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1. INTRODUCTION

Substantial current and potential medical interest exists in use of

tracers containing positron emitting isotopes. The isotopes 11C, 13N, and 150

offer the ability to tag biochemical compounds without altering the primary

covalent structure of the molecule, and the short (2-20 min) half-lives reduce

the patient radiation exposure after completion of the tracer study. In a few

centers, these isotopes are being applied to measure local blood flow,

volumes, pH, and metabolic activity level (1,2,3,4). Presently, exploitation

of the many potential clinical applicatious lags far behind single photon

technology because of substantial costs of isotope production and data

acquisition. Progress has also been slow in obtaining analysis techniques

that fulfill the quantitative potential of positron imaging.

This paper addresses one problem in quantitation of positron images:

spatial calibration of one type of detector. In the calibration described, we

encountered unsatisfactory parameter estimates from normal treatment of errors

because the errors did not follow a Gaussian distribution. Section II

describes the context of the problem. Section III reviews the process of

acquiring calibration data and of simulating the same process. Section IV

presents a mathematical model of the physical detection process and identifies

the camera performance parameters that must be estimated from the data.

Section V discusses several possible formulations of how noise corrupts the

data. Use of maximum likelihood to fit data to the models and estimate camera

performance is also presented in this section. Section VI presents the

results of camera performance estimates for several simulated and actual sets

of data.

II. PROBLEM CONTEXT

Most recent positron work has focused on specialized detectors designed
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with one or more coplanar rings of many individual gamma detectors (3,4).

These ring devices produce a two-dimensional image of isotope distribution

within the detector plane. However, the earliest positron emission work used

a pair of large area planar detectors (5). They are versatile in being able

to fit around a large or irregular volume, and they are efficient in covering

a larger solid angle than ring designs. Modern versions sometimes add the

cost of rotating the detectors around the patient to increase sampling of the

possible emission angles (6).

In these devices, two position sensitive gamma detectors (e.g., Anger

cameras) are operated in coincidence (4,5,7,8). The detectors are set to

record the gamma arrival locations only when each has simultaneously processed

a 511 KeV positron annihilation photon. The clinical data set consists of a

large number of photon location lines (typically 104 to 10 7) defined by the

intersection location of the gammas on each of the 2 camera faces. An

analytical challenge exists to resolve this set of lines into a full

three-dimensional map of the positron annihilation density, i.e., the tracer

distribution within the patient. However, a more primitive quantitative

problem concerns us here: that of understanding the position signal of each

single event.

The raw spatial information of the devices is a set of digital position

signals that are subject to many analog processing steps (1,7,8). Direct

knowledge of the spatial events is limited by the random direction of each

gamma emission event. Furthermore, the originally 180 degree opposed gamma

trajectories may have been changed by scattering processes within the patient

or the detector, and some of the events may be random coincidences of gammas

from different events (1,2,3,5). Thus it is necessary to calibrate the

spatial performance of the detectors. Calibration here is defined as the

2



process of extracting detector spatial performance parameters from a set of

positron annhilation data. Calibration is necessary if the data is to be used

to extract spatial features of the tracer distribution (e.g., lengths or

volumes). Spatial calibration is especially important if one desires

translocation of the data to another coordinate system, such as an X-ray image

of the same patient, or if one intends to use a three-dimensional

reconstruction method that includes specific features of a given detector

(9,10). Finally, a method was desired that could use a small number of

recorded events to minimize patient radiation dose. All these requirements

were applied in a recent study where we desired quantitative 13N measurements

in healthy human subjects (11).

Spatial calibration has not received much attention in the literature.

Ring detectors operate by coincidence of separate discrete detectors so the

location of the reported emission line is nearly known from the external

detector locations (4). Large area detectors are most often used in single

photon imaging. Standard set-up procedures concentrate on assuring a uniform

response across the camera face ("flood correction") (2,12). Some correction

procedures are available for other point-to-point distortions (13,14), but

most interpretations compare features within an image rather than use an

external or calibrated size scale. When a spatial calibration is desired for

a single photon camera, a distant point source can be imaged through a lead-

shielding pattern of known dimensions. The technique is not applicable to

positron use of the camera because of the inherent three-dimensional nature of

the images.

III. DATA

Spatially calibrating the positron detector consists of placing a single

positron point source (typically 22Na) at a series of known locations and
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recording position-related signals of the annihilation gamma ray events and

the emission location itself. Our detector is a pair of Anger cameras

operated in coincidence that output signals based on weighting the individual

phototubes (15). The digitized signals (an X and Y coordinate for each Anger

camera head) or their simulated equivalent are the raw data for each positron

event. In a typical situation, 100-300 photon pairs were recorded for each

point source location.

Experimental (and simulated) geometry had two 20 cm radius Nal detectors

aligned with a separation of 46 cm. Raw X and Y positions for each event

satisfying energy and coincidence windows were logged in 0-127 A to D

converter (ADC) units. For the simulated experiments, a spherically uniform

random direction was first obtained. If both rays of the emission intersected

the camera circles, the intersection coordinates were calculated. To each

intersection coordinate an error was added by generating a Gaussian (normal)

error with zero mean and a specified standard deviation (o) and random

direction. Thus the emission was simulated as error-free; detection error was

limited to the camera faces. In one series of simulations, an additional

error source was used: a specified fraction (f) of the total events was

produced by generating a uniform random variable for each coordinate.

Specific conditions for some simulated and actual data are presented in

Table 1. Data sets A and B were obtained by simulation with and without the

uniform error. In all simulations, offsets were zero and the camera ADC gains

were set to 128 ADC units/40 cm - 3.2 unit/cm. An extensive calibration

experiment produced data set C. Set D Is from a source held at four prominent

points on the body of a human subject during an actual physiology experiment

(11). Recorded activity was deliberately kept at a minimum.
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IV. PHYSICAL MODEL

A mathematical description of the process must be used to relate data to

aspects of the detector. The physics of the t.Yected event depends upon

dotector performance under study. We chose to seek the spatial gain of each

camera amplifier as well as offsets between camera center aind midpoint of

digitized output. Each event is treated by :,imple backprojection as shown in

Fig. 1.

CAMERA B
I r

SEP

TKX Y)

(Xpred. Ypred) Z

CAMERA A

AXIS

Fig. 1. Geometry of backprojection and error definition.
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Xpredi = (Zi/SEP) . 1XbRaw.-XofsB-64)/Gain1l

+ (1.0 - Z./SEP) ( ,Raw.-XofsA-64)/GainA] [i]

Ypred. = (Zi/SEP) fYbRawi -YofsB-64)/Gain

+ (1.0 - Zi/SEP) *(YLiawi-YofsA-64)/GainA [2]

The symbols in the equations are identified as follows:

Symbol Description Unit Measured/Estimatcd

SEP camera face separation cm measured

distance of point source i
above (bottom) camera A cm measured

XaRaw. raw X coordinate of event
1 from source i on camera A ADC unit measured

XbRaw. same, or, camera B ADC unit measured
1

YaRaw raw Y coordinate of event ADC unit measured
from source i on camera A

YbRaw same, on camera B ADC unit measured

XofsA offset between camera A
physical center and AIhC
center in X direction ADC unit estimated

XofSL same, on camera B ADC unit estimated

YofsA offset between camera
A physical center and ADC
center in Y direction ADC unit estimated

YofsB same, on camera B ADC unit estimated

Gain A distance amplification ADC unit

factor on camera A per cm estimated

Cain B same, on camera B ADC unit estimated
per cm

Xpredi  predicted distance of
source I in X direction
from camera axis at plane Z. cm (estimated)

1

Ypredi same in Y direction cm (estimated)

This model assumes that X and Y gains are the same in a given camera (no

deviation from circularity), but that the 2 cameras may have a differert gain.
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SubtracLiont of 64 translates the coordinate system to the center of the 0-127

output range. tith enough recordt) events corn enough point scurces mar.y more

features of the detection process can be moavl]ed for calibration, but these

fcw have gained the major attentio., in our .::perients. A di:ta set consisLs

of huviCreds of raw events: X. ,Y. ,Z. are thL externally nucsured location oi

the point sources from the center of camera A (piesumed to be knewI

precisely). The modelling then attempts to use these data to estimite the

(presurmed unknown) positron camera parameters: 4 offsets and 2 gains. In

experiments on human subjects another 2 palameters are estimated to align the

axes of the positron camera with the center-line of a flat-plate X-iay limage

of the subjects obtained later. X,Y data in that case are measured from the

x-ray after correction for fan-beam expansion. Note that X,Y,Z must be known

for each emission, so only a single point source can be in the camera field.

V. STATISTICAL MODEL

For any fit, the values of the parameters to be estimated are adjusted

until the "error" between model calculated and actually measured data is

minimized. First, the "error" must be defined. We take the error to be a

single radial deviation (in other physical models it may be more appropriate

to treat X and Y direction errors separately).

ERR i = L(Xi-Xpredi)2 + (Yi-Ypred i [3]

For continuous variables the widely used principle of least scuares minimizes

the error in a root mean square manner. Least-squares, however, assumes that

the data will fall around the model predictions according to a normal Gaussian

curve. If there is reason to expect non-Gaussian behavior, then another

treatment of error may be preferred. Such is the case with position-sensitive

gamma detectors where the distribution of events tends to have a well defined

peak, but fails to fall off as rapidly as exp(-x 2) away from the mean. Aii
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example from our work is shown in Fig. 2; other examples are Fig. 3 of Cook et

al. (16), and Fig. 7 of Perez-Mendez et al. (17). The peak is sharp, but

off-peak events are not as rare as a Gaussian distribution. In fact, slight

but measurable activity seems to emanate from all locations: a sort of

spatially uniform noise. Such large deviations from the original point can

arise from known processes, such as Compton scattering of the photons, and

accidental coincidence of unpaired photons (7). The usual treatment of these

distributions is to report peak width at half of the maximum (FWHM) as a

measure of resolution. Such an approach does not directly lead to a

statistical evaluation.

Since least-squares estimates weigh deviant points heavily, estimates can

be highly biased if some outlying points exist in the data sets. To avoid or

minimize such biases, techniques of "robust estimation" have been developed

(18,19). Robust estimators generally assign less weight to data points far

from the most probable location. The "M-estimator" of Huber (18) is one well

developed approach; in general one can use an error distribution that

corresponds to the processes under consideration.

A formal procedure is needed to estimate parameters for a given error

distribution. By the general principle of maximum likelihood, the estimation

procedure adjusts parameters to maximize the total probability of obtaining

the data set - the likelihood function (20). Assuming all recorded events to

be independent, this is equivalent to maximizing the product of the

probability of all data points (the p(ERR )). Since all probabilities ate

less than i, the . of the logs of the probability (i.e., log likelihood, LL)

are more conveni
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a,;ta

LL = Z In (1, (RR)) [4]-J

j=1

LL is then a measure of goodness-of-fit betWcen the overall model and the data

set. Increases in LL can be used to choose the better fitting model. Model

comparison can be formally constructed with a chi-square tesL statistic (20).

Maximum likelihood has previously been used in performance evaluation of

single scintillation cameras (21) and is now being used in the image

reconstruction problem (9,10,22).

Three models of p(ERR) were examined. First is the normal distribution:
2~ -b

p(ERR) = (2Ti2) I exp (-ERR 2/2o 2 ) [51

The only statistical parameter in this distribution is o, the standard

deviation of spatial error in the focal plane. The other parameter in the

usual expression for the normal distribution (i.e., the mean) is defined by

the physical model described above. Substitution of Eqn. (5) into the

likelihood criterion, Eqn. (4), can be shown to lead to the usual least-

squares criterion of minimizing ERR2 summed over the data. Next is the more

robust M distribution suggested by Huber (18):

p(ERR) = (Ko)- I exp (-ERR 2/2o 2 ) for ERR <0 .o

= (Ko) - exp (-®.ERR/a +@2 /2) for ERR >®)-a

2 G 2
where K = 2 (exp(-O2/2))ia + f exp(-x /2)dx (6]

0

Here( is an adjustable parameter which sets the demarcation between a

normal tail and a slower fall-off. Some desirable statistical properties

occur whenn= 1.5 (19). We used a fixed at 1.5 and also attempted to

estimate it. The third model has a uniform distribution superimposed on a

normal distribution:
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2 2 2

p(ERR) = f/W + (1-f)(2ro2 exp(-ERR /2o2) [7]

Here f is the fraction of the total detected events that may hit anywhere on

the camera face (whose diameter is W).

All 3 distributions are plotted in Fig. 3. As expected, all have a

similar "sharpness" near the middle, with the sharpness controlled by

parameter a in all models. The normal falls off quickly: exponentially with

distance squared. The Huber M falls initially as fast and then as exp(-x)

after (ERR/a) >D. Thus a perceptible probability of an event is expected

out to a distance of nearly 5 a instead of less than 3 a with the normal. The

normal plus uniform falls rapidly at first, then merges with a single uniform

expected level of activity. The most appropriate model is determined by known

or assumed features of the data.

All 3 models were applied to the data sets described above and the

results are presented in the following tables. For fitting we used a Marquart

non-linear algorithm (23), modified to perform maximum likelihood estimates

(24). The program estimates I SE error limits on the estimated parameters by

inverting the Fisher information matrix. These error estimates are expected

to be only approximately correct (20).

RESULTS

The first simulated data set, A, was generated with only normal error on

each camera face and no uniform noise. All 4 entries in Table 2 show the

best-fit parameters to be close to their nominal values. Estimated offsets

are all within 1 ADC unit, which is the degree of ambiguity in the simulation

procedure used. Camera gains were recovered within a few percent of their

actual values. The standard deviations were all slightly underestimaten for

reasons that are not understood. The first entry for Huber's M-distribution

is a significantly worse fit to the 1200-event data file. The decrease of

11
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Fig. 3. Three alternative error distributions. In all cases a is 2 cm.
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maximum LL from -1715 to -1733 is actually a substantial loss in

goodness-of-fit. (In order to justify the inclusion of an additional

parameter in a general model, an increase in IL of about 1.9 is required to

conclude significant improvement with 95% confidence.) (20). When that

parameter was estimated by the data, the best fit was®= 2.9. This value

leaves the error distribution essentially normal, since only a few events

would lie outside® . The last line in Table I reflects our attempts to

estimate parameter f. No finite value of f, the uniformly distributed

fraction, achieved a better fit to the data than f = 0. The values of LL for

3 of the 4 models are essentially equal and therefore describe the data

equally well.

Other simulations with normal error distributions led to several

conclusions. First, increase of the number of recorded events per source

location to 1000 led to no real improvement in estimation. Second, simulated

performance degradation (a doubled) sometimes led to unrealistic offsets.

Third, the number of source locations could be important: the worst problems

were with 3 or 4 locations that were close to collinear in the detection

volume.

Simulated data set B had a fraction of 0.14 of the total events recorded

at uniformly random positions on the camera face to simulate spatial "white

noise". Other aspects of the simulation were as Set A. Results listed in

Table 3 show that a normal distribution cannot fit the data well, forcing

large and misleading offsets (from -22 to +65 ADC units), camera gains, and

standard deviation. Huber's M-estimator with the recommended/- 1.5 is

better both as a fit to the data (much greater LL) and in recovering starting

values of the camera parameters. Allowing@ to be estimated produces an even

better fit with the estimated gains slightly higher than simulated. The low

13



value of® (0.40) mei-ns that only a small fraction of the distribution was

chosen to have a normal shape. The final entry in Table 3 shows a successful

recovery of camera parameters with the normal + uniform distribution. The

progressive increase in LL going down Table 3 shows striking improvement in

fit with each model.

Similar analyses performed on real data are summarized in Table 4. This

data set was constructed of 1,596 gamma events from 15 point source locations

within the camera field of view. The first line in Table 4 gives estimated

offsets that were within a few ADC units of perfect centering, but the camera

gains were larger than seemed reasonable when examining the actual

distribution of events on the camera faces. The standard deviation of over

5 cm also seems too large because this corresponds to a FWHM of 7 cm, if the

distribution is indeed Gaussian. Simple backprojections showed much better

resolution expressed as FWHM. The second line in the table is the result of

applying Huber's robust estimator and the fit has a much better LL. The

offsets, gains, and standard deviation are all smaller. If Huber's parameter

@is estimated, an even better description is obtained. The best result is

the final table entry indicating that about 14% of the events do not arise

from the nearby vicinity of the point sources themselves. Such a fraction is

within the range expected in some positron detectors (3,6). The modest

offsets and the magnitude of the gains are both supported by examination of

raw images on the camera faces.

The final data set, D, (Table 5) is from the biological experiments (11)

in which we mapped the positron records onto a coordinate system defined by a

flat-plate X-ray of the same subject. For these data, a slightly different

model was used. The ADC to camera center offsets were fixed at the values

shown in Table 4 because the acquisition system was not "re-tuned" between the

14



two experiments. However, a coordinate pair XX, XY was included to translate

the camera center to the X-ray center. Statistical models remained the same.

As seen in Table 5, the normal distribution alone was not a good

representation of the data. Huber's distribution produced a better fit, but

by maximum likelihood the best was a combination of normal and uniform. The

estimated uniform fraction was nearly the same as for data set C.

VI. DISCUSSION

The robust estimation procedures presented here are most useful when

important features of a distribution are unknown. As discussed in texts on

robust estimation, a reassuring feature of this work was the similar positron

camera calibration parameters found with different non-normal distributions.

This implies that the needed parameters are likely to be nearly correct even

if we are uncertain of the actual error distribution. What makes the

distribution markedly non-Gaussian? First, many photons are scattered to

different directions while maintaining enough energy to still be accepted by

the nominal 511 KeV discriminator. The spatial distribution of scattered

photons depends strongly on the emitter and scatterer density in 3 dimensions,

and will vary with movement of any solid object in the field. Small angle

scattering is likely to appear as a broader peak in the distribution, while

large angle events will provide a more diffuse noise. Random coincidences are

more of a problem in high activity situations when the single photon arrival

rate at each camera approaches the time resolution of the discrimination

circuits. The rate is low in the calibration procedure described so only a

small fraction of therecorded events should arise from this source. Those

that are recorded would be expected to be spatially random.

The low count rate used in this procedure offered other advantages in our

biological experiments (11). Radiation dose to the human subject was

15



minimized, and camera performance data could be recorded within a few minutes

of the desired physiological kinetic data. Even the error distribution

information (parameters a and f) can be directly used in a specific maximum

likelihood image reconstruction procedure (25).

The necessity of so detailed an analysis in routine clinical use is

uncertain. Most clinical work produces a raw image and many quantitative

shortcomings are accepted. Certainly some applications, like length or volume

measurements, would require some spatial calibration, but the specifics of the

model need to be tailored to the specific device and the intended application.

Our procedure has revealed a number of device features not previously

apparent, such as non-equal camera gains. Robust procedures should be

considered in other applications, since serious bias in parameter estimates

can result from incorrect error distributions even when other problems (e.g.,

Poisson counting errors) are overcome.
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Table I

Characteristics of Data Sets

Simulated

# source Total Cains
Data Set locations events (ADC units/cm) (cm) f offsets

Simulated A 6 1200 3.2 1.25 0 all 0

Simulated B 3 600 3.2 1.25 .143 all 0

Experimental C 15 1596 unknown

Experimental D 4 881 unknown
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