
SECU !" CLASSIF-CJA10k' Of I$IS PAGd (WherOataEntered) E..L -

REPORT DOCUMENTATION PAGE rro ik i :OW . r ll'(

1. R(PORI NluMei 12. GOV1 ACCESSION MC. 3. RICIPIENi'S CA-A.D, ImUbip'

I. TITLE rr(and ,ile) V. TYPE Of REPORT a PERID COVERED

AaValidation Summary Report:Verdix 31 Mar. 1989 to 31 Mar. 1990
O orporation, VADS VAX UNIX-)08K, Version 5.1 DEC VAX-11/750

0 (Host) to Tektronix 8541 Emulator (MV 68020 Support System a. PLRFORNINGbRG. REPOr". NUMBER

(Target), 890331W1.10045
1. AUTHOR(S) B. CONTRACT OR &RANT hUmEER(s)

v4right-Patterson AFL
Dayton, OH, USA

~ . PERFORMINa ORAN:Z&TIO AN, ADDRISS 1C. PROORAP ELEMNI. PRRJECI. 7ASt

Jright-Patterson AFB
AREA & WORK UNIT "BERS

)ayton, OH, USA

S. CDN1RO;LAIXG OFFICE NANM AND ADDRESS 12. REPOR , DATE
ida Joint Program Office
Jnited States Department of Defense 1 MUE Of'FAt.
lashington, DC 20301-3081

14. MONITORING AGENYi kAME & ADDRSS(If ifferer from Controlling Office) 15. SECURITV C.ASS (offmis report)

UNCLASSIFIED

Dayton, OH, USA U N/A

16. DISIRIBUTIO0k SATEMENTl (Of thisReport)

Approved for public release; distribution unlimited.

17. O1S7RIEJ110h STi' , ,1 (of ,, ' , e'

UNCLASSIF IED Jl. r f Dn.R ELECTE u

it. SUVPE#0.hTAPi NOTES

19. KEYWDRDS (Continue on teverse sso ,f necesja"3 arod ientfy by block number)

Ada Prograrrming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/P1L-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side of necessary and identif) b, block number)

Verdix Corporation, VADS VAX UNIX-68K, Version 5.7, Wright-Patterson AFB, DEC VAX-11/750
under UNIX 4.3 BSD (Host) to Tektronix 8541 Emulator (MV 68020 Support System) using
TEKDB Version 5.01 emulation Software(Target), ACVC 1.10.

DO Ou" 1473 EDITION or I NOv 66 IS o05B0,AT

I JAN 73 S/N 01o2-LF-014-601 UNCLASSIFIED
SLCURI1Y CLASS:FICATJOPO OF IN]S PAU, (When Data Entered)

AVF Control Numte-: AVF-VSR-239.0589
89-01-31-VRX

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890331W1.10045
Verdix Corporation

VADS VAX UNIX->68K, Version 5.7
DEC VAX-11/750 Host and

Tektronix 8541 Emulator (MV 68020 Support System) Target

Completion of On-Site Testing:
31 March 1989

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

A~cesio, Fbr

NTIS CR I1

jr,,: T, j ,D
U:,J :)'":Ld[

By

Avaihblrty Codes

S .ist AvaI ad Ior

, ' SptCldI

* A,1

Ada Compiler Validation Summary Report:

Compiler Name: VADS VAX UNIX->68K, Version 5.7

Certificate Number: 890331W1.10045

Host: DEC VAX-11/750 under
UNIX 4.3 BSD

Target: Tektronix 8541 Emulator (MV 68020 Support System) using
TEKDB Version 5.01 emulation soft.are

Testing Completed 31 March 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

lkda Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Washington D.C. 20301

Ada Compiler Validation Summary Report:

Compiler Name: VADS VAX UNIX->68K, Version 5.7

Certificate Number: 890331WI.10045

Host: DEC VAX-11/750 under
UNIX 4.3 BSD

Target: Tektronix 8541 Emulator (MV 68020 Support System) using
TEDB Version 5.01 emulation software

Testing Completed 31 March 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization

Dr. John F. Kramer
institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Washington D.C. 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

i.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES. 1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGVTA7ION INFORMATION

2.1 CONFIGURATION TESTED. 2-1
2.2 IMPLEMENTATION CHARACTERISTICS. 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS. 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS. . 3-5
3.7 ADDITIONAL TESTING INFORMATION3-5
3.7.1 Prevalidation 3-6
3.7.2 Test Method3-6
3.7.3 Test Site3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

\/

This Validation Summary Report N-vsR- describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of test!ng this compiler using the Ada Compiler
Validation Capability :T{iV6),-An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.-

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.,

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

I-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing war carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

" To attempt to identify any language constructs not supported by

the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 31 March 1989 at Aloha OR.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,

this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22 11

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation anc execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechansism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the A4a Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain valueF that require the test to be
custca'zed according to implementation-specific values--for example, an
illegal file name. A list of the values used for this valiaation is
provided in Appendix C.

A compiler must correctly c-ocess each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapnlicable to
the implementation. The applicabilitv of a test to an implementation is
considered each time the implementation is validated. A test that us
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: VADS VAX UNIX->.68K, Version 5.7

ACVC Version: 1.10

Certificate Number: 890331W1.10045

Host Computer:

Machine: DEC VAX-11/750

Operating System: UNIX 4.3 BSD

Memory Size: 16 Megabytes

Target Computer:

Machine: Tektronix 8541 Emulator
(MV 68020 Support System) using
TEKDB Version 5.01 emulation software

Operating System: None

Memory Size: 2 Megabytes

Communications Network: ETHERNET

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The ests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64OO5E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
TINY INTEGER, SHORTINTEGER, and SHORT FLOAT in package
STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION :NFORMATION

(4) Sometimes CONSTRAINTERROR is raised when an integer literal
operand in a comparison or membership test -s outside the
range of the base type. (See test CB5232A.)

(5) Sometimes NUMERIC ERROR is raised when a literal operand Jn a
fixed-point comparison or membership test is outside the range
of the base type. (See test CL5252A.)

(6) Underflow is gradual. (See tests C45524A..Z.)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C4A014A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception. (See test
C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array type with INTEGER'LAST * 2 components. (See test
C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array Type with SYSTEM.MAXINT + 2 components. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC ERROR when the array type is declared. (See
test C52103X.)

2-3

CONFIGURATION INFORMATION

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERICERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B, EA3004C..D, and CA3004E..F.)

2-4

CONFIGURATION INFORMATION

i. Generics

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

J. Input and output

(1) The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

(3) Modes IN FILE and OUTFILE are supported for SEQUENTIALIO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes INFILE, OUT FILE, and INOUT FILE are supported for
DIRECT I0. (See tests CE2102F, CE21021..J, CE2102R, CE2102T,
and CE21O2V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE3102E and CE3102I..K.)

(6) RESET and DELETE operations are supported for SEQUENTIALIO.

(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECT_10. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

(9) Overwriting to a sequential file truncates to the last element

written. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and deleted when closed.
(See test CE3112A.)

2-5

CONFIGURATION INFORMATION

(13) More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E, CE2102L, CE2110B, and CE2111D.)

(14) More than one internal file can be associated with each
external file for direct files when writing or reading. (See
tests CE2107F..H (3 tests), CE2110D, and CE2111H.)

(15) More than one internal file can be associated with each
external file for text files when reading or writing. (See
tests CE3111A..E, CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 43 tests had been withdrawn because of test errors. The AVF
determined that 329 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for 10 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
_ A B C D E L

Passed 129 1132 1993 17 28 46 3345

Inapplicable 0 6 323 0 0 0 329

Withdrawn 1 2 34 0 6 0 43

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 J 5 6 7 8 9 10 11 12 13 14

Passed 198 577 545 245 172 99 161 332 137 36 252 292 299 3345

Inappl 14 72 135 3 0 0 5 1 0 0 0 77 22 329

Wdrn 1 1 0 0 0 0 0 1 0 0 1 35 4 43

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

E28005C A39005G B97102E BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M
CD2A84N CD2B15C CD2D11B CD5007B CD50110 ED7004B
ED7005C ED7005D ED7006C ED7006D CD7105A CD7203B
CD7204B CD7205C CD7205D CE2107I CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 329 tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than

SYSTEM.MAXDIGITS:

C24113L..Y C35705L..Y C35706L..Y C35707L..Y
C35708L..Y C35802L..Z C45241L..Y C45321L..Y
C45421L..Y C45521L..Z C45524L..Z C45621L..Z

3-2

TEST INFORMATION

C45641L..Y C46012L..Z

b. C35702B and B8600lU are not applicable because this implementation
supports no predefined type LONGFLOAT.

c. The following 16 tests are not applicable because this implementation
does not support a predefined type LONGIN'"TEGER:

C45231C C45304C C45502C C45503C CL4504C
C45504F C45611C C45613C C45614C C 45 31C
C45632C B52004D C55B07A B55B09C B86C01W
CD7101F

d. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAXMANTISSA is less than 47.

e. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

f. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

g. C86001F is not applicable because, for this implementation, the package
TEXT 10 is dependent upon package SYSTEM. These tests recompile
package SYSTEM, making package TEXTIO, and hence package REPORT,
obsolete.

h. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

i. CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..: (10 tests) are
not applicable because this implementation does not support size
clauses for floating point types.

J. CD2A61i and CD2A61J are not applicable because this implementation does
not support size clauses for array types, which imply compression, with
component types of composite or floating point types. This
implementation requires an explicit size clause on the component type.

k. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation does not support size clauses for access
types.

1. CD2A91A..E (5 tests), CD5012J, CD5013S, and CD5014S are not applicable
because this implementation does not support size clauses for tasks or
task types.

m. The following 42 tests are not applicable because this implementation
does not support an address clause when a dynamic address is applied to
a variable requiring initialization:

CD5003B..H CD5011A..H CD5011L..N CD5011Q

3-3

TEST INFORMATION

CD5011R CD5012A..I CD5012L CD5013B
CD5013D CD5013F CD5013H CD5013L
CD5013N CD5013R CD5014T..X

n. CE2102D is inapplicable because this implementation supports CREATE
with IN-FILE mode for SEQUENTIAL 10.

o. CE2102E is inapplicable because this implementation supports CREATE
with OUTFILE mode for SEQUENTIALIO.

p. CE2102F is inapplicable because this implementation supports CREATE
with INOUTFILE mode for DIRECTIO.

q. CE21021 is inapplicable because this implementation supports CREATE
with INFILE mode for DIRECTIO.

r. CE2102J is inapplicable because this implementation supports CREATE
with OUT FILE mode for DIRECTIO.

s. CE2102N is inapplicable because this implementation supports OPEN with
INFILE mode for SEQUENTIALIO.

t. CE21020 is inapplicable because this implementation supports RESET with
IN FILE mode for SEQUENTIALIO.

u. CE2102P is inapplicable because this implementation supports OPEN with
OUTFILE mode for SEQUENTIALIO.

v. CE2102Q is inapplicable because this implementation supports RESET with
OUTFILE mode for SEQUENTIALIO.

w. CE2102R is inapplicable because this implementation supports OPEN with
INOUT FILE mode for DIRECT_10.

x. CE2102S is inapplicable because this implementation supports RESET with
INOUT FILE mode for DIRECTIO.

y. CE2102T is inapplicable because this implementation supports OPEN with
INFILE mode for DIRECT_10.

z. CE2102U is inapplicable because this implementation supports RESET with
INFILE mode for DIRECTIO.

aa. CE2102V is inapplicable because this implementation supports open with
OUTFILE mode for DIRECT_10.

ab. CE2102W is inapplicable because this implementation supports RESET with
OUTFILE mode for DIRECTIO.

ac. CE3102E is inapplicable because this implementation supports CREATE
with INF'LE mode for text files.

ad. CE3102F is inapplicable because this implementation supports RESET for

3-4

TEST INFORMATION

text files.

ae. CE3102G is inapplicable because this implementation supports deletion
of an external file for text files.

af. CE31021 is inapplicable because this implementation supports CREATE
with OUTFILE mode for text files.

ag. CE3102J is inapplicable because this implementation supports OPEN with
INFILE mode for text files.

ah. CE3102K is inapplicable because this implementation supports OPEN with
OUTFILE mode for text files.

ai. CE3115A is not applicable because resetting of an external file with
OUT FILE mode is not supported with multiple internal files associated
with the same external file when they have different modes.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

Modifications were required for 10 tests.

The following tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

B24009A B33301B B38003A B38003B B38009A B38009B
B41202A B91001H BC1303F BC3005E

3.7 ADDITIONAL TESTING INFORMATION

3-5

TEST INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced b,: the
VADS VAX UNIX->68K was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully passed all
applicable tests, and the compiler exhibited the expected behavior on all
inapplicable tests.

3.7.2 Test Method

Testing of the VADS VAX UNIX->68K using ACVC Version 1.10 was conducted on-site
by a validation team from the AVF. The configuration in which the testing was
performed is described by the following designations of hardware and software
components:

Host computer: DEC VAX-11/750
Host operating system: UNIX 4.3 BSD
Target computer: Tektronix 8541 Emulator

(MV 68020 Support System) using
T7_KDB Version 5.01 emulation software

Compiler: VADS VAX UNIX->68K, Version 5.7

The host and target computers were linked via ETHERNET.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of implementation-specific
values were customized before being written to the magnetic tape. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled and
linked on the DEC VAX-11/750, then all executable images were transferred to the
Tektronix 8541 Emulator (MV 68020 Support System) via ETHERNET and run. Results
were printed from the from the host computer.

The compiler was tested using command scripts provided by Verdix Corporation and
reviewed by the validation team. The compiler was tested using the following
default option settings:

OPTION EFFECT

-01 Level one optimization.
-S No suppression.

3-6

TEST INFORMATION

The fcllooing option settings were used instead of the defaults:

OPTION EFFECT

-w Suppress generation of warning messages.

Tests were compiled, linked, and executed (as appropriate) using 2 host
computers and 1 target computer. Test output, compilation listings, and job
logs were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Aloha OR and was completed on 31 March 1989.

3-7

AUPPENDIX A

DECLARATION OF CONFORMANCE

Verdix Corporation has submitted the following Declaration
of Conformance concerning the VADS VAX UNIX->68Y.

A-i

m !DEC'.....?ZW......... m

Compiler Impleaentor: vinxz Corporation
Ada Validation Facility: MSD/CZ., Wrilgt-Ptterson In 06 4 533-6503
Ad Cpiler Validation Capability (ACTC) Version: 1.10

BLOe Cooinwuion

hse Compl.ler Name: VADS VAX UNIX -, 68k lersion: 5.7

Hoat Architecture =k: VAX 11/750 =TE 0: UNIX 4..3 BSD

Target Architecture ISA: Tektronix 8541 Q I: TEKDB 5.01.

Emulator (MV 68020
Support System)

min a' a elmto

1, the undersignd, representing vnxz Corp.-, have implmented no deliberate
estensions to the Ada Lmwmp Standard Al1VNA -SD-1815A In the opiler(s) listed
in this declaration. I declare that VXRDz is the wner of record of the Ada
language compiler(s) listed above and, as suwh, is responsible for maintainn said
compiler(s) in conformance to AXJSI/Mf.-S-1815. All certificates and registrations
for Aa languam cupLler(s) listed in this declaration sall be made only in the
owner's corporate

2Revised 4/10/809 Original 2/13/89

vice-lrosidont..

Ada Products Divisiom

Omere Deal am-.om

1, the mdorsiged, reprwmstig VMIn U ful1 rePonsibility tor Iaplemntation
and of the Ada opUer(s) listed above, and aSe to the pnblic
disosomure of the fia Validation mm-y Report. I declare that al of the Ada
language compilers listed, and their host/tarpt peformance are in Compilanm With

. Revised 4/10/89 Original 2/13/P9

Vice-president
Ada Products Divisiom

A-I2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the VADS VAX UNIX->68K, Version 5.7, as described in
this Appendix, are provided by Verdix Corporation. Unless specifically
noted otherwise, references in this Appendix are to compiler documentation
and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINY _NTEGER is range -128 .. 127;

type FLOAT is digits 15 range
-16#0.1FFFFFFFFFFFFF#E024 .. 16#0.1FFFFFFFFFFFFF#E1024;

type SHORTFLOAT is digits 6 range -16#O.FFFFFF#E128 .. 16#0.FFFFFF#E128;

type DURATION is delta 0.001 range -2147483.648 .. 2147483.647;

end STANDARD;

B-i

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INLINEONLY Pragma
The INLINE ONLY pragma, when used in the same way as progma INL-NE, indicates to the compiler
that the subprogram must always be inlined. This pragma als: suppresses the generzioun of a caiiabit
version of the routine which save code space.

1.2. BUILTIN Pragma
The BUILTIN pragma is used in the implementation of some predefined Ada packages, but provides
no user access. It is used only to implement code bodies for which no actual Ada body can be pro-
vided, for example the MACHINECODE package.

1-3. SHARE CODE PragMa
The SHARE CODE pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is only allowed
immediately at the place of a declarative item in a declarative part or package specification, or after a
library unit in a compilation, but before any subsequent compilation unit.
When the first argument is a generic unit the pragma applies to all instantiations of that generic. When
the first argument is the name of a generic instantiation the pragma applies only to the specified instan-
tiation, or overloaded instantiations.
If the second argument is TRUE the compiler will try to share code generated for a generic instantia-
tion with code generated for other instantiations of the same generic. When the second argument is
FALSE each instantiation will get a unique copy of the generated code. The extent to which code is
shared between instantiations depends on this pragma and the kind of generic formal parameters
declared for the generic unit.
The name pragma SHARE BODY is also recognized by the implementation and has the same effect as
SHARE-CODE. It is included for compatability with earlier versions of VADS.

1.4. NO IMAGE Pragma
The pragma suppresses the generation of the imzze array used for the LIAGE attribute of enumeration
types. This eliminates the overhead required to store the array in the executable image.

1.5. EXTERNAL NAME Pragma
The EXTERNAL NAME pragma takes the name of a subprogram or variable defined in Ada and
allows the user to specify a different external name that may be used to reference the entity from other
languages. The pragma is allowed at the place of a declarative item in a package specification and
must apply to an object declared earlier in the same package specification.

1.6. INTERFACE NAME Pragma
The INTERFACE NAME pragma takes the name of a a variable defined in another language and
allows it to be referenced directly in Ada. The pragma will replace all occurrences of the variable
name with an external reference to the second, link argument. The pragma is allowed at the place of a
declarative item in a package specification and must apply to an object declared earlier in the same
package specification. The object must be declared as a scalar or an access type. The object cannot be
any of the following:

a loop variable,
a constant,

B-2

an initialized variable,
an array, or
a record.

1.7. IMPLICIT-CODE Pragma
Takes one of the identifiers ON or OFF as the single argument. This pr,,ma is only allowed withir a
machine code procedure. It specifies that implicit code generated by the compiler be allowed or disal-
lowed. A warning is issued if OFF is used and any implicit code needs to be generated. The default is
ON.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no effect.

2.2. ELABORATE
This pragma is implemented as described in Appendix B of the Ada RM.

2.3. INLINE

This pragma is implemented as described in Appendix B of the Ada RM.

.4. INTERFACE
This pragma supports calls to 'C' and FORTRAN functions. The Ada subprograms can be either func-
tions or procedures. The types of parameters and the result type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. All parameters must have mode IN. Record and array
objects can be passed by reference using the ADDRESS attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMO.Y SIZE
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. NON REENTRANT
This pragma takes one argument which can be the name of either a library subprogram or a subprogram
declared immediately within a library package spec or body. It indicates to the compiler that the sub-
program will not be called recursively allowing the compiler to perform specific optimizations. The
pragma can be applied to a subprogram or a set of overloaded subprograsm within a package spec or
package body.

2.8. NOT ELABORATED

This pragma can only appear in a library package specification. It indicates that the package will not
be elaborated because it is either part of the RTS, a configuration package or an Ada package that is
referenced from a language other than Ada. The presence of this pragma suppresses the generation of
elaboration code and issues warnings if elaboration code is required.

2.9. OPTIMIZE

This pragma is recognized by the implementation but has no effect.

B-3

2.10. PACK

This pragma will cause the compiler to choose a non-aligned representation for composite types. It will
not causes objects to be packed at the bit level.

2.11. PAGE
This pragma is implemented as described in Appendix B of the Ada RM.

2.12. PASSIVE

The pragma has three forms:

PRAGMA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <number>);

This pragma Pragma passive can be applied to a task or task type declared immediately within a library
package spec or body. The pragma directs the compiler to optimize certain tasking operations. It is
possible that the statements in a task body will prevent the intended optimization, in these cases a warn-
ing will be generated at compile time and will raise TASKING ERROR at runtime.

2.13. PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

2.14. SHARED

This pragma is recognized by the implementation but has no effect.

2.15. STORAGE UNIT
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.16. SUPPRESS
This pragma is implemented as desbed, except that RAJNGE CHECK and DIVISION CHECK can-
no: oe supressed.

2.17. SYSTEM NAME
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF
For a prefix that denotes an object, a program unit, a label, or an entry:

This attribute denotes the effective address of the first of the storage units allocated to P. For a subpro-
gram, package. task unit. or label. it refers to the address of the machine code associated with the
corresponding body or statement. For an entry for which an address clause has been given, it refers to
the corresponding hardware interrupt. The attribute is of the type OPERAND defined in the package
MACHINE-CODE. The attribute is only allowed within a machine code procedure.

See section F.4.8 for more information on the use of this attribute.

(For a package, task unit, or entry, the 'REF attribute is not supported.)

B-4

* 4. Specification Of Package SYSTEM

wth LN$LGNED TYPES;
paskae SYST14 is

pr a Sappre s (ALLOEO(CS);
prelgm suppress(EXCEPTI'Of" TABLES);
piig 10ot_elibots ted;

type NAAE ii (VAX atOSS_680X0);

SysnS'INAME : constant NAME :. VAXCROSS_680XC;

SORAO UNIT : constant :- 8;
M _YSI : constant :- 16777216;

-. System-Dependent Namd Numkicts

?ANINr constant := -2 147 483 648;
M AX t : constant :- 2 147_483_647;
MAX- DIGITS constant :S;
MIAX .JTISSA constant :- 31:
PIN' DELTA : constant =..000(-31)j
TIOC : constant := 0.01;

.. Other system-dependent Declarations

subtype PRIORITY is INTEGE range 0 .. 99;

MAXRECSIZE : inteer :- 1024;

type ADDRESS is prtvate;

function "" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function " (A: ADRESS; B: ADDRESS) return BO.EAN;
function >

-
(A: ADDRESS; B: ADDRESS) return BOOLEAN;

function "c-"(A: A ESS B: ADDRESS) return BOLEAN;
function " (A: ADDRESS B: ADDRESS) return INTIEGER
function (A: ADDRESS: I: INTEGER) return ADDRESS;
function (A: ADDRESS; I: INTEGER) return ADDRESS;

funct ion "" (1: UNSIQEDTYES.L.SIGTDI\-rGER) return %DURLSS;

function %IL'MY ADR.ESS
(1: L?.'-SIG',EDTYPES.LNSIG%EDI.rGE/R) return ADDRESS renames

NOADDR : constant ADRSS;

pr ivate

type ADDRESS is new UNSIG.'ED TYPES.L'NSIC.\'EDINTGER;

NO-ADMR : constant ADDRESS :- 0;

prapm BJILT IN(*>");
pragm BUILTIN('<-);
pragen BUILT IN('>-.);
pir alm BUILT IN("-");
prgfms BUILTIN('-');
pragm BUILTIN("*');

sun SYSlre-'

5. Restrictions On Representation Clauses

5.1. Pragma PACK

In the absence of pragma PACK record components are padded so as to provide for efficient access b,
the target hardware, praema PACK applied to a record eliminate the padding where possible. Pragma
PACK has no other effect on the storage allocated for record components a record representation is
required.

5.2. Record Representation Clauses

For scalar types a represenation clause will pack to the number of bits required to represent the range of
the subtype. A record representation applied to a composite type will not cause ihe object to be packed
to fit in the space required. An explicit representation clause must be given for the component type. An
error will be issued if there is insufficient space allocated.

B-5

5.3. Address Clauses

Address clauses are supported for variables and constants.

5.4. Interrupts

Interupt entries are not supported.

5.5. Representation Attributes

The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINECODE provides an assembly language interface for
the target machine. It provides the necessary record type(s) needed in the code statement. an enumera-
tion type of all the opcode mneumonics, a set of register definitions, and a set of addressing mode func-
tions.

The general syntax of a machine code statement is as follows:

CODEn'(opcode, operand {, operand));

where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands. The operands are listed within a subaggregate.
The format is as follows:

CODEN'(opcode, (operand {, operand)));

For those opcodes that require no operands, named notation must be used (cf. RM 4.3(4)).

CODE-0'(op -> opcode);

The opcode must be an enumeration literal (i.e. it cannot be an object, attribute, or a rename).

An operand can only be an entity defined ir, MACHINE CODE or the 'REF attribute.

The arguments to any of the functions defined in MACHINE CODE must be static expressions, string
literals. or the functions defined in MACHINE CODE. The 'REF attribute may not be used as an argu-
ment in any of these functions.

Inline expansion of machine code procedures is supported.

B-6

6. Conventions for Implementation-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address clauses are supported for constants and variables.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocatiow:

None.

10. Implementation Characteristics of I/O Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as the record size (expressed in
STORAGE UNITS) when the size of ELEMENT TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT TYPE'SIZE is very large, MAX REC SIZE is used
instead. MAX RECORD SIZE is defined in SYSTEM and can be changed by a program before
instantiating DIRECT 10 to provide an upper limit on the record size. In any case the maximum size
supported is 1024 x 1024 x STORAGE UNIT bits. DIRECT 10 will raise USE ERROR if
MAX REC SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL 1O use the value MAX REC SIZE as the record size (expressed in
STORAGE UNITS) when the size of ELEMENT TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEM\vENT TYPE'SIZE is very large, MAX RECSIZE is used
instead. MAX RECORD SIZE is defined in SYSTEM and can be changed by a program before
instantiating INTEGER lOto provide an upper limit on the record size. SEQUENTIAL1O imposes no
limit on M.AX REC SIZE.

11. Implementation Limits

The following limits are actually enforced by the implementation. It is not intended to imply that
resources up to or even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line length of 500 characters including the end of line charac-
ter.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is 4.000.000 x STORAGEUNITS. The maximum
size of a statically sized record type is 4.000,000 x STORAGEUNITS. A record type or array type
declaration that exceeds these limits will generate L war.ing message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE SIZE length specification every task except the main program
is allocated a fixed size stack of 10,240 STORAGE UNITS. This is the value returned by
T'STORAGESIZE for a task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE SIZE length attribute the default collection size for an access
type is 100 times the size of the designated type. This is the value returned by T'STORAGESIZE for

B-7

an access type T.

11.5. Limit on Declared Objects
There is an absolute limit of 6,000,000 x STORAGE UNITS for objects declared statically within a
compilation unit. If this value is exceeded the compiler will terminate the compilation of me unit with a
FATAL error message.

B-8

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below:

Name and Meaning Value

$ACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIGID1 (I..498 => 'A1,499 => 'I,)

An identifier the size of the
maximum input line length which
is identical to $BIGID2 except
for the last character.

$BIG ID2 (l..498 => 'A',499 => '2')
An identifier the size of the
maximum input line length which
is identical to $BIG ID1 except
for the last character.

$BIG ID3 (1..249 => 'A',250 => '3',

An identifier the size of the 251..499 :> 'A')
maximum input line length which
is identical to $BIG_ID4 except
for a character near the middle.

C-i

TEST PARAMETERf

Name and Meaning Value

$BIG ID4 (1-249 => 'A',250 => '4',
An identifier the size of the 251..499 => 'A')
maximum input line length which
is identical to $BIG_1D3 except
for a character near the middle.

$BIGINTLIT (1..496 => '0',497..499 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIGREAL LIT (1..493 => '0',1494..499 => "69.OE1")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRINGI (1 => '"',2..200 => 'A',201 => '"')
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDI.

$BIGSTRING2 (1 => ",,2..300 => 'A',301 => '1',
A string literal which when 302 => "")

catenated to the end of
BIGSTRING. yields the image of
BIGIDI.

$BLANKS (1..479 :> '
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTTLAST 2147483647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 16777216
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULT STORUNIT 8
An integer literal whose value
is SYSTEM.STORAGE UNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME VAXCROSS_680X0
The vaTue of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC 0. 00000000046566 2 P'3O77925-81 25
A real literal whose value is
SYSTEM.FINE DELTA.

$FIELD LAST 2147483647
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXED_NAME NOSUC"HTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOATNAME NOSUCHTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREATER THAN DURATION 100000.0
A univer'sal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THAN DURATION BASE LAST 10000000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH PRIORITY 99
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNAL FILE NAME /il legal/filename/2 1]$% 2102C.DAT
An external file name which
contains invalid characters.

$ILLEGAL EXTERNALFILENAME2 /illegal/filename/CE2102C*.DAT
An external file name which
is too long.

$INTEGERFIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 2147483648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS THAN DURATION -100000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -10000000.0
A-universal real literal that is

less than DURATION'BASE'FIRST.

$LOWPRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA DOC 31

An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAXINLEN 499
Maximum input line length
permitted by the implementation.

$MAX INT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+1.

$MAX LEN INT BASED LITERAL (1..2 => "2:",3..496 => '0',
A universal integer based 497..499 => "11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value

$MAX LEN REAL BASED LITERAL (1..3 => "16:",4..495 => '0',
A un-iversal r;al based literal 496..499 => "F.E:"'
whose value is 16:F.E: with
enougr. leading zeroes in the
mantissa to be MAX INLEN ln

$MAXSTRING LITERAL (1 => '"',2..498 => 'A',499 => til)

A string literal of size
MAX IN LEN, including the quote
characters.

$MIN INT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

$MINTASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME TINYINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT INTEGER,
LONGFLOAT, or LONGINTEGER.

$NAME_L IST VAX_CROSS_680X0
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEGBASED INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NEW MEM SIZE 16777216
An integer literal whose value
is a permitted argument for
pragma MEMORYSIZE, other than
$DEFAULT MEMSIZE. If there is
no other value, then use
$DEFAULTMEMSIZE.

C-5

TEST PARPAMETERS

Name and Meaning Value

$NEW _STORUNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT STORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEWSYSNAME VAXCROSS_680X0
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 0.01
A real literal whose value is
SYSTEM. TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 43 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form

AI-ddddd is to an Ada Commentary.

a. E28005C has been withdrawn because it expects that the string "--

TOP OF PAGE. --63" of line 204 will appear at the top of the
listing page due to a pragma PAGE in line 203; but line 203
contains text that follows the pragma, and it is this that must
appear at the top of the page.

b. A39005G has been withdrawn because it unreasonably expects a

component clause to pack an array component into a minimum size
(line 30).

c. B97102E has been withdrawn because it contains an unintended
illegality: a select statement contains a null statement at the
place of a selective wait alternative (line 31).

d. BC3009B has been withdrawn because it wrongly expects that
circular instantiations will be detected in several compilation
units even though none of the units is illegal with respect to the
units it depends on; by AI-00256, the illegality need not be
detected until execution is attempted (line 95).

e. CD2A62D has been withdrawn because it wrongly requires that an

array object's size be no greater than 10, although its subtype's
size was specified to be 40 (line 137).

f. CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests] have
been withdrawn because they wrongly attempt to check the size of
objects of a derived type (for which a 'SIZE length clause is
given) by passing them to a derived sub-program (which inplicitly

converts them to the parent type (Ada standard 3.4:14)).

Additionally, they use the 'SIZE length clause and attribute,

D-1

WI"LDRAWN TESTS

whose interpretation is considered problematic by the WG9 ARG.

g. CD2A81G, CD2A83G, CD2A84M and N, and CD50110 have been withdrawn
because tney assume that dependent tasks will terminate while the
main program executes a loop that simply tests for task
termination; this is not the case, and the main program may loop
indefinitely (lines 74, 85, 86 and 96, 86 and 96, and 58,

respectively).

h. CD2B15C and CD7205C have been withdrawn because they expect that a
'STORAGE SIZE length clause provides precise control over the
number of designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

i. CD2D11B has been withdrawn because it gives a SMALL representation
clause for a derived fixed-point type (at line 30) that defines a
set of model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a
derived fixed-point type must be representable values of the
parent type.

J. CD5007B has been withdrawn because it wrongly expects an
implicitly declared subprogram to be at the the address that is
specified for an unrelated subprogram (line 303).

k. ED7004B, ED7005C and D, ED7006C and D [5 tests] have been
withdrawn because they check various aspects of the use of the
three SYSTEM pragmas; the AVO withdraws these tests as being
inappropriate for validation.

1. CD7105A has been withdrawn because it requires that successive
calls to CALENDAR.CLOCK change by at least SYSTEM.TICK; however,
by Commentary AI-00201, it is only the expected frequency of
change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

m. CD7203B and CD7204E have been withdrawn because they use the 'SIZE
length clause and attribute, whose interpretation is considered
problematic by the WG9 ARG.

n. CD7205D has been withdrawn because it checks an invalid test
objective: it treats the specification of storage to be reserved
for a task's activation as though it were like the specification
of storage for a collection.

o. CE21071 has been withdrawn because it requires that objects of two
similar scalar types be distinguished when read from a
file--DATA ERROR is expected to be raised by an attempt to read
one object as of the other type. However, it is not clear exactly
how the Ada standard 14.2.4:4 is to be interpreted; thus, this
test objective is not considered valid (line 90).

D-2

* WITHDRAWN TESTS

p. CE3111C has been withdrawn because it requires certain behavior
when two files are associated with the same external file;
however, this is not required by the Ada standard.

q. CE3301A has been withdrawn because it contains several calls to
END OF LINE and END OF PAGE that have no parameter: these calls
were intended to specify a file, not to refer to STANDARD INPUT
(lines 103, 107, 118, 132, and 136).

r. CE3411B has been withdrawn because it requires that a text file's
column number be set to COUNT'LAST in order to check that
LAYOUTERROR is raised by a subsequent PUT operation. But the
former operation will generally raise an exception due to a lack
of available disk space, and the test would thus encumber
validation testing.

D-3

