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A Prototype Silicon Compiler in Prolog

The Advanced Silicon Compiler in Prolog (ASP) is a full-range hardware synthesis sys-
tem based on Prolog. It produces VLSI masks from instruction set architecture specifications
written in Prolog. The system is composed of several hierarchical components that span
behavioral, circuit, and geometric synthesis.

This report describes the prototype ASP system and its major components. The system
is currently being completely reimplemented, based on our experience with the prototype, to
make it faster and more general, and produce higher quality output. The report first gives an
overview of the prototype system, then discusses in detail its three major components, and
concludes with remarks about the new version of the system.

1. ASP Overview

“The ASP effort is part of the Aquarius Project {Aquarius], which is aimed at producing
high-performance Prulog engines, realized in part with specialized high-quality microproces-
sors. Thus the focus of ASP is microprocessor synthesis, with a design domain of single syn-
chronous chips with a single data path and control path. ASP is also meant to test Prolog as
an implementation language for design automation. |

The general ASP approach is hierarchical ang;l’ automatic. The input to the system is an
abstract specification of an instruction set, and the output is a specification in CIF suitable for
submission to a VLSI foundry.

An carly design of the system ([CHS]) used a common unifying data structure; this
approach was abandoned because we did not have the resources to both develop tools and a
data base system. |

ASP operates instead in a transformational manner, each level of the system transform-
ing its input into sets of facts about the developing design. Each level brings the design
closer to layout with more detailed facts, reflecting design decisions made at that level. Each
level is autonomous, using the facts generated by previous stages.

Since ASP is implemented in Prolog, it is naturally a2 multi-paradigm system, using
both algorithmic and rule-based techniques. In general the system is algorithmic, with rule-
based local optimizations. It does not use goal-directed planning or have a single well-
isolated rule set.

1.1. Decomposition of Silicon Compilation

N Because a full behavior-to-silicon compiler is a complex undertaking, we decompose
the silicon compilation problem into three major abstract problem domains, ordered higrarch-
ically (see [CADDY] and [OCCAM], for other similar decompositions). . =TS &

The top level of our system is the behavioral domain. This level generates a data path
(a set of functional units), controlled by a finite state machine, from an input specification
written in Prolog (see Appendix 1). Both standard compiler techniques and hardware-
specific knowledge are used in this process. This behavioral synthesis task is performed by
the Viper component of ASP.

The second level is the circuit or functional domain. The purpose of this domain is to
present the behavioral component with abstract circuit components (for example, see Appen-
dix 10). Hence, this level attempts to synthesize and connect the finite state machine and
functional units generated by the behavioral level. This level encompasses the traditional
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tasks of state assignment, logic synthesis, module generation, transistor sizing, placement,
and routing. The core of this level is module generation, which is done by the Topolog com-
ponent. We also have a CMOS PLA generator and a channel router.

The third level is the geometric domain. The purpose of this domain is to present the
programs of the functional domain with idealized geometric elements, in the form of a
sticks-and-elements virtual-grid abstraction of actual mask layers (for an example, see
Appendix 13). This domain encompasses the traditional tasks of compaction and device-
level simulation. These tasks are accomplished by the Sticks-Pack component of ASP. See
Appendices 14, 15, and 16 for example layout.

Clearly there is some interaction between the levels. No layout generator can ignore the
constraints inherent in technology, such as, for example, the richer connectivity of two layers
of metal compared to a single layer. Similarly, the data path constructor can only use func-
tional units that the module generator can generate.

1.2. Viper

Viper generates structural hardware descriptions from instruction-set level
specifications written in standard Prolog. It performs two basic functions. It translates Pro-
log constructs into hardware equivalents, and it creates and allocates hardware resources
while satisfying various constraints.

Viper uses a combination of compiler analysis and hardware knowledge. Algorithmic
compiler techniques -- dependency dnalysis, register allocation, and dependency-based
scheduling - are used to produce a basic design with constraints. Hardware specific heuris-
tics and knowledge about the characteristics of functional units are then used to generate a
design within the constraints.

Viper operates in four phases: register allocation, translation of the Prolog specification
into an RTL-based form, data path construction, and structural description generation.

The first phase operates on an input specification written in Prolog and constrained to a
style illustrated in Appendix 1. First, the microprocessor must be a finite state machine as
indicated by the first clause. Second, the model of memory is assumed to be extemnal to the
microprocessor, and is realized in Prolog with assert and retract. The first phase transforms
an input specification into an equivalent Prolog program in + 't -1 variable references have
been replaced by assertions involving global data structures thai model registers. As with the
original specification, the transformed specification can be execuied directly by a Prolog
interpreter. It also transforms assert and retract into memory references, while providing a
system-defined memory interface.

The second phase converts Prolog goals to register transfers, assigns transfers to FSM
states, and produces a state transition table. The operations appearing in transfers are Prolog
operators, such as ‘+’, and are not yet bound to functional unit operations. The schedule of
transfers is maximally parallel, based only on dependencies between values and not on
resource constraints.

The third phase produces a constrained data path, mapping abstract operators to func-
tional units and minimizing the connections between units. If the system cannot find an
available functional unit it tries to extend the functionality of an existing one, for example by
converting a register used in an increment expression into a counter (providing enabling con-
ditions are met).

)
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Knowledge about functional units is packaged in a library, which also serves as the
interface to lower synthesis levels. Each member of the library contains knowledge, in the
form of Prolog assertions, about when and how it should be synthesized. This approach is
similar in spirit to [BUD), but is not object-oriented in implementation. Each library member
also contains the logic equations and other information necessary for it to be realized as a cir-
cuit.

The fourth phase generates a structural description containing a connected data path and
control path. Appendix 8 presents the data path derived from the specification in Appendix 1,
consisting of named instances of functional unit types along with connected input and output
buses and control signals. Functional unit implementation is deferred to Topolog. Appendix
9 presents the finite state machine control path.

1.3. Topolog

Topolog is the module generator, layout engine, and circuit database manager. It takes
in a description of a circuit to be generated, constraints on the bounding box, and a set of
ports, and outputs a sticks-based layout description which can be converted to a fabricatable
form by the mask-level design environment, Sticks-Pack.

Topolog combines the functions of a module generator and layout engine in an attempt
to solve, in combination, problems specific to each. In particular, the availability of a layout
engine permits the module generators to specify a module as a collection of functional blocks
rather than pieces of geometry, which significantly simplifies the problem of specifying com-
ponents of a module. The module generator is freed from most concems of geometry, rout-
ing and placement, secure that the layout engine will solve the routing and placement prob-
lem. Similarly, the collection of circuit elements into modules provides valuable information
to those automated placement tools which either implicitly or explicitly partition a circuit
into connected subcircuits.

Topolog is designed around the basic abstraction of a block. A block represents a prim-
itive circuit element. A block has a p-side and an n-side. Topolog’s basic function is to
group blocks into rows, and to route signals between the blocks. A single routing channel
runs between the p- and n-side of any row; a power bar runs above the p-side of every row,
and a ground bar runs beneath the n-side of every row. Odd rows are flipped about the hor-
izontal axis so that power and ground bars may be shared between rows. Topolog can be
thought of as a standard cell layout program, but since blocks can be anything which has the
characteristics mentioned here, it is more accurate to describe Topolog as a gate matrix style
layout engine.

Topolog has a six stage pipeline. After inputs are parsed, a preliminary generation of
all the blocks is done. The blocks are then grouped into rows, and placed within rows. Dur-
ing this placement phase, compound blocks are expanded into their primitive component
blocks. Detailed generation of blocks is done; the blocks are fleshed out into a sticks-and-
elements description, and the pins for channel routing are defined. The channel is then
routed. Finally the package is output. An example is shown in Appendix 16, which is a bit
slice derived from the data path description in Appendix 8. Our existing logic blocks are all
designed by the Uehara-Van Cleemput procedure [UVC]. The UVC algorithm has been
shown to derive near-minimal-width single-diffusion-strip static CMOS arrays.

Topolog supports four types of blocks: static CMOS and-or-invert gates, domino
CMOS gates, pass gates and transmission gates. Topolog is designed to support any circuit
style or technology that can be expressed in the style described above. The terms p-side and
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n-side refer to p- and n-diffusion regions, reflecting our primary concern with CMOS technol-
ogy; however, there is no reason, in principle, to use these regions specifically for these pur-
poses. One can imagine, for example, using Topolog for NMOS designs using the p-side for
the complementary device. The addition of a new circuit type is easy, due to Prolog’s
clause-based programming style. The library routines have so far proved powerful enough to
make the addition of new circuit types almost automatic: the addition of domino CMOS
required only 30 lines of new Prolog code.

1.4. Sticks-Pack

The Sticks-Pack environment consists of a technology independent compactor that
creates spaced layout and simulation files from sticks-and-elements descriptions, a joiner that
joins together cells generated by the compactor, and a simulator that simulates sticks-based
cells.

The Sticks-Pack compactor takes a cell defined in the sticks-and-elements representa-
tion used by Topolog (see Appendix 13), and creates a mask level representation for the cell.
A new compaction technique is employed which is both algorithmic and rule based. An algo-
rithm similar to zone refining is used to perform a rough spacing of the elements. Floor and
ceiling profiles for each layer of material are maintained. Elements from the ceiling are
moved directly across the molten region to the floor, where spacing requirements are calcu-
lated, and diagonal constraints are noted. Rules are used to shift the elements to better fit
their environment. For each cell, a connectivity file containing nodal connectivity, resistivity
and capacitance information is generated for the switch-level simulator and for the Spice cir-
cuit simulator. The Sticks-Pack compactor is relatively technology independent; it supports
an arbitrary number of layers, and elements such as transistors and contacts are defined from
a set of primitives. A design rule file and a set of technology dependent rules are specified
for each technology.

Large layouts in Sticks-Pack are realized by joining small cells together. Leaf cells
(cells of the lowest level consisting of transistors and wires) are compacted individually and
constitute the building blocks for larger modules. Previous tilers have either pitchmatched or
river routed cells. The joiner program connects signals between cells by either pitchmatching
or river routing, whichever is more area efficient. The joiner operates in the physical domain
rather than the virtual grid domain for tighter results. This also allows cells of various virtual
grid heights and widths to be joined.

1.5. Other Components

We have a boolean equation generator that takes the finite state machine description
produced by Viper and does state assignment and generates the equations used by our CMOS
PLA generator (see Appendix 11), which then creates AND-OR sticks-and-elements PLAs
from those boolean equations.

We have a left-edge-first channel router for connecting the major blocks of the system,
primarily the data path and control path.

In an effort to improve the performance of our designs, we have investigated transistor
sizing with a Prolog-based transistor sizer named Most [Most], which runs standalone.
1.6. The Use of Prolog

The use of Prolog for both specification and implementation arose from experience
using and implementing Prolog in both a compiler and a new execution engine. Our
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experience with Prolog in ASP has in general been positive.

1.6.1. The Use of Prolog for Implementation
We have observed several benefits in using Prolog for implementation.

(1) Prolog’s database properties have aided the production and processing of information.
The relations that the system generates are much better expressed in that form than in
the usual compiler hash table structures. Prolog itself is therefore the database manager
for our low-level Sticks-Pack cell design environment, which gives us a simple solution
to what is, for most systems, a major part of the silicon compiler design and implemen-
tation effort.

(2) Prolog’s rule-based environment has made heuristics easy to implement. Most of the
system is in fact algorithmic, and a general heuristic approach has been avoided, but
heuristics are used in a few local contexts.

(3) Prolog’s unification of the concepts of data and procedure call lets us use module
libraries in a natural ways; it also leads to a simple mechanism for user-programmability
of (for example) our module generator.

On the other hand, without a sophisticated debugger, Prolog, with its failure and back-
tracking semantics, has been hard to debug. Similarly, Prolog code is hard to modify without
careful redesign.

1.6.2. The Use of Prolog for Specification

Prolog is used for specification because of its logical basis and declarative nature [Pro-
log]. Specifications are executable in Prolog, and thus can be simulated without a simulator.
Since Prolog does not have explicit hardware constructs, both hardware structures and paral-
lelism information must be derived by the system. The microprocessor focus of the system
has allowed us to ignore some specification issues -- we are not concemed with the
specification or synthesis of multichip, asynchronous, bit serial, or analog designs. For clar-
ity and implementation simplicity we require Prolog specifications to be determinate (without
backtracking); we only implement determinate FSM's.

Specification in Prolog has turned out well so far, for a number of reasons [Viper].

(1) Control in Prolog is simple (ignoring backtracking), and maps easily into hardware.
The user’s conceptualization and the system'’s realization are similar.

(2) The derivation of information (such as concurrency constraints and register bindings)
that in another language might be explicit has not been difficuit.

(3) Clauses tend to be short and well modularized, lending themselves to easy translation.

(4) Prolog’s simple structure and syntax facilitate automatic generation of Prolog
specifications.

2. Viper

Viper is the high-level synthesis component of the Advanced Silicon in Prolog (ASP)
system ([ASP]). This section summarizes the organization of Viper, and then presents the
operation of individual Viper stages in detail (some of which appeared in [Viper}).




2.1. Organization

Viper performs the same basic tasks that other synthesis systems do. It translates
specifications into an intermediate representation, schedules operations, allocates registers,
creates functional units, binds operations to functional units, and creates interconnect. In
order, the detailed tasks it performs are:

(1) realization of Prolog variables as architected registers,

(2) translation of Prolog goals into an intermediate representation containing register
transfer operations and control information,

(3) dependency analysis,
(4) scheduling of operations,
(5) global analysis of data path resource needs,
(6) functional unit allocation and binding of critical operations to functional units,
(7) binding of the remaining operations and creation of interconnect,
(8) data path construction, and
(9 control path construction.
These tasks are grouped into four stages.

(1) Stage one consists of task 1. The model of storage in an input specification is changed
from using write-once Prolog variables to global write-many registers.

(2) Stage two consists of tasks 2, 3, and 4. These are essentially bookkeeping activities that
translate Prolog into a tractable intermediate form.

(3) Stage three consists of tasks 5, 6, and 7. This is the critical stage in which a data path of
functional units is allocated (including, for example, ALUs) and operations in the
specification (such as + and -) are mapped onto (bound to) functional units.

(4) Stage four consists of tasks 8 and 9. These again are bookkeeping tasks, which translate
the intemnal design generated by Viper into a form usable by lower synthesis levels.

Viper performs two additional tasks that are needed to create proper input to the avail-
able lower level ASP tools, but that are not part of high-level synthesis. The control path
definition is translated into PLA logic equations, and topological constraints are added to the
data path definition.

2.2. Hardware Specification using Prolog

The microprocessor specification domain of ASP makes standard Prolog [Prolog] a rea-
sonable choice as a specification language. Multiple asynchronous finite state machines,
explicit parallelism, and detailed off-chip interface descriptions need not be supported.
Instead, concurrency information can be derived by the system, and standard interfaces
(design frames) can be supplied. The result has been to put considerable responsibility for
the final quality of the design on the ASP system.

The specification domain is also constrained by ASP’s pragmatic purpose (and reason
for existence) as a synthesis system. Specifications must be effectively realizable in
hardware.




2.3. Instruction Set Level Specification

ASP takes as its input, specifications that define the operation of microprocessor
instructions. Individual instruction-specific clauses are contained in a recursive instruction-
executing definition.

For example, consider a simple example, a fragment of a microprocessor specification.

SMI(AC, PC) :-
fetch(PC, P1, OP, X),
execute(OP, X, AC, A, P1, P),
SMI(A, P).

SMI(_, ).

This is a definition of a Von Neumann machine, the SM1 (Simple Machine 1), which has two
explicit registers, an accumulator (AC) and a program counter (PC). The machine is com-
posed of a fetch cycle and an execute cycle, which are recursively evaluated until one fails.

The fetch cycle is defined as a clause that retrieves an instruction from memory and
increments the PC.

fetch(PC, P1, OP, X) :-
mem(PC, OP, X),
PlisPC + 1.

An add instruction is defined with an execute clause.

execute(add, X, AC, A, PC, PC) :- !,
mem(X, T),
AisT+ AC.

A complete specification of this simple machine appears in Appendix 1. From this example a
few observations can be made.

First, the specification is abstract. Bit widths and values, explicit concurrency, timing,
and hardware entities (such as buses) are not present. Nonetheless, the basic specification is
complete, without detail, in that it is an executable Prolog program, which provides a com-
plete high-level simulation of the microprocessor.

Second, some details can be derived, such as concurrency from dependency analysis.
Other details, such as bit widths, can be declared in auxiliary assertions, but default values
are provided (32-bit data paths, for example).

Third, simulation at this level is also abstract. To execute the above specification in
Prolog, abstract memory must be defined.! For example, the facts

!Memory could be defined in other ways. For example, each clause could have two additional variables, one
bound to the state of memory when the clause is entered, and another bound to the state of memory on exit.
Memory could be represented as a structure containing all valid addresses. This model of state is used in some
theories of program semantics. It is logically clean but practically inefficient.




mem(1000, load, 2000).
mem(1001, add, 2001).
mem(1002, stor, 2002).
mem(1003, halt, ).
mem(2000, 2).
mem(2001, 3).

define a program and its data. Starting at location 1000, the SM1 adds two numbers, 2 and 3,
and stores the result in location 2002. Actual binary images of programs must be simulated
at a lower level.

Fourth, no particular level of abstraction is enforced. Memory and its referencing are,
for example, quite abstractly defined, while the realization of the AC and PC variables (as
registers) is obvious. Various stages of ASP synthesis will define, or require the definition of,
many specific details.

Fifth, only a semantic subset of Prolog is supported. Backtracking must be avoided,
since we do not want to implement non-deterministic finite state machines. We also do not
implement truly recursive hardware.

2.4. Register-Based Transformation

The first stage of high-level synthesis in ASP introduces register-like storage into Pro-
log specifications. State in a basic Prolog specification is contained in Prolog variables, while
state in 2 machine is held in registers that are global value holders. The first stage moves all
state -- all value storage -- into global assertions. It performs a source to source transforma-
tion, producing a new specification, equivalent in functionality to the original one, in which
register value assertions are used to store values instead of Prolog variables.

2.4.1. Register Conversion
In detail, values are stored in assertions of the form

<register-name>( <register-value>).

and are referenced by ser and access goals.? Prolog variables carry values (and can be thought
of as buses) but do not store them.

For example, the add clause above becomes -

execute(add) :- !,
access(regX, X),
mem(X, T),
access(regAC, AC),
AisT + AC,
set(regAC, A).

Prolog’s tail-recursive single-assignment style, evident in the SM1 definition clause of
the example microprocessor specification, is the main motive for introducing registers at this

?The access and set goals are defined as
access(X,Y):-Z=..[X, Y], Z.
and
set(X,Y) :- abolish(X, 1), Z =.. [X, Y], assert(Z).
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point in synthesis. Since Prolog does not have destructive assignment, the variables in a Pro-
log program are equivalent to arcs in a data flow graph representation of it; the process of
assigning registers to variables is essentially data flow optimization of storage. ASP need not
initially translate the specification into a data flow graph, as, for example, the CMU-DA sys-
tem does ((CMU-DA]). Because some analysis is needed to remove tail-recursive storage
from specifications, and because specifications are already in data flow form, register alloca-
tion is done first. In addition, making registers visible through source to source transforma-
tion permits the user to analyze the transformation.

Conversion operates in two phases. The analysis phase associates registers with vari-
ables, optimizing by sharing. The transformation phase uses the analysis information to gen-
erate a new register-based specification.

2.4.2. The Variable Analyzer

The analyzer assigns registers to all Prolog variables in a specification. Different vari-
ables are made to share the same register under two basic circumstances, argument passing
and value assignment.

Argument passing almost always causes sharing. In the original specification, values
are passed between a goal and its matching clause head via argument variables. The analyzer
preserves this result by assigning the same register to variables in the same positions in invo-
cation and head. Thus in

.. 8(A,B), ...
and
8X,Y):- ...
A and X share one register, and B and Y share another. In the transformed specification,
assigning a value to A’s register makes the value available to X.
One case where argument passing may not cause sharing involves unification. Consider
the general execute goal from above,
... execute(jump, X, ... P), ...
and the jump instruction clause (which sets the PC),
execute(jump, ADR, ... ADR).

The X and P variables should not be assigned the same registers.

A special case of argument passing is tail recursion; different variables in the same
clause are assigned the same registers. The clause head variables (representing the values of
the current loop iteration) share the storage of the variables in the recursive invocation

(representing the values of the next iteration).>

Value assignment often causes sharing. In particular, the destination variable and one
source variable of an is operator can be assigned the same register when the old source value
is not used after the new destination value is computed. Sometimes the analyzer has a choice
of source variables. Consistency with tail-recursive argument sharing usually drives the

*This sharing is correct only if the next iteration values are defined after all uses of the current-iteration
values.
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choice.
The analyzer takes a goal as its input argument, and analyzes the (depth-first) transitive

closure of clauses reachable from that initial goal. It generates a database of relations con-
taining variable and register information.

2.4.3. The Register Transformer

The transformer produces new Prolog clauses, adding access and set goals, and remov-
ing variables from clause heads and associated goal invocations.

Not all variable arguments can be removed. For example, constants appear in clause
heads for clause selection, and the variables in corresponding goals must be retained. Con-
sider the execute clauses in the example specification; the halt, add, and load symbols must
be retained, with the comresponding goal in the SM1 clause becoming execute(OP). These
control flow variables will later be mapped into next state selection logic in the control path.

Variables must also be retained when they return values from facts. For example, the
instruction memory location

mem( 1000, load, 2000).
when referenced by
... mem(PC, OP, ADR), ...

with PC bound to 1000, retrieves the load operator and the operand 2000. The memory refer-
ence is transformed into

... access(regPC, PC),
mem(PC, OP, ADR),
set(regOP, OP),
set(regADR, ADR), ...

An appendix shows part of the analysis data base for the microprocessor example. It
contains the facts that the analyzer generates for the fetch clause. The nameBindings associ-
ate variable names with variable positions in clause heads; the indexBindings relate indices to
storage information; and the storage bindings bind classes of storage to registers. Note that
PC and P1 are assigned to the same register.

2.4.4. Register-Based Constructs

The memory example above illustrates a problem with introducing registers into a
specification, that of mixed levels of detail. At this point, after variables have been con-
verted, all registers should be defined. The memory system, however, is still abstract.
Memory address and data registers, in particular, are needed.

Returning to the add clause at the beginning of this section, with memory registers it
should become
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execute(add) :- !,
access(regX, X),
set{memAR, X),
mem_read,
access(memDR, T),
access(regAC, AC),
AisT+ AC,
set(regAC, A).

This makes the memory registers explicit. The complete memory-based microprocessor is
shown in Appendix 2.

Knowledge of the complete memory subsystem is currently built into Viper. After
register analysis, and as part of transformation, abstract memory references are converted into
register-based ones. Addition of such microarchitectural features as the memory subsystem
could be done in a separate later stage, but is instead part of register transformation because
the information and analysis needed are readily available. Subsystem addition should be
more parameterized than it is in Viper, and to achieve this a separate stage may be necessary,

in which case the abstract version above would serve as an intermediate form.*

In general the system must support the specification of implementations of hardware
subsystems. This is equivalent to allowing the user to define microarchitectural detail.

2.5. Prolog to Register Transfer Translation

The second stage of synthesis converts register-based Prolog into a form suitable for
data and control path construction. It translates Prolog goals into register transfers, which are
then used for dependency analysis and scheduling.

Each transfer collects, from different goals, information related to a single hardware

time step. In particular, each transfer, represented as a four-element’ structure, contains value
sources (registers or constants), an operation on those values, and a destination register for
the result value, and has the form

transfer(<sourcel>, <source2>, <operation>, <destination>)

A transfer is constructed out of source, operation, and destination goals. The transfers are
abstract because the operations they contain are Prolog operators (such as +) not yet bound to
any hardware implementation.

For example, the register-based add goals

—

“The abstract interface i signal-t wed -- values are passed by bus-like Prolog variables. The concrete inter-
face is register-based -- values ar= passed in registers.

*This is a simplification. Each transfer also has a unique name and identifies the FSM state to which it be-
longs. See below.
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access(regX, X),
setfmemAR, X),
mem_read,
access(memDR, T),
access(regAC, AC),
AisT + AC,
sef(regAC, A).

are converted into the sequence

transfer(regX, none, none, memAR)
transfer(none, none, mem_read, none)
transfer(memDR, regAC, +, regAC)

A transfer is constructed out of source, operation, and destination goals; as individual
goals are processed information about them is recorded.

Abstract transfers fit between register-based Prolog and synthesized hardware. Since
registers have been allocated by this stage, and ASP does not currently synthesize pipeline
computations, atomic register transfers are appropriate units for analysis and hardware gen-
eration. Dependencies between transfers constrain scheduling, and resources must be allo-
cated on the basis of transfers.

This stage also generates a control flow graph, which divides abstract transfers into a
collection of basic block linear sequences; each basic block is realized as a state of a finite
state machine. Clause selection is the fundamental conditional construct in Prolog, and maps
straightforwardly into finite state machine transitions when the control path is constructed.

The relations produced by this stage are a complete representation of the specification.
They could serve as input to a simulator that evaluated the control flow graph and associated
transfers.

2.5.1. Transfer Analysis

This stage scans Prolog specifications, converting each goal into part of an abstract
transfer operation. Each transfer operation is associated with a basic block of transfers.

Each transfer is stored in a relation and has the form

transfer(<identifier>, <block>,
<sourcel>, <source2>, <operation>, <destination>).

The identifier is generated by the system and uniquely identifies the transfer.

Prolog goals divide into three classes: sources, operations, and destinations. When a
source or operation goal is processed, information about it is recorded. When a destination
goal is encountered, the relevant source and operation information is retrieved and the com-
plete transfer constructed. All source goals are access goals. Destination goals are set goals
and certain computation goals, such as comparisons, that affect control. Prolog variables are
used to connect the pieces of goal information. For example, the add goals
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access(memDR, T),
access(regAC, AC),
AisT + AC,
set(regAC, A).

are represented by the fragments

srcVar(memDR, T).
srcVar(regAC, AC).
expVars(T, AC, +,A).
dstVar(regAC, A).

By following the chain of Prolog variables back from the dstVar entry, the operation and
source registers can be found and assembled into a single transfer.

The data base of fragments for the example processor can be found in Appendix 3. The
complete set of transfers is in Appendix 4.

2.5.2. Control Flow Analysis

As the analyzer processes goals it also accumulates state transition information. It only
records transitions that alter normal linear control flow. These transitions can be conditional
or unconditional.

Consider the simple processor example. It consists of a case dispatch to a collection of
instruction-specific goals. The dispatch is a conditional transition; the return from a case arm
is an unconditional one.

Unconditional branches are stored as

branch( <from-block>, uncond, <to-block>).

Conditional branches have the form
branch(<from-block>, cond, <tesr>).

where <test> is the source of the value that will drive the dispatch. Each am is stored as
case(<from-block>, <value>, <to-block> ).

For example, the execute dispatch example is represented as
branch(blockl, cond, regOP).

and

case(blockl, add, block3).
case(blockl, load, block4).

and the end of the case arms appear as
branch(block3, uncond, blockl ).
branch(block4, uncond, blockl).

From these relations a controlling finite state machine can be constructed.
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The relations produced by this stage are a complete representation of the specification.
They could serve as input to a simulator that evaluated transfer, branch and case entries.

The branch relations for the example processor are in Appendix 4, along with the
transfers.

2.6. Transfer Scheduling

After the system generates abstract transfers it schedules them. It assigns time steps to
transfers in an as-soon-as-possible manner, with concurrency limited only by inter-transfer
dependencies. The data path construction stage has the capability to modify this schedule,
based on resource constraints discovered in that stage.

Dependency is defined to be the conflicting use of any register or restricted resource
(such as memory). Most inter-transfer dependencies are explicit, involving register uses, and
are much like dependencies between variables in software. Dependencies can be implicit,
however, because some actions cause side effects. For example, a memory read loads the
memory data register; use of memory data requires waiting for the read to complete. The
system allows for the definition of implicit dependencies between operations and registers.

The concurrent schedule is easily generated. Transfers are scanned in the order in
which they were created -- in the serial order of the original Prolog goals. A transfer is
assigned to the time step immediately following that of the latest transfer upon which it
depends. Part of the memory subsystem definition includes assertions specifying its implicit
dependencies, such as

implicitDependent(mem, memAR).
implicitDependent(memDR, mem).

To aid the designer, and guide later rescheduling, the stage also creates a dependency
data base. It records dependencies between pairs of transfers and the resources involved.

Appendix 5 contains the dependency data base for the example processor; Appendix 6
contains its schedule. Note that the cycle numbers assigned to transfers are relative within a
block -- the first cycle of any block is cycle 1.

2.7. Data Path Generation

The third synthesis stage defines data paths based on the requirements of abstract
transfers and their associated schedule. It generates both static information (symbolic func-
tional units and bus connectivity) and dynamic information (functional unit use and bus use).

For example, the add transfer and schedule fragment

transfer(op8, block3, memDR, regAC, +, regAC).
cycle(op8, block3, 3).

produce the data path elements

elementType(memDR, register).
elementType(regAC, register).
elementType(dpalu, alu).
elementFn(dpalu, add).

and the dynamic binding
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elementUse(dpalu. add, op8, block3, 3).
In addition, the buses

busSrc(busl, memDR).
busDst(busl, dpaluPortl).
busSrc(bus2, regAC).
busDst(bus2, dpaluPort2).
busSrc(bus3, dpalu).
busDst(bus3, regAC).

are created, as well as the bus bindings

busUse(busl, memDR, dpaluPortl, op8, block3, 3).
busUse(bus2, regAC, dpaluPort2, op8, block3, 3).
busUse(bus3, dpalu, regAC, op8, block3, 3).

The stage allocates functional units based on the requirements of each time step, creat-
ing enough units to execute all operations assigned to that step. It also creates enough buses
and connections.

The complete data path data base for the exampie processor is found in Appendix 7.

2.7.1. Functional Unit Allocation

Information generated by the system about functional units can be divided into two
categories, static and dynamic. Static information defines data path structure. Dynamic
information is time step dependent and binds the operations of abstract transfers to data path
elements.

An operation in a transfer is a Prolog operator (such as +). A functional unit has a type
(ALU, for example) and a set of functions it performs (such as add and subtract). Every Pro-
log operator the system can process has at least one associated functional unit type and func-
tion.

To allocate functional units, the system first scans all transfers, noting all the operations
that the designs will have to support. It notes operations that can be treated as special cases
(such as adding 1 to a register), and operations that are performed in parallel. It then uses
heuristics to select an efficient set of functional units. It next it binds individual operations in
transfers to specific functional units, and then creates and schedules buses.

2.7.2. Connectivity

Buses are created and scheduled in a manner similar to functional units. The system
produces both static structural information and dynamic binding information. It uses existing
bus resources when possible. It considers buses to be bidirectional, but connections (multi-
plexers and decoders) to be unidirectional.

Given a collection of functional units and a schedule, the system attempts to generate
only the connectivity necessary to implement that schedule. It examines in tum each time
step’s transfers. For each transfer, if its associated registers and functional unit are connected
by buses unused in that time step, those buses are used. Alternatively, if unused buses exist
but are not connected to the relevant functional units, the necessary connections are created.
Finally, if unused buses are needed they are created and connected.
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To keep the prototype system simple, it does not modify the functional unit schedule
during bus creation. Also, the number of buses is not constrained, nor is bus regularity (con-
necting all registers to the same buses, for example) a factor considered by the system.

2.8. A Structural Description Mechanism

After data path generation, the data path and control path are completely defined. The
information exists, however, in several incrementally generated relations. The final act of
high-level synthesis translates that information into a structural hardware description® that the
lower levels of the ASP system can use. This translation collects various elements from vari-
ous relations and packages them into a sequence of data path element declarations and a finite
state machine definition, in both of which all interconnections are explicit and named. Prolog
structures and lists are used to package this information.

2.8.1. The Data Path

Instances of element types are created and given names. In addition (unlike variable
definition), the connectivity between elements must be established.

A structural data path element has a type, a name, and four lists of connections -- inputs
from other data path elements, outputs to data path elements, inputs from the control path,
and outputs to the control path.

In detail, each element declaration has the form
JunctionalUnit(<type>, <name>,
[<list-of-data-input-signals>],
[<list-of-data-output-signals>],
[<list-of-control-input-signals>],
[<list-of-control-output-signals>]).

The lists of signals indicate connections to be made with other parts of the design. For exam-
ple,

SunctionalUnit(alu, dpalu,
[busl, bus2], [bus3],
[dpaluFn dpaluCin], [dpaluSign, dpaluCout]).

creates an ALU and binds it to dpalu.

For every control input signal mentioned in an element statement, a declaration of the
form

controlin(<signal>, <default-inpur>, [<list-of-inputs>]).

is required. Control input signals are connected to and driven by the control path. This
declaration defines the signal’s default value and other possible values it can have. The
number of values defines the bit width of the signal. For example,

controlin(dpaluFn, pass, [add, ...]).
would appear with the ALU element definition above.

SA structural description explicitly represents connections between hardware elements. The OCCAM to
CMOS project ((OCCAM]) uses DDL as an intermediate form, similar in function to our structural description
mechanism; DDL is not, however, strictly structural.
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In a similar manner,
controlOut(<signal>, [ <list-of-outputs>]).

defines the outputs of a control output signal. Such signals serve as input to the control path.
The complete data path definition for the example processor is in Appendix 8.

2.8.2. The Control Path

Control information is specified in finite state machine style. Associated with each state
are the control lines to be driven and conditional next state transitions.”

For example, a state definition using the ALU for addition could appear as

state(statel,

[output{dpALUfn, add), ...],
state2).

The state contains additional outputs for loading and storing registers and gating values to
and from buses.

In particular, each state has the form
state(<name>, [<list-of-outputs>], <next-state>).
The <name> is the name of the state. The list of outputs consists of pairs of the form
output(<value>, <signal>)

where the <value> is the value to be output, and <signal> designates the signal to be driven.
Both <value> and <signal> must be defined in a controlln statement. The <next-state> can
either be a state name or a conditional branch of the form

branch( <test-signal>, [ <list-of-cases>])

where <test-signal> is an output control signal. Each element in the <list-of-cases> has the
form

case(<value>, <state>)
where <state> is the next state if <test-signal> is equal to <value>. Both the signal and all

its values must be defined in a controlQOut statement.

The complete control path definition for the example processor is presented in Appen-
dix 9.

All the state, control, and element statements are passed to the lower level parts of ASP
for synthesis.

2.8.3. The Library of Functional Units

As the synthesizer allocates, binds, and outputs a data path, its basic building block is
the functional unit. It is a fundamental link between high-level synthesis and lower synthesis
levels. Its characteristics are important to behavioral synthesis; its contents are important to

"Multi-phase clocks are not supported. They could be, either by dividing a state into phases for control line
purposes or by defining multiple phase-conditioned states.
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logic and geometrical synthesis. In ASP those characteristics and contents are collected in a
library of functional units.

The characteristics of a functional unit are its type and the functions it implements. Its
contents are logic equations used by the ASP module generator. From the behavioral point of
view the purpose of a functional unit’s characteristics is to guide functional unit selection.

The library also contains implementation details about functional units, in particular the
control signal bit patterns used to stimulate specific functions; this information is used by the
PLA equation generator. Not all information about functional units is contained in the
library; the heuristics that allocate functional units contain knowledge about some functional
unit types, and knowledge about topology is contained in the topology constraint layer dis-
cussed below.

The library of functional units can be found in Appendix 10a. The corresponding logic
equations used by the lower level module generator can be found in Appendix 10b. (This is
not the complete library, but only that part needed for the example processor.)

2.8.4. Lower Level Interfaces

Two lower level interfaces are not strictly part of the Viper system, but they are neces-
sary to interface with the rest of ASP, and interact with the library of functional units.

One interface generates and/or logic equations for the ASP PLA generator from control
path state statements. Enable signals for individual control path outputs are accumulated by
scanning all the state statements, and converted into logic equations for specific control bits.
Common and and or terms are eliminated from the equations. The equations for the example
processor are shown in Appendix 11.

The.other interface generates topological constraints for the data path module generator,
indicating how control and data lines should be placed. Signal lines are also decomposed
into individual bit lines that can be connected to the PLA. The topologically constrained data
path for the example processor is found in Appendix 12.

3. Topolog

Topolog is the module generator and layout engine for ASP. It takes as input a circuit
description and constraints, and outputs sticks-based layout.

3.1. General Approach

A module generator is a program which, given a description of a circuit as a collection
of blocks, or subcells, returns a constructed cell. The subcells may be modules in their own
right, or elementary pieces of silicon called leaf cells. A layout engine is a program which,
when given a description of a circuit either as a collection of gates or as a list of transistors
and connections, returns a piece of silicon which implements the circuit.

Topolog combines the functions of a module generator and layout engine in an attempt
to solve, in combination, problems specific to each. Typical module generation systems
[Allende] manipulate pieces of geometry rather than circuit elements, which means that most
module generation programs and parameters simply direct the manipulation of pieces of wire
rather than function. Further, if a module consists of submodules, the choice of which sub-
module to instantiate first has a large effect on the resultant circuit for purely geometric rea-
sons. Folding a layout program into a module generator permits the generator to concentrate
on the functional design of circuits, rather than on their geometry, which in practice yields
much more concise module descriptions. Further, if the submodules are expanded as blocks
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and jointly placed and routed, the second problem disappears.

Topolog takes as input logic equations and port locations, and produces a virtual-grid
static CMOS layout in the gate matrix style popularized by Lopez and Law [G-Matrix].
Topolog, like the Berkeley tools Topogate and GEM, produces layouts featuring a single pair
of diffusion rows between power lines. This practice we found to halve the spacing between
polysilicon columns, at a small penalty in vertical dimension. This penalty is bounded above
by 27% in the MOSIS scalable CMOS rules, and approaches 0 in most practical cases as
most penalty area may be used for horizontal buses.

Unlike Topologizer or GEM, which consider transistors individually in placement,
Topolog uses the Uehara-van Cleemput algorithm [UVC] to lay out blocks. Blocks are then
placed using a min-cut algorithm and routed using a left-edge-first algorithm.

3.2. Description of the Program

Typical layout engines are flat ((SWAMI], {GENIE]), that is, a single long list of
transistors is used to describe the function to be generated. This both is tedious from the
point of view of users (who must enter their circuits as long sequences of logic equations,
rather than using circuit hierarchy) and robs the layout engine of inherent partitioning of most
logic circuits. This is onerous since most automated placement tools either implicitly or
explicitly partition a circuit into connected subcircuits. The class of placement tools which do
such partitioning is broad indeed, including clustering, min-cut, force-directed and clique-
based placement tools. Even simulated annealing, which specifically does not work by cir-
Cuit partitioning, derives its name and its original motivation from the formation of metal into
disjoint clusters.

Topolog is designed around the basic abstraction of a block. A block represents a prim-
itive circuit element, and it is defined by the fields it contains and the routines which generate
it. A block has a p-side and an n-side, both of which have a maximum height and minimum
height, a set of elements, a set of sticks, and a set of pins. In addition, the blocks have a set of
net names, a maximum width and minimum width, and various fields used only by Topolog
itself. Topolog’s basic function is to group blocks into rows, and to route signals between the
blocks. A single routing channel runs between the p-side and the n-side of any row; a power
bar runs above the p-side of every row, and a ground bar runs beneath the n-side of any row.
Odd rows are flipped about the horizontal axis so that power and ground bars may be shared
between rows. Although Topolog can be used as a standard cell layout program, since a
block can be anything which has the characteristics mentioned above, it is more accurate to
describe Topolog as a Gate Matrix [G-Matrix] style layout engine.

Topolog has a six stage pipeline.

(1) Inputs are parsed and a preliminary generation of all blocks is done. In this pass, the
maximum height, minimum height, maximum width, and minimum width of the blocks
are fixed.

(2) The blocks are then grouped into rows.

(3) The blocks are placed within rows. During this placement phase, macroblocks
(modules) are expanded into their primitive components.

(4) Detailed generation of blocks is done. the blocks are fleshed out into a sticks-and-
elements description, and the pins for channel routing are defined.

(5) The channel is then routed.
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(6) Finally, the complete circuit is converted to a sticks form and the package is output.

An abbreviated Topolog pipeline is available when only one row needs to be placed.
This abbreviated pipeline omits placement into rows and vertical channel routing.

3.3. Description of the Algorithms

Topolog is a package consisting of ten modules and about 3000 lines of Prolog code.
Of the ten modules, six implement algorithms used in the package, one is a rule-based
module to connect the outputs of logic functions formed in the wells to buses in the channel
between the wells, one generates the sticks description from the intemnal data structures, one
forms the declarations and generic routines for the data structures used, and one is used to
simulate the extensions to the Prolog language that we found were required to implement the
algorithms we wished to use.

Topolog first reads in and parses a set of facts in Prolog’s database which describe the
blocks to be laid out. The parsed blocks are then passed to the Uehara-van Cleemput pack-
age, which determines transistor order and separation zones within the blocks. The blocks
are then passed to the placement routine, which separates them into rows using a min-cut
algorithm modified to consider block size when determining the cut. Once placed, the logic
specifications with transistor placement are translated into a pair of diffusion strips for each
block. Metal routing is then done over the strips using a left-edge-first channel router. A sim-
ple router is all that is required, since pins are on only one edge of the channel.

This routing must be dense, since it is a prime determinant of the vertical pitch of the
block. Further, vias must be minimized, since they contribute heavily to parasitic capaci-
tance in the wells. Finally, diffusion must be used as little as possible for routing, since it is
highly capacitive.

The channel router therefore uses metal-1 for horizontal routing, and vertical routing
where the proposed vertical run does not cross a horizontal metal line. Metal-2 is used for
vertical routing but not horizonial routing, since it requires a double contact to go down to
diffusion. Diffusion is used for other vertical runs.

Once the wells are routed, a rule-based program is invoked to route the output of the
gate from the p-well and the n-well into the channel. This program first attempts to ensure
that no track must be added to either well to route the output of the gate into metal-2, as
required. Its second function is to ensure that the same column is used by both the p-side and

the n-side to route the output to the channel.®

The horizontal channels are then routed, again using the simple left-edge first router.
The assignment of numbers to rows is then made, and the entire package is output.

3.4. Input Format

The Topolog input format is a collection of logic equations, each having one of the fol-
lowing forms:

¥Once the outputs are routed, the full intemal coverage of metal-2 in each row of blocks is known. Channels
are defined for routing between channels. A modified left-edge-first router is used to run lines between the rows,
attempting to minimize channel density in the horizontal channels.
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Output = pass(Input, Control)

Output = transmit(Input, Control)

Output = compl(Expr)
where Expr is an and-or tree in an arbitrary number of variables, whose value is the comple-
ment of Output.

Optionally, one may add a sequence of statements of the form:
{left, right, top, bottom}Edge(X)

which indicates that signal X has a port at the left, right, top, or bottom edge, respectively.
An example for a one-bit adder is given below.

x = compl(or(and(c,or(a,b)),and(a,b))).

y = compl(or(and(x,or(a,b,c)).and(ab.c))).
sum = compl(y).

carry = compl(x).

leftEdge(a).

leftEdge(b).

leftEdge(c).

rightEdge(sum).

rightEdge(carry).

3.5. Output Format

Topolog generates a description of the circuit in virtual-grid symbolic coordinates, as a
database of Prolog facts. These facts are then read by the compactor and converted into Cal-
tech Intermediate Form.

The database consists of several kinds of clauses. A wire is described by
wire(Material, FromPt, ToPt, Width, Signal).
with the fields having the obvious meanings. A transistor is described by

trans(Type, PtSrc, PtGate, PtDrain,
Width, Length, SrcSig, GateSig, DrainSig).

where PtSrc, PtGate, and PtDrain are the positions of the source, gate, and drain of the
transistor, and SrcSig, GateSig, and DrainSig are their source, gate, and drain signals, respec-
tively. A contact is described by

cont(Type, Center, Offset, Signal)

where Offset (e, n, w, s) defines an offset of the transistor from the center point.

Finally, maxrow and maxcol describe the positions of the maximum row and column in
the layout. An example of the output format is given below.
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wire(p,py(2,2),pt(9.2),_.a).
wire(p.p(2,4).pt(9,4),_b).
wire(p,pt(2,6),pt(9,6),_.c).
wire(p,pt(2,8).pt(9,8),_.b).

trans(pd pt(2,30) pt(2,31) pt(2,32),1,1 vdd x,carry).
trans(nd pt{9,30),pt(9,31) p1(9,32).1,1,gnd x,carry).
contimlm2 pt(527),no.sum).

cont{mlm2 pt(7,9),n0.x).
cont{mlm2.pt(7,11),n0x).

node(10,34,gnd).

maxrow(10).

maxcol(34).

Further discussion of these formats can be found in the next section.

3.6. Extensibility: Technology Independence and Block Generation

Our existing logic blocks are designed by the Uehara-Van Cleemput [UVC] procedure,
because the UVC algorithm has been shown to derive near-minimal-width single-diffusion-
strip static CMOS arrays. It minimizes vertical dimension as well, given a single diffusion
strip, and it is unlikely that any multiple-strip layout style can approach the UVC single-strip
style in area minimization for either static or dynamic CMOS.

We are not restricted to pure UVC blocks, however. It is easy to customize Topolog to
produce and place other blocks -- indeed, we use such customization to produce and place
pass and transmission gates along with static CMOS AOI gates. We did not originally intend
that Topolog be this versatile; it has This versatility is a result of using Prolog as our imple-
mentation language and a consequence of the modularity of the Topolog pipeline.

The only algorithms within Topolog that are specific to static CMOS AOI blocks are
the Uehara-Van Cleemput procedure, and the procedures to wire up the rows, route the wells,
and route block outputs. The other algorithms deal with blocks as abstract objects, and a
block is merely an object that contains certain features.

The addition of a new circuit type is easy, due to Prolog’s clause-based programming
style. It is possible in Prolog to write polymorphic procedures -- that is, procedures which
take one of several types of inputs as clauses. Hence it is possible to write clauses as special-
izations of general procedures to perform operations on special purpose data structures. If
these clauses simply fail because their inputs diverge from those for which the clause was
designed then such clauses have no effect on the rest of the procedure.

In order to customize Topolog to produce a specific type of block, users must write a
clause for the procedure parselnputs, which produces a data structure describing their block;
such a block must contain fields blockSize (the horizontal pitch of the block, in some standard
size -- the only standard is that used for AOI gates, which is integer multiples of the horizon-
tal pitch of two polysilicon columns). The user may also write a procedure for minimallnter-
laceBlock, the main routine of the Uehara-Van Cleemput algorithm; this is unnecessary, as a
catch-all do-nothing clause is defined which will simply pass the block through the algorithm.
The user must then write a clause for procedure extractBlock, which takes the user’s original
block as an argument and defines an extracted block, which contains a list of the rows used in
the two wells, the columns used in the block, the sticks and circuit elements defined, and a
pair of nodes for output routing. Such extracted blocks are presumed to define wires in diffu-
sion or metal layers only in the well regions, are presumed to have defined distinguished




-23.

wires for Vdd (at the top of the block) and GND (at the bottom of the block), and are
presumed to have obeyed the constraints given by the horizontalWire and verticalWire pro-
cedures; unless modified, these are horizontalWire(metail ), verticalWire(meral2); the static
CMOS extractedBlock procedure assumes this restriction.

3.7. Extensibility: Module Generation

It is convenient for users to define modules as collections of blocks or other modules.
As a result, buildBlock has a catch-all clause; if it cannot build a block any other way, it calls
a procedure defined by its first argument. Specifically:

buildBlock(X, Block) :-
X =.. [BlockType/BlockArgs],
concat(BlockArgs, [Block], FunctionArgs),
Call =.. [BlockType/FunctionArgs],
Call.

Hence a request in Topolog’s input file of the form:
alu(x, y, z).

would result in a call to the Prolog procedure:
alu(x, y, z, Block).

The user must write a clause for the procedure buildBlock(Input, Block), where Input is
the input for the block; for example, the clause header for AOI blocks is buildBlock(Output =
aoi(Expr) Block). This clause must retum a Block, which is a data structure with the fields
mentioned above. Some of these fields (in particular, the max_height and min_height fields of
the two sides and the max_width and min_width fields) must be filled in, since these are used
by the placement code. In addition, the user probably wishes to store a parse form of Expr
for later use. We have designed a a variety of library routines to assist in the construction of
this clause.

buildBlock calls must be used to build the various component blocks (including other
modules, which would be invoked by the same mechanism). A final call
buildCompositeBlock([Blockl,....Blockn], Block)
must appear as the last call in the alu procedure. Here, Blockl,....Blockn are the blocks built
by the call to buildBlocks in the alu procedure.
Of course, the alu procedure must be known to Topolog at the time of invocation; the
request:
use(file).

loads the procedures defined in file.

buildBlock only does the first pass at generation of a block. In the second pass, the
block must become an object with a full set of elements and sticks. The procedure
generate_block(Block, PRows, NRows, Columns) is called to instantiate a block on the rows
and columns given; these columns are guaranteed to be in the range given by height and
width. Again, a large set of modules is available to aid in the construction of this routine.
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No other clauses are required for module construction, since the placement routines
break modules into their component parts before the blocks are actually generated; hence
generateBlock clauses need only be supplied for primitive blocks.

3.8. Performance

The one-bit adder example given above was generated by Topolog in 72.15 CPU
seconds on a Sun 3/75. The output from the compactor is shown here.

Procedure Time (sec % Execution
input 1.0 14
uve 1.3 1.8
placement 10.5 14.8
making rows 59 8.3
extracting blocks 17.0 239
channel routing 12.7 17.8
output 23.2 32.6
Total 71.1 100.6

Thus far, the largest example that we have run on Topolog is a pair of bit slices of a
simple microprocessor, the SM-1. The total time to generate the bit slices is broken down as

follows”:

Task Time (sec)
Input 04
Build Blocks 3.6
Place Blocks 486.7
Generate Blocks 50.8
Channel Definition 244
Channel Routing(bit 0) 56.8
Output (bit 0) 83.6
Channel Routing (bit 1) 57.2
Output (bit 1) 83.0
Total 846.5

The first four stages of the pipeline are held in common between bit 0 and bit 1; channel
routing and output is separate. The details of this economy are due to a little trick involving
Prolog’s backtracking semantics.

These performance figures are by no means optimal; we expect that an improvement by
a factor of three is possible without any change to the underlying substrate of our Prolog
interpreter, of type access and definition code. The critical paih here is clearly our placement
algorithm.

3.9. Extensions to Prolog Useful for Topolog
In implementing Topolog we found certain aspects of Prolog to be restrictive.

*These figures were obtained on a Vax 11/785 nmning 4.3 BSD Unix and C-Prolog version 1.5.




-2§5.

3.9.1. Structural Replacement

The major problem we encountered was the assign-once nature of Prolog. The
Kemighan-Lin min-cut algorithm works by exchanging blocks across a partition; in order for
the algorithm to function, then, each block must contain a component which indicates which
side of the partition a block is currently on. Further, in order for the cost of an exchange to be
computed quickly and accurately, each net must contain a list of the blocks it is incident upon
and each block must contain the list of nets incident upon it. When a block is moved across
the partition, the component indicating which side it is on must be changed. This requires
generating a new block. This block is contained in some set of nets, each of which must be
regenerated. These nets in turn are contained in some set of blocks, each of which must be
regenerated. Potentially, this may continue until each block and each net has been regen-
erated, all to adjust one field in one block.

The solution we adopted simulates multiple assignment in an assign-once language. In
each component of a data structure, instead of storing the actual value we store a value struc-
ture, the first field of which is the value of the component, and the second an unbound vari-
able. The value of the component is set by the following code:

setVal(U, X) :-
var(U), !,
U = valStrucyX, ).
setVal(valStruct( , U), X) :-
setVal(U, X).

and the value is accessed by the following code:

accessVal(valStrucy(U, X), U) :-
var(X),
!

acgessVal(vaIStruct(_, X),Y):-
accessVal(X, Y).

Broadly, setVal chases recursively through the valStructs until it reaches an unbound
variable, which it sets to the valStruct of the new value and an unbound variable; accessVal
chases through the valStructs until it finds one with an unbound variable as the second argu-
ment; it then retumns the first argument of the valStruct.

The effect of this storage method is the provision of multiple assignment in a single-
assignment language, and it permits the efficient implementation of standard CAD algorithms
in Prolog. There are two principal costs of this method. First, assignment or access to a
structure component becomes an O(n) rather than an O(1) operation, where n is the number
of assignments to the component. In practice, this is not too onerous a cost; measurements on
Topolog have shown that the median depth of a valStruct is 1, and the mean slightly over 1;
the maximum in our programs has been 5.

The second disadvantage is that unification cannot be used to build or access structures
that contain valStructs, since unification will not return the value of a component but rather a
valStruct. Since we prefer the use of the field macro described above, it was easy to write
accessField and setField, a straightforward combination of the field macro with the two pro-
cedures described above.

We would prefer a weak form of destructive assignment, which we call structural
replacement, over value structures. In particular, as we have shown [rplacarg], in a
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networked data structure (a data structure in which some node is shared by two or more other
nodes), modification of the data structure without structural replacement can cost up to O(log
n), where n is the number of nodes in the data structure, no matter how the data structure is
stored. Since we can generate one node in a single data structure for each step of any algo-
rithm, the performance penalty is bounded below by O(log n) for any algorithm implemented
without structural replacement.

The form of the structural replacement operator that we prefer is simple. We would like
an operator that would replace transparently only arguments of structures (since the lack of a
destructive assignment operator for atomic variables is not only benign, but, given the logical
variable, necessary for any reasonable semantics of a Prolog program), and whose work
would be undone on backtrack, since we feel that any operation not undone on backtrack is
destructive of Prolog semantics. The SICStus Prolog setarg operator meets these require-
ments [SICStus].

3.9.2. Arrays

Multidimensional arrays are required for some of the algorithms used within Topolog,
and hence we sought a method of array implementation. Once the value structure and data
structure code above were in place, implementation of array code became relatively straight-
forward. An array is merely a structure of size equal to the number of elements of the array,
and a small associated data structure which maps a given index vector to an array element.
The difficulties in implementing arrays in Prolog have traditionally been a desire to avoid
recopying the entire array when any element is changed; this is precisely the purpose of set-
Val and accessVal, and hence this difficulty is solved for us.

3.9.3. Circular Data Structures

Topolog manipulates both circuit elements (blocks) and their connections (nets). Each
net contains a list of all blocks incident upon the net, and each block contains a list of all nets
incident upon it, giving rise to a circular data structure.

In C-Prolog, however, every attempt to create this structure resulted in an infinite loop
in the unification routine; eventually, we gave up, and stored only the net names in the
blocks, and looked up the actual nets in a balanced tree sorted by net name -- a cost of O(log
n) for each (logical) pointer traversal.

3.9.4. Data Types

Unification is used in Prolog to create and access data structures. When programs are
small, or the data structures that they create or access are small, or each data structure is used
only within a single module, this is straightforward. We found, however, that the most con-
venient way to program Topolog was to create a single data structure, the block, with a large
number of fields; each module selectively filled in fields of the block. This organization
meant that whenever a field was added to the block definition (a common occurrence in pro-
gram development), the field had to be added in every clause where the block structure
appeared, an onerous task, and one that led to the introduction of many bugs.

The solution we adopted was to add a typedef procedure, called when a file is loaded.
typedef takes a structure as its argument, and defines a clause in the procedure makeStruct,
which builds an instance of the data structure and clauses in the procedure field, which in
turn, when given an instance of a data structure and the name of a field within the structure,
returns the value of that field. Once typedef was implemented, data structures proved easy to
modify, and a major difficulty in programming was removed. field proved to be the
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procedure most called in Topolog; almost 600 lines of code directly reference it. Sixteen
major data types are defined in Topolog, with the number of fields varying from 2 to 19.
These data types are often widely shared among various procedures.

4. Sticks-Pack

In this section we present Sticks-Pack (SP), a design environment for VLSI circuit lay-
out generation written exclusively in Prolog. Not only does Prolog provide a relational data-
base for VLSI objects, it also provides a syntax well suited for expressing both algorithms
and rules. Although SP is a component of ASP, it can also be used by human designers. The
SP environment consists of a technology independent compactor that creates spaced layout
and simulation data files from symbolic sticks, a joiner that joins together cells generated by
the compactor, and a switch level simulator.

4.1. The System

Current layout systems are composed of programs that have been written independently
of each other. This often results in a duplication of work and a need for conversion programs.
The programs within the SP system have been designed to work together. For example,
while spacing the elements from a cell file, the compactor saves all the elements on the
border of the cell into a border file for the joiner. The joiner can then space cells properly
without again searching through each cell for border elements. This is in contrast to other
systems where the program that compacts cells is written independently of the program that
joins cells.

Previous approaches to integrated VLSI design environments were generally based
upon conventional programming languages using custom data managers with strict data for-
mats ([OCT], [Symbolic-IC]). Objects in these data managers can only be generated through
a fixed data field. For example, many databases group wires by layer. To find wires of the
same layer, one simply calls a generator that returns instances of wires that are of the queried
layer. However, if one wants to find all the wires of an electrical node, one cannot simply
call a generator to generate the wires of the node. One must first generate the wires by layer
and then filter out the wires that are not of the desired node [OCT]. By using the relational
database inherent in Prolog, SP allows generation of objects by any arbitrary number of data
fields. Furthermore, individual data fields may be represented by objects. This allows
specific fields to be parameterized. For example, the W/L ratio of an output transistor in a
cell can be expressed as a parameter and modified without any knowledge of the location of
the transistor. This gives the CAD designer a simple but powerful method of accessing data.

Topolog generates male and female single tier cells (cells composed of one p-strip and
one n-strip). These cells are individually compacted by the SP compactor, joined so that the
n-well from the male cell and the n-well from the female cell share a ground rail, and then
arrayed by the joiner.

4.2. The Compactor

The SP compactor takes a cell defined in the Sticks In Prolog (SIP) language and
creates a mask level representation for the cell using a new compaction technique that is both
algorithmic and rule based. An algorithm similar to zone refining [Zone] is used to perform a
rough spacing of the elements. For each compaction pass, a floor and ceiling profile for each
layer of material is maintained. In zone refining each element is moved from the ceiling
profile to an optimum site on the floor. The SP compactor moves elements directly across the
‘molten region’ to the floor, where spacing requirements are satisfied, and diagonal
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constraints are noted. Rules are then employed to shift elements for a better fit within their
environment. By resolving diagonal constraints after the horizontal and vertical compaction
passes have completed, the compactor can relieve each constraint by adding space in either
the vertical or the horizontal direction, whichever costs less. By treating each layout element
as an object, the compactor can easily interpret new layout objects such as bipolar transistor
elements to suit mixed technology processes.

For each cell, a connectivity file containing nodal connectivity, resistivity and capaci-
tance information is generated for the simulator and for Spice. The SP compactor is rela-
tively technology independent. A design rule file and a set of technology dependent rules are
specified for each technology.

4.3. The Joiner

Large layouts in SP are realized by joining small cells together with the joiner. Leaf
cells (cells of the lowest level consisting only of transistors and wires) are compacted indivi-
dually and are the building blocks for larger modules. There are two methods for joining
cells, pitchmatching and river routing. Pitchmatching causes expansion in one axis, while
river routing causes expansion in the other. Previous tilers have either exclusively pitch-
matched or river routed cells together [V-Grid]. The joiner program connects signals
between a given pair of cells by either pitchmatching or river routing, whichever is more area
efficient. Directional constraints can override the joiner (that is, if a horizontal constraint is
placed, the joiner will river route all signals joined vertically, and pitchmatch all signals
joined horizontally). The joiner operates in the physical domain rather than the virtual grid
domain for tighter results. This also allows cells of various virtual grid heights and widths to
be joined.

4.4. The Simulator

The built-in switch level simulator simulates the operation of cells compacted by the
compactor or cells joined by the joiner. The simulator asserts given input values at the input
nodes and propagates those values to all the other nodes throughout the circuit. Feedback
paths are noted and their nodal values are saved for calculation of the next state. The simula-
tor is unique in that it makes extensive use of Prolog backtracking for determining the value
of nodes within a circuit.

4.5. The Design Environment

There are many characteristics of CAD elements that make them difficult to represent in
a database [CAD-DB], [VLSI-DB]. Each element has many features that associate it with
other elements. For example, a wire may be related to other wires by node, by layer, and by
location. A CAD tool should be able to select elements by any features as well as assign new
features and relations.

A VLSI database must:

° Provide a method for representing objects and structures as well as relations between
objects.

° Provide an abstraction to allow the user to access data efficiently without burdening the
user with details of operation.

° Interface well with the programming environment. The programming language must be
powerful enough to manipulate data efficiently.




-29.

The relational database inherent in Prolog is well suited for meeting these requirements.

4.5.1. Prolog as a Database

To model the many complex CAD structures as well as the relationships between struc-
tures, many CAD environments use object oriented databases. CAD elements, whether they
be geometry for a compactor, transition states for a simulator, or logic expressions for a logic
minimizer, can all be expressed in terms of objects. Relationships between the elements can
be expressed in terms of groups. For example, elements in a cell can be grouped by node or
by location as well as by layer. Current object oriented databases for CAD have strict set
relations [OCT). For exan:)le, many databases categorize wires by layer but not location.
To find wires of the same layer, one simply calls a generator that retums instances of wires
that are of the queried layer. But to find wires of the same grid, one cannot simply generate
wires based upon the grid information, but must generate wires by layer and filter out the
wires that are not of a common grid. Data in Prolog can be linked by both structure and
value. Thus the procedure for generating all wires on the metal-1 layer is the same as the
procedure for generating all wires on row 5, or all wires of node vdd, or all wires of row 5
and node vdd in metal-1. Data can also be stored in structures (such as binary trees or sorted
lists) for faster access. These constructs provide the ASP Prolog database with a flexible syn-
tax. Elements ranging from behavioral descriptions to logic equations to an ALU layout are
all directly expressed in and referenced through Prolog.

4.5.2. Sticks in Prolog

Sticks in Prolog (SIP) is a grid based sticks representation in Prolog that supports
hierarchy and parameterized elements. Module generators or human designers generate SIP
files which are converted to mask geometry by the Sticks-Pack compactor. In SIP, VLSI ele-
ments are modeled as facts. Attributes for the elements are represented as atoms within the
facts. There are four types of facts in SIP:

wire(Layer, pt(X1, Y1), pt(X2, Y2), Width, Net).

cont(Type, pt(X1, Y1), Offset, Net).

transistor (Type, pt(SX1, Y1), pt(GX2, GY2), pt(DX3, DY3),
Width, Length, Nets, Netg, Netd).

pin(Layer, pt(X1, Y1), Element).

Layer can be one of the atoms m/, m2, p, pd, nd. These represent the physical layers of
the element (metal-1, metal-2, poly, p-diffusion, and n-diffusion).

Contact types can be one of the atoms mI/m2, mlpd, mind, mlp (metal-1-to-metal-2,
metal-1-to-p-diff, metal-1-to-n-diff, metal-1-to-poly). Contact offsets can be one of the
atoms nw, nn, ne, ee, se, ss, sw, ww, nof (northwest, north, northeast, east, southeast, south,
southwest, west, none).

Width, Length, and X and Y coordinates are integers. p4X, Y) represents a point loca-
tion at (X, Y). The Net field is an atom that is the node name of the element, representing its
connectivity. Elements of the same node are electrically connected. Nodal information is
supplied by the cell generator or can be extracted by a net extractor.

Transistors have 3 point locations, one for the source, one for the gate, and one for the
drain. They also have three nodes, one for each terminal.

The Element field for pins contains the element that the pin is attached to.




-30-

For example, the following defines an inverter in SIP:

wire(ml, pt(0,0), pt(0,5).2,vdd).

wire(ml, pt(0,1), pt(2,1).2,vdd).

wire(ml, pt(10,0), pt(10,5)2,vss).

wire(ml, pt(10,1), p(8,1).2,vss). ®
wire(ml, pt(8.3), pt(2.3).2,0ut).

wire(ml, pt(6,3), pt(6,5).2,0ut.

wire(p, pt(8,2), pt(2,2).2,in).

wire(p, pt(6,0), p1(6,2) 2,in).

trans(nd, pt(2,1), pt(2,2), pt(2.3), 4. 2, vdd, in, out).

trans(pd, py(8,1), p(8.2), pt(8,3), 2, 2, vss, in, out). o
cont{mlpd, (2,1), nof, vdd).

coni{mlpd, (2,3), nof, out).

cont{mlpd, (8,1), nof, vss).

cont(mlpd, (8,3), nof, out).

CAD applications frequently generate specific sets of elements. For example, in SP the ®
simulator generates all the elements of nodes adjacent to a given node, the compactor gen-
erates all of the elements of the same grid and layer, and the spacer generates all of the termi-
nals of a given cell side. With the SIP representation, data elements can be easily generated
by combinations of characteristics. For example, all of the wires that are of m1 of node vdd
which have a width greater than 3 can be generated with two lines of Prolog: ®

wire(ml, Ptl, P2, Width, vdd),
Width > 3, ...

This representation also allows fields to be easily parameterized within a cell. For example,
in a cell definition an output transistor can be parameterized with the statement

parameter(outputrans, pt(2, 3)).

A call to the following clause would modify the W/L ratio of any transistor that has been
parameterized.

modtsize(Name, Neww, Newl) -
parameter(Name, pt(Xloc, Yloc)), ®
retract(trans(Layer, pt(Sy, Sy), pt(Xloc, Yloc), pt(Dx, Dy),
~r =t Ns’ Ng' Nd))v
assert(trans(Layer, pt(Sy, Sy), pt(Xloc, Yloc), pt(Dx, Dy),
Neww, Newl, Ns, Ng, Nd)), !.
modtsize(Name, Neww, Newl) - PY
write(’ transistor not found’ ), !.

This flexibility allows tools to address and modify specific elements within any context.
For example, a program that tries to optimize the performance of a circuit containing many
cells can do so by adjusting the W/L ratio of the output transistors. With the output transis-
tors parameterized, the program can reference the output transistors from any cell simply as )
outputrans regardless of where the transistor is or what the transistor is attached to.

SIP provides an excellent abstraction of VLSI layout for an automated module genera-
tor. For example, the following clause

]
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makeinvert(Vddgrid, Vssgrid, Ingrid, Outgrid, Pw, Pl, Nw, Ni):-

Pdgrid is Vddgrid - 1,

Nadgrid is Vssgrid + 1,

assert(wire(ml, py(2, Vddgrid), p2, Pdgrid), 1, unk)),

assert(wire(ml, pt(2, Vssgrid), pt(2, Ndgrid), 1, unk)),

assert(wire(ml, pt(1, Vddgrid), py(5, Vddgrid), 1, unk)),

assert(wire(ml, pt(1, Vssgrid), py(S, Vssgrid), 1, unk)),

assert(wire(ml, pt(4, Pdgrid), pn(4, Ndgrid), 1, unk)),

assert(wire(ml, p(4, Outgrid), pt(5, Outgrid), 1, unk)),

assert(wire(p, pt(3, Pdgrid), pt(3, Ndgrid), 1, unk)),

assert{wire(p, pt(0, Ingrid), pt(3, Ingrid), 1, unk)),

assert(cont(mld, pt(2, Pdgrid), nof, unk)),

assert(cont(mld, pt(2, Ndgrid), nof, unk)),

assert(cont(mld, pt(4, Pdgrid), nof, unk)),

assert(cont(mld, pt(4, Pdgrid), nof, unk)),

assert(trans(pd, pt(1, Pdgrid), pt(2, Pdgrid), pt(3, Pdgrid),
Pw, Plunk, unk, unk)),

assert(trans(nd, pt(1, Ndgrid), pt(2, Ndgrid), pt(3, Ndgrid),
Nw, NLunk, unk, unk)), !.

will generate an arbitrarily sized inverter with variable input and output locations. Nodal
information is deduced by the extractor. ROMs, PLAs, and other modular layout styles can
be generated in a similar fashion.

4.53. Language and Data Integration in Prolog

Most CAD applications rest upon a database substrate. They do not, however, rest uni-
formly on the substrate. The line defining the facilities of the CAD data manager would, in
an ideal world, be drawn differently for each application. In the real world of separate data-
bases and application programs the capabilities of the CAD data manager must be defined
once, and not vary by application.

In the Prolog world, the line between database and application is hazy, and often tran-
sparent. In Prolog there is no syntactic or semantic difference between a procedure call and a
database query.

Design rules specify the distances between elements. In the compactor these rules are
expressed as facts, such as

space(poly, pd, 2).
space(poly, nd, 2).
space(pd, nd, 2).

The order in which the layers appear does not matter (for instance, the poly to pd spacing is
the same as pd to poly spacing). A simple procedure referencing the space facts will make
them order independent.
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findspace(Layerl, Layer2, Dist):-
space(Layerl, Layer2, Dist).

Jfindspace(Layerl, Layer2, Dist).-
space(Layer2, Layerl, Dist).

findspace(Layerl, Layer2, notfound).

Facts can in general be easily retrieved and processed. One method of iteration in Pro-
log that can be used with SIP data is the explicit fail loop. For example, with the layers

layer(ml).
layer(m2).
layer(p).

layer(nd).
layer(pd).

the following procedure generates all wires by layer:

getwirebylayer:-
layer(Layer),
wire(Layer, Pt1, Pt2, Width, Node),
{process the wire...}
fail.
getwirebylayer.

When the fail is encountered, Prolog backtracks over the processing goals and gets another
wire instance if it exists. If it does not, Prolog gets a new layer value. If that fails, Prolog
drops to the next clause, which is always true.

It is easy to construct custom data managers in Prolog. Much data in SP is passed from
clause to clause through lists of bundles, which are in turn lists. A bundle is a list of data ele-
ments created by a clause such as:

Fieldl, Field2, Field3, Bundle):-
Bundle = [Fieldl, Field2, Field3].

A bundle (the first in a list) can be selected and disassembled with

processBundle([Head/ListOfBundles]):-
listio(Fieldl, Field2, Field3, Head),

Lists of bundles allow Sticks-Pack to manipulate data as list elements. Other custom data
managers are also employed to provide constructs such as sorted trees for efficiency and sim-
plicity.

4.5.4. Prolog Programming for CAD

There has been a growing trend in CAD to develop tools that use both algorithmic and
rule-based programming styles [Expert], [Rules]. Algorithms are generally fast, but are
inefficient at handling problems that have many special cases. Rule-based systems are well
suited for solving problems with many special cases or problems that are not well defined.
Rule-based systems have generally been slow. The rules must be looked up and efficient
management systems have not yet been developed. Some CAD problems have algorithmic
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solutions (such as simulation), but most are computationaily expensive (such as routing and
logic minimization), and can be solved by a host of approximation techniques, including
rule-based heurisics.

Prolog provides an environment for both algorithmic and rule-based programming
styles. Its clausal nature allows rules to be easily updated or modified. Algorithms can be
expressed quickly and easily, which makes Prolog an ideal language for rapid prototyping.

A current philosophy in CAD systems is to develop CAD tools that are ‘technology
independent’ or ‘technology insensitive’. Tools have been developed with information
regarding technology expressed as a set of parameters, with the data for a certain technology
loaded from a technology file. Because of this, the tools have not been able to utilize fully
benefits that certain technologies have to offer. For example, in the automatic generation of
random logic metal-1 to metal-2 vias are expensive in area. In certain technologies, the area
of diffusion between two series transistors is an ideal site for the via as metal-1 and metal-2
are both routable to the site and the spacing between the transistors is about the same as the
size of the via. Such a condition is difficult to express algorithmically and is very technology
dependent, but would be useful in minimizing area. The SP compactor supplements its set of
technology parameters with a set of rules that allow the compactor to compact cells more
tightly.

4.5.5. Prolog Programming Methodology Employed by Sticks-Pack
Three basic formats for Prolog clauses are employed by SP:

Deterministic Clauses. These clauses work to achieve a certain value or state without
failing.
Filtering Clauses. These clauses, given a set of data elements, interpret each element

differently depending upon the values of certain data fields. If-then and case constructs can
be expressed through these clauses.

Generator Clauses. These clauses generate an element or set of elements through
backtracking.

An example of a deterministic clause is the mindist procedure. It finds the minimum
spacing distance between two objects of specified layer and width. The space procedure
returns the minimum spacing distance between two layers, and the width procedure deter-
mines the minimum width of a layer.

mindist(Layerl, Widthl, Layer2, Width2, Distbetwnobjcts).-
space(Layerl, Layer2, Distance),
width(Layerl, Widthspacel),
Widthmodl is Width1*Widthspacel,
width(Layer2, Widthspace2),
Widthmod2 is Width2*Widthspace2,
Distbetwnobjcts is Widthmodl + Widthmod2 + Distance.

An example of filtering clauses is the checkconstr procedure. It determines how to
space two elements. Each clause filters out a certain condition. If the elements are on the
same row, the spacing is irrelevant. If the elements are contacts, they cannot be stacked upon
each other and must be spaced accordingly. If the elements are not contacts and are of the
same node, the spacing does not matter. Otherwise the elements must be spaced.
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checkconstr(Layerl, Widthl, Nodel, Rowl, Layer2, Width2, Node2) :
RowlI=Row?2.

checkconstr(Layerl, Widthl, Nodel, Rowl, Layer2, Width2, Node2) :
contacts(Layerl, Layer2), ...

checkconstr(Layerl, Widthl, Nodel, Rowl, Layer2, Width2, Node2) :
Nodel=Node2.

checkconstr(Layerl, Widthl, Nodel, Rowl, Layer2, Width2, Node2) :

An example of generator clauses is the makebox procedure. It creates boxes from vari-
ous elements, first processing wires, followed by contacts and transistors.

makebox :-
wire(Layer, pt(X1, Y1), pt(X2, Y2), Wid, Node),

fail.
makebox :-
cont(Type, pt(Row, Y), Oset, _),

fail.
makebox :-
trans(Type, pt(Sx, Sy), pt(Gx, Gy), p(Dx, Dy), W, L, Sn, Gn, Dn),

fail.
makebox.

All of the procedures in SP employ a combination of these three basic formats.

5. The New Version of ASP

The new version of ASP currently being completed is aimed at solving three problems
with the prototype: generality, maintainability, and speed.

Generality was a problem with the prototype system because it was not designed to sup-
port complex designs. In particular, input specifications were constrained to have a single
loop and a single case dispatch. Furthermore, the system could only generate data paths in
which all bit slices were identical. These limitations required new Prolog translation code
and a new data path generator.

Maintainability was a problem because some of the code would not port from C-Prolog
to Quintus Prolog, which was necessary to take advantage of Quintus garbage coilection. In
particular, the Topolog module generator had to be replaced because of this problem.

Execution speed was a problem in general with the lower level tools, which had to deal
with thousands of geometric elements, and were orders of magnitude slower than equivalent
C programs. In particular, we have rewritten the compactor to use lists instead of assert and
retract, in a successful effort to improve its performance.

In addition to addressing the above problems, the reimplementation also caused a
change in the system’s structure. In the prototype system behavioral and boolean synthesis
were combined. In the current system they have been split, which clarifies the separate issues
raised at each level.
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% main tail-recursive run clause
sal (AC, PC) :-
fetch (PC, P11, OP, X),
execute (OP, X, AC, A, P1, P),
sml (A, P).
sml(_, ).
§ instruction fetch clause
fetch (PC, P1, OP, X) :-
mem (PC, OP, X),
Pl is PC + 1.

% instruction-specific execute clauses

execute(halt, _, _, _, _, ) =:- ¢,
fail.

execute (add, X, AC, A, PC, PC) :- !,
mem(X, T),
Ais T + AC.

axecute {stor,X, AC, AC,PC, PC) :-
mem(X, ), !,
retract ( mem(X, ) ),
assert ( mem(X, AC) ).
execute (stor,X, AC, AC,PC, PC) :~ I,
assert( mem(X, AC) ).
execute (brn ,X, AC, AC,PC, X ) :
AC <0, !,
execute (brn ,X, AC, AC,PC, PC ).

Appendix 1: A Simple Microprocessor Specification in Prolog
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sml :-
fetch,
lookup (regd4, OP),
exscute (OP),
sml.
sml :-
true.
fetch :-
acceas (reg2, PC), set (memAR, PC),
men_readinst,
access (memDR1, OP), set (reg4, OP),
access (nemDR2, X), set (reg5, X),
access (reg2, PC),
Pl is EC+1,
set (reg2, P1).
execute (halt) :-
!, fail.
execute (add) :-
',
access (reg5, X), set (mamAR, X),
mem_read,
acceas (memDR, T), access(regl, AC),
A 1s T+AC,
set (regl, A).
axecute (ator) :-
acceas (regS, X), set (mamAR, X),
acceas (regl, AC), set(memDR, AC),
mem _write, !.
execute (brn) :-
access (regl, AC),
AC<O,
!,
access(regS, T), set(reg2, T).
execute (brn) :-
true.

Appendix 2a: The Memory Register Version
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access(X, Y) :-
zZ =, [X, Y],
z.
lookup(X, Y) :- access(X, Y).
set (X, Y) :~- abolish(X, 1),
zZ=,, (X Y],
assert (2) .

mem read :-
access (memAR, Loc),
mem(Loc, Data),
set (mamDR, Data) .
mem_readinst :-
access (memAR, Loc),
mem(Loc, Datal, Data2),
set (memDR1, Datal),
set (memDR2, Data2).
mem write :-
access (nemAR, Loc),
mem(Loc, _), !,
retract (( mem(Loc, _) }),
access (menmDR, Data),
assert (( mam(Loc, Data) )).
mem write :-
access (memAR, Loc),
access (memDR, Data),
assert ({ mem(Loc, Data) )).

Appendix 2b: The Memory System




srcVar(reg2, varl) .
srcVar (memDR1, var2) .
srcVar (memDR2, var3) .
srcVar (reg2, varl) .
srcVar(reg$5, vars) .
srcVar (memDR, vars) .
srcVar(regl, var7) .
sxcVar(reg5, vaz9) .
srcVar(regl, varlO) .
srcVar(regl, varll).
srcVar (regS, varl2) .

expVars (varl, 1, +, vard) .
expVars (var6, vax7, +, var8) .
expVars (varll, 0,<,none) .

dstVar (memiR, varl) .
dstVar(reg4, var2) .
dstVar(regS5, varl) .
dstVar(reg2, vard) .
dstVar (memAR, var5) .
dstVar(regl, var8) .
dstVar (memAR, var$9) .
dstVar (memDR, varld) .
dstVar(reg2, varl2) .

Appendix 3: Transfer Fragments
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transfer (opl,blockl, reg2, none, transfer, memAR) .
transfer (op2, blockl, none, none, mem, readinst) .
transfer (op3, blockl, memDR1, none, transfer, regd).
transfer (op4, blockl, memDR2, none, transfer, regs) .
transfer (op5,blockl, reg2, 1, +, req2) .

transfer (op§,block3, reg5, none, transfer, memAR) .
transfer (op7, block3, none, none, mem, read) .
transfer (op8,block3, mamDR, regl, +, regl) .
transfer (op9,block4, regs, none, transfer, mamAR) .
transfer (opl0,block4, regl, none, transfer, memDR) .
transfer (opll,block4, none,none, mem, write).
transfer (opl2,blockS, regl, 0,<,none) .

transfer (opl3l, blocké, regS,none, transfer, reg2) .

branch (blockl, cond, reg4) .
branch (block3, uncond,blockl) .
branch (block4, uncond,blockl) .
branch (block5, cond, <) .

branch (blocké, uncond, blockl) .

case (blockl, halt,halt).
case (blockl, add,block3) .
case (blockl, stor,block4) .
case (blockl,brn,blocks) .
case (blockS, <,blocks§) .
case (blockS,=>,blockl) .

Appendix 4: The Transfer-Based Version
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implicitDependent (mam, mamiR) .
implicitDependent (memDR, mem) .
implicitDependent (mamDR1, mem) .
implicitDependent (memDR2, mem) .

dependent (op$, opl, reg2) .
dependent (op2, opl, men, memAR) .
dependant (op3, op2, memDR1, mem) .
dependent (op4, op2, memDR2, mem) .
dependent (op7, op6, maem, memhR) .
dependent (op8, op7, memDR, mem) .
dependent (opll, op9, mem, memAR) .

Appendix S: The Dependency Data Base
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cycle (opl,blockl,l).
cycle (op2,blockl, 2) .
cycle (op3,blockl, 3) .
cyclae (op4,blockl, 3) .
cycle (opS,blockl, 2) .
cycle(op6,block3, 1) .
cycle (op?,block3, 2) .
cycle (op8,block3, 3) .
cycle (op9,block4,l) .
cycle (opl0,block4, 1) .
cycle(opll,block4,2).
cycle (opl2,blockS, 1) .
cycle (opl3,block6,1) .

Appendix 6: The Transfer Schedule




elementType (reg2, req) .
elemantType (memiR, reqg) .
elementType (mem, mamory) .
element Type (nemDR, req) .
elementType (regd, req) .
elementType (reg5, reqg) .
elementType (regl, reg) .
elamantType (adderl, adder) .
elementType (busl, bus) .
elementType (bus2,bus) .
elemantType(bu. 3,bus).

elementFn (mem, read) .
element?Pn (mem, write) .
element¥Fn (addarl, add).
elemontFn (adderl, inc) .

elementUse (mam, read, blockl, 2, op2) .
elementUse (mam, read, block3, 2, op7) .
elementUse (mem, write,block4, 2,0pll).
elementUse (reg2, src,blockl, 1,0pl) .
elementUse (memAR, dst,blockl, 1, 0pl) .
elementUse (memDR, src,blockl, 3,0p3) .
elementUse (reg4,dst, blockl, 3, 0p3) .
elementUse (nemDR, sxc,blockl, 3, op4d) .
element.Use (reg5,dst, blockl, 3, 0pd) .
elementUse (adderl, inc,blockl, 2, 0p5) .
elementUse (reg2, sad, blockl, 2, op5) .
elementUse (reg5, sre, block3, 1, opé) .
elementUse (memAR, dst,block3, 1, op6) .
elesantUse (adderl, add, block3, 3,0p8) .
elementUse (memDR, sra,block3, 3,0p8) .
elenentUse (regl, sad,blockl, 3, op8) .
elementUse (regS, sxc,block4, 1, 0p9) .
elementUse (memiAR, dst ,blockd, 1, op9) .
elementUse (regl, src,block4, 1,0pl0) .
elementUse (memDR, dst,block4, 1, opl0).
elementUse (reg$, src,blocké, 1, 0pl3) .
elementUse (reg2,dst, blocké, 1,0pl3) .

elementTest (sign, block5, reqgl, reglsign, opl2) .
elemantTest (switch, blockl, reg4, regdout, none) .

Appendix 7a: The Data Path Data Base -- Units
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busSrc(busl, reg2) .
busSrc(busl, mamDR) .
busSrc(bus2, memDR) .
busSrc(bus2, adderl) .
busSrc (busl, reg5) .
busSrc(bus2, regl) .
busSre(bus3, adderl) .

busDst (busl, memiR) .
busDst (busl, reg4) .

busDst (bus2, reg5) .

busDst (busl, addarlportl).
buaDst (bua2, reqg2) .

busDst (bua2, adderlport2).
busDst (bus3, regl) .

busDst (bus2, memDR) .
busDst (bual, reg2) .

busUse (busl, reg2, memAR,blockl, 1, 0pl) .
busUse (busl, memDR, reg4, blockl, 3, 0p3) .
busUse (bus2, memDR, regS,blockl, 3, opd) .
busUse (busl, reg2, adderlportl, blockl, 2, opS) .
busUse (bus2, adderl, reg2,blockl, 2, op5) .
busUse (bual, reg5, memAR, block3, 1, op§) .
busUse (busl, memDR, adderlportl, block3, 3, op8) .
busUse (bus2, reqgl, adderlport2,block3, 3, 0p8).
busUse (bus3, adderl, reqgl, block3, 3, 0p8) .
busUse (busl, reg5, memAR, block4, 1, op9) .
busUse (bus2, regl, memDR, block4, 1, opl0) .
busUse (busl, reg5, reg2,blocké, 1,0pl3).

Appendix 7b: The Data Path Data Base -- Buses




functionalUnit (reqgl, req,

[bue3], (bus2], [reglFn], [reglaign]).
functionallnit (reg2, reg,

[reg2mBus], {busl], [reg2Fn], []) .
functionalUnit (reg2mux, mix,

{busl, bus2], [reg2mBus], (reg2Mux], []1).
functionalUnit (reg4, reg,

(busl], (1, (reg4Fn], [reg4docut]).
functionalUnit (reg$5, regq,

[bus2], (busl], [reg5Fn], []).
functionalUnit (memAR, req,

(busl], [1, (memARFa], (1) .
functionalUnit (memDR, req,

{bus2], {meamDRdSus], [nemDRFn], (1) .
functionalUnit (memDRdecoder, decoder,

[mamDRdBus], (busl, bus2), [memDRDecoda], {]) .
functionalUnit (adderl, adder,

[busl,bus2], [adderldBus], [adderlFn], [adderlCout]).

functionalUnit (adderldecoder, decoder,
[adderldBus], {bus2,bus3], [adderlDeccde], (]) .

controlln (reg¥Fn, reglFn,hold).

controlln (regfn, reg2in,hold) .

controlln (muxFn, reg2Mux, [busl,bus2]).
controlln (regfn, regd¥fn,bold) .

controlln (regfn, reg5fn, hold) .

ocontrolln (regfn, memARFn, hold) .

controlln (regfn, memDRFn, hold) .

controlln (decodeFn, mamDRDecode, [busl, bus2]).
controlln (addezFn, adderl¥n, pass) .

controlln (decodeln, adderlDecode, [bus2,bus3]).

controlOut (switch, reg4out, {add, brn, halt, storx]).
controlOut (sign, reglsign, blockS) .

Appendix 8: The Data Path
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Sfatch
state (blocklCyclel,
[output (memARFn,dst), output (reg2Fn, src)],
blocklCycle2) .
state (blocklCycle2,
[output (adderlDecode,bus2), output (reg2Mux,bus2),
output (adderlFn, inc), output (memFn, read), output(reqg2fn,sad)],
blocklCycle3) .
state (blocklCycle3,
[output (memDRDecode,busl), output (memDRDecode, bus2),
output (memDRFn, src), output (reg4Fn,dst), output (reg5Fn,dst)],
switch (regdout,
{case (add, block3Cyclel), case(brn,blockS5Cyclel),
case (halt, haltCyclel), case(stor,blockdCyclel)])).

Sadd
state (blockiCyclel,
[output (nemARFn,dst), output (reg5Fn,srxc)],
blockiCycle2) .
state (block3Cycle2,
[output (memFn, xread) ],
block3Cyclael) .
state (block3Cycle3,
[output (memDRDecode, busl), output (adderlDecode,bus3),
output (adderl¥n, add), output (memDRFn, src), output (reglFn,sad)],
blocklCyclel) .
% stor
state (block4Cyclel,
[output (memARFn,dst), output (memDRFn,dst),
output (reglifn, sxc), output (reg5Fn,src)],
block4Cycle2) .
state (block4Cycle2,
[output (menfn, write)],
blocklCyclel) .
$brn
state (blockS5Cyclel, [],
switch (reglsign,

[case (gezero,blocklCyclel), case{ltzero,blockéCyclel)])).
state (blockéCyclel,
[output (reg2Mux,busl), output (reg2Ffn,dst), output(reg5Fn,src)],
blocklCyclel) .

Appendix 9: The Control Path




opfnMapping(’+’, add, arlog).

Smemory

signalValue (mexFn, read, 1).
signalValue (memFn, write, 3).
Sregister

signalValue(regfn, sre, 0).
signalValue(regifn, dst, 1).
signalValue(regfn, sad, 1).

1ib (adder) .

twoPortType (adder) .
signalValue (adderFn, add, 0).
signalValue {(adderFn, inc, 1).

$sign bit output
signalValue(sign, gezero, 0).
signalValue(sign, ltzero, 1).

Appendix 10a: The Functional Unit Library
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reqg([In], [Out], (Load, Clock}], _, Block) :-
buildBlock (Refresh = aoi (Load),Bl),
buildBlock (Masterin = transmit (Out,Load, Refresh),hB2),
buildBlock (Masterin = transmit (In,Refresh, Load),bB3),
buildBlock (Masterout = aoi(Masterin),Bd),
buildBlock (Slavein = pass(Masterout, Clock),BS),
buildBlock (Out = aol(Slavein),BS6),
buildCompositeBlock ( [Bl,B2,B3,B4,B5,B6], Block).

reg([In], (Out, Top], [Load, Clock], _, Block) :-
buildBlock (Refresh = aoi(Load),Bl),
buildBlock (Masterin = transmit (Qut, Load, Refresh),B2),
buildBlock (Masterin = transmit (In,RRefresh, Load),B3),
buildBlock (Masterout = aoi(Masterin),Bd),
buildBlock (Slavein = pass (Masterout, Clock),BS),
buildBlock (Out = aoi(Slavein),B6),
buildBlock (Top = aoi(Slavein),B7),
buildCoupo-itcBJ.ock( [Bl1,B2,B3,84,B5,86,B7], Block).

decoder2([Input], [Outputl, Output2], [Control], _, Block) :-
buildBlock (not (Control) = aoi (Control), Bl),
buildBlock (Outputl = transmit (Input, Control, not (Control)), B2),
buildBlock (Output2 = transmit (Input, not(Control), Control), B3),
buildCompositeBlock ([Bl,B2,B3], Block).

mux2 ( [Inputl, Input2], [Output], ([Comtrol], _, Block) :-
buildBlock (CBsr = aoi(not (Control)), Bl),
buildBlock (Output =
aoi(or( and(Inputl, CRar), and(Input2, Control) )), B2),
buildCompositeBlock ( [Bl,B2], Block).

addex([(A, B), ([Sum}, [Cin], [Cout], Block) :-
buildBlock (X = aol(or{and(Cin,or(A,B)),and(A,B))),Bl),
builldBlock (Y = aol(or(and(X,or(A,B,Cin)),and(A,B,Cin))),B2),
buildBlock (Sum = aoi (Y),B3),
buildBlock (Cout = aoi(X),Bd),
buildCompositeBlock((Bl,B2,B3,B4}, Block).

Appendix 10b: The Logic Equation Library
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plavar(state(0)).
Plavar(state(l)).
pPlavar(state(2)).
Plavar(state(3)).
plavar(regdout (0)) .
plavar(regdout(l)).
Plavar(reglsign(0)).

alias (reg2Mux0, adderlFn0) .
alias (memDRDecodal, reg4Fn0) .
alias (memDRDecoda0, regSFno) .
alias (adderlDecodel, reglFnd) .

Appendix 11a: The PLA Equations -- Inputs and Aliases
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pterm(stateblocklCyclel, [inv(state(0)), inv(state(l)), inv(state(2)),state(3)]).
pterm(stateblock3iCyclel, (inv(state(0)), state(l), inv(state(2)),inv(state(3))]).
pterm(stateblock4Cyclel, [state (0),inv(stata(l)), state(2),inv(state(3))]).
pterm(stateblocklCycle2, [(inv(state(0)), inv(state(l)), inv(state(2)),
inv(state(3))]).
pterm(stateblockiCycle2, {inv(state(0)), state(l),state(2),inv(state(3))]).
pterm(stateblocklCycle3, [state(0), inv(state(l)), inv(state(2)),inv(state(3))]).
pterm(stateblock3Cycle3, [state (0),state(l),state(2),inv(state(3))]).
pterm(stateblockliCycle3rsg4outadd, [state(0), inv(state(l)), inv(state(2)),
inv(state(3)), regdout (0), inv(regdout(1))]).
pterm(stateblocklCycle3regdoutbrn, [stata (0),inv(state(l)), inv(state(2)),
inv(state(3)), regdout (0), regdout (1)]).
pterm(stateblocklCycle3regd4outhalt, [state(0), inv(state(l)), inv(state(2)),
inv(state(3)), inv(regdout (0) ), inv(regdout(1))]).
pterm(stateblocklCycle3regdoutstor, [state (0), inv(state(l)),inv(state(2)),
inv(state(3)), inv(regdout (0)), regdout(1)]).
pterm(stateblockéCyclel, (inv(state(0)),state(l), inv(state(2)),state(3)]).
pterm(stateblock5Cyclelreglsigngezero, [state (0), state(l), inv(state(2)),
inv(state(3)), inv(reglaign(0))]).
ptern(statablock4Cycle2, (state (0), inv(state(l)), inv(state(2)),state(3)]).
pterm(stateblock5Cyclelreglsignltzero, [state (0), state(l),inv(state(2)),
inv(state(3)), reglsign(0)]).

oterm(state(0), (stateblocklCycle2, stateblockliCycle3regdoutbrn,
stateblocklCycleldregéoutstor, stateblock3Cycle2, stateblockdCyclel]).

oterm(state(l), {stateblocklCycle3regdoutadd, stateblocklCycle3regdoutben,
stateblock3Cyclel, stateblock3Cycle2, stateblock5Cyclelreglsignltzaero]).

oterm(state(2), [stateblocklCycleldreg4outhalt, stateblocklCycle3regdoutstor,
stateblock3Cyclel, stateblock3iCyclel]) .

oterm(state(3), [stateblock3Cycle3, stateblock4Cyclel, stateblock4Cycle2,
stateblock5Cyclelreglsigngezero, stateblock5Cyclelreglsignltzero,
stateblock6Cyclel]).

oterm (nemARFn0, [stateblocklCyclel, stateblock3Cyclel, stateblock4Cyclel]).

oterm(reg2Mix0, [stateblocklCycle2]) .

oterm(reg2in0, [stateblockliCycle2, stateblockéCyclel]).

oterm (mamDRDecodal, [stateblocklCycleld]) .

oterm(adderlDecodel, [stateblock3iCycle3]) .

oterm (memDRFNnO, {stateblock4Cyclel]).

Appendix 11b: The PLA Equations -- Product and Or Terms
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reg([bus3], (bus2, reglsign], [reglFnl, clock], [1).

reg ([reg2mBus], [busl], [reg2Fn0, clock), []1).

max2 ( [busl,bus2], {reg2mBus], {reg2Mux0]}, []).

reg([busl], [regd4out], [regd4Fn0, clock], (]) .

reg([bus2], [busl], [regSFn0, clock], []).

decoder2 ( (memDRdBus], [busl, bus2], (memDRDecodel], 1) .
adder ([busl, bus2], [adderldBus], [adderlFn0], (adderlCouto]).
decoder2 ( (adderldBus], [bus2,bus3], [adderlDecodel], []) .

mirror.

feed (reg2Fn0) .

fead (reg2Mux0) .

feed (reg4¥n0) .

feed (reg5Fno0) .

feed (reglfnl) .

feed (mamDRDacodel) .
feed (adderlDecodal) .
top (adderlCoutl) .
bottom(adderlFn0) .
pairedSignals {adderl¥Fn0, adderlCout0).
leftEdge (busl) .
rightRdge (bus2) .
rightEdge (memDRdBus) .

Appendix 12: The Topological Data Path
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Appendix 14: The Compacted Data Path Bit Slice
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Appendix 15: The Compacted PLA
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