
AVF Control Number: AVF-VSH-265.05 8 9
89-01-25-TEL

0

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 890409W1.10060
*TeleSoft

TeleGen2 Ada Development System, Version 1.4
Sun Microsystems Sun-3/280 Workstation Host and

Motorola MVME101 (MC68000) Target

Completion of On-Site Testing:
9 April 1989

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense Accesion For j
Washington DC 20301-3081 NTIS CRA&I

OTIC TAB C
Unannounced

Justificatiol

By

01tribUtion I

Avatiability Codes

I Avail andlor
D i Special

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

ra

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Development System, Version 1.4

Certificate Number: 890409W1.10060

Host: Sun Microsystems Sun-3/280 Workstation under
Sun UNIX, Version A.2, Release 3.5

Target: Motorola MVME101 (MC68000)
(bare machine)

Testing Completed 9 April 1989 Using ACVC 1.10

.This report has been reviewed and is approved.

Ada Validatinn Facility
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patter3on AFS OH 45433-6503

Aa-Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Development System, Version 1.4

Certificate Number: 8904109W1.10060

Host: Sun Mtirosystems Sun-3/280 Workstation under
Sun UNIX, Version 4.2, Release 3.5

Target: Motorola MVHE101 (MC68000)
(bare machine)

Testing Completed 9 April 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation Facility
Steve P. Wilson
Technical Director
ASD/1C.EL
Wright-Patterson AFB OH 45433-6503

Ada Validation Orgnii

nsttute for Def'ense : r9183eAlexadra VA 22311

Ada"Joint Pogra Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTTON

1 .1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1.... -2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3

ACVC TEST CLASSES 1-4

CHAPTER 2 COKFIGURATION IllRMATION

2.1 CONFIGURATION TESTED2-1
2.2 D4PLEENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RSULTS. 3-1
3.2 SMM OF TEST RESULTS CLASS 3-1
3.3 SUM OF TEST RESULTS fy CHAPTER........... .3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATIN MODIFICATIONS . 3-5
3.7 ADDITIONAL TESTING INFORMATION3-6
3.7.1 Prev lidation3-6
3.7.2 Test Method3-6
3.7.3 Test Site 3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TT PARAMETERS

APPENDIX D WITHDRAWN TESTS

Il

CWLTER 1

INThODUCTION

This Validation Summary Report RISH 0-describes the extent to which a
specific Ad& compiler confors to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of this compiler using the Ada Compiler
Validation Capability . Tft= --Jn Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be imp emented that is
not in the Standard.;

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies-for example, the
maximm length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.-

The information in this report is derived from the test .-esults produced

during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results * The purpose of validating is to ensure conformity
of the compiler to the A; Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior taat is
impleentation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

kV --

1-1-

INTRODUCTION

1 . PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the res%.lts of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

* To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

* To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 9 April 1989 at San Diego CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may

makce full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities

to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF :isted above or to:

Ada Validation Organization
Institute for Defense Analyses
1901 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

I. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Comiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guid , December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form A!-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Prozedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for .4a validations to ensure consistoot practices.

Compiler A processor for the Ada language. In the context or this
report, a compiler is any language processor, including

1-3

INTRODUCTION

crcoss-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resies.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test tor which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program tht checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard s measured using the ACIC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are exptected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
ase not treated as reserved words by an Ada compiler. A Class A test is
posed if no errors are detected at compile time and the prowram executes
to produce a PASSMD message.

Class 3 tests check that a compiler detects illegal language usage Class
B tests are not executable. Each test in this class is compiled and the
result mg compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B teat is passed if every

1-4

.Im

INTRODUCTION

illegal Construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ads programs
can be correctly comiled and executed. Each Class C test is self-checkIng
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library-a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceedid, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are ecpected to execute successfully and check
implementation-dependent otions and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests ch. k that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time-that is, an attempt
to execute the maln program must generate an error message before any
declarations in ths main program or any units referenced by the main
program are elaborated. In some cases, an Implementation may legitimately
detect errors during copilation of the test.

Two library units, the package REPCRT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT

provides the mechanism by which executable tests report PASSED, FAILED, orNOT APPLICABLE results. It also provides A set Of identity functions used
to defeat some compiler optialzations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files writte.. by some of the Clas C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checiked by a set -f executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If hese
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are res-_onably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 c.aracters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
domonstrate conformity to the Ada Stanard by either meeting the pass
criteria gltven for the test or by showing that the test is inapplicable to

the implementation. The applicability of a test to an implementation is
'considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined tc contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFOWMATION

2. 1 CONFIGURATION TESTED

The candidate cumpilation system for this validation was tested under the
following conf guration:

Compiler: TeleGen2 Ada Development System, Version 1.4

ACVC Version: 1.10

Certificate Number: 890409W1.10060

Host Computer:

Machine: Sun Microsystems Sun-3/280 Workstation

Operating System: Sun UNIX
Version 4.2, Release 3.5

Memory Size: 24 megabytes

Target Computer:

Machine:
Board: Motorola MME101 (MC68000)
CPU: MC68000
Bub! VHE
I/0: MC68661
Timer: MC6840

Operating System: (bare' machine)

Memory Size: One megabyte

2-1

I

CONFIGURATION INFORMATION

Communications Network: RS232 serial line

2.2 IMPLEMENTATION CRARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests damonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
teots).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined type,
LONG ITEGER and LONG FLOAT in package STANDARD. (See tests
B86E0T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) Some of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) AssigMents for subtypes are performed with the same precision
as the base type. (See test C35712B.)

2-2

CONFIGURATION INFORMATION

(3) This implementation uses no extra bits for extra preclsion and
uses no extra bits for extra range. (See test 735903A.)

(4) Sometimes NUMERIC ERROR is raisec when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) NUMERIC ERROR is raised when a literal operand in a
flxed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is not gradi.al. (See tests C45524A..Z.)

d. Rounding.

The method by which val,'es are roe.nded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round away
from zero. (See tests C46012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C401IA.)

e. Array types.

An implementation is allowed to raise NJ..E.RIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD. INTEER 'LAST and/or STSTEM.MAXINT.

For this implementation:

(1) Declaration of an array type or subtype declaration with mor.-
than SYSTE4.MAX IRT components raises NUMERIC ERROR foi a
two-dimensional array subtype when the big dimension is the
second one. (See test C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array type with INTEGER'LAST + 2 components. (See test
C36202A.)

(3) NUMERIC ERROR is raised when a null array type with
SYSTEM.MAXINT 2 components is declared. (See test
C36202B.)

2-3

CONFIGURATION INFORMATION

(4) A packed BOOLEAN array having a 'LENGTH exceedinE INTEER '.AST
raises no exception. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER' LAST components raises CONSTRAINT ERROR when the
length of a dimension is calculated and exceeds INTEGER'LAST.
(See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER' LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or as;igned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no ixoeption. (See test E52103Y.)

(7) In assigning one-dimensional array typea, the expression is
evaluated in its entirety before CONSTRAINT-ERROR is raised
when !hecking whether the expression's subtype is compatiblc
with tke target's a-ubtype. (See test C52013A.)

(3) In assigntmg two-dimensional array types, the expression is
not evaluated in its entirety before CONST"AINT ERROR is
raised when checking vhether the exPression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with d1scriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether tho expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) :n the evaluation of a multi-dimensional aggregate, index
subtype checks are made as choices are evaluated. (See tests
C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

2-4

CONFIGURATION INFORMATION

h. Pragmas.

(1) The prasma INLINE is supported for procedures and for
non-library functions. (See tests LA3004A..B, EA3004C..D, and
CA3004E..F.)

i. Generics

(1) Generic unit declarations, bodies, and subunits can be
compiled in separate compilations. (See tests CAI012A and
CA3011A.)

(2) If a generic unit body or one of its subunits is compiled or
recompiled after the generic unit is instantiated, the unit
instantiating the generic is made obsolete. The obsolescence
is recognized at binding time, and the binding is stopped.
(See tests CA2009C, CA2009F, BC3204C, and BC3205D.)

J. Input and output

(1) The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types or record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 cannot be instantiated with
unconstrained arry types or record types with discriminants
without defaults. (See tests AE2101H, EE2i0 1D, and EE24O1G.)

(3) Modes IN FILE and OUT FILE are supported for SEQUENTIALI0.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes IN FILE, OUT FILE, and INOUT FILE are supported for
DIRECT 10. (See tests CE2102F, CE2102I..J, CE2102R, CE2102T,
and CE_1O2V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE3102E and CE3102I..K.)

(6) RESET and DELETE operations are supported for SEQUENTIAL10.
(See tests CE2102 and CE21021.)

(7) RESET and DELETE operations are supported for DIRECT_10. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE311kA.)

(9) Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

2-5

-,$

CONFIGURATION INFORMATION

(10) Temporary sequential files are given names and not deleted
when closed. 'See test CE2108A.)

(11) Temporary direct files are given names and not deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and not deleted when
closed. (See test CE3112A.)

(13) More than one internal file can be associated with each
external file for sequential files when reading only. (See
tests CE2107A..E, CE2102L, CE2110B, and CE2111D.)

(141) More than one internal file can be aisociated vlth each
external file for direct files when reading only. (See tests
CE21O7F..H (3 tests), CE2110D, and CE2111H.)

(15) More than one internal file can be associated with,each
exterTal file for text files when reading only. (See tests
CE3111A..E, CE31i4B, and CE3115A.)

2-6

CRAPTER 3

TEST IIFORMATI0

3.1 TEST RESULTS

Version 1.10 of the ACYC comprises 371T tests. When this compiler was
tested, 113 tests had been witbdrawn because of teat errors. The AVF
determined that 314 tests Were inapplicable to this iMP1Pentation. All
inapplicable test3 were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for nine tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Uda Standard.

3.2 SqRT OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
__ __ A B C D E L

Passed 127 1129 2019 17 23 45 3360

Inapplicable 2 9 297 0 5 1 314

Withdrawn 1 2 34 0 6 0 43

TOTAL 130 1140 2350 17 34 46 3717

3-1

T-.ST INFORMATION

3.3 SUM-ARY OF TEST RESULTS BY CHAPTER

RESUJLT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 573 544 245 172 99 160 333 132 36 250 340 278 3360

Inappl 14 76 136 3 0 0 6 0 5 0 2 29 43 314

Wdrn 1 1 0 0 0 0 0 1 0 0 1 35 4 143

TOTAL 213 650 680 218 172 99 166 331 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

E28005C A39005G B97102E BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CDPA76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M
CD2A184K CD2B15C CD2D11B CD5007B CD5O110 ED700BI
ED7005C ED7005D ED7006C ED7006D CD7105A CD7203B
CD7204B CD7205C CD7205D CE21071 CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others may depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 314 tests vere inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEI.MAX DIGITS:

C21 113L..Y C35705L..Y C35706L..Y C35707L..Y
C35708L..Y C35802L..Z C45241L..! C45321L..!
C45421L..Y C45521L..Z C45524L..Z C45621L..Z
C456141L..Y C46012L..Z

3-2 A

TEST IFMATZON

b. C355081, C35508J, C35508M, and C35508N are not applicable because this
implementation does not support enumeration representation clauses for
BOOLEAN types.

C. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT FLOAT.

d. The following 16 tests are not applicable because this implementation
does-not support a predefined type SHORT INTEGER:

C45231B C153041D C45502B C45503B C45504B
C45504E C45611B C45613B C456143 C45631B
C456323 952004E C55B07B B55B09D B86001V
CD7101E

e. C45231D, B86001X, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a name
other than INTMER, LONG-INTEGER, or SHORT-INTEGER.

f. C45531M..P (4 tests) and C455324..P (4 tests) are not applicable
because the value of SYSThI.MAX MANTISSA is less than 47.

g. C8600IF is not applicable because, for this implementation, the package
TEXT IO is dependent upon package SYSTEM. These tests recompile
package SYSTEM, maklng package TEXT10, and hence package REPORT,
obsolete.

h. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

i. B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG-FLOAT, or SHORT-FLOAT.

J. CA2009C, CA2009F, BC3204C, and BC3205D are not applicable because this
implementation does not support separate compilation of generic
specifications, bodies, and subunits, i.f an instantiation is given
before cOmpilation of its bcdies or subunits. The created dependency
is detected it bind time.

k. LA3004B, EA3004D, and CA3004F are not applicable because this
implementation does not support pragma INLINE for library functions.

1. CD1009C, CD2A4IA..B (2 tests), CD2A4I1E, and CD2A42A..J (10 tests) are
not applicable because this implementation does not support size
clauses for floating point types using less than 32 bits.

m. CD2A61I and CD2A61J are not applicable because this implementation 4oes
not support size clauses for array types, which imply compression, with
component types of composite or floating point types.

n. CD2A81B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation does not support size clauses for access

3-3

TEST INFORMATION

types using less than 32 bits.

o. CD401A is not applicable because this implementation does not support
record representation clauses with 32 bit alignment.

p. AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected by
this compiler.

q. AE2101H, EE24O1D, and EE2i0OG use instantiations of package DIRECT 10
with unconstrained array types and record types with discrimInants
without defaults. These instantiations are rejected by this compiler.

r. CE2102D is inapplicable because this implementation supports CREATE
with IN-FILE mode for SEQUENTIALIO.

3. CE2102E is inapplicable because this implementation supports CREATE
with OUT-FILE mode for SEQUENTIAL IO.

t. CE2102T is inapplicable because this implementation supports CREATE
with INOUT FILE mode for DIRECT IO.

u. CE2102I is inapplicable because this implementation supports CREATE
with IN-FILE mode for DIRECTIO.

v. CE2102J is inapplicable because this implementation supports CREATE
with OUT FILE mode for DIRECT 10.

w. CE2102N is inapplicable because this implementation supports OPEN with
IN FILE mode for SEQUERTTAL 0.

x. CE21020 is inapplicable because this implementation supports RESET with
INFILE mode for SEQOUENTIAL 10.

y. CE2102P is inapplicable because this implementation supports OPEN with
OUT FILE mode for SEQUENTIAL 10.

z. CE2102 is inapplicable because this implementation suppot3 RESET with
OUT-FILE mode for SEQUENTIAL.10.

aa. CE2102H is inapplicable because this implementation supports OPEN with
INOUT FILE mode for DIRECT 10.

ab. CE2102S is inapplicable because this implementation supports RESET with
INOUT FILE mode for DIRECT I0.

ac. CE2102T is inapplicable because this implamentation supports OPEN with
IN FILE mode for DIRECTIO.

ad. CE2102U is inapplicable because this implementation supports RESET with
IN-FILE mode for DIRECT 10.

3-4;

TEST INFOR4ATION

ae. CE2102V is inapplicable because this implementation supports open with
OUT FILE mode for DIRECT_10.

af. CE2102W is inapplicable because this implementation supporrs RESET with
OUTF:LE mode for DIRECT I0.

ag. CE2107B..E (4 tests), CE2107L, CE21OB, and CE2111D are not applicable
because multiple internal files cannot be associated with tie same
external file when one or more files is writing for sequential files.
The proper exception is ralsed when multiple access is attempted.

ah. CE2107G..H (2 tests), CE2110D, and CE21119 are not applicable because
multiple Internal fils cannot be associated with the same external
file when one or more files is writing for direct files. The proper
exception is raised when multiple access is attempted.

ai. CE3102E is inapplicable because this implementation supports CREATE
with IN-FILE mode for text files.

aj. CE3102F is inapplicable because this implementation supports RESET for
text files.

ak. CE310 . is inapplicable because this implementation supports deletion
of an external file for tet files.

al. CE31021 is inapplicable because this implementation supports CREATE
with OUT FILE mode for text files.

am. C-3102J is inapplicable because this implementation supports OPEN with
IN FILE mode for text files.

an. CE3102K is inapplicable because this implementation supports OPEN with
OUT FILE mode for text files.

ao. CE3111B, CE3111D..E (2 tests), CE3114, and CE3115A are not applicable
be-ause multiple internal files cannot be associated with the same
exte-nal file when one or more files is writing for text files. The
proper exception is raised when multiple access is attempted.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are mad* by the AT? in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
xamples of such modifications include: adding a length clause to alter the

default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

3-5

I!i

TEST INFORMATION

Modifications were required for nine tests.

The following tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

BA3006A BA3006B BA3007B BA300A BA3008B BA3013A

C34005G, C34005J, and C34006D required evaluation modifications because the
tests wrongly expect that an element of an array will not be represented more
compactly within an array than a single object of that type. These tests output
failed messages for the attribute 'SIZE.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACYC Version 1.10 produced by the
TeleGen2 Ada Development System was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected behavior on
all inapplicable tests.

3.7.2 Test Method

Testing of the TeleGen2 Ada Development System using ACVC Version 1.10 was
conducted on-site by a validation team from the AV?. The configuration in which
the testing was performed is described by the following designations of hardware
and software components:

Host computer: Sun Microsystems Sun-3/280 Work3tation
Host operating system: Sun UNIX, Version 4.2, Release 3.5
Target computer: Motorola MVME101 (MC68000)
Target operating system: (bare machine)
Compiler: TeleGen2 Ada Development System, Version 1.4

The host and target computers were linked via an R5232 Serial Line.

A menetic tape containing all tests exept for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of implementation-specific
values were customized before being written to the magnetic tape. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic tape were lomded directly onto the host computer.

3-6

TEST INFORATION

After the test files were loaded to disk, the full set of tests was compiled and
linked on the Sun Microsystems Sun-3/280 Workstation, th- all executable images
were transferred to the Motorola MVME101 (MC68000) via a Serial line and run.
Results were printed from the host computer.

The compiler was tested using command scripts provided by TeleSoft and reviewed
by the validation toam . The compiler was tested using all default option
settings except for the following:

oPrIoN EFFECT

ada Invoke TeleGon2 Ads cross compiler.
- Use software floating point routine calls.
-c 00 Generate code for 68000 processor.
-m Invoke Tel&Gen2 Ada linker.
-L Generate interspersed error listing.
-a Use additional options from the named linker options

file.
-P Indicates that one or more of the subprograms being

optimized may be called from parallel tasks.
-R Indicates that one or more Of the subprograms interior

to the unit/collection being optimi zed could be called
recursively by an exterior subprogram.

-I Enables inline expansion of those subprograms marked
with an inline praga or generated by the compiler.

-A Enables automatic inline expansion of any subprogm
called from only one place, as well as those marked by
an Inline prawa or generated by the compiler.

-0 D Optimizer switch which is equivalent to i-P -R -I -A".
* ald Invoke the TeleGen2 Ada Cross Linker.

Tests were compiled, linked, and executed (as appropriate) using a single host
and target computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at San Diego CA and was completed on 9 April 1989.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

TeleSoft has submitted the follovng Declaration of
Conformano concerning the TeleGen2 Ada Development Systen.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementer: TELESOFT
Ada Validation Facilitv: ASD 'SCEL, Wright-Patterson AJB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: TeleGen2 Ada Development System
Version: 1.4

Host Architecture ISA: Sun Microsystems Sun-3/280 Workstation
OS & VER #: Sun UNIX, Version 4.2. Release 3.5

Target Architecture ISA: Motorola MVMEI01 (MC68000)
OS & VER#: bare machine

Implementer's Declaration

1, the undersigned, representing TELESOFT, have implemented no deliberate extensions
to the Ada Language Standard ANSI/MIL-STD-1815A in the compilerts) listed in this
declaration. I declare that TELESOFT is the owner of record of the Ada language
compilers listed above and, as such, is responsible for maintaining said compiler(s) in
comformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler(s) listed in this declaration shall oe made only in the owner's corporate

1 6/ * -Date:
TELESOFT 11or Co ta s/ e l
Raymond A. Parra. Di r, Contracts/Legal

Owner's Declaration

I. the undersigned, representing TELESOFT take full responsibility for implementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure of
the final Validation Summary Report. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada Language
Standard ANSI/MIL-STD- 1$15A.

Date: / k 9~
TE'LESOFT

A-2

I

AFPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to

implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to vertain allowed
restrictions on representation clauses. The implement.ation-dependent
characteristics of the TeleGen2 Ada Development System, Version 1.4, as
described in this Appendix, are provided by TeleSoft. Unless specifically
noted otherwise, references in this Appendix are to compiler documentation
and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG INTEGER is range -2147483648 .. 214748364I7;

type FLOAT is digits 6 range -1.70141E+38 .. l..70141E.38;
type LONG FLOAT is

digits 15 range -8.98846567431158E+307 .. 8.98846567431158E+307;

type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.0;

end STANDARD;

B-i

Nil _ I__ ,o m

I.

APPENDIX F

I. im; lementation Dependent Pragmas

pragma COMMENT(< string_literal>;
1- rr.n onl. appetar witiir a cumpilatiun unit.

The pragma comment has the effect of embedding the given
sequence of characters in the object code of the compilation unit.

pragma LINKNAME(<subprogram .name>, <string literal>);
It may appear in any declaration section of a unit.
This pragma must also appear directly after an interface pragma
for the same <subprogram _name>. The pragma linkname has the
effect of making string literal apparent to the linker.

pragma INTERRUPT(Function Mapping);
It may only appear immediately before a simple accept statement,
a while loop directly enclosing only a single accept statement,
or & select statement that includes an interrupt accept alternative.
The pragma interrupt has the effect that entry calls to the
associated entry, on behalf of an interrupt, are made with a
reduced call overhead.

pragma IMAGES(<enumeration type>,Deferred) or
pragma IMAGES(<enumeration type >.Immediate);
It may on!y appear within a compilation unit.
T1he pragma images controls the creation and allocation of
the image table for a specified enumeration type. The
default is Deferred. which saves space in the literal pool
by not creating an image table for an enumeration type
unless the 'Image. 'Value. or 'Width attribute for the type
is used. If one or these attributes is used. an image table
is generated in the literal pool of the compilation unit in
which the attribute appears. If the attributes Lre used in
more than one compilation unit, more than one image table is
generated, eliminating the benefits of deferring the table.

pragma SUPPRESS ALL;
It may appear anywhere that a Suppress pragma may appear as
defined by the Language Reference Manual. The pragma
Suppress All has the effect of turning off all checks
defined in section 11.7 of the Language Reference Man-jal.
The scope of applicablility of this pragma is the same as
that of the pre-defined pragma Suppress.

B-2

2. Implementation Dependent Attributes

'Offset Attribute

'Offset along with the attribute 'Address, facilitates machine code
insertions. For a prefix P that denotes & declared parameter
object, P'Offset yields the statically known portion of the
address of the first of the storage units allocated to P. Th2
value is the object's offset relative to a base register and is
of type Longinteger.

INTEGER ATTRIBUTES

'Extended-Image Attribute

Usage: X'ExtendedImage(Item,Width,Base,Based,Space-IF Positive)

Returns the image associated with Item as per the Text lo definition.
The Text lo definition states that the value of Itein is an integer
literal with no underlines, no exponent, no leading zeros
(but a single zero for the zero value) and a minus sign if negative.
If the resulting sequence of characters to be output has fewer than
Width characters then leading spaces are first output to make up
the difference. (LRM 14.3.7:10,14.3.7:11)

,ror a prefix X that is a discrete type or subtype: this attribute
is a function that may have more than one parameter. The parameter
Item must be an integer value. The resulting string is
w;thout underlines, leading zeros, or trailing spaces.

B-3

Parameter Descriptions:

Item - The user specifies the item that he wants the
image of and passes it into the function. This
parameter is required.

Width - The user may specify the minimum number of
characters to be in the string that is returned.
If no width is specified then the default (0) is
assumed.

Base - The user may specify the base that the image is
to be displayed in. If no base is specified then
the default (10) is assumed.

Based - The user may specify whether he wants the string
returned t.o be in base notation or not. If no
preference is specified then the default (false)
is assumed.

SpaceIfPositive - The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then
the default (false) is assumed.

Examples:

Suppose the following subtype was declared:

Subtype X is Integer Range -10-.16;

Then the following would be true:

X'Extended -Image(S) - "95"
X'ExtendedLnage(5,0) - "5"
X'Extended Image(5.2) - "5"
X'Extended lmage(S.0.2) - "101"
X'Extended lmage(5.4,2) -" 101"
X'Extended -Image(.0,2,True) "2#101#"
X'Extended lmage(5.O.10,False) -"5"

X'Extended]mage(5.0,10,False,True) - " 5"
X'Extended Image(- 1.0,1 0,Faise,False) - "1
X'Extended -Image(-I1.0,10.False,True) - "1
X'Extended l mage(- I,1,10.False,True) - "1
X'Extended -Iage-102Ture -##
X'Extended Imge(- ,1,2,True,Te) -21#

- ge(l,10,,TrueB-4e

'Extended
Value Attributt

Usage: X'Extended Value (Item)

Returns the value associated with Item as per the Text lo definition.
The Text Jo definition states that given a string, it read an
integer value from the beginning of the string. The value returned
corresponds to the sequence input. (LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype, *hit. attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT ERROR is raised.

Parameter Descriptions:

Item - The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type X.

Examples:

Suppose the following subtype was declared:

Subtype X is Integer Range -10..16;

Then the following would be true:

X'Extended Value("5") = 5
X'ExtendedValue(" 5") - j
X'Extended Value("2-l0l#") - 5
X'ExtendedValue("-I") - -1
X'ExtendedValue(" .1") - -1

B-5

'Extended Width Attribute

Usage: X'Extended Width (Base.Bsed,SpceIfPositive)

Returns the width for subtype of X.

For a prefix X that is a discrete subtype; this attribute
is a function that may have multiple parameters. This attribute
yields the maximum image length over al values of the type
or subtype X.

Parameter Descriptions:

Base - The user specifies the base for which the width
will be calculated. If no base is specified
then the default (10) is assumed.

Based - The user specifies whether the subtype is stated
in based notation. If no value for based is
specified then the default (false) is assumed.

Space If Positive - The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then the
default (false) is assumed.

Examples:

Stppose the following subtype was declared-

Subtype X is Integer Range -10..16;

Then the following would be true:

X'Extended Width 3 - "-10"
X'Extended Width(O) - 3 - "-10"
X'ExtendedWidth(2) 5 - "10000"
X'ExtendedWidth(10,True) - 7 - "-10#10#"
X'Extended-Width(2,True) - 8 - "2#10000#"
X'ExtendedWidth(lO.False,True) - 3 - " 16"

X'ExtendedWidth(lOTrueFase) - 7 - "-10#l0#"
X'Extended Width(]0,True,True) - 7 -" 10#16#"
X'ExtendedWidth(2,TrueTrue) - 9 - " 2#10000#"
X'ExtendedWidth(2,False,True) - 6 -" 10000"

B-6

ENUMERATION ATTRIBUTES

'Extendedimage Attr ,ute

Usage: X'ExtendedIr 1age(item,Width,Uppercase)

Returns the image associated with Item as per the Text Io definition.
The Text lo definition states that given an enumeration-literal,
it will output the value of the enumeration literal (either an
identifier or a character literal). The character case parameter
is ignored for character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype; this attribute
is a function that may have more that one parameter. The parameter
Item must be an enumeration value. The image of an enumeration
value is the corresponding identifier which may have character case
and return string width specified.

Parameter Descriptions:

Item - The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Width - The user may specify the minimum number of characters to
be in the string that is returned. If no width is
specified then the default (0) is assumed. If the Width
specified is larger than the image of Item, then the
return string is padded with trailing spaces; if the
Width specified is smaller than the image of Item then
the default is assumed and the image of the enumeration
value is output completely.

Uppercase - The user may specify whether the returned string is in
uppercase characters. In the case of an enumeration
type where the enuneration literals are character
literals, the Uppercase is ignored and the case
specified by the type definition is taken. If no
preference is specified then the default (true) is
assumed.

B-7

I, ,, =. . s mlllln~ l l 1 i m i a

Examples:

Suppose the folloi~ing types were declared:

Type X is (red, green. blue, purple);
Type Y is ('a*, '13% 'c'. 'DT)

Then the following would be true:

X'Exteradedlmage(red) ="RED"

X'Extendedlmage(red. 4) -"RED"

X'Extendedlage(red.2) -"RED"

X'Extended lxnage(red,false) "red"
X'Extended-lmage(red,104fase) "red
Y'ExtendedlImage('a) "'"
Y'Extended Image('B') "'"
Y'Extended_lmage('a'.6) -"a

Y'ExtendedImage('a',.true) -1 'all'

'Extended Value Attribute

Usage: X'Extended_ 'al ue(Item)

Returns the image associated with Item as per the Text Ic definition.
The Text lo definition states that it reads an enumeration value
from the beginning of the given string and returns the value of
the enumeration literal that corresponds to the sequence input.
(LRIM 14.3.9:11)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spt~ces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT-ERROR is raised.

B-8

Parameter Descriptions:

Item - The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of X.

Examples:

Suppose the following type was declared:

Type X is (red, green. blue, purple);

Then the following would be true:

X'Extended Value("red") - red
X'Extended Value(" green") - green
X'Extended Value(" Purple") - p-rple
X'ExtendedValue(" GreEn ") - green

'Extended Width Attribute

Usage: X'ExtendedWidth

Returns the width for subtype of X.

For a prefix X that is a discrete type or subtype; this attribute
is a function. This attribute yields the maximum image length over
all values of the enumeration type or subtype X.

Parameter Descriptions:

There are no parameters to this function. This function
returns the width of the largest (width) enumeration literal
in the enumeration type specified by X.

B-9

Examples:

Suppose the following types were declared:

Type X is (red, green. blue, purple);
Type Z is (XI, X12, X123, X1234);

Then the following would be true:

X'Extended Width - 6 - "purple"
Z'Extended-Width - 5 - "X1234"

FLOATING POINT ATTRIBUTES

'Extended-Image Attribute

Usage: X'ExtsendedImage(Item.ForeAft.Exp,Bae,Based)

Returns the image associated with Item as per the Text lo definition.

The Text Io definition states that it outputs the value of the
parameter Item as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign
is included in the integei part of the value of Item. If Exp
is 0 then the integer part of the output has as many digits as
are needed to represent the integer part of the value of Item or
is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute
is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is
without underlines or trailing spaces.

B-10

Parameter Descriptions:

Item - The user specie te e iLem that ie want!. the image of amc
passes it into the function. This parameter is required.

Fore - The user may specify the minimum number of characters for
the integer par- of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the '#' if based
notation is specified. If the integer part &o be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is asumed.

Aft - The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default (X'Digits-1) is assumed. If based notation is
specified the trailing "4" is included in aft.

Exp - The user may specify the minimum number of digits in the
exponent; the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is 0 then no exponent
is used.

Base - The user may specify the base that the image is to be
displayed in. If no base is specified then the default
(10) is assumed.

Based - The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specined then the default (false) is assumed.

1-11

Examples:

Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 110

Then the following would be true:

X'Extended lmage(5.0) - " 5.OOOE+00"
X'ExtendedlImage(5.ol) - "5.OOOOE+4DO"
X'ExtendedlImage(S.01) - "-5.OOOOE+00"
X'Extended lznage(5.0,2,0) - "5.OEs-OO"
X'Extended - ae(5.0,2,0,0) - "5.0"

X'xtned-Iznage(5.0,2,0,O,2) -"101.0"
X'Extended iznage(S.0.2,0.,0,2,True) - "2# 101 .0#"
X'Extendedfimage(.,2,2,3,2,True) - "2#1.1#E+02"

B-12

'Exteded Value Attribute ji

Usage: X'Extended'alue(item)

Returns the value associated with Item as per the Text lo definition.
The Text Jo definition states that it skips any leading zero@,
then reads a plus or minus sign if present then reads the string
according to the syntax of a real literal. The return value is
that which corresponds to the sequence input. (LRM 14.3.8:9,
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
saces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINTERROR is raised.

Parameter Descriptions:

Item - The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of the input string.

Examples:

Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0:

Then the following would be true:

X'Extended Value("5.0") - 5.0
X'Extended Value("O.SEI") -5.0
X'Extended Value("2#1 .01#E2") - S.0

B-13

'Extended Digits Attribute

Usage: X'Extended Digits(Base)

Returns the number of digits using base in the mantissn of modeJ
numbers of the subtype X.

Parameter Descripticw.,

Base - The user may specify the base that the subtype is
defined in. If no base is specified then the default
(10) is assumed.

Examples:

Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0:

Then the following vould be true:

X'Extended Digits -

FIXED POINT ATTRIBUTES

'Extended image Attribute

Usage: X'Exter.ed Image(Item,Fore.Aft.Exp.Base.Based)

Returns the image associated with Item as per the Text Io definition.
The Text Jo definition states that it outputs the value of the
parameter Item as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign
is included in the integer part of the value of)tem. If Exp
is 0 then the integer par of the output has us many digits as
are needed to represent the integer part of the value of Item or
is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:15)

B-14

_ ___ ___

For a prefix X that is a discrete type or subtype: this attribute
is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is
without underlines or trailing spaces.

Parameter Descriptions:

Item - The user specifies the item that he wants the image of and
passe it into the function. This parameter is required.

Fore - The user may specify the minimum number of characters for
the integer part of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the '#' if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft - The'user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default (X'Digits-1) is assumed. If based notation is
specified the trailing '#' is included in aft.

Exp - The user may specify the minimum number of digits in the
exponent; the exponent consists of a sign and the exponent.
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is 0 then no exponent
is used.

Base - The user may specify the base that the image is to be
displayed in. If no base is specified then the default
(10) is assumed.

Based - The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

B-15

Examples:

Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 17.0;

Then the following would be true:

X'ExtendedImage(5.0) - " 5.OOE+00"
X'Extended-lmage(5.0,I) - "5.OOE+O0"
X'Extendedlmage(-5.0,l) - "-5.00E--00"
X'Extended_lmage(5.0,2.0) - 5.GE-t-00"
X'ExtendedImage(5.0,2,0,0) - " 5.0"
X'Extendedlmage(5.0.2,0,0,2) - "101.0"
X'Extendedlmage(5.0,2,0,0,2,True) - "2# 101.0#"
X'Extended_ mage(5.0,2,2,3,2,True) - "2#1.1#E-+-02"

'ExtendedValue Attribute

Us&.ge" X'Extended Vadue(lmage)

Returns the value associated with Item as per the Text lo definition.
The T2xt o definition states that it skips any leading zeros,
then reads a plus or minus sign if present then read the string
according to the syntax of a real literal. The return value is
that which corresponds to the sequence input. (LRM 14.3.8:9,
14.3.8:10)

For a prefix X that is a discrete type or subtype: this attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT ERROR is raised.

Parameter Descriptions:

Image - The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of the input string.

B-16

Examples:

Suppose the following type was declared:

Type X is delta 0.1 range -10.0.. 17.0;

Then the following would be true:

X'Extended_Value("5.0") - 5.0
X'Extended_Value("O.5E1") - 5.0
X'Extended_Value("2#1.01#E2") - 5.0

'Extended Fore Attribute

Usage: X*ExtendedFore(Base.Based)

Returns the minimum number of characters required for the integer
part of the based representation of X.

P -rameter Descriptions:

Base - The user may specify the base that the subtype would be
displayed in. If no base is specified then the default
(10) is assumed.

Based - The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

B-17

Examples:

Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 17.1;

Then the following would be true:

X'Ext.ended Fore = 3 - "-10"
X'ExtendedFore(2) 6 -" 10001"

'Extended-Aft Attribute

Usage: X'ExtendedAft(Base,Based)

Returns the minimum number of characters required for the fractional
part of the based representation of X.

Parameter Descriptions:

Base - The user may specify the base that the subtype would be
displayed in. If no base is specified then the default
(10) is assumed.

Based - The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:

Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 17.1;

Then the following would be true:

X'Extended Aft - 1 - "I" from 0.1
X'Extended-Aft(2) - 4 - "0001" from 2#0.0001#

B-18

II

3. Soecification of Package SYSTEM

PACKAGE System IS

TYPE Address is Access Integer;

TYPE Subprogram Value is PRIVATE;

TYPE Name IS (TeleGen2);

SystemName : CONSTANT name :- TELEGEN2

Storage-Unit : CONSTANT :- 8;
Memory-Size : CONSTANT :- (2 ** 31) - 1;

- Systern-Dependent Named N-.mbers:

Min Int CONSTANT : -(2 " 31);
Max- nt CONSTANT : (2 31) - 1;
Max Digits CONSTANT :- 15;
Max-Mantissa: CONSTANT :- 31;
Fine-Delta : CONSTANT :- 1.0 / (2 ** Max Mantissa);
Tick : CONSTANT := 10.0E-3;

- Other System-Dependent Declarations

SUBTYPE Priority IS Integer RANGE 0 .. 63;

PRIVATE
TYPE SubprogramValue IS

RECORD
Proc addr : Address:
Static link : Address:
Global frame : Address;

END RECORD;

END System;

B-19

4

4. Restrictions on Representation Clauses

The Compiler supports the following representation clauses:

Length Clauses: for enumeration and derived integer type. 'SIZE
attribute (LRM 13.2(a))

Length Clauses: for access types 'STORAGE SIZE attritube (LRM13.2(b))
Length Clauses: for tasks types 'STORAGE SIZE attribute (LRM 13.2(c))
Length Clauses: for fixed point types 'SMAL-L attribute (LRMI3.2(d))
Enumeration Clauses: for character and enumeration types other than

boolean (LRM 13.3)
Record representation Clauses (LHM 13.4) with following constraints:

- Each component of the record must be
specified with a component clause.

- The alignment of the record is restricted to
mod 2, word (16 bit) aligned.

- Bits are ordered right to left within a byte.
Address Clauses: for objects, entries, and external subprograms

(LRM 13.5(a)(c))

This compiler does NOT support the following representation clauses:

Enumeration Clauses for boolean (LRM 13.3)

Address Clauses for packages, task units, or non-external Ada
subprograms (LRM 13.5(b))

5. -Implementation dependent namirg conventions

There are no implementation-generated names denoting
implementation dependent component4.

6. Interpretation of Expressions in Address Clause

Expresions that appear in addres specifications are interpreted
as the first storage unit of the object.

B-20

. .4

7. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between any types or subtypes unless
the target type is an unconstrained record or array type.

8. 1/0 Package Characteristics

Sequential 10 and Direct_10 cannot be instantiated for
unconstrained array types or unconstrained types with discriminants
without default values.

In TEXT_10 the type COUNT is defined as follows:

type COUNT is range 0 .. 2147 483645;

In TEXT_10 the subtype FIELD is defined as follows:

subtype FIELD is INTEGER range 0..1000;

According to the latest interpretation of the LRM, during a
TEXT IO.Get Line call, if the buffer passed in has been filled,
the caf-is completed and any succeeding characters and/or
terminators (e.g., line, page, or end-of-file) will not be read.
The first Get Line call will read the line up to but not
including the end-of-line mark, and the second Get Line will read
and skip the end-of-line mark left by the first read.

B-21

APPENIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meanin'g Value

$ACC SIU 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIGIDI (1..199 z> 'A', 200 z> '1')
An identifier the size of the
maximuam input line length which
is identical to $BG ID2 except
for the last character.

$BIG ID2 (1..199 a> 'A', 200 z> '2')
An identifier the size Of the
maximum input line length which
is identical to $BIG ID1 except
for the last character.

SBIGID3 (1..99 a> 'A', 100 2> '3',
An identifier the size of the 101..200 z> 'A')

.ziati input line length which
is identical to $BIG3 ID except
for a character near the aiddle.

C-1

TEST PARAMETERS

Name and Meanina Value

$ D(4..99 'A', 100 -> 'E'
An identifier the size of the 101..200 %> 'A')
maximIm input line length which
is identical to $BIG ID3 except
for a character near the middle.

$BIG INT LIT (I..197 => '0', 198..200 => -298-)
An integer literal of value 298
with enough leading zeroe so
that it is the size of the
maximum line length.

$BIG_REALLIT (..195 => '0', 196..200 a> "690.0")
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the

Ma3ximlm line length.

$BIG STRINGI (I => "", 2..10 , => 'A'. 102 :> #w')
A string literal which when
catenated with BIG STRING2
yields the image of BIGIDI.

$BIG STRING2 (1 => '"",2..100 => 'A',101 => '1',
A string literal which when 102 =0 "")
catenated to the end of
BIG STRI3G1 yields the image of
BIG-mi.

$BLANKS (1..180 => '
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNr LAST 21 474836146
A universal integer
literal whose value is
TEXTIO. COUNT 'LAST.

$DEFAULT ME4 SIZE 2147483647
An i3teger literal whose value
is S3T3.MDRY SIZE.

$DEFAULT STOR UNIT 8
An integer literal whose value
is S'S=T. STORAGEUNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULT SYS NAME TELEGEN2
The value of the constant
SYSTPFM.SYSTEM NME.

$DELTA DOC 2#1.O#E-31
A real literal whose value is
SYSTh4. FINE DELTA.

$FIELD -LAST 1000
A universal integer
literal whose value is
TEXT IO.FMLD'LAST.

$FIE NAME NO SUCH TrPE

oe" nme Of a predefinedfixed-polnt tYP4 other than

DURATION.

$FLOAT NAME No-SoCrPE
The name of a predefined
floating-point type other than
FLOAT, SHORT-FLOAT, or
LONG .FLOAT.

ORATk TARk IMTIO 100000.0
A universal real literal that
lies between DATIOU' mASVL1ST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER TRAN DURATION BASE LAST 131073.0
A universal real lftera that is
greater than DURTION'BE,'LAST.

$HIGH PRIORITy 63
An integer literal whose value
is the upper bound of the range
for the subtype SySTE.PRIORIT.

$ILLALT-1w AL-FL NM1OADCAR'/%'#
An external file name which
contains invalid characters.

$ILLEGALZTERNAL FILE NAME2 "/NONAME/DIRZCTORym
An external file name which
is too long.

$IUTER TFIRS -32768
A universal integer literalgtose value is IWTMER FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

!:NTEtER LAST 32767
A Universal integer literal
whose value is INTEGER'LAST.

$INTEGEP LAST PLUS 1 32768
A universal integer literal
whose value is INTEGER 'LAST + 1.

$LESS TAN DRATbON -100000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS TRAY.DURATION BASE.FIRST -131073.0
A uMiversal real literal that is
less than DURATION'BASE'FIRST.

$LOWPRIORITT 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORIT.

SMANTISSA DOC 3-
An integer literal whose value
is SYST4 .MAX MANTISSA.

$MAZ DIGITS 15
Maximum digits supported for

floating-point types.

$MA N LEN 200
Maximum input line length
permitted by the implementation.

sMAXINT 21 47483647
A universal integer literal
whose value is SYSTD4.MAX INT.

$tAXINT PLUS 1 21 47483648
A uiversal integer literal
whose value is S!-STE.MAX-INT+1.

sKA;-LN IN? BAsq LITERAL (1..2 > 02:,3..197 => '0',
A universal integer based 198..200 a> "11:")

literal whose value is 2011#
with enough leading zeroes in
the mantissa to be MAX-IN LEN
long.

C-4l

TEST PARAMETERS

Name and Meaning Value

SMkX LEN REAL BASED LITERAL (1.-3 => "16:",4..'96 => '0',
Suniversal real based literal 197..200 => "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAX IN LEN long.

$MAX STRING LITERAL (1 -> '"', 2..199 z> 'A', 200 => '"')

A string literal of size
MAXIN LEN, including the qucte
charaters.

$MININT -21'I7#a36"8
A universal integer literal

whose value is SYSTEM.MININT.

$MIN TASK SIZE 32
n integer literal whose value

is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NO SUCH TYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG FLOAT, or LONGLTEGER.

SNAME LIST TELEGEN2
A list of enumeration llterals
in the type SYSTD4.NAME,
separated by commas.

SNEG BASED INT 16#FYFFFFE#
A based integer literal whose
highest order nonzero bit

falls in the sign bit
position of the representation
for SISTMD.MAXINT.

$NEWM SIZE 2147483647
An integer literal whose value
is a permitted argument for
prasa ?!WORTSIZE, other than
$DFAULTMENSIZE. If there is
no other value, then use
$DETAULTM _SIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

$NEWSTOltUNIT8
An integer literal whose value
is a permitted argument for
Prag a STORAGE-UNIT, other than
$DEFAULT STOR UNIT. if there is
no other permitted value, then
use value of SYSTE. STORAGE UNIT.

$NEw SYS NAME TELEGEN2
A value of the type SYSTE4.NAME,
other than $DEFAULT SYS NAME. If
there is only one valueof that
tyP3, then use that value.

$TASK SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$7 C 0.01
A real literal whose value is
SYSTE2° TICK.

C-6

kP

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 43 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Comentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. BC300B: This test vrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on: by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

e. CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be 40
(line 137).

f. CD2A63A..D, CD2A66..D, CD2A73A..D, and CD2A76A..D (16 tests): These
tests wrongly attmpt to check the size of objects of a derived tye
(for which a 'SIZE length clause is given) by passing then to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:1)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic

by the 1109 ASO.
D-1

I' i1 -" --

WITHDRAWN "ESTS

g. CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate while the main program C;
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely 'lines 74, 85,
86, 96, and 58, respectively).

h. CD2B15C and CD7205C: These tests expect that a 'STORAGE S:ZE length
clause provides precise control over the number of designated objects
ii a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

i. CD2D11B: This test gives a SMALL representation clause for a derived

fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable valuos of the parent type.

J. CD5007T: This test wrongly expect.n an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

k. ED70OiB, EDT705C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

1. CD7105A: This test requires that succesaive calls to CALENDAR.CLOCK
change by at least STSTE4.TICK; hovbr, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SST4.TICK--prticular instances of change may be less (line 29).

m. CD7203B and CD7204B: These tests use the 'SIZE length cltuse and
attribute, whose interpretation is considered probieatic by the WG9
ARG.

n. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

o. CE21071: This test requires that objects of two similar scalar types
be distinguished when read from a file-DATA ERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it is not clear exctly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

p. CE3111C: This test requires certain behavior, when two files are
associated with the same ex.ernal file, that is not required by the
Ada standard.

q. CE3301A: This test contains several calls to END OF LINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARD ZNPUT (lines 103, 107, 118,

D-2

" WITHDRAWN TESTS

132, and 136).

r. CE3I11B: This test requires that a text file's column number be set to
COUN.'LAST in order to check that LAYOUT ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

