
UNCLASSIFIED ,- ..

S I C ASS! f A' : N0 A' Ito r* f "Ld '? Pd"

RE PORT D0[.UMEW1A1 ION PAGE bN.ICw rt
I . RE POR' 6'w; F, 2. &D vI AC C IS~ I Lot ooUItC aF hV S CAIA..O(. kjftjiP

5. YYP'. Of NEVOR' A PLIROD COVERED

Ad Cor-L-ler Vai'idaticr. Summ~rary Report : Internat- 20 April 198'~ to 10 April 1990

bu fesE '.:iciines C ornorat ion, :BY Deveopment Svste, Nimilt:it A.-jza Lan~ -ug I' Ad~a Compil er, ;rcin .. ,

C: 1 M)F~j;S. C~k'.ATl Of% &RAN. kjM~tkjj)
0 1 .1c1, a t e rs o: AL'

T-Daytor., OP 12SA

N'% S. Ftitllk Of%',AN:ZA'1o Ah: A:)DP.SS 10. FROLRAi 1,10;h. P$':.YiZ1. 7ASI

~'~Wright-Patterson APB AE .& 1: 0E~

Dayton, OH, USA

Ada Joint Program Office
United States Denprtinent of Defense 1j iFCEU AL
WasingTton, DC 2U 301-3061

14. W-%NQOAh U&AhM ~RSCf4CClfmCfToirSO1~) ~ Z$i~((o0tPh,repo't,

U NCLASIF IFED
Wright-Patterson APB JL[.

Dayton, OH, USIA N/A

it. DS.R161O0 SIW~mMhl (of :'.. Aepon)

P.-proved for public release; distribution unrlimited.

' LEC TE

:5 t.~~(Co;7 n on 'everif s~oa iferjn anideni.t, b.. block numbe')

Ada r cr--- anquace, Ada Compiler Validation Su.mnar) Rep,-it, Ada
Con.piler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANS11/'LL-S7D-
l8lSA, Ada Joint Program Office, AJPO

2C. AESIA: I (Coimt,mmej onreverse sod# ifneeCssory .fteedefllf) b) block number)

International Business Machines Corporation, IBM Development System. for the Ada Language
AIX/RT Ada Compiler, Version 1.1.1, Wright-Patterson APB, IBM RT PC 6150-125 under AIX,
Release 2.2 (Host & Target), ACVC 1.10

DD u" 1473 tD111ON of 3 sD' E$ ISOESDJ7
1 ~ 3 S/k 0102-LF014-9601 U NCLA SSIFPIED

StU0111 CL&A.'SI11A2'D% Of 1h.S I'Aa. (ArC*AM~e,

AVF Control Number: AVF-VSR-255.0689
89-01-03-TEL

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890420V1.10066
International Business Machines Corporation
IBM Development System for the Ada Language

AIX/RT Ada Compiler, Version 1.1.1
IBM RT PC 6150-125

Completion of On-Site Testing:
20 April 1989

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

NTIS CRA&I

By

Distribution I

Avdihbijity Codes

Av jI j ig or

Dit I I II I I I I

Ada Compiler Validation Summary Report:

Compiler Name: IBM Development System for the Ada Language,
AIX/RT Ada Compiler, Version 1.1.1

Certificate Number: 890420V1.10066

Host: IBM RT PC 6150-125 under
AIX, Release 2.2

Target: IBM RT PC 6150-125 under
AIX, Release 2.2

Testing Completed 20 April 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

A4 X'alidat ionlOrganiization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Aca Joint Program Office

Dr. John Solomond
Director
Washington D.C. 20301

Ada Compiler Validation Summary Report:

Compiler Name: IBM Development System for the Ada Language,
AIX/RT Ada Compiler, Version 1.1.1

Certificate Number: 890420W1.10066

Host: IBM RT PC 6150-125 under
AIX, Release 2.2

Target: IBM RT PC 6150-125 under
AIX, Release 2.2

Testing Completed 20 April 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Vright-Patterson AFB OE 45433-6503

Ada Validation Organizatio

Dr. John F. Kramer
Institute for Defense Analys
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Washington D.C. 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT i-2
1.3 REFERENCES. 3....................2-3
1.4 DEFINITION OF TERMS -3
1.5 ACVC TEST CLASSES1-4

CHAPTER Z CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4. WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS. 3-5
3.7 ADDITIONAL TESTING INFORMATION 3-6
3.7.1 Prevalidation 3-6
3.7.2 Test Method 3-6
3.7.3 Test Site3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER I

INTRODUCTION

This Validation Summary Report rVSR" describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of te1ing this compiler using the Ada Compiler
Validation Capability['(ACVC)o- An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

• To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

* To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 20 April 1989 at San Diego CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson APB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STTD-5 A-5,-February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January197.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
I"c., December 1986. "

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRCDUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject prorrams
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not neeessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: IBM Development System for the Ada Language,

AIX/RT Ada Compiler, Version 1.1.1

ACVC Version: 1.10

Certificate Number: 890420W1.10066

Host Computer:

Machine: IBM RT PC 6150-125

Operating System: AIX
Release 2.2

Memory Size: 10 Megabytes

Target Computer:

Machine: IBM RT PC 6150-125

Operating System: AIX
Release 2.2

Memory Size: 10 Megabytes

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to six
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined type
LONG INTEGER in package STANDARD. (See tests B86001T..Z (7
tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) Some of ie default initialization expressions for record
componei;-. are evaluated before any value is checked for
membersLp in a component's subtype. (See test C32117A.)

(2) Assign'ents or subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses no extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) Sometimes NUMERIC ERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) Sometimes NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z.)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.ITTEGER'LAST and/or SYSTEM.MAX INT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises NUMERICERROR sometimes.
(See test C36003A.)

(2) NUMERIC ERROR is raised when a null array type with
INTEGER7LAST + 2 components is declared. (See test C36202A.)

(3) NUMERIC ERROR is raised when a null array type with
SYSTEM.RAX INT + 2 components is declared. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no exception. (See test C52103X.)

2-3

CONFIGURATION INFORMATION

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT ERROR when the
length of a dimension is calculated and exceeds INTEGER'LAST.
(See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, index
subtype checks are made as choices are evaluated. (See tests
C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,.
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is not supported for functions or
procedures. (See tests LA3004A..B, EA3004C..D, and
CA3004E..F.)

2-4

CONFIGURATION INFORMATION

i. Generics

(1) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CAI012A.)

(2) Generic non-library subprogram bodies cannot be compiled in
separate compilations from their stubs. (See test CA2009F.)

(3) Generic library package specifications and bodies cannot be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(4) Generic non-library package bodies as subunits cannot be
compiled in separate compilations. (See test CA2009C.)

(5) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

j. Input and output

(1) The package SEOUENTIAL 10 cannot be instantiated with
unconstrained array types or record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 cannot be instantiated with
unconstrained array types or record types with discriminants
without defaults. (See tests AE2101H, EE240D, and EE2401G.)

(3) Modes IN FILE and OUT FILE are supported for SEOUENTIALI0.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes IN FILE, OUT FILE, and INOUT FILE are supported for
DIRECT I0. (See tests CE2102F, CE2102I..J, CE2102R, CE2102T,
and CE1102V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE3102E and CE31021..K.)

(6) RESET and DELETE operations are supported for SEQUENTIALIO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECT_10. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

(9) Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

2-5

CONFIGURATION INFORMATION

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(11) Temporary direct files are given "ames and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and deleted when closed.
(See test CE3112A.)

(13) More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E, CE2102L, CE2110B, and CE2111D.)

(14) More than one internal file can be associated with each
external file for direct files when writing or reading. (See
tests CE21OTF..H (3 tests), CE211OD, and CE2111H.)

(15) More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A..E, CE314B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 43 tests had been withdrawn because of test errors. The AVF
determined that 432 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 327
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for 7 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
___ _ -A B C D E L

Passed 127 1128 1906 15 22 44 3242

Inapplicable 2 10 410 2 6 2 432

Withdrawn 1 2 34 0 6 0 43

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 189 527 472 245 170 99 159 333 129 36 250 341 292 3242

Inappl 23 122 208 3 2 0 7 0 8 0 2 28 29 432

Wdrn 1 1 0 0 0 0 0 1 0 0 1 35 4 43

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

E28005C A39005G B97102E BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M
CD2A84N CD2B15C CD2D11B CD5007B CD5O11O ED7004B
ED7005C ED7005D ED7006C ED7006D CD7105A CD7203B
CD7204B CD7205C CD7205D CE2107I CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 432 tests were inapplicable for the reasons indicated:

a. The following 327 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113C..Y C35705C..Y C35706C..Y C35707C..Y
C35708C..Y C35802C..Z C45241C..Y C45321C..Y
C45421C..Y C45521C..Z C45524C..Z C45621C..Z
C45641C..Y C46012C..Z

3-2

TEST INFORMATION

b. C35508I, C35508J, C35508M, and C35508N are not applicable because they
include enumeration representation clauses for BOOLEAN types in which
the representation values are other than (FALSE -> 0, TRUE .> 1).
Under the terms of AI-00325, this implementation is not required to
support such representation clauses.

c. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORTFLOAT.

d. C35702B and B8600lU are not applicable because this implementation
supports no predefined type LONGFLOAT.

e. The following 16 tests are not applicable because this implementation
does not support a predefined type SHORTINTEGER:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55BO9D B86001V
CD71IE

f. C45231D, B86001X, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a name
other than INTEGER, LONGINTEGER, or SHORTINTEGER.

g. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAXMANTISSA is less than 47.

h. D64005F and D64005G are not applicable because this implementation does
not support nesting 10 levels of recursive procedure calls.

i. C86001F is not applicable because, for this implementation, the package
TEXT 10 is dependent upon package SYSTEM. These tests recompile
package SYSTEM, making package TEXTIO, and hence package REPORT,
obsolete.

j. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

k. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG FLOAT, or SHORT FLOAT.

1. CA2009C, CA2009F, BC3204C, and BC3205D instantiate generic units in
compilation units whose bodies are compiled after the instantiation, or
are recompiled after compilation of the instantiating unit. This
implementation creates an allowable dependency on the body of the
generic unit, and thus rejects the program at bind time.

m. LA3004A, LA3004B, EA3004C, EA3004D, CA3004E, and CA3004F are not
applicable because this implementation does not support pragma INLINE.

n. CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests) are
not applicable because this implementation does not support size

3-3

TEST INFORMATION

clauses for floating point types.

o. CD2A61I and CD2A61J are not applicable because this implementation does
not support size clauses for array types, which imply compression, with
component types of composite or floating point types. This
implementation requires an explicit size clause on the component type.

p. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation does not support size clauses for access
types.

q. AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected by
this compiler.

r. AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT 10
with unconstrained array types and record types with discriminants
without defaults. These instantiations are rejected by this compiler.

s. CE2102D is inapplicable because this implementation supports CREATE
with IN FILE mode for SEQUENTIAL IO.

t. CE2102E is inapplicable because this implementation supports CREATE
with OUTFILE mode for SEQUENTIALIO.

u. CE2102F is inapplicable because this implementation supports CREATE
with INOUTFILE mode for DIRECT I0.

v. CE2102I is inapplicable because this implementation supports CREATE
with INFILE mode for DIRECT_10.

w. CE2102J is inapplicable because this implementation supports CREATE
with OUTFILE mode for DIRECT IO.

x. CE2102N is inapplicable because this implementation supports OPEN with
INFILE mode for SEQUENTIALI0.

y. CE21020 is inapplicable because this implementation supports RESET with
IN-FILE mode for SEOUENTIAL IO.

z. CE2102P is inapplicable because this implementation supports OPEN with
OUT FILE mode for SEOUENTIAL tO.

aa. CE2102Q is inapplicable because this implementation supports RESET with
OUTFILE mode for SEQUENTIALIO.

ab. CE2102R is inapplicable because this implementation supports OPEN with
INOUTFILE mode for DIRECT_10.

ac. CE2102S is inapplicable because this implementation supports RESET with
INOUT FILE mode for DIRECTIO.

3-4

TEST INFORMATION

ad. CE2102T is inapplicable because this implementation supports OPEN with
INFILE mode for DIRECTIO.

ae. CE2102U is inapplicable because this implementation supports RESET with
IN FILE mode for DIRECTIO.

af. CE2102V is inapplicable because this implementation supports open with
OUT FILE mode for DIRECT IO.

ag. CE2102V is inapplicable because this implementation supports RESET with
OUT FILE mode for DIRECTIO.

ah. CE2201G is inapplicable because this implementation does not support
CREATE with OUT FILE mode for SEQUENTIAL IO.

ai. CE24O1H is inapplicable because this implementation does not support
CREATE with INOUT FILE mode for unconstrained records with default
discriminants.

aj. CE3102E is inapplicable because this implementation supports CREATE
with INFILE mode for text files.

ak. CE3102F is inapplicable because this implementation supports RESET for
text files.

al. CE3102G is inapplicable because this implementation supports deletion
of an external file for text files.

am. CE31021 is inapplicable because this implementation supports CREATE
with OUTFILE mode for text files.

an. CE3102J is inapplicable because this implementation supports OPEN with
INFILE mode for text files.

ao. CE3102K is inapplicable because this implementation supports OPEN with
OUT FILE mode for text files.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitiaate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

Modifications were required for 7 tests.

3-5

TEST INFORMATION

The following tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

BA11O1C BA3006A BA3006B BA3007B BA3008A BA3008E
BA303A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
IBM Development System for the Ada Language, AIX/RT Ada Compiler was submitted
to the AVF by the applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the IBM Development System for the Ada Language, AIX/RT Ada Compiler
using ACVC Version 1.10 was conducted on-site by a validation team from the AVF.
The configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host computer: IBM RT PC 6150-125
Host operating system: AIX, Release 2.2
Target computer: IBM RT PC 6150-125
Target operating system: AIX, Release 2.2
Compiler: IBM Development System for the Ada

Language, AIX/RT Ada Compiler, Version 1.1.1

A magnetic tape, TAR format, containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation testing
were included in their modified form on the magnetic tape.

The contents of the magnetic tape were not loaded directly onto the host
computer. It was loaded onto a SUN 3 computer and from the files loaded onto
the SUN 3, a tape cartridge compatible with the host computer was made. This
cartridge was then loaded onto RT PC 6150-125.

After the test files were loaded to disk, the full set of tests was compiled,
linked, and all executable tests were run on the IBM RT PC 6150-125. Results
were printed from an IBM 3083 with the results being transferred to the IBM 3083
via the IBM RT PC 3278/3279 emulation package.

3-6

TEST INFORMATION

The compiler was tested using command scripts provided by International Business
Machines Corporation and reviewed by the validation team. The compiler was
tested using the following default option settings:

OPTION EFFECT

+target Adds target debug information to generated code.
+virt1000 Specifies the number of virtual pages use by VSM.
-opt Sets the optimizer off.
+killbodies Causes the intermediate data to be deleted from

the sublibraries.
+verbose Causes additional console out information such

as banners and front end, middle pass, and code
generator completion messages, and error counts
to be generated.

The following option settings were used instead of the defaults:

OPTION EFFECT

+bind Produces an executable from previously
compiled code.

+main Compiles the specified file as a main program.
+list Generates compilation listing.
-verbose Causes additional console out information such

as banners and front end, middle pass, and code
generator completion messages, and error counts
not to be generated.

Tests were compiled, linked, and executed (as appropriate) using two computers.
Test output, compilation listings, and job logs were captured on magnetic tape
and archived at the AVF. The listings examined on-site by the validation team
were also archived.

3.7.3 Test Site

Testing was conducted at San Diego CA and was completed on 20 April 1989.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

International Business Machines Corporation has submitted
the following Declaration of Conformance concerning the IBM
Development System for the Ada Language, AIX/RT Ada
Compiler.

A-i

DECLARATION OF CON-FORMANCE

Compiler Implementor: TeleSoft
Ada Validation Facility: ASD/SCEL, Wright-Patterson APB. OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: IBM Development System for the Ada Language,
AIX/RT Ada Compiler, Version 1.1.1

Host Architecture ISA: IBM RT PC 6150-125
Operating System: AIX, Release 2.2

Target Architecture ISA: IBM RT PC 6150-125
Operating System: AIX, Release 2.2

Implementor's Declaration

I, the undersigned, representing TeleSoft have implemented no deliberate extensions to the Ada
Language Standard ANSI/MIL-STD-1815A -in the compiler listed in this declaration. I declar',
that International Business Machines Corporation is the owner of record of the object code of the
Ada language compiler listed above and, as such, is responsible for maintaining said compiler in
conformance to , i)IL-STD-1815A. All certificates and registrations for the Ada language
compiler ' ted this de aration shall be made only in the owner's corporate name.

I- ~Date: Vc c
Tei eSoft .. "
Raymond A. Parra. Director. Contracts & Legal

Owner's Declaration

1. the undersigned. representing International Business Machines Corporation take full
responsibility for implementation and maintenance of the Ada compiler listed above, and agree to
the public disclosure of the final Validation Summary Report. I declare that all of the Ada
language compilers listed, and their host/target performance are in compliance with the Ada
Language Standard ANSI/MIL-STD-1815A.

___________________._ ,,.-r4, .___ _ Date: / .4./C /
lnternatidnai Busin-ss Machines CorhOration
S. V. Poiacek. .Ianagr of Advanced Language Products

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the IBM Development System for the Ada Language, AIX/RT
Ada Compiler, Version 1.1.1, as described in this Appendix, are provided by
TeleSoft. Unless specifically noted otherwise, references in this Appendix
are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, vrich are not a
part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;

type LONGINTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;

type DURATION is delta 2**(-14) range -86400.0 .. 86400.0;

end STANDARD;

B-1

APPENDIX F
OF THE LANGUAGE REFERENCE MANUAL

The Ada language definition allows for certain target dependencies in a controlhed manner.
This section, called Appendix F as prescribed in the LRM, describes impiemenLatiori-dependent
characteristics of the IBM Ada Development System AIX/RT Compiler Version 2.1 running
under AIX 2.2.

1. Implementation-Defined Pragmas

Implementation dependent pragmas are:
PRAGMA COMMENT (string literal);
- embeds stringliteral into object code

PRAGMA IMAGES (enumerationtype, <immediate> <deferred>);
- generates a table of images for the enumeration type
- 'deferred' causes the table to be generated only if
- the enumeration type is used in a compilation unit

2. Predefined Pragmas

Supported pragmas are INTERFACE, ELABORATE, SUPPRESS, PACK. PAGE. LIST.
and PRIORITY.

All pragmas have conventional meanings except LIST which suppresses listings prior to
Pragma LIST(ON) regardless of the user request. Pragma INTERFACE supports C, Fortran
and Assembly.

Unrecognized and unsupported Pragmas are ignored with the appropriate warning message.

3. Representation Clauses

Supported representation clauses include:
- Length Clause
- Enumeration Representation Clauses. except

for Boolean types
- Record Representation Clause
- Address Clause for variables, constants.

and tasks
- Interrupt support

Record representation clauses are aligned on 16-bit boundaries.

4. Restrictions on Unchecked Conversion

The only restriction on Unchecked Conversion is that the two types (or subtypes) A and B
must be the same static size, and that neither A nor B are private.

B-2

5. Package SYSTEM

The package System has the following characteristics:

PACKAGE System IS

- for integer use 16;

TYPE Address is access integer;
- for Address'size use 4*Storage Unit;

TYPE Subprogram Value is
Record

KR Address;
Static Base :Address;

End Record;

TYPE Nam& IS (TeleSoftAda);

System-Name : CONSTANT name:= TeleSoftAda;

StorageUnit : CONSTANT :--8;

Memory Size CONSTANT := 1024"16416:

- System-Dependent Named Numbers:

Min Int : CONSTANT : -(2 ** 31);
Max Int : CONSTANT := (2 ** 31) - 1;
Max-Digits : CONSTANT:= 6:
Max Mantissa : CONSTANT := 31;
FineDelta : CONSTANT := 1.0/ (2 ** MaxMantissa);
Tick : CONSTANT := 0.1

- Other System-Dependent Declarations

SUBTYPE Priority IS Integer RANGE 0 .. 255:

MaxObject Size : CONSTANT : (32*1024)-1;

Max Record Count :CONSTANT := (32*1024)-i;
Max-Text lo Count CONSTANT : 16*1024;

Max-Text-lo-Field : CONSTANT := 1000;

end System;

6. Representation Attributes

All defined representation Attributes shall be supported.

B-3

7. Implement ation- Generated Names

There are no implementation-generaLed names denoting implementation-dependent
components. Names generated by the compiler shall not interfere with programmer-defined
names .

8. Implement ation-Dependent Characteristics of the 1/0 Packages

* Sequential 10, Direct_10. and Text_10 are supported.

* Low Level 10 is not supported.

• Unconstrained array types and unconstrained types with discriminants may not be
instantiated for 1/0.

0 File names follow the conventions and restrictions of the target operating system,
except that non-printing characters, blank(' ') and asterisk ("..) are disallowed.

* In Text_10, the -ype Field is defined as follows: subtype Field is integer range
0.. 1000;

a In Text_10, the type Count is defined as follows: type Count is range 0..16_384;

9. Predefined Numeric Types

The current specification of package STANDARD includes:

type INTEGER is range -32768 .. 32727;

type LONG INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E-38;

type DURATION is delta 2 (-14) range -86400.0 .. 86400.0;

INTEGER
'First = -32768
'Last = 32767
'Size = 16

LONG INTEGER
'First =-2147483648
'Last = 2147483647
'Size = 32

FLOAT
'Machine Overflows = true
'Machine Rounds = true
'Machine Radix = 2
'Machine Mantissa 23
'Machine Emax 127
'MachineEmin = -128
'Mantissa 21
'Digits = 6

B -4

'Size = 32
'Emax = 84
'Safe Emax = 126
'Epsilon = 9.53674E-07
'Safe Large = 8.50706E-37
'Saie Small = 2.93873E-39

DURATION
'Machine Overflows - false
'MachineRounds - false
'Delta =2*(-14)

'First = -86400.0
'Last -86400.0

10. Restrictions on Machine Code Insertions

Machine code insertions are not supported.

B-5

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below:

Name and Meaning Value

$ACC SIZE 32
Xn integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG ID1 (1..199 f> 'A', 200 => '1')
An identifier the size of the
maximum input line length which
is identical to SBIG ID2 except
for the last character.

$BIG ID2 (1..199 .> 'A', 200 => '2')
Kn identifier the size of the
maximum input line length which
is identical to SBIG IDl except
for the last character.

$BIG ID3 (1..100 a> 'A', 101 > '3',
An identifier the size of the 102..200 .> 'A')
maximum input line length which
is identical to SBIG ID4 except
for a character near-the middle.

C-1

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 (1-100 => 'A', 101 => '4',

;n identifier the size of the 102..200 => 'A')

maximum input line length which
is identical to SBIG ID3 except
for a character near-the middle.

SBIG INT LIT (1..197 .> '0', 198..200 .> "298")

in integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT (1..195 -> '0', 196..200 -> "690.0")

A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 (1 > '"', 2..101 -> 'A', 102 a> '"')

W string literal which when
catenated with BIG STRING2
yields the image of BIGIDI.

$BIG STRING2 (I => '"' 2..100 => 'A',

; string literal which when 101..102 => 'I"')

catenated to the end of

BIG STRINGI yields the image of
BIGID.

$BLANKS (..180 => '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

SCOUNT LAST 2147483646
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULT HEM SIZE 16809984
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULT STOR UNIT 8
An intege-r literal whose value
is SYSTEM.STORAGE UNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME TELESOFT ADA
The - value of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

SFIELD LAST 1000
A universal integer
literal whose value is
TEXTIO. FIELD' LAST.

$FIXED NAME NO SUCH FIXED TYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME NO SUCH FLOAT TYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATER THAN DURATION 100000.0
A universal real literal that

lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THAN DURATION BASE LAST 131073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH PRIORITY 255
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAMEl BADCHAR*'/I
An -external- fEl name which
contains invalid characters.

SILLEGAL EXTERNAL FILE NAME2 /NONAME/DIRECTORY
An external file name which
is too long.

$INTEGER FIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

SINTEGEF LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 32768
A universal - integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -100000.0
A universal real literal that
lies between DURATION'BASE;FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -131073.0
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW PRIORITY 0
in integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANITISSA DOC 31
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX DIGITS 6
Raximum digits supported for
floating-point types.

$MAX IN LEN 200
Maximum input line length
permitted by the implementation.

SMAX INT 2147483647
i universal integer literal
whose value is SYSTEM.MAX INT.

SMAX INT PLUS 1 2147483648
7 universal integer literal
whose value is SYSTEM.MAX INT+1.

$MAX LEN INT BASED LITERAL (1..2 => "2:", 3..197 -> '0',
W Universal - integer based 198..200 => "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value

$MAX LEN REAL BASED LITERAL (1..3 => "16:", 4..196 .> '0',

A univerial real based literal 197..200 => "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

SMAX STRING LITERAL (1 => '"', 2..199 > 'A', 200 > 'l)

A string literal of size
MAX IN LEN, including the quote
characters.

SMIN INT -2147483648
I universal integer literal
whose value is SYSTEM.MIN INT.

$MIN TASK SIZE 32
n inieger literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOSUCHTYPEAVAILABLE

A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONGFLOAT, or LONGINTEGER.

SNAME LIST TELESOFTADA
A-list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

SNEG BASED INT 16#FFFFFFFEt
X based integer literal whose
highest order nonzero bit

falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

SNEW HEM SIZE 16809984
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT MEM SIZE. If there is
no other value, then use
$DEFAULTMEM SIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

$NEV STOR UNIT B
Xn integer literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT STOR UNIT. If there is
no other- permitted value, then
use value of SYSTEM.STORAGE UNIT.

$NEW SYS NAME TELESOFTADA
X value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If
there is only one value-of that
type, then use that value.

$TISK SIZE 32
AN integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 0.1
A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 43 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C has been withdrawn because it expects that the string "--

TOP OF PAGE. --63" of line 204 will appear at the top of the
listing page due to a pragma PAGE in line 203; but line 203
contains text that follows the pragma, and it is this that must
appear at the top of the page.

b. A39005G has been withdrawn because it unreasonably expects a
component clause to pack an array component into a minimum size
(line 30).

c. B97102E has been withdrawn because it contains an unintended
illegality: a select statement contains a null statement at the
place of a selective wait alternative (line 31).

d. BC3009B has been withdrawn because it wrongly expects that
circular instantiations will be detected in several compilation
units even though none of the units is illegal with respect to the
units it depends on; by AI-00256, the illegality need not be
detected until execution is attempted (line 95).

e. CD2A62D has been withdrawn because it wrongly requires that an
array object's size be no greater than 10, although its subtype's
size was specified to be 40 (line 137).

f. CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests] have
been withdrawn because they wrongly attempt to check the size of
objects of a derived type (for which a 'SIZE length clause is
given) by passing them to a derived sub-program (which implicitly
converts them to the parent type (Ada standard 3.4:14)).
Additionally, they use the 'SIZE length clause and attribute,

D-1

* WITHDRAWN TESTS

whose interpretation is considered problematic by the WG9 ARG.

g. CD2A81G, CD2A83G, CD2A84M and N, and CD50110 have been withdrawn
because they assume that dependent tasi.s will terminate while the
main program executes a loop that simply tests for task
termination; this is not the case, and the main program may loop
indefinitely (lines 74, 85, 86 and 96, 86 and 96, and 58,
respectively).

h. CD2Bl5C and CD7205C have been withdrawn because they expect that a
'STORAGE SIZE length clause provides precise control over the
number ;f designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

i. CD2D1B has been withdrawn because it gives a SMALL representation
clause for a derived fixed-point type (at line 30) that defines a
set of model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a
derived fixed-point type must be representable values of the
parent type.

j. CD5007B has been withdrawn because it wrongly expects an
implicitly declared subprogram to be at the the address that is
specified for an unrelated subprogram (line 303).

k. ED7004B, ED7005C and D, ED7006C and D 15 tests] have been
withdrawn because they check various aspezts of the use of the
three SYSTEM pragmas; the AVO withdraws these tests as being
inappropriate for validation.

1. CD7105A has been withdrawn because it requires that successive
calls to CALENDAR.CLOCK change by at least SYSTEM.TICK; however,
by Commentary AI-00201, it is only the expected frequency of
change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

m. CD7203B and CD7204B have been withdrawn because they use the 'SIZE
length clause and attribute, whose interpretation is considered
problematic by the WG9 ARG.

n. CD7205D has been withdrawn because it checks an invalid test
objective: it treats the specification of storage to be reserved
for a task's activation as though it were like the specification
of storage for a collection.

o. CE21071 has been withdrawn because it requires that objects of two
similar scalar types be distinguished when read from a
file--DATA ERROR is expected to be raised by an attempt to read
one object as of the other type. However, it is not clear exactly
how the Ada standard 14.2.4:4 is to be interpreted; thus, this
test objective is not considered valid (line 90).

D-2

* WITHDRAWN TESTS

p. CE3llC has been withdrawn because it requires certain behavior
when two files are associated with the same external file;
however, this is not required by the Ada standard.

q. CE3301A has been withdrawn because it contains several calls to
END OF LINE and END OF PAGE that have no parameter: these calls
were intended to specify a file, not to refer to STANDARDINPUT
(lines 103, 107, 118, 132, and 136).

r. CE3411B has been withdrawn because it requires that a text file's
column number be set to COUNT'LAST in order to check that
LAYOUT ERROR is raised by a subsequent PUT operation. But the
former operation will generally raise an exception due to a lack
of available disk space, and the test would thus encumber
validation testing.

D-3

