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THE EFFECT OF WAVE BREAKING ON THE DIRECTIONAL
SPECTRUM OF WAVES IN WATER OF VARIABLE DEPTH

IN THE PRESENCE OF CURRENT

PART I: INTRODUCTION

1. Waves undergo changes as they propagate from deep to shallow water and/or
as they meet an adverse current. The factors that affect these changes
include input from local wind, non-linear wave-wave interactions and wave
breaking. In this study, only the effect of the last factor is
considered.

2. There exists a number of methods to compute changes of wave character-
istics under the conditions described above. One analytical method is to
use energy balance equation (Phillips, 1980, Huang et al, 1972) but the
method does not take into account the effect of wave breaking.

3. In a previous study (Tung and Huang, 1987), a method is developed to
study the effect of wave breaking on spectrum of random waves. The waves
are assumed to be long-crested, travelling normally toward a straight
shoreline over gently varying bottom with straight contours parallel to
the shoreline, where they encounter a horizontal current, steady in time
and non-uniform in the horizontal space, where flow velocity is parallel
to the direction of the waves and is uniformly distributed in depth.

4. The method consists essentially of first assuming that there exists an
ideal original wave train at the localeunder consideration whose spectrum
is obtained using energy balance equation without considering wave
breaking. By imposing the Niche wave breaking criterion (Battjes, 1974),
an expression for the elevation of breaking waves is established in terms
of the elevation of the ideal original waves and its second time
derivative which are assumed to be jointly Gaussian. Based on this
breaking wave model, a simple but approximate expression for the spectrum
of breaking waves is derived in terms of that of the ideal original
waves.

5. The purpose of this study is to extend the above method to the case in
which the random waves are treated as short-crested whose spectrum has a
directional spread. The shoreline is assumed to be straight and the
bottom is gently varying with straight contours which are parallel to the
shoreline as in the previous study. Two types of steady, non-uniform
horizontal currents are considered. The first type is the shear current
whose velocity is parallel to the shoreline (see Figure 2). The second
type is the upwelling type in which the current velocity is normal to the
shoreline. In each case, the current velocity is independent of the
alongshore coordinate as well as the vertical coordinate.

6. PART II describes briefly the breaking wave model and gives the
expression of the breaking wave spectrum which are respectively
established and derived in an earlier report (Tung and Huang, 1987).
PART III deals with the mechanics of wave-current interaction for both
the shear current and current of the upwelling type without considering
wave breaking. In PART IV, numerical results are obtained and presented
in graphical form. Some concluding remarks are given in PART V.
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PART II. BREAKING WAVE MODEL AND SPECTRUM

7. We assume that waves break whenever the local vertical downward
acceleration of the ideal waves reaches a fraction of the gravitational

acceleration g* (Phillips, 1980). When this happens, a portion of the
mass is detached from the surface, the surface elevation is reduced, and
the larger the vertical downward acceleration, the larger the reduction.

8. Referring to Figure 1, let 4(t) and 4b(t) represent, respectively, the
elevations of the ideal waves and the breaking waves at a fixed point in
space where t is time. At points such as A, where (t)>0 and when
t(t)<-Kg (see Equation 4 for K), wave breaking occurs and the breaking
wave elevation is given by

b(t)  = V (t) - Kg) 1

Here, and hereafter, overdot denotes differentiation with respect to
time.

9. At point B, where ,(t)<0 and when t(t)<-Kg, the breaking wave elevation
is given by

Kg (2)

10. Based on the above considerations and noting that no wave breaking takes
place when t(t)>-Kg, in which case ;(t) remains unchanged, Cb(t) may be
written as

- -- (-t ) H(- -Kg)H(- )+ H( +Kg) (3)

where H(-) is the Heaviside unit step function and, for brevity, the
argument t in Cb(t), (t) and v (t) is omitted.

11. For linear waves, the quantity K is shown in the earlier study (Tung and

Huang, 1987) to be given by

K - 0.44tanh(E d) (4)

where d is local water depth,

ks " 2/g (5)

*For convenience, symbols and abbreviations are listed in the notation
(Appendix A).
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is characteristic wave number

si.' S(w)dw] (6)
L fS(w)dw

is characteristic frequency and S(W) is the energy spectrum of the ideal
random waves in frequency, W, space, in deep water.

12. In Equation 3, the breaking wave elevation b is a nonlinear function of
C and , the elevation and its second derivative of the original ideal
waves which are assumed to the stationary and jointly Gaussian with zero
mean values. The determination of the spectrum of ;b may therefore be
achieved in a straight forward manner (Papoulis, 1965).

13. The spectrum of b is obtained by first forming its autocorrelation
function Rb (T) from Equation 3 (where T is time lag). In doing so, we
have neglected the second term in Equation 3 based on the consideration
that the probability of occurrence of negative peaks such as point B in
Figure 1 is usually small, especially when the spectrum of the waves
under consideration is reasonably narrow. In this way, the derivation
is much shortened, and our computation shows that the error incurred by
ignoring the second term in Equation 3 is indeed imperceptibly small.

14. The resulting autocorrelation function Rb (T) is a nonlinear function of
the correlation functions E[I2], E[ 1I 2] and E[1 1 2] where E[-]
denotes the expected value of the quantity enclosed in the brackets and
the subscripts 1 and 2 refer to quantities evaluated at time instants
tI - t+T and t2- t. The autocorrelation Rb (T), viewed as a function of
these correlation functions, may be expanded by Taylor's series
(Borgman, 1965). By retaining only the zeroth and the first order terms
of the series and taking the Fourier transform of the resulting
approximate autocovariance function , the approximate spectrum of
breaking waves is obtained as

Sb(W) - F (W)S(W) (7)

in which

=~ Al  -

is a fourth order polynomial function of wand may be looked upon as a
filter function which accounts for the effect of wave breaking on the
spectrum of the ideal waves.

15. The following functions and parameters that appear in Equation 8 are
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defined in the following.

1 n2
Z(n) - p (- ) (9)

and

Q(&) f Z(n)dn (10)

are probability functions (Abramowitz and Stegun,1968).

r - f SlQJdw (11)

-fW S(W) (12)

and

r( 4 ) . fw 4S(w)dw (13)

are respectively expected values E[C2],Eiz.) and E[ 2],

BWT= f(14)

is a measure of the extent of wave breaking which has been shown to be
rather larger than unity (Tung and Huang, 1987) and

[r (2)j 2

r r (4)

which lies between zero and unity is known as the bandwidth parameter of
S(w.) (Cartwright and Longuet-Higgins, 1956).

16. In Equation 8,

A r(4
)

A , + Q(-0)>O (17)

and
2  BQ(B/c)

A 6Z (S) Q iE + BZ(B)
2 21 1r(1-E 2) (8

where
Go

R.- Zai._ Q(f u n± n)dn (19)
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PART III: WAVE-CURRENT-BOTTOM INTERACTIONS

17. In reference to Figure 2, consider a straight shoreline and assume that
the bottom is gently varying with contours parallel to the shore. A
random short-crested wave system approaches the shore from deep water
and enters a region of current. Two types of horizontal current are
considered. The first type is the shear current in which case the
horizontal current velocity V(x) is parallel to the shore and
independent of the y-coordinate. The second type of current, referred
to as the upwelling case, has its velocity U(x) in the x-direction and
is also assumed to be independent of the y-coordinate. In each case,
the current is steady in time, slowly varying in the horizontal space
and independent of the vertical coordinate.

18. The wave system is viewed as a congregate of wave components with
distinct frequency W and angle of approach 0. For each wave component,
the apparent frequency w, in a stationary frame of reference, is
invariant and related to the intrinsic frequency, W r, in the frame of
reference moving with the current as

W= W + VH ' k (20)

where U is horizontal current velocity vector, k is wave number vector
and

2
W = gk tanh(kd) (21)

r

d(x) being the slowly varying local water depth, assumed to be
independent of the y - coordinate and k is the magnitude of k. From
irrotationality of wave number vector, we have

k sin 0 = k sinOCn (22)

where the subscript ( o) refers to quantities evaluated in quiescent
deep water free of current.

19. Ignoring wave breaking and using the energy balance equation or from
conservation of wave action consideration, it was found (Tayfun,et al.
1976) that the wave frequency spectrum SQw,O) at the locale under
consideration is given by ,U k

S( ,0) G S0O(W,0) (23)

k(C gr+ U Hk/k)

where

(CG) . -

2k. (24)
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is the magnitude of group velocity of deep water waves and

d u.
C r - r n (25)

is the magnitude of group velocity of waves in relative frame of
reference and

2kdn 1l (26)

2 sinh (2kd))

for brevity.

20. Thus, for shearing current, UH - (0,V(x) ),

w = w + Vk sin 0r (27)

and
k w-VksinO

S(w,E) ) m -- ' S.(W,o (28)SO)=2k c +VsinE)O
0 gr

For the upwelling case, UH - (U(x),0),

w = w +Ukcos0 (29)
r

and

k w-UkcosO

S(w I 2k C +Ucos0 Sw(W,O) (30)0 gr

21. To compute the spectrum at a specified locale with given values of water
depth d and current velocity UH, and for a specific wave component of
relative frequency Wr and angle 0, the corresponding values of wave
i.umher k and absolute frequency w are found from Equations 21 and 20 (or
Equations 27, 29) respectively from which the wave number k,-w 2/g and
angle Ow (from Equation 22) in deep water are obtained. Finally, S(w,O)
is computed from Equation 23 (or Equations 28, 30).

22. The wave components are all subject to the breaking limit (Tayfun et
al., 1976)

k
C +U'-- > 0
gr Hk - (31)

and the kinematic limit

sine0 IS 1 (32)

8



Those wave components which violate Equation 32 are reflected and the
incident wave field is accordingly modified. Such modification,
however, is not carried out in this study. Those wave components which
violate Ecr-tion 31 are cut off and deleted beyond the point under
conside-ation. There also may occur, as is the case in subsequent
numerical results, that for specified ur, d, UH and 0, the energy in
deep water, %(w,0., is very small or non-existent. In that case
S(14 0) is set equal to zero.

23. To account for the effect of wave breaking, the spectrum S(W,O), viewed
as a frequency spectrum for specified value of 0, is first transformed
into the frame of reference moving with current. That is

S(W ,0) - S(W,G) dw (33)
r

where dw/dwr is obtained from Equation 20 (or Equations 27, 29). 'twr,0)
is then used in place of S(M) in Equation 7 from which the breaking wave
spectrum in relative frame of reference Sb(wr0)is determined. Spectrum
of breaking waves, Sb(W,O), in stationary frame of reference is then
calculated by transformation. That is,

dw
b (wC) Sb (Wr'Od r  

(34)

24. Although the spectra of the breaking waves, in relative and absolute
frames of references so obtained as outlined above are, within the
confines of the assumptions made, strictly correct, improvements of the
results are nevertheless possible by carrying out the computations
iteratively. That is, upon obtaining the breaking wave spectrum tb Lr,C)
in the relative frame of references, it may be used as the ideal
original wave spectrum S(W) in Equation 7 from which a revised spectrum

Sb (r, results. This process may be repeated until, say, the peak
value of Sb4wr,O) converges to within a prescribed limit of tolerance.
The breaking wave spectrum Sb UXO) in the stationary frame of reference
is then computed according to Equation 34. In this study, the tolerance
limit is set at 0.001 m2/s for all cases considered. The maximum number
of cycles of iteration necessary to satisfy this tolerance limit is
eight.

25. The iteration process described above, although intuitively appealing
and presents no problem in computation, is not without difficulty in
theoretical terms since Equation 7 is derived based on the assumption
that the ideal waves are a zero mean Gaussian process. However, in the
earlier study (Tung and Huang, 1987), it was found that the mean value
of b is rather small and in another study (Tung et al., 1988) the
deviation of the probability function of b from Gaussian is also
minimal so that the iterative scheme adopted in this study must be
considered acceptable.

9



PART IV: NUMERICAL RESULTS

26. In order to obtain numerical results, the directional wave spectrum in
deep water mu4, be specified. In this study, it is assumed that the

directional wave spectrum takes the form

S( e,) - SQ(D) (O=) (35)

where

8 I O1Cos 4 2

is the directional energy spreading function. For S(C(O), there are a

great number of frequency spactra (The JONSWAP Spectrum, for example)

one can choose from. In this study, we use the wallops spectrum (Huang

et al, 1981) whi-h takes the form

2 W4
2g 5-rn exp 0-- (4;5-m 4- W

W wo

27. The quantity m gives the magnitude of the slope of the frequency

spectrum (on log-log scale) in high frequency range and is

log(27T2 § (38)

log2

where

-(39)

0

is the significant slope of the wave, X -27/k being the

characteristic wave length (see Equatiot9 5). 0The quantity CE is given by

(n-1) 142
_= _(__0/4 (2Tr ) 2(40)

4(m-5)/4 r((m-1)/ 4)

where r (-) is the gana function (Abramowitz and Steg 1968).

28. The Wallops spectrum is thus seen to depend on two neters, the

significant slope § , which defines m and hence i, _, o, which is the

frequency corresponding to the peak of the Wallops spectrum. 
In what

follows all numerical results are obtained for values of 9- 0.015 andWQ

- 0.6 rad./s.

29. The directional spectrum S ,((4.) in deep water as given by Equation 34

is shown graphically in two ways. In Figure 3,S , (w,O=) are given for

various values of 0 as function of w. Since S (u, 0)f is synmmetrical

about 0 - 0, the spectra are shown only for 0<0 <7 . In Figure 4,

the contour lines of S,,( w,0.) are d.awn. The ordinates of the contour

lines are marked as shown.
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30. In the following, we first consider the case in which deep water wave
system with S.(WOe,) shown in Figures 3 and 4 meets a shear current of V
- 2 m/s in deep water. Qualitative behavior of wave components on a

positive shear current in deep water is shown in Figure 5a and 5b. The
ideal wave spectrum S(w,E)) and the breaking wave spectrum Sbfi,O) are
given in absolute frame of reference for discrete values of e in Figures
6 to 14. The contour lines of Sb(W,e) in this case are shown in Figure
15. From Figures 6 to 14, it is seen that most of the wave energy is
concentrated near small values of 0 and no wave breaking occurs. For
waves with 0 - -400, and -300, the spectra terminate at frequencies

1.205 and 2.208 rad/s respectively. Waves of frequencies beyond these
cut-off frequencies originate from regions of (W -08) space where no
wave energy exists (see Figure 5b). Waves with N<O are subject to

limits set by wave breaking but the breaking limits are much larger than
tne cut-off frequencies shown above. Likewise, waves with EP0* are
subjent to kinematic limits and may be reflected. However, these
kinematic limits are well beyond frequencies where energy of component
waves of any significance exists.

31. We next consider the case in which deep water waves of spectra shown in
Figures 3 and 4 encounter an adverse current of the upwelling type with

U --2m/ while in deep water. Qualitative behavior of waves on adverse

current in deep water is sketched in Figure 16. The ideal wave spectrum
S(w,O) and the breaking wave spectrum Sb(w,O) in absolute frame of
reference are given in Figures 17 to 21, for various values of 0. The

contour lines of Sb(" ) are given in Figure 22. Because of syumetry,

only spectra and contour lines for 0>00 are shown. As may be expected,
wave energy is highest at 0- 00. For waves with 0- 00 and 100, wave
breaking limits the frequencies at W- 1.225 and 1.244 rad/s

respectively where wave energy grows indefinitely. In reality, waves

break long before these limits are reached. For waves with 0- 200,

300, and 400, waves beyond W- 1.262, 1.16, and 1.00 respectively do not

exist since these originate from regions of (u-0 ) space where there is
no wave (see Figure 16). For 0-00, 100 and 200, wave breaking reduces

the ideal wave spectrum S(4 , but beyond 0= 300, no wave breaking is

seen to occur. Other than for the cases of 0 = 00 and 100, the limits

set by wave breaking are beyond those cut-off frequencies shown in these

Figures. From Figure 22, it is seen that the spectrum Sb(w,o) is double

peaked.

32. When deep water waves with spectrum given in Figures 3 and 4 propagate

toward the shore in still water without current over a gently varying

sea bed with straight contours parallel to the straight shoreline, the

waves are re -acted and bend toward the shore as shown in Figure 16. At

water depth - 1 0 m, the spectra S(w,O) and Sb(CL0) are computed and

given for :i%, rete values of 0 in Figures 23 to 27 and the contour lines

of Sb(w,e are given in Figure 28. Due to symmetry, only cases of 0>00,

are given. M -- of the wave energy is contained in the neighborhood of 0

- 00. F - 0 - 00, 100 and 200, wave breaking reduces wave energy, but

for waves with 0- 300 and 400, the effect of wave breaking is

vanishingly small. For 0- 100, 200, 300, and 400 there exist cut-off

frequencies w - 0.197, 0.370, 0.521, and 0.695 respectively below which

no wave exists. These low frequency long waves which are most severely

affected by the bottom, originate from regions of (W-0.) space where

11



there is no wave. High frequency short waves are essentially deep water

waves unaffected by the bottom.

33. We now consider the case in which the deep water wave system with
spectrum shown in Figures 3 and 4 enters a region of shear current of
velocity V - 2m/g approaching a straight shore over gently varying
seabed of straight contours parallel to the beach. At water depth d -
10 m the spectra S(W,E)) and Sb("E in absolute frame of reference are
given in Figures 29 to 35 and the contour lines of SbCw,e) are given in
Figure 36. Similar to the cases of waves on shear current in deep water
and waves approaching the shore without current, wave energy is highest
around 0- 00. Wave breaking occurs for waves with 0 - -200, -100, 00,
and 100, but not for waves with larger values of 0. Figure 37 gives a
sketch of behavior of waves on positive shear current in water of finite
depth with parallel contours. Long waves are affected predominantly by
the bottom whereas short waves are affected by the current. For waves
with G<00, both short and long waves are bent toward the shore, but for
waves with 0>00, short waves bent by the current become increasingly
parallel to the shore but refraction by the bottom bends the long waves
toward the shore. Thus, in Figures 29 to 35, for both waves with 0<00
and0 >00 , there are lower cut-off frequencies of W-0.609, 0.401, 0.190,
0.197, 0.204, 0.364, and 0.477 rad/s corresponding respectively to
cases of 0- -300, - 200, -100, 00, 100, 200, and 300. Waves of
frequencies below these cut-off frequencies originate from regions of
(W-Oci space where no wave is present. The short waves travel
essentially in deep water on the shear current and behave much the same
as those given in section 3 where, for waves with 0 - -300, there is an
upper cut-off frequency of w- 2.208 rad/s.

34. The last case considered is that of deep water waves of spectra shown in
Figures 3 and 4 encountering a current of the upwelling type with U = -

2m/3 in finite water depth. For waves at water depth d - 1 0m, the
spectra S(w,O) and Sb (40) in absolute frame of reference are given in
Figures 38 to 41 and the contour lines of Sb(,O) are given in Figure
42. Because of symmetry, only the cases of Q>00 are given. Energy is
concentrated around 0- 00 and wave breaking occurs for waves with 0 -
00, 100, and 200, but not for waves with 0 - 300 much the same as in the
case of deep water waves meeting an upwelling current in deep water.
Both short and long waves are bent toward the shore with the short waves
affected.by the current and the long waves by the sea bottom. Thus, for
the short waves, there are upper cut-off frequencies, as limited by wave
breaking of w- 1.225 and 1.244 rad/s corresponding to waves with 0 - 00
and 100 respectively. For waves with 0 - 200 and 300, the upper cut-off
frequencies are respectively w- 1.262 and 1.15 rad/s, as in the case of
waves encountering an upwelling current in deep water. For the long
waves, the lower cut-off frequencies are w- 0.234, 0.450 and 0.739
rad/s corresponding respectively to the cases of 0- 100, 200 and 300.
Waves of frequencies below these values originate from regions of (w-O-)
space where no wave exists.

12



PART V: CONCLUSION

35. In an earlier report (Tung and Huang, 1987) we introduced a method by
means of which the effect of wave breaking or wave spectrum can be
incorporated. The method was applied to the case in which a uni-
directional deep water wave systm propagates toward the shorw over
gently verying sea bed of straight parallel contours encountering an
adverse current. In this report, the method is extended to the case in
which the deep water wave system represented by a directional spectrum
propagating over a sea bed having the same characteristics meeting
current. of either the shearing type parallel to the shore or of the
upwellinq type perpendicular to the shore.

36. The method of incorporating wave breaking is approximate, but easy to
apply. The solution to the wave-current interaction problem (without
considering wave breaking) is for the specific case where the sea bed
has parallel contours. The results so obtained are therefore restricted
in application. The method of dealing with wave breaking can be
improved, but such refinement is not considered necessary at this stage
of development. The restriction imposed by the idealization of the sea
bed can be relaxed by adopting a fully numerical treatment of the wave-
current interaction problem (without considering wave breaking).

37. The results of this study must be checked against those of other
analytical methods and experimental data, both from the field and
laboratory.
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APPENDIX A: NOTATION

AlA 2  Quantities defined in Equations 17 and 16, respectively

(Cg6,Cgr Group velocities defined in Equation 24 and 25, respectively

d(x) Water depth

El.] Expected value of the quantity enclosed in the brackets

F(W) Filter function defined in Equation 8

q Gravitational acceleration

H(-) Heaviside unit step function

K Coefficient defined in Equation 4

k Magnitude of wave number vector k

tWave number vector

k. Magnitude of wave number in deep water

VCharacteristic wave number in deep water
0

m Magnitude of the slope of the Wallops spectrum for deep water
waves in the high frequency range on log-log scale given in
Equation 38

Quantity defined in Equation 19

n Quantity defined in Equation 26

Q(.) Probability function defined in Equation 10

Rb(T) Autocorrelation function of breaking wave elevation 4b(t)

r,r( 2 ),r( 4) Quantities defined in Equations 11, 12, and 13, respectively

S (W) Ideal wave spectrum

Sb(W) Breaking wave spectrum

Sm (W) Spectrum of waves in deep water

S (w-0) Directional spectrum of ideal waves in absolute frame of
reference

Sb(W,0) Directional spectrum of breaking waves in absolute frame of
reference

Al



S(Wr,0) Directional spectrum of ideal waves in relative frame of
reference

Tb(Wr,0 ) Directional spectrum of breaking waves in relative frame of

reference

Sao (w, ) Directional Spectrum in quiescent deep water

t Time

tl,t 2  Time instants t + T and t, respectively

U(x) Speed of current of the upwelling type in the x-direction

H' UH Horizontal current velocity vector and its magnitude,
respectively

V(x) Speed of shear current in the y-direction

x,y Horizontal coordinates defined in Figure 1

Z(.) Probability function defined in Equation 9

CL Coefficient defined in Equation 40

B Wave Breaking parameter defined in Equation 14

- The gama function

eSpectral bandwidth parameter defined in Equation 15

0it), b(t) Elevations of ideal and breaking waves, respectively

TDummy variable

o,ew Angles of wave at locale under consideration and in deep water,
respectively

X o Characteristic wave length

Dummy variable

Time lag

Directional energy spreading function defined in Equation 36

w Wave frequency

Wr Wave frequency in relative frame of reference

W Characteristic wave frequency defined in Equation 6

A2



Wo Paramter of Wallops Spectrum

Wl Quantity defined In Equation 16

1,2 Quantities evaluated at time instants t 1 , and t2 , respectively

Quantities evaluated in deep water under zero current condition

Symols

Differentiation with respect to time

Significant wave slope defined in Equation 39

A3


