e e e —

~ AD-A2i0 305 .

AVF Control Number: AVF-VSR-265.0589
89-01-25-TEL

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 890409W1.10060
TeleSoft
TeleGen2 Ada Development System, Version 1.4
Sun Microsystems Sun-3/280 Workstation Host and
Motorola MVME101 (MC68000) Target

Completion of On-Site Testing:
9 April 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright~Patterson AFB OH U#5433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense Accesion For

Washington DC 20301-3081 NTIS CRA&}

OTiIC TaB Q
Unannounced Q
Justification .

By

Distribution/

Avadabitity Codes

. ! Avai and)or
Oist i Special

A |

8

" DISCLATHER NOTICE

o

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

Ada Compiler Validatiorn Summary Report:

Compiler Name: TeleGen2 Ada Development System, Version 1.4
Certificate Number: B90409W1.10060
Host: Sun Microsystems Sun-3/280 Workstation under
Sun UNIX, Versior !.2, Release 3.5
‘Target: Motorola MVME101 (MC68000)
(bare machine)

Testing Completed 9 April 1989 Using ACVC 1.10

,This report has been reviewed and is approved.

fou

Ada Validatinn Facility

Steve P, Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OB H5433-6503

] /
el Ll
Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

A O

Ada Joint Program Office
Dr. John Solomond
Director

Departmerit of Dafense
Washington DC 20301

[YOU SR

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Development System, Version 1.4

Certificate Number: 890409W1.10060

Host: Sun Microsystems Sun-3/280 Workstation under
Sun UNIX, Version 4.2, Release 3.5

Target: Motorola MYME101 (MC68000)
(bare machine)

Testing Completed 9 April 1989 Using ACVC 1.10

This report has been reviswed and is approved.

ol el)
Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/22 :
Wright-Patterson AFB OH 45433-6503

Ada Validation Organization
Dr. John FP. Kraaer

Institute for Defense ses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director

Departmsnt of Defense
Washington DC 20301

vl b WAL i

t

TABLE OF CONTENTS

CHAPTER 1 INTRQDUCTION
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 12
1.2 USE OF THIS VALIDATION SUMMARY REPORT . « . « « « 1=2
1.3 REFERENCES--'.A¢o-o--coaolooon1-3
1.4 DEFINITION OF TERMS . . ¢« &+ ¢ ¢ o ¢ ¢ o o o o s « 1=3
.5 ACVC TEST CLASSES & & & ¢ v o o o s 6 6 o o o s o 1=8

CHAPTER 2 CONFIGURATION INFORMATION
2.1 CONFIGURATION TESTED. « « ¢ ¢« « ¢ ¢ o o o o o & o 2=1
2.2 IMPLEMENTATION CHARACTERISTICS. ¢ « « « o o » » o 2=2

CHAPTER 3 TEST INFORMATION
301 mnmrs.ocoo.ooooo.a.-0-003-1
3.2 SUMMARY OF TEST RESULTS BY CLASS: « « ¢ o o « & o 3=1
3.3 SOMMARY QF TEST RESULTS BY CHAPTER. . . « « +» . . 3=2
3." nmu“ms.-..--.......u...3—2
305 m‘?mcnw TESTS- 4« & & & & 8 ® s O s s e e & o 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS. . 3-5
3c7 ADDITIO“‘L m m‘noﬂ. e« o & o o & 5 o ¢ 3-6
3.7-1 ?mllidltion ® e ® a @ o o ¢ o e s 8 O * o o ¢ 3-6
3-7-2 Tast mthod ® ® @ e o & & & 0 & 5 s s " o s 2 o 3-6
3-703 TCSQSM’.G......-........--..3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CBAPTER 1
INTRODUCTION

D YA

This Validation Summary Report (¥3R)2 describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of ¢ this compiler using the Ada Compiler
Validation Capability /TACVE)}.=_An Ada compiler must be Iimplemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be imp.emented that is

not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced

during validation testing. Tne validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. - The purpose of validating is to easure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifiles and rejects
{llegal language constructs. The testing also identifies behavior taat 1is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1=1

T

v,
‘

— —

- -

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the res.lts of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To Jdetsrmine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program GOffice and administered by the Ada Validatiom Organization (AVO).
Cn-site testing was completed 9 April 1989 at San Diego CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler varsions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no ncnconformities

to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinéhouse
Ada Joint Program Office
CUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
washington DC 20301-3081%

or from:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OB H45433-6503

12

gt

R e

INTRODUCTION

Questions regarding this report or the validation test results should be
i directed to the AVF listed above or to:

¢ Ada Validation Organization

§ Institute for Defense Analyses
; 1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming lLanguage,
ANSI/MIL-STD- 18154, | February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4, Ada Compiler Validation Capability User's Guids, Decembder 1986.

1.4 DEFINITION OF TERMS

ACYC The Ada Compiler Validation Capability. The set of Ada
programs tnat tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the

Commentary point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
Applicant The agency requesting validatior.
AVF The Ada Validation Facility. The AVF is responsible for

conducting compiler validations according to procedures
contained in the Ada Ccmpiler Validation Prozedures and

Guidelines.
AVO The Ada Validation Crganization. The AVO has oversizht
H authority over all AVF practices for the purpose of
i

maintaining a uniform process for valldation of Ada
compilers. The AV0 provides administrative and technical
support for ~da validations to ensure consistsut practices.

Compiler A processor for the Ada language. In the context or this
report, a compiler is any language processor, including

1-3

INTRODUCTION

eruss-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses (festures of the language that a

test compiler is not required to support or may legitimately
support in s way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Target The computer for which a compiler generatas code.
Test A program th:ut checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may coaprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not used to check
test conformily to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the

language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, &, D, E, and L. The first letter of a tasc name identifies
the class to which it belongs. Class 4, C, D, and E tests are executabdle,
&nd special program units are used to report their results during
execution. Class B tests are expected to producs compilation errors.
Class L tests are expected to produce compgilation or link errors because of
the way in which a prograa lidbrary is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain languages constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
anotber language {(other than those already reserved in the Ada language)
a''e not treated as reserved words by an Ada compilar. A Class A test is
pwesed 4Lf no errors are detected at coapile time and the program exscutes
to nroduce a PASSED message.

Class B tests check that & compiler detescts illegal language usage. Class
B tests are not executable. Each test in this class {s compiled and the
resulting compilation listing 1is examined to verify that every syntax or
semantic error in the test is detected. A Class B teat is passed if every

1-4

o e e s+

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class £ tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indiczting the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a libdbrary--a compiler
may refuse to compile & Tlass D test and still be a conforming compiler.
Therefore, if a Class D test falls to compile because the capacity of the
compiler is exceedsd, the test is classified as inapplicable. If a Class D
test compilas successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are ecpected to execute successfully and check
implementation-dependent ontions and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message vhen it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to producs a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests ch.:k that Jincomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute (Class L tasts are compiled separately and exscution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program nust generate an error message before any
declarations in tha main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during corpilation of the test.

Two library units, the package REPCRT and the procedure CHECK_FILE, support
the self-checking features of the sxecutable tests. The package REPORT
provides the mechanism by whbich executable tests report PASSED, FAILED, or
NCT APPLICABLE results. It also provides a set of identity functions used
to0 defeat socme compiler optimizations allowed by the Ada Standard that
would circumvent a tast objective. The procedure CHECK_FILE is used %o
check the contents of text files writts. by some of the Class C tasts for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checiked by a set “f axecutable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If chese
units are not operating correctly, then the validatior i{s not attempted.

The text of each te¢st in the ACVC follcws conventions that are intended to
ensure that the <tests are rezsonably portable without modification. For
example, %he tests msake use of only the basic set of 55 characters, contain
lires with a maximum length of 72 characters, use small numeric values, and
Place features that may not be supported by all implementations in separate

1-5

— N e e e — —— —

INTRODUTTICN

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for erample, an
illegal file name. A list of the values used for this validation is

provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Stanzard by either meoting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is

‘considered each time the implementation is validated. A test that is

inapplicable for one validation 1is not necessarily inapplicable for a
subsequent validation. Any test that was determined tc contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACYC and, therefore, is not used in testing a coampiler. The tests
withdrawn at the time of this validation are given in Appendix D.

-

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate coumpilation system for this validation was tested under the

following configuration:

Compiler: TeleGen2 Ada Development System, Version 1.4

ACVC Version: 1.10

Certificate Number: 890409W1.10060

Host Computer:
Machine:

Operating System:

Memory Size:

Target Computer:

Machine:
Board:
CPU:
Bus
1/0:
Timer:

Operating System:

Memory Size:

Sun Microsystems Sun-3/280 Workstation

Sun UNIX
Version 4.2, Release 3.5

24 megabytes

Motorola MVME101 (MC58000)
MC68000

™E

MC68661

MC6840

(bare machine)

One megabyte

2-1

CONFIGURATION INFORMATION

Communications Network: RS232 serial line

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests spscifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests damonstrate the following characteristics:

a. Capacities.

(1) T™he compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002X.)

(2) The cozmpiler corrsctly processes tests containing 1loop
statements nested to 65 levels. (See tests DSSAO3A..H (8
tests).)

(3) The compiler correctly proceases tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests DGUOOSE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined type-~
LONG_INTEGER and LONG_FLOAT in package STANDARD. (See tests
B8EJ01T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do mot specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) Some of the default initialization expressions for record
components are evaluated bdefore any value is checksd for
membership in a component's subtype. (See test C32117A.)

(2) Assigrments for subdtypes are performed with the same precision
as the base type. (See test C35712B.)

2-2

Forres

P

C P Y+ e - S Pv— g——

Ce ———————— - — -

CONFIGURATION INFORMATION

(3) This implementation uses no extra bits for extra precision and
uses no extra bits for extra range. (See test 7359034.)

(4) Sometimes NUMERIC_ERROR is raisec when an integer literal
operand in a coaparison or membership test is outside the
range of tne base type. (See test CU5232A.)

(5) NUMERIC_FERROR is raised when a literal operand in a
{xed-point comparison or membership test is outside the range
of the base type. (See test CU5252a.)

(6) Underflow is not graduial. (See tests CY4S52UA..Z.)

Rounding.

The method by which values are rn:nded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The néthod used for rounding to integer is round away from
zero. {See tests CU460124..Z.)

(2) The method used for rounding to longest integer is round away
from zero. (See tests CUE012A..2.)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See tast CUAD14A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT_ERROR for an array having a 'LENGTH that exceeds
STANDARD . INTEGER'LAST and/or SYSTEM.MAX_INT. :

For this implementation:

(1) Deciaration of an array type or subtype declaration with mor-
than SYSTEM.MAX_INT components raises NUMERIC_ERROR for a
two-dimensional array subtype when the big dimension is the
second one. (See test C36003A.)

(2) NUMERIC_ERROR is raised when ‘'LENGTH is applied to a null
array type with INTEGER'LAST + 2 components. (See test
€36202A.)

(3) NUMERIC_ERROR is raised when a null array type with
SYSTEM.MAX_INT + 2 components is declared. (See test
€362028.}

C)]

(5)

(6)

n

(3)

(M

(1)

(2)

(3)

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER®LAST
raises nc exception. (See test C52103X.)

A packed two-dimensional BOOLEAN arrav with more than
INTEGER'LAST components raises CONSTRAINT ERROR when the
length of a dimension is calculated and exceeds INTEGER'LAST.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST =may raise NUMERIC_ERROR or CONSTRAINT_ ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match 4in array slice assigmments. This implementation
raises no uxozption. (See test E52103Y.)

In assigning one-dimensional array types, the expression is
evaluated in 1its entirety before CONSTRAINT ERROR is raised
when *hecking whather the expression's subtype is compatible
with t!e target's subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression is
not evaluated in 1ts entirety before CONSTRAINT ERROR is

raised when checking vhether the exrression's subtype is

compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

In assigning record types with discriminants, the expression
is svaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C520134.)

g. Aggregates.

in the evaluation of a multi-dimensional aggregate, index
subtype checks are made as choices are evaluated. {See tests
C43207A and Cu3207B.)

In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E%3212B.)

CONSTRAINT ERROR 4is raised after all choices are evaluated

when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test EN3211B.)

2=4

b

iy drad

CONFIGURATION INFORMATION

Pragmas.

(1) The pragma INLINE is supported for procedures and for
non-library functions. (See tests LA3004A..B, EA3004C..D, and
CA3004E..F.)

Generics

(1) Generic unit declarations, bodies, and subunits can be
compiled in separate coumpilations. (See tosts CA1012A and
CA30114.)

(2) Ir a generic unit body or one of its subunits is compiled or
recompiled after the generic unit is instantiated, the unit
instantiating the generic is made obsolete. The obsolescence
is recognized at binding time, and the bdinding is stopped.
(See tests CA2009C, CA2009F, BC3204C, and BC3205D.)

Input and output

(1) The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types or record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The paciage DIRECT IO cannct ©be instantiated with
unconstrained array types or record types with discriminants
without defaults. (Ses tests AE2101H, EE2U01D, and EE2U01G.)

(3) Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT IO- (See tests CS2102F, C321021..J, CE2102R, CE2102T,
and CE2102V.)

(5) Modes IN_FILE and OUT_FILE are supported for text files. (See
tests C‘-‘310¢E and CE31021..K)

(6) RESET and DELETE operations are supported for SEQUENTIAL_IO.
(Sec tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECT 10. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

(9) Overwriting to a sequentisl file docs not truncate the file.
(See test CE2208B.)

2-5

A Te e T
B LA AR A e

(10)

(1)

(12)

(13)

(14)

(15)

CONFIGURATION INFORMATION

Temporary sequential files are given names and not deleted
vwhen closed. {See test CE21084.)

Temporary direct files are given names and not deleted when
closed. (See test CE2108C.)

Texporary text files are given names and not deleted when
closed. (See test CE31124.)

More than one internal (file can be associated with sach
external file for sequential files when reading only. (See
tests CE2107A..E, CE2102L, CE2110B, and CE2111D.)

More than one internal file can bDe associated with each
external file for direct files when reading only. (See tests
CE2107F..B (3 tests), CE2110D, and CE2111H.) ,

More than one internal file can be associated with each

external file for text files when reading only. (See tests
CE3111A..E, CE3114B, and CE3115A.)

2-6

AR SIS et -
X AL

e

CHAPTER 3-
TEST INPORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 43 tests had been withdrawn becauss of test errors. The AVF
deterained that 314 tests vwere inapplicable to this implementation. A1l
inapplicable testy wers processed during vaslidation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for nine tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
confornity to the Ada Standard.

3.2 SOMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L

L — ————————

Passed 127 1129 2019 17 23 45 3360

Inmapplicabdle 2 9 297 0 5 1 31
Withdrawn 1 2 34 0 6 0 i3
* TOTAL 130 1180 2350 17 34 U6 3717

3-1

TZST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESTLT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 573 S44 285 172 99 160 333 132 36 250 340 278 3360
Inappl 4 76 136 3 0 0 6 0 5 0 2 29 43 1314
Wdrn 1 1 0 0 0 0 0 1 0 0 1 35 b 43

TOTAL 213 650 680 248 172 99 166 338 137 36 253 Ho4 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

E28005C A39005G B9T7102E BC3009B CD2A52D CD2Aa63A
CD2A63B €D2463C CD2A63D CD2A66A CD2A66B CD2466C
CD2Aa66D CD2AT3A CD2A73B ~ CD2A73C CD2A73D CD2AT6A
CD2AT6B CD24T6C CD2476D CD2A81G CD2483% CD2A8MM
CD2ABUN CD2B15C CD2D11B CD5007B €D50110 ED7004B
ED7005C ED7005D ED7006C EDT006D CDT10SA CD7203B
CD7204B CD7205C CD7205D CE21071 CE3111C CE3301a
CE3411B

See Appendix D for the reason that each of these tests was withdrawm.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicadbility of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 314 tests vere inapplicable for the reasons indicated:

a. The following 201 tests are not applicable bdecause they have
floating-point type declarations Trequiring more digits than
SYSTEM.MAX_DIGITS:

Cc24113L..Y C35705L..Y C35706L. .Y C35707L..Y
C35708L..Y c35802L..2 cas2a1L..Y c4s321L..Y
cias5421L. .Y C45521L..2 cluss2hL. .2 cus5621L..2
caséi1L. .Y c46012L..2

3-2

TEST INPORMATION

2355081, C35508J, C35508M, and C35508N are not applicable because this
implementation does not support enumeration representation clauses for

BOOLEAN types.

C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

The following 16 tests are not applicable because this implementation
does not support a predefined type SHORT_INTEGER:

C452318 C45304B C455028 C455038 cus5048
CUS504E C45611B C45613B chs5614B C45631B
C456328 BS2004E C55B07TB B55B09D B86001V
CD7101E

c4s231p, B86001X, and CD7101G are not applicadble bdecause this
implementation does not support any predefined integer type with a name
other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

Ci5531MM..P (4 tests) and CUS5532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX_MANTISSA is less than 47.

C86001F is not applicable because, for this implementation, the package
TEXT_IO is dependent upon package SYSTEM. These tests recompile
package SYSTEM, making package TEXT_IO, and hence package REPORT,
obsolete.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

CA2009C, CA2009F, BC3204C, and BC3205D are not applicable because this
implementation does not support separate compilation of generic
specifications, bodies, and subunits, if an instantiation is given
before compilztion of its bdcdies or subunits. The created dependency
is detected at bind time.

LA3004B, EA3004D, and CA3004F are not applicable because this
implementation does not support pragma INLINE for library functions.

CD1009C, CD2A%41A..B (2 tests), CD2AM1E, and CD2AU2A..J (10 tests) are
not applicable because this implementation does not support sizs
clauses for floating point types using less than 32 bits.

CD2A611 and CD2A61J are not applicable becszuse this implementation @oes
not support size clauses for array types, which imply compression, with
camponent types of composite or floating point types.

CD24A84B..I (8 tests) and CD2A8HEK..L (2 tests) are not applicable
because this implementation does not support size clauses for access

3-3

ab.

ac.

ad.

TEST INFORMATION

types using less than 32 bdits,

CDUOL1A is not applicable because this implementation does not support
record representation clauses with 32 bit aligmment.

AE2101C, EE2201D, and EE2201E wuse instantiations of package
SEQUENTIAL_I0 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected dy
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT_IO
with unconstrained array types and record types with discriminants
without defaults. These instantiations are rejected by this compiler.

CE2102D 4s inapplicable because this implementation supports CREATE
witk IN_FILE mode for SEQUENTIAL_IO.

CE2102E is inapplicable bDecause this implementation supports CREATE
with OUT_FILE mode for SEQUENTIAL_IO.

CE2102F 1is inapplicable bdecause this implementation supports CREATE
with INOUT_FILE mode for DIRECT IO.

CE21021 4is 1inapplicable bDecause this implementation supports CREATE
with IN_FILE mode for DIRECT_IO.

CE2102J is 1inapplicable because ¢this implementation supports CREATE
with OUT_FILE mode for DIRECT IO.

CE2102N is inapplicable because this implementation supports OPEN with
IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET with
IN_FILE mode for SEQUENTIAL_IO.

CE2102P 4is inapplicable because this implementation supports OPEN with
OUT_FILE mode for SEQUENTIAL_ IO.

CE2102Q is inapplicable because this implementation suppe~ts RESET with
OUT_FILE mode for SEQUENTIAL IO.

CE2102R 1is inapplicable because this implementation supports OPEN with
INOUT_FILE mode for DIRECT_IO.

CE2102S is inapplicable because this implementation supports RESET with
INOUT_FILE mode for DIRECT_IO.

CE2102T is inapplicadle decause this implementation supports OPEN with
IN_FILE mode for DIRECT_IO.

CE21020 is inzpplicable because this implementation supports RESET with
IN_FILE mode for DIRECT_IO.

3-4

it

- —_— - —o"

TEST INFORMATION

ae. CE2102V is inapplicable because this implementation supports open with
OUT_FILE mode for DIRECT_IO.

af. CE2102W is inapplicable because this implementation supporcs RESET with
OUT_FILE mode for DIRECT_ IO.

ag. CE21078..E (i tests), CE2107L, CE2110B, and CE211:D are not applicable
bacause multiple internal files cannot be associated with the same
external file when one or more files is writing for sequential files.
The proper exception is raised vhen multiple access is attempted.

ah. CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable because
sultiple internal files cannot be associated with the same external
file when one or more files is writing for direct files. The proper
exception is raised when multipls access is atteapted.

ai. CE3102E 4is inapplicable because this implementation supports CREATE
with IN_FILE mode for text files.

aj. CE3102F is inapplicable because this implementation supports RESET for
text files.

ak. CE3102C is 4inapplicable because this implementation supports deletion
of an external file for text files.

al. CE31021 is inapplicable because this implnenuuon supports CREATE
with OUT_FILE mode for text files.

am. CE3102J 4s inapplicable because this implementation supports OPEN with
IN_FILE mode for text files.

an. CE310X 4is inapplicable because this implementation supports OPEN with
OUT_FILE mode for text files.

ao. CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not applicabdble
be~ause multiple intermal files cannot be associated with the same
external file when one or more files is writing for text files. The
proper exception is raised when multiple access is attempted.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is axpected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made Dy the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonsirate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

3-5

C e e TR T e

TEST INFORMATION

Modifications were required for nine tests.

The following tests were yplit because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

BA3006A BA3006B BA3007B BA3006A BA3008B BA3013A

340056, C34005J, and C35006D required evaluation modifications because the
tests wrongly expect that an element of an array will not be represented more
compactly within an array than a single object of that type. These tests output
failed messages for the attribute *'SIZE.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
TeleGen2 Ada Development System was sudmitted to the AVF by the applicant for
reviev. Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected behavior on
all inapplicable tests.

3.7.2 Test Method

Testing of the TeleGen2 Ada Development System using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration in which
the testing was performed is described by the following designations of hardware
and software components: .

Host computer: Sun Microsystems Sun-3/280 Workstation

Host operating system: Sun UNIX, Version 4.2, Release 3.5

Target computer: Motorola MYME101 (MC§8700)

Target operating system: {(bare machine)

Compiler: TeleGen2 Ada Development System, Version 1.4

The host and target computers were linKed via an RS232 Serial Line.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that maks use of implementation-specific
values were customized before bDeing written to the magnetic tape. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic taps were loaded directly onto the host computer.

3-6

- enm -

- e

TEST INFORMATION

After the test files were loaded to disk, the full set of tests was compiled and
linked on the Sun Microsystems Sun~3/280 Workstation, thr- all executable images
were transferred to the Motorola MVME1I01 (MC68000) via a Serial line and run.
Results were printed from the host computer.

The compiier was tested using command scripts provided by TeleSoft and reviewed
by the validation team. The compiler was tested using all default option
settings except for the following:

OPTION EFFECT

ada Invoke TeleGen2 Ada cross compiler.

-8 Use software floating point routine calls.

-c 00 Generate code for 68000 precessor.

- Invoke TeleGen2 Ada linksr.

-L Generate interspersed error listing.

-2 Use additional options from the named linker options
file.

-pP Indicates that one or more of the subprograms being
optimized may be called fram parallel tasks.

=R Indicates that one or more of the subprograms interior

to the unit/collection dbeing optimized could be called
recursively by an exterior subprogram.

-1 Enables inline expansion of those subprograms marked
with an inline pragma or generated by the coapiler.
-A Enables automatic inline expansion of any subprogram

Ccalled from only one place, as well as those marked by
an inline pragma or generated by the compiler.
-0 D Optimizer switch which is equivalent to ¥-P -R -I =A".
ald Invoke the TeleGen2 Ada Cross Linker.

Tests were compiled, linked, and executed (as appropriate) using a single host
and target computer. Test output, compilatiorn listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at San Diego CA and was completed on 9 April 1989,

3-7 |

APPENDIX A
DECLARATION OF CONFORMANCE

TeleSoft has submitted the following Declaration of
Conformancc concerning the TeleGen2 Ada Development System.

DECLARATION OF CONFORMANCE

Compiler Implementer: TELESOFT
Ada Validation Facility: ASD'SCEL, Wright-Patterson ATB OH 45432-6502
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: TeleGen2 Ada Development System
Version: 1.4

Host Architecture ISA: Sun Microsystemns Sun-3/280 Workstation
OS & VER #: Sun UNIX, Version 4.2, Release 3.5

Target Architecture ISA: Motorola MVME101 (MC68000)
OS & VER #: bare machine

Implementer’s Declaration

1, the undersigned, representing TELESOFT, have implemented no deliberate extensions
to the Ada Language Standard ANS!/MIL-STD-1815A in the compileris) listed in this
declaration. 1 declare that TELESOFT is the owner of record of the Ada language
compilers listed above and, as such, is responsible for maintaining said compiier(s) in
comformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler(s) listed in this declaration shall ve made only in the owner’s corporate

Date: /0%)44/ /?27

name. -

TELESOFT
Raymond A. Parra. Difecfor, Contracts/Legal

Owner’s Declaration

1. the undersigned, representing TELESOFT take full responsibility for impiementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure of
the final Validation Summary Report. | declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

Date: /0 gﬂd 2k

r, Zontrects/Legal

A-2

AFPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the TeleGen2 Ada Development System, Version 1.4, as
described in this Appendix, are provided by TeleSoft. Unless specifically
noted otherwise, references in this Appendix are to compiler documentation
and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG INTEGER is range -2147483648 .. 214Tu83647;

type FLOAT is digits 6 range -1.70141E+38 .. 1.]01"15038;
type LONG_FLOAT is

digits 15 range -8.98846567431158E+307 .. 8.988U4656T431158E+307;
type CURATION is delta 2#1.0#E-14 range -86400.0 .. 86403.0;

end STANDARD;

APPENDIX F

1. Im7 lementation Dependent Pragmas

pragma COMMENT {<string_literal>);

I ma)r only appear within a compilation unit.

The pragma comment has the effect of embedding the given
sequence of characters in the object code of the compilation unit.

pragma LINKNAME(<subprogram_name>, <string_literal>);

It may appear in any declaration section of a unit.

This pragma must aiso appear directly after an interface pragma
for the same <subprogram_name>. The pragma linkname has the
effect of making string _literal apparent to the linker.

pragma INTERRUPT(Function_Mapping}:

It may only appear imimnediately before a simple accept statement,
a while loop directiy enclosing only a single accept statement,

or & select statement that includes an interrupt accept alternative.
The pragma interrupt has the effect that entry calis to the
associated entry, on behalf of an interrupt, are made with a
reduced call overhead.

pragma IMAGES(<enumeration_type>,Deferred] or
pragma IMAGES(<enumeration_type>.lmmediate);

It may only appear within a compiiation unit.

The pragma images controls the creation and allncation of
the image table for a specified enumeration type. The
default is Deferred. which saves space in the literal pool
by not creatirg an image tabie for an enu.neration type
unless the "Image. "'Value. or "Width attribute for the type
is uced. If one of these attributes is used. an image table

is generated in the literal pool of the compilation unit in
which the astribute appears. If the attributes are used in
more than one compilation unit, more than one irnage table is
generated, eliminating the benefits of deferring the table.

pragma SUPPRESS_ALL;

It may appear anywhere that a Suppress pragma may appear as
defined by the Language Reference Manual. The pragma
Suppress_All has the effect of turning off all checks

defined in section 11.7 of the Language Reference Manual.

The scope of applicablility of this pragma is the same as

that of the pre-defined pragma Suppress.

& 2. Implementation Dependent Attributes

'Offset Attribute

'Offses. along with the attribute ’Address, facilitates machine code
insertions. For a prefix P that denotes a declared parameter
object, P'Offset yiclds the statically known portion of the

address of the first of the storage units allocated to P. Ths

value is the object’s offset relative to a base regicter and is

of type Long_Integer.

———— -

INTEGER ATTRIBUTES
'Extended _Image Attribute

Usage: X'Extended Image(ltem,Width,Base,Based,Space_IF _Positive)

Returns the image associated with Item as per the Text _lo definition.
The Text_lo definition states that the value of Itein is an integer
literal with no underlines, no exponent, no leading zeros

{but a single zero for the zero value) and a minus sign if negative.

If the resulting sequence of characters to be output has fewer than
Width characters then leading spaces are first output to make up

the difference. (LRM 14.3.7:10,14.3.7:11)

For a prefix X that is a discrete type or subtype: this atiribute

is a function that may have more than one parameter. The parameter
Itern must be an integer value. The resuiting string is

without underlines, leading zeros, or trailing spaces.

Parameier Descriptions:

Item — The user specifies the item that he wants the
image of and passes it into the function. This
parameter is required.

Width ~ The user may specify the minimum number of
characters to be in the string that is returned.

If no width is specified then the default (0) is
assumed.

Base = The user may specifyv the base that the image is
to be displayed in. If no base is specified then
the defauit {(10) is assumed.

Based ~ The user may specify whether he wants the string

returned to be in base notation or not. If no
preference is specified then the default (false)
is assumed.

Space_If Positive — The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then
the default (faise) is assumed.

Examples:
Suppoese the following subtype was declared:
Subtype X is Integer Range -10..16;

Then the following would be true:

X'Extended _Image(5) = "g"
X'Extended _Image(5,0) = "5"
X'Extended _Image(5.2) =" g"
X’Extended _lmage(5.0.2) = "101"
X'Extended _Image(5.4,2) =" 101"
X'Extended Image(5.0,2,True) = "24101%"

X’Extended _Image(5.0.10,False) e
X’Extended Image(5.0,10,False,True) =" 35"
X'Ext.ended_lmnge(-l.O,lO,F alse,False) = ".1"
X°Extended Image(-1.0,10.False,True) = "-1"
X’Extended Image(-1,1,10,False,True) = ".1"
X'Extended Image(-1,0,2,True,True) = "-2#14"
X°Extended Image(-1,10,2,True,True) =" -2414"

WA e e

B-4

'Extended_\V'alue Attribute

Usage: X'Extended \'aluc(ltem)

Returns the value associated with ltem as per the Text_lo definition.
The Text_lo definition states that given a string, it reads an

integer value from the beginning of the string. The value returned
corresponds to the sequence input. (LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype, *his attribute
is a function with a single parameter. The actual parameter Jtem
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT_ERROR is raised.
Parameter Descriptions:
Item — The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type X.
Examples:
Suppose the following subtype was declared:
Subtype X is Integer Range -10..16;

Then the following would be true:

X’Extended _Value("5") =3
X'Extended_Value(" 5") =35
X'Extended_Value("2#1014") -3
X’Extended Value("-1") -]
X’Extended_Value(" -1") =-.]

'Extended_Width Attribute
Usage: X'Extended_Width(Base.Bused,Space_If Positive)
Returns the width for subtype of X.

For a prefix X that is a discrete subtype; this attribute

is a function that may have multiple parameters. This attribute
yields the maximum image length over all values of the type

or subtype X.

Parameter Descriptions:

Base — The user specifies the base for which the width
will be calculated. If no base is specified
then the default (10) is assumed.
Based — The user specifies whether the subtype is stated
in based notation. If no value for based is
specified then the default (false) is assumed.
Space Ilf Positive ~ The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. lf no preference is specified then the
default (false) is assumed.

Examples:
Suppose the following subtype was declared:
Subtype X is Integer Range -10..16;

Then the following would be true:

X’Extended_Width -3 - "]0"
X'Extended_Width(10) -3 -"]0"
X’Extended_Width(2) =5 - "10000"
X’Extended_Width(10,True) -7 - ".10£104"
X'Extended Width(2,True) =8 - "24100004"

X'Extended_Width(10.False, True) =3 ~"16"
X’Extended Width(10,True,False) =7 ~ "10#104"

X’Extended_Width(10,True,True) =7 ~ " 10#164"

X'Extended_Width(2,True, True) =9 - " 24100004 "

X'Extended_Width(2,False,True) =6 ~ " 10000"
B-6

BRETHNC 3 T R

j

ENUMERATION ATTRIBUTES

’Extended _lmage Attn :ute
Usage: X’Extended_Iriage(ltem,Width,Uppercase)

Returns the image associated with Item as per the Text_lo definition.
The Text_lo definition states that given an enumeration literal,

it will output the value of the enumeration literal (either an

identifier or a character literal). The character case parameter

is ignored for character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype: this attribute

is a function that may have more that one parameter. The parameter
Item must be an enumeration value. The image of an enumeration
value is the corresponding identifier which may have character case
and return string width specified.

Parameter Descriptions:

Item ~ The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.
Width ~ The user may specify the minimum number of characters to
be in the string that is returned. If no width is
specified then the default (0) is assumned. If the Width
specified is larger than the image of Item, then the
return string is padded with trailing spaces; if the
Width specified is smaller than the image of Jtem then
the defaulit is assumed and the image of the enumeration
value is output completely.
Uppercase —~ The user may specify whether the returned string is in
uppercase characters. In the case of an enumeration
type where the enu.neration literals are character
literals. the Uppercase is ignored and the case
specified by the type definition is taken. If no
preference is specified then the default (true) is
assumed.

Examples:
Suppose Lhe following types were declared:

Type X is (red, green. blue, purple);
Type Yis ('a’, 'B", ¢'. 'D’);

Then the following would be true:

e -l . - —— . T © G e T ——— T —

X'Extended _Image(red) = "RED"
X’Extended _Image(red. 4) = "RED "
X’Extended _Image(red.2) = "RED"
X’Extended Image(red.0.false) = "red"
X’Extended _Image(red,10,false) = "red "
Y'Extended _Image(’a’) - Ngin
Y’Extended Image(’B’) = Mp"
Y’Extended _Image(’a’.6) = Wy’ "
Y’Extended Image('a’,0.true) = Mg

'Extended _Value Attribute

Usage: X’Extended Value(ltem)

Returns the image associated with ltem as per the Text_lo definition.
The Text_lo definition states that it reads an enumeration value
from the beginning of the given string and returns the value of

the enumeration literal that corresponds to the sequence input.
(LRM 14.3.9:11}

For a prefix X that is a discrete type or subtype: this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any lesding or trailing

spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT_ERROR is raised.

{ B-8

Parameter Descriptions:
Item ~ The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of X.
Examples:
Suppose the following type was declared:
Type X is (red, green. blue, purple);

Then the following would be true:

X'Extended_Value("red") = red
X'Extended _Value(" green") = green
X'Extended Value(" Purple”) = prrple
X'Extended Value(" GreEn ") = green

'Extended_Width Attribute
Usage: X'Extended_Width
Returns the width for subtype of X.
For a prefix X that is a discrete type or subtype; this attribute
is a function. This attribute yields the maximum image length over
all values of the enumeration type or subtype X.
Parameter Descriptions:
There are no parameters to this function. This function

returns the width of the largest (width) enumeration literal
in the enumeration ype specified by X.

8-9

Examples:
Suppose the following types were declared:

Type X is (red, green. blue, purple);
Type Z is (X1, X12, X123, X1234);

Then the following would be true:

X'Extended Width = 6 - "purple”
Z'Extended_Width =5 ~ "X1234"

FLOATING POINT ATTRIBUTES .
'Extended _Image Attribute
Usage: X’Extended_Image(ltem Fore,Aft.Exp,Base,Based)

Returns the image associated with Itemn as per the Text_lo definition.
The Text_lo definition states that it outputs the value of the
parameter ltem as a decimal literal with the format defined by the
other parameters. !f the value is negative then a minus sign

is included in the integer part of the value of Item. If Exp

is O then the integer part of the output has as many digits as

are needed to represent the integer part of the value of Item or

is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute

is & function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is

without underlines or trailing spaces.

B-10

Parameter Descriptions:

ltem — The user specifies tite item that e wants the image of anc
passes it into the function. This parameter is required.

Fore — The user may specify the minimum number of characters for
the integer par: of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the '#’ if based
notation is specified. If the integer part io be output
has {fewer characters than specified by Fore, then leading
spaces are output first Lo make up the difference. if no
Fore is specified then the default (2) value is assumed.

Aft —~ The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is ane. If no Aft is specified then the
default (X'Digits-1) is assumed. If based notation is
specified the trailing "#° is included in aft.

Exp — The user may specify the minirnum number of digits in the
exponent; the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the defauit (3) is assumed. I Exp is C then no exponent
is used.

Base — The user may specify the base that the image is to be
displayed in. If no base is specified then the default
(10) is assumed.

Based - The user may specify whether he wants the string returned
to be in based notation or not. Ilf no preference is
specinied then the default (false) is assumed.

-———-

T e e e = —— gg— —a— =

o 4 = e —— —

Exampiles:

Suppose the following type was declared:
Type X is digits 5 range -10.0 .. 1<.0:

h)

Then the following would be true:

X’Extended_Image(5.0) = " 5.0000E+00"
X'Extended_Image(5.0,1) = "5.0000E+00"
X'Extended_lmnge(-s.o.]) = ".5.0000E +-00"
X’Extended_lmage(5.0,2,0) = " 5.0E+00"
X'Extended_lmage(S.OJ,0,0) ="350"
X’Extended_hnqe(5.0,2.0,0,2) = "101.0"

X'Extended_hnage(5.0.2,0,0,2,True) = "24101.0#"
X’Extended_Image!(5.0,2,2,3,2,True) = "241.1#E+02"

-

‘Extended_Value Attribute

Usage: X'Extended Value{ltem)

Returns the value associated with liem as per the Text_lo definition.

The Text_lo definition states that it skips any leading zeros,
then reads a plus or minus sign if present then reads the string
according to the syntax of a real literal. The return value is
that which corresponds to the sequence input. (LRM 14.3.8:9,
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a singlc parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT _ERROR is raised.
Parameter Descriptions:
Item — The user passes to the function a parameter of the
predefined type siring. The type of the returned
value is the base type of the input string.
Examples:
Suppose the following type was declared:
Type X is digits 5 range -10.0 .. 16.0;

Tkhen the following would be true:

X'Extended _Value("5.0") = 5.0

X'Extended _Value("0.5E1") = 5.0

X'Extended Value(“2#1.014E2") =350
B-13

'Extended Digits Attribute
Usage: X'Extended_Digits(Base)

Returns the number of digits using base in the mantissa of mode}
numbers of the subsype X.

Parameter Descriptizus:

Base — The user may specify the base that the subtype is
defined in. If no base is specified then the default
{10) is assumned.

Examples:
Suppose the following type was declared:
Type X is digits 5 range -10.0 .. 16.0;
Then the following would be true:

X’Extended Digits =5

FIXED POINT ATTRIBUTES
'Extended Image Attribute
Usage: X’Exter:ded_Image(liem,Fore.Aft.Exp.Base.Based)

Returns the image associated with Item as per the Text lo definition.
The Text_lo definition states that it outputs the value of the
parameter ltem as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign

is included in the integer part of the value of ltem. If Exp

is 0 then the integer part of the output has as many digits as

are needed Lo represent the integer part of the value of Item or

is zero if the value of ltem has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype: this attribute

is a function that may have more than one parameter. The parameter
Itemn must be a Real value. The resulting string is

without uaderlines or trailing spaces.

Parameter Descriptions:

Item ~ The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Fore — The user may specify the minimum pumber of characters for
the integer part of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the '#’ if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft — The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the deita of the tpe or subtype is greater than
0.1 then Aft is one. U no Aft is specified then the
default (X'Digits-1) is assumned. If based notation is
specified the trailing '#’ is included in aft.

Exp - The user may specify the minimum number of digits in the
exponent; the exponent consists of a sign and the exponent.
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is O then no exponent
is used.

Base — The user may specify the base that the image is to be
displayed in. If no base is specified thep the default
(10) is assumned.

Based — The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

— g

Examples:
Suppose the following type was declared:
Type X is delta 0.1 range -10.0 .. 17.0;

Then the following would be true:

X’Extended _Image(5.0) = " 5.00E+00"
X’Extended Image(5.0,1) = "5.00E+00"
X'Extended _lmage(-5.0.1) = ".5.00E-+00"
X'Extended _Image(5.0,2.0) = " 5.6E+00"
X’Extended Image(5.0,2.0,0) =" 50"
X'Extended Image(5.0.2.0,0.2) = "101.0"

X’Extended Image(5.0,2,0,0,2,True) = "24#101.0#"
X'Extended !mage(5.0,2,2,3,2,True) = "2£1.13E+02"

'Extended_Value Astribute
Usage: X'Extended _Value(lmage)

Rerurns the value associated with ltem as per the Text_lo definition.
The T:xt_lo definition states that it skips any leading zeros,

then reads a pius or minus sign if present then read the string
according to the syntax of a real literal. The return value is

that which corresponds to the sequence input. (LRM 14.2.8:9,
14.3.8:10)

For a prefix X that is a discrete type or subtype: this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal
string is passed. a CONSTRAINT_ERROR is raised.

Parameter Descriptions:
Image — The user passes to the function a parameter of the

predefined type string. The type of the returned
value is the base type of the input string.

B~16

Examples:
Suppose the following type was declared:
Type X is deita 0.1 range -10.0 .. 17.0;

Then the following would be true:

X'Extended _Value("5.0") = 5.0
X'Extended Value("0.5E1") = 5.0
X’Extended Value("2#1.01#E2") = 5.0

'Extended_Fore Attribute
Usage: X'Extended Fore(Base.Based)

Returns the minimum number of characters required for the integer
part of the based representation of X.

Parameter Descriptions:

Base — The user may specify the base that the subtype would be
displayed in. If no base is specified then the default
(10) is assumed.

Sased — The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (faise) is assumed.

B-17

Examples:
Suppose the following type was declared:
Type X is deita 0.1 range -10.0 .. 17.1;
Then the following would be true:

X’Extended_Fore =3 - ".10"
X'Extended_Fore(2) =6 - " 10001"

'Extended_Aft Attribute
Usage: X’Extended _Aft(Base,Based)
Returns the minimum number of characters required for the fractional
part of the based representation of X.
Parameter Descriptions:
Base ~ The user may specify the base that the subtype would be
dispiayed in. If no base is specified then the defauit
(10) is assumed. _
Based ~ The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.
Exampiles:
Suppose the following type was declared:
Type X is deita 0.1 range -10.0 .. 17.1;

Then the following would be true:

X'Extended _Aft =] - "1" from 0.1
X'Extended _Aft(2) = 4 — "0001" from 2#0.0001#

S PNttt e

e —— —— —— e = "

3. Soecification of Package SYSTEM
PACKAGE System 1§

TYPE Address is Access Integer;
TYPE Subprogram_Value is PRIVATE;

TYPE Name IS (TeleGen2);
System _Name : CONSTANT name := TELEGEN2

Storage_Unit : CONSTANT := §;
Memory _Size : CONSTANT := (2**31)- 1;

—~ System-Dependent Named Nvroers:

Min_Int : CONSTANT := -(2 ** 31);
Max _Int : CONSTANT := (2 ** 31)- I;
Max_Digits : CONSTANT := 15;

Max Mantissa : CONSTANT := 31;

Fine Delta : CONSTANT := 1.0 / (2 ** Max_Mantissa);

Tick : CONSTANT := 10.0E-3;

— Other System-Dependent Declarations
SUBTYPE Priority IS Integer RANGE 0 .. 63;

PRIVATE
TYPE Subprogram_Value IS
RECORD
Proc_addr : Address:
Static_link : Address:
Global_frame : Address;
END RECORD;

END System;

B-19

AR e il

4. Restrictions on Representation Clauses
The Compiler supports the following representation clauses:

Length Clauses: for enumeration and derived integer type: 'SIZE
attribute (LRM 13.2(a))
Length Clauses: for access types 'STORAGE_SIZE attritube (LRM13.2(b))
Length Clauses: for tasks types 'STORAGE_SIZE attribute (LRM 13.2(c))
Length Clauses: for fixed point types 'SMALL attribute (LRM13.2(d))
Enumeration Clausex: for character and enumeration types other than
boolean (LRM 13.3)
Record representation Clauses (LRM 13.4) with following constraints:
- Each component of the record must be
specified with a component clause.
- The alignment of the record is restricted to
mod 2, word (16 bit) aligned.
- Bits are ordered right to left within a byte.
Address Clauses: for objects, entries, and external subprograms

(LRM 13.5(a)(c))

This compiler does NOT support the folilowing representation clauses:
Enumeration Clauses: for boolean (LRM 13.3)
Address Clauses for packages, task units, or non-external Ada
subprograms (LRM 13.5(b))
5. Implementation dependent namirg conventions
There are no implementation-generated names denoting

implementation dependent componentas.

6. Interpretation of Expressions in Address Clause

Expressions that appear in address specifications are interpreted
as the first storage unit of the object.

TR £ P

. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between any types or subtypes unless
the target type is an unconstrained record or array type.

. 1/0 Package Characteristics

Sequential 1O and Direct_lO cannot be instantiated for
unconstrained array types or unconstrained types with discriminants
without default values.

In TEXT _]O the type COUNT is defined as follows:
type COUNT is range 0 .. 2_147_483_645;

In TEXT_IO the subtype FIELD is defined as follows:

subtype FIELD is INTEGER range 0..1000;
According to the latest interpretation of the LRM, during a
TEXT_10.Get_Line call, if the buffer passed in has been filled,
the call is completed and any succeeding characters and/or
terminators (e.g., line, page, or end-of-file) will not be read.
The first Get_Line call will read the line up to but not

including the end-of-line mark, and the second Get_Line will read
and skip the end-of-line mark left by the first read.

B-21

-

APPENDIX C
TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent vaiues, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Yalue
$ACT_SIZE 32

An integer 1literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG_ID1 (1..199 => 'A', 200 => '1')
An identifier the size of ¢the
maxizum input line length which
is identical to $BIG_ID2 except
for the last character.

$BIG_ID2 (1..199 2> 'A', 200 => '2¢)
An identifier the size of the
maxivum input line length which
is identical to $BIG_ID1 except
for the last character.

$B1G_ID3 (1..99 => 'a', 100 => '3',
An identifier the size of the 101..200 => *AY)
saximum dinput line length which
is identical to 4BIG_ID4 except
for a character near the middle.

TEST PARAMETERS
b
’ Nage and Meaning Value
’ $BIG_IDU (1..99 => 'a*, 100 => tur,

An identifier the size of the 101..200 => 'A")
maximum input line length which
* is identical to $BIG_ID3 except
for a character near the middle.

} $BIG_INT_LIT (1..197 2> *0', 198..200 => "298n)
] An integer literal of value 298

with enough leading zeroes so

that it i1s the size of the
; paximum line length.

SBIG_ﬁEAL_LIT (1..195 => '0', 196..200 => *690.0")
A universal real 1literal of
value 690.0 with enough leading
Zeroes to be the size of the
maximum line length.

$BIG_STRING! (12> M, 2,101 2> AT, 102 2> ')
A string 1literal which when
catenated with BIG_STRING2
yields the image of BIG_ID1.

$BIG_STRING2 (1 => 1 2,100 = 'A',101 => 11,
A string 1literal which when 102 => 1)
catenated %0 the end of
BIG_STRING1 yields the image of
BIG_ID1.

$BLANKS (1..180 => * 1)
A sequence of blanks twenty
characters less than the sizas
of the maximum line length.

$COUNT_LAST 2187483646
A universal integer
literal whose value is
TEXT_IO.COUNT'LAST.

QDEPAULT_yEH SIZE 2147483647

An integer literal whose value
is SYSTEM.MEMORY_SIZE.

QDEPASLI_STOR_plIT 8
An integer literal whose value
is SISTEH.STORAGE_pNIT.

c-2

TEST PARAMETERS

Name and Meaning Value
SDEFAULT_SIS_NAME TELEGEN2
The value of the constant
SYSTFM.SYSTEM_NAME.
$DELTA_DOC 2#1.04E-31
A real literal whose value is
SYISTEM.FINE_DELTA.
$FIELD_LAST 1000
A universal integer
literal whose value is
TEXT_I0.FIELD'LAST.
$FIIED__M NO_SUCH_TYPE
The name of a predefined
fixsd-point type other than
DURATION.
$FLOAT_NAME NO_SUCH_TYPE
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.
mmm_mn_mmnm 100000.0
A universal real 1literal that
lies between DURATION "BASZLAST
and DURATION'LAST or any value
in the range of DURATION.
mmm_mn_numnou_msz_usr 131073.0
A universal real literal that is
greater than DURATION'BASE'LAST.
$HIGH_PRIORITY 63
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.
3mmu_mmu_m.z_wm1 "BADCHAR®“ /g"
An external file name which
contains 4invalid characters.
SIU.EGAL_EZTBRML_FILE_NLW * /NONAME/DIRECTORY"™
An external file name which
is too 1long.
smmn_nns'r «32768

A universal integer 1l1iteral
whose value is INTEGER'FIRST.

R L R T R a—— R

TEST PARAMETERS

s L

¢INTESER_LAST

Name and Meaning Value ‘;._'.-
32767 ¥
-A universal integer literal :’,;.1_
whose value is INTEGER'LAST. by’
$INTEGEP_LAST PLUS_! 32768
A universal integer literal
whose value is INTEGER'LAST + 1.
-160000.0

$LESS_THAN_DURATION
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN_DURATION_BASE_FIRST
A universal real litersal that is
less than DURATION'BASE'FIRST.

$LOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA DOC
An integer literal whose value
is SYSTEM.MAX_MANTISSA.

$MAX DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN_LENW
Maximum input line length
permitted by the implementation.

$MAX_INT
A universal integer literal
whose value is SYSTEM.MAX_INT.

$MAX_INT_PLUS_1
A universal integer literal
whose value is SYSTEM.MAX_INT+1.

$MAX_LEN_INT_BASED LITERAL
A universal integer based
literal whose value 1is 2#11#
with enough leading zerves in
the mantissa to be MAX_IN LEN
long.

-131073.0

15

200

2147483647

2147483648

(1-.2 x> '2:',30.197 =) '0',
198..200 => "11:")

C-4

y D
L R = s S S

R s i L

lase and Meaning

TEST PARAMETERS

Value

$MAX_LEN_REAL_BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough 1lsading 2zeroes in the
mantissa to be MAX_IN_LEN long.

$MAX_STRING_LITERAL
A string literal of size
MAX_IN_LEN, including the qucte
characters. ’

$MIN_INT

A universal 1integer literal
whose value is SYSTEM.MIN_INT.

$MIN TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;"™ as the only statement in
its body.

SNAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NAME_LIST
A list of enumeration 1literals
in the type SYSTEM.NAME,

separated by commas.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SISTEM.MAX_ INT.

$NEW_MEM SIZE
An integer literal whose value
is a permitted argument for
pragma MEMORY_SIZE, 4ther than
$DEFAULT_MEM_SI2E. If there is
no other value, then use
$DEFAULT_MEM_SIZE.

(1..3 => ™6:",4,,186 => '0°',
197..200 => "F.E:")

(1 => '™, 2..199 => 14, 200 => ')

-2147433648

32

NC_SUCH_TYPE

TELEGEN2

16#FFFFFFFES

2147483647

‘}!A'm& -

¥

1
£
i
%

TEST PARAMETERS

Name and Meaning

Value

$NEW_STOR_UNIT
An integer literal whose value
is a permitted argument for
pragma STORAGE_UNIT, other than
$DEFAULT_STOR_UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE_UNIT.

sm_SYS_NAME
A value of the type SYSTEM.NAME,
other than QDEI-‘AUL‘I‘_SIS_NAHE. Ir
there is only one value of that
type, then use that value.

$TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN QUT®
parameter.

$TICK
A real literal whose value is
SYSTEM.TICK.

TELEGEN2

32

0.01

. .y_\.’tg.q,. LR Y

s oA

L e . -

Some
Ada

APPENDIX D
WITHDRAWN TESTS

tests are withdrawn from the ACVC because they do not conform to the
Standard. The following U3 teats had been withdrawn at the time of

validation testing for the reasons indicated. A reference of the form
Al-ddddd is to an Ada Commentary.

f.

E28005C: This test expects that the string "-- TOP OF PAGE. =-63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 20).

B97102E: This test contains an unintended illegality: a selec:
statement contains a null statement at the place of a selective wait
alterrnative (line 31).

BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on: by AI-00256, the
il]).ognlity need not be detected until execution is attempted (line
95).

CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to de 40
(1ine 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2AT6A..D (16 tests): These
tests wrongly attampt to chesk the sizs of objects of a derived type
(for which & 'SIZE length clause is given) by passing them to a
derived subprograa i(which implicitly converts them to the parent type
(AMda standard 3.8:18)). Additicnally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

+ 5, - ; . . .y 4 . R N N
Litheapl, & ety et --,3_' ym.;-,,, L5 e T NN

S s |

WITHDRAWN “ESTS

CD2A81G, CD2AB3G, CD2ABuM..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that sinoply tests for task termination; this is not
the case, and the main program may loop indefinitely ’‘lines 7h, 85,
86, 96, and 58, respectively).

CD2B15C ard (CD7205C: These tests expect that a 'STORAGE_STIE length
clause provides precise control over the number of designated objects
iu a collection; the Ada standard 13.2:15 allows that such control
aust not be expected.

CD2D1iB: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbers that
ard not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable valuas of the parent type.

CDS007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogran
{1ine 303).

ED7004B, ED7705C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AiVO
withdraws these tests as being inappropriate for validation.

CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

CD7203B and CD7204B: These tests use the 'SIZE length clcuse and
attribute, whose interpretation is considered probiematic by the WG9
ml

CD7205D: This test checks an invalid test objective: it trsats the
specification of storage to be reserved for a task's activation as
though 1t were like the specification of storage for a collection.

CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA_ERROR is expected tc be
raised by an attempt to read one object as of the other type.
However, 1t 43 not clear exactly how the Ada standard 14.2,4:4 is to
be interpreted; thus, this test objective is not considered valid
(1ine 90).

CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standand.

CE3301A: This test contains several calls to END_OF_LINE and

END_OF_PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARD_INPUT (lines 103, 107, 118,

p-2

R T e g TSI T3 I T ety
Y. (it 8 - A

v g

WITHDRAWN TESTS

132, and 136).

CE3411B: This test requires that a text file's column number be aet to
COUNT'LAST in order to check that LAYOUT ERRUR 1is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D=3

