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Markov Chain Moment Formulas for

Regenerative Simulation

Abstract

Let {X, : n > 01 be a regenerative Markov chain on a general state space, and f a real-valued bounded

function. Let r and Z be random variables that have the distribution of a regeneration cycle length and the

sum of f(Xk) over a cycle, respectively. This paper derives expressions for moments of the form E(rJZk),

which are then used to gain insight into the qualities of regenerative estimators based on different regeneration

points.

Kevwords

Regenerative simulation, moment formulas, Markov chains.

1. Introduction

The regenerative method of simulation output analysis uses the fact that the interblocks of a regenerative

stochastic process are independent and identically distributed to construct a consistent estimator of the

variance constant used to derive confidence intervals. If a process has more than one regeneration point, the

estimator will have the same limiting value no matter which point is used to block the observations. While

all such estimators have the same limit, different regeneration points may yield variance estimators with

different variances. A common rule of thumb for obtaining an estimator with low variance is to choose the

regeneration point that has the least mean regeneration time.

Glynn and Iglehart ([5]) proved a bivariate central limit theorem for the regenerative point estimator

and the standard deviation estimator. Numerical calculations presented in the paper showed that the off-

diagonal element in the covariance matrix appeared to be independent of the return state used to delimit

regenerative cycles. The purpose of this paper is to derive an expression for the covariance matrix that

appears in the central limit theorem in the case .. ;lass of Markov chains. The expressions derived show

that the off-diagonal term is independent of the re, ., state. Some insight is gained into the nature of the

variance of the variance estimators for different return states. An example is given where the state that

yields the least variable variance estimator has the greatest mean regeneration time.
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2. Notation

Let (S,S) be a measurable space, where the a-field S is countably generated (for example, S could be a

metric space and S its Burel a-field). Let P be a Markov kernel on (S,S), and put P°(x,.) = 6 , and for

n>l,
P'(x, A) = sP"' -(x dy) P(y, A).

For any initial probability p, the Markov kernel P determines a probability measure P, on the product

measurable space -,=o (S' S'S), where each (S", S , ) = (S,S), through the relations

P, (Xo E Ao,.,X, E AO) L (dzo)f P(o,dl)... P( 2 ,dz-l)P(,-l,A)

where Xk is the projection of f'lLo(S', S') onto (S' , S'). We write E, for the expectation with respect to

the probability P,, and if O = b, then we write P, and E,.

For A E S, SA will denote the first return time of the chain to the set A and rA will denote the first

hitting time of the set A (s and r coincide unless the chain starts in A, in which case sA = 0). We will write

s, and r instead of s{,} and r{}.

For AESand zxESlet

P",(A) = P.{X, E A;Xk $ zO < k < n),

and define the kernels
00

Qk(z,A)= ZnkP,,(A), k=0,1,....
n=1

Qo(x, A) is the expected amount of time the chain spends in A before absorption at z.

We will consider only chains that are uniformly p-recurrent; that is, there exists a a-finite measure p

such that if o(A) > 0, then P[rA n] -* 0 uniformly in z E S. Uniformly p-recurrent chains have a unique

invariant probability measure, which will be denoted by 7r. We assume that the chain is aperiodic.

Throughout the paper z will denote a fixed return state with r({z}) > 0. When subscripts are omitted

the state will be understood to be z: e.g. E(r) = E,(rz).

A consequence of the uniform recurrence is that for every z E S, E.(r2) < oo, and therefore Qo(x,)

and Qi(z, .) are finite measures for each z, with respective variations

00

Q0(ZS) = Z . >r n) = E,(r.)
nl=1

and

Qi (-, S)=ZnP.(r. -)=F n+n P,{r n}
n=1 n= 2

1 1 ( r 2)
= sE.(r,) + E,(r;).

Note that Qi(z, {z}) =E(r).
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For the chain to be Harris recurrent (also called ,-recurrent) requires only that there exist a a-finite

measure ; such that

S(A) > 0 P,[rA <0] = 1

for every z E S. Thus we are considering a sub-class of Harris recurrent Markov chains.

Let F(S) denote the Banach space of bounded measurable functions from S to R with supremum norm.

and denote by M(S) the Banach space of finite signed measures on (S,S) with total variation norm. We

will use the same notation (( • 11 for both norms, the context making clear which one applies.

There is a natural bilinear functional connecting F(S) and M(S), given by

(m,) - f(x)p(dx)

wh -e p E M(S) and f E F(S). If N is a kernel, p E M(S), and f E F(S), we obtain a measure pN and a

bounded function Nf given by

yN(A) = u(dx)N(z,

and

Nf(x) = j (z, dy)f(y).

An expression such as pNf is unambiguous, since

p(Nf) = (iN)f.

If N and A are kernels, we define the composition of M and N, MN, by

MN(x, A) = Ls M(z, dy)N(y,A),

Composition is associative, so we can write an expression such as uNMQf without parentheses. To avoid

excessive use of parentheses we adopt the convention that functions are multiplied first in an expression: for

example, if f, g, h E F(S), then

iNf Mgh = pN(f(M(gh))).

Let f be a bounded real valued function on S, with E f(X) = 0.

3



3. Transition Probability Lemmas

The purpose of the lemmas in this section is to give expressions for Qk in terms of the n-step transition

probabilities for the Markov chain.

We will make use of the following fact (Theorem 6.1 in [8]).

Lemma 1: Consider a chain on (5, S) which is uniformly p-recurrent. If the chain is aperiodic, there exist

a < oo and p < 1 such that

II (A, - A2)P' jj< ap" 11 At - A2 11

for any two probability measures A1 and A2 on (S, S).

Proof: See [8]. I

Define the kernels
CO

I(x, dyl ir(dy), G (P-n II), Hk(x,A) E.{r.IP(z,A), k >0,
n=1

Ho(z, A) - P(z, A) - P(z, A),

and let
g(--)E(r)

The function g is measurable and by assumption is bounded. We will use the notation G, to denote the

measure G(z, .).

By Lemma 1, expressions such as

(p - v)G, (p - ,Q

denote finite measures for any probability measures p and v.

Lemma 2:

Qk = QkIJ- k (') (-I YQk +11k) (I1+ G).

In particular, for all A E S and z E S

Qo(z, A) = g(z)7r(A) + G(x, A) - G(z, A)

and

Qi(z,A) = Qi(z,S)w(A) + G(z,A) - G(z,A) + GG(z,A) - GG(z,A) - g(z)G,(A).

Note that Qo(z,.) E(r)r(.).

Proof: By definition

Is\ nkP. . (dy)P(y, A) = nk Pn+I(A)

= (n + 1)kP",+l(A) + E (-i(n + 1)k-jPn+(A).

j= 4

• • I I4



Summing over n gives

IS{lQk(x,dy)P(y,A) =Qt(x, A) -P,~(A) + (k)(-ly{(Qk,(x, A) - P.(A)l

- Qk(x,A) + E (k)(lyQk.j(x,A) -PZZ(A)1{k..O)

and so

jQ.(x, dy)P(y,A) =Qk(x,A) + k (')(-)JQk.i(zxA) +Qk(x, {z))P(z,A) - P.(A)lft=o}.

We can write the last equation as

Qkp =Qk + j()-IQ- + Hk,

or

QL-=QkP-, (')(-1yjQk- -HL..

Iterating the last equation gives

Qk =QkP-Z (k(1 Q jP~k P
= 1=0 1=0

Letting n -~ oo and using bounded convergence gives

Qk =QkII - ( k ()(_YQk~j+ Hk) (I+ G),

which is the result.



4. Moment Calculations

Let T- and Z be random variables that have the same distributions as r, and

_.f(X,),
n=1

respectively, under P_.

In this section we will derive expressions for moments of the form E(r'ZJ). These moments will be

expressed in terms of the following quantities:

X, = ifg,

X2 = 7rf 2 g + 21rfGfg,

Y71 = -(be + G2 )f,

and

'12 = -(b + G,)f 2 - 2(6, + G,)fGf.

We begin by determining expressions for E(Zk). Below we define several quantities that depend on the

transition probability of the chain, but not on the return state z. For consistency of notation, w, will use

m 2 to denote the quantity usually called a2 (both notations will be used). Let

o2 = M2 = rf2 + 2rfGf

00

= Erf(Xo) 2 + 2 Z E 1 [f(Xo)f(X.)],

ni=1

M3= E. f(Xo) 3 + 3 Z E[f(X°) 2 f(Xn)] + 3 E E0[f(X°)f(X0)2]

n=1 n=1

00 00

+6 E E .[f(Xo)f(X.)f(Xn+,)],
n=l m=l

and
"0 

00

m4 = E.f(Xo) 4 + 4 Ef[(Xo) 3f(X)I + 4 E.[f(Xo)f(X.) 3]
n=1 n=1

00

+6 ZE (.[f(XO) 21f(Xn )2] -E.[f(XO) 2 ]E. f(Xn)21

+ 12 1:1 {E. [f(X0 )
2 f(X. )f(Xn+.)] - E. [f(X 0 )

2]E1 [f(X. )f (Xn+m )]}
n- m=l

+12 E 1 E.[f(Xo)f(Xn )2!(Xn+.m)] + 12 E 1 Er[(X)f(X)f(X.+m), 2 ]

n1 m=l n=1 m=l

+24 Z E.[f(XO)f(Xn)f(X+m)f(Xn+"+k)],
n=l m=l k=l

6



and in general

M, Z ( -(P ) n p pk1)71fPIGfP2G .GfPA,
k=lpi. P I P2P

where the second sum is over all positive pi that sum to n.

Lemma 3: If the series in the definitions of M 2, in3 , and M4 converge absolutely, then

E (Z2 ) = E(T),

E(Z 3 ) = E(r) (M3 + 3m 2 (XI + r7)),

and

E(Z4)(+(r)(M4 +4M3(XI+,ii)+6M 2 1 1 +2 + 172)

Proof: Add to S a new state A with f(A) = 0, and define random variables { } taking values in S U {}
by

A, if Xk = z for some 0 < k < n,X., otherwise. 1

According to the definition, 0 = X0 and ,. = z.

We will establish the third moment result. Using the random variables defined in (1),

E, (X)) E, E f(

- E, f( n)3 +3 F F f( n) 2 f( n+m) + 3 f( n)f( n+) 2

n=1 n=l m=1 n=1 m=1

+6 E E E ft.)f(.+.)f(.+,+i))

n~lm1~ 1=1

- E, [f( o)3J + 3 1 E. [f(..) 2f(...)j +3F F E, [f( .)f(Co+,..) 2]
n=1 n=1 m=1 n-Im.l

+6 E . , E. [fG(n)f(Gn+m)($.+,.+i)
n-Im~l 1=1

where the interchange is allowed because of the assumed absolute convergence of m3

=Z]P (dZ)f(z)3  3Z IS{z p~(d_)f(zr)2

+3J PZd~ (d_ P P((d f)f(y)

n= ,= \{}\

+P(dz)f(z) P.(dy)f(y) / P (dv)f(v)

n= = 1= J\{z) IS\z}J

7



= Q(Z.)f 3 +3Q 0(:. )f2Qof +3Qo(:,)fQof+6Q0 o(z, )fQofQof

-3f(z)Qo(z, -) f2 - 6f (z) Qo(z, )f Qof

= E(r) [7rf
3 + 3irf 2Qof + 3rfQof2 + 6rfQofQof]

-3f(z)Qo(z, _)f2 _ 6f(z)Qo(z, .)fQof

= E(r)m3 + 3 M2(XI + Ih).

and the result follows from Lemma 2.

The second and fourth moment results follow from similar arguments. I
The next lemma gives expressions for some of the mixed moments.

Lemmna 4: If

E, lf K) < 0

then

E[rZ] = E(r) (Xi + 'a).

Also

[rZ2 ] = [E(r) + E(r 2)] + 2E(r)rfGf + +2E(r)wfGGf

E ] + ,7)2 + X2 + 72 + X2 + 12).

Proof: Using the random variables defined by (1),

00

- Z E, (r .,(,))
n=1

(where the interchange is allowed by the lemma's hypothesis)

00 00 00

= E. [()(n + st..)] = n • E [(G)1+- E. V( )5(..
n=1 n=1 n=1

00 00 00 00

= Z E E[f(G.)] + E E . = nE,[f(t.)] + E E.[f( n)E(s(.. I.]]
n=1 n=1 n=1 n=1

-Z P.-. + L- +f,

n ,- Z (dz)f(z) +] P l(dz)f(z)E.(s)

Q 1 Q(z, dz) f(z) +jQo(,,dz)f(-) E. (s.)

8



(the interchange Is justified since =I nP2A() converges absolutely)

=Qi(z, )f + Qo(--, )fg - Qo(z, f{z})f(z)E. (r,)

- g(-)G~f+ g(z)7rfg -g(:-)f(z)

which is the desired result.

Proceeding similarly for the second equation,

E(lrZ 2 ) E E, [f 2 ( ')(n + s .')] + 2Z E, [(nz + m + fz (,)

00 00

E nE. [f 2( ")I + 1: E, [f2 ( ')s5(.]
n=1 n=I

00 00

+2Z~ lm zf(nf(nl

±2Z 00 00 00

+2 E E Ez[f (.)f (.+)+ 2 E E E.[f(W.nf(Gn+m)Sf.'
n=1 m=1 n=1 M=1

S nJ FP, (dx) f 2 ()+Zjp d)f ()2E(S) + 2 Zn P, (dx) f(x)L P.,7(dy) f(y)

+2Y Z mj P,-,(d) f(z)j P~m.(dy) f(y)

n= 1 m 1

Q= Q(Z _)f 2 + Qo(Z, _)f Ig _ g(Z)f (Z)2 + 2Q,(z, -)f Qof + 2Qo(z, -)f Qj - 2f (z)Q1 (z, -)f

+2Qo(z, -)f Qofg - 2f (z)g(z)7rfg + 2f (z)2 g(z)

=[Q1 (z, S)7r - g(z)G.]f 2 + g(Z)Trf 2g + 2[Ql(z, S)7r - g(z)G2 ]f[ Dr + G - G ]f

+29(z-)irf [Ql(x, S) 7r + G - G, + GG - GG, - gG 2]f -4 2g(z)lrf [g7r + G - G.If g

+9(~f Z)2- 2f (z)g(z)irf g - 2f(z)[Qi (z, S)ir - g(z)G2]f

Q, Q(Z, S)Irf 2 - g(z)G~f ' + g(Z)7rf 2 g + 2Q, (z, S)irfGf + 2g(z)(G, f)2 - 2g(z)G f Gf

+2g(z)rf Gf + 2g(z)rf GGf - 2g(z)(7rf g)(G, f) + 2g(z)(7rfg)2 + 2g(z)rfGfg

+g(Z)f (Z)2 - 2f (z)g(z) irfg + 2f (z)g(z)G, f

= Q1 (Z, S)M2 + 2E(T)irfGf + 2E(rfrfGGf

+E(r)-G~ 2+ 7rf29 + 2(G 3 1) 2 - 2G. fGf - 2(irfg)(G~f) + 2(irf g) 2

+27rf Gf g + f (Z)2 - 2f(z)4rg + 2f (z)(G~f)]

=Q 1(:. S)c 2 + 2E(7)irf Gf + 2E(r)irf GGf + E(r) 12 + 212 + 2 X1i1 + 22+ X2],

as desired.

9



5. Estimator Covariance Matrix

Let So = 0, and S., = f(Xo) + + f(X,-,). Under the assumptions on the chain given in section 2,

-E (S2) _,. 2
n

as n - oo, and
n -/ 2 S, , A (O, a2 )

as n - oo. We are interested in estimating o 2 in order to obtain confidence intervals. In the regenerative
method, Sn is divided up into independent blocks by starting a new block whenever a regeneration point is

reached. If Z, is the ih block and Kn is the number of regenerative cycles in the first n observations, then

a2= lirn I E(Z+ +...+ZK.)2= lirn 1  (Z2)

j=1

as n - oc. Choosing different regeneration points will in general give different estimator variances.

Let r(n) and s(n) denote the regenerative mean and standard deviation estimators, respectively, based

on observation of the chain up to time n:

I K.2 
K,

j=1 
j=1

It is shown in [5] (for general regenerative processes) that

n112 (r(n) - r, s(n) - a) K A'(O, D),

where
D11 = E(Z2)/E(,.),

D12 = E(ZS) - 30,2E(rZ)

2uE(r)

and

D22 = (E(Z 4) - 20 2E(rZ2 ) + 0A E(r 2) - E(r)- ' (4E(rZ)E(Z3 ) - 8o'2[E(rZ)]2)) / (40 2 E(r)) .

Using the formulas from Lemmas 3 and 4, the covariance matrix can be written

D I=
+ X2+ 2 J

2a X 7

where

c=j- T - rfGf - 7rfGGf

10



is independent of the return state. Notice that the diagonal term is also independent of the return state z,

since as previously mentioned, a2 and m3 are independent of the return state.

Let
v (,(n) - r) =:: a,

vn'(s(n) - Yr) =: b,

wh - we view a and b as elements of the Hilbert space L 2 with inner product

(, y)= E(xy).

Then

(a,a) = , (b,b) =D 22 , (a, b) =-a.

It follows that we can write

b= M3 +q,

where (a, q) = 0 and
1 1

(q, q) 4 E (Z2 2r)2  2 (E(Z3 _ ,2rZ)) 2
4u(E(r))

For a random variable X with finite third moment define the coefficient of momental skewness ([10]) of X

by
E(X - EX) 3

2var(X)
3 /2

Let ic,, be the coefficient of momental skewness for the random variable Vl/n)S,, under the initial distribution

ir. Clearly ic,, is defined independently of the return state, and

c= lim i, 1 =
n-.c

With this notation, D12 = lo
"2 , and the orthogonal decomposition is

b = 'za + q.

For any symmetrical chain, for example a birth and death process on {-N, • , 0, .. , N} for which the birth

and death parameters as well as the values of the function f are symmetrical about 0, Kc = 0 and so a and b

are orthogonal.

Choosing a return state to minimize variance of the standard deviation estimator is equivalent to choos-

ing a return state to maximize correlation between the estimators for the mean and the standard deviation.

11



6. Example

Consider the Markov chain with state space S = {1, 2,3} and transition matrix

1/2 0 1/2

0 1 /

for 0 < c < 1. The stationary distribution is

S1 2C 1

(2+2c'2+2c'2+2c'V

Let f = (-M, 0, M) for some M > 0; then Ef = 0. The values of the quantitieF that vary with state are

given below (the values for state 3 are the same as for state 1).

State h 1 r12 X2

1,3

2 0 0 L2,

The difference in variances is

D 22(1) - D22(2) = 2

while
E(ri)=E 3 (r 3)=2+2c-*2, E 2 (r 2 ) = -- oo

C

as c 1 0. Therefore, while the mean regeneration time for state 2 grows without bound as c 1 0, it gives the

least variable estimator, with the difference going to oo as c 1 0. Essentially all of the difference is accounted

for by the r, and X1 terms.

In this example, the kurtosis of S, increases as M increases or c decreases, so the variance of all 3

standard deviation estimators increases as c 1 0.

7. Conclusion

The covariance matrix that appears in the central limit theorem for the regenerative mean and standard

deviation estimators has been expressed in a form so that several conclusions could be reached. First, the

off-diagonal term is independent of the return state chosen for blocking. Second, the expression for the

variance of the standard deviation estimator shows that the variance is increased by kurtosis in the partial

sum process. The variance does depend on the return state used for blocking, and an example showed that

the state with the shortest mean return time can give the most variable standard deviation estimator.
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