
UN :_A S KLEaD-

REPORTI DOCUMENATON PAGE IL c vrn:oll

A 7;11 tonj~vb*Tir6. IrPi Of AEPDAI & PII~O: COvtIE:'

Ad2 Comziler Va~idation Surrjrary Report:Alliant 05 June 1989 to 05 June 1990
mutcr Svsteris CCorpLrZat ior!, Al iLart FX/Aua Compiler

',11rL.:I Iin: 1-./8(1 (Host awic 'larget) 890605W1 .100) PLR1O4M;1Zbk.. REP091 twE~

00 7. ALIMD.s. 9. CO4TRA'7 OP 6AAh! bh.MEil;
v, - r ~atersor:AT

ODaytorn, 0h, USA

PrO1 ORZAN.ZA1Doh hhN ADDRISS 2C. PRA~AM [dEM:4 PPEZl. IASL

Wright-Patterson AFE RX&WR IlMMR
SDav'tor, O1-, USA

S1, CON-RO..LINt 09FICE NA: Ak: &D~rESS 12. RLPC)A7 DAIE
Ada Joint Program Office
U'Lnited States De partmlent of Defense ~~
W ashington, DIC 2D302-306l

14. Ks:10O%:h A 9,h:i h" DiS(V fe't rmC floi OrcJ15. SILIhCAS(ootn~j report,
C NC LA SS FIED

Wright-Patterson AFB 166 JLC ASTIA
Dayton, OE, USA N/

It. D'STR;.TI1th SI71W.N~! (oftjPPort)

Approved for p'Thblic release; distribution unlimited.

SF. SE S(oinrontvrfjo ifnrsiy n hoeto byi blc u Der
Ada Procr7%1n language, Ada Comrpiler- Validation SLurnary Rep: rt, Ad4a
Co.-.piler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF. ANS1/Y1.L-S7D-
l81SA, Ada Joint Program Office, AJPO

20. AES RAI1 (Continue on reverse sjd# fnerssiory s.ndemtif) by block numrber)

Alliant Computer Systems Corporation, Alliant FX/Ada Compiler, Version 2.2, Wright-Patterton
AFB, Alliant FX/80 under Concentrix, Release 5.0 (Host and Target), ACVC 1.10.

DD #IJW^ 1473 IN'TzoN 01 1 WD s 65ISDSDEIE
I I~ 7)5/h 1CV-C1-66I 1NCLASSIFED

SICURP1 VCi SSfCA1Otw Of 1mIS PAU. (whvnbr#1fntrrcU,

AVF Control Number: AVF-VSR-275.0689
89-04-06-ACS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890605W1.10083
Alliant Computer Systems Corporation
Alliant FX/Ada Compiler, Version 2.2

Alliant FX/80

Completion of On-Site Testing:
5 June 1989

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

KUr

Doc, T;'3

U C ,J r-'-,t I cr:d -

By

Avahbd!;ty Codes

Dist A'.. , a cW(

6-(j /
DIM'::

Ada Compiler Validation Summary Report:

Compiler Name: Alliant FX/Ada Compiler, Version 2.2

Certificate Number: 890605WI.10083

Host: Alliant FX/80 under
Concentrix, Release 5.0

Target: Alliant FX/80 under
Concentrix, Release 5.0

Testing Completed 5 June 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB O 45433-6503

Va idation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

A a Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

Ada Compiler Validation Summary Report:

Compiler Name: Alliant FX/Ada Compiler, Version 2.2

Certificate Number: 890605W1.10083

Host: Alliant FX/80 under
Concentrix, Release 5.0

Target: Alliant FX/80 under
Concentrix, Release 5.0

Testing Completed 5 June 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization!

Dr. John F. Kramer
Institute for Defense Analys s
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT- 2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS. 3-5
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-6
3.7.3 Test Site3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY ALLIANT

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR-)' describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability w (ACVC).c An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependences--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are

.gZven in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. -'The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

* To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

• To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

• To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 5 June 1989 at Littleton MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test resulty should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-ST-D--- T--February 1983 and ISO562-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Prgram Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks da compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating thE
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are nc capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for examplc, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Alliant FX/Ada Compiler, Version 2.2

ACVC Version: 1.10

Certificate Number: 890605W1.10083

Host Computer:

Machine: Alliant FX/80

Operating System: Concentrix
Release 5.0

Memory Size: 96 Megabytes

Target Computer:

Machine: Alliant FX/80

Operating System: Concentrix
Release 5.0

Memory Size: 96 Megabytes

2-1

CONFIGURtTION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (B
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
TINY INTEGER, SHORT INTEGER, and SHORT FLOAT in package
STANDARD. (See tests-B8600lT..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components P'i evaluated before any value is checked for
membership lj -A component's subtype. (See test C32117A.)

(2) Assignmentt ov subtypes are performed with the same precision
as the base tyDo. (See test C35712B.)

(3) This implumentation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) Sometimes NUMERICERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) Sometimes NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is not gradual. (See tests C45524A..Z.)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C4AO14A.)

e. Array types.

An implementation is alloyed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception. (See test
C36003A.)

(2) NUMERIC _ERROR is raised when 'LENGTH is applied to a null
array type with INTEGER'LAST + 2 components. (See test
C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array type with SYSTEM.MAXINT + 2 components. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See
test C52103X.)

2-3

CONFIGURATION INFORMATION

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B, EA3004C..D, and CA3004E..F.)

2-4

CONFIGURATION INFORMATION

i. Generics

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CAlOI2A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3O11A.)

j. Input and output

(1) The package SEQUENTIAL 10 can be instantiated with
unconstrained array types-and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE240G.)

(3) Modes IN FILE and OUT FILE are supported for SEOUENTIALIO.
(See testi CE2102D..E, CE2102N, and CE2102P.)

(4) Modes IN FILE, OUT FILE, and INOUT FILE are supported for
DIRECT 10. (See tests CE2102F, CE2102I..J, CE2102R, CE2102T,
and CE2102V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE3t02E and CE3102I..K.)

(6) RESET and DELETE operations are supported for SEQUENTIAL IO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECT IO. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

(9) Overwriting to a sequential file truncates to the last element
written. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE21OBA.)

(11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and deleted when closed.
(See test CE3112A.)

2-5

CONFIGURATION INFORMATION

(13) More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E, CE2102L, CE211OB, and CE2111D.)

(14) More than one internal file can be associated with each
external file for direct tiles when wrating or reading. (See
tests CE21O7F..H (3 tests), CE211OD, and CE2111H.)

(15) More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A..E, CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 328 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for 10 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1132 1993 17 28 46 3345

Inapplicable 0 6 322 0 0 0 328

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 545 245 172 99 161 331 137 36 252 292 300 3345

Inappl 14 72 135 3 0 0 5 1 0 0 0 77 -1 328

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at thCime of this
validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84M CD2A84N CD2B15C CD2D11B CD5007B CD5O11O
ED7004B ED7005C ED7005D ED7006C ED7006D CD7105A
CD7203B CD7204B CD7205C CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 328 tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y C35705L..Y C35706L..Y C35707L..Y
C35708L..Y C35802L..Z C45241L..Y C45321L..Y
C45421L..Y C45521L..Z C45524L..Z C45621L..Z
C45641L..Y C46012L..Z

3-2

TEST INFORMATION

b. C35702B and B86001U are not applicable because this implementation
supports no predefined type LONG FLOAT.

c. The following 16 tests are not applicable because this implementation
does not support a predefined type LONG INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55BO7A B55B09C B86001V
CD7101F

d. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAXMANTISSA is less than 47.

e. C86001F is not applicable because, for this implementation, the package
TEXT 10 is dependent upon package SYSTEM. These tests recompile
package SYSTEM, making package TEXTI0, and hence package REPORT,
obsolete.

f. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

g. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

h. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

i. CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests) are
not applicable because this implementation does not support size
clauses for floating point types.

j. CD2A61I and CD2A61J are not applicable because this implementation does
not support size clauses for array types, which imply compression, with
component types of composite or floating point types. This
implementation requires an explicit size clause on the component type.

k. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation does not support size clauses for access
types.

1. CD2A91A..E (5 tests), CD5012J, CD5013S, and CD5014S are not applicable
because this implementation does not support size clauses for tasks or
task types.

m. The following 42 tests are not applicable because this implementation
does not support an address clause when a dynamic address is applied to
a variable requiring initialization:

CD5003B..H CD5011A..H CD5011L..N CD50110
CD5011R CD5012A..I CD5O12L CD5O13B
CD5013D CD5O13F CD5013H CD5013L

3-3

TEST INFORMATION

CD5013N CD5OI3R CD5OI4T..X

n. CE2102D is inapplicable because this implementation supports CREATE
with INFILE mode for SEQUENTIAL 10.

o. CE2102E is inapplicable because this implementation supports CREATE
with OUTFILE mode for SEQUENTIALIO.

p. CE2102F is inapplicable because this implementation supports CREATE
with INOUT FILE mode for DIRECTIO.

q. CE2102I is inapplicable because this implementation supports CREATE
with INFILE mode for DIRECTIO.

r. CE2102J is inapplicable because this implementation supports CREATE
with OUTFILE mode for DIRECT I0.

s. CE2102N is inapplicable because this implementation supports OPEN with
IN-FILE mode for SEQUENTIAL IO.

t. CE21020 is inapplicable because this implementation supports RESET with
INFILE mode for SEOUENTIALI0.

u. CE2102P is inapplicable because this implementation supports OPEN with
OUT FILE mode for SEQUENTIALIO.

v. CE21020 is inapplicable because this implementation supports RESET with
OUT FILE mode for SEQUENTIALIO.

w. CE2102R is inapplicable because this implementation supports OPEN with
INOUT FILE mode for DIRECTIO.

x. CE2102S is inapplicable because this implementation supports RESET with
INOUTFILE mode for DIRECTIO.

y. CE2102T is inapplicable because this implementation supports OPEN with
INFILE mode for DIRECTIO.

z. CE2102U is inapplicable because this implementation supports RESET with
INFILE mode for DIRECTIO.

aa. CE2102V is inapplicable because this implementation supports open with
OUT FILE mode for DIRECTIO.

ab. CE2102W is inapplicable because this implementation supports RESET with
OUT FILE mode for DIRECTIO.

ac. CE3102E is inapplicable because this implementation supports CREATE
with INFILE mode for text files.

ad. CE3102F is inapplicable because this implementation supports RESET for
text files.

'-4

TEST INFORMATION

ae. CE3102G is inapplicable because this implementation supports deletion
of an external file for text files.

af. CE31OZI is inapplicable because this implementation supports CREATE
with OUT FILE mode for text files.

ag. CE3102J is inapplicable because this implementation supports OPEN with
IN FILE mode for text files.

ah. CE3102K is inapplicable because this implementation supports OPEN with
OUTFILE mode for text files.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

Modifications were required for 10 tes~s.

The following tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

B24009A B33301B B38003A B38003B B38009A B38009B
B41202A B91001H BC1303F BC3005B

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
Alliant FX/Ada Compiler was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully passed all
applicable tests, and the compiler exhibited the expected behavior on all
inapplicable tests.

3-5

TEST INFORMATION

3.7.2 Test Method

Testing of the Alliant FX/Ada Compiler using ACVC Version 1.10 was conducted
on-site by a validation team from the AVF. The configuration in which the
testing was performed is described by the following designations of hardware and
software components:

Host computer: Alliant FX/80
Host operating system: Concentrix, Release 5.0
Target computer: Alliant FX/80
Target operating system: Concentrix, Release 5.0
Compiler: Alliant FX/Ada Compiler, Version 2.2

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of implementation-specific
values were customized before being written to the magnetic tape. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled,
linked, and all executable tests were run on the Alliant FX/80. Results were
printed from the host computer.

The compiler was tested using command scripts provided by Alliant Computer
Systems Corporation and reviewed by the validation team. The compiler was
tested using all the following option settings. See Appendix E for a complete
listing of the compiler options for this implementation. The following list of
compiler options includes those options which were invoked by default:

-M ada source.a
-01

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Testing was conducted at Littleton MA and was completed on 5 June 1989.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

Alliant Computer Systems Corporation has submitted the
following Declaration of Conformance concerning the Alliant
FX/Ada Compiler.

A-i

OF CNFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: Alliant Computer Systems Corporation
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45133-6503
Ada Compiler Validation Capability (ACVC) Version: !.10

Base Configuration

Base Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant FX/80
Host OS and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant FX/80
Target OS and Version: Concentrix, Release 5.0

Derived Compiler Registration

Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant FX/40
Host OS and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant FX/40
Target OS and Version: Concentrix, Release 5.0

Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant FX/8
Host OS and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant FX/8
Target OS and Version: Concentrix, Release 5.0

Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant FX/4
Host OS and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant FX/4
Target OS and Version: Concentrix, Release 5.0

Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant FX/1
Host OS and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant FX/1
Target OS and Version: Concentrix, Release 5.0

Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant FX/82
Host OS and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant FX/82
Target OS and Version: Concentrix, Release 5.0

Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant VFX/80
Host OS and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant VFX/80
Target OS and Version: Concentrix, Release 5.0

A-2

DECLARATION OF CONFORMANCE

Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant VFX/40
Host OS and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant V'X/40
Target OS and Version: Concentrix, Release 5.0

Derived Compiler Name: Alliant FXiAda Compiler, Version 2.2
Host Architecture ISA: Alliant VFX/4
Host OS and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant VFX/4
Target OS and Version: Concentrix, Release 5.0

Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant VFX/82
Host OS and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant VFX/82
Target OS and Version: Concentrix, Release 5.0

Implementor's Declaration

I, the undersigned, representing Alliant Computer Systems Corporation, have
implemented no deliberate extensions to the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler(s) listed in this declaration. I
declare that Alliant Computer Systems Corporation is the owner of record of
the Ada language compiler(s) listed above and, as such, is responsible for
maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations for Ada language compiler(s) listed in this
declaration shall be made only in the owner's corporate name.

0 1 -1 5 - ion Date: S \&
Alliant Computer Systems)Corpration
Andrew F. Halford, Director of Software

Owner's Declaration

I, the undersigned, representing Alliant Computer Systems Corporation, take
full responsibility for implementation and maintenance of the Ada
compiler(s) listed above, and agree to the public disclosure of the final
Validation Summary Report. I declare that all of the Ada language
compilers listed, and their host/target performance, are in compliance with
the Ada Language Standard ANSI/MIL-STD-1815A.

____ ____ ___ ____- ___ ___ Date:

Alliant Computer Systems Porporation
Andrew F. Halford, Director of Software

A-3

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the Alliant FX/Ada Compiler, Version 2.2, as described
in this Appendix, are provided by Alliant Computer Systems Corporation.
Unless specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report. Implementation-specific
portions of the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 15
range -1.79769313486235E+308 .. 1.79769313486235E+308;

type SHORTFLOAT is digits 6 range -3.40283E+38 .. 3.40283E+38;

type DURATION is delta 1.OE-03 range -2147483.648 .. 2147483.647;

end STANDARD;

B-i

APPENDIX F. Implementatior'-;epenoent :narac erist cs

The INLINEONLY pragma, when used in the same way as pragma

INLINE, indicates to the compiler that the subprogram must

AjjjLj be inlined. This pragma also suppresses the
generation of a callable version of the routine which saves
code space.

1.2. D-ULIIN Rr.ama

The BUILTIN pragma is used in the implementation of some
predefined Ada packages, but provides no user access. It is
used only to implement cope bodies for which no actual Ada
o~y car be providec, for exarrLe the V _. ;=z

The RESOURCE pragma specifies the resource class of the task

(or tasks of a task type) or the resource class of the main
program. It is used to force a task to execute on a
particular resource class when multiple processors are usea
to execute an Ada program. This pragma takes a static
expression of the type PESOURCETYPE declared in oacKage
SYSTEM. This pragma is onLy allowed with'n the
specification of a task unit or immediately within tne
outermost ceclarative part of a main Grogram.

.4 HA~(a raF z

The SHARE-CODE pragma takes the name of a generic
instantiation or a generic unit as the first argument an-
one of the identifiers TRUE or FALSE as the second argument.
This pragma is only allowed immediately at tne place of a

declarative item in a declarative part or packaae
specification, or after a library unit in a compilation, nut
before any subsequent compilation unit.

When the first argument is a generic unit the pracma aoclies
to all instantiations of that generic. wmen the firs*

ar:ument is ,r.e na e o1 a eneric i nst tia ioa r i a-'tio-
, Lias c'Ly :o the suecitie instr tiatior, a tvo-
S Ut anti d ions.

B-2

If the second argument is TRUE the compiler wi LL try tc

share coce generatea for a generic instantiation with code
ceneratec for other instantiations of the same generic.
When the secon argument is FALSE each instantiation wiltL
get a uniQue copy of the generateo cote. Tne extent to

which coce is shared between instantiations depends on this

pragma and the kino of generic formal parameters declarec

for the generic unit.

The name pragma SHARE-BODY is also recognized by the
implementation and has the same effect as SHARECODE. It is

included for compatability with earlier versions of FX/Ada.

The EXTERNAL-NAME pragma takes the name of a subprogram or

variable aefined in Ada and allows the user to specify an

external name that may be used to reference the entity from
other languages. The pragma is allowed at the place of a
aeclarative item in a package specification and must aoply
to an object declared earlier in the same package

specification.

The INTERFACE-NAME pragma takes the name of a a variable

defined in another language and allows it to be referenced
directly in Ada. The pragma will replace all occurrences of

the variable name with an external reference to the second,
linkargument. The pragma is allowed at the place of a
declarative item in a package specification and must apply
to an object declared earlier in the same oackaoe

specification. The object trust be declared as a scalar or
an access type. The object 5&nQ be any of the following:

a Loop variable,
a constant,
an initialized variable,

an array, or
a record.

The INTERFACENAME pragma is also used to provide an

external link name to a subprogram which has been oefinec

using the INTERFACE pragma.

Takes one of the identifiers ON or OFF as the single
argument. This oragma is only allowed within a machine cote
oroceoure. It specifies that implicit coae generated by the

comoiler oe allowed or disallowec. A warnino is issued if
3 is used an: any imoL-cit coze hexes to-o , te .

B-3

Z. N> P:NTANT

Tnis Draoma taKes one ar9rmert which can be the)ane cf

eit.er a 1i#rary su crozram or a sunDrogram oeclarec

i!meCiately within a tinrary package spec or bony. It

incicates to the compiler that the subprogram will not be

catlec recursiveLy allowing tme compiler to perform specific

oct4mizations. The pragma can be applied to a subprogram or

a set of overloaded subprogram within a package spec or

package body.

This pragma can only appear in a library package

specification. It indicates that the package will not be

elaborated because it is either part of the RTS, a

configuration package or an Ada package that is referencea

from a language other than Ada. The presence of this pragma

suppresses the generation of elaboration code and issues

warnings if elaboration code is required.

Tnis pragma is recognizea by the implementation but has no

effect.

Z-2. EL6A6IE

This pragma is implemented as described in Appendix B of the

Aca RM.

This oragma is implemented as -escribec in Aopenoix 9 of the
A-a RM.

This oragma supports calls to 'C, Pascal, and FORTRAN

functions. The Ada subprograms can oe either functions or
Procedures. The types of parameters and the result type for

functions must be scalar, access or the predefinee type

ADDRESS in SYSTEM. All parameters must have mode IN. Record
ard array objects can be oassec ty reference using the
AODRESS attribute.

.. Ll I

T i n r -a T is i~oLe-ento: as cesz- 1ez in A e x t e

Bm-4

This pragma is recognizec by the implemenat~o. Toe

implementation aoes not allow SYSTEI' to be mo-ifez b m

of pragmas, the SYSTEM package must oe recompiiez.

This pragma is recognized by the implementation but has no

effect.

This pragma will cause the compiler to choose a non-aligned
representation for composite types. It will not causes

objects to be packed at the bit level.

2.2. E6

This pragma is implemented as described in Appendix B of the

Ada RM.

This Dragma is implemented as descrioed in Apoencix . o! -e

Ada RM.

This pragma is recognized by the implementation but has no

effect.

This pragma is recognizec by the imolementation. T,.e
implementation does not allow SYSTEM tD be modifiec: by mea-s
of pragmas, the SYSTEM package must be recompiled.

This pragma is implemented as described, except that

RANGE-CHECK and DIVISION-CHECK cannot be supressed.

This oragma is recognized by the implementation. The
implementation does not allow SYSTEM to be modified oy means

of pragmas, the SYSTEM package must be recompiled.

B-5

For a Prefix that denotes an object, a program unit, a

labeL, or an entry:

This attribute denotes the effective address of the first of

the storage units allocated to P. For a subprogram,

package, task unit, or label, it refers to the address of

the machine code associated with the corresponding body or
statement. For an entry for which an address clause has

been given, it refers to the corresoonaing hardware

interrupt. The attribute is of the type OPERAND defined in

the package MACHINE-CODE. The attribute is only allowed

within a machine code proceoure.

See section F.4.8 for more information on the use of this

attribute.

(For a package, task unit, or entry, the 'REF attribute is

not supported.)

package SYSTEM
is

type NAME is (fxunix)

SYSTEMNAME constant NAME := fx-unix;

STORAGEUNIT constant := 8;

MEMCRYSIZE : constant : 16_777_216;

-- System-Depenoent Named Numbers

MIN_INT : constant := -2_147_4 ° 3 , 48;
MAXINT : constant := 2-147-483-647;

MAX-DIGITS : constant =15;
MAXMANTISSA : constant := 31;

FINEDELTA : constant := 2.0**(-31);

TICK : constant =0.01;

-- Other System-dependent Declarations

subtyp* PRIORITY is INTEGER range 0 .. 99;
MIN_PRIORITY : constant priority : priority'first;

MAX_PRIORITY : constant Priority : priority'Last;

!yoe RESD:J.CETYPI is (anyresource,
e tacr. esz 9 resource,

complpx-resource,

ip-resource);

B-6

unavaiLaple-resource : exception;

MAXREC_SIZE : integer := 64*1024;

type ADDRESS is crivate,

NOADDR : constant ADDRESS;

function PHYSICALADDRESS(I: INTEGER) return ADDRESS;
function ADDRGT(A, B: ADDRESS) return BOOLEAN;
function ADDRLT(A, B: ADDRESS) return BOOLEAN;
function ADDRGE(A, B: ADDRESS) return BOOLEAN;
function ADDRLE(A, B: ADDRESS) return BOOLEAN;
function ADDRDIFF(A, B: ADDRESS) return INTEGER;
function INCRADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECRADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;

function "(A, B: ADDRES) return BOOLEAN renames AL)DR GT;
function "(" CA, B: ADDRESS) return BOOLEAN renames ADDFLT;

function ")'(A, B: ADDRESS) return BOOLEAN renames ADDRGE;
function "<"(A, B: ADDRESS) return BOOLEAN renames ADDP-LE;
function -" (A, B: ADDRESS) return INTEGER renames ADDEIFF;
function " " (A: ADDRESS;

INCR: INTEGER) return ADDRESS renames C ?.

function "-"(A: ADDRESS;
DECR: INTEGER) return ADDRESS renames OECkADDR;

pragma inLine(ADDRGT);
pragma inLine(ADDRLT);
pragma inLine(ADDRGE);
pragma inLine(ADDRLE);
oraoma intine(ADDRDIFF);
pragma inline(INCRADDR) "

pragma inLine(D-CrADDR);
oragma inLine(OHYSICALADDRESS);

-,rivate

type ADDRESS is new integer;

NOADDR : constant ADDRESS := 0;

end SYSTEM;

> t'e ansenze o4 ora;a 2AC< record ccents arc no: j

sr as to =rovi:e for efficient access v t e ar,:e?
narc-dre. ;racma ACK a -LLied to a recora eLiminates :
Padcing where oossiole. Pragma PACK h ias no otrer effect cn

B-7

the storage allocated for recorc components, so a recCrC
representation is reQuired to make recorz! components
smaller. Bit backing is not supported for comoonents La'Q&r
than STORAGE UNIT. Components smaller than 5TOR-A E -41T will
be tit packed within a storage unit. Objects and Larger
components are packed to the nearest whole STORAGEUNIT.

For scalar types, a length clause which is a size
specification will compress storage to the number of bits
required to represent the range of the subtype. For fixed,
float, and access types, this is 32.

A size specification applied to a composite type with
components of composite types will not cause compression of
component storage. To allocate the minimal number of bits
for records of composite types, an explicit recoro
representation clause must be given with length clauses for
each component. An error will be issued if there is
insufficient space allocated. Component clauses need not be
aligned on STGRAGEUNIT boundaries. A component of a recorc
representation clause may not specify fewer pits for a
component type than woul! be usec for values of t: :vr'.

Size specifications (T'SIZE) are not supported for task
types. Specifications of storage for a task activation
(T'STORAGESIZE) is supported. The minimum storage size for
task activations is 5120, but can be larger depending on the
size of data objects declared in the task.

The size specification TISMALL is not supported except when
the representation soecification is the same as the value
'SMALL for the base type.

Specification of collection size is supporte .

Address clauses are supported for uninitialized variables
and constants. They are not supported by the compiler for
subprograms, packages, and task units.

5 . IntP r. u s

Interrupt entries are supported for UNIX signals. The Ada
for clause gives the UNIX signal number. The follo~inc is
the meaning associated with the valid UNIX signals:

CIU hanuC

2 51I T interruzt

B-8

3 SIGC UIT Quit
4 SIGILL illegal instruction (not reset when caught)
5 SIGTRAP trace trap (not reset when caught)
6 SiGIOT lOT instruction
7 SIGEMT EMT instruction
8 SIGFPE floating point excection
9 SIGKILL kill (cannot be caught or ignored)

10 SIGBUS bus error
11 SIGSEGV segmentation violation
12 SIGSYS bad argument to system call
13 SIGPIPE write on a pipe with no one to read it
14 SIGALRM alarm clock
15 SIGTERM software termination signal from kill
16 SIGURG urgent condition on IO channel
17 SIGSTOP sendable stop signal not from tty
18 SIGTSTP stop signal from tty
19 SIGCONT continue a stopped process
20 SIGCHLD to parent on child stop or exit
21 SIGTTIN to readers pgrp upon background tty read
22 SIGTTOU like TTIN for output if (tp->tlocal<OSTOP)
23 SIGIO input/output possible signal
24 SIGXCPU exceeded CPU time limit
25 SIGXFSZ exceeced fiLe size limit
26 SIVTALRA virtual time alarm

27 SIGPROF profilinc time alarm
28 SIGWINCH window changec

The ADDRESS attribute is not supported for oackages ari task
entries. The compiler issues a warning message an- the

value which is type SYSTEM.ADDRESS is SYSTEM.NOADDR.

Machine code insertions are supported.

The general definition of the package MACHINECODE provides
an assembly language interface for the target machine. It
provides the necessary record type(s) needed in the code
statement, an enumeration type of all the opcode mneumonics,
a set of register definitions, and a set of addressing mode
functions.

The general syntax of a machine code statement is as
fo L ow s

.here n indicates the numuer of operands in the aggregatp.

B-9

sreciaL case arises 'or a variatle numDer of oDerancs.

The coerancs are Listec wit-rn a suc.acgregate. T-e format

is as foLLows:

For those oococes that reauire no operands, namec notation

must be used (cf. RM 4.3(4)).

CODE_O'(op => QrQQ);

The gj2;Q must be an enumeration literal (i.e. it cannot be
an object, attribute, or a rename).

An gtr] can only be an entity defined in MACHINE-CODE or
the 'REF attribute.

The arguments to any of the functions defined in
MACHINE-CODE must be static expressions, string literals, or

the functions defined in MACHINE-CODE. The 'REF attribute

may not be used as an argument in any of these functions.

Inline expansion of machine code proceaures is suooorted.

There are no implementation-generated names.

Address cLauses are supported for constants ano variacles.

Ncne.

None.

The following limits are actually enforced by the
imolemertation. It is not intended to imoly teat resources

Jr to or even near these Lirits are available

B-1O

The implementation sapports a maximum Lire Len n or f of C
characters including the end of Line character.

The maximum size of a statically sized array type is

4,000,000 x STORAGE-UNITS. The maximum size of a statically
sized record type is 4,000,000 x STORAGEUNITS. A recora
type or array type declaration that exceeds these limits
will generate a warning message.

In the absence of an explicit STORAGE_SIZE length
specification every task except the main program is
allocated a fixed size stack of 10,240 STORAGE-UNITS. This
is the value returned by T'STORAGESIZE for a task type T.
The minimum stack size for tasks is 5120.

In the atsence of an explicit STORAGESIZE lengt! atta ti e
the cefault collection size for an access type is 100 timps
the size of the designated type. This is the value returnea
by TISTORAGESILE for an access type T.

There is an absolute limit of 6,000,000 x STORAGE-UNITS for
oojects declared statically within a comoilation unit. If
this value is exceeded the compiler will terminate the
compilation of the unit with a FATAL error message.

B-li

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

SACC SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG IDI (1..498 => 'A', 499 => '1')
An identifier the size of the
maximum input line length which
is identical to $BIG ID2 except
for the last character.

$BIG ID2 (1..498 => 'A', 499 => '2')
!n identifier the size of the
maximum input line length which
is identical to SBIG ID1 except
for the last character.

$BIG ID3 (1..249 => 'A', 250 => '3',
An identifier the size of the 251..499 => 'A')
maximum input line length which
is identical to $BIG ID4 except
for a character near the middle.

C-I

TEST PARAMETERS

Name and Meaning Value

SBIG ID4 (1..249 => 'A', 250 => '4',
An identifier the size of the 251..499 => 'A')
maximum input line length which
is identical to $BIG ID3 except
for a character near the middle.

$BIG INT LIT (1..496 -> '0', 497..499 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT (1..493 -> '0', 494..499 .> "69.OEl")
; universal real literal of
value 690.0 vith enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 (G => '"', 2..200 -> 'A', 201 > '"')

; string literal which when
catenated with $BIG STRING2
yields the image of $SIGIDI.

$BIG STRING2 (I => '"' 2..300 => 'A',
T string literal which when 301 => '1', 302 => '"')

catenated to the end of
$BIG STRING1 yields the image of
$BIGID1.

$BLANKS (1..479 => '
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 2 147 483 647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULT MEM SIZE 16 777 216
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULT STOR UNIT 8
An integer literal whose value
is SYSTEM.STORAGE UNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

SDEFAULT SYS NAME FX UNIX
The - value of the constant
SYSTEM.SYSTEM NAME.

SDELTA DOC 0.0000000004656612873077392578125
A real literal whose value is
SYSTEM.FINE DELTA.

$FIELD LAST 2 147 483 647
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

SFIXED NAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NO SUCHTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATER THAN DURATION 100_000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER THAN DURATION BASE LAST 10_000_000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

SHIGH PRIORITY 99
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAME1 /illegal/file-name/2(]$Z2102C.DAT
An external file name which
contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 /illegal/file name/CE2102C*.DAT
An external file name which
is too long.

$INTEGER FIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

STNTEGER LAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$IN'TEGER LAST PLUS 1 2 147_483_648
A universal - integer literal
whose value is INTEGER'LAST + 1.

SLESS THAN DURATION -100 000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -10 000_000.0
A universal real literal that is -
less than DURATION'BASE'FIRST.

SLOW PRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA DOC 31
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX DIGITS 15
Maximum digits supported for
floating-point types.

SMAX IN LEN 499
Maximum input line length
permitted by the implementation.

SMAX INT 2147483647
T universal integer literal
whose value is SYSTEM.MAXINT.

$MAX INT PLUS 1 2 147_483_648
A unive-rsal integer literal -
whose value is SYSTEM.MAXINT+I.

SMAX LEN INT BASED LITERAL (l..2 -> "2:", 3..496 => '0'
Suniversal - integer based 497..499 => "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be $MAX IN LEN
long.

C-4

TEST 1ARAMETERS

Name and Meaning Value

SMAX LEN REAL BASED LITERAL (1.3 => "16:", 4..495 => '0',
universal real based literal 496..499 -> "F.E:")

whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be SMAXINLEN long.

SMAX STRING LITERAL (I => '"', 2..498 => 'A', 499 '"')

A string literal of size
$MAXINLEN, including the quote
characters.

SHIN INT -2147483648
universal integer literal

whose value is SYSTEM.MININT.

$MIN TASK SIZE 32
An inieger literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAME TINY INTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONGFLOAT, or LONGINTEGER.

SNAME LIST FXUNIX
A-list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEGNASED INT 16#FFFFFFFD#
based integer literal whose

highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

SNEW HEM SIZE 16_777_216
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT MEM SIZE. If there is
no other value, then use
SDEFAULTHEMSIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

SNEW STOR UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT STORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEW SYS NAME FXUNIX
1 value of the type SISTEM.NAME,
other than $DEFAULT SYS-NAME. If
there is only one value of that
type, then use that value.

$TASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 0.01
A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lines 50 & 54 and the execution of task CHANGING OF THE GUARD
results in a call to REPORT.FAILED at one of lines 52 or 56.- -

e. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be 40
(line 137).

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These

D-1

WITHDRAWN TESTS

tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to thE parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered prob-ematic
by the WG9 ARG.

h. CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

i. CD2Bl5C and CD7205C: These tests expect that a 'STORAGE SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

j. CD2Dl1B: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

k. CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

1. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary A!-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

n. CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

o. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

p. CE21071: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object- as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

D-2

WITHDRAWN TESTS

q. CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

r. CE3301A: This test contains several calls to END OF LINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARDINPUT (lines 103, 107, 118,
132, and 136).

s. CE341IB: This test requires that a text file's column number be set to
COUNT'LAST in order to check that LAYOUTERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY ALLIANT

Compiler: Alliant FX/Ada Compiler

ACVC Version: 1.10

E-1

ad& options

-a fi7ieiame.a
(archive) Treats file_name.a as an archive file rather than ar Ada source file.

-d (depenocncies) Anaiyzes the source files for depenoencies oni . No syntax analysis occurs
and no objcct files are produced. Used by a.rlaKe to establish aependencies among new flies.

-e (error) Writes error lines and diagnostics to standard output. Only one of -e or -E should be
used.

-E Lfleidirecrorv!
(error) Writes error lines and diagnostics to standard output and wr:tes the raw error messages
to the specifiec file. The name of the file defaults to aaa sc.urcr err: if a directory name is
specified, the output is placed in aca source.err in that dreciory. Oniy one of the -e or -E
opuon should be used.

I (error listing) Writes a full listing with interspersed diagnostics to standard output, if any er-
rors occur. Only one of -e0 or -8. option should be used.

-El Lfileldirecory]
(error listing) Writes a full listing with interspersed diagnostics to standard output and writes
the raw error messages to the specified file, if any errors occur. The name of the file defaults
to aaa source.err: if a directory name is specified, the output is placed in aoa source.err in
that directory. Only one of the --e or -E option should be used.

.-ev (error vi) Embeds the raw error messages in the source 'file and calls vi on the source file.

-Lx (link) Includes the library libx.a from lb, /usrl/b. or /usr/local/,lb. This option is a link
option and must not precede the name of a file that references the library. See the Concentrux
16 command.

-M unit name
(main) Produces an executable program using the named program unit as the main program.
The main program must be either a parameteriess procedure or a parameterless function re-
turning an integer.

-M ada source.a
(main) Uke -M unit nene, except that the unit name is assumed to be the root name of the
source file that follows.

-0 executatblefle
(output) Names the outout executable file: by default, the output executabie file is named
a.out. The -M option must also be specified.

-0[n) (optimize) Optimizes the output code. An optional digit limits the number of ptrtmi-zatton
passes: 9 specifies maximum optimization. The default number of opvimtzation passes is I.

-pg Produces a program that (at program execution time) monitors the calling of routines and
writes a grnon.out file. The Concentrix command grpof -A processes this file.

-R library
(recompile instantiation) Forces an analysis of all generic instantiations. causing reinstantia-
tion of any that are out of date.

-S (suppress) Applies the suppress pragma to the entire compilation.

-sh (showj Shows the pathname of the tool actually called.

-T (timing) Prints timing information for the compilation.

-u (update) Updates the library ana.lib even if syntax errors are present.

-V (verbose) Prints the compiier version number, the date and time of compilation, and summary
information concerning the compilation.

-w (warnings) Suppresses warning messages.

E-2

