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ABSTRACT
We present a view of the likelihood ratio (LR) gradient estimation technique (also called

the score function (SF) method), under which infinitesimal perturbation analysis (IPA)
can be viewed as a (degenerate) special case, by selecting appropriately what the random
component w effectively represents. Varying the actual meaning of w (i.e. defining the
underlying sample space in different ways) might define different variants of the LR method,
some of them mixing IPA with more traditional LR. We illustrate this by many examples.
We also give general conditions under which the gradient estimators are unbiased.
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1. The LR gradient estimation technique

Consider a stochastic simulation model parametrized by a real vector 6 E Ltd of continuous
parameters, and suppose we want to estimate the gradient Va(8) of the (differentiable)

expected value a(O) of some real-valued objective function. Two techniques have been

proposed recently to estimate such a gradient by simulation: infinitesimal pertubation

analysis (IPA) [5, 6, 7, 10, 12, 19] and likelihood ratios (LR) [8, 14, 15, 16].

The basic idea of LR is that a(O) can usually be viewed as the expectation of some

function of 6 and of the "sample path" w, say h(e, w), with respect to a probability measure

Pe(-) over some measurable space (fl, E). Here, fl is the sample space, and wv E fl represents
all the "random elements" in the simulation, so that when it is fixed, the evolution of the

system becomes deterministic. More specifically, we assume that h(f, .) is E-measurable.

Usually, one cannot differentiate this expectation directly by differentiating inside the

integral, and one of the reasons is ihat Pe(') typically depends on 0. That dependence can

be eliminated if one can take a probability measure G(.) on the same measurable space,

independent of 6, and that dominates the Pe(.)'s for 6 in the region of interest. In that

case, one can rewrite:

a(e) =jh(8,wa)Pe(d& [(,)a) ~) =jH(O,w)G(dw) (1),P(dw,)l

where H(O,w) = h(O,w)Pe(dw)/G(dw). The ratio P9(dw)/G(&) is called the Radon-

Nikodym derivative of Pa(') with respect to G(.). By the Radon-Nikodym theorem ([1],
theorem 32.2), it exists and (1) is valid if and only if G(.) dominates Pa('), i.e. iff Pe(.) is

absolutely continuous with respect to G(.), i.e. iff for every measurable set B, G(B) = 0

implies Pa(B) = 0. Note that if sampling is done using G(.), the bracketted term in (1) can

be used as an estimator of a(8). This "change of measure" approach is called importance

sampling, and is often used as a variance reduction technique [9, 16, 17].

Under appropriate regularity conditions (that permit to interchange the derivative and

expectation), one can differentiate a(.) by differentiating the bracketted term with respect

to 6 inside the integral:

rVce() = (,,,)G(d,,). (2)

where

tk(e,w) = VeH(O,w) = Veh(O,w) P (d h(Ow) VePe(dw) (3)
G(dw) G (dw)

Sufficient regularity conditions are given in [5, 6, 7, 14, 16] for special cases. More general

conditions are given in section 3 of this paper. The need for these regularity conditions



and for the existence of the Radon-Nikodym derivative certainly impose some limitations

on the method (see the examples in section 4), but there are also many practical cases

where it works well.

When (2) holds, 0(0,w) can be used to estimate Va(0). Note that only one simulation

experiment (using G(.)) is required to estimate the gradient. In principle, t(-,w) can
be evaluated at any value of 0 for which (2) holds, permitting to estimate of the gradient

everywhere by a single simulation. But the variance of the gradient estimator is sometimes

dramatically high for some values of 0 (see e.g. [15]). The method can also be generalized
to higher order derivatives (see [14, 15]).

How do we choose G(.) ? Among those G(.) for which (1-2) hold, one would like to
choose one for which the variance is low. But this is not always easy to do. In practice,

generating values of w according to G(.) and computing 0(0, w) for any generated w should

also be done easily and at reasonably low cost. This usually limits the set of interesting

choices.

To estimate Va(0o) at a single point 0o, an easy choice for G(.) (when it is admissible)

is Pso('). In that case, things simplify in (3) and we obtain:

Va(8o) = J" [(Veh w) + h(8, )VeIn Pe(d)) ]=1 Pe,=(dw). (4)

The expression Ve In Pe(dw) is called the score function (SF). The LR gradient estima-
tor has been introduced [8, 14, 15] as the bracketted expression in (4), sometimes in a less

general setting. In this paper, we take the following definition.

DEFINITION 1. A LR gradient estimator for Va(0) is one that is defined by the
bracketted expression in (4), wh.:,e , obeys Pg., provided that this expression exists for
almost all w, and h(O, .) is a measurable function of w whose expectation is a(6). i

The estimator defined in (3) can be viewed as a combination of LR with importance

sampling. It is also a generalization of LR (see also [16]).

We have not talked much yet about the choice of the sample space (l, but this is one of

the key points in this paper. In fact, for a given simulation model, there can be different
ways of defining the sample space and the meaning of w. In many simulations, all random

variables are generated by first generating U(O, 1) variates, and transforming them in the
appropriate way. Hence, w can be viewed as a sequence of independent U(O, 1) variates,
and the value of the objective function h(6, w) is a deterministic function of this sequence.
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But this is only one way of viewing it. In fact, there is no need to assume that U(O, 1)

variates are used to drive the simulation in the first place. For instance, the LR technique

can be used to estimate the gradient not only for a simulation model, but also for a real

system (provided Pe(.) is known and w can be observed). In that case, w will usually not

be a sequence of U(O, 1) variates. Consider for instance a M/G/1 queue. One possibility

is to view w as the sequence of interarrival and service times, and define fl = [0, oo)- as

the sample space. Note that in that case, the distribution of w depends on 9, whereas it

does not when w is defined as a sequence of U(O, 1) variates.

So, there might be different ways of defining the sample space (and the associated

probability space (f), E, Po(.))). Different choices may lead to different gradient estimators,

some being more efficient than others. We will come back to this point in the next section.

Some might feel more confortable, for some reason, with an underlying probability

space in which the "basic" random element is a sequence of independent U(0, 1) variates.

Let (f), E,P(.)) be such a space. If (fl, E,P(.)) # (fl, E, P(.)), we assume that there is a

measurable transformation e : C1 --* fl such that w = e(Co), and such that Pe(w E .) =

P(Co E 00 (.)) Note that w may contain less information than (, and that its probability

law may depend on 0. We can also define the P(.)-measurable function h(0,.) by h(8,Z) =

h(8, Oe(Cv)) (note that h(8,.) is Pe(.)-measurable). We have

Note that this notion of an underlying sample space f) and transformation 40 is not really

necessary. We introduced it here just to clarify some links with the common practice (in

simulation) of viewing the sample space that way. What we really have in mind in to just

define the sample space as fl and forget about fl.

Usually, for convenience, w is defined as a sequence of independent (univariate) ran-

dom variables that represent the stochastic aspects of the simulation: w = (,

Pe(dw)/dw is then a product of univariate density or/and probability mass functions, and

Ve In Po(&.) is a sum wiose number of terms is typically the number of such univari-

ate functions that depend on 0. Assuming that the variances of the sample performance

h(0,w) and gradient Vah(O,w) are bounded, the variance of the LR gradient estimator

increases linearly (in general) with that number (which is typically a linear function of the

simulation length). From this reasoning, we should expect LR to work much better for

terminating simulations for which only a small number of random variates are generated

with probability laws that depend on 9.
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Note that since regenerative simulations can be analyzed in a way very similar to ter-

minating simulations [8, 9], the above remark also applies to steady-state regenerative
simulations for which a small number of 0-dependent variates are generated per regen-
erative cycle. A version of the LR method specially adapted for regenerative systems is

presented in [8].
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2. Choosing what w should represent

Suppose that w is defined as a sequence of independent U(O, 1) variates. Then, P(.) is

independent of 9, H(9, w) = h(8,w), and the last term in (3) vanishes. In that case,

equation (4) becomes (under the appropriate regularity conditions and with 9 = 8o):

Va(e) = j Veh(, w)P(dw)(5)

and Veh(8,w) is the usual IPA gradient estimator ([2, 5, 6, 12, 16]).

DEFINITION 2. An IPA estimator for Va(6) is defined as Veh(f,w) (provided that

this quantity exists for almost all w), where w is a sequence of independent U(0, 1) random
variables, and h(8, .) is a measurable function of w whose expectation is a($). I

When (5) is satisfied, we have an unbiased IPA gradient estimator. Note that there

often exists different functions h(8, .) that satisfy (1) and (5), and thus different unbiased

IPA gradient estimators for the same a(.). In practice, the function h(8, .) is usually defined

or implied by the simulation model.

The basic idea of IPA is to generate a sample path w, viewed as a sequence of U(0, 1)
variates, and for w fixed, observe the effect of an infinitesimal perturbation on 9 (?.round

9o) by propagating it over the sample path, assuming that the sequence of events do not
change, and that the events only "slide" in time. The gradient estimation is taken as the

gradient of the objective function for that fixed value of w. Note that the propagation

rules permit to evaluate Veh(O,w) only at 0 = 00, and thus to estimate the gradient only

at 0 0. If that definition of w is used in (2) with G(.) # Pe(.), one gets a combination of

IPA with importance sampling.

According to the above definitions, IPA can be viewed as a special case of LR. One

big advantage of IPA is that since no component of w depends on 0, the variance does

not increase any more with the simulation length. But the function h(e,w) must absorb
all the tranformations and may become overly complex, sometimes making the actual

computation of Veh(O, w) intractable, or invalidating (2). In fact, a large part of the IPA

literature deals with the development of effective techniques to compute Veh(O, w) during

the simulation (see e.g. [10, 18]). One might even associate the term IPA more with these

techniques than with equation (5), and these "IPA" techniques can be used to implement

LR as well. Some people might also argue that since the likelihood ratio has disappeared

in (5), this is no more LR. In fact, we just view it as a degenerate case.
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As we said before, w can also represent something else than a sequence of U(O, 1)

variables. For example, w can be viewed as representing the whole history of the system,

including all events with their types and occurence times, etc. In many cases, w can carry

enough 0-dependent high level information so that for a given value of w, h(O, wo) does

not depend any more on 0, and the first term of the right hand side expression in (3)

vanishes. But then, one might be unable to write down Pe(.) explicitely, preventing the

actual computation of the estimate. For this reason, w will usually be taken as a sequence

of independent random variables. In Glynn [8], for example, when simulating a Markov

chain, w is taken as the sequence of states visited by the chain.

For the extreme case where w is defined as the value of the objective function itself,

i.e. h(O,w) = w (and 11 = R) by definition, Pq(') is actually the distribution function of

the cost. When we can write it down and write down the likelihood ratio, there is usually

no need to simulate, since Va(6) can be computed directly. Monte-Carlo methods are

precisely useful for the cases where we cannot efficiently compute the expression directly.

Between these extremes, there is often different other possibilities. For instance, if a

set of U(O, 1) values must go through many levels of transformation, one may choose any

one of the levels to define w. Also, w might contain the original U(O, 1) values for some of

the generated random variables, and the transformed values for others. This gives rise to

hybrid methods, "mixing" in some way IPA with LR. According to our definitions, this is

still LR. In section 4, we give examples for which one might think that LR does not apply,

but for which LR effectively applies if the sample space and W are defined appropriately.

But what is the best way, then, to define w ? There is no easy answer to this question.

There is no straightforward recipe. Of course, one would like (2) to be valid. There are

examples for which (2) is valid if w represents higher level information, like e.g. the set

of actual interarrival times, service times and transitions between nodes in a queueing

network, and not valid if w represents the sequence of U(O, 1) variates. But for other

examples, the opposite is true (see [14, 5, 6] and the examples in section 4). In certain

situations, (2) might be valid for none of the extreme cases, but for some intermediate

definition of w (see example 4.5). If it is valid for many possible definitions of w, one will

then try to minimize the variance. This is certainly problem-dependent, but from the last

two paragraphs of the previous section, trying to put the least number of 0-dependent

components in w appears to be a good strategy.

One consequence of the above discussion is that many properties of the IPA method

also apply to LR, and vice-versa. For example, the validity of interchanging the derivative
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and expectation is a problem for the LR method in general. Various (problem dependent)

devices have been suggested to "smooth out" or transform some problems for which IPA

doesn't apply directly, into problems for which IPA will work correctly (see e.g. [10] and

the references in [5, 6, 12]). In principle, one could think of developping such devices for

LR in general.

Note that for the case where a(8) is a steady-state performance measure and W contains

an infinite sequence of 8-dependent random variables, the Radon-Nikodym derivative in (1)

typically does not exists. However, (5) might be valid in that case, and then, one typically

has Veh(9,w) = VQ(O) with probability one (this is when IPA is strongly consistent).
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3. Interchanging the Derivative and Expectation

In this section, we give sufficient conditions for the interchange of derivative and expecta-
tion leading to (2) to be valid. Conditions for specific cases are also given in [5, 6, 7, 14,

16), and are sometimes more direct to verify. But often, the conditions below can be verify
directly, as we will see in the examples of the next section.

Note that each component of the gradient can be dealt with separately. For i = 1,..., d,

to study the i-th component of the gradient, we look at what happens when only the

component i of 8 is allowed to change and all other components of 0 are fixed. To simplify
things, in this section, we assume that d = 1. For the more general case, just apply

the results below to each component of 8 (while the other components are fixed). All
probabilistic statements in this section are made with respect to the probability measure
G(.). The lemma below is an adaptation of lemma 1 in [5]. It uses the following assumption:

Al. Let d = 1. There is a neighbourhood T of 0 such that for almost all W, H(.,W) exists

and is continuous over T, and is differentiable everywhere in D(w) C_ T, where T \ D(w)
is at most a denumerable set. Assume that (1) is satisfied for all 0 E T. Also,

sup I0(vw)I (6)
vED(w)

is integrable with respect to G(.) (note that D(w) is the set where (-,w) exists). I

LEMMA 1. Under Al, equation (2) is valid.

PROOF. The proof is largely inspired by the proof of lemma 1 in [5]. From a generalized
version of the mean value theorem (see e.g. theorem 8.5.2 in [3]), if 8 and 8 + h are in T

and w satisfies the requirements of Al,

H(8 + h, ) - H(8,w) Ssup I'vwI
h I vED(w)

Hence, from the dominated convergence theorem,

( H (8 + h ,w ) - ( , )

lim (a(8 + h) -
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4. Examples

In this section, we give a number of examples to illustrate the main ideas of the paper. For
some of them, we also give numerical results. The first five examples deal with a simple

M/G/1 queue that evolves until a certain (fixed) number of departures have occured. The

next to examples consider the lifetime of a k-out-of-N reliability system, without repairs.
The following one discuss a general continuous time Markov chain, while the last one looks

at sensitivity with respect to thresholds. In particular, we look at replacement policies

defined by thresholds in a multicomponent system. In the latter case, we actually don't

know how LR can be used efficiently to estimate the gradient.

Consider a M/G/1 queue, initially empty, and let a(0) be the expected mean system
time (waiting + service times) for the first T customers in the system, where 0 is a param-

eter of the servive time distribution. The arrival rate is A = 1. We want to estimate the

derivative a'(0) at a given point 0 = 0 by simulating at that point. For a given realization

w, h(8, w) represents the observed average waiting time for the T customers. We have

1T

h(O,w) = + S,) (7)
i= 1

where Wi and Si are respectively the actual (observed) waiting time and service time of

customer i (these are deterministic functions of 0 and w). Let Ai denotes the interarrival

time between customers i - 1 and i (A, is the arrival time of customer 1 and the system

starts at time 0). We have W1 = 0, and Wi+1 = max(O, Wi - Ai+ 1 + S) for i > 0. The

first five examples below are variants of this one; only the service time distributions differ.

Application of IPA to this system has been analyzed in [19] when the objective function

is the steady-State average system time per customer. It has been shown that under

some conditions on the service time distribution, IPA gives an asymptotically unbiased

and strongly consistent gradient estimate. For the case of a finite number of customers
(terminating simulation), the validity of IPA has been analyzed e.g. in [5], example 4.

4.1. A M/M/1 queue

Let the service time distribution be exponential with mean 0, a < 0 < b, where 0 < a < b.

IPA is known to work for that case: assuming that the interarrival and service times are

generated by inversion, one can take w as the sequence of U(0, 1) values used to generate

them, i.e. w = (U,... ,U 2T), A, -ln(1 - U2 1.) and Sj = -0ln(1 - U2,). Here,
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G(.) = Pe(.). An infinitesimal perturbation on 5i affects the system time of customer i

and of all the customers that follow him in the same busy period (if any). Therefore,

1 T aSj(8i~(,)= Voh(8,) )= i=. -Ba (8)
i=1 jEB,

where B, is the set containing customer i and all the customers that precede him in the same

busy period (if any), and 9Sj/,8 = Sj/8. This can be computed during the simulation as

described in [19]. We can easily verify assumption Al. In fact, for any W, Si is continuous

and differentiable in 0, and h(.,w) is continuous in the S,'s (and in the W,'s, which are

continuous in the S,'s). Also, h(.,w) fails to be differentiable at 0 only when two events

(arrival or departure) occur simultaneously, and this happens at most for a finite number

of values of 8. Since supq>. k(9, w) is clearly integrable, lemma 1 applies and IPA provides

an unbiased estimate for that case.

Another choice is to take w as the set of actual interarrival and service times: W =

(A1, 1,.... IAT, ST). In this case, Po(dw)/dw is the product of their densities:

T

Pq (dO) =J (1eSh/8eAdSidAi)
i=1

G(dwo) = Pe0 (dw), and Veh(O,w) = 0. Note that only the service time densities appear in

the likelihood ratio, since the interarrival times are independent of 0 (in fact, taking either

the actual interarrival times or the corresponding U(O, 1) values in w makes no difference

here). One has

Vo ln Pa(dw) = In e-S'ldS) = 7 -(Si - 0).

This can be computed easily together with h(O,w) during the simulation. For any w,

H(.,w) is continuous and differentiable in [a,b] (note that H(e,w) depends on 8 only

throught Pe(dw)). Also, the gradient estimator is

~( ,w = 1 (T +T~) Z S - )-0 Ew + S,) (s, -o)

and sup0e[ab] is Pe0 -integrable, so that lemma 1 applies.

In principle, one can also combine the two approaches and take Si for some of the
customers and the corresponding U(O, 1) values for others. This would give rise to more

complex expressions but could be implemented in practice without too much difficulty,
and lemma 1 would still apply. There might be no practical advantage of doing such a
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combination in that case, but there are other examples where it can be helpful. For the

case where w contains only the set of waiting times, one faces the problem of expressing

Pe('). In fact, the waiting times are dependent random variables whose distributions are
quite complex in general. Except for small values of T, this is not practical. Finally, for

the extreme case where w = h(O,w), one has to compute the distribution of the average

cost using numerical methods!

4.2. Discrete law with 6-dependent value of the probability mass

Let 0 < a < b, 0 < 0 < 1, and suppose that the service time is b with probability 0, and

a with probability 1 - 0. In this case, IPA doesn't apply (see also [19]), but if w contains

the set of actual service times, then LR do apply.

Suppose U1,...,Ur are the U(0, 1) variates used to generate the service times. Let
Ci = I and S, = b if U, ! 0, Ci = 0 and S, = a otherwise (C is Bernouilli (0)). For IPA,

w contains (U,,..., UT), and H(.,w) = h(.,w) is discontinuous since S jumps from b to a
at 0 = U,. This is why IPA doesn't work. But suppose w = (A,,Si,..., AT, ST). In this

case, the likelihood ratio can be expressed in terms of the variables Ci,..., CT. Their joint

probability mass is
T

PCl,...,CT) = 1 1 89 ( 1 - 0)1- c ,

i=1

and H(O,w) = K(w)p(C,...,CT), where K(w) = h(C,w)/pe(C1,... ,CT) do not depends

on 0 (because w contains all the information to compute h(8, w) independently of 8). H(., w)

is continuous and differentiable on (0, 1), and since K(w) is integrable and pe(') 1, Al is

satisfied and we get an unbiased estimate.

4.3. Discrete law with 6-dependent support

Suppose that the service time is 0 with probability p, and 20 with probability 1 - p, where

0 > 0 is the parameter and p is a constant, 0 < p < 1. Here, the "naive" application

of LR, where w contains the set of actual service times and G(.) = P.(-), doesn't apply

because there is no neighbourhood of 00 in which the Radon-Nikodym derivative exists
(H(O, w) = 0 everywhere except at 0 = 00, and so it is discontinuous). For IPA, use

U,... ,UT to generate the service times: S- 0 if Ui < p, Si = 20 otherwise. 0(0,w) can
I e computed as in (8), again with OS,/0O - Si/O. The arguments to verify Al are the

same as in example 1, and so IPA applies.

11



4.4. A mixture of IPA and LR

Let q be a constant, 0 < q < 1, and suppose that the service time is generated as in

example 4.2 with probability q, and as in example 4.3 with probability 1-q. Let Dl,..., DT

be the corresponding Bernouili (q) random variables, i.e. Di = 1 if the service time of the

i-th customer is generated from the first distribution (example 4.2), Di = 0 otherwise. In

that case, we can define w as the set of values of D,, the values of Cj for the customers i for

which D = 1, and all the U(O, 1) values used to generate the rest (the interarrival times

and the other Si's). When Di = 0, define Ci = 0. Since the likelihood ratio will depend

on w only throught the Di and C,, let us define C = (DI, C 1,..., DT, CT). The probability

mass of tZ is given by
T

Po(W) = I qDi( 1 - q),-D, (OC,(1 _),-C) A

and one has

VelnPe(dw) = ED, (- T (, )
i=1 i= 1 -8)

This can be computed with h(#, w) during the simulation. To compute Veh(O, w) for a fixed

w, one applies a mixture of the more traditional IPA and LR techniques: the service times

of the customers for which D = 0 are "perturbed" using the usual IPA technique, while

the perturbations for the other service times are considered to be zero. More specifically,

for a fixed w, Veh(O,w) is computed using the right hand side of (8), but with

aSj [0 ifDi=1;
=8 1 ifDi=OandSi=O;

2 if Dj = 0 and S = 28.

Again, assumption Al is easily verified, by combining the arguments of the two previ -us

examples. Therefore, by mixing IPA with LR, we obtain an unbiased gradient estimate,

despite the fact that neither IPA alone nor "naive" LR (putting all the Si's in w) works.

Table 1 gives the results of a numerical experiment for this example. We used T = 10,

q = p = a = 1/2, b = 3/2, and estimated the derivative at 0 = 0.2, 0.5 and 0.9. We used two

gradient estimation techniques: symmetric finite differences with common random numbers

(FDC), and the "hybrid" method described above (LR). For FDC, simulations were made

at 0 ± 0.01, starting from the same (empty) state, and the same U(0, 1) values were used

on both sides, with proper synchronization. In each case, we made 100000 replications

and computed a 95% confidence interval. Note that the same streams of random numbers

were used for the six different entries of table 1. As expected, the results from the two
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techniques agree. They also agree with the exact values, which were computed using

dynamic programming. [To compute these exact values, we can write recursive equations
to compute V1(s) and VoVn(s) (in terms of Vn+,(.) and Ve.V+,(.)), where Vn(8) represents
the expected total system time spent from now on by the next T - n customers to depart,

given that there are a customers in the system, 1 < a < T - n, one of which is beginning

its service. VT-1 is the expected service time, and V0(1)/T is the expected average system
time for the first T customers.] Note that for FDC, the gradient estimator has some bias,

due to the finite differences, but here, that bias is "lost in the noise", since the confidence
intervals cover the exact values.

0 True grad. LR FDC

0.2 2.551 2.53 - .04 2.55 + .03
0.5 3.980 3.96 + .06 4.01 ± .04
0.9 5.525 5.53 + .16 5.53 + .05

Table 1: Numerical results for example 4:
95% confidence intervals for the gradient, based on 105 replications.

4.5. 0 times a Bernouilli (0)

Suppose that the service time is kO with probability 0, and 0 with probability 1 - 0, for
some constant k > 0. For each service time, one can generate a U(0, 1) variate U,, and

define Si = kO if U, < 0, Si = 0 otherwise. In that case, it is easy to see that neither

W = (A,, Uj,..., AT, UT), nor u? = (A,, Sl,..., AT, ST) will work. However, if one takes

W = (A, ,Cl,...,AT, CT), where C = Sj(kO), then LR works. In fact, C, is Bernouilli (0).

The score function is

V lnPe(dw) = (1 _)

and Veh(O,w) can be computed using the right hand side of (8), with 88,/80 = kC = S/B
(because Si = kGCi, and because for w fixed, C is fixed).

For this example, we made the same numerical experiment as for the previous example,
with k = 2, and the results appear in table 2. Again, they agree very well with the exact

values (computed by dynamic programming).
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0 True grad. LR FDC

0.2 1.038 1.03 ± .01 1.03 ± .01
0.5 4.529 4.49 ± .05 4.51 : .04
0.9 16.671 16.61 ± .30 16.75 : .12

Table 2: Numerical results for example 5:
95% confidence intervals for the gradient, based on 101 replications.

4.6. Lifetime of a k-out-of-N system

Consider a k-out-of-N reliability system with identical components. The N components
have independent (random) lifetimes durations Xi,... , XN, each with distribution Fe(.).
For simplicity, assume that this distribution is continuous, with density fo('), and that for
each z > 0, both Fe(z) and fe(z) are differentiable w.r.t. 6. The system is down (failed)
when less than k components are still alive. For a given realization w, h(O,w) represents the

system's lifetime, and a(O) its expectation. We will examine four of the (many) possible
choices for w. We want to estimate Va(Oo), using (4). Let a and X, denote the number and
lifetime of the last component that fails (the (N - k + 1)-th failure). One has h(8,W) = X..

One can take w = (X,..., XN), in which case Vah(8,w) = 0,

N f 9 (X,)

'=1

and N
VelnPe(dw) = Info(X)

t=

This is the most straightforward application of LR.

A second choice is to take w as a and X0, plus the set A of components that are still
alive at time X. During the simulation, the N lifetimes can be generated as above (as

usual), and Veh(0,w) = 0, but now,

Pe(dw)/dw - fe(X.) 1(1 - F.(X.)) fI F.(X.),
iEA i0AUf s)

and the score function is
N

VeIn P(dw) = iL
i41

14



where

[ Info(X,) ifi -a;
Li = n(1 - Fe(X,)) if i EA;

-In F(X) otherwise.

A third choice is to use the IPA technique: suppose Xi = Fo1 (Ui) where the Ui's
are independent U(0,1) variates, for i = 1,...,N, and take w = (U1,...,UN). Here,
Veh(O,w) = OF;-1 (U.)/80, where a is defined as above, and VonPo(dW) = 0. Note that
there are many cases where we can obtain equivalent results by taking w as something
else than the Ui's. Consider for example the Weibull distribution: F(z) = 1 - exp(Az*)
and F-1 (U) = (-Aln(1 - U))/". In this case, one can take w = (V,...,VN) where
V, = -ln(1 - Ui) and this is equivalent to IPA (for 0 = A or 0 = a). The expression for
Veh(O,w) can be obtained with slightly less manipulations in the latter case.

For exponential lifetimes, there is the following fourth choice. Let 1/0 be the failure
rate for each component, and let the state of the system be defined as the number of
components that are still alive. That system evolves as a continuous time Markov chain.
It goes from N to N - 1,..., to k, and finally to k - 1 where it dies. The jump rate from
N - i to N - i - 1 is (N - i)/9. Hence, w can be defined as w = (YN,...,Yk), where Yj is
exponential with mean 9/j, and h(6,w) = YN + + Yk. One has in this case

VeInPe(dw) = ( j )

and Veh(B,w) = 0. Note also, that for the exponential case, analytical formulas are

obtained readily: a(0) = E[h(6,w)] = E[YN+...+Yk] = 0(1/N+- .+l/k), and Va(e) =
(1/N + .... + 1/k). For many other distributions, analytical formulas can also be obtained

by exploiting the fact that X. is an order statistic. Often, one can write down the density

(or prob. mass) and the expectation of X, explicitly, and differentiate. This is what we

did to compute the exact gradient for the Weibull case in table 4 below.

All this can be adapted easily to more general reliability networks, with more complex

structures, components that have different lifetime distributions (with possibly different

parameters), repair possibilities, etc. For the last case (exponential lifetimes and fourth

choice of w), the state description of the Markov chain would get more complicated in

general. A "practical" analytical formula is not always available for the exponential case,

but replacing transition times by their expectations is certainly a good idea (see also

15



Exponential Weibull

fe(:) (l/0)e- /, z> 0 az ° - e-  *, z> 0
Fe(z) 1 - - e

Fj'(U) -Oln(I - U) (-Ln(1 -U)I ' / °

-X for X - Fj1 (U) XIO -X(lnX)/

In f.(z) (z - 0)/02 1/0 + (1 - W) Inz

I -ze - 1 9  AZO In ze-Aze
-nFo(z) 02(1 - e-x/l) 1 - e-Az

18 n F ( -)) Z/ 92 - A z* n z

Table 3: Expressions used in the gradient estimators,
for two distributions.

example 7). In practice, importance sampling (when it works) can also be very effective

when simulating such networks (see [17]).

We made some numerical experiments, first with the exponential distribution with mean

0: Fe(z) = 1 - exp(-z/O), then with a Weibull distribution with 0 as the form parameter:

F0(z) = 1 - exp(-: 9 ), z > 0. We tried different values of N and k. The results appear

in table 4, under the form of 95% confidence intervals on Va(0). The "methods" LR1,

LR2, IPA and MC correspond to the four choices of w described above, in the same order.

Note that MC does not apply for the Weibull distribution, but for the seven other cases,

Al can be verified easily for all 0 > 0. We leave that as an (easy) exercise to the reader.

Expressions used in the estimators are given in table 3 for these two distributions.

From these numerical results, LR2 appears to be generally better than LR1, and MC

is not much better than even LR1. The most efficient by far is certainly IPA.

4.7. A density with parameter-dependent support

In the previous example, suppose that the component lifetimes are uniformly distributed,

between 0 and 0. The density of Xi is fe(z) = 1/0 for 0 < z < 0. Since the support of fe(')

depends on 0, if we take w = (XI,.. . ,XN), the Radon-Nikodym derivative Po(')/P 0 (')

does not exists at 0 > 00. For 0 < 00, it exists in a neighbourhood of 0, and (1) is valid.
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N k distrib. 8 True grad. LR1 LR2 IPA MC

8 2 Expon. 1.0 1.7179 1.694±.042 1.705±.036 1.718±.004 1.732±.040
8 6 Expon. 1.0 0.4346 0.430±.011 0.436±.009 0.436±.001 0.440±.009
8 2 Expon. 5.0 1.7179 1.694±.042 1.705±.036 1.718±.004 1.732±.040

20 5 Expon. 1.0 1.5145 1.485±.048 1.483±.041 1.513±.002 1.523±.045
20 10 Expon. 1.0 0.7688 0.755±.025 0.764±.020 0.769±.001 0.771±.020
20 15 Expon. 1.0 0.3462 0.340±.012 0.347±.008 0.347±.001 0.350±.008
50 10 Expon. 1.0 1.6703 1.669±.024 1.674±.020 1.671±.001 1.650±.022
50 40 Expon. 1.0 0.2457 0.246±.004 0.246±.002 0.246±.001 0.246±.002
1 1 Weibull 1.0 -0.4228 -0.404±.033 -0.404±.033 -0.420±.010
8 2 Weibull 1.0 -1.0756 -1.027±.057 -1.052±.041 -1.074±.008
8 6 Weibull 1.0 0.2930 0.308±.012 0.296±.004 0.294±.001

20 5 Weibull 1.0 -0.6843 -0.618±.063 -0.669±.031 -0.682±.004
20 10 Weibull 1.0 0.1662 0.197±.030 0.169±.007 0.167±.001
20 15 Weibull 1.0 0.3389 0.350±.014 0.342±.006 0.340±.001

Table 4: 95% confidence intervals for the gradient,
based on 10, replications (example 5).

One may think of using that to estimate the gradient at 0, but the problem is that since

fe(z) = 1/0 for z < 0 and 0 for z > 9, the continuity assumption on H(.,w) does not

holds. In fact, for any neighbourhood of 0, H(., w) is discontinuous in that neighbourhood
whenever max Xi is in it. Therefore, Al is not satisfied. This illustrates the fact that even

when Vqh(9,w) = 0, the existence of the Radon-Nikodym derivative is not a sufficient

condition for LR to apply.

Note that IPA applies for this case: the gradient estimator is X,/, the same as for the

exponential case.

4.8. A continuous-time Markov chain

Consider a continuous time Markov chain with finite state space S. Let Ai denote the

jump rate out of state i, and pj be the transition probability from i to j. There is also a

cost incurred continuously at rate ci when in state i. Suppose that these quantities depend

on some parameter vector 0 E Rd. Let a(f) be the total expected cost for the first T

transitions, where T is fixed.
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Simulation is often the most convenient tool to analyze such chains, particularly for

very large state spaces (see e.g. [9]). Note that here, an event list is not necessary to run

the simulation; one can just use the transition probabilities to jump from state to state

(see [4]). Typically, the transition matrix is very sparse, and from any given state i, the

number of reachable states is small. In fact, there is usually no need to write down that

matrix, neither to enumerate S. Take for instance a closed Jackson network with say 20

nodes and 100 customers (one server per node, one class of customers): the state space

is huge, but from any given state with say B busy nodes, there are only B possibilities

for the node where the departure occurs and at most 20 possibilities for the destination

node of the departing customer. It is quite easy to generate the two corresponding discrete

variables and there is no need to generate explicitly even a row of the transition matrix.

(See also [4] for a slightly different approach.)

Let (Xn, n > 0} be the embedded Markov chain (the sequence of visited states), 0 -

TO _5 7 1 :5 7 2 < ... the transition times (the system jumps into Xn at time rn), and for

n > 0, n =n+l - ,m. Note that Cn is exponential with mean 1/x..

A simple choice for w is w = (Xo,CO,X 1 ,C1,...,XT-, ,T-1). Except for very small

T, the variance of the gradient estimator is then usually quite high, and as the previous

examples suggest, one would usually prefer to use IPA if it is applicable. Unfortunately,

IPA rarely works for the transition probabilities, but it can be used here for the times

between jumps: take w = (Xo, Uo,... ,XT-1, UT-l), where Ui is the U(0,1) variate used to

generate Ci (by inversion). This could certainly help, but there is a better choice: just take

W = (XO,... , XT-I). The Ci's can simply be replaced by their expectations. This reduces

simultaneously the variance of the cost estimate and the variance of the likelihood ratio.

In fact, there is no need to generate any (i. The cost estimate is simply

T-1

E cx./Ax,. (9)
n=O

If all the Pij depend on 0, there are still T - 1 terms in the score function (assuming X 0

fixed), and the variance could kill us for large T. There might be cases, however, where

only some of the pij's depend on 9, and this can makes a big difference in the variance of

the gradient estimator. If only the transition times (and not the transition probabilities)

are influenced by 0, then IPA applies and the gradient estimator is readily obtained by

differentiating (9).

Note that on the other hand, terms in the likelihood ratios cannot be replaced (in

general) by their expectations. For example, the score function in (4) has zero expectation,
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but is correlated with h(0,w) and the expectation of the product is not zero. There are

special cases, however, where it can be done: see e.g. Algorithm B in [8].

With minor adaptations, the above approach also applies to semi-Markov processes,

where the inter-jump times are no more exponential, and to the case where T is a random

stopping time.

4.9. Components replacement

(Taken from [11]). Consider a system comprised of N identical components, that evolve

independently. Each component has a random lifetime distribution with increasing failure

rate. Whenever a component fails, it must be replaced instantly by a new one. Other

components may be replaced (preventively) at the same occasion. The repaiman can

also halt the system at any moment and replace preventively any number of working

components. All replacements are assumed instantaneous. A failure cost c! is incurred

every time a component fails. At each intervention, there is also a fixed cost ci, and

a replacement cost which is c. times the number of components replaced. Preventive

replacements are made to avoid some of the failures, and replacements are sometimes

lumped together to pay the fixed cost less often.

Here, we restrict our attention to the (generally suboptimal) class of policies defined

by two thresholds: 01 > 02 > 0. Whenever a component fails or reaches age 81, the

repaiman intervenes and replaces all components older than 02. We are interested in the

total cost for a fixed duration T, assuming that all components are new at the beginning.

The parameter here is 0 = (01,02).

Unfortunately, applying LR to estimate the gradient in this case is still an open problem.

Suppose w is the set of generated component lifetimes (for fixed 9, this is enough to compute

the cost). Then, the likelihood ratio is always one, since the component lifetimes do not

depend on 0, but h(O, w) is discontinuous in 0. More specifically, for any neighbourhood

T of 0 = (01, 02), h(., w) will be discontinuous in T if some component lifetimes are near

enough 01 or 02 to change the sequence of failures when 0 changes inside T (for fixed w),

and the set of values of w for which this happens has positive probability. Exactly the same

problem occurs with IPA (w is the set of U(O, 1) values used to generate the component

lifetimes). Suppose now that w includes the sequence of all failures and replacements, with

their times. Now, h(O, w) becomes independent of 0, but in general, the Radon-Nikodym

derivative ioesn't exists in a neighbourhood of 0, since a typical w will have non-zero

probability for only one value of 0.
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For the moment, we don't know how to apply LR or IPA to estimate the gradient for

this example. Many other examples, most of them involving "threshold" parameters, fall

into this category. For instance, think of a (a, S) inventory systems, where a = (a, S), or a

time-sharing computer system where the parameter is the quantum size, or a checkpoint-

rollback-recovery system (for databases) where 0 is the time between checkpoints (or is

used in a rule to decide the next checkpoint time, based on the state of the system), etc.

At present, for all these examples, to the best of our knowledge, a "finite differences"

approach (preferably with common random numbers) must be used.
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5. Conclusion

We pointed out the strong relationship that exists between IPA and LR. Section 3 also

provides easily verifiable conditions under which IPA and/or LR apply. When they do

not apply, these conditions sometimes permit us to understand why. We have illustrated

with examples some ideas related to this approach. In particular, there are often many

different ways to implement LR, some being much more efficient than others. IPA and

more "traditional" LR (i.e. as used for instance in [8, 14, 15, 16]) can sometimes be

combined on the same problem, and for the same parameter. However, when IPA applies,

it is typically the most efficient method.

In practice, the change of measure used to define (1-3) can sometimes be used to

reduce the variance (importance sampling [17]). We have not explored that issue in this

paper. For all the examples in section 4, we have used G(-) = Pe. to estimate Vc(0o),

but substantial variance reductions can sometimes be obtained by using a different (and

appropriate) G(.).

For some examples, it appears that finite differences (FD) remains the only applicable

approach at this time. Some experimental evidence (113] and example 4 in this paper)

suggests that FD with common random numbers might be practically as good as IPA

when 0 has only one component (d = 1). But for large numbers of parameters (large value

of d), performing all the simulations required for FD becomes rather time consuming, and

a good LR implementation might beat FD significantly.
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