACE NAME 2, 6 stringliteral 7
Interfaced subprograms subprogramname 6

Restrictions 6 Pragma RMODE
10 EXCEPTIONS 39 access type name 8
IS _ANABBREV subprogram 74 residencemode 8
ISARRAY attribute 10 Pragmas

IMPROVE 8
Languagename 2 INDENT 7
LAST EXCEPTIONNAME function INTERFACE 2

67 INTERFACENAME 6
LONG FLOAT 5, 51 PACK 8
LOW LEVEL 10 39 PRIORITY 8, 52
LOWER subprograms 73 RMODE 8

76 Alsys IBM 370 Ada Compiler, Appendix F for VM/CMS and MVS. v4.0

SUPPRESS 9 REMOVE LEADING BLANKS 73
Primary attribute 45 REMOVE TRAILING BLANKS
PRIORITY 8 73
PRIORITY pragma 5" TRIM 73
Program exit status 65 UPPER 73
PROGRAMERROR 65 Subprogram_name 2. 6

SUPPRESS 9
QSAM 69 SYSTEM package 11
QUALIFIER parameter 40 SYSTEM ENVIRONMENT 47, 53. 63

ABORT PROGRAM 6&
RECORD DESCRIPTOR attribute 36 ARG COUNT 64
Record format attribute 41 ARG LINE 64
RECORD 10 53, 67 ARG START 64

ORGANISATION parameter 69 ARGVALUE 64
TRANSLATE parameter 70 EXECUTE COMMAND 66

RECORD_ SIZE attribute 36, 40, 42, EXISTS 66
46 GETEXITSTATUS 66

REMOVE LEADING BLANKS LAST EXCEPTIONNAME 67
subprogram 73 MVS 63

REMOVE TRAILING BLANKS SENTRIES 66
subprogram 73 SET EXIT STATUS 65

Representation attributes 10 STACK 66
Representation clauses 12 SYSTIME 66

restrictions 12 USRTIME 66
Residence mode 8 SYSTIME function 6t,
RMODE 8

TASK option 52
Secondary attribute 46 Taski
SENTRIES function 66 characteristics 52
SEQUENTIAL O 39, 47 Timeslicing 52
SET EXIT STATUS function 65 Text terminators 47
SHARED 41 TEXT 10 39, 47, 49, 53
SHORTFLOAT 5, 50 TRIM subprogram 73
SHORT INTEGER 4, 40 Truncate attribute 44
SHORTSHORTINTEGER 4, 49
SLICE option 52 Unchecked conversions 38
SPIE 6 restrictions 38
SPURIOUS ERROR 65 Unit attribute 45
STACK procedure 66 Unqualified name 40
STANDARDINPUT 46 UPPER subprogramf 73
STANDARD OUTPUT 46 USE ERROR 40, 46
STORAGEERROR 65 USRTIME function 66
STRING 6, 47
String literal 7 VARIANT INDEX attribute 36
STRINGS 71 Volume attribute 45

ACCESS STRING 72
CAPITAL 73
DEALLOCATESTRING 73
INDEX 74
IS ANABBREV 74
LOWER 73
MATCHPATTERN 74
NOTINDEX 74

Index 77

APPENDIX C

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent
values, such as the maximum length of an input line and invalid
file names. A test that makes use of such values is identified
by the extension .TST in its file name. Actual values to be
substituted are represented by names that begin with a dollar
sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are
given below.

MACRO DEFINITIONS

Name and Meaninq Value

$ACCSIZE 32
An integer literal whose value is the
number of bits sufficient to hold any
value of an access type.

$BIGIDI (I..254=>'A', 255=>1)
Identifier the size of the maximum
input line length with varying last
character.

$BIGID2 (I..254=>'A', 255=>2)
Identifier the size of the maximum
input line length with varying last
character.

$BIGID3 (1127=>'A', 128=>3,
Identifier the size of the maximum 129..255=>'A')
input line length with varying middle
character.

$BIGID4 (i_127=>'A', 128=>4,
Identifier the size of the maximum 129..255=>'A')
input line length with varying middle
character.

$BIGINTLIT (1..252=>O,

ALsyCOMP_006 version 4.1 AVF-VSR-90502-44

Vatidation Summary Report Appendix C Page 1 of 6

APPENDIX C

Name and Meaning Value

An integer literal of value 298 with 253..255=>298)
enough leading zeroes so that it is
the size of the maximum line length

$BIGREALLIT (1..249=>0,
A universal real literal of value 250..255=>69.OEl)
690.0 with enough leading zeroes to
be the size of the maximum line
length.

$BIGSTRING1 (I..127=>'A')
A string literal which when catenated
with BIG STRING2 yields the image of
BIGIDl.

$BIGSTRING2 (I..127=>'A', 128=>1)
A string literal which when catenated
to the end of BIG STRING1 yields the
image of BIGIDl.

$BLANKS (1..235=>' ')
A sequence of blanks twenty
characters less than the size of the
maximum line length.

$COUNT LAST 2147483647
A universal integer literal whose
value is TEXTIO.COUNT'LAST.

$DEFAULT MEM SIZE 2147483647
An integer literal whose value is
SYSTEM.MEMORYSIZE.

SDEFAULT STORUNIT 8
An integer literal whose value is
SYSTEM.STORAGE UNIT.

$DEFAULTSYSNAME IBM_370
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC 2#l.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

ALsyCOMP_006 version 4.1 AVF-VSR-90502-"

Validation Sumary Report Appendix C Page 2 of 6

APPENDIX C

Name and Meaning Val ue

$FIELD LAST 25S
A universal integer literal whose
value is TEXTIO.FIELD'LAST.

$FIXED NAME NOSUCHTYPE
The name of a predefined fixed-point
type other than DURATION.

$FLOAT NAME NO SUCHTYPE
The name of a predefined floating-
point type other than FLOAT,
SHORTFLOAT, or LONGFLOAT.

$GREATER THAN DURATION 100000.0
A universal real literal that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in the
range of DURATION.

$GREATER THAN DURATIONBASELAST 10000000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 10
An integer literal whose value is the
upper bound of the range for the
subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAME1 T??????? LISTING Al
An external file name which contains
invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 TOOLONGNAME TOOLONGTYPE
An external file name which is too TOOLONGMODE
long.

$INTEGER FIRST -2147483648
A universal integer literal whose
value is INTEGER'FIRST.

$INTEGER LAST 2147483647
A universal integer literal whose
value is INTEGER'LAST.

AlsyCOMP_006 version 4.1 AVF-VSR-90502-44

Validation Summary Report Appendix C Page 3 of 6

APPENDIX C

Name and Meaninq Value

$INTEGER LASTPLUS 1 2147483648
A universal integer literal whose
value is INTEGER'LAST+l.

SLESS THANDURATION -100000.0
A universal real literal that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in the
range of DURATION.

SLESSTHANDURATIONBASEFIRST -100000000.0
A universal real literal that is less
than DURATION'BASE'FIRST.

SLOWPRIORITY 1
An integer literal whose value is the
lower bound of the range for the
subtype SYSTEM.PRIORITY.

$MANTISSA DOC 31
An integer literal whose value is
SYSTEM.MAXMANTISSA.

$MAXDIGITS 18
Maximum digits supported for
floating-point types.

$MAXIN LEN 255
Maximum input line length permitted
by the implementation.

SMAX INT 2147483647
A universal integer literal whose
value is SYSTEM.MAXINT.

$MAXINT PLUS 1 2147483648
A universal integer literal whose
value is SYSTEM.MAXINT+l.

$MAXLEN INT BASEDLITERAL (i.2=>'2:'
A universal integer based literal 3..252=>'0',
whose value is 2#11# with enough 253..255=>'11:')
leading zeroes in the mantissa to be
MAXINLEN long.

AtsyCCMP 006 version 4.1 AVF-VSR-90502-44

Vatidation Summary Report Appendix C Page 4 of 6

APPENDIX C

Name and Meaning Value

ZA LEN REAL BASED LITERAL (i..3=>'16:'
A U-4 versal real based literal whose 4 .251=>'0',
value is 16:F.E: with enough leading 252..255=>'F.E:')
zeroes in the mantissa to be
MAXINLEN long.

$MAXSTRING LITERAL (1=>'"', 2..254=>'A',
A string literal of size MAX IN LEN, 255=>'"')
including the quote characters.

$MININT -2147483648
A universal integer literal whose
va4ue is SYSTEM.MININT.

$MINTASK SIZE 32
An integer literal whose value is the
number of bits required to hold a
task object which has no entries, no
declarations, and "NULL;" as the only
statement in its body.

$NAIME SHORTSHORTINTEGER
A name of a predefined numeric type
other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGEP,
LONG FLOAT, or LONGINTEGER.

$NAME LIST IBM 370
A list of enumeration literals in the
type SYSTEM.NAME, separated by
comnas.

$NEGBASED INT 16#FFFFFFFF#
A based integer literal whose highest
order nonzero bit falls in the sign
bit position of the representation
for SYSTEM.MAXINT.

$NEWMEM SIZE 2147483647
An integer literal whose value is a
permitted argument for pragma
memorysize, other than
$DEFAULT MEMSIZE. If there is no
other value, then use
$DEFAULTMEMSIZE.

AIsyCOMP_006 version 4.1 AVF-VSR-9O5O2-44

Vatidation Summary Report Appendix C Page 5 of 6

APPENDIX C

Name and Meaning Value

$NEWSTOR UNIT
An integer literal whose value is a
permitted argument for pragma
storage unit, other than
$DEFAULT STOR UNIT. If there is no
other permitted value, then use value
of SYSTEM.STORAGEUNIT.

$NEWSYS NAME IBM_370
A value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If
there is only one value of that type,
then use that value.

$TASKSIZE 32
An integer literal whose value is the
number of bits required to hold a
task object which has a single entry
with one inout parameter.

$TICK 0.01
A real literal whose value is
SYSTEM.TICK.

ALsyCOMP_006 version 4.1 AVF-VSR-9OO2-4

Validation Summry Report Appendix C Page 6 of 6

APPENDIX D

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not
conform to the Ada Standard. The following 36 tests had been
withdrawn at the time of validation testing for the reasons
indicated. A reference of the form AI-ddddd is to an Ada
Commentary.

WITHDRAWN TEST LIST
o A39005G This test unreasonably expects a component

clause to pack an array component into a
minimum size (line 30).

o B97102E This test contains an unintended illegality:
a select statement contains a null statement
at the place of a selective wait alternative
(line 31).

o BC3009B This test wrongly expects that circular
instantiations will be detected in several
compilation units even though none of the
units is illegal with respect to the units
it depends on; by AI-00256, the illegality
need not be detected until execution is
attempted (line 95).

o CD2A62D This test wrongly requires that an array
object's size be no greater than 10 although
its subtype's size was specified to be 40
(line 137).

o CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16
tests]

These tests wrongly attempt to check the size
of objects of a derived type (for which a
'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly
converts them to the parent type (Ada
standard 3.4:14)). Additionally, they use
the 'SIZE length clause and attribute, whose
interpretation is considered problematic by
the WG9 ARG.

AisyCOMP_006 version 4.1 AVF-VSR-90502-44

Vatidation Summary Report Appendix D Page 1 of 3

APPENDIX D

o CD2AIG, CD2AF3G, CD2A84N & M, & CD50!O
These tests assume that dependent tasks will
terminate while the main program executes a
loon that simply tests for task termination;
this is not the case, and the main program
may loop indefinitely (lines 74, 85, 86 & 96,
86 & 96, and 58, respectably.)

o CD2BI5C & CD7205C
These tests expect that a 'STORAGE SIZE
length clause provides precise control over
the number of designated objects in a
collection; the Ada standard 13.2:15 allows
that such control must not be expected.

o CD5007B This test wrongly expects an implicitly
declared subprogram to be at the address that
4s specified for an unrelated subprogram
(line 303).

o CD7105A This test requires that successive calls to
CALENDAR.CLOCK change by at least
SYSTEM.TICK; however, by Commentary AI-00201,
it is only the expected frequency of change
that must be at least SYSTEM.TICK--particular
instances of change may be less (line 29).

o CD7203B & CD7204B
These tests use the 'SIZE length clause and
attribute, whose interpretation is considered
problematic by the WG9 ARG.

o CD7205D This test checks an invalid test objective:
it treats the specification of storage to be
reserved for a task's activation as though
it were like the specification of storage for
a collection.

o CE21071 This test requires that objects of two
similar scalar types be distinguished when
read from a file--DATA ERROR is expected to
be raised by an attempt to read one object
as of the other type. However, it is not
clear exactly how the Ada standard 14.2.4:4
is to be interpreted; thus, this test
objective is not considered valid. (line 90)

AtsyCOMP-006 version 4.1 AVF-VSR-90502-44

Validation Sumary Report Appendix D Page 2 of 3

APPENDIX D

o CE3111C This test requires certain behaviour, when
two files are associated with the same
external file, that is not required by the
Ada standard.

o CE3301A This test contains several calls to
END OF LINE & END OF PAGE that have no
parameter: these cal-ls were intended to
specify a file, not to refer to
STANDARDINPUT (lines 103, 107, 118, 132, &
136).

o CE3411B This test requires that a text file's column
number be set to COUNT'LAST in ordei to check
that LAYOUTERROR is raised by a subsequent
PUT operation. But the former operation will
generally raise an exception due to a lack
of available disk space, and the test would
thus encumb2r validation testing.

AtsyCOMP_006 version 4.1 AVF-VSR-90502-44

Validation Suumary Report Appendix D Page 3 of 3

