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ABSTRACT 

A Two-Dimensional Fast Recursive Least Squares (2-D FRLS) algorithm is pre­

sented using a geometrical formulation based on the mathematical concepts of vector 

space. orthogonal projection, and subspace decomposition. 

By appropriately ordering the 2-D data, the algorithm pro\'ides an exact least­

squares solution to the deterministic ~ormal equations. The method is further extended 

to the general FIR \\'iener filter and to AR\1A modeling. The size and shape of the 

support region for both the \1A and A R coefficients of the filter can be choosen 

arbitrarly. The AR\1A parameter estimation problem is also considered for the case 

when the system input is not available. 

Computer simubtions are presented to illustrate the applications of the algoritm for 

2-D parameter estimation. system identification and image coding. 
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I. INTRODUCTION 

Adaptive algorithms have been used successfully for many years in a wide range 

of digital signal processing applications involving non-stationary data. In these appli­

cations it is desired to follow closely the variations of the parameters characterizing 

the process, by updating (in real time if possible) estimates of these parameters as 

soon as new data is available. Real time implementation of these algorithms only 

recently became possible with the latest capabilities of the VLSI technology and is 

partly a result of the development of computationally affordable algorithms based on 

a very elegant mathematical formulation. This formulation is knO\vn as fast recursive 

least squares (FRLS) and is based on a geometric approach. The derivation of al­

gorithms based on the geometric approach uses the concepts of linear vector spaces~ 

orthogonality~ projection matrices, and their relation with least squares prediction 

[Ref. 1. 2, 3). ~lotivation for the development of similar algorithms to process two­

dimensional (2- D) data is a consequence of the very interesting results reported lately 

in the literature on adaptive filters for one-dimensional (1-D) signals in what concerns 

their reduced complexity and excellent behavior even in non-stationary environments 

[Ref. 4, 5). The development of Fast RLS algorithms for 2-D data based on the 

geometric approach is what is addressed in this thesis. 

A. PROBLEM FORMULATION 

A major problem with the extension of Fast RLS algorithms to two dimensions 

IS that causality is not inherent in 2-D systems. This problem was overcome by 

associating the past of a 2-D signal with the region of support of a recursive filter mask 

(usually quarter plane or non-symmetrical half plane). By appropriately ordering the 

2-D data. a two-dimensional Fast Recursive Least Squares (2-D FRLS) algorithm 
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is developed usmg a geometrical formulation where the vector spaces and all the 

notions associated with them are defined to reflect the 2-D nature of the data. An 

exact least squares solution to the deterministic Normal equations is provided for 

all of the all-pole (AR), all-zero (MA), or pole-zero (AR~1A) models. The size and 

shape of the support region for both the MA and AR coefficients of the filter can 

be chosen arbitrarily as long as the overall system is recursively computable. The 

ARMA parameter estimation problem is also addressed for the case when the system 

input is not known. 

B. THESIS OVERVIEW 

The remainder of this thesis is organized as follows. Chapter 2 provides a sum­

mary of the most common adaptive filtering techniques. Only brief reference is made 

the Least Mean Square (LMS) algorithm due to its simplicity and slower convergence 

properties. However a 2-D version of this technique that was recently reported in the 

literature is mentioned. Most of the chapter reviews the basic ideas of the Recursive 

Least Squares (RLS) algorithm. This provides preparation for chapter 3 where a fast 

2-D version of this algorithm is developed in detail. 

Chapter 4 is dedicated to applications of the new algorithm to the 2-D problems 

of systems identification, image coding, and parameter estimation. Different models 

(AR, MA, and AR~1A) are considered. 

Chapter 5 summarizes the results obtained and suggests some possible improve­

ments for the new algorithm. Mathematical derivations related to the geometrical 

formulation that are essential to the method, but too tedious to be inserted in the 

body of the thesis, are grouped in the Appendix. 
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II. ADAPTIVE FILTERS 

A. PERFORMANCE CRITERIA 

In adaptive filtering the performance criterion is usually based on the minimiza­

tion of a cost function dependent on the filter coefficients to be determined. The most 

common performance criterion is the minimization of the mean square error (:MSE) 

associated with the signal to be estimated [Ref. 5, 6, 7]. In particular, if we consider 

a random process y( n) and a predictive filter of the form 

M 

y(n) = L hn(k)y(n- k) (1) 
k=l 

where y(n) is the predicted value and hn(k) are the filter coefficients , then the pre-

diction error is defined by 

e(n) = y(n)- y(n) (2) 

and the :MSE becomes 

(3) 

where E is the expectation operator. For stationary data, this quantity is a convex 

quadratic function of the filter coefficients hn(k) and attains its minimum at a point 

where the partial derivatives with respect to each of the filter coefficients are simul-

taneously equal to zero. Substituting ( 1) and (2) in (3) and simplifying, we obtain 

the desired expression 

8t 
fJhn(k) = -2E[e(n)y(n- k)] = 0 fork= 1, ... , Af (4) 

The dependence of the performance criterion on the filter coefficients can be in-

terpreted in terms of a multidimensional convex surface with a unique minimum. This 
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surface is called the error-performance surface. The coefficients associated with the 

minimum mean-square error are obtained by solving the set of simultaneous equations 

in ( 4) which in this case are known as the K ormal equations. 

B. LEAST MEAN SQUARE (LMS) ALGORITHM 

1. 1-D LMS 

The Normal equations can be solved by brute force using matrix inversion 

or by computationally faster methods such as the Levinson-Durbin algorithm for 

Toeplitz matrices. However here, we are interested in a method called the steepest 

descent, which provides an iterative solution to the Kormal equations [Ref. 5, 6, 7, 8). 

\Ve start with a initial set of filter coefficients and a corresponding point on the error 

performance surface. \Ve then compute the gradient vector formed by the partial 

derivatives of the mean-squared error with respect to each of the filter coefficients at 

that point. Using ( 4) the gradient vector can be expressed as 

'V(n) = -2E[e(n)l(n)) (5) 

where _L( n) is a AI X 1 vector that contains the data covered by the filter mask at 

time n 

~(n) = [y(n -1),y(n -2), ... ,y(n -A!)f (6) 

Finally we update the coefficients by changing them in a direction opposite to that 

of the gradient vector using a predefined step size 11 

(7) 

where hn is a AI X 1 vector that contains the filter coefficients at time n 

(8) 

The inconvenience of this approach is that it requires an exact measure of the gradient 

vector at each iteration and the gradient involves statistical expectation. Usually the 
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statistics of the data are not available and must be estimated from the raw data . 

Thus to obtain a really accurate estimate of the gradient is quite cumbersome and 

computationally expensive. 

A practical method to estimate the gradient vector in a simple manner 

directly from acquired data is used in the Least Mean Squares (LMS) algorithm of 

\Vidrow [Ref. 5). For this, the expectation in ( 5) is ignored and an instantaneous 

estimate of the gradient vector is taken to be 

V(n) = -2e(n)~(n) (9) 

The update for the filter coefficients then has the form 

(1 0) 

This method is quite attractive for a wide range of applications since it requires no 

matrix inversions, correlation function estimation, or (actual) gradient computation, 

and hence has low computational complexity. However its convergence is relati,·ely 

slow. A detailed derivation and analysis of the L}.1S properties can be found in [Ref. 

5. 6). 

2. 2-D Ll\1S 

The extension of the L}.IS algorithm to 2-D signals is straightforward. 

Reference [Ref. 9) gives a detailed deri,·ation and shows that the analysis presented by 

other authors for the 1- D L}.1S is also applicable to the 2-D version of the algorithm. 

The final form of the 2-D L}.1S algorithm is very similar to (10) but the 

vector containing the 1-D filter coefficients hn is substituted by a matrix Wj con­

taining the 2-D filter coefficients. The instantaneous estimate of the 2-D gradient 

uses the data matrix Xj formed by the 2-D input samples covered by the 2-D filter 

mask at iteration j. For aN x A1 2-D sequence, at sample y(n, m); if j is the linear 

5 



scanning index 

j = mA! + n ( 11) 

then the algorithm takes the form: 

(12) 

A separate derivation of this algorithm was also presented in [Ref. 10], together with 

some examples of its performance through computer simulation of a noise canceler 

and an adaptive line enhancer applied to an image processing problem. 

C. 1-D RECURSIVE LEAST SQUARES (RLS) 

In the adaptive methods presented above the need to solve the Normal equa-

tions appears as a consequence of the minimization of a statistical cost function, 

the mean-squared error. However the implementation instead uses the actual data to 

compute errors and update the coefficients. This is the main cause of the performance 

deficiencies encountered when implementing this algorithm. 

Another possible approach is to base the performance criterion upon error mea-

sures derived from the actual data. This class of techniques is known generally as 

Least Squares (LS) algorithms. 

The LS algorithm is designed to find the set of filter coefficients that mimmize 

the cumulative sum of squared errors. 

n 

t:(n) = L e2(i) ( 13) 
i=l 

Although this seems very similar to the previous performance criterion, it results in a 

set of deterministic 1\ormal equations whose solution provides filter coefficients that 

are exactly optimal, according to (13), for the acquired data instead of statistically 

optimal for a class of data as in the case of the steepest descent methods [Ref. 6]. 
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To formulate this problem we once again differentiate the cost function with 

respect to the coefficients. However since we here use summations instead of expec-

tations the result is 

OE(rz) M 
ohn(k) = -2rn(O, k) + 2 ~ hn(l)rn(k, l) = 0 for k = 1, ... , Af (14 ) 

where we define the deterministic correlation function r n ( k, l) as 

n 

rn(~·,l) = LY(n- k)y(n -1) for k,m = o, ... ,Af ( 15) 
i=1 

This set of Af simultaneous equations are the deterministic Normal equations. The 

equations are written in matrix form as 

R(rz)hn = r(n) 

where R( n) is the 1\J X 1\J deterministic correlation matrix with the structure 

rn(L 1) rn(1, 2) 

R(n) = 
rn(2, 1) rn(2,2) 

rn(1, Af) 

rn(2, A!) 

( 16) 

(17 ) 

and r( rz) is the AI X 1 vector of deterministic cross-correlation terms between the 

desired filter response and the filter inputs. 

r(rz) = [rn(O, 1),rn(0,2),·· · ,rn(O,Af)]T ( 18) 

If R(n) is nonsingular then the solution to the Normal Equations is formally 

( 19) 

This brute force solution requires on the order of A13 arithmetic operations. A better 

approach is to use a method known as the recursive least squares (RLS). This uses 

the Matrix Inversion Lemma [Ref. 5] to update the inverse correlation matrix and the 
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cross correlation vector as new data is acquired and thus to compute hn recursively. 

The resulting expression for R - 1 ( n) is 

_1( ) _1( ) R-1(n -1)y(n)yT(n)R-1(n -1) R n =R n-1--____;_ _ _ .;...=.___;_-=-.....;__;__ _ ___;__....:.... 

1 + ~T(n)R- 1 (n -l)~(n) 
(20) 

By defining the a priori error e( n In - 1) as 

(21) 

and the gain vector k( n) as 

(22) 

we can rewrite (20) as 

(23) 

If we then use .r( n) = .r( n - 1) + y( n )~(n) and substituting in (19) the desired update 

for coefficient vector hn is found to be 

hn = hn-1 + k(n)e(nln- 1) (24) 

To update the coefficient vector as new data is acquired all we must do is to compute 

the last four equations assuming that all the parameters with index n -1 are available 

at time n. Since the non-singularity of the deterministic correlation matrix is a 

requirement for the solution of the problem, we must start with the initial condition 

(25) 

where cis a small positive constant. It also customary to initialize all the components 

of the coefficient filter hn to zero. 

The RLS algorithm is computationally more expensive than the LMS. The RLS 

algorithm requires a total of 3Af(3 + Af)/2 multiplications/divisions per iteration, 
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while the L!\1S algorithm requires only 2111 + 1. On the other hand the convergence 

performance of the RLS algorithm is much superior [Ref. 5, 6]. A detailed deri\·ation 

of this algorithm and its overall performance can be found in many references such 

as [Ref. 5, 6, 8]. 

An enormous reduction of the computational complexity of the RLS method 

is obtained by using a geometrical formulation in its derivation. The computational 

complexity of the algorithm is reduced to approximately 6Af arithmetic operations. 

The geometrical approach also provides an interesting interpretation of the prediction 

problem in terms of the concepts of vector spaces and orthogonality. Since we will 

use an expanded version the geometrical formulation to derive the extension of this 

method to 2-D signals, and the derivation is lengthy, we will not derive the 1-D method 

here. However a very comprehensive explanation of the geometrical approach for 1-D 

signals can be found in [Ref. 6]. 

For the case of nonstationary data it is frequently advantageous to incorporate 

a forgetting factor in the cost function 

n 

t:(n) = LAn-ie2(i) for 0 < ,\ :S 1 (26) 
t=l 

The interpretation of this forgetting factor can be understood as an exponential win­

dowing of the data in a fashion such that the most recent data has a heavier influence 

in the cost function to be minimized. The fast algorithm is mathematically equivalent 

to the RLS, hence its stability is guaranteed in theory for any possible forgetting factor 

,\ [Ref. 7]. However the efficiency of this class of algorithms is a result of the reduced 

number of variables used to represent quantities such as the inverse deterministic 

correlation matrix. Due to the finite precision arithmetic used, the representation is 

only approximate. As a result the accumulation of round-off errors can set off insta-

bility of the algorithm. The sensitivity of some quantities to round-off error are highly 

9 



dependent on the forgetting factor used. This imposes a lower bound on >.. Typical 

values for ,\ are in the range: 

0.95 ::; ,\ < 1.0 (27) 

10 



III. 2-D FAST RECURSIVE LEAST SQUARES 

In this chapter we present the derivation of the 2-D FRLS algorithm. As men-

tioned before we use the geometrical formulation to obtain a fast, computationally 

efficient algorithm. 

\Ve start by introducing a convenient notation that closely follows the one used 

by Alexander [Ref. 6) for the geometric derivation of the 1-D FRLS. This is followed 

by a brief set of vector space considerations that are the basis of the problem solution. 

1\ext some auxiliary filters that use the same data a.s the 2-D filter are introduced. 

The key to this method is to find a relation between the parameters of these filters 

that permits the recursive update of all of them as soon as new data is available. 

A. 2-D PREDICTION FILTERS 

The method to be described applies to a general 2-D prediction filter of the form 

y(n1. n2) = L L aij y(n 1 - i, n2 - j) 
j 

(28) 

with (i,j) defined in a region that allows the 2-D AR model related to the prediction 

error process to be recursively computable (ex: quadrant or non-symmetric half plane 

support). The recursive computability is a requirement for applications where inverse 

filtering is used to recover the 2-D data sequence from the estimated error sequence 

as in most of the image coding schemes. To be specific and develop clear notation we 

will assume a first quadrant ( N + 1) x ( A1 + 1) filter of the form 

N M 

y(n1,n2) = LLaijY(n1 - i,n2 -j) (i,j) # (0, 0) (29) 
i=O j=O 

and a 2-D data sequence v·:ith ]{ x L points as shown in Figure 1. 
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L -1 

N+ 1 

0 
0 K -1 

Figure 1. First Quadrant (N + 1 )(M + 1) Filter 

vector notation as 

(30) 

where 

· · · , y(n1- IV, n2 -1),· · · ,y(n1- IV,n2- 2), · · · 

· · · , y(n 1 , n2- Af), · · ·, y(n 1 -IV, n2- A1)f (31) 

is a (IV + 1 )(A! + 1) - 1 dimensional vector formed by the elements covered by the 

filter mask, ordered along rows , and 

(32) 

is the vector of 2-D filter coefficients with the same ordering. \Ve assume for now that 

y(k, l) = 0 for k < 0 or l < 0. 
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\Vhen performing linear prediction along one of the possible directions of recur­

sion (e.g., along rows), and all of the data necessary for each prediction is available ~ 

the optimal filter (least squares criterion) up to point (n 11 n 2 ), will be defined as the 

one having a set of coefficients aij(n 11 n 2), ( 0 ~ i ~ N , 0 ~ j ~ Af , (i,j) =J (0, 0) ) 

that minimizes the sum of the squared errors along that recursion direction. 

n1 K-ln2-l 

t(ni, n2) = I:)e(i, n2)] 2 + L L [e(i,j))2 (33) 
i=O i=O j=O 

B. 2-D DATA ORDERING 

One question that arises whenever we deal with finite extent sequences is what 

to do when we approach the boundaries of the 2- D data sequence and the prediction 

mask needs to coYer points that lie outside of the region where the data is defined. 

One approach is to set the points outside of this region (i.e., the boundary conditions) 

to zero. The inconYenience of this approach is that the boundary conditions depend 

not only on the extent of the 2-D sequence but also on the shape of the filter mask 

and this can lead to additional complications [Ref. 11). In addition, when we reach 

the end of a row and we start a new one, the data under the mask is almost all reset 

to zero. This causes a strong discontinuity in the process. 

An alternative approach is to assume that, although the 2-D data we process 

may not be stationary~ the statistical properties of the data do not vary too rapidly, 

and so to use the data at the end of one row as the initial condition for prediction 

along the next row as is shown in Figure 2. This appears to be at least as reasonable as 

the first approach. It will be seen later that this approach also has several advantages 

in deriving an algorithm based on the geometrical approach. From a practical point 

of view, it is as if we fold the 2-D data plane and form a cylinder with perimeter 

equal to ]{, but the data rows instead of folding into themselves, are misaligned by 

one row. This allows the prediction to be performed along rows with the 2-D mask 

moving from bot tom to top in a helical fashion. 

13 



~ I 

Figure 2. Data Ordering 

C. PREVIOUS DATA/ PAST OBSERVATIONS 

Performing linear prediction on a 2-D signal along rows implies that the new 

data comes only from a strip with the width of the filter mask (Af + 1 ). This suggests 

an analogy with the ( j\J + 1) channel 1- D prediction problem. 

1. (M+l) Channel Analogy 

The (Af + 1) rows of the data strip can be viewed as (Af + 1) channels of 

a 1-D signal. To support this idea, define a linear index n such that 

(34) 
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Then tlw 2-D dat.a seq11ence y(n 1, n 2 ) can be expressed in terms of the data in the 

first channel as 

(35) 

We can also express the data in the other channels in terms of y1 ( n) as 

Yi(n) = Y1(n- (i- 1)K) fori = 1, ... ,A1+1 (36) 

We will predict along the first channel using data from all channels defined by the 

2-D filter mask. A consequence of this approach is that the length of data used from 

each channel depends on the shape of lhe 2-D mask. Figure 3 shows the particular 

case of a Quarter Plane mask. In order to predict y1 ( n) = y( n 1 , n2 ) , the data used 

is formed by N samples of channel 1 (yi) and (N + 1) samples of channels 2 (y2 ) lo 

Af + 1 (YM +I). This requires a total of ( N + 1) x (Af + 1) - 1 coefficients as in the 

2-D mask. 

Chnnnel 1 

Chnnnel 2 

Chnnnel 3 

Chnnnel M+ 1 

Fig ure 3 . M+ l Channel Analogy 
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2. Past data 

The multichannel analogy will be used to define what we call the past data 

and the observation data because the notion of multichannel prediction will be useful 

later. From now on we will drop the 2-D notation and use the index n associated 

with the recursion along the rows. 

Begin by defining the ( n + 1 )-dimensional vector 

1 :::; i:::; Af + 1 (37) 

that contains data in channel i up to the point n. Further define the delay operator 

z -k such that 

(38) 

is a ( n + 1 )-dimensional vector that contains the data of ~i( n) delayed by k samples 

and pre-windowed. \Ve call y ( n) the observation data since it contains the data 
-1 

sequence we desire to predict. The past data with respect to y1 ( n) is formed by all 

of the points yi (j ) such that (2:::; i:::; AI+ 1,0:::; j:::; n) or (i = 1,0:::; j::; n -1) 

as shown in Figure 4. Note that different channels have data in common. \Vith the 

new notation defined we are ready to reformulate the problem. 

D. PROBLEM REFORMULATION 

\Ve start by redefining (31), the vector that contains the data covered by the 

2-D filter mask , as 

where the subscript (1,N) denotes the fact that the data in the first channel appears 

delayed by 1 to N samples. \Ve want to find a prediction filter of the form 

( 40) 
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Figure 4. Past Data 

with 

_g(n) = [niO(n), · ··,nNo(n),a01,···,aNt(n),···,aoM(n),···,aNM(n)f (41) 

that minimizes the sum of squared errors 

n 

f1(n) = I)e1(i)]2 ( 42) 
i=O 

where the prediction error given by 

et(n) = Yt(n)- Yt(n) ( 43) 

This can be wri lten in vector notation as 

( 44) 

where 

( 45) 

17 



and 

( 46) 

where Y 1,N(n) is a data matrix formed by the data covered by the 2-D mask from 

the origin up to time n. The matrix Y 1,N(n) can be written as 

Y1,N(n) = 

~i_N(O) 

~i_N(l) 

( 4 7) 

or using a different partition. Y 1,1Y( n) can alternatively be written in terms of the 

data in the A! + 1 channels and their delayed versions (37) and (38) as 

As will be shown later, a necessary initial condition for the geometric formulation 

to work is that v;e start at a sample y1 (0) such that ~I,N(O) = .Q. That is, the 

initial conditions for the data under the 2-D mask must be zero. 1\ow let us proceed 

with the minimization of (42). The least squares solution for !!(n) is given by the 

pseudo-in\'erse: 

( 49) 

where (YLy(n)Y1,N(n))-l can be interpreted as the inverse of a 2-D deterministic 

correlation matrix and YfN(n)~1 (n) can be interpreted as the vector of the deter­

ministic cross-correlations between the observation data and the past data. A new 

expression for ~1 (n) is obtained substituting the solution for !!(n) in (46) and using 

the result in ( 45 ). This yields 

~dn) ~1 (n)- Pl,N(n)~1 (n) 

(I- P1,N(n)) ~1 (n) 

18 
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where 

(51) 

is interpreted as the projection matrix that projects vectors into the subspace spanned 

by the columns of Y 1,N(n). (Note here that it is assumed that (Yf.N(n)Y1,,.,(n))-
1 

exists.) Also define 

(52) 

as the orthogonal projection matrix associated with the same subspace. 

Both the L.S. estimate of ~1 ( n) and the prediction error can now be expressed 

in terms of the projections matrices. The estimate ~1 ( n) is the projection of ~1 ( n) 

onto the subspace spanned by the previous data 

(53) 

The error ~1 (n) is orthogonal to the estimate l
1
(n). 

(54) 

Next, we define the operator K 1,N(n) as 

(5.5) 

hence 

(56) 

K 1,N(n) can be interpreted as the operator that computes the best LS filter !!(n) for 

predicting ~1 (n) given the data set Y 1,N(n). Now since ~1 (n) can be obtained from 

~1 (n-l) as soon as y1(n) is available, if we find an efficient way to get K 1 ,N(n) from 

K 1 ,N(n- 1) then \\'e will be able to update !!(n- 1) to £(n). 
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E. VECTOR SPACE CONSIDERATIONS 

Before going any further we must present some concepts and relations asso ciated 

wit h Yector spaces that will be needed later on. To make the results generic , in this 

section our data matrix is called U( n ). This generic data matrix can represent the 

matrix Y l,N(n) defined in ( 4 7) and ( 48) and other similar matrices that are defined 

later in this chapter. Then following the definition of (51) and (52), the projection 

mat rix associated with U(n) is 

(57) 

an d the orthogonal projection matrix is 

Pt(n ) = I- Pu(n) (58) 

The columns of U ( n) are formed by the vectors that span the vector space associated 

\Vith Pu (n): hence when we compute Pu(n)U(n) , we have 

Pu (n)U (n) = U (n) (ur(n )U (n))-
1 
ur(n)U(n ) = U(n) (59) 

I 

It follows from this that t he projection matrix is idempot ent 

( 
T ) -I T Pu (n)Pu(n) = Pu (n )U(n) U (n)U(n) U (n) = Pu (n) ._,_., (60) 

U( n) 

The following relat ions also follow from the definition of Pu ( n) and PtJ ( n). 

P[r(n) Pu(n) (61) 

Pu(n)Pu(n) = Pu ( n) (62) 

PuT(n) Pu(n) (63) 

Pb(n)Pu(n) O(n+l)x(n+I) (64) 

All of these relations are easy to prove. 
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Now let us append a matrix V (i.e. , more columns) to the matrix U (n). The 

columns of V do not need to be orthogonal to the subspace spanned by U (n )~ hence 

the subspace spanned by [U(n) , V] is the same as the one spanned by [U (n), \V], 

with 

W - Pi;(n)V (65) 

Then we define 

Puv(n) Pu(n) + Pw(n) (66) 

Pu(n ) + Pi;(n)V ([Pi;(n)VfPiJ(n)V)-
1 

VTPiJ (n) 

If we note that PiJv(n) =I- Puv(n) ; then it follows that 

PiJv(n ) = Pi; (n) - Pi; (n)V ([Pi;(n)VfPi;(n )V)-
1 

VTPi; (n) (67) 

These results also are valid when V is a vector (i.e., a matrix with a single column). 

Some other useful relations with generalized vectors or matrices y and z which 

follow immediately from (66) and (67), are 

Puv(n)y Pu(n)y + Pi;(n)V ([PtJ(n)VfPiJ(n )V)-
1 

VTPiJ (n)y (68) 

PiJv(n)y = Pi;(n)y- Pi;(n )V (fPiJ(n)VfPiJ(n)V)-
1 

VTPiJ (n)y (69) 

zTPuv(n)y = zTPu(n)y (70) 

+ zTPtJ(n)V (rPij(n)VfPij(n)V)-
1 

yTpiJ(n)y 

zTPi;(n)y (71) 

zTPij(n )V (rPi;(n)VfPb(n)V) -
1 

yTpiJ(n)y 

These relations with the appropriate choices of U(n), V, y , z will be the basis of 

several recursions needed later. 
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1. Projection Matrix Time Update 

Let us partition the data matrix U( n) as 

[ 
U ( n:U.T- 1 ) ] U(n) - (72) 

where yT is the last row of U( n ). \Ve can see from ( 4 7) that this is a valid repre­

sentation when U(n) is taken to be Y 1,N(n). In this case :u.T corresponds to ~i,N(n). 

It is seen that U( n) is formed by the columns of U( n- 1) with one more dimension 

appended, the components of :u.T. Now define a (n+ I)-dimensional vector zr.(n) called 

the unit time vector [Ref. 6] 

ZL( n) = [0, 0, 0, · · ·, 0, 0, 0, 1 f (73) 

and append it to the data matrix U(n) to form [U(n),ZL(n)]. It will now be shown that 

the subspace spanned by this new matrix contains not only ~1 (n) but also ~1 (n -1). 

To see this, proceed as follows. \Ve know that if ~1 ( n) lies in the subspace 

spanned by U(n), then appending ZL(n) will not change a thing. Using (68) with 

V = zr.(n) and y = ~1 (n) we obtain 

Puz:(n)~1 (n) = Pu (n)~1 (n) (74) ._,_... 
i_l (n) 

+ Pt(n)E.(n) ([Pt(n)ZL(n)fPt(n)K(n))-
1 
2r.T(n)PD(n)~1 (n) ._,_... 

Q 

To see that ~1 ( n - 1) also lies in this subspace, note that since ZL( n) has only its 

last component non-zero, a linear combination of the vectors in [U(n),ZL(n)] can be 

used to obtain a matrix whose columns span the same subspace as the columns of 

U(n- 1). 

It can be shown that Pu1!.( n) has the particular form 

[
Pu(n-1) Q

1

] 
Pu7r(n) = 

- T 
Q 
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(a detailed derivation of this result is presented in the Appendix). Further recall that 

~1 ( n) is a vector formed by all the data from the origin up to point n. Thus (75) 

provides a way to decompose a projection matrix into past and present components. 

(76) 

+ 

2. Angle Paran1eter 

The \·ector 1I.( n) also provides a way to quantify the change of subs paces 

when we update U(n- 1) to U(n). First note that the inner product of two vectors 

gives the cosine of the angle between them multiplied by the product of their lengths , 

and also that the length of a vector resulting from the projection of any vector into 

a subspace is given by the length of the original vector multiplied by the cosine of 

the angle between the vector and the subspace (this angle has always rnagnit ude 

::; i ). I\ ow observe that 1!:.\ n) is a unit vector orthogonal to the subspace spanned by 

U(n- 1), and Pt(n)1I.(n) is a vector orthogonal to the subspace spanned by U(n) 

with length equal to the cosine of the angle between .z;:(n) and this subspace. Then 

defining the inner-product as 

(77) 

we obtain 

1(n) = (z;:(n) , PD(n).z;:(n)) = 1 X cosO X cosO= cos2 0 (78) 

where 0 is the angle between the components of 1I.( n) that are perpendicular to both 

subspaces {U(n)} and {U(n -1)}. The variable 1(n) will be used to update K1.1\·(n). 

In order to begin the deri\·ation of the recursive procedure we now introduce 

three auxiliary filters: 
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-Forward Multichannel Prediction Filter 

-Backward Multichannel Prediction Filter 

- Gain Transversal Filter 

These are discussed next. 

F. AUXILIARY FILTERS 

The reason for the auxiliary filters will become clear later when it is shown that 

the update of g(n- 1) can be expressed in terms of the auxiliary filters parameters. 

1. (M+ 1) Channel Forward Prediction Filter 

\Ve begin by defining a (}.1 + 1 )-channel signal XF( n) formed by the data 

acquired by the 2-D mask when it is moved from n ton+ 1: 

(79) 

\Ve want to find the best LS filter that predicts XF( n) based on the data ~1 ,N( n) 

covered by the 2-D mask (see Figure 5). Let the coefficients of this filter be defined 

by a((/'/+ 1)( .U + 1)- 1) x (.U + 1) matrix of the form 

(80) 

where each of the ( ( N + 1) (AI+ 1) - 1 )-dimensional vectors L ( n) for ( 1 ~ i ~ A!+ 1) 

is comprised of the multichannel prediction coefficients for channel i with t~e same 

support as g(n). The prediction of xF(n) is given by 

and the prediction error is 

If we define 

XF(n) = [~ 1 (nL~2 (n+1),···,~M+ 1 (n+l)) 
(xF(0),xF(1),· · · ,xF(n)]T 
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M+ 1 

[\j + 1 
Figure 5. Forward Filter Mask 

then XF( n) is a ( n + 1) x (!If + 1) matrix that contains all the multichannel data 

from the origin up to current value of the index n. The estimate of XF( 11) is thus 

(84) 

and the prediction error, also a ( n + 1) x (!If + 1) matrix, is 

(85) 

The error covariance for the multichannel Forward Filter is: 

(86) 

Since we desire F(n) to minimize the error energy 

(87) 

the optimal LS filler is again obtained using the pseudo-inverse of Y 1,N(n) 

(88) 
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This can be expressed using the operator defined in (.55) as 

(89) 

The orthogonality principles mentioned before also apply. That is, the estimate XF( n) 

is the projection of the columns of XF(n) onto the subspace spanned by the columns 

of the matrix containing the previous multichannel data (which in this case is the 

same as the 2-D data). 

(90) 

The error EF(n) is orthogonal to the estimate EF(n), I.e., the columns of these 

matrices span subspaces that are orthogonal to each other. 

(91) 

If e~(n) is defined as the last row of EF(n), it can be obtained using E(n) as 

(92) 

2. (1\1+1) Channel Backward P1·ediction Filter 

For the backward prediction problem we define a (l\1 + 1 )-channel signal 

XB(n) formed by the data left out by the 2-D mask when it is mo,·ed from time n to 

n + 1. This is given by (see Figure 6) 

(93) 

Now define a (n+l) X ((N +1)(Af +1)-1) data matrix Yo,N- 1 (n) that has a structure 

similar to Y1,N(n) (47,48) 

Yo,N-1(n) = 

i:N-1 (O) 

~N-1 (1) 
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fV1 ~- 1 

N+ 1 
Figure 6. Backward Filter Mask 

or 

\\'e note that 

(96) 

and 

(97) 

The problem is now to find the best LS filter that predicts xB( n) based on the data 

matrix Yo,N _ 1 ( n). Let the coefficients of this filter be defined by the ( (N + 1 )( Af + 

1)- 1) x (AI+ 1) matrix 

(98) 

where each of t.he ( ( N + 1 )(A!+ 1)- 1 )-dimensional vectors hi( n) for ( 1 ~ i ~ Af + 1) 

is comprised of the backward prediction coefficients for channel i. The support of 
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this filter is the same as the support of !!(n) but shifted one sample to the right (see 

Figure 6). 

The prediction of XB( n) is given by 

(99) 

and the prediction error is 

( 100) 

\Ve continue to proceed as we did for the forward multichannel filter. The (n + 1) x 

( Af + 1) matrix that contains the backward multichannel data from the origin up to 

n is defined as 

XB(n) [z-N ~1 (n ), z-N ~2 (n), · · ·, z-N ~M+I (n)] 

= (xB(0),xB(1),···,XB(n)f (101) 

Then the estimate of XB( 11) is 

XB(n) = Yo,N-I(n)B(n) (102) 

and the prediction error (also a ( n + 1) X ( Af + 1) matrix) is 

( 103) 

The error covariance matrix for the multichannel backward filter is then given by 

(104) 

To minimize the error energy 

( 105) 

our optimal LS filter is, once more, obtained using a pseudo-inverse, but this time for 

the data matrix Yo.N-dn). 

B(n) = (Y<f.N_ 1 (n)Yo,N-t(n))-
1 

Y<f.N_ 1(n)XB(n) 
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Finally defining a new operator Ko,/\·- 1 (n) in terms of the new data matrix Yo,N-1 (n ) 

(107) 

we can rewrite ( 1 06) as 

B(n) = Ko,N-1(n)XB(n) (lOS) 

The orthogonality principles apply once more. The estimate XB(n) is 

the projection of the columns of XB(n) onto the subspace spanned by the previous 

backward multichannel data 

( 109) 

where Po,/\·- 1 ( n) is the projection matrix associated with the vector space spanned 

by the columns of the new data set Yo,N- 1 (n). 

(110) 

The error EB(n) is orthogonal to the estimate XB(n), i.e., the columns of these two 

matrices span subspaces that are orthogonal to each other. 

( 111) 

Defining e~(n) to be the last row of EB(n) we have 

(112) 

3. Gain Transversal Filter 

The gain transversal filter does not relate to specific prediction operations 

for the data but rather provides another way of quantifying the angular change 1( n) 

between the subspaces associated with data matrices at times n and n- 1. To begin, 

consider the projection of the vector .zr.( n) onto the subspace spanned by Y o,N _1 ( n ). 
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Since this projection Po,N-dn)ZL(n) is contained in the subspace of Yo,N-I(n), we 

can express it as a linear combination of the columns of Yo,N-dn). \\'e write this as 

Po,/\'-I(n)ZL(n) = Yo,N-I(n)g_(n) (113) 

where _g_( n) is a ( (N + 1 )( Af + 1) -1 )-dimensional vector of weights. Note that (113) can 

be interpreted as the LS prediction of .zr.(n) based on the data matrix Yo,N-I(n) where 

g_(n) is the ((N + l)(Af + 1)- I)-dimensional vector of filter prediction coefficients. 

The estimate of ZL( n) is thus given by 

.fr.(n) = Po,N-I(n)ZL(n) = Yo,N-I(n)_g_(n) (114) 

and the prediction error is 

~;-(n) = E(n)- Po,N-I(n)E.(n) = P6-/\·-1(n)K(n) 
- ' 

(115) 

The last component of ~z:(n) can be obtained using K(n) and turns out to be equal 

to /( n) as in ( 78) 

(116) 

Then substituting the middle part of (115) in (116) we obtain 

1(n) = (K(n),K(n)- Po,N-I(n)K(n)) = 1- (K(n),Po,N-I(n)K(n)) (117) 

and using (113) in (117) we find 

1 ( n) = 1 - ( .zr.( n), Y o,N _I( n) g_ ( n)) = 1 - ~N _
1 

( n) g_ ( n) = cos 2 
() ( 11 S) 

where "iJ;,N-1(n) is the last row of the data matrix Yo,N- 1(n). If we now recognize 

that cos2 
() = 1 - sin2 

() we see that 

(119) 

If \\'e use the LS criteria to get g_( n), the solution is again, given in terms of a pseudo­

inverse, or more conveniently in terms of the operator Ko,N-I ( n) of (107) 

g_(n) = Ko,N-I(n)K(n) ( 120) 

This is in the same form that we have for the other filters. 
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G. FILTER UPDATE PROCEDURES 

In this section we determine the time update for the four fil ters defined so far. 

\Ve begin by showing how to update K 1,N(n) and Ko,N- 1 (n ). This resul t will be used 

for updating each of the four filters. 

1. Transversal Operator Update 

Since the operations to be described now are common to all four filters, 

we develop the formulas in this subsection in terms of the generic matrices U and V 

introduced in section E of this chapter. Beginning with (66) we have 

where U is a (n + 1) x ((N + 1)( A/ + 1)- 1) matrix and Vis a (n + 1) x (1U + 1) 

matrix. By definition 

( 
T ) -

1 
T Puv (n) = [U . V ] [U , V] [U , V ] [U , V ] (122) 

and 

( 
T )-

1 
T Kuv (n) = [U , V] [U , V] [U , V] (123) 

It follows that 

Kuv(n) = Kuv(n)Puv(n) (1 24 ) 

hence from (123) 

Kuv(n)[U , V] I[(N+1 )(M+1 )+M]x ((N+1 )(M+1 )+M] (125) 

[ 

IN'xN' ON'xM' ] 

Q M'xN' l.~t'xM' 

with N' = ((N + 1)(Af + 1) -1) and Af' = (Af + 1). Now we can partition (125) and 

write it as two equations, namely 

Kuv(n)U (126) 
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and 

[ 

ON'xM' ] Kuv(n)V = 
IM'xM' 

(127) 

The first equation can be used in conjunction with Pu = U(n)Ku(n) to obtain 

Kuv(n)Pu(n) = [ 
1

N'xN' ] Ku(n) = [ Ku(n) ] (128) 
OM'xN' OJI.f'x(n+l) 

Now substituting (121) in (124 ) and using (125)-(128) to simplify the resulting ex-

pression we have 

Kuv (n) 
[ 

Ku(n) ] { [ ON'xM'] [ Ku(n) ] } 

OM'x(n+1) + I.M'x.JI.f' - OM'x(n+1) V 
(129) 

By forming [V , U ] and following similar procedures, it is straightforward to show that 

Kvu(n) = [ 

0~~::~1)] + {[ ~::::;.] - [ 
0~~::~1)] V} (130) 

X ([Pb(n)VfPD(n)V) -l VTPD(n) 

For the particular case when V = K.( n) these relations are also valid but we can obtain 

them from the derivation gi\·en in the Appendix. The result is 

[ 

Ku(n-1) .Q_] 

-!!TKu(n-1) 1 
(131) 

To check this , note that for V = K.(n) (124) can be written as 

(132) 

Then equating these two ways of obtaining K u,.z!:( n) we can update K u( n - 1) to 

Ku(n) 

[ 
Ku(n- 1) Q

1 

] 

-!!TKu(n - 1) 
[ K:(n) ] _ [ Ku~~K(n) ] (133) 

X ([Pt(n)K.(n)fPb(n)K.(n)) -IKT(n)PD(n) 
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2. 2-D Filter Update 

\Ve no\\' develop update formulas for the 2-D filter. From (.56) \\'e have 

( 134) 

To find ~(n) in terms of ~(n -1) we use (134). Post-multiplying by ~)n), and taking 

V = .zr.(n) and U = Y 1 ,N(n) yields after simplification 

[ -~;:~~:~n~~ 1) ~ ][ ~~~~(:)!)] = [ K,,~(n)] ~,{n) ( 13.5) 

[ 

Kl ,N(n)E(n)] JlT(n)Pf.N(n)L
1
(n) 

-1 1L_T ( n )Pf.N( n )1r( n) 

At this point we note from (97) that since 

(136) 

with LI,l\.(0) = Q as defined initially. then 

(137) 

From this it follo\\' s, using the respective definitions, that 

K1 ,N(n) = [Q,Ko,N-l(n -1)] ( 138) 

and 

P1 ,x(n) = [ O oT ] 
Q Po,N-I(n- 1) 

( 139) 

These results in conjunction with (118) and (120) allow us to write 

g(n- 1) = Ko,l'>-I(n- 1)E(n- 1) = KI,N(n)E(n) ( 140) 
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and 

1(n- 1) = 1- (E(n -1)1 Yo,N-l(n- 1)g_(n -1)) = 1- iJN_
1
(n -1)g_(n- 1) 

= 1- (E(n), Y1,N(n)g_(n -1)) = 1- ~rN(n)g_(n -1) (141) 

and also 

(142) 

The upper part of (135) then becomes 

e1 ( n) 
g(n-1)=g(n)-g_(n-1) ( ) 

1n-1 
( 143) 

or 

e1 ( n) 
g( n) = g( n - 1) + g( n - 1) ( ) 

- 1n-1 
( 144) 

To get et(n) before updating i!(n- 1) we substitute (144) in 

( 145) 

to obtain 

T ei( n) 
el(n)=el(nln-1)-~1 N(n)g_(n-1) ( ) 

· 1n-1 
( 146) 

where we define 

(147) 

1\ow (146) can be simplified using (141) 

ei(n) 
e1(n) = et(nln- 1) + (1(n- 1)- 1) ) = e1(njn- 1)!(n- 1) (148) 

1(n- 1 

and finally (144) can be written as 

g(n) = g(n- 1) + g_(n- 1)e1(njn- 1) (149) 

At this moment we have all we need to update g( n - 1) to g( n) assuming that all 

variables with index n - 1 are available. However we want to find g( n) and 1( n) in 

order to proceed to update !!( n) to !!( n + 1) as soon as Y l,N( n + 1) is available. This 

is discussed next. 
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3. Gain Filter Update 

Begin by forming a new data matrix Yo,N( n) that can be expressed in terms 

of Y 1,N( n) or Yo,N _1 ( n) and the other matrices XF( n) or XB ( n) after a multiplication 

by suitable permutation matrices. Each row and column of the permutation matrix 

contains a single 1 with all the other entries equal to zero. The positions of the 1 's are 

chosen so that when this matrix premultiplies one of the data matrices it rearranges 

its columns to conform with the desired order. We write this as 

(150) 

Now form Ko,J•;(n) and post-multiply the result by .zr.(n) using the first part of (150) 

and (130) with V = XF(n) and U = Y 1,N(n) to obtain 

Ko.N( n )E( n) w~ [ O,\f'x(n+1) ] .zr.(n) + w~ 
Ku,:(n) 

IM'xM' l 
- K 1 ,N( n )XF( n) 

-F(n) 

x (x~( n )PLv(n )XF( n )) _, X~(n )Pf,N(n )1!:( n) 

EF(n) eF(n) 

Since the permutation matrices are orthogonal (WT = w-1
) we have 

By analogy with the definition of gain filter (120) we can define 

or 

'W~g_'(n) = Ko,N(n).zr.(n) 
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as the [(1V + I)(A/ +I) -I)+ (Af +I)-order LS predictor of 1r.(n) using the permuted 

data matrix Yo,N( n) \II~. Equation (I 52) can be rewritten using ( I40) as 

_g'(n) = [ OM' ] + [ lM'xM' ] I::pl(n)eF(n) 
_g(n-I) -F(n) 

(I 55) 

An alternative way to find Ko,N( n )K( n) is to use the second part of (I 50) 

in (129) with V = XB(n) and U = Yo,N-I(n) to obtain 

Ko,N(n)K(n) = \II~ [ Ko,N-I(n)] K(n) 

OM'x(n+l) 

(I 56) 

I\'ow similarly define 

(I 57) 

as the [(N + I)(J/ +I) -I)+ (AI+ I)-order LS predictor of K(n) using the permuted 

data matrix Yl,],·- 1 (n)\II~. Since 

\II~ _g" ( n ) = \II~ _g' ( n) 

it follows that 

It is useful to partition _g"(n) as 

_g"(n) = [ M(n) ] 
m(n) 

(I 58) 

(I 59) 

( I60) 

where M(n) is a (1'./ + I)(A/ + 1) -1 vector and m(n) is a (AJ +I) vector. The lower 

partition of ( I5 7) is then 

(I6I) 
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This can be substituted in the upper partition of (157) to give 

g(n) = M(n) + B(n)m(n) ( 162) 

Thus it is seen that if g'( n) is available, we can obtain g( n ), provided that we have 

F( n ), B( n ), and all the associated parameters already available. 

The inversions of EF( n) and EB( n) can also be carried out recursively using 

the matrix inversion lemma (details are given in subsection 7 of this chapter). 

4. Forward Filter Update 

To update the forward filter, proceed as follows. From (89) we have 

( 163) 

To find F(n) in terms of F(n- 1) we use (134) post-multiplied by XF(n) with V = 

.zr.(n) and U(n) = Y 1,t.;(n) to obtain 

[ 

K1 ,x(n- 1) 

-y7 .K 1,A·(n- 1) 
-l,A 

Q] [XF(n-1)] 
1 x~(n) 

(164) 

[ 

KI.N(n)] [ Kl,N(n).zr.(n)] zr.7 (n)Pf.N(n)XF(n) X F ( n) - _T__;____..:_.:..:.....l ___ _ 

0 -1 .zr. (n)P 1,N(n)1I(n) 
= 

Then using only the upper partition we find 

e~(n) 
F(n-1)=F(n)-g(n-1) ( ) 

- 1n-1 
(165) 

or 

e 7 (n) 
F(n)=F(n-1)+g(n-1) (F ) 

- 1n-1 
(166) 

To compute eF( n) before having F( n - 1) we note from (81) and (82) that 

( 167) 

37 



and substitute (166) to obtain 

(168) 

where we define 

(169) 

Now (168) can be simplified to 

e7 (n) 
e~(rz) = e~(nln- 1) + (!(n- 1)- 1) ( F ) = e~(nln- 1)!(n- 1) (170) 

{n-1 

Hence from ( 166) we have 

F(rz) = F(n- 1) + g_(n- 1)e~(nln- 1) (171) 

This is the desired update formula for F( n ). 

To compute L:F(n) we use (71) with U = Y 1,N(n) , V = 1r.(n) and z = 

y = XF(n) and. also (75) to obtain 

T .L ,.. " eF(rz)eF(n) 
XF(n) P 1 N~(n)XF(n) = .:...;F(n)- ( . ) 

· ·- 1 n - 1 
( 172) 

Then using ( 110) we obtain 

( 173) 

Finally, simplifying ( 173) we find 

(174) 

or 

(175) 

Thus all the parameters for the forward multichannel prediction problem can be 

updated from the Yalues obtained at the end of the ( n - 1) recursion. 
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5. Backward Filter Update 

The update procedure for the backv·:ard filter is similar to that for the 

fon'>'ard filter. From (108) wehaYe 

B(n) = Ko,N-t(n)XB(n) ( 176) 

To find B(n) in terms of B(n- 1) we use (134) with V = 1L.(n) and U = Y 0 ,,.; _ 1 (n) 

and postmultiply by XB( n) to obtain 

[ 
Ko,t·•-dn-1) 0] [XB(n-1)] 

-J:rl\'-t Ko,r:-t(n -1) 1 x~(n) 

[ 

Ko.JV-l(n)] [ Ko,N-t(n).zr.(n)] .zr.T(n)P~,N-t(n)XB(n) 
XB ( 11) - -T--.i-----

0 -1 .zr. (n)Po,.l\'-t(n)E(n) 

Then using only the upper partition of this equation we obtain 

or 

e~(n) 
B(n- 1) = B(n ) - g(n) !(n) 

eT(n) 
B (n) = B (n- 1) + g(n) ;(n) 

To compute eB(n) before haYing B(n -1) we substitute (179) in 

to find 

where we define 
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( 178) 

( 179) 

(180) 

(1 81) 

(182) 



Kow (181) can be simplified to 

T T e~(n) T 
e8 (n) = e8 (nln- 1) + (!(n)- 1) !(n) = e8 (nln- 1)/(n) (183) 

Therefore 

B(n) = B(n -1) + g(n)e~(nln- 1) ( 184) 

\Ve note here that the update of g_(n) depends on B(n) and vice-versa, but 

we will address that problem shortly. 

To compute L:B(n) we use (71) with U = Yo,N- 1 (n) , V = K.(n) and 

z = y = XB(n), and also (75) to obtain 

T .l eB(n)e~(n) 
X 8 (n)PoN-l7r(n)XB(n) = L:B(n)- ( ) (185) , ,_ In 

(186) 

and simplifying we find 

(187) 

or 

(188) 

\Ve are now ready to solve the problem of mutual dependence between g( n) 

and B(n). For this refer to (161) and (162). Substituting (184) in (162) we obtain 

g(n) = M(n) + B(n- 1)m(n) + g(n)e~(nln- 1)m(n) (189) 

Now note that since 

(190) 

is a scalar, (189) becomes 

~(n) = [M(n) + B(n- 1)m(n)] (1- e~(nln -1)m(n))- 1 (191) 

and the problem is solved. 

40 



6. Angle Paran1eter Update 

The final relation need to complete the recursion is an update formula for 

1(n). This update is performed in a manner similar to the update of ~(n ); that is we 

compute the angle parameter related to the data matrix Yo,N( n) using two different 

approaches and then equate them. By the same procedure that lead to (118) we 

define 

1'(n) = 1- ~N(n)Ko,N(n)E.(n) (192) 

Then using (154) for Ko,N(n).zr.(n) and partitioning ~N(n) into 

( 193 ) 

we obtain 

1'(n) = 1- [x~ (n),~i,N(n)] ~g'(n) ( 194 ) 

I 

and using (152) and simplifying we find 

( 195) 

If we now use (157) for Ko.N (n)E.(n) and partition ~.N(n) as 

( 196) 

we obtain 

1'(n) = 1- [~,N- 1 (n),x~(n)] ~~"(n) (197) 

I 

This can be simplified to 

(198 ) 

but using (183) and (161) \\'e obtain 

1(n) = 1'(n )[1 - e~(n In - 1)m(n )t1 (199) 
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where everything in the right side of (199) is available. 

Since ~:81 
( n) does not appear explicitly in any of the updates we need only 

to update ~F1 
( n ). This can be easily done using the matrix inversion lemma. The 

specific procedure is outlined below. 

7. Inverse Matrix Update 

Although all the quantities have now been derived that permit the recursion 

to continue, we note that the inverse matrix ~F1 , and not the matrix itself occurs in 

the recursions. This is a fairly small matrix and could be inverted directly. However it 

is more efficient to also compute the inverses recursively. This is easily accomplished 

using the matrix inversion lemma [Ref. 5, 7]. \\7e have from (175) 

or using (183) we have 

The matrix inversion lemma states that if 

then 

For 

F 

G 1(n- 1) 
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(201) 

(202) 

(203) 

(204) 

(205) 

(206) 

(207) 



we obtain 

(208) 

The computation of l:F1(n) using the matrix lemma amounts to 1.5(Af +1) 2 +2.5(Af + 

1) multiplications and one division. 

Although the matrix l::B1 
( n) could be computed in a similar way, the in­

verse of l:B ( n) is not needed for the 2- D filter. 

H. ALGORITHM SUMMARY 

1. Computational Complexity 

The computational cost of the algorithm depends on the shape and size of 

the filter mask. For each mask we must define, as mentioned before 1 both a forward 

and a backward multichannel signal a number of channels equal to the number of new 

points acquired or dropped off by the mask. Call this number l\'1 . For the quarter 

plane filter we used J\1 = A!+ 1. Now further define J\2 as the number of coefficients 

in the 2-D filter mask (for the case used in the derivation J\2 =(A!+ 1)(X + 1) -1). 

The computational cost of the algorithm depends only on these two numbers. :Kote 

that the use of the permutation matrices only changes the ordering of the elements in 

the matrices affected by them 1 allowing the procedure to be used for any shape and 

size of filter. The permutation can be obtained without any multiplications, hence 

it will not be considered in this analysis. \Ve also mentioned before the use of a 

forgetting factor ). in the cost function to handle nonstationary signals. The effect of 

this constant in the final algorithm shows up only in the computation of the inverse 

error covariance matrix for the forward multichannel filter: 

(209) 

This increases the computational cost by K1 multiplications. A detailed count of the 

number of operations required by the algorithm is given in subsection 3 below. The 
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method used for the 1-D RLS can be applied to 2-D signals by forming the ]{2 x ]{2 

2-D deterministic correlation matrix and the 1{2 X 1 vector of deterministic cross-

correlation terms bet ween the desired filter response and the filter inputs. This form 

of 2-D RLS algorithm requires 1.51\~ + 4.5]{2 operations per iteration which increases 

quadratically with K2. 

2. Initial Conditions 

The recursive implementation of the algorithm requires some initialization 

for the \'ariables used. The assumption that the signal is zero before iteration n = 0 

is reasonable and suggests that all the filter parameters including those of the gain 

filter. should all be set to zero. This choice of initial conditions implies that the 

angle parameter 1 (0) must be set to 1.0 since all of the subs paces associated with 

previous data are the null space. However, a positive forward prediction error energy 

is necessary for the algorithm to start. The initial conditions used are therefore 

£(0 ) Q (210) 

F(O) 0 (211) 

B(O) = 0 (212) 

g(O) = Q (213) 

!(0) 1 (214) 

\'-1 1 
(215) -IM'xM' -'F b 

b small positive constant (216) 

3. Iteration at tin1e n and Required Arithmetic Operations 

The terms to be computed at each iteration, and their formulas are given 

below. 

- A priori 2-D prediction error (1\2 operations) 

(217) 
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- 2-D filter update (J\2 operations) 

E(n) = E(n- 1) + g_(n- 1)e1(nln- 1) (218) 

- A priori multichannel forward prediction error (J\1 1{2 operations) 

(219) 

- l\1 ultichannel forward prediction error ( I<1 operations) 

(220) 

- Inverse error covariance matrix for the multichannel forward filter (1 .. 51\f+ 

2.5!\'1 operations) 

(221) 

- l\1 ultichannel forward filter update ( ]{1 ]{2 operations) 

F(n ) = F(n- 1) + g(n- 1)eF(nln- 1) (222) 

- Extended gain transversal filter ( Kf + ]{1 l\2 operations) 

g"(n) = [ M(n) l = \lJBwF ([ 
0

1\f' l + [ IM'xl\f' l EF-1eF(n)) (223) 
n1(n) g(n -1) -F(n) 

- Extended angle parameter (J\1 operations using previous results) 

(224) 

-A priori multichannel backward prediction error (I<1 l\2 operations) 

(225) 

- Angle parameter (J\1 + 1 operations) 

/(n) = 1'(n)[1- e~(nln- 1)m(n)t1 (226) 
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- Gain transversal filter ( J\1 1<2 + 1<2 operations using previous results) 

g_(n) = [M(n) + B(n- 1)m(n)] (1- e~(nln -1)m(n))- 1 (227) 

- Multichannel backward filter update (J\1 J\2 operations) 

B(n) = B(n- 1) + g(n)e~(nln- 1) (228) 

The total number of operations (multiplications or divisions) required per iteration 

by the algorithm is 

(229) 
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IV. EXTENSIONS, APPLICATIONS AND RESULTS 

The 2-D FRLS algorithm was developed in the previous chapter for a 2-D pre­

diction filter whose observed signal was the same as the sequence under the filter 

mask. In this particular case the coefficients of .a( n) for the 2- D filter, are identical to 

the coefficients of the first column f1 ( n) of the multichannel filter F( n ). To see this , 

note that by definition, the error energy for the multichannel forward prediction filter 

(87) can be rewritten as the summation of the error covariance associated with each 

of the (~1+1) channels of the forward prediction filter , where the first term is ~ 1 (n) , 

i.e., the sum of squared errors for the first channel ( 44). \Ve can rewrite (87) as 

(230) 

where Y F( n) is independent of the coefficients in f 1 ( n ). The 2- D filter coefficients and 

the coefficients in the first column of the forward multichannel filter are the result of 

minimizing the same cost function and are thus identical. 

\Ve will now consider the case when the data sequence under the prediction 

mask is distinct from the obs£.rN.d sequence (general FIR \Viener filter) and also the 

case when the filter mask covers not only observation data, but also other input data 

sequence (AR~IA model). Following that we will present the results of computer 

simulations to illustrate the applications of the adaptive algorithms for 2- D signal 

processing. 

A. GENERAL FIR WIENER FILTER 

The extension of the 2-D FRLS to the general FIR \Viener filtering problem is 

straightforward to obtain by following the same concepts presented in chapter 3. To 

be specific we again consider a first quadrant ( N + 1) X ( Af + 1) filter here. However , 

the procedure applies more generally to nonsymmetric half plane and other filters as 
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discussed in section H of chapter 3. The multichannel notation developed in chapter 

3 is used here to define two/{ x L 2-D sequences d1 (n) and y1(n), where d1 (n) is the 

sequence we want to estimate based upon the input sequence y1 ( n ). Our goal is to 

find a prediction filter of the form 

(231) 

with ~I.N defined as in (39) and ~(n) defined as in ( 41) that minimizes the sum of 

squared errors 
n 

t 1 (n) = 2:]ei(i)f (232) 
i=O 

where the prediction error e1(n) is given by 

(233) 

This can be written in Yector notation as 

(234) 

where 

(235) 

with Q.1 ( n) defined as ( n + 1 )-dimensional vector that contains the observation data 

from the origin up to point n. Then the estimate d1 (n) is given by 

(236) 

where Y l,N( n) is the same data matrix as in ( 4 7) and ( 48). The least squares solution 

for ~(n) is once more given by the pseudo-inverse 

(237) 

and the estimate of g1 (n) and the prediction error can also be expressed in terms of 

the projection matrices defined in chapter 3. The estimate ~h ( n) is the projection of 
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d1 ( n) onto the subspace spanned by the input data 

(238) 

The error ~1 ( n) is orthogonal to the estimate rl1 ( n) and is given by 

(239) 

The operator K 1,N(n) defined in (55) can be used to rewrite .a(n) as 

(240) 

\Ve already know how to obtain K 1,N(n) from K 1,N(n- 1) in a efficient \Vay, 

thus we are able update .a(n- 1) to .a(n) as soon as d1 (n) is available. The complete 

algorithm is the same as the one summarized in section H of chapter 3 with y 1 (n) 

replaced by d1 ( n ) in (217). 

B. ARMA MODEL 

The AR~IA version of the 2-D FRLS can be viewed as follows. Let us call 

the output or observed data y 1 (n) and the input data w1 (n). For the present let 

us assume that thi s latter sequence is also knov.;n or observed. Let us separate the 

coefficients that operate on the two different sequences and call .a( n) the vector of 

AR coefficients of the filter, and h(n) the vector of MA coefficients of the filter. As 

before, we develop this extension of the 2-D FRLS to AR~lA models assuming a first 

quadrant (N + 1) x (A!+ 1) quarter plane mask for both the AR and MA components 

of the filter, noting that more general forms are possible. Using the scanning index n 

defined before, we proceed by defining an ARMA prediction filter of the form 

(241) 

with ~I,N(n) and w 1,N(n) defined using the same concepts as in (39). \Ve want to find 

.a( n) and h( n ), the filter coefficients defined respectively for each mask, to minimize 
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the sum of squared errors 
n 

t:1(n) = 2:[e1(i)]2 
i=O 

where the prediction error is given by 

This can be written in vector notation as 

with 

g 1 ( n) = y ( n) - y ( n ) 
-1 -1 

\Ve can combine the AR and ~IA coefficients in one single vector £.(n) as 

The data under the mask can then be expressed as 

~ow we have for the estimate of y (n) 
-1 

where Zuv(n) is the data matrix 

(242) 

(243) 

(244) 

(245) 

(246) 

(247) 

(248) 

(249) 

formed by Y 1,N(n) and W 1,N(n), the data matrices associated respectively with the 

AR and the MA masks with the same structure as ( 4 7) and ( 48). The least squares 

solution for£.( n) is given by the pseudo-inverse of Zl,N( n) 

(250) 

After defining new projection matrices and transversal filter operators associated with 

the new data rna trices, the algorithm to recursively update £.( n) closely follows the 

procedures developed in chapter 3. 
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C. ARMA MODELING WITH UNKNOWN INPUT 

In the previous section on 2-D AR1\1A modeling, it was assumed that the se­

quence w 1(n) was known and available. This is an ideal situation which could some-

times exist for example in a system identification problem (see Figure 7). Given both 

UNK NOWN 
SYS TEM 

Figure 7. l\1odeling with Known Input 

the input sequence w1 ( n), and the output sequence y1 ( n) and an assumed linearity 

and order for the model, we ha\'e all the information necessary to identify the unknown 

system under analysis. Knowledge of the input sequence is not always available, how­

ever this is the case, for example, in the problem of estimating the parameters of an 

AR1\1A model where w1(n) is a 2-D white noise sequence. The ARMA parameter 

estimation problem for unknown input was addressed using recursive algorithms for 

1-D signals by embedding the AR and MA estimation in a 2-Channel AR modeling 

problem [Ref. 2). The difficulties with the procedures suggested are similar here; the 

2-D white noise process w 1(n) is not known and needs to be estimated from the data. 
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Assume that at some moment n all the data under the MA mask is known 

except the most recent sample of the noise sequence w1 (n). Further assume that the 

ARM A filter coefficients estimated so far are fairly close to the actual coefficients 

that characterize the system. The natural choice for an estimate for the unknown 

noise sample is the error e1 ( n ), i.e., we expect the error to be zero if the noise sample 

was known. This procedure is known as "bootstrapping" [Ref. 2] (see Figure 8). It 

UNKNOV/N 
SYSTEM 

Figure 8. Modeling with Unknown Input 

involves two steps. First an estimate y 1 ( n) is obtained assuming w1 ( n) = 0 and using 

the old parameter estimates. Secondly w 1 ( n) is set equal to e1 ( n) and we proceed as 

in the case of a known input sequence. This method is highly nonlinear and hence 

very difficult to analyze. However it was found to give reasonable results in practice. 

D. SIMULATION RESULTS 

The 2-D FRLS algorithm was tested both on computer-generated data and on 

digitized images. For a baseline reference the 2-D L:rv1S algorithm was also imple­

mented. The synthetic data for the system identification and parameter estimation 

results was obtained by driving different 2-D transfer functions with computer gen-

52 



erated white Gaussian noise. l\1ost of the tests were performed on 32 x 32 point 

2-D data sequences. Image coding was performed for 256 x 256 pixel images using 

the VICOl\1 system for display purposes and a VAX-785 computer for the algorithm 

implementation. The algorithms were coded in Fortran. 

1. 2-D System Identification 

The first computer simulation in system identification was performed using 

a (2x2) l\1A model. A computer-generated white Gaussian noise sequence was applied 

both to a filter with known coefficients and to the adaptive filter in the manner of 

Figure 7. The error between the output of the two filters was used to adjust the 

coefficients of the adaptive filter. The MA filter had the form 

with 

d(n 1,n 2) = b(O.O)y(n1,n2) + b(0,1)y(n1,n2 -1) 

+ b(l, O)y(n1- 1, n2) + b(1.1)y(ni - 1, n2- 1) 

b(O, 0) -

b(O, 1) -

b( 1' 0) 

b( 1, 1) 

1.0 

0.6 

-0.3 

0.3 

(251) 

(252) 

(253) 

(2.54) 

(255) 

The rate of convergence is shown in Figure 9. As can be seen, each of the coefficients 

converged very rapidly to the actual value. The 2-D LMS algorithm was also imple­

mented for this case, but as can be seen in Figure 10 the convergence rate is very 

slow. 

The next simulation was performed usmg an ARMA model where both 

the AR and the l\1A masks were first order nonsymmetrical half plane filters. A 

computer-generated white Gaussian noise sequence was applied both to a filter with 

known coefficients and to the adaptive filter. The error between the output of the 
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Figure 9. Systetn Identification IvlA Model 

two filters was used to adjust the coefficients of the adaptive filter. The ARMA filter 

had the form 

y(nt,n2) = a(l,O)y(nt -l,n2) + a(-I,l)y(nt + I,n2 -1) (256) 

with 

+ a(O, l)y(nt, n2 - 1) + a(l, I)y(n 1 - I, n2- I) 

+ b(1,0)w(n 1 -I,n2) + b(-I,I)w(n1 + 1,n2 -I) 

+ b(O, 1)w(nt, n2 - I)+ b(I, I)w(n 1 - I, n2- I) 

a(1,0) = 0.8 

a(-1,1) = -0.1 

a(O, I) = 0.4 
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Figure 10. Systen1 Identification MA Model (2-D LMS) 

a(l,l) -0.5 (260) 

b( 1' 0) - -0.2 (261) 

b( -1' 1) 0.1 (262) 

b(O, 1) = 0.8 (263) 

b( 1' 1) = -0.5 (264) 

The rate of convergence is shown in Figure 11 and Figure 12 for both the AR and the 

l\1A coefficients. As can be seen there, each of the coefficients converged in about 80 

iterations to the true value. 

To test the behavior of the algorithm with non-stationary data the same 

model was run with data obtained by changing some of the coefficients at iteration 
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a(l,O) 0.1 

a(-1,1) - 0.6 

b(1,0) = 0.4 

b(O, 1) = 0.2 

\ . 
statiOnary 

(265) 

(266) 

(267) 

(268) 

As shown in figur e 13 and Figure 14, the AR and the MA coefficients converged to 

the true initial values, but at iteration 120 when some of the coefficients were changed 

the algori tbm started slowly tracking t.he new coefficients. Since no forgetting factor 

was used bPrc, the algorithm does not forget the initial data and the convergence is 

very slow. The estimated coefficients remain biased. By using a forgetting factor 
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Figure 12. Systen1 Identification ARMA Model (MA coeff. ~tationary 

data) 

of .\ = 0.95 we obtained the results shown in Figure 15 and Figure 16. \Nith the 

introduction of this forgetting factor the filter coefficients were able to lock on the 

new coefficients in about 150 more iterations. 

2. 2-D Paran1eter Esti1nation 

The first computer simulation in parameter estimation was performed us-

ing a first order nonsymmctric half plane Aft model. A computer- generated white 

Gaussian noise sequence was applied to a 2-D AR filter with known coefficients to 

obtain the data. The adaptive filter has access only to the AR (output) sequence as 

shown in Figure 8. The error between the output of the two filters was used to adjust 
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Figure 13. Systen1 Identification ARMA Model (AR coeff. nonstationary 
data) ). = 1.0 

the coefficients of the adaptive filter. The AR filter had the form 

+ a(O, 1 )y(n 1 , n2 - 1) + a(1, 1)y(nt - 1, n2- 1) + w(nt, n2) 

with 

a(1,0) = 0.8 

a(-1,1) = -0.1 

a(O,l) = 0.4 

a( 1, 1) = -0.5 
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The rate of convergence is shown in Figure 17 and as can be seen each of the coeffi­

cients converged to values close to the true values. Since the algorithm does not know 

the input sequence and has to estimate it, there is a slight variation of the estimated 

coefficient around the true values. Here again the 2-D LMS algorithm was imple­

mented, but as can be seen from Figure 18 some of the coefficients did not converge 

even after 900 iterations. 

Next the modeling procedure with unknown input was tested for the ARMA 

case. A first order nonsymmetric half plane mask was used for both the AR and MA 

coefficients. A computer-generated white Gaussian noise sequence was applied to a 

filter with known coefficients to obtain the ARMA data. The adaptive filter does not 

have access to the driving sequence. The error between the output of the two filters 
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Figure 15. Systen1 Identification ARI\1A Model (AR coeff. nonstationary 
data) ). = 0.95 

was used to adjust th e coeffi cients of the adaptive filler. The ARMA filter had the 

form 

with 

y(n1, n2) = a (l , O)y(n1 -1 , n2) + a(-1,1)y(nl + 1,n2 -1) 

+ a(0 , 1)y(n1, n2 -1) +a(1,1)y(nl -1,n2 -1) 

+ w(nh n2) + b(1 , 0)w(n1 - 1, n2) + b(-1, 1)w(n1 + 1, n2 - 1) 

+ b(O, l)w(n 1,n 2 -1) + b(l, 1)w(n1 -1,n2 -1) 

a(1,0) = 0.8 

a(-1 , 1) = -0.1 

(274) 

(275) 

(276) 
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a(O, 1) = 0.4 (277) 

a(1,1) = -0.5 (278) 

b( 1' 0) - -0.2 (279) 

b( -1, 1) = 0.1 (280) 

b(O, 1) = 0.8 (281) 

b( 1' 1) = -0.5 (282) 

The rate of convergence is shown in Figure 19 and Figure 20 and as can be seen each 

of the All coefficients converged to values close to the true values. This is similar to 

what happened for the AR parameter estimation problem. The MA coefficients also 

converged to values acceptably close to the actual MA values, but they show some 
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sco.o 

bias . As in the previous case the algorithm does not have knowledge of the input 

sequence, hence estimates it using the bootstrapping scheme. Although this method is 

difficult to analyze due to its non-linear nature, the results obtained are encouraging. 

3. Image Coding 

An image coding problem was also used to test the adaptive algorithm. 

Two black and white images, Figure 21 and Figure 22, with 256 x 256 pixels were the 

2-D sequences used to perform AR and AR~1A parameter estimation as described 

above. The 2-D LMS algorithm was also applied to the images to estimate the AR 

parameters. These parameters were then used to form the linear predictor used in 

the coding and decoding scheme shown in Figure 23. A two level quantizer with the 

step size value taken from the ~1ax table was used, assuming that the error sequence 
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Figure 18. Para.rneter Estin1ation AR Model (2-D LMS) 

obtained had a Gaussian distribution [Ref. 12]. This resulted in a quantized error 

sequence corresponding to one bit per pixel. The image reconstruction was performed 

by driving the inverse filter with the quantized error sequence. 

The first image was reconstructed after being encoded usmg the three 

different linear predictors and the results are shown in Figures 24, 25 and 26. The 

error images between the original image and the reconstructed images are shown in 

Figures 27, 28 and 29. One of the most widely used measures for the performance 

of a predictive coder is the signal-to-noise ratio (SNR). For a ]{ X L 2-D sequence 

y(n 1 , n 2), it can be defined as follows: 

{283) 
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The subjective q~ality of the reconstructed images agrees with the signal­

to-noise ratio (SNR) obtained for each case. 

2-D LMS (AR) 

2-D FRLS (AR) 

SNR 15.96dB 

SNR = 17.24dB 

2-D FRLS (ARMA) SN R - 18.29 dB 

(284) 

(285) 

(286) 

The better performance of the 2-D FRLS when compared with the 2-D LMS is ap­

parent in the results. The improvements obtained for this image with the ARMA 

model imply that the model was able to fit the image better than the AR model and, 

thus produce an error sequence that was more nearly white. 

The algorithm was also tested on the second image (Figure 22). The results 

are shown in Figures 30, 31 and 32. The error images between the original image 

and the reconst ructed images are shown in Figures 33, 34 and 35. The subjective 
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Figure 20. Paran1~ter Estimation ARMA Model (MA coeff.) 

quality of the reconstructed images once again agrees with the signal-to-noise ratio 

(SNR) obtained for each case, but the quality difference between the reconstructed 

images obtained using different methods is smaller. 

2-D Ll\1S (AR) SN R 17.25 dB 

2-D FRLS (AR) SN R - 18.16 dB 

2-D FRLS (ARMA) SN R - 18.62 dB 

(287) 

(288) 

(289) 

In particular, the improvements obtained with the ARMA model for this case ar~ 

not as large. This is probably because the second image has a large number of sharp 

edges, and these are quite difficult to model with any finite order linear model. 
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Figure 21. lnwge 1 Original 

Figure 22. linage 2 Original 
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Figure 23 . Predictive coding. (taken frotn [Ref. 6]) 

Figure 21. lnwge 1 Jtecoustructed 2-D L.l\1S (All) 
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Figure 25. ln1age 1 Reconstructed 2-D FRLS (AR) 

Figure 26. ln1age 1 Reconstructed 2-D FRLS (ARl\1A) 
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Figure 27 . lnwge 1 Error 2-D LMS (AR) 

Figure 28. Inmge 1 Error 2-D FRLS (AR) 
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Figure 29. Itnage 1 Error 2-D FH.LS (ARI\1A) 

Figure 30. Irnage 2 Reconstructed 2-D Ll\1S (AR) 
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Figur·e 31. Irnage 2 Reconstructed 2-D FRLS (AR) 

Figure 32. lrnage 2 Reconstructed 2-D FRLS (ARMA) 
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Figure 33 . Irnage 2 Error 2-D LMS (AR) 

Figure 34 . Irnage 2 Error 2-D FRLS (AR) 



Figure 35. In1age 2 Error 2-D FRLS (AitMA) 



V. CONCLUSIONS AND RECOMMENDATIONS 

A Two-Dimensional Fast Recursive Least Squares (2-D FRLS) algorithm was 

developed using a geometric formulation. The derivation is based on the relation 

between least squares prediction and the concepts of orthogonality associated with 

vector spaces. The ordering necessary to develop the recursive algorithm was imposed 

on the data by using a linear scanning index. 

A substantial reduction in computational cost is obtained when compared with 

the basic 2-D RLS algorithm. The 2-D FRLS algorithm requires on the order of 

61{1 1{2 arithmetic operations per iteration compared with 1.51{? for the basic RLS, 

where 1{1 is the number of channels defined for the 2-D FRLS algorithm and 1{2 is 

the total number of coefficients in the 2-D filter. The 2-D LMS algorithm, due to 

its simplicity, is still more economical than our algorithm in terms of computational 

cost, but lacks the excellent convergence performance experienced for the 2-D FRLS. 

The work described here could be extended in several different ways. First a 

thorough investigation of the behavior of the algorithm when using finite word length 

implementation as well as different forgetting factors could be developed. Secondly, 

techniques used for the 1-D fast RLS to obtain further reductions of the computa­

tional cost could be investigated. In particular a variant called the gain normalized 

Fast Transversal Filter [Ref. 6] seems to be applicable to the 2-D FRLS. Its derivation 

however does not follow directly from the geometrical approach presented here. Fi­

nally, the algorithm could be tested in other areas including 2-D parametric spectral 

estimation. 
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APPENDIX PROJECTION MATRIX UPDATE 

This appendix dcri,·es the results 

, [ Pu(n- 1) 0.

1 

] 
Pur.(nJ = 

- g_T 
(290) 

and 

= [ Ku(n- 1) Q] 
-yTKv(n- 1) 1 

(291) 

used in Chapter 3. 

Begin by noting that the data matrix [U(n) , .zr.(n)) can be partitioned as 

0 

0 

~] [U(n),.zr.(n)) = U(n) = [ U(n- 1) 
(292) 

l ~ J 

!!T 

where!! is the last row of U(n). Pul!:(n) is defined by 

( 
T ) -1 T Pul!:(n) = [U(n),.z;:_(n)) [U(n),.z;:_(n)) [U(n),.z;:_(n)) [U(n) , .z;:_(n)) (293) 

Then using (292) we ha,·e 

T -1 [UT(n-1)U(n-l)+uuT !!

1

]-l ([u ( n), .zr.( n)] [U ( n) , E( n)]) = --
!!T 

(294) 

Here we will use the relation for the inverse of a symmetrical matrix by partitioning 

[Ref. 13). If: 

M=[~ ~] (295) 
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with C = BT and A and D square matrices, then 

with 

and 

Q = D -CP 

For our case we have 

A 

B !! 

D 1 

The matrix im·ersion lemma [Ref. 5, 7) is used first to obtain A -l as follows. 

The matrix inversion lemma states that if 

then 

:t\ow taking 

E 

F = !! 

G 1 
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(297) 

(298) 

(299) 

(300) 

(301) 

(302) 

(303) 

(304) 

(305) 



we have 

where ]{ = y_TE- 1 y_ . The upper left partition of (296) becomes 

A -1 + pq-IpT 

To find the other part it ions we write 

1 + 1\ 1 + ]{ 

and 

thus v·:e have 

Now substituting (311), (313) and (314) in (296) we obtain 

M
_1 __ [ (ur(n- 1)U(n- 1)) -I -(ur(n- 1)U(n- 1)) -I!!] 

-!! T ( UT ( 71 - 1) U ( n - 1)) -l ]{ + 1 
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(306) 

(307) 

(308) 

(309) 

(310) 

(311) 

(312) 

(313) 

(314) 

(315) 



Postmultiplying this result by the transpose of (292) we obtain 

[ 

Ku(n-1) 
Ku"(n) = 

- -yTKu(n-1) 

Finally, premultiplying by (292), (293) becomes 

Q.E.D. 

[ 
Pu ( n - 1) i!

1 

] 
Pu"(n) = 

- T {! 
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