UNCLASSIFIED o BRI ¢
- SETUET T CLASSICICETION G Twil PAS (Wre- Dy ce Entired SRR N
REPORT DOCUMINTATION PAGE ey Bemmon A O
- 1. REPOFET Mg F 12. GOVY ACCESSION WO 3. RECIPIENY'S CATA DL Wumzik
4 TIT.0 tencieb e 5 TYPL Of REPDRY & PERIOC COVERLC
Aca Cormpiler Velicdation Summary Report:alliant 05 June 1989 tc 05 June 1990

omputer Svstems Corpeoration, Arliant FX/Aaa Compiler, —— - -
ersion ©.. ailisnt FN/80 (Host anc Target). £90605W1.100g% PLRFORMING DhC. RLPOR: WuMEik

Y. AUYHOR(s e. CONTRAIT DR GRANT NUMEik(s;

wrightTFratterson ATL
Davtorn, O, USA

. PERFORMING ORGAN.ZATION AND ADDRESS 1C. PROCRAM FLEMINY, PRIMTY, TASK
AREA § WORK UNIT WUMELRS
Wright-Patterson AFE

Davton, OH, USA

AD-A210 809

(1. CONTRO.LING DFFICE NaMI AMD ADDRESS 12. RIPORT DaTE
Aca Jg;nt Program Office £ Def
United States Department © efense | QTR 10,8 G oL 7 Sy
wWashington, DC 20301-3081
14. MORITORING AGENIY MAMD & ADDRLSS(Ir oifterent from Controliing Oftice) 16, SECURITY (LASS (o’thisreport,
. . - UNCLASSIFIED
kright‘?a;terson A.B 1%s. Q{CL‘SS"ICUION/DJH\SRADMG
Dayton, OH, USA cheouLt .

N/A

1&6. DISTRIE.TION STATEMINY (of this Report)

Approved for public release; distribution unlimited.

270 DIITRIELTION STRTEMINT (Dfthe abmoﬂenterwmﬁn&grﬁ&'ﬂgﬂmIromnepon)

CNILASSIFIED

1E. SUPF.EMINTAFY NITES

.

8. KEYwIEZS (Continue onreverse s.0¢ if necesssny andidentify by block number)

Ada Procremming lancuage, Aca Compiler Validation Summary Repore, AZa
Cecrpiler Velicdetion Capability, ACVC, Validation Testing, Aca
Valicdation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
lEl5%A, Aca Joint Program Office, AJPO

20. ABSTRAZT (Continue onreverse 5.0¢ if necessary and dentify b, biock number)

Alliant Computer Systems Corporation, Alliant FX/Ada Compiler, Version 2.2, Wright-Pattergon
a4FB, alliant FX/80 under Concentrix, Release 5.0 (Host and Target), ACVC 1.10.

DD 'O 1473 1o1vi0on OF 3 NDV 65 1S OBSOLENE
13ax 13 S/N 0102-1F-014-86C) UNCLASSIFIED
SECURITY CLASSITICATION OF INIS PALL (whenDete ntereld,)

e

r"""""""""""'-'--'--I-------------—~f

AVF Control Number: AVYF-VSR-275.0689

89-04-06-ACS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: B890605V¥1.10083
Alliant Computer Systems Corporation
Alliant FX/Ada Compiler, Version 2.2
Alliant FX/80

Completion of On-Site Testing:
S June 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Vright-Patterson AFB OH 45433-6503

Prepared For:

Ada Joint Program Office
United States Department of Defense

Vashington DC 20301-3081

— .
[»fC';wiUf! Sor T
NTIS CRagd
Liic 1am

Uiannowr ced 0
Juitttication
e T

By _

Distribution T

b .

Availability Codes

‘ ————
D‘iqt P AvId Jdfor

A

e R

Ada Compiler Validation Summary Report:

Compiler Name: Alliant FX/Ada Compiler, Version 2.2

Certificate Number: 890605W1.10083

Host: Alliant FX/80 under
Concentrix, Release 5.0

Target: Alliant FX/80 under
Concentrix, Release 5.0

Testing Completed 5 June 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility

Steve P. Wilson

Technical Director

ASD/SCEL

Vright-Patterson AFB OB 45433-6503

Gl bl

fida’ Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

£ 380rd

ASz Joint Program Office
Dr. John Solomond
Director

Department of Defense
Vashington DC 20301

Ada Compiler Validation Summary Report:

Compiler Name: Alliant FX/Ada Compiler, Version 2.2

Certificate Number: 890605W1.10083

Host: Alliant FX/80 under
Concentrix, Release 5.0

Target: Alliant FX/80 under
Concentrix, Release 5.0

Testing Completed 5 June 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Aéé Vali&ation.FaEility
Steve P. VWilson
Technical Director

ASD/SCEL
Vright-Patterson AFB OH 45433-6503

Aca Validation Organization
Dr. John F. Kramer

Institute for Defense Analysigs
Alexandria VA 22311

Ada Joint Program Oftfice
Dr. John Solomond
Director

Department of Defense
Vashington DC 20301

CHAPTER

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

= e —
b weo—

[S

B =

NN B LW

LDWLWLLwLWwWwWwLWwWwWw w [S

. o e o o e o . . .
. .

(USRS I)

o

m

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT .
USE OF THIS VALIDATION SUMMARY REPORT .
REFERENCES. e e e e e e e
DEFINITION OF TERMS .

ACVC TEST CLASSES .

CONFIGURATION INFORMATION

CONFIGURATION TESTED. . . .
IMPLEMENTATION CHARACTERISTICS

TEST INFORMATION

TEST RESULTS. . . . e e e e e s
SUMMARY OF TEST RESULTS BY CLASS e e e e e
SUMMARY OF TEST RESULTS BY CHAPTER. .
WITHDRAWN TESTS
INAPPLICABLE TESTS.

TEST, PROCESSING, AND EVALUATION HODIFICATIONS.

ADDITIONAL TESTING INFORMATION.
Prevalidation « ¢« ¢ ¢ ¢« ¢ ¢ « &
Test Method .

Test Site .

DECLARATION OF CONFORMANCE

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAVWN TESTS

COMPILER OPTIONS AS SUPPLIED BY ALLIANT

LWWLWWLWLLLWLWWWW

!

t

[N
1
[YWY SN §)

| L L L

|
AL NN

CHAPTER 1
INTRODUCTION
;7

This Validation Summary Report '(VSR)U~describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of .testing this compiler using the Ada Compiler
Validation Capability » (ACV€).~ An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.
~ Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependenc’es--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences betveen compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
...---given in this report.
g G
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. -The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal 1language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 5 June 1989 at Littleton MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVQ may
make full and free public disclosure of this report. In the United States,
this 1is provided in accordance with the "Freedom of Information Act" (5
U.S.C.$552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or wvarrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Vashington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCEL
Vright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 3 and IS0 -1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 198/.

3. Ada Compiler Validation Capability Implementers’ Guide, SBfTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard
Applicant

AVF

AVO

Compiler

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Target The computer for which a compiler generates code.
Test A program that checks ,a compiler’s conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Vithdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another 1language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
ané¢ produces a PASSED, FAILED, or NOT AFPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are nc capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message vhen it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfullvy and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. 1In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
wvould circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are vperating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. 4 list of the values used for this validation is

provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
wvithdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation svstem for this validation was tested under the
following configuration:

Compiler: Alliant FX/Ada Compiler, Version 2.2

ACVC Version: 1.10

Certificate Number: 890605V1.10083

Host Computer:

Machine: Alliant FX/80

Operating System: Concentrix
Release 5.0

Memory Size: 96 Megabytes

Target Computer:
Machine: Alliant FX/80

Operating System: Concentrix
Release 5.0

Memory Size: 96 Megabytes

2-1

CONFIGUR/TION INFORMATION

2.2 IMPLEMENTATION CEARACTERISTICS

One of the purposes of va.:.dating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests DS5A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005SE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
TINY INTEGER, SHORT_INTEGER, and SHORT FLOAT in package
STANDARD. (See tests BB6001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components 2°2 evaluated before any value is checked for
membership ir - component’s subtype. (See test C32117A.)

(2) Assignment: .usr subtypes are performed wvith the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) Sometimes NUMERIC ERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) Sometimes NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflowv is not gradual. (See tests C45524A..2.)

. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..2.)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..2.)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C4ACl44A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER' LAST and/or SYSTEM.MAX INT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises no exception. (See test
C360034.)

(2) NUMERIC ERROR 1is raised wvhen 'LENGTH 1is applied to a null
array type with INTEGER'LAST + 2 components. (See test
C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array type with SYSTEM.MAX INT + 2 components. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST

raises NUMERIC_ERROR when the array type is declared. (See
test C52103X.)

2-3

f.

g

h.

(3)

(6)

(7N

(8)

CONFIGURATION INFORMATION

A packed two~dimensional BOOLEAN array with more than
INTEGER’LAST components raises NUMERIC ERROR when the array
type is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER’ LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. Howvever, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
vhen checking whether the expression’s subtype is compatible
wvith the target’s subtype. (See test C52013A.)

In assigning tvo-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression’s subtype is
compatible with the target’s subtype. (See test C52013A.)

Discriminated types.

(1)

In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
vhen checking whether the expression’s subtype is compatible
with the target’s subtype. (See test C52013A.)

Aggregates.

(1) In the evaluation o0f a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated

vhen a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

Pragmas.

(1)

The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B, EA3004C..D, and CA3004E..F.)

2-4

i.

je

CONFIGURATION INFORMATION

Generics

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CAl012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

Input and output

(1) The package SEQUENTIAL I0 can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT IO can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

(3) Modes IN FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102F.)

(4) Modes 1IN FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT IO. (See tests CE2102F, CE2102I..J, CE2102R, CE2102T,
and CE2102V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE3102E and CE3102I..K.)

(6) RESET and DELETE operations are supported for SEQUENTIAL_IO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECT I0. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, ZE31104, and CE3114A.)

(9) Overvriting to a sequential file truncates to the last element
vritten. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and deleted when closed.
(See test CE3112A.)

(13)

(14)

(13)

CONFIGURATION INFORMATION

More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E, CE2102L, CE2110B, and CE2:11D.)

More than one internal file can be associated with each
external file for direct files when wraiting or reading. (See
tests CE2107F..H (3 tests), CE2110D, and CE2111H.)

More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A..E, CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 328 tests vere inapplicable to this implementation. All
inapplicable tests vere processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for 10 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1132 1993 17 28 46 3345
Inapplicable 0 6 322 0 0 0 328

Vithdrawn 1 2 35 0 6 0 44
TOTAL 130 1140 2350 17 34 46 3717
3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 B 9 10 11 12 13 14
Passed 198 577 545 245 172 99 161 331 137 36 252 292 300 3345
Inappl 14 72 135 3 0 0 5 1 0 0 o 77 21 328
Vdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 VITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at tﬁittime of this
validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D

CD2A63A CD2A63B CD2A63C CD2A63D CDZA66A CDZA66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2AB4M CD2AB4N CD2B15C CD2D11B CD5007B CD50110
ED7004B ED7005C ED7005D ED7006C ED7006D CD71054A
CD7203B CD7204B CD7205C CD7205D CE21071 CE3111C

CE3301A CE3411B

See Appendix D for the reason that eack of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 328 tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113L..Y C35705L..Y C35706L..Y C35707L..Y
C35708L..Y C35802L..2 C45241L..Y C45321L..Y
C45421L..Y C45521L..2 C45524L..2 C45621L..2
C45641L..Y C46012L..2

3-2

. The following 42 tests are not applicable because this implementation

TEST INFORMATION

. C35702B and B86001U are not applicable because this implementation

supports no predefined type LONG_FLOAT.

. The following 16 tests are not applicable because this implementation

does not support a predefined type LONG_INTEGER:

C45231C C45304C C43502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001VW
CD7101F

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 47.

. CB60OLF is not applicable because, for this implementation, the package

TEXT_I0 is dependent upon package SYSTEM. These tests recompile
package SYSTEM, making package TEXT_I0O, and hence package REPORT,
obsolete.

. B86001Y is not applicable because this implementation supports no

predefined fixed-point type other than DURATION.

. BB6001Z is not applicable because this implementation supports no

predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

. C96005B is not applicable because there are no values of type

DURATION’BASE that are outside the range of DURATION.

. CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests) are

not applicable because this implementation does not support size
clauses for floating point types.

. CD2A61I and CD2A61J are not applicable because this implementation does

not support size clauses for array types, which imply compression, with
component types of composite or floating point types. This
implementation requires an explicit size clause on the component type.

. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable

because this implementation does not support size clauses for access
types.

. CD2A91A..E (5 tests), CD5012J, CD5013S, and CD5014S are not applicable

because this implementation does not support size clauses for tasks or
task types.

does not support an address clause vhen a dynamic address is applied to
a variable requiring initialization:

CD5003B. .H CD5011A..H CD5011L. .N CD5011Q

CD5011R CD5012A..1 CD5012L CD5013B
CD5013D CD5013F CD5013H CD5013L

3-3

"—‘----...-.-.-.-ll.lIllIlIIlllIlllllIIIlllllIIlIIIIIlIlI-I---------.--J

aa.

ab.

ac.

ad.

TEST INFORMATION

CD5013N CD5013R CD5014T. .X

. CE2102D 1is inapplicable because this implementation supports CREATE

with IN_FILE mode for SEQUENTIAL_IO.

CE2102E is inapplicable because this implementation supports CREATE
with OUT_FILE mode for SEQUENTIAL_IO.

CE2102F is inapplicable because this implementation supports CREATE
vith INOUT_FILE mode for CIRECT_IO.

. CE2102I 1is inapplicable because this implementation supports CREATE

with IN_FILE mode for DIRECT_IO.

. CB2102J is inapplicable because this implementation supports CREATE

with OUT_FILE mode for DIRECT_IO.

. CE2102N 1is inapplicable because this implementation supports OPEN with

IN FILE mode for SEQUENTIAL_IO.

. CE21020 is inapplicable because this implementation supports RESET with

IN FILE mode for SEQUENTIAL_IO.

. CE2102P 1is inapplicable because this implementation supports OPEN with

OUT_FILE mode for SEQUENTIAL_IO.

. CE2102Q is inapplicable because this implementation supports RESET with

OUT_FILE mode for SEQUENTIAL_IO.

. CE2102R is inapplicable because this implementation supports OPEN with

INOUT_FILE mode for DIRECT_IO.

. CE2102S is inapplicable because this implementation supports RESET with

INOUT_FILE mode for DIRECT_ IO.

. CE2102T 1is inapplicable because this implementation supports OPEN with

IN FILE mode for DIRECT IO.

. CE2102U is inapplicable because this implementation supports RESET with

IN FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports open with
OUT_FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports RESET with
OUT_FILE mode for DIRECT_IO.

CE3102E is inapplicable because this implementation supports CREATE
vith IN FILE mode for text files.

CE3102F 1is inapplicable because this implementation supports RESET for
text files.

TEST INFORMATION

ae. CE3102G is inapplicable because this implementation supports deletion
of an external file for text files.

af. CE31021 1is inapplicable because this implementation supports CREATE
with OUT_FILE mode for text files.

ag. CE3102J is inapplicable because this implementation supports OPEN with
IN_FILE mode for text files.

ah. CE3102K 1is inapplicable because this implementation supports OPEN with
OUT_FILE mode for text files.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn’t anticipated by the test (such as
raising one exception instead of another).

Modifications were required for 10 tes:s.
The following tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:
B240094 B33301B B380034A B38003B B38009A B38009B
B41202A B91001H BC1303F = BC3005B

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
Alliant FX/Ada Compiler was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully passed all
applicable tests, and the compiler exhibited the expected behavior on all
inapplicable tests.

3-5

TEST INFORMATION

3.7.2 Test Method

Testing of the Alliant FX/Ada Compiler using ACVC Version 1.10 was conducted
on-site by a validation team from the AVF. The configuration in which the
testing was performed is described by the following designations of hardware and
softvare components:

Host computer: Alliant FX/80

Host operating system: Concentrix, Release 5.0

Target computer: Alliant FX/80

Target operating system: Concentrix, Release 5.0

Compiler: Alliant FX/Ada Compiler, Version 2.2

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of implementation-specific
values were customized before being written to the magnetic tape. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled,
linked, and all executable tests were run on the Alliant FX/80. Results wvere
printed from the host computer.

The compiler was tested using command scripts provided by Alliant Computer
Systems Corporation and reviewed by the validation team. The compiler wvas
tested using all the following option settings. See Appendix E for a complete
listing of the compiler options for this implementation. The following list of
compiler options includes those options which were invoked by default:

-M ada_source.a

-01
Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation 1listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Testing vas conducted at Littleton MA and was completed on 5 June 1989.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

Alliant Computer Systems Corporation has submitted the
folloving Declaration of Conformance concerning the Alliant
FX/Ada Compiler.

A-1

S
DICLARATION OF CCONFORMANCE
DECLARATION OF CONFORMANCE

Compiler Implementor: Alliant Computer Systems Zorporation

Ada Validation Facilitv: ASD/SCEL, Wright-Pattersor. AFB OF U5L33.6503
Ada Compiler Validation Capability (ACVC) Version: 1.10
Base Configuration

Base Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant FX/80
Host 0S and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant FX/80
Target O0S and Version: Concentrix, Release 5.0

Derived Compiler Registration
Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant FX/40
Host 0S and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant FX/40
Target OS and Version: Concentrix, Release 5.0
Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant FX/8
Host 0S and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant FX/8
Target OS and Version: Concentrix, Release 5.0
Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant FX/4
Host OS and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant FX/4
Target 0S and Version: Concentrix, Release 5.0
Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant FX/1
Host OS and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant FX/1
Target 0S and Version: Concentrix, Release 5.0
Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2
Host Architecture ISA: Alliant FX/82
Host 0S and Version: Concentrix, Release 5.0
Target Architecture ISA: Alliant FX/82
Target OS and Version: Concentrix, Release 5.0
Derived Compiler Name: Alliant FX/Ada Compiler, Version 2.2

Host Architecture ISA:
Host 0S and Version:
Target Architecture ISA:
Target OS and Version:

Alliant VFX/80
Concentrix, Release 5.0
Alliant VFX/80
Concentrix, Release 5.0

A-2

Derived Compiler Name:
Host Architecture ISA:
Host 0S and Version:
Target Architecture ISA:
Tearget 0S and Version:

Derived Compiler Name:
Host Architecture ISA:
Host 0S8 and Version:
Target Architecture ISA:
Target 0S and Version:

Derived Compiler Name:
Host Architecture ISA:
Host 0S and Version:
Target Architecture ISA:
Target OS and Version:

DECLARATION OF CONFORMANC

Alliant FX/Ada Compiler, Version 2.2
Alliant VFX/40

Concentrix, Release 5.0

Alliant VFYX/U0

Concentrix, Release 5.0

Alliant FX./Ada Compiler, Version 2.2
Alliant VFX/4

Concentrix, Release 5.0

Alliant VFX/U

Concentrix, Release 5.0

Alliant FX/Ada Compiler, Version 2.2
Alliant VFX/82

Concentrix, Release 5.0

Alliant VFX/82

Concentrix, Release 5.0

Implementor's Declaration

I, the undersigned, representing Alliant Computer Systems Corporation, have
implemented no deliberate extensions to0 the Ada Language Standard
ANSI/MIL-STD-1815A in the compiler(s) 1listed in this declaration. I
declare that Alliant Computer Systems Corporation is the owner of record of
the Ada language compiler(s) listed above and, as such, is responsible for
maintaining said compiler(s) in conformance to ANSI/MIL-STD-1815A. All
certificates and registrations for Ada language compiler(s) listed in this
declaration shall be made only in the owner's corporate name.

O”'\A"Q)*/%- W‘A Date: %‘\m\m ST\C{ Y

Alliant Computer Systems)Corporation
Andrew F. Halford, Director of Software

Owner's Declaration

I, the undersigned, representing Alliant Computer Systems Corporation, take
full responsibility for implementation and maintenance of the Ada
compiler(s) 1listed above, and agree to the public disclosure of the final
Validation Summary Report. I declare that all of the Ada language
compilers listed, and their host/target performance, are in compliance with
the Ada Language Standard ANSI/MIL-STD-1815A.

. Date: g \‘B“]
Alliant Computer Systems Lorporation v '

Andrew F. Halford, Director of Software

i-3

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only alloved implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain alloved
restrictions on representation clauses. The implementation-dependent
characteristics of the Alliant FX/Ada Compiler, Version 2.2, as described
in this Appendix, are provided by Alliant Computer Systems Corporation.
Unless specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report. Implementation-specific
portions of the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINY_INTEGER is range -128 .. 127;
type FLOAT is digits 15
range -1.79769313486235E+308 .. 1.79769313486235E+308;
type SHORT FLOAT is digits 6 range -3.40283E+38 .. 3.40283E+38;

type DURATION is delta 1.0E-03 range -2147483.648 .. 2147483.647;

end STANDARD;

B-1

APPENDIX F., Implementatior-Cepengent [naracterictice

1. Implementatiopn-Depepdent Eragmas

l.l. INLINE_QONLY Pragma

The INLINE_ONLY pragma, when used in the same way as pragms
INLINE, indicates to the compiler that the subprogram must
always be inlined. This pragma also suppresses the
generation of a callable version of the routine which Ssaves
code space.

l.2. BUILI_IN Pragma

The BUILT_IN pragma is used in the implementation of some
predefined Ada packages, but provides no user access. It 4s
used only to implement cooe bodies for which no actual ACa
o2y car te provigec, for examele the MPTHINZ_CTO20DI cacwsse,

l.3. RESQURCE Pragma

The RESOQURCE pragma specifies the resource class of the task
(or tasks of a task type) or the resource class 0f the main
program. It 1is used to force a8 task to execute oOn a
particular resource class when multiple processors are usea

t0 execute an Ada program, This pragms takes a static
expression of the type FESOURCE_TYPE cdeclared in packaz
SYSTEM, This pragma is only allowed within the

specification of a task unit or immediately within tne
outermost ceclarative part of a main program.

le4. SHARE_CCRE 2ragma

The SHARE_CODE pragma takes the name of a senericg
instantiation or a generic unit as the first argument anc
one of the identifiers TRUE or FALSE as the second argument.
This pragma is only allowed immediately at tne place of a
declarative item in 3 ceclarative part or packaoe
specification, or after a library unit in a compilation, bdDut
hefore any subsequent compilation unit.

When the first argument is a generic unit the pragma aoclies
te all instantiations oOf that <ceneric. anen the ‘irsce
graurent is 1re name of a zZeneric instantialtion tne ~r
acclies crily 12 the siecitiec instantiatior, 2r ovarig
instantiagtions.,

PR

Cer gt

[VY]

If the second argument is TRUE the compiler will try t¢
share coce generated for a generic instantiation with coode
ceneratec for other instantiations of the same Jeneric,
whern the second argument is FALSE each instantiation will
get 2 unique copy of the generatea cocCe. The extent 1to
which coage is shared petween instantiations depends on this
pragma and the kino of seneric formal parameters declareqg
for the generic unit.

The name pragma SHARE_BODY 1is also recognized by the
implementation and has the same effect as SHARE_CODE. 1t is
included for compatability with earlier versions of FX/Ada.

l-5. EXICRNAL_NAME Pragnma

The EXTERNAL_NAME pragma takes the name of a subprogram or
variable defined in Ada and allows the user to specify an
external name that may be used to reference the entity from

cther Languages. The pragma is allowed at the place of a
declarative item in a package specification and must aoply
to an object declared earlier 1in the same package

specification.

2. INTEREACI_NAML Pragnma
The INTERFACE_NAME pragma takes the name of a a wvariable
defined 1in another language and allows it to be referenced
directly in Acaa The pragma will replace all occurrences of
the variable name with an external reference to the second.,
link_argument. The pragma is allowed at the bplace of a
declarative item in a package specification anad must apply
to an object declared earlier in the same tackage
specification, The object must be declared as a scalar or
ar access type., The object ganngoil Se any of the following:

a Looo variable,

a constant.,

an initialized variable,

an arrays, or

8 record.
The INTERFACE_NAME pragma s also used to provide an
external link name to a subprogram which has been cefinec
using the INTERFACE pragma.

lo7. IYPLICII_CODE Pragma

Takes one of the identifiers ON or OFF as tne simgle
argument, This pragma is only allowed within a machine coce
procegure. It specifies that Implicit cooe Jenerated by the
compiler ce allowed or disallowec. A warnming is i1ssueg 1f
OFT s useZ an<o ry i1molicit coce rne«2s T0 o) jeneratan,

~ et

Tre netzyuct 15 ‘e

K
.
=
[3]
[P
'

oo
kes one argument which c¢an be the name ¢
eitrer a Srary SuZorosrem or a subprogram ceclar
1mmeciately thin a linsrary package spec or bozy.
incicates tc the <comgciler that the subprogram will not bt
callec recursively allowing the compiler to pertform specific
octimizations. The pragma can be applied to a subprogram or
a set of overloaded subprogram within & package spec oOr
package body.

Tnis pragma

P O

o}
*
19

Y X e
Y ra ¢

i-2. NCT_ELABORAIL

This pragma can only appear in a library package
specification. It 4Jndicates that the package will not be
elaborated because it is either part of tne RTS, a

configuration package or an Acda package that 3is referencea
from a language other than Ada. The presence of this pragma
suppresses the generation of elabecration code and 3issues
warnings if elaboration code is required.

2. Icplemepntsation of Pregefined Bragpas

This pragma is recognizea by the implementation but has no
effect.

2.2. ELABQORAIL

This pragma is implemented as described in Appencdix B of the
Aca RM,

d.2- INLINE

Tris pragma is implemented as Zescribec in Appengix 8 of the

2de4. INIEREACE

This pragma supports calls to 'C', Pascal, and FORTRAN
functions, The Ada subprograms can be either functions or
grocedures, ihe types of parameters and the result type for
functions must be scalar, access or the predefinez type
ADCRESS in SYSTEM. ALl parameters must have mode [N. Recorc
gnrd array objects can be passec by reference using thre
ACORESS attripuze.

ded. LIST

~

%1% 2rasTa 15 i1molemente: gs sescZrtizez in Agne~zix B oot tte

B-4

2-¢6. MEMORY_SIIE
This pragma 1is recognizec Dy the implemeniatior, Tre

implementation aoes not allow SYSTEM to bDe moiifiez oy mears
of pragmas, the SYSTEM package must ce recompiiec,.

£-Z. QBRIIMIZE

This pragma is recognized by the implementation but has no
effect.

2-8. PBACK

This pragma will cause the compiler to choose a non-aligned
representation for composite types, It will not causes
objects to be packed at the bit level.

2-2. PBAGE

This pragma is implemented as descripbed in Appencix B of the
Ada RM.

2-10. PBRIQRITY

This oragma is implemented as cescrioed in Appendix I 0ot the
Acda RM,

2.11. 3HARED

This pragma is recognized by the implementation but has no
effect.

2.12. QSIQRAGE_UNIT
This opragma 1is recognizec by the implementation. Tre

implementation does not allow SYSTEM tz be modifiez by mea-s
cf pragmas, the SYSTEM package must be recompiled.

¢-12. 2UBPRESS

This pragma is 3implemented as described, except that
RANGE_CHECK and DIVISION_CHECK cannot be supressed.

2d.14. SYSTEM_NAME
This opragma is recoonized Lty the implementation. The
implementation does not allow SYSTEM to be mocdified Dy means

of pragmas, the SYSTEM package must be recompiled.

k4 : - N .
2« Icplenmentatign=Q2oenzent Aliributes

B-5

2.2. P2'RIE
For a orefix that denotes an object, a program wunit, a
label, or an entry:

This attribute denotes the effective adaress of the first of
the storage wunits allocated to P, For a subporogram,
package, task unit, or lLabel, it refers to the address of
the machine code associated with the corresponding tody or
statement., For an entry for which an address <clause has
been given, it refers to the <corresponaing hardware
interrupt. The attribute is of the type OPERAND defined 1in
the package MACHINE_CODE. The attribute is only allowed
within a machine code procegure.

See section F.4.8 for more information on the wuse of this
attribute. .

(For a package, task unit, or entry, the *REF attribute s
not supported.)

o
K
[8]
Ix
[
10
L]
N
1<
wy
—
m
x

4. Spegification Cf

package SYSTEM
is
type NAME is (fx_unix)i

SYSTEM_NAME : constant NAME := fx_unix.,
STORAGE_UNIT : constant := 8;
MEMCRY_SIZE : constant := 16_777_21¢.:

-= System-Depencent Named Numbers

MIN_INT : constant = =2_147_4C3_¢t48,
MAX_INT : constant = 2_147_483_4547
MAX_DIGITS ¢ constant := 15;
MAX_MANTISSA T constant := 31;

FINE_DELTA : constant = 2.0%%x(=31);
TICK t constant := 0,.01;

-= Other System=-dependent Declarations

subtypg PRIORITY is INTEGER range 0 .. 99:

MIN_PRIORITY : ¢constant priority

MAX_PRICRITY T constant priority :

*voe RISOURCZ_TYP:Z 15 (any_resource,
cetacnec_te_resaurcea,

complex_resource.,
ip_resourcel,

B-6

= priority'firse
= priority*'last,

unavsilacle_resource : exception,
MAX_REC_SIZE : integer := 64%x10243
type ADDRESS 1is corivates

NO_ADDR : constant ADDRESS:

function PHYSICAL_ADDRESS(]l: INTEGER) return ADDRESS;
function ADDR_GT(A, B: ADDRESS) return BOOJLEAN;

function ADDR_LT(A, 8: ADDRESS) return BOOLEAN;

function ADDR_GE(A, B: ADDRESS) return BOOLEAN;

function ADDR_LE(A, B: ADDRESS) return BOOLEAN;

function ADDR_DIFF(A, B: ADDRESS) return INTEGER:

function INCR_ADCRC(A: ADORESS, INCR: INTEGER) return ADORESS:
function DECR_ADDRC(A: ADDRESS: DECR: INTEGER) return ADDRESS:

ADDRESS) return BOOLZIAN renames AODR_GT:
ADDRESS) return BOOLEAN renames ADDR_LT;
ADDRESS) return BOOLEAN renames ADDR_GE;
ADDRESS) return BOOLEAN renames ADDR_LE;
ADDRESS) return INTEGER renames AUDF_CIFF;

function “>" (4, B
function "¢ (A, B
function “>="(A, B8
function "¢="(A, B
function "=" (A, B
A
9)
R

function "e+'" (A:
InC INTEGER) return ADDRESS renames [:0=_~177;
function "="(t: ADCRESS:

INTEGER) return ADDRESS renames DECh_ADDR,

pragma inline(ADDR_GT):

pragma inline(ADDR_LT):

pragma inline(ADDR_GE)

pragma inline(ADDR_LE)

pragma inline(ADDR_CIFF):

cragma inline(INCR_ADDR)

oragma inltine(DzCA_ADLR);

pragma inline(PHYSICAL_ADDRESZ):

crivate
type ADDRESS is new integer;
NO_ADDR : constant ADDRESS := 0.

end SYSTEM;

S. PRestrigtions On Renresentaticgn (lauses

in tre agcsence 0% poraava rA(CK rececrc compcnents ars ngtoeg
s 5% to orovice tor eftficient atcess v tne taria
narcudare. “racme rACK agcolied 1o a recorc eliminates e
pacdcing where opossible. Pragma FPACK has no otrer eftect cn

B-7

the storage allocated for recorc componerts, soO a3 reccrg
representation is required to make record components
smaller. 83t packing is not supporteo for comoonents larger
than STORAGE_UNIT. Components smaller than STORAGE_
be £it packed within a storage wunit, Objects an
components are packed to the nearest whole STORAGE_

2.2« Lepgtb Llauses

For scalar types, a length <clause which s a size
specification will compress Sstorage to the number of bits
required to represent the range of the subtype. For fixed.,
float, and access types, this is 32.

A size specification applied to a <composite type with
components of composite types will not cause compression of
component storage. To allocate the minimal number of Dits
for records ot composite types, an explicit recora
representation clause must be given with length clauses for
each component. An error will be dssued if there s
insufficient space allocated. Component clauses need not be
aligned on STCRAGE_UNIT boundaries. A component of 3 recorc
representation clause may not specify fewer Dpits for &
component type than would be usec for values of the +yne,

Size specifications (T'SIZE) are not supported for task
typese. Specifications of storage for a task activation
(T*STORAGE_SIZE) is supported. The minimum storage size for
task activations is 5120, but can be larger depencing on the
size of data objects declared in the task.

The size specification T'SMALL is not supported except when
the representation specification is the same as the value
*SMALL for the base type.

Specification of collection size is supportec.
2.2. Agddress Clauses
Address clauses are supported for wuninitialized wvariables

and constants., They are not supported by the compiler for
subprograms, packages, and task units.

2+4. Interructs

Interrupt entries are suoported for UNIX signals. The Ada
for «clause gives the UNIX signal number. The followinc is
the meaning associatec with the valid UNIX signals:

IZHUF nansuc
FGINT interruct

N
(VARV}

2 SIGGUIT guit

4 SICILL illegal instruction (not reset when causht)
S SIGTRAPRP trace trap (not reset when caught)

6 SIGIOT I0OT instruction

7 SIGEMT EMT instruction

g SIGFPE floating point excection

9 SIGKILL kill (cannot be caught or ignored)
i0 SIGBUS bus error

11 SIGSEGYV segmentation violation

12 SIGSYS bad argument to system calt
13 SIGPIPE write on a pipe with no one to read it
14 SIGALRM alarm clock

15 SIGTERM software termination signal from kill

16 SIGURG urgent condition on I0 channel

17 SIGSTOP sendable stop signal not from tty
18 SIGTSTP stop signal from tty

19 SIGCONT continue a stopped process

20 SIGCHLD to parent on child stop or exit

21 SIGTTIN to readers pgrp upon background tty read
22 SIGTTOU tike TTIN for output if (tp=>t_Llocal<OSTOP)
23 SIGIO input/output possible signal

24 SIGXCPY exceeded CPU time Limit

2°c SIGXFSZ exceeged file size Limit

26 SISVTALRA virtual time alarm

27 SIGPRQOF profiling time alarm

28 SIGWINCH window changed
S.5. Representation Attcibules

The ADDRESS attribute is not supported for packages ard task
entries. The <compiler issues a warning message and the
value which is type SYSTEM.ADDRESS is SYSTEM.NO_ADDR.

-

2«6« Machine (Code Inseriigns

Machine code insertions are supported.

The general definition of the package MACHINE_CODE oprovides
an assembly language interface for the target machine. It
provicdes the necessary record type(s) needed in the code
statement, an enumeration type of all the opcode mneumonics.,
a set of register definitions, and a set of addressing mode
functionse.

coce statement is as

The general machine

foliows:

syntax of a

-~
-

)
[RA]

n'C gognozZer 2Cz2r3ns s o 202rac))

=

kv

~here n indicates the numcer of operands in the agaresate.

B-9

_

4 srecial case arises *for & variable numper of 0Derancs.
The operance are listeo within & subzcgrecate. Tne forvat
is a8s fcliows:

CODE_N'(gpgosss (gperand {(, gpergngsl))i

For those opcoces that reqQuire n¢o operands., namec notation
must be used (cfoe RM 4.3(4)).

CODE_0*(op => gpgaode).

The gpgode must be an enumeration literal (i.e. it cannct be
an object, attribute, or a rename).

An gperand can only be an entity defined in MACHINE_CODE or
the 'REF attribute.

The arguments to any of the functions defined in
MACHINE_CODE must be static expressions, string literals, or
the functions defined in MACHINE_CODE. The *REF attribute
may not be used as an argument in any of these functionse.

Inline expansion 0of machine code procedures 1s supoorted.

6. Conventiogps for lmplemeptaiior-geperaled Names

There are no implementation=-generated names.

Z. Ipterpretation ¢f Cxoressioos 1p Address (lauses

Acdcdress clauses are supportec for constants ana variacles.

£. FResirictigns gn Uncoecked Lgoye

(B}
[73
t—~
[¢}
]
wn

Ncne.

9. Pesirigiiors on Upchecked DReallogcations

None,

10. JIoplementazion Limizs

The following lLimits are actuatly enforced by the
imolementation, It is not intencecd to imply that resources
Jo tc or even near these Lirits are availapis e} cyvry

2r5cram.

1¢.2. Lire Lengin

wn
>
<

The implementation suppcrts a maximum Llire lengtn of
characters inclucing the enc of line character,

10.2. Becord and Arrcay Sizes

The maximum size of & statically sized array type 1is
4,000,000 x STORAGE_UNITS. The maximum size of a statically
sized record type is 4,000,000 x STORAGCE_UNITS. A recorg
type or array type ceclaration that exceeds these Llimits
will generate a warning messages.

10.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length
specification every task except the main program is
allocated a3 fixed size stack of 10,240 STORAGE_UNITS. This
is the wvalue returned by T'STORAGE_SIZE for a task type T,
The minimum stack size for tasks is 5120.

10.4. Defaylt Collegtign Size

In the atserce of ar explicit STORACZ_SIZZ length att-icceze
the oefault collection size for an access type 1s 100 times
the size of the designated type. This is the value returnec
by T*STORAGE_SIZE for an access type T.

10.5. Limit on Declared Qbjects

There is an absolute limit of 6,000,000 x STORAGE_UNITS for
objects ceclared statically within a ccmoilation unit. 14
this value is exceeded the compiler will <tervinate the
compilation of the wnit with a FATAL error message.

B-11

APPENDIX C
TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

SACC SIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access

type.

SBIG 1D1 (1..498 => "A’, 499 => '1')
An identifier the size of the
maximum input line length which
is identical to S$BIG ID2 except
for the last character.

SBIG ID2 (1..498 => 'A’, 499 => *2')
An identifier the size of the
maximum input line length which
is identical to SBIG ID1 except
for the last character.

SBIG_ID3 (1..249 => 'A’, 250 => '3/,
An identifier the size of the 251..499 => 'A’)
maximum input line length which
is identical to SBIG_ID4 except
for a character near the middle.

c-1

TEST PARAMETERS

Name and Meaning

Value

SBIG ID4
An identifier the size of the
maximum input line length which
is identical to SBIG_ID3 except
for a character near the middle.

SBIG_INT_LIT
An integer literal of value 298
with enough 1leading zeroes so
that it is the size of the
maximum line length.

$BIG_REAL_LIT
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

SBIG_STRING1
A string literal which vhen
catenated with SBIG STRING2
yields the image of $BIG_ID1.

SBIG_STRING2

A string literal wvhich when

catenated to the end of
SBIG_STRING1 yields the image of
SBIG_IDI.
SBLANKS
A sequence of blanks twenty
characters less than the size
of the maximum line length.
SCOUNT_LAST
A universal integer
literal vhose value is
TEXT_I0.COUNT’LAST.
SDEFAULT_MEVM_SIZE
An integer literal whose value
is SYSTEM.MEMORY SIZE.
SDEFAULT_STOR_UNIT
An integer literal whose value
is SYSTEM.STORAGE UNIT.

(1..249 => "A", 250 => ‘47,
251..499 => ’A’)

(1..496 => '0’, 497..499 => "298")

(1..493 => '0’, 494..499 => "69.0E1")

(1 => '™, 2..200 => A", 201 => '"*)

(1 => ", 2..300 => ’a’,
301 => r17, 302 => '"')

(1..479 => " ")

2 147 483 647

16_777_216

TEST PARAMETERS

Name and Meaning Value

SDEFAULT SYS_NAME
The ~ value of the constant
SYSTEM.SYSTEM_NAHE.

SDELTA_DOC
A real literal whose value is
SYSTEM.FINE_DELTA.

SFIELD LAST
A universal integer
literal vhose value is

TEXT_IO.FIELD'LAST.

SFIXED NAME
The name of a predefined
fixed-point type other than
DURATION.

SFLOAT NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT FLOAT, or
LONG_FLOAT. -

SGREATER_THAN_DURATION
A universal real 1literal that
lies between DURATION’BASE’LAST
and DURATION’LAST or any value
in the range of DURATION.

SGREATER THAN DURATION BASE_LAST
A universal real literal that is
greater than DURATION’BASE’LAST.

SHIGR PRIORITY
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL EXTERNAL FILE NAME1
An external file name which
contains invalid characters.

SILLEGAL EXTERNAL FILE NAME2
An external file name which
is too long.

SINTEGER FIRST

A universal integer literal
whose value 1is INTEGER'FIRST.

c-3

FX_UNIX

0.0000000004656612873077392578125

2_147_483_647

NO_SUCE_FIXED TYPE

NO_SUCH_TYPE

2100_000.0

10_000_000.0

99

/illegal/file name/2{]$X2102C.DAT

/illegal/file_name/CE2102C*.DAT

2147483648

TEST PARAMETERS

Name and Meaning

Value

SINTEGER LAST

A universal integer literal

vhose value is INTEGER'LAST,
SINTEGER LAST PLUS 1

A universal integer literal

vhose value is INTEGER’LAST + 1.

SLESS THAN DURATION
A universal real 1literal that
lies between DURATION'BASE’'FIRST
and DURATION’FIRST or any value
in the range of DURATION.

$LESS_THAN DURATION BASE FIRST
A universal real literal that is
less than DURATION’BASE’FIRST.

SLOV_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA DOC
An integer literal whose
is SYSTEM.MAX MANTISSA.

value

SMAX DIGITS
Maximum digits supported for
floating-point types.
SMAX_IN_LEN
Maximum input line length

permitted by the implementation.

SMAX_INT
A universal
wvhose value

integer 1literal
is SYSTEM.MAX INT.
SHAX_INT_PLUS_I

A universal integer literal

vhose value is SYSTEM.MAX INT+1.

SMAX_LEN_INT BASED LITERAL

A universal integer based
literal whose value is 2#11%
vith enough 1leading =zeroes in

the mantissa

to be $MAX IN LEN
long.

2147483647

2 147 483 648

-100_000.0

-10_000_000.0

31

13

499

2147483647

2_147_483_648

(1..2 => "2:", 3..496 => '0',
497..499 => "11:")

C-4

Name and Meaning

TEST FARAMETERS

Value

SMAX LEN REAL BASED LITERAL
4 universal real based literal
vhose value 1is 16:F.E: with
enough leading zeroes 1in the
mantissa to be SMAX IN _LEN long.

SMAX_STRING_LITERAL
A string literal of size
SMAX IN LEN, including the quote
~ characters.

SMIN_INT
A universal
wvhose value is

integer literal
SYSTEM.MIN INT.

$MIN TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT _FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NAME_LIST
A list of enumeration 1literals
in the type SYSTEM.NAME,

separated by commas.

SNEG "BASED_INT
A based integer literal whose
highest order ncnzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

SNEV_MEM_SIZE

An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than

SDEFAULT MEM_SIZE.
no other value,
SDEFAULT_MEM_SIZE.

If there is
then use

(i..3 => "16:", 4..495 => 0’
496..499 => "F.E:")

(1 => """, 2..498 => ‘A’, 499 '"*)
-2147483648
32

TINY INTEGER

FX_UNIX

164#FFFFFFFD#

16_777_216

TEST PARAMETERS

Nam2 and Meaning Value

SNEW_STOR_UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE_UNIT, other than
SDEFAULT_STOR_UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE UNIT.

SNEV_SYS NAME FX_UNIX
A value of the type SYSTEM.NAME,
other than SDEFAULT_SYS NAME. If
there is only one value of that
type, then use that value.

STASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one ‘IN OUT’
parameter,

STICK 0.01

A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

VITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
Al-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lipes 50 & 54 and the execution of task CHEANGING OF_THE_GUARD
results in a call to REPORT.FAILED at one of lines 52 or 56.

e. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object’s size be no
greater than 10 although its subtype’s size was specified to be 40
(line 137).

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These

D-1

WITHDRAWN TESTS

tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE 1length clause 1is given) by passing them to a
derived subprogram (which implicitly converts them to the parent tiype
(Ada standard 3.4:14)). Additionally., they wuse the ’‘SIZE length
clause and attribute, whose interpretation is considered probliematic
by the WG9 ARG.

CD2A81G, CD2AB3G, CD2A84M..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate wvhile the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

CD2B15C and CD7205C: These tests expect that a ’'STORAGE_SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

. CD2D11B: This test gives a SMALL representation clause for a derived

fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

. CD5007B: This test wrongly expects an implicitly declared subprogram

to be at the address that is specified for an unrelated subprogram
(line 303).

. ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check

various aspects of the use of the three SYSTEM pragmas; the AVO
wvithdraws these tests as being inappropriate for validation.

CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK-~particular instances of change may be less (line 29).

. CD7203B and CD7204B: These tests use the ’'SIZE length clause and

attribute, vwhose interpretation is considered problematic by the WG9
ARG.

. CD7205D: This test checks an invalid test objective: it treats the

specification of storage to be reserved for a task’s activation as
though it were like the specification of storage for a collection.

CE21071I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

WVITHDRAWN TESTS

. CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

. CE3301A: This test contains several calls to END OF LINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARD INPUT (lines 103, 107, 118,
132, and 136).

. CE3411B: This test requires that a text file’s column number be set to
COUNT’LAST in order to check that LAYOUT ERROR is raised by a
subsequent PUT operation. But the former operation will generally
_raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY ALLIANT

Compiler: Alliant FX/Ada Compiler

ACVC Version: 1.10

E-1

-

ada options

-a fiie_name.a
(archive) Treals file_name.a as an archive file rather than ar Ada source file.

-d (depenacncies) Anaivzes the source files for depenaencies oniv. No syniax analysis occurs
and no object fiies are procuced. Used by a.maxe to establish dependencies among new fijes.

- (error} Writes error lines and diagnosucs to standarc output. Oniy one of ~e or ~E should be
used.

-E [fileidirectory]
(error) Writes error lines and diagnostics to standard output 2nd writes the raw error messages
to the specifiea [iie. The name of the f{ile gefaulls 1o 30a_scurce .err: if a direciory name 1s

specified, the output is piaced in aoga_source.efr in thal direciory. Oniy one of the -e or -E
option should be used.

-el (error listing) Writes a full listing with interspersed diagnostics to standard output, if any er-
rors occur. Only one of -ai or -&] option should bde used.

-El [file{directary]
(error listing) Writes a full listing with interspersed diagnostics to standard output and writes
the raw error messages lo the specified {ile, if any errors occur. The name of the file defaults
to aga_source.err; il a directory name is specified, the output is placed in aga_source.err in
thai directory. Only one of the ~e or ~E option shouid be used.

-ev (error vi) Embeds the raw error messages in the source file and calls vi on the source file.

-Ix (link) Inciudes the library libx.a {rom /ilb, /usr/ilib, or /usr/iocai/lib. This option is a link
option and must not precede the name of a {ile that references the library. See the Concentrix
ld command. .

-M unit_name
(main) Produces an executable program using the named program unit as the main program.

The main program must be either 2 parameteriess procedure or a parameteriess funcuon re-
turoing an integer.

-M ada_source.a
(main) Like =M unit_name, except that the unit name is assumed 10 be the root name of the
source file that [ollows.

-0 executgble_file

{output) Names the output executable file: by defaull, the output executabie fiie is namec
a.out. The -M option must also be specified.

-O{n) (optimize) Optimizes the output code. An optional digit limits the number of opumization
passes: 9 specifies maximum optimization. The defauli number of opumizatior passes s 1.

-pg Produces a program that (at program execution time) monitors the calling of rounines ang
writes 2 gmon.out file. The Concentrix command grpof -A processes this file.

-R library

(recompile instantiation) Forces an analysis of all generic instantiations, causing reinstantia-
tion of any thai are out of date.

-S (suppress) Applies the suppress pragrna 1o the entire compiiation.
-sh (show) Shows the pathname of the tool actually called.
-T (timing) Prints timing information for the compilation.
-u (updaie) Updates the liprary ada.lib even if syntax errors are present.
-y (verbose) Prints the compiier Version-number. the date and time of compiiation, and summary
information concerning ithe compiiation.
- (warnings) Suppresses warning messages.
E-2

