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Abstract

Discrete-event simulation is one of the most important techniques available for study-

ing complex stochastic systems. In this paper we review the principal methods available

for analyzing both the transient and steady-state simulation problems in sequential and

parallel computing environments. Next we discuss several of the variance reduction meth-

ods designed to make simulations run more efficiently. Finally, a short discussion is given

of the methods available to study system optimization using simulation.
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1. Introduction.

Computer simulation of complex stochastic systems is an important technique for

evaluating system performance. The starting point for this method is to formulate the

time varying behavior of the system as a basic stochastic process Y - {Y(t) : t > 0},

where Y(.) may be vector-valued. [Discrete time processes can also be handled.] Next

a computer program is written to generate sample realizations of Y. Simulation output

is then obtained by running this program. Our discussion in this paper is centered on

the analysis of this simulation output. The goal being to develop sound probabilistic and

statistical methods for estimating system performance.

Two principal problems arise: the transient simulation problem and the steady-state

simulation problem. Let T denote a stopping time and X - h{Y(t) : 0 < t < T}, where h

is a given real-valued function. The transient problem is to estimate a _ E{X}. Examples

of a include the following:

- E{f(Y(to)},

= {I fj f(Y(a))da},

and

a = P{Y does not enter A before to}.

Here to is a fixed time (> 0), f is a given real-valued function, and A is a given subset of

the state-space of Y. The transient problem is relevant for systems running for a limited

(but possibly random) length of time that cannot be expected to reach a steady-state. Our

goal here is to provide both point and interval estimates for a.

For the steady-state problem we assume the Y process is asymptotically stationary

in the sense that

it f(Y(s))ds =* a

as t -# oc. Here =; denotes weak convergence and f is a given real-valued function

defined on the state-space of Y. The easiest example to think about here is an irreducible,

positive recurrent, continuous time Markov chain. In this case Y(t) =* Y as t -. oo and

a = E{f(Y)}. Examples of a in this case include the following:

a= E{Yk} (when Y is real-valued),
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a=P{Y E A},

and

a Elc(Y)},

where c is a given cost function. Again as in the transient case, we wish to construct both

point and interval estimates for a.

2. Transient Problem.

Assume we have a computational budget of t time units with which to simulate the

process Y and estimate a =- E{X}, as defined in Section 1. In a sequential computing

environment we would generate independent, identically distributed (lid) copies

(XI, 71), (X2,7-2), -..-,

where the Xi's are copies of X and ri is the computer time required to generate X,. Let

N(t) denote the number of copies of X generated in time t; this is just the renewal process

associated with the iid r's. A natural point estimator for a is

N(t)

SN(t) > 0.

The standard asymptotic results for XN(t) are the strong law of large numbers (SLLN)

and the central limit theorem (CLT).

STRONG LAW OF LARGE NUMBERS. If E{71} < o and E{ X 1 1} < 0, then

XN(t) -- a a.s. as t --+ oo.

CENTRAL LIMIT THEOREM. If E{rl} < o and var{Xi} < oo, then

t 1 / 2 [XN(t) - a] : (E{Ti} var{X1 })'/ 2 N(O, 1),

where N(O, 1) is a mean zero, variance one normal random variable. The SLLN follows

from the SLLN for iid summands and the SLLN for renewal processes. The CLT result

can be found in BILLINGSLEY (1968), Section 17.
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From the SLLN we see that XN(t) is a strongly consistent point estimator for a. Thus

for large t we would use X-v(t) as our point estimate. On the other hand, the CLT can be

used in the standard manner to construct a confidence interval for a. Here the constant

E{r1 } var{X,} appearing in the CLT would have to be estimated.

Suppose now that we are in a parallel computing environment with p independent

processors. Now we wish to estimate a for a fixed t as p -- oo. On the p processors we

generate iid copies of (X, r):
(X1I,r,,),(XI,',12) ," , (X1N,(),'r1N,(t)
(X21 ,r2l),(X 22, r722 ) ,"', (X2N , (t),r2N,(t))

(Xpl,7pl), (Xp2, -rp2) ,",(XpNV,(),'rp,N,(t)).

A number of estimators have been proposed for estimating a = E{X}. The most natural

estimator to consider first is that obtained by averaging the realizations of X across each

processor and then averaging these sample means. This leads to

ai(pt) N(t)
i=1

where
N1 (t)

-) Ni (t)E'1(t)> 0
"'N () -- j=10 

, N,(t) = 0.

Here the processing ends on all processors at time T. = t. If E{rj} < o and Ef{I X 1} <

then for all t > 0

aj(p,t) -+ E{-N(t) = E{X . 1{,<t}} a.s.

as p --* oo. Here 1A is the indicator function of the set A. Unfortunately, E{X} #
E{X. 1{,<t}} and so aI(p,t) is not strongly consistent for a as p --+ oo.

The next estimator for a was proposed by HEIDELBERGER (1987). For this esti-

mator we let al processors complete the replication in process at time t. The estimator

is
p Ni(t)+lZ~x,,

a2(p,t) = 1 --1

Z[iv(t) + 1]
=1
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Here all processors complete by time

TP = max [rl + ri2 +"" + TtNj(t)+I].
1<l<p

Unfortunately, Tp - + a.s. as p --+ oo. However, a 2 (p,t) is strongly consistent for a.

To see this, note that if E{ X 1} < 0 and P{r > 0} > 0, then as p --+ o

E I E() Xij

Q2 (P,)=1 I = E{x} a.s.E{N,(t)± 11

The equality about is simply Wald's equation. Finally, since a 2 (p, t) is a ratio estimator,

a CLT is also available from which a confidence interval can be constructed.

The last estimator we consider was proposed by HEIDELBERGER and GLYNN

(1987). Here we set

1=1C13(A) = N, (t)'

where

Nj (t) =- "fNi(t) +} Xil1(n, >t}"

Given N(t) 1, Heidelberger and Glynn show that the pairs of random variables (XI, r1 ),

,(XN(t), rN(t)) are exchangeable. Using this fact, they prove that E{XN,(t)} = E{X 1}.

Since the f( 1 ) 's are iid, we see that a 3 (t) is strongly consistent for a = E{X 1 }. Since

the summands in a3(p, t) are iid, the standard CLT holds (under appropriate variance

assumptions) and can be used to develop a confidence interval for a. Note that the

definition of ', ( requires the ith processor to complete the replication in process at

time t, if no observations have been completed by time t; i.e., rij > t. Thus the completion

time for all p processors is given by

TP = max fmax(tT,1 )}.
I<i<p

While Tp -+ oo a.s. as p --4 o (if Pfril > t} > 0), T. goes to infinity at a much slower

rate than is the case for a 2(p, t). They also show that the following CLT holds:

tl/2 [XN(t) - a] =: aE'/2{r } • N(0, 1)
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as t - oc. where we assume 0 < a2 = var{X 1 } < oo and 0 < E{ri} < o. Thus X.,(,)

can also be used in a sequential environment to estimate a.

3. Steady-State Problem.

The steady-state estimation problem is considerably more difficult than the transient

estimation problem. This difficulty stems from the following considerations: (i) need to

estimate long-run system behavior from a finite length simulation run; (ii) an initial bias

(or transient) usually is present since the process being simulated is non-stationary; and

(iii) strong autocorrelations are usually present in the process being simulated. While

classical statistical methods can often be used for the transient estimation problem, these

methods generally fail for the steady-state estimation problem for the reasons mentioned

above.

Assume our simulation output process is Y {Y(t) : t > 0} and for a given real-

valued function f

As stated above, we wish to construct point and interval estimators for a. In addition to

(1), many methods also assume that a positive constant a exists such that the following

CLT holds:

Vi[a(t) - a] a. N(O, 1) (2)

as t --+ oo. From (1) and (2) we can construct a point estimate and confidence interval for

a provided we can estimate a. Estimating a is generally the hardest problem.

A variety of methods have been developed to address the steady-state estimation

problem. In Figure 1 we have given a break-down of these methods. Most of the methods

are single replicate methods, since multiple replicate methods tend to be inefficient because

of the initial bias problem.

Here we only consider single replicate methods. These methods are of two types:

those that consistently estimate a and those in which a is cancelled out.

For consistent estimation of a, we need a process {s(t) : t > 0} such that s(t) = a.
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In which case (2) leads to a 100(1 - 6) % confidence interval for a given by

[a(t) - z(1 - 612)s(t)t'i, a(t) + z(1 - 612)s(t)/t' 2 j,

where D(z(1 - 6/2)) = 1 - b/2 and P is the standard normal distribution function.

On the other hand, the canceling out methods require a non-vanishing process {Z(t):

t > 0} such that

[t/ 2 (a(t) - a), Z(t)] =* [aN(O, 1), aZ]

as t ---+ oc. Then using the continuous mapping theorem (cf., BILLINGSLEY (1968), p.

30) we have

tl/2(a(t) - a)/Z(t) o N(O, 1)/Z (3)

as t - oc. Note from (3) that a has been cancelled out in a manner reminiscent of the

t-statistic.

First we discuss one of the methods in which a is consistently estimated, namely,

the regenerative method; see IGLEHART (1978) for a discussion of this method plus

other background material. Here we assume that the simulation output process Y is a

regenerative process. We are given a real-valued function f and wish to estimate a(f) _

E{f(Y)}, where Y(t) =: Y as t -+ 00. Again it is convenient to think of Y as an

irreducible, positive recurrent, continuous time Markov chain. Let T(0) = 0, '1, T 2 ,... be

the regeneration times for Y and set ri = T - Ti-,i > 1. The ri's are the lengths of

the regenerative cycles. Next define the areas under the Y process in the kth regenerative

cycle by

Yk(f) = f[Y(s)]ds.

The following basic facts provide the foundation for the regenerative method:

(i) the pairs {(Yk(f),rk) : k > 1} are iid;

(ii) if E{I f(Y) 1} < oo, then a(f) = E{Y(f)}/Efr1 }.

The regenerative method can be developed on either the intrinsic time scale (t) or on the

random time scale (n) corresponding to the number of regenerative cycles simulated. On

the intrinsic time scale our point estimate for a is given by

(t,f) a- " f 8 (Y(s))ds,



where t is the length of time the simulation is run. On the random time scale our point is

given by

a.(f) -

where Y, (f) (respectively, f,) is the sample mean of YY(f)..Y(f) (r1..r). Here the

Y process is simulated to the completion of n regenerative cycles. Using the basic facts

(i) and (ii) above, it can be shown that both a(t, f) and at(f) are strongly consistent for

a(f) as t and n respectively tend to infinity. Next we define Zk = Yk(f) - a(f)r7k and

assume that var{Zk} = a 2 < o. Then it can be shown that the following two CLT's hold

as t -- oo and n --- oo:

t 1/ 2 [a(t, f) - a(f)] =- (a/E'/2{rl})N(O, 1),

and

n/ 2 [Cf,(f) f) :f (/E{r, })N(0,1).

These two CLT's can then be used to construct confidence intervals for a(f) provided both
a2 and E{ri } can be estimated. The mean E{r } is easily estimated by f,, and a2 can be

estimated from its definition in terms of YI(f) and ri.

Next we turn to a discussion of the principal method available for canceling out a.

This is the method of standardized time series developed by SCHRUBEN (1983). Our

discussion is based on the paper GLYNN and IGLEHART (1989) and uses some results

from weak convergence theory; see BILLINGSLEY (1968) for background on this theory.

From our output process Y we form the random elements of C[O, 1), the space of real-valued

continuous functions on the interval [0, 11, given by

n -

and

Xn(t) - n/ 2[,(t) - at],

Rhere 0 < t < I and n > 1. Now we make the basic assumption that a finite, positive

constant a exists such that

X =o aB as n -+ oo, (4)
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where B is standard Brownian motion. This assumption holds for a wide class of output

processes. To find the scaling process {Z(t) : t > 0} consider the class M- of functions

g C[O, 11 -* R such that

(i) g(az) = ag(x) for all a > 0 and x E C[0, 1];

(ii) g(B) > 0 with probability one;

(iii) g(z + 3k) = g(z) for all real 0 and x e C[0, 1], where k(t) = t;

(iv) P{B E D(g)} = 0, where D(g) is the set of discontinuities of g.

The process

S-(t) YI(t) - ,kt
9(yn)

is called a standardized time series. Using weak convergence arguments it is easy to show

from (4) that

Sn(1) =* B(1)/g(B)(5

as n --o oc. Unfolding this CLT we have the following 100(1 - 6)% confidence interval for

[Y(1) - z(1 - 6/2)g(Y.), ?n(1) + z(6/2)g(Y')],

where P{B(1)/g(B) < z(a)} = a for 0 < a < 1. Thus each g E M gives rise to a

confidence interval for a provided we can find the distribution of B(1)/g(B). Fortunately,

this can be done for a number of interesting g functions.

One of the g functions leads to the batch means method, perhaps the most popular

method for steady-state simulation. We conclude our discussion of the method of stan-

dardized time series by displaying this special g function. To this end we first define the

Brownian bridge mapping r: C[O, 1] -* c[, 1] as

(rx)(t)= x(t) - tx(1), z E C[O, 1], 0 <t < 1

Now think of partitioning our original output process Y into m > 2 intervals of equal

length and define the mapping b,. C[O, 1] -R I by

= [) (z(/m) - ((i - )/m)
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for x E C[O, 1]. Finally, the g function of interest is g, = bmor. To see that g9 corresponds

to the batch means method we observe that

in (s~n)- ~2] 1/2
- /2Z(n - Zj (n)

where
in/m

z,(n) =Y()dx/(n/m)

is the ith batch mean of the process {Y(t) 0 < t 5 n}. Specializing (5) to the function

gm we see that

Ifn

'i Z,(r) - ,._/gm(Yn) ,

as n - o, where tm-1 is a Student's-t random variable with m - 1 degrees of freedom.

This follows from the fact that B(1)/gn(B) is distributed as tm-1 since B has independent

normal increments. For other examples of functions g E M for which the distribution of

B(1)/g(B) is known see GLYNN and IGLEHART (1989).

4. Variance Reduction Techniques.

Once a basic method is developed to produce point estimates and confidence inter-

'als for a parameter of interest, we turn our attention to making these methods more

efficient. Over the years a dozen or more techniques have been proposed to improve sim-

ulation efficiency. Good references for many of these techniques are BRATLEY, FOX,

and SCHRAGE (1987), WILSON (1984). Here we have elected to outline three of these

techniques.

As we have seen in Sections 2 and 3, confidence intervals for parameters being es-

timated are generally constructed from an associated CLT. Each CLT has an intrinsic

variance constant, say, or2. The idea for many variance reduction techniques (VRT's) is to

modify the original estimate in such a way as to yield a new CLT with a variance constant

2 < a'. This will, of course, lead to confidence intervals of shorter length, or alterna-

tively, confidence intervals of the same length from a shorter simulation run. Frequently

11



VRT's are based on some analytic knowledge or structural properties of the process being

simulated.

The first VRT we discuss is known as importance sampling. This idea was first

developed in conjunction with the estimation of E{h(X)} a, where h is a known real-

valued function and X a random variable with density, say, f. Instead of sampling X from

f, we sample X from a density g which has been selected to be large in the regions that

are "most important", namely, where If I is largest. Then we estimate a by the sample

mean of h(X)f(X)/g(X); see HAMMERSLEY and HANDSCOMB (1964).

This same basic idea can be carried forward to the estimation of parameters associated

with stochastic processes. We generate the process with a new probabilistic structure and

estimate a modified parameter to produce an estimate of the original quantity of interest.

The example we consider here is the M/M/1 queue with arrival rate \, service rate p,

and traffic intensity p = /p < 1. Let V denote the stationary virtual waiting time and

consider estimating the quantity a =- P{V > u} for large u. When p is less than one, the

virtual waiting time process has a negative drift and an impenetrable barrier at zero. Thus

the chance of the process getting above a large u is small, and a long simulation would be

required to accurately estimate a. The idea used here in importance sampling is to generate

a so-called conjugate process obtained by reversing the roles of A and u. For the conjugate

process the traffic intensity is greater than one, and the estimation problem becomes much

easier. ASMUSSEN (1985) reports efficiency increases on the order of a factor of 3 to a

factor of 400 over straight regenerative simulation depending on the values of p and u. In

general, importance sampling can yield very significant variance reductions. Further work

along these lines can be found in SIEGMUND (1976), GLYNN and IGLEHART (1989),

SHAHABUDDIN ,. al. (1988), and WALRAND (1987).

The second "tT we discuss is known as indirect estimation. Assume we are interested

in estimating a E{.t 1, but happen to know that E{Y} = aE{X} + b where a and b are

known. Sometimes it happens that a CLT associated with the estimation of E{Y} will have

a smaller variance constant associated with it than does the CLT for estimating E{X}. In

this case we would prefer to estimate E{Y} and we use the affine transformation above to

yield an estimate for E{X}. This idea has proved to be useful in queuing simulations where

12



the affine transformation is a result of Little's Law. In general, variance reductions realized

using this method are not dramatic, being usually less than a factor of 2. For further

results along these lines, see LAW (1975) and GLYNN and WHITT (1986). While the

affine transformation works in queuing theory, it is conceivable that other transformations

might arise in different contexts.

The third and final VRT we discuss here is known as discrete time conversion. Suppose

that X = {X(t) : t > 0} is an irreducible, positive recurrent, continuous time Markov

chain (CTMC). Then X(t) =* X as t --+ oo and we may be interested in estimating

a = E{f(X)}, where f is a given real-valued function. As we have discussed above, the

regenerative method can be used to estimate a. A CTMC has two sources of randomness:

the embedded discrete time jump chain and the exponential holding times in the successive

states visited. The discrete time conversion method eliminates the randomness due to the

holding times by replacing them by their expected values. It has been shown that this

leads to a variance reduction when estimating a. Also, as an added side benefit computer

time is saved since the exponential holding times no longer need to be generated. Gains in

efficiency for this method can be substantial. Further discussion of this idea can be found

in HORDIJK, IGLEHART, and SCHASSBERGER (1976), and FOX and GLYNN (1986).

5. System Optimization Using Simulation.

Consider a family of stochastic systems indexed by a parameter 0 (perhaps vector-

valued). Suppose a(6) is our performance criterion for system 8. Our concern here is to find

that system, say Oo, which optimizes the value of a. For a complex system it is frequently

impossible to evaluate a analytically. Simulation may be the most attractive alternative.

We could naively simulate the systems at a sequence of parameter settings 61, 82,..., 8

and select setting that optimizes a(8i). In general this would not be very efficient, since

k would have to be quite large. A better way would be to estimate the gradient of a and

use this estimate to establish a search direction. Then stochastic approximation and ideas

from non-linear programming could be used to optimize a.

Two general methods have been proposed to estimate gradients: the likelihood ratio

method and the infinitesimal perturbation method. We will discuss both methods briefly.
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Suppose X = {X,, : n > 0} is a discrete time Markov chain (DTMC) and that the cost of

running system 9 for n + 1 steps is g(9, X0, Xn). The expected cost of running system

9 is then given by
c()= Ee{g(8, Xo,...-, x)}, (6)

where Eq is expectation relative to the probability measure P(9) associated with system 9.

If Ea f -I were independent of 8, we would simply simulate iid replicates of

Vg(9, XO,... , X,). By introducing the likelihood function L(9, Xo,... , X,,) it is possi-

ble to write a(8) as

a = Eo{g(8, Xo,.. .,Xn)L(O,Xo,...,Xn)}

for a fixed value of 80. Then we can write

Va(9) = Ee 0{Vg(8, Xo,. ,X)L(8, Xo,..X),

where the interchange of V and Ee0 must be justified. A similar approach can be developed

to estimate the gradient of a performance criterion for a steady-state simulation. For an

overview of this approach see GLYNN (1987), and REIMAN and WEISS (1986).

The second method which has been proposed for estimating gradients is called the

infinitesimal perturbation analysis (IPA) method. In this method a derivative, with respect

to an input parameter, of a simulation sample path is computed. For example, we might

be interested in estimating the mean stationary waiting time for a queueing system as well

as its derivative with respect to the mean service time. Since we are taking a derivative

of the sample path inside an expectation operator, the interchange of expectation and

differentiation must be justified in order to produce an estimate for the gradient Va(8),

say. The IPA method assumes that if the change in the input parameter, 0, is small

enough, then the times at which events occur get shifted slightly, but their order does

not change. It has been shown that the IPA method yields strongly consistent estimates

for the performance gradient in a variety of queueing contexts; see HEIDELBERGER,

CAO, ZAZANIS, and SURI (1988) for details on the IPA method and a listing of queueing

problems for which the technique works.
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