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Stochastic Optimization by Simulation:

Some Experiments With a Simple Steady-state Queue

Pierre L'Ecuyer 1, Nataly Giroux 2 and Peter W. Glynn3

ABSTRACT
New approaches like perturbation analysis and the likelihood ratio method have been

proposed recently to estimate the gradient of a performance measure with respect to some
continuous parameters in a dynamic stochastic system. In this paper, we experiment
the use of these estimators in stochastic approximation algorithms, to perform so-called

S'4single-run optimizations" We also compare them to finite difference estimators, with and
without common random numbers. The experiments are done on a simple M/M/1 queue.
The performance measure involves the average system time per customer, and the optimal
solution is easy to compute analytically, which facilitates the evaluation of the algorithms.
We also demonstrate some properties of the algorithms. In particular, we show that using
perturbation analysis, the single-run optimization converges to the optimum even with a
fixed (and small) number of ends of service per iteration, while under the same conditions,
the algorithm that uses the finite difference estimators converges to the wrong answer.

Keywords: simulation, stochastic approximation, likelihood ratios,

perturbation analysis.
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1. Introduction

Simulation has traditionally been used to evaluate the performance of complex systems,

especially when analytic formulas are not available, but rarely to perform optimization.

Consider a (stochastic) simulation model parametrized by a vector 0 of continuous parame-

ters, and suppose one seeks to minimize the expected value a(0) of some objective function.

In principle, if a(9) is well beha-ved, one could estimate its gradient by simulation, and use

adapted versions of classical non-linear programming algorithms. One way to estimate the

gradient is to use finite differences. However, in most practical applications, obtaining a

reasonably accurate estimate often require unacceptably high amounts of computer time.

Recently, new ways have been proposed to estimate the gradient of a performance

measure (defined as a mathematical expectation), with respect to continuous parameters,

by simulation [3, 4, 5, 6, 17, 18, 21, 23]. For "steady-state" simulations, a "single-run"

optimization scheme has also been suggested [14, 22]. Combined with appropriate variance

reduction techniques, these methods could enlarge substantially the class of stochastic

optimization problems that can be solved. However, a good amount of research remains

to be done on the theoretical properties of these methods (some of them were proposed as

"heuristics"), and empirical investigations should be done.

In this paper, we report the results of numerical experiments performed on simple

queueing systems. The idea was to run the algorithms (and their variants) on a problem

for which we could compute analytically the optimal solution. Such an experiment was first

undertaken in [22], but these authors looked at only two methods, which they presented as

heuristics. One was based on perturbation analysis (PA) and the other was an adaptation

of the Kiefer-Wolfowitz (KW) algorithm. They observed empirically that for the problem

considered, the former method (PA) was converging much faster than the latter (KW). We

prove in this paper that for the example they examined, their first method converges to the

optimal solution, while their second might converge to the wrong answer. We then suggest

new variants of KW that converge to the optimal solution. For the (simple) examples

considered, one of these variants (which uses common random numbers and increases the

simulation length at each iteration) appears to be competitive with PA. We also experiment

with different variants of the likelihood ratio (LR) method [3, 4, 17, 19] (also called the

score function (SF) method). Our numerical experiments deal with examples where the

decision parameter vector 0 has only one component. The multidimensional case certainly

involves more intensive computations. As always, since these experiments were done on

specific numerical examples, one should be careful in making any generalizations.



In section 2, we briefly describe a stochastic approximation algorithm for steady-state

simulation optimization in a general setting. More details are given in the appendix, where

we recall known convergence results, with slight adaptations. Our aim is not to give the

most general results, but as stated, the theorems are general enough for a fairly large

class of applications. At each iteration, the algorithm requires an estimate of the gradient

Va(.) at a given point, and section 3 reviews some techniques to obtain that estimate. Our

presentation is made in the steady-state setting, but it also applies (with some simplifica-

tion) to terminating simulations, or to the case of infinite horizon total discounted cost,

by taking a(6) as the total expected (possibly discounted) cost at parameter level 0. The

initial simulation state is then fixed (or could be part of the parameter, or random with

known distribution). For terminating simulations, many things simplify since the initial

bias problem disappears. In section 4, we consider a simple example, similar to the one

studied in [22): one aims to minimize a function of the average system time per customer,

in a M/M/1 queue for which the decision variable is the parameter of the service time

distribution. We give the results of an extensive numerical investigation, and prove some

properties. In the conclusion, we comment on the possible behavior of other variants of

this example, and mention prospects for further research.
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2. A stochastic approximation scheme

2.1. The general form of the algorithm

Consider a discrete event simulation whose evolution law depends on a parameter vector 0,

where 0 E 0, a compact convex subset of lRd. Let a(O) be the steady-state cost of running

the system at parameter level 8, and suppose one is interested in minimizing a($) over e.
We assume that a(.) is continuously differentiable.

We consider a stochastic approximation algorithm of the form:

0.+ ( := we(O. - "y.). (1)

where 8o E e is fixed (or random with known distribution). Here, for n > 0, On is the

parameter value at the beginning of iteration n, Yn is an estimate of the gradient Va(O)

obtained at iteration n, {-,, n > 0 is a positive sequence decreasing to 0 and such that

E'0 yn, = o, and we denotes the projection on the set E (i.e. wee(0) is the closest point

to 8 in 0). Note that this can also be generalized (and the results will still hold) to the

case where a different subsequence 7N, n > 0) is chosen for each component of 0.

Let S, denote the state of the simulation at the beginning of iteration n (description

of all the objects in the system, event list, etc.). We assume that enough information is

kept in -,9 so that the pair (On, s) evolves as a (possibly non-homogeneous) Markov chain.

Let 30 be the initial state. There are different ways of obtaining Y, and since it must

be obtained in finite time, the estimator will usually be (sometimes only slightly) biased.

The computation of Y involves say K, > 1 simulation subruns, where for k = 1,..., K,.,

the k-th subrun is performed at parameter value 0 nk = Onk(On), form initial state ink, and

for duration Tnk (possibly random). That duration can be expressed for instance in terms

of the simulation clock (units of simulation time), or as a number of regenerative cycles,

or as a number of customers to be served (in a queueing system), etc. The functions Ok,

the rules for selecting snk, and the probability distribution (or value) of Tk all depend on

the algorithm. We assume that there is also a rule for choosing an.+ at the end of these

K,. simulation subruns (it could be for instance the final state of one of the K, subruns).

Often, K,. = 1, SI1 = Sn, 0 nk = 0 n and a+, is the state of the simulation model at the end

of iteration n. For a symmetric finite difference scheme, one has K. = 2d and each 0nk is

On plus a constant times a unit vector.

Denote by En(.) the conditional expectation E[. I On, sn]. We can write Yn as

Yn = Va(On) + , + 'En (2)
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where E [e ] = 0, so that #,, represents the (conditional) bias on Y, given (0,, ).

2.2. About the convergence

Sufficient conditions for the convergence of (1) to an optimum (or of similar algorithms,

often without the projection operator) have appeared in many places (see [9, 10, 11, 15,

16, 18] and other references cited there). Some sets of conditions imply almost sure con-

vergence, others imply only some form of weak convergence, but are often easier to verify.
In the appendix, we give two sets of conditions that are slight adaptations from 19, 111.

One set is for convergence with probability one, the other one is for weak convergence.

Roughly speaking, the algorithm should converge almost surely if -, goes to zero fast

enough to damp out in some way the variation due to the en's, and that convergence should

be to a zero of the gradient Va(8) if 0,, goes to zero.
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3. Ways of estimating the gradient

One crucial ingredient for the algorithm sketched in the previous section is an efficient
gradient estimation technique. In this section, we survey some possibilities.

3.1. Kiefer-Wolfowitz (KW)

This method is described for instance in [9, 18], without the projection operator. Here,
Y,, is a finite difference estimator. Take a positive sequence {C,n > 0} that converges to
0. Let ei denote the d-dimensional unit vector with a 1 in position i. The estimation of
Y, involves K,. = 2d simulation subruns, each subrun yielding an estimation W,: or W+

of the "average" cost at a given parameter setting. More precisely, for i = 1,..., d, we
simulate from some initial state s; at parameter value ire(O, - c,ei) for duration Tn to

obtain W,-, and we simulate from state a+. at parameter value re(G, + c,e,) for duration

T, to obtain W+,. We then compute

S d (W4 -(3)
s=I

where

Ai= -re(On + c,e,) - WO(e,, - cnei).Jj (4)

Here, Tnk = T, for k = I,... , 2d. Again, 2, can be a number of (simulated) time units, or
a number of regenerative cycles, or a number of observations of some sort, etc. Usually,
W,- and W,+ are averages over these "pieces" of simulation of "duration" Tn. We can

also generalize this scheme by taking different subsequences {cn, n > 0} for the different
components of 0. Note that problems might occur at the boundary of E: An can be much
smaller than 2c, or may even be zero in bad cases. But we will not discuss this problem
any further here. If 9 is an interval (or more generally an hyperrectangle), as will be the
case for the examples treated here, it is easy to see that Ai > Cn.

There are two sources of (conditional) bias in Y. One is due to the fact that we use
finite differences. Call it #D. It goes to 0 as n .). oo since cn -- 0. The second one is due
to the initial state at the beginning of each iteration. We have

E.[W.,] = ,a(,e(O - cne,)) + iO, (5)

E=[WZ] = a(ve(On + Cne)) + i (6)
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where #-3 and #+ are the respective (conditional) bias on the estimate average costs due
to the initial states a; and s4' (E,, is defined in section 2.1). This second (conditional)

bias is then

I d ni e (7)

To satisfy assumption S2 of the appendix, we need that /3 =/3D +/ -- 0 as n --+ oo. In

most practical situations, the bias/ + and13n,, decrease with Tn at a rate of approximately

1/Tn. In that case, we will have /3n -- 0 if An > Kc, for some constant xc > 0 and if

1/(Tc,) -0. (8)

As c, decreases to zero, the variance on Y usually increases to infinity. However, if we
assume that the variance of the sum of the numerators in (3) is bounded, assumption S4
of the appendix can be satisfied by choosing the sequences in such a way that

00

Z(-t/c)2 < 00. (9)

A reasonable choice might be to take for instance Tn = t, + tan, yt = o/(n + 1) and

cn- con -1 / 3 for appropriate constants t0 , tb, -to and co.

Note that this method may work even if at(.) is not differentiable. For the unconstrained

case (E) = JRd), if a(.) is twice continuously differentiable, if 0* satisfies S5 of the appendix,

if we neglect the bias /P, under some additional conditions on the variance of the cost
estimators, and if the sequences are chosen as suggested above with tb = 0, then the
algorithm converges almost surely to 0" and the convergence rate is of the order of n -1/ 3

(see Theorem 2.3.5 and chapter VII in [91). However, #nl is zero only for terminating

simulations or when we can exploit the regenerative structure. Otherwise, taking tb = 0

may lead to disaster, as will be illustrated in the next section.

One simple way to choose the initial states of the subruns is as follows. Start the first
subrun from state an, then take the terminal state of any given subrun as the initial state
of the next one. The terminal state of the last subrun will become a,,+., the initial state

for the next iteration. But still, we can permute the 2d subruns of a given iteration in any
given way, and select the terminal state of any subrun for sn+l. It is not clear what is the

best way of doing this, if any. In any case, the KW method is usually plagued by a huge

variance on the Y, which makes it converge very slowly, at least when the subruns are

performed with "independent" random numbers.
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Glynn [31 describes an alternative KW approach based on regenerative analysis. It

eliminates the bias fll, but the variance is usually much higher.

The package SAMOPT [1] is an implementation of the stochastic optimisation algo-

rithm with KW, with specially tuned parameters. It was designed for terminating simula-

tions. It also replaces Y, by its sign.

3.2. Kiefer-Wolfowitz with common random numbers (KWC)

One way to reduce the variance in KW is to use common random numbers across the

subruns at each iteration, start all the subruns from the same state, and synchronize. Of

course, there is no guaranteed variance reduction, but since the subruns are aimed at com-

paring very similar systems, especially when c, is small, considerable variance reductions

might be obtained. The starting state a,,+, for the next iteration can be anyone of the 2d

terminal states. A heuristic rule is to choose the state that was obtained from the subrun

with the parameter value the closest to the new parameter value 0,+.

Implementing this method for complex simulations is not without pain. Saving the

simulation state means saving the states of the random number generators, the event list,

the values of all variables related to the model (but not those related to the top level

algorithm), all the objects in the model, etc. In practice, many objects in the model are

pointers to data structures that can be created, modified or destroyed dynamically, and

whose types have been defined by the programmer. When saving the state of the system,

one cannot only save the pointer values, but must make an explicit "backup" copy of all

these structures. When restoring the system to a given state, these must be recopied again.

Usually, the simulation package cannot do that and specific code must be written. In fact,

it would be very difficult to implement "state saving" facilities in a general simulation

package, because usually, the package has no way to know with certainty the structures

of all the dynamic objects created by the user. All this implies overhead not only for

the computer, but also for the programmer. Another source of programming overhead in

KWC comes from the need to insure synchronization of the random numbers across the

subruns.

When c,, is small, there is sometimes little change between the sample paths of the

2d subruns. One could then ask: is it possible to perform only one subrun and trace

the few changes ? It is indeed sometimes possible, and this idea leads to what is called

finite perturbation analysis. Taking that to the limit when cn goes to zero, one obtains

infinitesimal perturbation analysia.
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3.3. Perturbation analysis (PA)

In this paper, PA always refers to infinitesimal perturbation analysis [5, 6, 21, 23]. The

basic idea is to generate a sample path w, viewed as a sequence of U(O, 1) variates, and

for wi fixed, observe the effect of an infinitesimal perturbation on 9 by propagating it over

the sample path. Such a propagation can be done rather easily if one assumes that the

perturbation on 0 does not change the sequence of events, but only makes them "slide

smoothly" in time. The gradient estimate is then taken as the gradient of the sample

objective function for that fixed value of w, say Voh(f,w). Unfortunately, it is not always

true that

E[Veh(6,w)] = V{E[h(Ow)], (10)

since we cannot always permute the derivative and the expectation. Heidelberger et al.

[6] give conditions under which PA works correctly. If PA does not work for the original

system, various devices can sometimes be used to "smooth out" or transform the original

problem into a problem for which PA will work correctly (see [5] for instance). These

devices are usually problem-dependent. In principle, when (10) holds, PA can be viewed

as a limiting version of KWC as each c, becomes infinitesimal. However, as we will see

in section 4, implementation "details" can often make a big difference between PA and

"infinitesimal" KWC. One big advantage of PA when it works is that it requires only one

simulation subrun per iteration, compared to 2d for KW or KWC.

3.4. Likelihood ratio (LR)

The likelihood ratio gradient estimation method has been introduced recently by Glynn [3,

4], Reiman and Weiss [17], and Rubinstein [19, 20] (who calls it the score function method).

The basic idea is that a(6) can usually be viewed as the expectation of some function of

0 and of the sample path w, say h(O,w), with respect to some probability measure Pe(')

over some sample space fl. Here, w represents all the randomness that drives the system,

so that when w is fixed, everything becomes deterministic. Typically, w can be viewed

as a sequence of random variables, some of which have a distribution that depends on

0. Usually, one cannot differentiate this expectation directly by differentiating inside the

integral, because Pa(') depends on 8, but for some 0,, E e, one can rewrite

Q(8) = h(O,w)P9(dw) = J [h(O,w) P#,(dw))] Pe,(dw). (11)
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and differentiatc a(.) by differentiating the bracketted term with respect to 0 inside the

integral (0, is viewed as a constant). This expression can then be evaluated at 9 = 0,, to

obtain

Vca(9,) =j[Veh(6,w) + h(f,w) e"e~d) IPe (dw). (12)

The bracketted expression in (12) can be used to estimate VQ(9,,). As in PA, only one

simulation subrun is required to estimate the gradient. (In principle, the expression can

also be evaluated at any value of 9 # 0,,, yielding an estimate of the gradient everywhere

in E, obtained by a single simulation. The method can also be generalized to higher order

derivatives.)

Note that the above reasoning holds only if the derivative and expectation can be

interchanged (this can be done under some regularity conditions, see [17, 20]), and if the

likelihood ratio (or Radon-Nikodym derivative) exists in a neighborhood of 0,, i.e. if the

sets of positive Pe(-)-measure are the same for all 9 in that neighborhood. These conditions

limit the method. For instance, threshold-type parameters that influence deterministically

the occurence (or occurence time) of some events are ruled out. Another case where it
won't work is when a component of 9 represents a transition probability of some sort,

and that probability goes to 0 or 1. This could happen easily when optimizing transition

probabilities. Also, the regularity conditions permitting one to interchange the derivative

and expectation are often satisfied, but not always.

For steady-state simulations, there is again the bias problem, since only a finite portion

of the sample path can be simulated. A simple remedy is to use the same idea as in KW:

increase the simulation length at each iteration. However, the variance of Y, here usually

increases linearly with T,, so T,, should not be increased too rapidly. Assuming that the

variance is proportional to T,,, one can take "r,, = 7o/n and T, = t. +t 6 n P for 0 < p < 1, and

the conditions S1 and S4 of the appendix will be satisfied by taking 6,, = n -P/2 . Another

choice could be T, = t. + tb In n. In any case, the fact that the variance increases with the

simulation length is an important limitation of LR in general. We should expect LR to

work much better for terminating simulations for which only a small number of random

variates are generated using a given parameter.

Other variants of the LR approach circumvent the bias problem by using a regenerative

approach [3, 4, 17]. If the system possesses a readily identifiable regenerative structure,

a(-) can be written as the quotient of two functions, and a likelihood ratio approach can be

used to obtain an estimator of the derivative of the quotient, for each component of 9. See

[3, 4, 17] for more details. The methods proposed in [4, 17] still have some bias, since they

9



estimate the expectation of a ratio, but the variance does not increase with the simulation

length. It decreases linearly instead. Also, the bias goes to zero. Here, T, can be taken

as the number of regenerative cycles at iteration n. On the other hand, algorithm B in [3]

proposes an unbiased estimator. However, its variance is usually very high. According to

our experience, its practical applicability appears to be somewhat limited.
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4. Example: a M/M/1 queue

4.1. The basic model and experimental setup

This example is strongly inspired from Suri and Leung [221. Consider a M/M/1 queue

with arrival rate A = 1 and mean service time 0 E e = [a,b], where 0 < a < b < 1.

Here, 0 is the parameter to be optimized. Let C1 > 0 be a constant, and let w(O) be the
average sojourn time in the system per customer, in steady-state, at parameter level 0.

The objective function (to be minimized) is defined by

a($) = W(O) + C,/a. (13)

The optimal value e- can be computed quite easily in this case. Indeed, w(O) = 0/(1 -0)
and 0* = vf/--//(1 + VC/) (if this value is not in [a,b], the optimum is at the nearest

boundary). But we can ignore momentarily these results, and try to solve the problem
using the stochastic algorithm described in section 2, combined with different variants of

the gradient estimation techniques described in the previous section. The solutions can

then be compared to the true optimal solution for an empirical evaluation. Henceforth, we

will refer to these variants as different algorithms.

We actually performed such an experiment as follows. For each algorithm, we made N

simulation runs, each yielding an estimation of 8. The N initial parameter values were

randomly chosen, uniformly in [a, b], and the initial state (so) was an empty system. Across
the algorithms, we used common random numbers and the same set of initial parameter

values. Each run was stopped after a (fixed) total of T ends of service, but that stopping

criterion was checked only between iterations. Hence, all algorithms had about the same

chance and, if we neglect the differences in overhead for the gradient estimation techniques,
used about the same CPU time. (The overhead was quite low in general, except for very

small values of T, like T = 1.) The programs were written using SIMOD [12], a simulation

package based on the language Modula-2. Each customer had a record associated with it,
to keep track of its arrival time. These records were created dynamically and the waiting

customers wer, .- ut explicitly into a linked queue. For this example, some methods, like
PA for insta. rw lo not require keeping track of the individual arrival times, and in that

case we could havw saved a fair amount of CPU time by keeping only a counter instead

of a linked queue. dowever, we insisted on using exactly the same simulation program for

all algorithms. In fact, the simulation model and the algorithms were implemented in two
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different modules, the latter being totally model independent. We also avoided using any

variance reduction technique.

For each algorithm variant, we computed the empirical mean 0, standard deviation
Sd and standard error s, of the N retained parameter values, and also traced graphics of

the evolution of these quantities as functions of the total number of ends of service. If

yi denotes the retained parameter value for run i (i.e. the last value of 0n), the above

quantities are defined by

1 N 1N
d NE')(y) _ N - )2. (14)

=1 i=1 N .=1

We also computed a confidence interval I on the expectation of 1, assuming that vW(! -

E(#))/Sd follows a Student distribution with N - 1 degrees of freedom.

4.2. Implementing the gradient estimation methods

Here are some specific implementation details for the different gradient estimation tech-

niques. In this example, T, represents the number of ends of service for each subrun of

iteration n, except for the regenerative methods, where it represents the number of re-

generative cycles per subrun. Hence each iteration ended at a time when a customer was

leaving the system. Of course, if the queue was not empty at that point, we were careful

to generate the new service time only at the beginning of the next iteration, i.e. after

the parameter was modified. For all the methods except KWC, the final state of every

simulation subrun was taken as the initial state for the next one. For the regeneratihe

approaches, a new regenerative cycle began at the end of each busy period.

For the KW method, the average cost was estimated for each subrun j of iteration n by

C1/O, + zj, where z,,j was the average system time for the customers who leaved during

that subrun.

For PA, the gradient estimation can be computed as follows (see [22, 23]). Every time

a customer leaves the system, we look at the elapsed time since the beginning of the busy

period. Let vn be the average of these times for the Tn customers leaving at iteration n.

The gradient estimate is then

Yn = Vn/On - CI/O/. (15)

For LR, we can view momentarily a/C.) in (11) and (12) as representing the expected

average cost during the jubrun of iteration n given the initial state Sn, and w as the Tn

12



service times generated during that iteration. Hence, at 0 =8,,

VOPO(dw) _0 AlT4d) -~
Ped,.,) - 8 P()- 89 (.f(C) . (16)

where Cj is the service time of the j-th customer and fe(C) - (1/0) exp(-(/O) is the service

time density. After easy manipulations, one obtains

Y - ) z - c1) (17)

where z,, is the average system time for the customers who leaved during that subrun.

Explicit formulas for the quantities involved in algorithm A of [4], which implements a
regenerative approach, can be derived in a similar way. In that case, one has

y _Q1Q - Q2Q4 C1  (18)
Q 12 n

where for k = 1,2,4,5,
Tn

Q = 3
and for j -- 1,..., Tn, Q,1 is the number of departures during the j-th regenerative cycle,

Q.j2 is the total system time for those Q j customers who left during that cycle, Qj6 is
their total service time (i.e. the length of the busy cycle), Qj4 = Qj1(Qj6 - Qj1On)/0 2 , and

Qj5 = Qj 2 Qj 4 /Qjl.

We also implemented the regenerative algorithms described in [3] (with and without

the arctan transformation), SAMOPT [1], and other variants, for which we will not give

the details here. Algorithm B in [4] is not applicable for this example, because our cost

function is not exactly of the form given in equation (4.2) of [4] (the residence time of a

customer depends not only on its own service time, but also on previous ones). Kesten [7]

has proposed an heuristic rule under which instead of diminishing 7, at each iteration, one

diminishes it only when the sign of the gradient estimate (for one parameter) is different

from the one of the previous iteration (i.e. when the change on the parameter changes

direction). The heuristic idea is that if the parameter keeps moving in the same direction,

it should be because we are still far away from the optimum and so, lets give it a chance to

move faster. That heuristic might help in situations where we start really far away from

the optimum, and where the change on the parameter at each iteration tends to be very

small. We have implemented this rule for some of our experiments.
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4.3. Numerical results

Figure 1 is a graphical representation of some of the results of an experiment we made

with T = 106, N = 10, [a,b] = [0.01,0.95] and C = 1. The optimal solution is 0" = 0.5.

The description of the algorithm variants appear on the left. For each variant, the white

bar represents the standard deviation Jd and the dark bar represents the standard error

ae. Numerical values are given in the first column of table 1 (which appears further down).

We computed the 95% confidence intervals le as described in section 4.1, and the entries

for which I$ does not contain 09 are indicated in table 1. KW, KWC, PA and LR have the

same meaning as in section 3. LRR refers to algorithm A in [4]. PAR means perturbation

analysis with a regenerative approach: each iteration is comprised of T,, regenerative cycles

instead of T,, ends of service. The symbol (K) following the name of the algorithm signifies

that Kesten's rule was used. The symbol (S) following KW means that instead of always

simulating first at 8,, - c,, and then at 8,, + c,,, we adopted the following heuristic rule for

KW: if the parameter has just decreased, simulate first on the right (at 0,, + c,), otherwise

simulate first on the left. The rationale is that if the parameter has just decreased, the

current state has been reached by simulating at a parameter value larger than 0,,, and

should thus be a statistically "better" initial state for a simulation at 0, + c, than at

8, - c,, (and symmetrically if the parameter has just increased). In all cases, we had

-, = 1/n and for KW and KWC, we took c,, = 0.1n1/3. (Intuitively, c, - n 1 / 3 would

have given much too wide finite difference intervals, since even after 1000 iterations, we

would still have 2c, = 0.2, but we also tried it and, surprisingly, the results were about as

good).

We can see that PA performs very well, even when T, is fixed at a small constant.

Surprisingly, KWC with a linearly increasing T, is almost as good. When T is fixed to a

small constant, KWC also converges rather quickly (small 3d), but the standard error e is

very large, which means that it does not converge to the right place! Even for T = 100, the

bias is still quite apparent and Ie does not contain e*. KW has about the same behavior,

but with larger variance. KW(S) is slightly better than KW, but not competitive with

KWC or PA. PAR also has a bias problem when T is fixed. The problem is that with the

regenerative approach, the number of ends of service during the T,, regenerative cycles is

now random, and we get a bias due to the fact that we estimate a ratio with that number

on the denominator. Of course, this bias goes to zero as T, goes to infinity, and this is

why PAR with T,, = n works fine.

The LR methods in general have some trouble due to their large associated variance.
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LRR, Tn = n/ 2

Figure 1: Performance of various methods for C1 = 1, T = 106 and N = 10.
White bar is Sd and black bar is J'.
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That variance stays low when TY grows slowly, but then, the bias becomes more of a
problem. LR with Tn = nP has large variance for large p, and for small p, the bias goes

down much too slowly compared to the variance. The result is that the confidence interval

Ie, based on the N final values of On, is very likely not to cover 08. This is what happens,

for instance, with p = 1/3. The only LR variant that gives reasonably good results here is

LRR, based on a regenerative approach, with Tn increasing linearly. With Tn = n1 / 2 , both

LRR and KWC have the same bias problem as described above: the bias goes down too

slowly and I$ does not contain 0*. Nevertheless, they converge (slowly) to the right answer

(we verified it empirically with longer simulation runs). Kesten's rule doesn't appear to

help for any of the methods. SAMOPT [1] and the algorithms described in [31 gave rather

bad results (huge variances) and they do not appear in the figure. They are obviously

not competitive, at least for this example. The problem with SAMOPT is that near the

optimum, the gradient is very small in absolute value, and replacing it by its sign is really

not a good idea. We also obtained bad results with other variants, like for instance PA

with Tn = 100 + n but -,n = 1/v/ln instead of 1/n. Other sets of experiments were also
done with T - 10 and the results were quite similar to the ones given here.

Figures 2 to 6 illustrate the evolution of the parameter as a function of the simulation
length, for different algorithms. Each curve is the average of the N = 10 curves associated

with the individual runs. On the horizontal axis, one has the total number of ends of

service to date in the simulation run, and on the vertical axis, the average of the N values
of On observed at that point for the N runs. Each curve was actually drawn by linear

interpolation, using 101 data points equally spaced on the horizontal axis (every 104 ends

of service).

Figures 2-3 show how KWC converges much better than KW, and how KWC with

Tn = 5 converges to somewhere around 0.65.

In figures 4-5, we see the convergence of PA for Tn = 1 and Tn = 10. It is interesting
to observe here that the evolution of the parameter with these two values of Tn is almost

identical. We also made other experiments with different (constant) values of Tn between 1

and 1000, and observed that the evolution was almost identical in all cases, independently
of Tn. Note that all these simulations were done with common random numbers and same

sets of starting parameter values. Moreover, even if the starting values are different, the

evolution is again almost identical if common random numbers are used.
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Figure 2: Convergence of KW (in white) and IKWC (in black) with T = n.
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Figure 3: Convergence of KWC with T = 5.
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Figure 4: Convergence of PA with T. = 1.
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Figure 5: Convergence of PA with T = 10.
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Figure 6: Convergence of LRR with Tn = n.
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Figure 7: Evolution of 9, (N=100) for KWC (black), PA (white) and LRR (star).
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C1 =1 (0=1/2) Ci=1/25 (8=1/6) C, =25 (0' =5/6)
8d a, Od 8e 8d se

KW, T = n .03119 .03089
KW, Tn = 100 + n .03177 .03112
KW(S), T2n = n .02067 .02212
KWC, T, = 5 .00144" .15255
KWC, Tn = 100 .00332" .00673
KWC, T, = n .00216 .00242 .00027" .00051 .02860 .02773

KWC, T, = 100 + n .00189 .00212 .00028* .00055
KWC(K), T, = n .00216 .00242
KWC(K), T,, = 100 + n .00189 .00212
KWC, T, - n 1 /2 .00261 .00731

PA, 72, = 1 .00227 .00217
PA, T, = 10 .00227 .00216 .00053 .00051 .02402 .02575

PA, T = 100 .00229 .00219
PA, T = 100 + n .00203 .00192 .00045 .00043 .02685 .02848

PA(K), T, = 100 + n .00203 .00192
PAR, T, = 5 .00228* .06175

PAR, T, = n .00200 .00197 .00046 .00044 .02981 .03110

LR, T, = n 1/ 3  .01221" .02062
LR, 72, = n1/ 2  .03012 .02876 .02454 .02355 .04473 .05214
LR, T, = 10 + n'/ 2  .03300 .03165

LR, T, = n 2 / 3  .07494 .07115

LRR, T = n .00447 .00453 .00124 .00118 .07608 .07446

LRR, Tn = 10 + n .00478 .00483

LRR, T = n 1 / 2  .00443* .01775

Table 1: Some experimental results for T = 106, N = 10 and Ci = 1, 1/25,25.
For the sd values marked with an asterisk, the computed

95% confidence interval does not contain 0.
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Figure 6 shows the evolution for LRR with Tn = n. The variation is larger here than
for KWC and PA.

In figure 7, we can see the evolution of the standard error e with the simulation length,
for three of the most interesting methods. These graphs are the result of a new experiment,

with longer and much more numerous runs: we took T = 2 x 106 and N = 100. They were

also made by linear interpolation using 101 points. Again, we see that KWC and PA are

roughly comparable, and that LRR has about twice their standard error (four times more
variance). From these graphs, we can get an idea of the convergence rates: the standard

error gets approximately cut in half when the simulation length is multiplied by four (i.e.

the variance is approximately inversely proportional to the simulation length).

Simple (heuristic and approximate) statistical tests can also be made on the convergence

rates. We can perform for instance another 200 independent runs of length T = 500000,

compute the associated variance ;2, and compare it to the variance s2 obtained in the above

experiment, using the F statistic. Under the null hypothesis Ho: "the convergence rate is
t-1 /2" (where t denotes the simulation length), the variance for t should be approximately

four times the variance for T, and the statistic F = 4s2/;2 should follow (approximately)

a F distribution with (99,199) degrees of freedom. We performed these tests for KWC

with Tn = n, PA with Tn = 10 and LRR with Tn = n, and obtained the F values of
1.166, 0.0826 and 1.045 respectively. Since we know that the convergence rate cannot be

faster than t -i1 /2, we can test the null hypothesis against the alternative that it is t - 1 for

z < 1/2. In that case, H0 is rejected at a 95% level when F > 1.32, which is the case for

none of the three algorithms here. It should be pointed out, however, that despite the huge

amount of simulation time they require, these tests are not very powerful. If we suppose

for instance that the true convergence rate is t- 0 4 , the probability of getting F > 1.32 is
actually slightly smaller than 0.5. Also, the convergence rate is an asymptotic expression,

and since we use finite values of T and T, we are only testing some approximation of it.

How does the speed of convergence of On to 09 compare to the speed of convergence

of the cost estimator to the true average cost when 0 is fixed ? We note that simply
comparing the widths of the confidence intervals at the end doesn't make sense, since the

parameter and the cost are not necessarily measured on the same scale. Dividing by the

means to obtain relative values doesn't make sense either, there might be cases where 60
or the average cost is zero or near zero. In any case, it is well known that the average

cost estimator converges at rate t -i1 / 2, and we have observed the same convergence rate

for On. This means that we can estimate the optimum about as fast (in terms of rates),
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as we can estimate the cost at a given point! We tried the following numerical example:

with 0 fixed at 0.5, we performed 100 independent simulation runs of length T = 2 x 106

to estimate the average cost. The sample mean, standard deviation and mean square error

of these 100 values were 3.00001, 0.00214 and 0.00213 respectively. Figure 8 illustrates the

evolution of the standard error of the 100 values in terms of the simulation length.

0.010-

0.008

0.006

0.004

0.002

0.000 - 7 I i I r

0 500000 1000000 1500000 2000000

Simulation length

Figure 8: Evolution of the standard error for the average cost estimation
with N = 100, T = 2 x 106, 9 = 0.5 (actual cost: 3.0).

We made other sets of experiments with C, = 1/25 (for which 0" = 1/6) and C, = 25

(for which P = 5/6). The results appear in table 1. For C, = 1/25, the traffic intensity for

0 near 8" is low, and we get a much lower variance than for C1 = 1. The opposite is true

for C1 - 25. The relative "rankings" of the algorithms are about the same. However, for

KWC and C = 1/25, the variance for 0, goes down quickly and the bias does not go to

zero fast enough to cope with that. The result is that for this experiment, the confidence

interval Ie does not contain *'. A possible remedy is to increase T faster. But in any

case, this shows that one must be very carefid about confidence intervals in these kinds of

experiments, even if they are asymptotically valid. For C = 25, LR is now better than

LRR (8 is larger and the regenerative cycles are much longer in this case).
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4.4. Proving some specific convergence properties

We will now look more closely at why for our example, for Tn constant, PA works fine

while KW and KWC don't. To keep things simple, let's examine KWC with T = 1.

Lemma 1. With C1 = 1, e = [a,b] where 0 < a < b < 1, Tn = 1, and a sequence

{c,,,n > 0} satisfying (9), KWC converges to b almost surely.

PROOF. When we estimate the average cost using T = 1, we actually look at the

time spent in the system by one customer, i.e. the customer being served in that subrun.

This time can be expressed as K + F;'(u), where F-'(-) is the inverse of the service time

distribution (we assume that the inversion method is used to generate the service times),

u is a U(O, 1) variate, and K is the (waiting) time already spent in the system by that

customer. K. is independent of what happens during that subrun, and Ku = 0 if the

subrun began with an empty system. Hence, the average cost estimate at parameter level

0 can be written as 1h(O,u) = K + F -'(u) + - . (19)

and for KWC, we obtain
h(O+,u) - h(O,u) _ F;'(u) - F-i(u) + 1/8 + - 1/0-(20)

n noOn - o;

where 9; = (On- c) = max(a, O. - c,) and OZ = re(On + c,) = min(b,On + cn). Note

that 0+ - 0- > cn. For the exponential case, we have E[F;'(u) 1 0] = 0 and thus

E,[Y0 n + I /o + - 1/ (21)
0 1 +(

which converges to 1 - 1/01 as c, goes down to zero. Since On < b < 1, that expectation

converges to a negative value everywhere on E. This means intuitively that On will be
"attracted" towards the upper bound b and we can prove it using Theorem 2. Let us

redefine for the moment a(.) such that
d (o) 1 1

dO $2 0

In that case, in equation (2) we have On- = 1/2 _ 1/9+09 --+ 0 as n -+ oo, and E,[C2] <

Kef(9n - 9n)2 < Ke/cn for some constant K,. Hence, S1, S2 and S4 are satisfied, with

n =c/K, in S4. Since 0 = b is in this case the unique asymptotically stable point of

(26), S5 is satisfied with A e, and Theorem 2 %pplies. I

For PA with constant Tn, we don't have On -- 0 as n --- oo. Instead of using Theorem

2, we will use Theorem 4 and prove a weaker convergence result.
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Lemma 2. The algorithm of section 2 with PA, {IN, n >_ 0} satisfjing WS of the appendiz,

and constant Tn converges in probability to the optimum 9..

PROOF. We need to verify assumptions W1 to W7 and the result will follow from

Theorem 4. Note that most complications arise because of the non-compactness of the

state space (the queue length is unbounded). Let Tn = J, a constant. When using PA in

this case, the only essential things that we must know at the beginning of each iteration

are the number of customers in the system, and the elapsed time since the beginning of

the current busy period (= 0 if system is empty). Let l, and m, be the values of these

two quantities at the beginning of iteration n. To verify W1, we also put in sn+1 the

values vpj = 1,..., J, where vj is the elapsed time since the beginning of the current

busy period when the j-th departure during iteration n occurs. Note that v,, as defined in

section 4.2 is the average of these vnj's. For n > 0, let

,,+1 = (, ,vl,..,vnj) E S = [O,oo) x {0,1,2,...1 x [O, 0o)J,

and let so = (0,... ,0) E S. {(0,,s,+),n > 0} is obviously a Markov process, and the

probability law of Jn+1 given (O,,s,) is independent of n and weakly continuous in (On, J,).

For any fixed 0 E [a,b], the system is stable and {S,,n > 0} is a Markov process with

steady-state distribution P0(.). Since the system is stable, for any e > 0, there is a constant

Ko, > 0 large enough so that Pe([0, K9,,]J+2 ) >_ 1 - e. Note that for any n > 0, 3, when a

is fixed is stochastically increasing in 6. Also, an is stochastically smaller when 0 is allowed

to move in [a, b] than when it is fixed at 0 = b. The tightness properties required in W1

and W2 follow from these stochastic inequalities, the fact that l0 = m0 = 0, and the fact

that the system is stable when 0 E [a, b].

W3 holds trivially. For W4, take Kf = 1/a 2 , 0(8n+1) = V,, and K = 1. When 0 is fixed

at b, m,, has a steady-state distribution with bounded second moment (see [8)), and thus

the same applies to ,,. Because of the stochastic inequalities above, this also true when

, moves in [a, b], so that sUp,>o Eo(v,) < oo.

W5 follows from W1 and the fact that Y is a continuous function of (en,afl+1).

For each e > 0, let Kb, be defined as above. For each S compact subset of S, there is

a ns such that for all an E S and i > ns, Pb(sn+, E [0, 2Kb,e]J+' I an) > 1 - e. Here, ns can

be viewed as a time that we give to the system to stabilize. Roughly, if 3 is "bigger", the

initial state could be "bigger" (e.g. large initial queue size), and we will take a larger ns.
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When 8. is allowed to be smaller than b, this makes s,,+, stochastically smaller, so that

this inequality still holds, and this implies W6.

From Suri and Zazanis [23, Theorem 2 and Corollary 1], the steady-state expectation

of Y" = f(e,sn+,) when 6 is fized is equal to Va(8) = 1/(1 - 8)1 - C1/8 2 . The equation

= (-Va(6)) has a unique asymptotically stable point at 8* = v'j/'(1 + VC'l) if this

quantity is in E, and at the nearest boundary of e otherwise, so W7 is satisfied and this

completes the proof. I

These two lemmas show that for this example, PA is not equivalent to "infinitesimal"

KWC. Looking more closely, we can see that the difference lies in the way the methods are

implemented. In PA (see [22, 23]), the perturbation "accumulator" (which holds in this

case the elapsed length of the current busy period) is not reset to zero at the beginning

of each iteration. Hence, the waiting times of all the customers, including the waiting

that occured before the current iteration (if any), are perturbed appropriately. For KW or

KWC, the "perturbed" parameter (On ±C,) affects only the service times that are generated

during its current use, and the waiting that occurs during these service times. Thus, the

elapsed waiting times for the customers that are already in the queue at the beginning of

a simulation subrun are influenced only by the parameter values for the previous subruns.

Obviously, this introduces a bias on the estimated derivative.
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5. Conclusion

Through a simple example, we have seen how a gradient estimation technique, such as
finite differences with common random numbers (KWC), infinitesimal perturbation anal-

ysis (PA) or likelihood ratio (LR), can be incorporated into a stochastic approximation
algorithm to get a provably convergent stochastic optimization method. We also pointed

out some dangers associated with different kinds of bias.

For the example considered, PA gave the best results, but this may not be true in

general. In fact, there are many examples for which some of the methods do not apply.

For instance, consider the same M/M/1 queue as in section 4, but replace w(O) in the

objective function (13) by the proportion of customers that wait more than C2 units of

time, where C2 is a positive constant. Here, PA does not work, because for a fixed finite

segment of a realization w, the derivative with respect to 0 of the number of customers
who wait more than C2 is zero with probability one. As another example, keep the same

objective function as in section 4, but take a different service time distribution: assume

that the service time is 1 with probability 0 and 2 with probability 1 - 0, where 0 < a < 1

and 0 is the parameter. Again, PA doesn't apply (see [23]). Suppose now that the service
time is 1 with probability p and 1 + 0 with probability 1 - p, where p is fixed, 0 < p < 1,
and 0 > 0 is the parameter. In this case, LR (as described in section 3.4) doesn't apply

since the set of possible realizations depends on 0. We don't rule out the possibility that

eventual adaptations of the methods might work for these cases, but to our knowledge, this

still has to be done. For many practical problems for which a threshold-type parameter

has to be optimized, neither PA nor LR do apply, at least in their current forms. This

certainly needs further research.

The performance of these algorithms when there are many parameters to optimize, and
the incorporation of proper variance reduction techniques, are other interesting subjects

for further investigation. We mentioned that PA can be viewed as a special case of LR

with w defined in a special way. In fact, depending on how we view w in LR, we may

obtain different methods to explore. In principle, PA and LR can be used to estimate

higher order derivatives, but the variance is typically quite high. Is it too high to permit
the implementation of good second order algorithms based on these estimates ? Again,

further investigation is needed.
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A. Appendix: sufficient convergence conditions

In this appendix, we give sufficient conditions for the convergence of (1) to an optimum.

The first set of conditions imply almost sure convergence, the second set (usualy easier to
verify) imply weak convergence. These conditions are adaptations from [9, 11]. They are

not given in their most general form, but are general enough for our purposes here.

In what follows, we will assume that e is a compact and convex set of the form e =

{e E iRd I g(O) :- 0}, where g(.) is a ,c,-dimensional vector of continuously differentiable
functions (constraints), as in [13, chap.10], and at any point on the boundary of E, the
gradients of the active constraints are linearly independent. For any continuous function

v : -E) _R d, one may view v(.) as the gradient of some objective function. Define the set
of Kuhn-Tucker points associated with v(.) as

KT(v(.)) =0 E Rd 1 31 E R ' , p 0, such that v(0) + A'Vg(0) = 0, t'g(e) = 0}.

(22)

Let us introduce some notation, adapted from [9]. Define tn -E=0-ti and m(t) -
max{n I tn < _} for t > 0. Let zO(.) be the piecewise linear interpolation of the set of

points {(tn,On),n > 0}, and zn(.) the left shift of z°(.) defined by zn(t) = Z°(t + i4), for

t > 0. Hence, Zn(O) = n, and if zn(.) converges to a limit z(.), the asymptotic properties

of z(t) as t --* oo can provide information on the asymptotic behavior of On as n --+ oo.

For any function v : 0 __, Rd, define

*(v(O)) = im 0+ 6v(O))0. (23)
b-0+6

Define the differential equation

- *(-r(0)). (24)

The set of asymptotically stable points of (24) is KT(v(.)). The theorems below give
conditions under which as n --+ ., Zn(.) converges in some sense to a solution of (24) for a
proper v(.). This convergence property is then used to analyse the behavior of {0 , n > 0}.
We now give a list of assumptions that will be used selectively in the next two theorems.

S1. For all n >_ 0, 7N >- 7t+l > 0, and 0 07n = 00.

S2. lim On_. , = 0 almost surely.
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S3. For each T > 0 and e > 0,

lim, P sup )e, > =0. (25)

S4. There is a positive sequence {8,, n > 0} such that En[fr,] < 1/t 2 and
En'_-(/bn)2 < 00.

S5. There is a 0" E KT(Va(.)), an asymptotically stable point of

i = *(-Va(a)), (26)

with domain of attraction DA(") (in the sense of Liapounov), and almost surely,

infinitely many On belong to some compact A C DA(O*).

Theorem 1. (Kushner and Clark). (a) Assume Si to 53. Then, almost surely, zo(.)

is uniformly continuous on [0, oo), and any limit z(.) of a convergent subsequence of

Ixn(.),n > O} satisfies (26). (b) If 0* also satisfies S5, then lim. O.o On = 0* almost

surely.

Theorem I is proved in [9, Theorem 5.3.1J. Condition S3 is quite general, but has low

intuitive appeal, and is not always easy to verify. The theorem below uses a more restricted

but more "familiar" condition. It is a variant of Proposition F in section II of [15].

Theorem 2. Under the assumptions S, S2, S4 and S5, the algorithm converges almost

surely to 0*.

PROOF. It suffices to show that S3 holds, and the result will follow from part (b) of the

previous Theorem. Note that under 54, the sequence {E=0-,iej, n > 0} is a martingale.

For each e > 0, from Doob's inequality and from 54, we have, with probability one,

sup Z71e, e <fj7E[EiE] (r/5.)2 (27)

for some constant Kd. This upper bound goes to zero as n -- oo. Hence, we obtain

condition A2.2.4" of (9], which implies S4. I

Often, one must take Tn --+ 0o to get assumption 52. Sometimes, S2 is not satisfied,

but EoLB,] --* 0 as n --+ o, and the algorithm might also converge to the optimum. These
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cases might be treated using the following (weaker) results. An example will be given
in section 3. Theorem 3 is proved in [11], with slightly more general assumptions, while
theorem 4 is an adaptation of the second part of Theorem 4.2.1 in [9], and can be proved

in the same way (note that in the last paragraph of the proof of Theorem 4.2.1 in [91, the

max should be replaced by a min). We give a new list of assumptions.

W1. Y is a deterministic function of (An,an+,), which does not depend on n, say

Y= = f(On, a,,+). Notice that a,,+. might include some of the random values gen-

erated during 'eration n, or functions of them, even if it is useless or redundant

information for the future evolution of the system. {(On,a,), n > O} is a (possibly

nonhomogeneous) Markov process, {s.,n _ O} is tight is a metric space S, and
P(s,+l E • O. = 9, s,, = 8), defined on the Borel subsets of S, does not depend on

n and is weakly continuous in (,s).

W2. For each fixed 0 E 0, i.e. if yf = 0 and On = 0 for all n, {s.,n > 0} is a Markov

process with a unique invariant measure Pe(.). Also, {Pe(.),G E 8} is tight.

W3. 'fn > 0 for all n, lim-,, 7n = 0, Eoffi0 IN = oo and E~ffio 1-Y.+i -IN < 00.

W4. There are constants K1 < oo and x > 0, and a positive valued function : S -- R,

such that SUPn> 0 Eo0(Sn)jI T'] < oo and IYnI -< K!(1 + 4'(Sn+l)).

W5. E[Y. I On = 0, s = s] is continuous in (,8).

W6. Either S is compact, or the {s8,n > 0} are mutually independent, or for each

compact S C S, there is an integer ng < oo such that for each T > 0, the set of

probability measures {P((On+j, an+j) E ", Sn E 9 1 On = 8, Sn = 8), 0 E e, n >

0, j _! ns, tn+j - tn _5 T, . compact subset of S) is tight.

W7. Assume WI to W6 and use the notation defined there. Let v : 0 --, R d be

the continuous (see W5) function defined by v(8) = Ee[f(O,s)], where EO is the

expectation that corresponds to the invariant measure pO defined in W2. There is a

0" E KT(v(.)), an asymptotically stable point of

= *(-v(O)) = *(-E[f,)]), (28)

with domain of attraction DA(O*) = 0.
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Theorem 8. (Kujhner and Shwartz). Under assumptions WI to W6, {zn(.), n > O}

is tight and any weak limit of one of its subsequences eatiefies the projected differential

equation (28) almost everywhere with probability one.

Theorem 4. Under assumption W7, On converges to 09 in probability, i.e. for each e > 0,

r P(IOn- 0* 1 e)= o. (29)
n3oo
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