e oADNI i)
SECUPITY CLASSIFICATION OF THIS PAGL ¢Whner Lhta Entered

-t-f’f',} 1*.

REAZ DNSTRUCTIONS

REPORT DOCUMENTATION PAGE o pemiemoNs
1. REFPORT MUMBLR te GOVY ACCESSION NC . 3. RICIPIENT'S CATA O Nump: K
4. T1TLE (00 Subrtitie) . TYPEL OF REPORY B PER]OD COVERED

Ada Compiler Validation Summary Report:TeleSoft, J09 Apr. 1989 to 09 Apr. 1990

TeleGenZ Aae Development Syvstem, Versior 1.4, Sun Micro- ~ - -
svstems Sun-3/280 Workstation (Host and Target), 6. PERFORMING ‘DRG. REPORT WUMELR

gagsopt 100: -

7. AUTHOR(3) 8. CONTRALT OK GRANT NUMEE R(s)

Wright-Patterson ATE
Dayton, OH, US54

B. PERFORMING ORGANIZATIOM AND ADDRLSS 10. PROGRAM ELEMENT, PRCIECY, TASK
AREA B WORK UNIT NUMBIRS

Wright-Patterson AFB
Dayton, OH, USA

11. CONTROLLING OFFICE MAMI AND ADDRESS 12. RLPORY DATE

Ada Jeoint Program Office

Umtgd states Department of Defense | R 1011 L 1Y
Washington, DC 20301-3081

14, MON]TORING AGENIY NAML B ADDRESS(/f aifferent from Controliing Ofice) 15, SECURITY CLASS (of thisreport)
- UNCLASSIFIED
Wright-Patterson AFB 158, QECEASS} ICATION DONGRADING
Dayton, OH, USA REDULE N/A

16. C.STRIBUTION STATEMENT (of this Report)

Approved fcr public release; distribution unlimited.

17. DISTRIBUTION STATEMINT (ofthe abstractentered inBiock 20 if gdifferent from Report)

UNCLASSIFIED DTI!

ELLECTE ¥

18. SUPP_EMENTARY NOTES

18. KEYWORDS (Continue onreverse side if necessary and identify by block number)

Ada Programming language, ARda Compiler Validation Summary Report, Aca
Compiler Valicection Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ade Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRALT (Continue on reverse side if necessary and dentify by biock number)

TeleSoft, TeleGen2 Ada Development System, Version 1.4, Wright-Patterson AFB, Sun Micro-
systems Sun-3/280 Workstation under Sun UNIX, Version 4.2, Release 3.5 (Host and Target)

ACVC 1.10.

DD PUR® 1473 EDITION OF 1 NOv 65 1S OBSOLETE
1 AN 73 S/N 0102-LF-014-8601 UNCLASSIFIED

SECURITY CLASSITICATION OF THIS PAGE (whenDate Entered)

AVF Control Number: AVF-VSR-2u44.0589
89~01-25-TEL

Ada . COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: B9OUO9W1.10043
TeleSoft
TeleGen2 Ada Development System, Version 1.4
Sun Microsystems Sun-3/280 Workstation

Completion of On-Site Testing:
9 April 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

‘Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

Accesion For !

NTIS CRA&I B
O
0

DTIC TAB
Unannounced
Justification
BY -
Distiibution |

.oy

Availability Codes

| Avarl and/or
Oist ' special

Al

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Development System, Version 1.4

Certificate Number: 890L409W1.10043

Host: Sun Microsystems Sun-3/280 Workstation under
Sun UNIX, Version 4.2, Release 3.5

Target: Sun Microsystems Sun-3/280 Workstation under
Sun UNIX, Version 4.2, Release 3.5

Testing Completed 9 April 1989 Using ACVC 1.10

This report has been reviewed and is approved.

M)
L,
Ada Validation Facility '
Steve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH U45433-6503

Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

DA

Ada Joint Program Office
Dr. John Solomond
Director

Department of Defense
Washington DC 20301

Ada Compiler Validatior Summary Report:

Compiler Name: TeleGen2 Ada Development System, Version 1.4
Certificate Number: 890409W1.10043
Host: Sun Microsystems Sun-3/280 Workstation under
Sun UNIX, Version 4.2, Release 3.5
Target: Sun Microsystems Sun-3/280 Workstation under
Sun UNIX, Version 4.2, Release 3.5

Testing Completed 9 April 1989 Using ACVC 1.10

This report has been reviewed and is approved.

had

Ada Validation Facility

Steve P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45433-6503

Ada Validation Organization
Dr. <John F. Kramer

Institute for Defense Analfses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director

Department of Defense
Washington DC 20301

~CHAPTER

CHAPTER 1

- ed e
e o & o
M E=EWwWnN -

n

CHAPTER

NNV EWRN o

APPENDIX B

APPENDIX C

APPENDIX D

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT

USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES.: « . « ¢ ¢ ¢ o ¢ o o + o &
DEFINITION OF TERMS . « ¢« ¢« ¢« & « «
ACVC TEST CLASSES ¢ ¢ v ¢ ¢ ¢ ¢ ¢ o &

CONFIGURATION INFORMATION

CONFIGURATION TESTED. « . ¢« ¢ ¢ « o &
IMPLEMENTATION CHARACTERISTICS. . . .

TEST INFORMATION

TEST RESULTSe « ¢ ¢ o « o o o« s o o &
SUMMARY OF TEST RESULTS BY CLASS. . .
SUMMARY OF TEST RESULTS BY CHAPTER. .
WITHDRAWN TESTS © ¢ ¢ o o o o o ¢ o &
INAPPLICABLE TESTS. « o ¢ ¢« ¢ ¢ ¢ o &

TEST, PROCESSING, AND EVALUATION MODIFICATIONS.

ADDITIONAL TESTING INFORMATION. . . .
Prevalidation . « « « ¢ o o ¢ ¢ &
Test Method « « + ¢« ¢ ¢« ¢ ¢ o o o &
TesSt Site o o o o o ¢ ¢ o o o o o »

DECLARATION OF CONFORMANCE

APPENDIX F OF THE Ada STANDARD

TEST PARAMETERS

WITHDRAWN TESTS

.

— 2 2 s .2
[}
SwWwion

2=1

LI N I | [L
O3RN NNMN = 2

wwwwwt‘)wwww

CHAPTER

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implementec that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal 1language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language’constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 9 April 1989 at San Diego CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this 1s provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

QUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

INTRODUCTION

Questions regarding this report or the validat:ion tes! resulls snou.c be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO B652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1986.

4, Ada Compiler Validation Capabilitv User's Suide, December 1086.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard
Applicant

AVF

AVO

Compiler

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standarc. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO B652-1987.

The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines,.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AV0 provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler is any 1language processor, including

1-3

INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a

test compiler is not required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Target The computer for which a compiler generates code.
Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files. :
Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation 1listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Clase C tests check the run time system tc ensure that legal Adz programs
can be correctly compiled and executed. Each Class C test is self=-checking
and produces a PASSED, FAILEL, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity reguirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each (Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elazborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which exec'table tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1=5

INTRODUCTION

tests. However, some tests contain values that require tne Lest to be
customized according to implementation-specific values--for exanple, an

illegal file name. A list o0of the values used for %h.s vallization .S
provided in Appendix C.

A compiler must correctly process each of the tests _r the suite anc
demonstrate conformity to the Ada Standarc Dby elther meel.ng Lhe pass
criteria given for the test or bv showing that the test s ‘napplicatle tc
the implementation. The applicability of a test to an irplementation is
considered each time the implementation 1is validated. A test that is
inapplicable for one validation is not necessarily inaprlicable for &
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, 1is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the

following configuration:

Compiler: TeleGen2 Ada Development System, Version 1.4

ACVC Version: 1.10
Certificate Number:
Host Computer:

Machine:

Operating System: Sun UNIX

Memory Size:

Target Computer:

Machine:

Operating System: Sun UNIX

Memory Size:

890409W1. 10043

Sun Microsystems Sun-3/280 Workstation

Version 4.2, Release 3.5

24 megabytes

Sun Microsystems Sun-3/280 Workstation

Version 4.2, Release 3.5

24 megabytes

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Siandard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other <classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nestec to 17
levels. (See tests DOHUOOSE..G (3 tests).'

b. Predefined types.

(1) This implementation supports the additional predefined types
LONG_INTEGER and LONG_FLOAT in package STANDARD. (See tests
B86001T..Z (7 tests).)

¢. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) Some of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assi. ...ents for subtypes are performed with the same precision
as t. base type. (See test C35712B.)

{(3) TLis imv)ementation uses no extra bits for extra precision and
uses n. extra bits for extra range. (See test C35903A.)

CONFIGURATION INFORMATION

(4) Sometimes NUMERIC_ERROR is raised wnen an integer literal
operand in a comparison or membership test 1s oulside the
range of the base type. (See test CU52324.)

(5) NUMERIC_ERROR is raised when a literal operand 1in &
fixed-point comparison or membership test is outside the range
of the base type. (See test CUS292A.)

(6) Underflow is gradual. (See tests CUS524p..C.)

Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests CU6012A..Z.)

(2) The method used for rounding to longest integer is round to
even. (See tests CUb6012A..2.)

{(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test CHADILA.]

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT _ERROR for an array having a 'LENGTE that exceeds
STANDARD. INTEGER' LAST and/or SYSTEM.MAX_INT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX_INT components raises NUMERIC_ERROR for a
two-dimensional array subtype when the big dimension is the
second one. (See test C36003A.)

(2) CONSTRAINT ERROR is raised when 'LENGTH is applied to & null
array type with INTEGER'LAST + 2 components. (See test
C362024.)

(3) NUMERIC_ERROR is raised when a null array type with
SYSTEM.MAX_INT + 2 components is declared. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no exception. (See test C52103X.)

(5)

(6)

(n

(8)

CONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT ERROR when the

length of a dimension is calculated and exceeds INTEGER'LAST.
(See test C5210U4Y.)

A null array with one dimension of 1length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assigmments. This implementation
raises no exception. (See test E52103Y.)

In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression is
not evaluated in 1its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test CS52013A.)

f. Discriminated types.

(M

In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1)

(2)

(3)

In the evaluation of a multi-dimensional aggregate, index
subtype checks are made as choices are evaluated. (See tests
CU3207A and C43207B.)

In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

CONSTRAINT_ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

@)

The pragma INLINE is supported for procedures and non-library
functions. (See tests LA3004A..B, EA3004C..D, and
CA300“E. . F.)

2-U

CONFIGURATION INFORMATION

i. Generics

(1

(2)

Generic unit declarations, bodies, and subunits can be
compiled in separate compilations. (See tests CA1012A and
CA3Z114.)

If a generic unit body or one of its subunits is compiled or
recompiled after the generic unit is inc-antiated, the unit
instantiating the generic is made obsolete. The obsolescence
is recognized at binding time, and the binding is stopped.
(See tests CA2009C, CA2009F, BC3204C, and BC3205D.)

J. Input and output

(1)

(2)

(3

()

(5)

(6)

(7

(8)

(9)

(10)

(11)

The package SEQUENTIAL_IO cannot be instantiated with
unconstrained array types or record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT_IO cannot be instantiated with
unconstrained array types or record tvpes with discriminants
without defaults. (See tests AE2101H, EE2401D, and EE2401G.)

Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE21021..J, CE2102R, CE2102T,
and CE2102V.)

Modes IN_FILE and OUT_FILE are supported for text files. (See
tests CE3102E and CE3102I..K.)

RESET and DELETE operations are supported for SEQUENTIAL_ IO.
(See tests CE2102G and CE2102X.)

RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102K and CE2102Y.)

RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

Temporary sequential files are given names and not deleted
when closed. (See test CE21084.)

Temporary direct files are given names and not deleted when
closed. (See test CE2108C.)

2-5

(12)

(13)

(14)

(15)

CONFIGURATION INFORMATION

Temporary text flles are given names and not deleted when
closed. (See test CE3112A.)

More than one internal file can be associated with each
external file for sequential files when reading only. (See
tests CE2107A..E, CE2102L, CE2110B, and CE2111D.)

More than one 1internal file can be associated with each
external file for direct files when reading only. (See tests
CE2107F..H (3 tests), CE2110D, and CE2111H.)

More than one internal file can be associated with each

external file for text files when reading only. (See tests
CE3111A..E, CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, U3 tests had been withdrawn because of test errors. The AVF
determined that 316 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for nine tests were required to successfully demonstrate the test
objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 127 1129 2017 17 23 45 3358

Inapplicable 2 9 299 0 5 1 316

Withdrawn 1 2 34 0 6 0 43

TOTAL 130 1140 2350 17 34 u6 3717

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTEF TOTAL
2 3 4 5 £ 7 g 9 10 31 12 13 14

Passed 198 573 sS44 245 172 99 160 233 132 36 250 238 278 3358
Inappl 14 76 136 3 0 0 6 0 5 0 2 3 43 316
wdrn 1 1 0 0 0 0 0 1 0 0 1 35 4y u3

TOTAL 213 650 680 2u8 172 99 166 334 137 36 253 M4Ou4 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of this
validation:

E28005C A39005G BA7102E BC3009E CD2A62D CD2A{3A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2AT73A CD2AT3B CD2AT3C CD2A73D CD2AT76A
CD2AT76B CD2AT6C CD2A76D CD2A81G CD2AB3G CD2A8UM
CD2ABAN CD2B15C CD2D11B CD5007B CD50110 ED7004B
ED7005C ED7005D ED7006C ED7006D CDT105A CD7203B
CDT204B CDT205C CDT7205D CE21071I CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others msy depend on
the result of another test that is either inapplicable or withdrawn. The
applicability of a test to an implementation 1is considered each time a
validation is attempted. A test that is inapplicable for one validation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 316 tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX_DIGITS:

c24113L. .Y C35705L. .Y C35706L. .Y C35707L..Y
C35708L..Y c35802L..2 cus2u41L. .Y cus321L. .Y
c4su21L..Y CUs5521L..2 Clu5524L. .2 Cclus5621L..2
C4sbuiL. .Y C46012L..2

3-2

TEST INFORMATION

C355081, C35508J, C35508M, and C35508N are not applicable because this
implementation does not support enumeration representation clauses for
BOOLEAN types.

C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT_FLOAT.

The following 16 tests are not applicable because this implementation
does not support a predefined type SHORT_INTEGER:

C45231B . CU5304B Cu45502B C45503B C4s5504B
CU4SS504E Cli5611B C45613B Ci45614B ClU5631B
C45632B B52004E C55B07B B55BO9D B86001V
CD7101E

Cu5231D, BB6001X, and CD7101G are not applicable because this
implementation does not support any predefined integer type with a name
other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

CUsS53MM..P (4 tests) and CH5532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX_MANTISSA is less than U7.

C86001F is not applicable because, for this implementation, the package
TEXT_IO is dependent upon package SYSTEM. These tests recompile
package SYSTEM, making package TEXT 10, and hence package REPORT,
obsolete.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

CA2009C, CA2009F, BC3204C, and BC3205D are not applicable because this
implementation does not support separate compilation of generic
specifications, bodies, and subunits, if an instantiation is given
before compilation of its bodies or subunits. The created dependency
is detected at bind time.

LA3004B, EA3004D, and CA3004F are not applicable because this
implementation does not support pragma INLINE for library functions.

CD1009C, CD2A41A..B (2 tests), CD2AY1E, and CD2AU2A..J (10 tests) are
not applicable because this implementation does not support size
clauses for floating point types using less than 32 bits.

CD2A611 and CD2A61J are not applicable because this implementation does
not support size clauses for array types, which imply compression, with
component types of composite or floating point types.

CD2A84B..I (8 tests) and CD2ABUK..L (2 tests) are not applicable

3-3

aa.

ab.

ac.

ad.

TEST INFORMATION

because this implementation does not support size clauses for access
types using less than 32 bits.

CD2C11A and CD2C11B are not applicable because this implementation does
not support a task storage size representation clause with only 1024
storage units.

ChUol1a is not applicable because this implementation does not support
record representation clauses with 32-bit alignment.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEQUENTIAL_IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT_IO
with unconstrained array types and record types with discriminants
without defaults. These instantiations are rejected by this compiler.

CE2102D is 1inapplicable because this implementation supports CREATE
with IN_FILE mode for SEQUENTIAL_IO.

CE2102E is inapplicable because this implementation supports CREATE
with OUT_FILE mode for SEQUENTIAL_IO.

CE2102F is 1inapplicable because this impiementation supports CREATE
with INOUT_FILE mode for DIRECT_IO. ’

CE21021 is inapplicable because this implementation supports CREATE
w.th IN_FILE mode for DIRECT_IO.

CE2102J is 1inapplicable because this implementation supports CREATE
with OUT_FILE mode for DIRECT_IO.

'CE2102N is inapplicable because this implementation supports OPEN with

IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET with
IN_FILE mode for SEQUENTIAL_IO.

CE2102P is inapplicable because this implementation supports OPEN with
OUT_FILE mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESET with
OUT_FILE mode for SEQUENTIAL_IO.

CE2102R is inapplicable because this implementation supports OPEN with
INOUT_FILE mode for DIRECT_IO.

CE2102S is inapplicable because this implementation supports RESET with
INOUT_FILE mode for TI'IRECT_IO.

CE2102T is inapplicable because this implementation supports OPEN with

3-4

ae.

ar.

ag.

ai.

aj.

ak.

al.

an.

ao.

ap.

TEST INFORMATION

IN_FILE mode for DIRECT_IO.

CE2102U is inapplicable because this implementat.on supports RESET with
IN_FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports open with
OUT_FILE mode for DIRECT_IOC.

CE21024 is inapplicable because this implementat-on supports RESET with
OUT_FILE mode for DIRECT_IO.

CE2107B..E (U tests), CE2107L, CE2110B, and CE2111D are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for sequential files.
The proper exception is raised when multiple access is attempted.

CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable because
multiple internal files cannot be associated with the same external
file when one or more files is writing for direct files. The proper
exception is raised when multiple access is attempted.

CE3102E 4is 4inapplicable because this implementation supports CREATE
with IN_FILE mode for text files.

CE3102F 1is inapplicable because this implementation supports RESET for
text files.

CE3102G is 4inapplicable because this implementation supports deletion
of an external file for text files.

CE31021 is 1inapplicable because this implementation supports CREATE
with OUT_FILE mode for text files.

CE3102J is inapplicable because this implementation supports OPEN with
IN _FILE mode for text files.

CE3102ZX is inapplicable because this implementation supports OPEN with
OUT_FILE mode for text files.

CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for text files. The
proper exception is raised when multiple access is attempted.

3-5

TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It 1is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

Modifications were required for nine tests.

The following tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

BA3006A BA3006B BA3007B BA30084A BA3008B BA3013A

C34005G, C34005J, and C34006D required evaluation modifications because the
tests include some comparisons that use the 'SIZE attribute under assumptions
that are not fully supported by the Ada Standard and are subject to ARG review.
Thus, the AVO0 ruled that an implementation is considered to have passed these
tests if the only REPORT.FAILED output is because of various 'SIZE checks. This
implementation produced the messages "INCORRECT TYPE'SIZE", "INCORRECT
OBJECT'SIZE", and "INCORRECT 'BASE'SIZE" for C34005G and C34005J, and the
message "INCORRECT TYPE'SIZE" for C34006D.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
TeleGen2 Ada Development System was submitted to the AVF by the applicant for
review, Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the expected behavior on
all inapplicable tests.

3-6

TEST INFORMATION

3.7.2 Test Method

Testing of the TeleGen2 Ada Development Svstem using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The configuration in which
the testing was performed is described by the following cesignations of hardware
and software components:

Host computer: Sun Microsystems Sun-3/280 Workstation

Host operating system: Sun UNIX, Version 4.2, Release 3.5

Target computer: Sun Microsystems Sun-3/280 Workstation
Target operating system: Sun UNIX, Version 4.2, Release 3.5

Compiler: TeleGen2 Ada Development System, Version 1.4

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of implementation-specific
values were customized before being written to the magnetic tape. Tests
requiring modifications during the prevalidation testing were included in thelr
modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host computer.

fter the test flles were loaded to disk, the full set of tests was compiled,
linked, and all executable tests were run on the Sun Microsystems Siun-3/280
Workstation. Results were printed from the host computer.

The compiler was tested using command scripts provided by TeleSoft and reviewed
by the validation teanm. The compiler was tested using all default option
settings except for the following:

OPTION EFFECT

ada Invoke Ada compiler.

-L Generate interspersed error listing.

- Produce executable code for main unit.

ald Invoke the linker.

-P Indicates that one or more of the subprograms being
optimized may be called from parallel tasks.

-R Indicates that one or more of the subprograms interior

to the unit/collection being optimized could be called
recursively by an exterior subprogram.

-I Enables inline expansion of those subprograms marked
with an inline pragma or generated by the compiler.
-A Enables automatic inline expansion of any subprogram

called from only one place, as well as those marked by
an inline pragma or generated by the compiler.
-0 D Optimizer switch which is equivalent to "-P -R -1 -A".

Tests were compiled, 1linked, and executed (as appropriate) using z single
computer. Test output, compilation 1listings, and job logs were captured on
magnetic tape and archived at the AVF., The listings examined on-site by the
validation team were also archived.

3-7

TEST INFORMATION

3.7.3 Test Site

Testing was conducted at San Diego CA and was completed on 9 April 1986,

APPENDIX A

DECLARATION OF CONFORMANCE

TeleSoft has submitted the following Declaration of
Conformance concerning the TeleGen2 Ada Development System.

b

DECLARATION OF CONFORMANCE

Compiler Implementer: TELESOFT
Ada Validation Facility: ASD 'SCEL. Wrighi-Patterson AFB OH 45433-6503
Ada Compiier Valiaation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: TeleGen2 Ada Development System
Version: 1.4

Host Architecture ISA: Sun Microsystems Sun-3/280 Workstation
OS & VER #: Sun UNIX Version 4.2, Release 3.5
Target Architecture ISA: Same as Host

OS & VER #: Same as Host

Implementer’s Declaration

1. the undersigned. representing TELESOFT. have implemented no deliberate extensions
to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration, | deciare that TELESOFT is the-owner of record of the Ada language
compilers listed above and. as such, is responsible for maintaining said compiler(s) in
comformance to ANSI‘MIL-STD-1815A. All certificates and registrations for Ada
language compiler(s) listed ir this declaration shall be made only in the owner’s corporate
name.

@4@@ @ LLddal J_ Date: /(/ (5@%/ oz 27

TELESOFT 6/

*7~ Raymond A. Parra. Director. Contracts/Legal

Owner’s Declaration

1, the undersigned. representing TELESOFT take full responsibility for implementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure of
the final Validation Summary Report. 1 declare that all of the Ada language compilers
listed. and their host/iarget performance are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

é@w@% %ﬂ/ Date: /0 /Vui)u/ /969

TELESOFT
v~ Raymond A. Parra, Digecsor, Contracts/Legal

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the TeleGen2 Ada Development System, Version 1.4, as
described in this Appendix, are provided by TeleSoft. Unless specifically
noted otherwise, references in this Appendix are to compiler documentation
and not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG_INTEGER is range -2147483648 .. 21474836U7;

type FLOAT is digits 6 range -1.70141E+38 .. 1.701%1E+38;
type LONG_FLOAT is

digits 15 range -8.98846567431158E+307 .. 8.98846567431158E+307;
type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.0;

end STANDARD;

APPENDIX F
1. Implementation Dependent Pragmas

pragma COMMENT (<string_literal -):

It may onily appear within a compilation unit.

The pragma comment has the effect of embedding the given
sequence of characters in the object code of the compilation unit.

pragma LINKNAME(<subprogram name>, <string literal:-):

it may appear in any declaration section of a unit.

This pragma must also appear directly after an interface pragma
for the same <subprogram name>. The pragma linkname has the
effect of making string_literal apparent to the linker.

pragma INTERRUPT(Function_Mapping);

It may only appear immediately before a simpie accept statement,
a while loop directly enclosing only a single accept statement,

or a select statement that includes an interrupt accept alternative.
The pragma interrupt has the effect that entry calls to the
associated entry, on behalf of an interrupt, are made with a
reduced call overhead.

pragma IMAGES(<enumeration_type>,Deferred) or
pragma IMAGES(<enumeration_type>.lmmediate);

It may only appear within a compilation unit.

The pragma images controls the creation and allocation of
the image table for a specified enumeration type. The
default is Deferred, which saves space in the literal pool

by not creating an image table for an enumeration type
unless the 'Image, 'Value. or "Width attribute for the type
is used. If one of these attributes is used. an image table

is generaied in the literal pool of the compilation unit in
which the attribute appears. If the attributes are used in
more than one compilation unit. more than one image table is
generated. eliminating the benefits of deferring the table.

pragma SUPPRESS ALL;

It may appear anvwhere that a Suppress pragma may appear as
defined by the Language Reference Manual. The pragma
Suppress_All has the effect of turning off all checks

defined in section 11.7 of the Language Reference Manual.

The scope of applicablility of this pragma is the same as

that of the pre-defined pragma Suppress.

B-2

2. Implementatior. Dependent Attributes

*Offset Attribute

"Offset along with the attribute "Address. facilitates machine code
insertions. For a prefix P that denotes a declared parameter
objeci. P’Offset vields the statically known portion of the

address of the first of the storage units allocated to P. The

value is the object’s offset relative to a base register and is

of type Long_Integer.

INTEGER ATTRIBUTES
’Extended_Image Attribute

Usage: X’Extended Image({ltem.Width.Base.Based.Space IF_Positive)

Returns the image associated with Item as per the Text lo definition.
The Text_lo definition states that the value of ltem is an integer
literal with no underlines. no exponent. no leading zeros

(but a single zero for the zero value) and a minus sign if negative.

If the resulting sequence of characters to be output has fewer than
Width characters then leading spaces are first output to make up

the difference. (LRM 14.3.7:10,14.3.7:11)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more than one parameter. The parameter -
Item must be an integer value. The resuiting string is

without underlines. leading zeros. or trailing spaces.

B-3

Parameter Descriptions:

Item -- The user specifies the item that he wants the
image of and passes it into the function. This
parameter is required.

Width -- The user may specify the minimum number of
characters to be in the string that is returned.

If no width is specified then the default (0) is
assumed.

Base - The user may specify the base that the image is
to be displ.:ed in. If no base is specified then
the default (10) is assumed.

Based - The user may specify whether he wants the string
returned to be in base notation or not. If no
preference is specified then the default (false)
is assumed.

Space If Positive — The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then
the default (false) is assumed.

Examples:
Suppose the following subtype was declared:
Subtype X is Integer Range -10..16;

Then the following would be true:

X’Extended Image(5) = "§"
X’Extended_Image(5.0) = "5"
X’Extended Image(5,2) =" 5"
X’Extended Image(5.0.2) = "101"
X’Extended_lmage(5.4,2) ="101"
X’Extended _Image(5,0.2.True) = "2£101#"
X’Extended Image(5,0,10,False) = "§"

X’Extended:lmage(S.O,lO,False,True) =" 3"
X’Extended Image(-1,0,10,False,False) = "-1"
X’Extended Image(-1,0,10,False.True) = "-1"
X’Extended Image(-1,1,10,False, True) = "-1"
X’Extended_Image(-1,0,2,True,True) = "-2#1#"
X’Extended Image(-1,10,2,True,True) =" -241#"

'Extended Value Attribute

Usage: X'Extended Value(ltem)

Returns the value associated with Item as per the Text_lo definition.
The Text_lo definition states that given a string, it reads an

integer value from the beginning of the string. The value returned
corresponds to the sequence input. (LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype; this attribute

is a function with a single parameter. The actual parameter ltem
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT _ERROR is raised.

Parameter Descriptions:
Item -- The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type X.
Examples:
Suppose the following subtype was declared:
Subtype X is Integer Range -10..16;
Then the following would be true:
X’Extended _Value("5") =5
X’Extended Value(" 53") =5
X’Extended Value("2=101%#") =

X’Extended:\’alue("- 1"
X’Extended Value(" -1")

ho
]]
bt bk

‘Extended Width Attribute
Usage: X'Extended Width(Base.Based.Space If Positive!
Returns the width for subtvpe of X.

For a prefix X that is a discrete subtype; this attribute

is a function that may have multiple parameters. This attribute
yields the maximum image length over all values of the type

or subtype X.

Parameter Descriptions:

Base -- The user specifies the base for which the width
will be calculated. If no base is specified
then the default (10) is assumed.
Based -~ The user specifies whether the subtype is stated
in based notation. If no value for based is
specified then the default (false) is assumed.
Space _If Positive -- The user may specify whether or not the sign bit
- of a positive integer is included in the string
returned. If no preference is specified then the
default (false) is assumed.

Examples:
Suppose the following subtype was declared:
Subtype X is Integer Range -10..16;

Then the following would be true:

X'Extended Width =3 .. "-10"
X'Extended Width(10) =3 --"-10"
X’Extended Width(2) =5 -- "10000"
X°Extended Width(10,True) =7 - "-10£10%"
X’Extended_Width(2.True) = 8 -- "2#10000£"
X’Extended_Width(10,False.True) =3 - " 16"
X’Extended Width(10,True, False) =7 - "-10#10#4"

X’Ext.ended:Width(lO,True,True) =7 - " 10#16#"
X’Extended Width(2.True,True) 9 -- " 2#100004"
X'Extended Width(2.False,True) =6 -- " 10000"

B-6

ENUMERATION ATTRIBUTES

’Extended Image Attribute
Usage: X'Extended Image(ltem,Width,Uppercase)

Returns the image associated with Item as per the Text lo definition.
The Text_lo definition states that given an enumeration literal,

it will output the value of the enumeration literal (either an

identifier or a character literal). The character case parameter

is ignored for character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more that one parameter. The parameter
Item must be an enumeration value. The image of an enumeration
value is the corresponding identifier which may have character case
and return string width specified.

Parameter Descriptions:

Item -- The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.
Width -- The user may specify the minimum number of characters to
be in the string that is returned. If no width is
specified then the default (0) is assumed. If the Width
specified is larger than the image of Item, ther. the
return string is padded with trailing spaces; if the
Width specified is smaller than the image of ltem then
the default is assumed and the image of the enumeration
value is output completely.
Uppercase -- The user may specify whether the returned string is in
uppercase characters. In the case of an enumeration
type where the enumeration literals are character
literals, the Uppercase is ignored and the case
specified by the type definition is taken. If no
preference is specified then the default (true) is
assumed.

Examples:
Suppose the following types were declared:

Type X is (red, green, blue. purple);
Type Y is (’a’, 'B’, '¢’, 'D’);

Then the following would be true:

X’Extended Image(red) = "RED"
X’Extended Image(red, 4) ="RED "
X’Extended Image(red,2) = "RED"
X’Extended Image(red,0,false) = "red"
X’Extended _Image(red.10.false) = "red "
Y’Extended Image(’a’) = Mg
Y’Extended Image(’B’) = "B
Y’Extended_Image(’a’,6) ="a "
Y’Extended Image(’a’,0,true) = "a"

’Extended Value Attribute
Usage: X’Extended Value(ltem)

Returns the image associated with ltem as per the Text lo definition.
The Text _lo definition states that it reads an enumeration value
from the beginning of the given string and returns the value of

the enumeration literal that corresponds to the sequence input.
(LRM 14.3.9:11)

For a prefix X that is a discrete type or subtype: this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal

string is passed, a CONSTRAINT _ERROR is raised.
Parameter Descriptions:
Item -- The user passes to the function a parameter of the

predefined type string. The type of the returned
value is the base type of X.

B-8

Exampiles:
Suppose the following type was declared:
Type X is (red, green. blue. purple);

Then the following would be true:

X’Extended_Value("red") = red
X’Extended Value(" green") = green
X’Extended Value(" Purple") = purple
X’Extended_Value(" GreEn ") = green

’Extended Width Attribute

Usage: X’Extended Width

Returns the width for subtype of X.

For a prefix X that is a discrete type or subtype: this attribute

is a function. This attribute yields the maximum image length over

all values of the enumeration type or subtype X.

Parameter Descriptions:
There are no parameters to this function. This function
returns the width of the largest (width) enumeration literal
in the enumeration type specified by X.

Examples:

Suppose the iollowing types were declared:

Type X is (red, green, blue, purple);
Type Z is (X1, X12, X123, X1234);

Then the following would be true:

X’Extended Width = 6 -- "purple"
Z’Extended_Width =5 -- "X1234"

B-9

FLOATING POINT ATTRIBUTES
'Extended lmage Attribute
Usage: X’Extended Image(ltem.Fore,Aft.Exp.Base.Based)

Returns the image associated with Item as per the Text lo definition.
The Text lo definition states that it outputs the value of the
parameter ltem as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign

is included in the integer part of the value of Item. If Exp

is O then the integer part of the output has as many digits as

are needed to represent the integer part of the value of ltem or

is zero if the value of ltem has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute

is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is

without underlines or trailing spaces.

Parameter Descriptions:

Item — The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Fore -- The user may specify the minimum number of characters for
the integer part of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the '#’ if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft -- The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default (X’Digits-1) is assumed. If based notation is
specified the trailing "#’ is included in aft.

Exp -- The user may specify the minimum number of digits in the
exponent; the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is 0 then no exponent
is used.

B-10

Base -- The user may specify the base that the image is to be
displaved in. If no base is specified then the default
(10) is assumed.

Based -- The user may specify whether he wants the string returned

to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:
Suppose the following type was declared:
Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X’Extended _lmage(5.0) = " 5.0000E+00"
X’Extended Image(5.0,1) = "5.0000E+00"
X’Extended Image(-5.0,1) = "-5.0000E-+-00"
X’Extended Image(5.0.2,0) =" 5.0E+00"
X’Extended Image(5.0.2,0,0) ="5.0"
X’Extended Image(5.0,2.0.0.2) = "101.0"
X’Extended Image(5.0.2.0,0,2,True) = "2£101.0#"
X’Extended Image(5.0.2,2,3.2,True) = "2¢#1.1#E+02"

'Extended Value Attribute
Usage: X’Extended Value(ltem)

Returns the value associated with Item as per the Text_lo definition.
The Text_lo definition states that it skips any leading zeros,

then reaas a plus or minus sign if present then reads the string
according to the syntax of a real literal. The return value is

that which corresponds to the sequence input. (LRM 14.3.8:9,
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute

is a function with & single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT ERROR is raised.

Parameter Descriptions:

Item -- The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of the input string.

Examples:
Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X’Extended Value("5.0") = 5.0
X’Extended Value("0.5E1") = 5.0
X’Extended Value("2#1.01#E2") = 5.0

‘Extended Digits Attribute
Usage: X’Extended Digits(Base;

Returns the number of digits using base in the mantissa of model
numbers of the subtype X.

Parameter Descriptions:
Base -- The user may specify the base that the subtype is
defined in. If no base is specified then the deault
(10) is assumed.
Examples:
Sur~ e the following tyvpe was declared:
Tyr . X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X'Extended Digits =5

FIXED POINT ATTRIBUTES
’Extended lmage Attribute
Usage: X’Extended Image(ltem,Fore,Aft,Exp.Base.Based)

Returns the image associated with Item as per the Text lo definition.
The Text_lo definition states that it outputs the value of the
parameter Item as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign

is included in the integer part of the value of Item. If Exp

is 0 then the integer part of the output has as many digits as

are needed to represent the integer part of the value of ltem or

is zero if the value of ltem has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype: this attribute

is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is

without underlines or trailing spaces.

Parameter Descriptions:

Item - The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Fore - The user may specify the minimum number of characters for
the integer part of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the ’#’ if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore. then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft -- The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default (X’Digits-1) is assumed. If based notation is
specified the trailing '#’ is included in aft.

Exp -- The user may specify the minimum number of digits in the
exponent: the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is 0 then no exponent
is used.

Base -- The user may specify the base that the image is 1o be
displaved in. If no base is specified then the defauit
(10) i1s assumed.

Based -- The user may specify whether he wants the string returned
to be in based notation or not. lf no preference 1s
specified then the default (false) is assumed.

Examples:
Suppose the following type was declared:
Type X is delta 0.1 range -10.0 .. 17.0;

Then the following would be true:

X’Extended Image(5.0) =" 5.00E-+00"
X’Extended Image(5.0,1) = "5.00E+00"
X’Extended Image(-5.0.1) = ".5.00E--00"
X'Extended Image(5.0.2.0) =" 5.0E--00"
X’Extended Image(5.0.2.0.0) =" 5.0"
X’Extended Image(5.0.2.0.0.2) = "101.0"
X’Extended Image(5.0,2.0.0.2,True) = "2#101.0#"
X’Extended Image(5.0.2,2,2,2.True) = "2#1.14E-02"

’Extended Value Attribute
Usage: X'Extended Value(Image)

Returns the value associated with Item as per the Text lo definition.
The Text_lo definition states that it skips any leading zeros.

then reads a plus or minus sign if present then read the string
according to the syntax of a real literal. The return value is

that which corresponds to the sequence input. (LRM 14.3.8:9,
14.2.8:10)

For a prefix X that is a discrete type or subtype; this attribute

is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing

spaces in the string X are ignored. In the case where an illegal

string is passed. a CONSTRAINT ERROR is raised.

Parameter Descriptions:
Image -- The user passes to the function a parameter of the

predefined type string. The type of the returned
value is the base type of the input string.

Examples:

Suppose the following type was declared:
. Type X is delta 0.1 range -10.0 .. 17.0;
Then the following would be true:

X’Extended Value("5.0") = 5.

0
X’Extended Value("0.5E1") = 5.0
X’Extended Value("2#1.01#E2") =

'Extended_Fore Attribute

Usage: X’Extended Fore(Base,Based)

Returns the minimum number of characters required for the integer

part of the based representation of X.

Parameter Descriptions:

Base -- The user may specify the base that the subtype would be

displayed in. If no base is specified then the default
(10) is assumed.

Based -- The user may specify whether he wants the string returned

to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:
Suppose the following type was declared:
Type X is delta 0.1 range -10.0 .. 17.1:
Then the following would be true:

X'Extended Fore =3 - ".10"
X'Extended Fore(2) =6 - " 10001"

’Extended _Aft Attribute
Usage: X'Extended Aft(Base,Based)

Returns the minimum number of characters required for the fractional
part of the based representation of X.

Parameter Descriptions:

Base - The user may specify the base that the subtype would be
displayed in. If no base is specified then the default
(10) 1s assumed.

Based -- The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:
Suppose the following type was declared:
Type X is delta 0.1 range -10.0 .. 17.1;
Then the following would be true:

X’Extended Aft =1 -~ "1" from 0.1
X’Extended Aft(2) =4 --"0001" from 2#0.0001#

3. Specification of Package SYSTEM
PACKAGE System IS

TYPE Address is Access Integer;
TYPE Subprogram_Value is PRIVATL;

TYPE Name IS (TELEGEN2);
System_Name : CONSTANT name := TELEGENZ2;

Storage_Unit : CONSTANT := 8;
Memory Size : CONSTANT := (2 ** 31) - I

-- System-Dependent Named Numbers:

Min _Int : CONSTANT := -(2 ** 31);

Max Int : CONSTANT := (2 ** 31)- L4

Max_Digits : CONSTANT := 15;

Max Mantissa : CONSTANT := 31:

Fine Deita : CONSTANT :=1.0 /(2 ** Max Mantissa);
Tick : CONSTANT := 10.0E-3;

-- Other System-Dependent Declarations
SUBTYPE Priority IS Integer RANGE 0 .. 63;

PRIVATE
TYPE Subprogram_Value IS
RECORD
Proc_addr : Address:
Static_link : Address;
Global frame : Address;
END RECORD:

END System:

B-17

4. Restrictions on Represen:ation Clauses
The Compiler supports the following representation clauses:

Length Clauses: for enumeration and derived integer tvpes 'SIZE
attribute (LRM 13.2(a))
Length Clauses: for access types 'STORAGE SIZE attritube (LRM13.2(b))
Length Clauses: for tasks types 'STORAGE SIZE attribute (LRM 13.2(c))
Length Clauses: for fixed point types 'SMALL attribute (LRM13.2(d))
Enumeration Clauses: for character and enumeration types other than
boolean (LRM 13.3)
Record representation Clauses (LRM 13.4) with following constraints:
- Each component of the record must be
specified with a component clause.
- The alignment of the record is restricted to
mod 2, word (16 bit)aligned.
- Bits are ordered right to left within a byte.
Address Clauses: for objects, entries, and external subprograms

(LRM 13.5(a)(c))
This compiler does NOT support the following representation clauses:
Enumeration Clauses: for boolean (LRM 13.3)
Address Clauses for packages, task units, or non-external Ada
subprograms (LRM 13.5(b))
5. Implementation dependent naming conventions
There are no implementation-generated names denoting
implementation dependent components.
6. Interpretation of Expressions in Address Clause

Expressions that appear in address specifications are interpreted
as the first storage unit of the object.

B-18

7. Restrictions on Unchecked Conversions -

Unchecked conversions are allowed between any types or subtypes unless
the target type is an unconstrained record or array type.
8. 1/0O Package Characteristics
Sequential IO and Direct 1O cannot be instantiated for
unconstrained array types or unconstrained types with discriminants
without default values.
In TEXT 1O the type COUNT is defined as follows:
type COUNT is range 0 .. 2_147 483 646;

In TEXT_IO the subtype FIELD is defined as follows:

subtype FIELD is INTEGER range 0..1000;
In TEXT IO, the Form parameter of procedures Create and Open is not

supported—. (If you supply a Form parameter with either procedure, it
is ignored.)

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-~dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value
$ACC_SIZE 32

An integer 1literal whose value
is the number of bits sufficient
to hold any value of an access

type.

$BIG_ID1 (1..199 => *Ar, 200 => '1")
An identifier the size of the
maximum input line length which
is identical to $BIG_ID2 except
for the last character.

$BIG_ID2 (1..199 => 'A', 200 => '27')
An identifier the size of the
maximum input line length which
is identical to $BIG_ID1 except
for the last character.

$BIG_ID3 (1..99 => *a', 100 => '3°,
An identifier the size of the 101..200 => 'A')
maximum input line length which
is identical to $BIG_ID4 except
for a character near the middle.

TEST PARAMETERS

Name and Meaning

Value

$BIG_ID4
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT LIT
An integer 1literal of value 298
with enough 1leading 2zeroes so
that it is the size of the
maximum line length.

$BIG_REAL_LIT
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG_STRING1
A string 1literal which when
catenated with BIG_STRINGZ
yields the image of BIG_ID1.

$BIG_STRING2
A string 1literal which when
catenated to the end of
BIG_STRING1 yields the image of
BIG_ID1.

$BLANKS
A sequence of blanks twenty
characters 1less than the size
of the maximum line length.

$COUNT_LAST
A universal integer
literal whose value is

TEXT_IO.COUNT'LAST.

$DEFAULT_MEM_SIZE .
An integer literal whose value
is SYSTEM.MEMORY_SIZE.

$DEFAULT_STOR_UNIT
An integer literal whose value
is SYSTEM.STORAGE_UNIT.

(1..99 => &', 100 => 47,
101..200 => 'a")

(1..197 => 'C', 19€..200 => "298")

(1.0195 => '0', 196.0200 :> "690.0")

(1 => '"" 2..101 => 'A', 102 => '"')

(1 => '™y 2,,100 => '4',101 => '1°,
102 => 'nt)

(10-180 => ' ')

2147483646

2147483647

c-2

TEST PARAMETERS

Name and Meaning Value
$DEFAULT_SYS_NAME TELEGENZ2
The value of the constant
SYSTEM.SYSTEM_NAME.
$DELTA_DOC 2#1.0#E-31
A real literal whose value 1is
SYSTEM.FINE_DELTA.
$FIELD_LAST 1000
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.
$FIXED_NAME NO_SUCH_TYPE
The name of a predefined
fixed-point type other than
DURATION.
$FLOAT_NAME NO_SUCH_TYPE
The name of a predefined
floating-pcint type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.
$GREATER_THAN_DURATION 100000.0
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.
$GREATER_THAN_DURATION_BASE_LAST 131073.0
A universal real literal that is
greater than DURATION'BASE'LAST.
$HIGH_PRIORITY 63
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.
$ILLEGAL_EXTERNAL_FILE_NAME1 "BADCHAR®" /%"
An external file name which
contains 1invalid characters.
$ILLEGAL_EXTERNAL_FILE_NAMEZ " /NONAME/DIRECTORY"
An external file name which
is too 1long.
$INTEGER_FIRST -32768

A universal integer 1literal
whose value is INTEGER'FIRST.

c-3

TEST PARAMETERS

Name and Meaninc

Value

$INTEGER_LAST
A universal integer 1literal
whose vzlue is INTEGER'LAST.

$INTEGER_LAST PLUS 1
A universal integer 1literal
whose value 1s INTEGER'LAST + 1.

$LESS_THAN_DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_IHAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN_LEN
Maximum input line length
permitted by the implementation.

$MAX_INT
A universal integer 1literal
whose value is SYSTEM.MAX INT.

$MAX_INT_PLUS_1
A universal integer 1literal
whose value is SYSTEM.MAX_ INT+1.

$MAX_LEN_INT_BASED_LITERAL
A universal integer based
literal whose value 1s 2#11#
with enough 1leading zeroes in
the mantissa to be MAX_IN_ LEN
long.

32767

-100000.0

-131073.0

31

15

200

2147483647

2147483648

(1.'2 => "2:", 00197 => '0',
198..200 => "11:m)

C-4

Name and Meaning

TEST PARAMETERS

Value

$MAXY _LEN REAL BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zeroces in the
mantissa to be MAX_IN_LEN long.

$MAX_STRING_LITERAL

A string literal of size

MAX_IN_LEN, including the quote

characters. :
$MIN_INT

A universal
whose value is

integer 1literal
SYSTEM.MIN_INT.

$MIN_TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;"™ as the only statement in
its body.

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NAME_LIST
A list of enumeration 1literals
in the type SYSTEM.NAME,

separated by commas.

$NEG_BASED_INT
A Dbased integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX_ INT.

$NEW_MEM_SIZE
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT_MEM_SIZE. If there is
no other value, then use
$DEFAULT_MEM_SIZE.

C-5

(1..3 => "16:",4..196 => '0",
197..200 => "F,E:m)

(1 => ™1, 2,.199 => 'A', 200 => '"')

-2147483648

32

NO_SUCH_TYPE

TELEGEN2

16#FFFFFFFE#

2147483647

TEST PARAMETERS

Name and Meaning Value

$NEW_STOR_UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE_UNIT, other than
$DEFAULT_STOR_UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE_UNIT.

$NEW_SYS_NAME TELEGEN2
A value of the type SYSTEM.NAME,
other than $DEFAULT_SYS_NAME. If
there is only one value of that
type, then use that value.

$TASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 0.01

A real literal whose wvalue is
SYSTEM.TICK.

C-6

Some
Ada

APPENDIX D

WITHDRAWN TESTS

tests are withdrawn from the ACVC because they do not conform to the
Standard. The following U3 tests had been withdrawn at the time of

validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

f.

E2B8005C: This tesz expects th:zt the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

A39005G: This test unreasonably expects a component c¢lause to pack an
array component into a minimum size (line 30).

B9T102E: This ¢test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be U0
(1ine 137).

CD2A63A..D, CD2A66A..D, CD2AT3A..D, and CD2A76A..D (16 tests): These
tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE 1length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

WITHDRAWN TESTS

CD2AB1G, CD2A83G, CD2A84M..N, and C(CD50110 (5 tests): Tnese tests
assume that dependent tasks will terminate while the main prograx
executes a loop that simply tests for task termination; this -.s not
the case, and the main program may loop indefinitely (lines 7L, 85,
86, 96, and 58, respectively).

CD2B15C and CD7205C: These tests expect that a 'STORAGE_SIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows tnat such control
must not be expected.

CD2D11B: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbe-~s that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(1ine 303).

ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validationm.

CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a -task's activation as
though it were like the specification of storage for a collection.

CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA_ERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(1ine 90). .

CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

CE3301A: This test contains several calls to END OF_LINE =nd

END_OF_PAGE that have no parameter: these calls were intended to
specify -a file, not to refer to STANDARD_INPUT (lines 103, 107, 118,

D=2

WITHDRAWN TESTS

132, and 136).

r. CE3U11B: This test requires that a text file's column number be set to
COUNT'LAST in order to check that LAYOUT ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of aveilable disk space, and the test

would thus encumber validation testing.

