
UNCLASSIFIED ,"ASTE!; ('OPY - FOR REPRODUCTION PURPOSES
SECURITY CLASSIFICATION OF THIS PAGE A

REPORT OOCUMENTATION PAGE
Ia REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGSI A1 A 3. DISTRIBUTION/AVAILABILITY OF REPORT

A D 'A210 652 1 FTApproved for public release;

0 2 1989 distribution unlimited.

4. Err ,u,,j , . - R(S) S. MON:TORING ORGANIZATION REPORT NUMBER(S)

_____ to 2336o./a /
6a. NAME OF PERFORMING ORGANIZATION , OFFICE SYMBOL 7,. NAME OF MONITORING ORGANIZATIONS ri ce on Un ve st - . e appicabi-)

Princeton University U. S. Army Research Office

6c. ADDRESS (Cty, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Fine Hall, Washington Road P. 0. Box 12211
Princeton, NJ 08544-1000 Research Triangle Park, NC 27709-2211

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
U. S. Army Research Office DAAL03-B6-K-0073

Sc ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
P 0.Bx121PROGRAM PROJECT TASK WORK UNIT

Research Triangle Park, NC 27709-2211 ELEMENT NO. . ACCESSION NO.

11. TITLE (Include Security Classification)
Procedures for separations within batches of values,
I. The orderly tool kit and some heuristics

12 PERSONAL AUTHOR(S) Thu Hoang and John W. Tukey
13a. TYPE OF REPORT 13b TIME COVERED 114" DATE OF REPORT IYear'MOnth, Day) s. PAGISCUNT

Technical FRM ____ TO j March 1989lb
16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those
of he auth r(;).and sh uld not be constu d as. an gfficial D artment of the Army position,

17. COSATI CODES 18. SUBJECT TERMS (Continue on revere if necessary and identify by block number)
FIELD GROUP SUB-GR OUP

'9. ABSTRACT (Continue on reverse f necessary and identify by block number)

First of several reports studying techniques to answer: ' sit desirable to treat this batch of values together, or to separate them into at least
two parts?"'(called below the cayon problem).

This report focuses on tools to help answer the question, primarily on 'L orderly tool kit' in which the simple general properties of order
statistics from any reasonable distribution are identified and arranged for use.

Once we order the values of a set of observations, our attention needs to shift from values to gaps - - differences of adjacent ordered
values. Rescaling gaps toward a common scale allows easy combination into measures of spread. Like other measures of spread, these
measures of spread are well described in terms of'degrees of freedom,,which can be defined for both linear and quadratic expressions.
(Linear d.f. will be slightly less than 4 times quadratic df.) It can be natural and useful to order the rescaled gaps, when we now deal with
gaps of rescaled gaps. (Various quantitative matters are also addressed.)

Application of the orderly tool kit to the canyon problem leads to test statistics for whose distribution a well-chosen F-distribution is a
natural approximation. While the orderly tool kit provides a rough idea of the power of the procedure, simulation will be required to
anchor and modify the approximation.

20. DISTRIBUTION (AVALABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIEDUNLIMITED 0 SAME AS RPT. 03 OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22. OFFICE SYMBOL

DO FORM 1473, 4 MAR 113 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

89 7 31S4



UNCLASSIFIED S
SECURITY CLAIIICATION OF TRIS PAGE

19. Abstract (cont'd)

More careful consideration of what we are trying to do in the canyon problem suggests strongly that other test statistics, for whose distribu-
tion we have no natural approximation, are almost certain to be more powerful

KEYWORDS: canyon problem, correction for granuhrity, degrees of freedom (as measures of scale), e-leaps, focused knowledge, gaps
(among order statistics), leapalls, leaps (= rescaled gaps), multiple comparisons (as analogy), orderly tool kit, rescaled gaps, stretches, sum
leaps, tightness of spread estimates

UNCLASSIFIED

SECURITY CLASSIIPCATION OF THIS PAGE



-'0 336o 2 . 1.2AA

Procedures for separations within batches of values,
I. The orderly tool kit and some heuristics

by

Thu Hoang* and John W. Tukey**

*Universite Rene Descartes
Laboratoire de Statistique Medicale

45, Rue des Saints-Peres
75270 Paris Cedex 06

Paris, France

and

**Princeton University
Fine Hall

Washington Road
Princeton, NJ 08544-1000

,' [IS CFRA&I !

Technical Report No. 293 .
Department of Statistics By

Princeton University 08544-1000 D. ,' t

March 1989 ' " Codes

I or

/A-I

Prepared in connection with research at Princeton University
sponsored by the Army Research Office (Durham), DAAL03-86-K-0073.



TABLE OF CONTENTS

LIST OF FIG URES ...........................................................................................................
OVERVIEW ......................................................................................................................
1. The problem ................................................................................................................. 7
2. Leading cases ............................................................................................................... 7
3. Additional criteria ....................................................................................................... . 8
4. Heuristics ..................................................................................................................... 9
5. Stim uli .......................................................................................................................... 10

THE ORDERLY TOOL KIT ....................................................................... 10
6. Character ...................................................................................................................... 10
7. Order-statistic typical values ........................................................................................ . 11
8. W orking values and other related quantities ............................................................... 12
9. M edians, etc . ............................................................................................................... 14
10. Gaps and leaps, sym s ................................................................................................ 15

gaps ......................................................................................................................... 15
leaps ........................................................................................................................ 17
sym s ........................................................................................................................ 18

11. Stretches and sum leaps, leapalls ................................................................................ 20
12. e-leaps and iterated e-leaps ....................................................................................... 21
13. Seductive, but not recom m ended ............................................................................. 22
14. G oing further (another tim e)? ................................................................................ 24

EQU IVALENT D .F . .................................................................................... 24
15. Equivalent degrees of freedom - - or of firm ness ..................................................... 24

bases for assessing d.f. ........................................................................................ 25
a first exam ple ...................................................................................................... 26

16. Ranges and leapalls ................................................................................................... 27
17. Relation to variance of logarithm .............................................................................. 30

SOM E HELPFUL SPECIAL CASES ............................................................ 31
18. I.i.d. leaps ................................................................................................................... 31
19. Sam ples from a G aussian .......................................................................................... 34
20. Sam ples from an exponential .................................................................................... 37
21. Alternatives, alternatives! ........................................................................................ 38
22. Alternatives and the "choice am ong exponentials". .................................................... 39
23. Alternatives illuminating separation procedures ................................. 40
24. Minimum misclassification for 50-50 Gaussian mixtures ................................... 45

MULTIPLE COMPARISONS - - ANALOGY AND DISa1NCTION ........... 47
25. The "stages of knowledge" . ........................................................................................ 47
26. Qualitative or quantitative knowledge? .................................................................... 48
27. Focused or unfocused knowledge? .......................................................................... 49
28. Our problem ............................................................................................................... 50
29. The stages of qualitative m ultiple com parison .......................................................... 50
30. Quantitative m ultiple com parisons ............................................................................ 52

relation to the qualitative case ................................................................................ 52
31. The leapall in qualitative m ultiple com parisons ........................................................ 53

and in our problem ................................................................................................. 54



-oii -

HEURISTIC APPROACH TO VALLEY-SEEKING ................................... 54

32. A scale estim ate ........................................................................................................ 54

33. A response and its analogs ........................................................................................ 55
alternate scale ........................................................................................................ 56

other approxim ately independent choices .............................................................. 57
first, the null situation ........................................................................................... 57

next, power for shift = 5 ....................................................................................... 58
34. W hich leap is largest - - and how often .................................................................. 60

another approach ................................................................................................... 63

35. And the shortest leap ................................................................................................ 64

36. High index e-leaps .................................................................................................... 65

37. Suggestions for em pirical trial .................................................................................... 66

38. Restricted sum s ......................................................................................................... 66

APPENDIX A . ON aF  (i In)'s ................................................................. 68
39. W hat size biases don't m atter? ................................................................................. 68
40. M ism atch of distributions ......................................................................................... 69

41. c,. (i I)f or Gaussian parent .................................................................................. 69
i - 1 (or, by sym m etry. i = n) .............................................................................. 69
i a 2 (or. by symm etry, i - n- 1) ......................................................................... 70
i = 3 (or, by sym metry .i - n-2) ......................................................................... 72
larger i (deeper i ) ................................................................................................. 72
the leap denom inator .............................................................................................. 72

m ean gaps and m edian gaps ................................................................................... 76
42. ag (i Jn) in the lower tail of an exponential parent ................................................ 76
43. ag (i In) in the upper tail of an exponentia distribution ........................................ 77
44. Of,(i In) the case of a rectangular parent ............................................................... 80

45. Ail. (i In) the case of a logistic parent ....................................................................... 80
46. W orking-values and Z" as % points ....................................................................... 83
47. Sources ....................................................................................................................... 83
48. History ....................................................................................................................... 85

APPENDIX B. HOW THREATENING IS GRANULATION? ............... 86
49. An initially ungranulated exam ple ............................................................................. 86

50. G ranulating the exam ple (grouping its values) ......................................................... 87
com parison with Sheppard's correction .................................................................. 93
overall com parison ................................................................................................. 93

51. The sim ple adjustm ent .............................................................................................. 94

52. D iscussion and heuristics ........................................................................................... 100
APPENDIX C. A FUTURE POSSIBILITY OF HANDLING

SHAPE USIN G THE TOOL KIT ....................................... 101
53. How we m ight proceed further with our sym s .......................................................... 101

the general procedure ............................................................................................. 101
good sm oother ....................................................................................................... 103

REFERENCES .................................................................................................................. 105



Procedures for separations with batches of values,
. The orderly tool kit and heuristics

Thu Hoang* and John W. Tukey**

*Universite Rene Descartes
Laboratoire de Statistique Medicale

45, Rue des Saints-Peres
75270 Paris Cedex 06

Paris, France
and

**Princeton University
Fine Hall

Washington Road
Princeton, NJ 08544

A. Overview.

This is the first of a group of technical reports, directed toward the

question "Is it desirable to treat this batch of values together, or to separate

them into at least two parts?". This question arose most prominently for us in

connection with the analysis of multicenter clinical trials, where we anticipate

that centers are truly different, at least to a degree, but need not - - in fact

should not - - be analyzed separately, one by one. It may be, however, that at

least one analysis should treat them in two or three groups!

Most of the present report is concerned with the tools that seem

appropriate for attacking this question. Since these tools are based upon order

statistics, it is natural to refer to them as "the orderly tool kit". The simple

aspects of order statistics involve, first, their typical values and then, more

importantly, the distributions of the corresponding gaps, multiples of gaps, and

other functions of gaps. Typical values are well approximated by

Prepared in connection with research at Princeton University sponsored by the Army
Research Office (Durham), DAA03-86-K-0073.
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F-1 ((3i- 1)/(3n+ 1)), whose values we call working values. Gaps and multiples

of gaps, including those we call leaps (chosen to have similar average values),

are distributed roughly exponentially and roughly independently.

Whenever our concern is even partially with spread, once we sort a set of

values, our focus of concern almost automatically changes from values to leaps.

In the present problem, among others, it is natural to look at the shorter of the

observed leaps as t basis for assessing undisturbed scale. This means sorting

the leaps themselves - - and, hence, focusing on the leaps of the leaps, which

we will call e-leaps.

An important tool in managing indicators of spread/scale is the notion of

"d.f." - - classically thought of as "degrees of freedom" but in the present

context better thought of as "degrees of firmness" - - defined by some sort of

matching of distribution of the quantity of concern with the distribution of

some multiple of X2 "on the appropriate df". (Notice that "zero" is to be

preserved.) We use d.f. to describe the distribution of any always positive

quantity, in particular, both quantities quadratic in the observations and

quantities linear in the ordered observations. (The d.f. for the square-root of

some quantity will be roughly 4 times the d.f. for the quantity itself.) One

reason why d.f. are convenient is that exponential distributions have d.f. = 2,

so that individual leaps will have (linear) d.f. close to 2 and sums of

(sufficiently nearly) independent leaps will have (linear) d.f. close to 2 times

the number of summands.

If the leaps were exactly i.i.d., the gaps (from which the leaps came) would

March 29, 1989
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be independent and exponential with differing scales. Thus the sum of the gaps

- - the range - - would have fewer d.f. than the leapall - - the sum of all leaps.

Thus the leapall should often be a helpful replacement for the range. Indeed,

for average gaps spaced like a Gaussian, dropping something like 7% of gaps

recovers about half the difference between df for range and df for leapall.

Merely rescaling one gap at each end does as well, and also rescaling a second

gap next to each end recovers half of what is left.

When we look at gaps from an exponential: (i) we go to e-leaps by

multiplying by 1 (outer end), 2, 3 .... and (ii) the sum of the e-leaps is

identically the sum of the observations.

It is often natural to leave out the largest (not usually the end-nearest)

leaps, which leads us to use e-leaps, treating the end-nearest ones specially. If

it were natural to leave out the largest e-leaps - - a situation yet to arise - - we

would want to use leaps of e-leaps.

Guidance for our specific problem is offered by the average leaps (say as

calculated for a single Gaussian sample of 20). For two Gaussian samples, say

of k and 20-k values, respectively, from two distributions with well-separated

averages, all average leaps are somewhat increased, those near the single valley

(between the batches from the two distributions) most.

A sample of 20 from a 50-50 mixture of two unit Gaussians separated

about 3.5y behaves, so far as average leaps go, much like 10 + 10

observations, 10 from each of two widely separated Gaussians.
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A parallel problem - - that of multiple comparison, where we are most

often comparing long-run averages associated with each of several treatments,

and where we do have an estimate of an appropriate error, both serves to

illuminate plausibility of approach to our central problem and offers a likely

application of the orderly tool kit. Uses of multiple compali.ons usually require

attaining focused knowledge (knowing that something unspecified is different

from something else unspecified is rarely, if ever, useful). Focused knowledge

comes in gradations that often parallel the evolution of knowledge in the

subject-matter field. The gradations for qualitative answers range from "can we

say anything specific (say about some pair of treatment averages)" to "have we

settled the order of all treatment averages". The early stages of qualitative

knowledge - - as well as the classical procedure for quantitative knowledge - -

currently involve using the range of a set of results (often treatment means)

and comparing that range with (the square root of) an estimated variance for

these results. Our earlier comparison of leapall and range raises the question

whether replacement of range by leapall will be helpful here.

For our present problem, in which we have no useful separate estimate of

variability, but which corresponds in flavor with the earliest stage of qualitative

multiple comparison, our current understanding of multiple comparison

suggests that we should compare the leapall with an assessment of between-

treatment variability (between-center in our original problem) chosen to be

relatively immune to the presence of a valley - - or a few valleys.

We are now ready to focus the orderly tool kit on our main problem in
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more detail. Our work to this point suggests comparing the leapall (which is

also the sum of the e-leaps) with a sum or mean of low-index e-leaps. This

turns out to be equivalent to comparing a mean of high index e-leaps with a

mean of low-index e-leaps, a comparison for which the classical F-table offers

approximate % points. Once we have got this far, we shortly see no need for

all leaps to be either high-index or low-index. By converting A/B 'a c through

(A/B) -c _ 0 to A-cB _ 0, we can even calculate an approximation - - of

unknown quality - - to the power of such a procedure. This lets us look at

alternative pairs of high-index and low-index means, suggesting the cases for

which we might well begin simulation, in which some leaps are omitted.

When we think harder about the approach so far developed, we conclude

that working with the four largest leaps may be fairly good, it is not good

enough, especially since we probably want power against single valleys (and

perhaps pairs of valleys). Only simulation seems likely to attack the question of

what restrictions to apply. Its application is left for a later report.

Appendix A looks, in considerably more detail, at typical values of order

statistics, particularly at typical values for gaps and leaps. Since exponentially

distributed quantities have large (100%) coefficients of variation, biases of even

± 10% are not important. As a result, working values (based on

(3i- 1)/(3n+ 1) ) are quite precise enough for most situations. Similarly, even

the difference between basing leaps on the Gaussian distribution and basing

them on a t-distribution on 3 d.f. has rather weak consequences (the leapall's

d.f. goes down about 3% near n = 20). Thus the exact distribution used to
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generate leaps is ordinarily not important, so long as it is, say, smooth and

single humped.

If, for reasons of neatness or intellectual curiosity, we look into order-

statistic typical values in more detail, we find such things as: (i) in the

Gaussian case, working values are increasingly nearer the medians than the

means as we move away from the ends of the sample; (ii) simple formulas

describe the differences quite well; (iii) differences between mean and median

(for Gaussian order statistics) are small compared to differences between

Gaussian and logistic order statistic medians (and means); (iv) when we look at

differences in typical value from one order statistic to the next, all three choices

of typical gaps (as differences of means, or of working values, or of medians)

give very similar results (displacement by a few % of the value); (v) on the

contrary, median gaps are about 70% of mean gaps (since gaps are nearly

exponential); (vi) means of lower-tail order statistics from the exponential (or

the rectangular) behave rather as if 0 were an additional observation, while

upper-tail order statistics deviate from working values in the opposite direction

and by about half as much; (vii) when we ask what % point of each order-

statistic distribution is given by the corresponding working value, all are

between 48.66% and 51.34%, and indeed if we set aside the end order statistics,

between 49.63% and 50.37% (very close to the median!), (viii) order-statistic

means correspond to % points a few to several times further from the median,

but still by only a few % of their value - - by a few hundredths of (T.

Appendix B looks at a single example of how grouping, with its
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concomitant ties, makes it difficult for gaps, leaps and e-leaps, and how

surprisingly well a simpte "spreading-out" modification manages to keep the

situation under control.

Appendix C hints, very briefly, how the orderly tool kit might be used to

study skewness, etc.

1. The problem.

This is the first of a series of reports, aimed at the problem of examining a

batch of values to inquire:

a) Is there evidence that it would be better to treat the values as two or

more subbatches (as if there was a valley dividing the parameters they

estimate)?

b) If there is, which splitting into two subbatches is most reasonable?

We address these inquiries initially for the case where we wish to treat the

values as equally variable, but we wish to use (and may have) no information

as to what this common variability may be. Later (perhaps in the third report)

we plan to turn to the case where we have information about the distribution of

variability for the different values.

2. Leading cases.

We want to have reasonable control of both size and some sort of power

for our proposed procedure. So we need to fix a null situation and one or more

families of alternative situations. Through doing this we seek guidance, but

regard ourselves as looking at leading cases - - rather than making assumptions.
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While the possible degree of robustness for this class of problems may well be

quite limited, it is our eventual intention to have techniques that are at least

moderately robust. As usual, however, we do not plan to begin our attack on a

new problem by requiring robustness. (We will give some incidental thought to

avoiding the worst forms of non-robustness.)

As the nullest null situation, we choose a random sample from a Gaussian

distribution with unknown p. and a. (We hope to look at least briefly at

random samples from other distributions, say the logistic and the slash.)

As our initial set of alternatives we consider pairs of Gaussian distributions

with a common 7 and different p.. Here we feel free to consider either

subsamples of fixed sizes, one from each distribution, or a single random

sample from a mixture of the distributions. Again we start with the Gaussian

case, but are ready to consider others. We shall say that such alternatives

involve a single valley or slot, dividing one group from the other. (The

otherwise better term "gap" has been seized for a different use.)

3. Additional criteria.

Clearly we need criteria to guide - - rather than enforce - - our choices of

procedure. We plan to use the two-step approach set out in the introduction,

asking:

a) first, should we make a separation, and

b) second, what ser'?.. d.ion seems indicated.

Our ideas of size and power of rourse refer to the first of these questions.
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If we have a need to answer the first question at all - - if the need for

some separation is not crystal clear - - it is most unlikely - - even for our initial

set of alternative situations, where there are really two subsamples, separated by

a single valley, and hence a single correct answer to the second question - - that

we will often reach that exactly correct answer to the second question. We

ought to expect a greater or less degree of misclassification. We shall strive to

hold misclassification near a minimum - - but expect to be guided by some

typical amount of misclassification, and not by the probability of perfection - -

which here would be choosing the separation into two batches that exactly

matches how the simulated data was generated.

4. Heuristics.

We do our best to be concerned with real problems. This always makes an

asymptotic approach uncomfortably weak, since neither of us has seen a real

problem where "n really tends to infinity". The present problem is even more

difficult for asymptotics than usual, because so much of our interest in the

problem of separations is confined to small values of n.

We endeavor, therefore, to be as realistic as we can. This means admitting

we are working with approximations, frequently asking for some insight into

how well our approximations do, and emphasizing "heuristics" rather than

"theorems". In particular, an effect, a phenomenon, or an approximation that,

in samples of usual size, contributes only a small part on our overall

uncertainty will only be allowed for explicitly if it is quite easy to do this.

Otherwise we will do better to just regard it as unimportant and not worth our
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attention.

5. Stimuli.

Our attention was directed to this problem by a situation familiar in multi-

center clinical trials, where it frequently seems natural to ask whether or not

the clinics need to be separated into two (or more) subbatches at least, as one

of the analyses. Since a clinic-to-clinic variance component could be substantial

when clinics were randomly sampled from a single-humped population of

clinics, it would be inappropriate to compare between-clinic variability with

within-clinic variability as a basis for answering such questions (since estimates

based on within-clinic variability might be badly biased downward).

We feel that the separation problem (the valley-seeking problem), as

formulated generally above, is an appropriate general framework in which to

approach such multi-center questions. We plan to discuss the details of such an

approach in later technical reports of this series.

The formulation of the orderly tool kit - - and our orientation toward that

kit - - were substantially influenced by the numerical results of empirical trial

(simple simulation) of some earlier formulations of a "separation statistic".

THE ORDERLY TOOL KIT

6. Character.

By this label we identify a fairly generally applicable, finite sample approach

that emphasizes order statistics and quantiles, and that depends on
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approximations of varying quality, some very good, and on a willingness to

treat distributions as smooth (while privately recognizing that actual

distributions are almost all discrete at some level of detail). This kit gives

much more widely applicable results than can be provided by the classical

Gaussian tool kit, which has constraining emphases on narrow specifications, on

maximum likelihood, and, almost automatically, on exact optimality, and which

consequently lacks robustness (and calls for a major role for moments). Our

use of the orderly tool kit will be two fold: (in this report) as a source of

suggestions for what to calculate, and (in the next report) as a framework for

interpolation (based on its approximations) among simulation-based specific

results.

7. Order-statistic typical values.

Under the null hypothesis that Yi < Y2 < . .. y, is an ordered sample

from a cumulative distribution F(y), each of the order statistics yi will have a

median depending upon i, n and F. Moreover, F(yl) < F(y 2) _ . . . F(y)

must be an ordered sample from the uniform [rectangular] distribution

on [0, 1], whose medians we may write a,,(i n) and pronounce "a-split of the

ith of n ". Because F and F- 1 preserve order, we must have
I

aF(i In) = median(yi n, F} = F-(au (il n))

so that, once we have a satisfactory approximation to au (i[ n), we are very well

equipped as far as medians of order statistics go.

It is often helpful to work with the means of order statistics, for which we

gain some simplicity by writing them in a similar form, in terms of IF(i I n),
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defined by

mean fyi In, F}= TF(ij n) = F-'(dF(i n))

Here juF(i n), which is implicitly defined, changes somewhat - - but not too

much - - from one F to another. One reason for such helpfulness is that

ave {yi+ 1-y }= ave (yi+ 1 } - ave {yi }

an exact relation that does not extend, exactly, to medians. (In fact, since gaps

are roughly exponential, while the order statistics are typically one-humped, the

corresponding relation for medians fails by a factor of nearly 0.7.)

Since the distributions of order statistics forthe usual single-hump parents

(like Gaussian, logistic, etc.) are skewed outward - - as are the upper-tail order

statistics of the exponential - - we can confidently expect that, in these

situations as well as many others, the mean of a given order statistic will be

outboard of its median.

Moreover, we can expect that d-F(ij n) will often be moderately close to

aF(il n) so that there is hope that we can approximate both aF(i n), for all

continuous distributions, and cTF(iI n), for at least many well-behaved

distributions, by a single approximation.

8. Working values, and other related quantities.

Observation teaches us that

aF0 [ n) - F-'(3n +1

is a surprisingly good approximation - - as we can see most simply, perhaps, in

terms of the percentile of the distribution of the order statistic to which
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aF(i In) corresponds. The largest deviation of this percentile from 50% arises

for the extremes, i=1 or n, when n is large, where aF(1I n) or aF(nl n) is the

51.34% or 48.66% point of the distribution of the corresponding order statistic.

For i=2 or n- 1 the corresponding extreme values are 50.37% and 49.63%. For

i=3 or n-2, 50.18% and 49.82%. For all other i the percentiles delivered by

this approximation are even closer to 50%.

Accordingly we write

aF(il n) = F-1 ( 3i- 1
3n+ 1

and feel free to use aF(i n) wherever the null median of yj would seem

appropriate - - and in many instances where its null mean would seem

appropriate. We omit the F when it is clear from context what F is intended,

and we call a (i n) a working value for the corresponding order statistic.

We show numerically, in appendix A (Sections 39 to 48), (i) that for the

usual distributions the working values fall between means and medians, and (ii)

for the Gaussian and the logistic at least, that the differences between mean

and median are not large. Thus it is sensible to use the working value as an

approximation for either d(iI n), the mean of the ith order statistic, or for

a(i[ n), its median. (When, as for the end order statistics for certain

stretched-tailed distributions, the means are very extreme or even no longer

finite, a (i n) approximates only the median.)

We have reached working values of broad usefulness by seeking, on the

y-scale, a simple combination

F1- 3i-1 I

3n 1
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of the underlying cumulative distribution F with i and n. One useful thing

that expression in terms of F - 1 does, is to automatically adjust for changes of

location and scale within a given shape of distribution.

If we want to describe order-statistic typical values - - for instance their

mean or their median - - in more detail than is given by the working values (a

rather uncommon occurrence), it is plausible to write

typical valueF(iI n) = F- ( 3n+1 n),

and to plan to compare numF(i n) with 3i- 1. Solving for numF(il n), we get

numF(ij n) = (3n+ 1) F(typical valueF(ij n))

= (3n+ 1)(own tail area)

a form that is not hard to think about, and one that leads to nuMF(il n) that are

often easily compared with 3i- 1. (Compare Sections 41-45.)

9. Medians, etc.

Given Yi < Y2 < ...<- Yn, we naturally consider the median - - the

1+
value of yi for which i = -(n+ 1), using interpolation for even n - - as one

2

natural indicator of centering (location). This has an efficiency of 2/3rds or

more for most relevant distributions. It often seems worthwhile to bring in

more order statistics to enhance efficiency.

When interpolation seems not to be desirable, a reasonable solution is to

use the lomedian, which is the central order statistic for n odd and the lower of

the two central order statistics for n even. Thus i(lomed) = L i(med)J , where

L J indicates "the greatest integer < ".
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An impure (from the point of view of order), but often convenient,

approach is to go in the direction of the midmean - - defined as the mean of

the middle-half of the order statistics. A slightly purer approach would use a

"medmid" in which we first form the mids

1l(yi + Yn+i-i)

2

and then take the median of these mids. (The impurity, from the point of view

of order, is now confined to averaging yi with Yn+1-i, a process that does not

commute exactly with monotone transformation.) For hand calculation, with

hinges defined by i(H) or n+1-i(H*) equal to 1(1 + i(lomed)), the triean
2

I(yi(H) + 2 Yi(med) + Yi(n*))

is essentially as efficient as the midmean.

For careful computer work and n > 8, we may want to use the more

efficient - - and more impure - - biweight.

The main purpose of discussing centering here is to clear the way for

discussing other aspects of batches and distributions.

10. Gaps and leaps, syms.

* gaps *

The second fundamental set of facts about the distribution of order

statistics is equally important. As can be seen from a theoretical, heuristic

argument summarized below:
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. the gaps g 2 = Y2-Y1, g 3 = Y3-Y2' 9n = Yn-Yn- are

approximately uncorrelated when the {yi } are order statistics from a

smooth null distribution F.

(We can see why this is plausible in moderate generality by observing that:

(i) the order-statistics of a sample, regarded as a stochastic process, satisfy

the strong Markov condition,

(ii) the strong Markov condition often leads to an approximate weak

Markov condition,

(iii) an exact weak Markov condition would make the gaps exactly

uncorrelated.)

However, the empirical results, showing low correlations for specific

distributions and finite sample sizes are better evidence. (The sophisticated

argument helps by suggesting that if we tried still other distributions we would

find the same phenomenon.)

Moreover, empirical calculation also shows that:

* each gap is roughly exponentially distributed. (This approximation fails

seriously only for the end gaps g 2 = Y2-Yl and g, = Yn-Yn-1 of samples

from extremely-tail-stretched F. Compare Filliben (1969).)

Most of the simple aspects of the behavior of order statistics and functions

of order statistics involve gaps (or simple modifications of gaps, like those we

are about to introduce). The approximations for means-or-medians of the

distributions of order statistics are useful in conjunction with the nice properties

of gaps. Together, these two poihts are the foundation of a widely applicable
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approach, the essence of the orderly tool kit.

* leaps *

If now we introduce leaps (sometimes called "normalized gaps" or

"standardized gaps") by

hgi+ l Yi+ -Yi
hi44 aF(i+ln) - aF(iln) aF(i+ l1n) - aF(iln)

we will have

m F(i+ln)- !F(iln) aF(i+ln) - aF(iln)mean {hi~ 1i} = ail[n aFin)-= 1
aF(i+n)- aF(in) aF(i+ 11 n) - aF(il n)

If F in aF(iI n) refers to a standard form of some distribution shape,

rather than to the distribution of our y's, and the y's are distributed a times as

widely, but in the same shape, then

mean {h+ 1 }a

In both cases, the h's are approximately exponential.

We will sometimes find it convenient to work with the denominator, Di,

where

Di+ 1 = aF(i+11 n) - aF(iI n)

and to recall the simple relations

leap = gap
denominator

gap = (denominator) (leap)

as well as the fact that denominators often come from working values of an

assumed - - or reference - - distribution.
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The clearest virtues of the hi, 1 are that they (i) are approximately i.i.d.,

(ii) we know their approximate distribution is exponential, (iii) they tell us

about Y.

* syms *

For many purposes it is convenient to use the hi+ 1 themselves; for others

we might like to use transforms that are more "nicely" distributed than being

exponential. To this end, we may want to go over to the syms

v+ 1 = 33(hi+1) 0.3

for which

median(vi+1 ) - 3.3a0.3

pseudosigma(vi+ 1) -a 0.3

so that pseudosigma (vi+ 1 ) z -L(median(vi+t)) where "pseudosigma" refers
3.3

to an indication of standard deviation based on a symmetrical pair of % points.

Similarly "mid" is an indication of center location based on a symmetrical pair

of % points. Exhibit 1 shows how well these approximations hold for

something exactly unit exponential. We see (a) that the pseudosigma of the

syms decreases somewhat as we move into the tails, so the distribution is

somewhat squeeze-tailed, and (b) that the mids drift somewhat to higher values

as we move toward the tails, so the distribution is somewhat positively skewed.

Both deviations are a lot smaller than we might have feared.

exhibit 1 about here
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exhibit I

Behavior of syms when h4~1 is unit* exponential

% points %points pseudosigma**
Tail area of leaps, hi+1  of syms, vi+1  for syms mid***

50% .6932 2.9565 2.956

20% .2231 1.6094 2.1041 3.806 1.011 2.955

10% .1054 2.3026 1.6802 4.2382 0.998 2.959

5% .0513 2.9957 1.3538 4.5863 0.982 2.970

2% .0202 3.9120 1.0236 4.9687 0.960 2.996

1% .01005 4.6052 .8302 5.2178 0.943 3.024

0.5% .00501 5.2983 .6737 5.4420 0.926 3.057

0.2% .00200 6.2146 .5115 5.7087 0.902 3.110

0.1% .00100 6.9078 .4155 5.8927 0.886 3.154

*For a* 1, multiply the two "% points of hi,," columns by a,
and all columns further to the right by a0 3 .

*These are pseudosigmas for vi,,. For comparison, the pseudosigmas of hi+1 itself are:
.824, .857, .895, .948, .968, .988, 1.028, 1.079, 1.118

***These are mids for vi,,. For comparison, the mids of h +1 itself are:
.693, .916, 1.204, 1.524, 1.966, 2.308, 2.652, 3.108, 3.459.

pseudosigma = (difference of p% points for given quantity)/(difference of p% points for unit Gaussian)

mid = (sum of the two p% points)/2
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If we look at mids and pseudosigmas for hi+ 1 itself in comparison with

these quantities for vi, 1 , we see (a) that we would need an exponent below .3

(perhaps about .27) to keep the mids nearly constant and an exponent above .3

(perhaps about .38) to keep the pseudosigmas nearly constant. Thus .3 is a

reasonable compromise. (Since we want our symmetrizing transformation to

work for all a > 0, we have little convenient choice but to use some power

transformation.)

11. Stretches and sumleaps, leapalls.

Beside the gaps, yi+ 1-Yi, it is natural to consider 3-stretches

Yi+2-Yi = (Yi+2-Yi+1) + (Yi+ -Yi) = gi+2 + gi+1

or 4-stretches

Yi+3- Yi= (Yi+3-Yi+2) + (Yi+2-Yi+l) + (Yi+l-Yi)

= gi+3 + gi+2 + gi+ 1

and their further generalizations.

While we could stabilize the scale of gi+2 + gi+ I by dividing by

a(i+21 n) - a(il n), it seems better to stabilize the individual gaps, going to

"i+2 + hi+I - Yi+ 2-Yi+ I Yi+ 1-Yi
a(i+21 n)-a(i+ 11 n) a(i+ 11 n)-a(i n)

and its generalizations, which it would be natural to call sumleaps, since they are

sums of adjacent leaps.

To the extent that the individual leaps are exponentially distributed - -

behave like a certain multiple of X2 on 2df - - and reasonably independent, a

sum of k leaps is distributed rather like the same multiple of X2 on 2k degrees
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of freedom. This approximation is helpful, rather than very exact. In the null

situation, if we compare a sum of k leaps with the corresponding (k + 1)-

stretch, and measure stability by equivalent degrees of freedom, we should

expect to have more stability for the sumleap (where all the summands - - the

leaps - - have essentially the same scale) than for the corresponding stretch

(where the summands - - the gaps - - do not have a common scale).

In particular, the leapall - - the sum of all the leaps - - should be somewhat

more stable than the range.

12. e-leaps and iterated e-leaps.

One way to let our leaps tell us of the underlying scale is to summarize

them directly. A simple - - and even efficient, if we had exact exponentials - -

approach is to add them up, which corresponds to looking at the leapall. If we

were deeply enough dedicated to the null hypothesis, we might do just this. In

many practical non-null instances, however, we anticipate that the most leaps

will approximate null behavior, but some will be rather inflated. If we want to

take account of this, we will want to use the small h's to tell us about a,

without being bothered by large ones. How is this to be done?

To about as good an approximation as the original yi were a sample (of n)

from F(y), the hi, 1 are a sample (of n-l) from an exponential. So it is

natural to reorder them, starting with index 2, so that h 2 < h* - .. h n

and to form first their e-gaps and then their e-leaps, namely, first

hi+2 - hi+1
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and then, if we continue to use working values as a denominator,

ei+2  - (temporary)
ln(1- 3i-1 )-ln(1 3i+2

3n-2 3n-2

Recalling that we adopted a denominator based on working values as,

among other things, an approximation to one based on order-statistic means,

we should be ready to take advantage of the simple form of the mean gaps

from an exponential distribution and plan to use

e+ 1 = (n- (i+ 1))(hi* 1 - h i*) (permanent)

where we include h * as automatically = 0, and calculate either form of e2

accordingly (as well as calculating e3 , e 4 , en which depend wholly on

data-derived hi*).

The ei+I's will again be (i) nearly i.i.d., (ii) nearly exponential, (iii) nearly

uncorrelated. Clearly we could iterate the process - - but it is not clear that it

will pay us to do so.

The more plausible approach would be to take the ej+1 corresponding to

small values of i (which means small values of h*, the same as small values of

h) and regard them as telling us about the a corresponding to the well-behaved

values of h. This they can do easily through the value of the corresponding

sumleap.

13. Seductive, but not recommended.

Given a set of ej+ I's say m in number, someone sufficiently hipped on an

orderly approach might suggest the following scheme:
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a) Order the e's, as e1 < e2 < . . . < em

b) Notice that, for the exponential distribution,

aE(ilm) =- In(1 3i-1 )
3m+1

c) Form

eiji

-ln(1- 3i-1 )
3m+ 1

as an estimate of r.

d) Combine these, using a median, a midmean, or a mean.

The weak point in this procedure is the severe lack of independence of the el*.

The ej+1 were, roughly, independent, the ei+ -el are roughly independent, but

the el* are very far from independent (in particular because their values are

ordered). Consequently this is a much poorer approach than that of the last

section.

A simple, distantly related example may help to clear the ideas! If

z 1, z 2 , .. .. , z.-_1 all estimate 0, with similar precision and small correlations,

1 1
then each of zj, -- (zl+z 2), -(zl+z2 +Z3) ... also estimates 0. The mean of

the latter quantities is 1/(n-1) times their sum

1 1 1 1 1 1-- 1 1--
(+ 1 + +.. 1 )Zn1+ (2"'+. + + -)Z2 + (-L + """ +  -- )Z3 + ""

2 3 n- 1 23 n - 1 3 n- I

which for n =20 reduces to 1/19 of

3.55z1 + 2.55z 2 + 2.05z 3 + 1.71z 4 +.. .+ .23z 16 + .17z 17 + .11z 18 + .05z19

which, with its largest weight ratio of (3.5477/.0526) = more than 67 to 1, is

obviously a poor utilization of z's of similar precision and small correlations.
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14. Going further (another time)?

We have explored centering (location estimation) and widthing (scale

estimation). There clearly remains a question of shape estimation, which

should almost certainly be approached as a matter of direction, character, and

behavior of deviations from some reference shape.

We are not going to need to do this in the present report, so we need at

most suggest directions of inquiry.

Some sort of fitting or smoothing procedure seems the natural approach.

The question is "which sort, applied to what?" the most naive approaches would

use (discrete) orthogonal polynomials or (discrete) Fourier functions, applied

perhaps to the hi, 1 or the vi+ 1. We defer further discussion, except for

Appendix C (Section 53).

EQUIVALENT D.F.

When dealing with problems of spread or scale, we usually calculate

quantities that are essentially positive, whose stability often concerns us. We

want to describe stability in a way unaffected by taking a constant multiple.

Two solutions have often been used (other than to look at the "coefficient of

variation"), one is to look at the variance of the logarithm of our positive

quantity, the other is to use "d.f.". In the present context, the latter seems

more convenient.

15. Equivalent degrees of freedom. - - or of firmness.
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If we have a reasonably well-behaved distribution of positive values, it is

natural to relate it - - with a degree of approximation to be looked into in each

special case - - to a multiple of X2 with some equivalent degrees of freedom,

referred to as "d.f.". In such a situation the "f" can more usually be regarded as

referring to "firmness" since multiples of X2 with more d.f. are quantities whose

standard deviations are smaller fractions of their mean. This will probably

seem most natural when the values whose distribution is being discussed are

values of a homogeneous quadratic function of the observations, like

s 2 = Z (yi-7)2/(n- 1), which, under exact Gaussian hypotheses, is distributed

like a multiple of X2 on n- 1 degrees of freedom. But we need not confine

ourselves to such (quadratic) d.f.!

If, say, s 2 is positive, so too is s, its positive square root. And we can

attach a (linear) equivalent number of d.f. to s, just as we can attach a

(quadratic) equivalent number of degrees of freedom to s 2. For both cases,

our reference is the distributions of X2, so that s, with its smaller relative

variability (smaller coefficient of variation), will have many more (linear)

equivalent d.f. than s 2 has (quadratic) equivalent d.f.

* bases for assessing d.f. *

Before we illustrate this possibility, we turn aside to ask how one might

calculate an equivalent number of d.f., given more or less information about

the distribution shape in question - - which is essentially sure to be specified by

giving an example distribution belonging to the shape. Our means of assigning

d.f. need to be dimensionless, in the technical sense of that word, so that we
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assign the same number of d.f. to different distributions belonging to a single

shape.

If we know % points, it seems natural to form such ratios as

upper 10% point
lower 10% point

upper 5% point
lower 5% point

upper 1% point
lower 1% point

(all of which are dimensionless) and then to interpolate in a table giving the

corresponding ratios for X2's with various d.f.. (When we need to be specific,

these are naturally called 10/10% d.f., 5/5% d.f. and 1/1% d.f. .)

If instead (or additionally) we know some moments, it is natural to start

with dimensionless moment ratios, like

(average) 2/ variance

which is the reciprocal of the square of the coefficient of variation. A look at

the low moments of X2 shows that, for this prototypic case,

d.f. = 2 (ave)2  (for multiples of chi-square)
var

so that it is natural to put, rather generally, in the quadratic case

moment d.f. = 2 (ave) 2 ( 2
var (c.v.)

* a first example *

To see how this all works out in a simple case where we know both %

points and moments for both a quantity and its square root, it is easy to take
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chi-square (with various d.f.) as the quantity. Exhibit 2 shows the results.

exhibit 2 about here

Clearly the paired-% point and moment assessments agree (for the square root)

better than we might have anticipated. In this case - - namely "I x2 - - it seems

to make very good sense to assign (linear) equivalent d.f. and plan to make

heavy use of them.

In particular we note how closely

(linear scale equiv.d.f.) = -1 + 4 (quadratic scale equiv.d.f.)

holds for this case. Indeed, adding (0.7)/ (quadratic scale equiv.d.f.) to the

right-hand side gives almost perfect agreement. (Most deviations are

apparently due to rounding in the tables of moments or percent points.) We

may be able to do well - - hopefully - - by borrowing this relation for other

situation s.

16. Ranges and leapalls.

The Gaussian range provides another convenient example. Exhibit 3 gives

some equivalent degrees of freedom for Gaussian ranges, calculated as

indicated. For n < 45, the short-tailedness of the Gaussian parent makes the

number of degrees of freedom greater than 2(n- 1) (recall that the range is the

only n-stretch). For n > 50, the converse is true.

exhibit 3 about here

For a logistic F, with its nearly exponential tails, our leaps will be more

nearly exponentially distributed, and more nearly independent. (For a single
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exhibit 2

Equivalent degrees of freedom for X2 (quadratic scale)

and '/ (linear scale) using either % points and moments

to fix the equivalent degrees of freedom

d.f. d.f. (quadratic scale)for X2 d.f. (linear scale) for 1 4Q-1

tabular 10/10% 5/5% 1/1% moments 10/10% 5/5% 1/1% moments + .7/Q*

3 3 3 3 3 10.07 9.83 9.31 11.23 11.23

5 5 5 5 5 17.95 17.67 16.99 19.14 19.14

9 9 9 9 9 33.87 33.51 32.79 35.08 35.08

19 19 19 19 19 73.86 73.81 72.66 75.04 75.04

29 29 29 29 29 113.83 113.50 112.63 115.03 115.02

40 40 40 40 40 157.79 157.50 156.62 159.02 159.02

50 50 50 50 50 197.80 197.45 196.57 199.00 199.01

60 60 60 60 60 237.80 237.45 236.57 238.99 239.01

100 100 100 100 100 397.79 379.44 356.55 399.03 399.01

.7
*Q is the "quadratic scale" equivalent d.f. and the form 4Q- 1 + 7 was found empirically.

Q
L is linear scale

(A corresponding approximation would be Q - L+ 1 .7
4 L+ 1
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exhibit 3

Equivalent degrees of freedom (as a multiple of X 2, linear scale)

for the Gaussian range. [Note that X2 is here being used to

approximate the distribution of a linearfunction of order statistics.]

matching ratios* first two ratio of

n 10% 5% 1% moments** 2(n- 1) last two (***)

5 13.6 13.3 12.7 14.5 8 .55 (95.6)

10 29.2 29.0 28.5 29.8 18 .60 (84.9)

15 42.8 41.8 41.5 42.2 28 .66 (76.6)

20 53.0 52.7 52.5 52.54 38 .723 (70.0)

30 70.4 70.4 70.1 70.51 58 .823 (61.3)

40 84.8 85.0 85.0 83.39 78 .935 (58.8)

50 97.1 97.1 97.3 95.21 98 1.030 (46.5)

60 107.6 107.7 108.0 105.49 118 1.119 (44.8)

70 117.2 117.3 117.6 114.48 138 1.205 (41.6)

80 125.7 125.8 125.8 122.72 158 1.287 (39.0)

90 133.6 133.8 133.9 130.45 178 1.365 (36.7)

100 141.5 140.7 141.4 137.43 198 1.441 (34.8)

200 188.3 398 2.11 (23.7)

500 268.7 998 3.71 (13.5)

1000 340.3 1996 3.87 (8.5)

*Degrees of freedom to match ratio (upper p % point)/(lower p % point).

**Value of twice (average) 2/variance.

***For X2 the linear df is ft = 4 (n- 1) - 1+(.7/(n- 1)). This column gives 100
(moment df)/f,, a measure of the efficiency of the range.
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exponential F, each gap yi+ 1-y is exactly exponential, both unconditionally

and conditionally on yi. Consequently the gaps are exactly independent in this

case.) In the logistic situation then, the approximation of 2(n- 1) degrees of

freedom for the logistic leapall seems likely to be quite good for all n.

Moreover, the degrees of freedom for the logistic range should be appreciably

less than for the logistic leapall.

17. Relation to variance of the logarithm.

The variance of log(s 2), where s 2 is distributed like a multiple of X2, is

approximately (Bartlett and Kendall, 1946)

2 (check this!)
(d.f.Q)- 1

where d.f.Q is the (quadratic) d.f. for the X 2 concerned. So another way to set

d.f. would be to start from this approximation which implies

df- 2 + 1var(log(quantity))

Clearly

1

var(log(4 quantity)) = var(- log(quantity))
2

1
- var(log(quantity))
4
1 2
4 (d.f.Q)- 1

so that the corresponding d.f., say d.f.L for V quantity satisfies
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d-fL= 2 + 1= 2 +1,
var(log(4' quantity)) 1 2

4 (d.f.Q)- I

= 4(d.f.Q -1) + 1

=4d.f.Q - 3,

which again illustrates linear d.f. as about 4 times quadratic d.f..

SOME HELPFUL SPECIAL CASES

18. ILi.d. leaps.

If the leaps are i.i.d. with a distribution for which 2ave 2 /var =28, then the

leapall, as the sum of n - 1 independent terms, will have a value of 2 ave 2/ var

that is (n-i1) times as large.

Hence we have

moment d.f.(leapall) = 2 (ave (leapall) )2 
- ( (ave(basicleap shape) )2 

-2(n - 1) 8
var(leapall) n-)var(basicleap shape)

If [Di I are the denominators that convert gaps into leaps, then

range = F,(gaps) = FDi(leaps)

so that (using i.i.d. for leaps)

ave(range) = Dj ave(leap)

var(range) Y Di 2 var(leap)

moment df(range) = ~ 280,

where the last relation follows from [ave(leap) ]2 / [var(leap)] = 0.
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If our i.i.d. leaps come from gaps that have averages proportional to the

average gaps of a unit Gaussian sample, these gap averages can serve as the Di,

making it easy to calculate XD i and _Di2. Exhibit 4 shows results for selected

values of n. We see that, particularly for somewhat larger n, the stability of

such a range is appreciably less than for the corresponding leapall.

exhibit 4 about here

There is some interest in understanding where this loss in efficiency for

ranges is concentrated. What if we fix up only a few near-end gaps? For

n = 10, for instance, the range, in terms of gaps, is

((Y2-Y) + (Y3-Y2) + (Y-Y3) + (Y-Y4) + ...

while the leapall, also in terms of gaps is

Y2-Y1 Y3-Y2 Y4-Y3 Ys-Y4 Y1o-Y9+ + + +..
.538 . . . . . . .538

A compromise would be to use

Y2-Y1 Y10-Y9

+ (Y3-Y 2) + (Y4-Y3) + (Ys-Y4) + + • +

where ?? is chosen to produce a multiple of

Y2-Y1 Y9-Y2 Y10-Y9+ +
.538 1.001/3.5 .538

where 1.001 = -aGau(2 10) = +aGa,,(91 10).

(This gives ?? = (.538)(3.5)/(1.001) = 1.874.) We call the result the one-step

compromise.

A more refined compromise would be to choose ??? and ???? to do as

well with
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exhibit 4

Values of YD and YD 2, and of moment d.f. for a

range based on Li.d. leaps (shape fixes 0)

when the Di are proportional to average Gaussian gaps

Moment d.f. Moment d.f.
n Dj YZD, 2  for range for leapall ratio*

10 3.078 1.16227 16.3030 180 90.5%

20 3.735 .928121 30.0450 380 79.10%

30 4.086 .8060 41.300 580 71.2%

45 4.42 .7119 54.710 880 62.2%

50 4.50 .6936 58.390 980 59.60%

*(moment d.f. for range)/(Moment d.f. for leapall)
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(Y2-Y1) + (Y3-Y2) + (Y4-Y) +

as we can. We shall call this the 2-step compromise (And so on.)

Exhibit 5 shows the consequences of (a) dropping end gaps entirely and

(b) using compromise weights.

exhibit 5 about here

We see from the exhibit that, roughly, fixing up one pair of gaps takes us

half way up to 100%, fixing up a second one takes us about another half, and

so on. Dropping a well-chosen number of gaps gains one of these powers of

two for n=50 - - but gains much less for n <_ 30.

19. Samples from a Gaussian.

We have already examined (see exhibit 3) the linear degrees of freedom

for the Gaussian range. We can now try borrowing the ratio

df(leapall)/df(range) from the i.i.d. situation of the last section and applying in

to the Gaussian case, where (a) gaps or leaps are somewhat shorter-tailed than

an exponential and (b) there are some non-zero correlations. The result is an

approximation - - of unknown quality - - to the moment d.f. for a Gaussian

leapall when the underlying distribution is Gaussian.

Exhibit 6 shows the results of such a calculation. We clearly expect the

Gaussian leapall to be more stable than the Gaussian range, more and more

noticeably as n increases.

exhibit 6 about here
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exhibit 5

Fixing-up the ends only; the consequences, under Gaussian hypotheses,

in (linear-scale) moment d.f. terms** of (a) omitting end gaps, and

(b) rescaling them appropriately

n= 10 n=20 n=30 n=50

Range 16.30* 30.04 41.11 58.82

Drop I + I gaps 13.74 31.32* 46.70 72.97

Drop 2 + 2 gaps 9.97 28.98 46.37 77.21

Drop 3 + 3 gaps 6.00 25.60 44.10 77.76

Drop 4 + 4 gaps 2.00 21.86 40.99 76.52

Range (again) 16.30(90.6%) 30.04(79%) 41.31(71.2%) 58.82(60.0%)

1-step compr. 17.74(98.58%) 35.20(92.6%) 50.63(86.6% 76.78(78.3%)

2-step compr. 17.97(99.8%) 36.96(97.3%) 54.35(94.0%) 85.06(86.8%)

3-step compr. 17.99(99.9%) 37.60(98.9%) 56.0(96.5%) 89.66(51.5%)

4-step compr. 18.00(100%) 37.86(99.6%) 56.93(98.3%) 92.44(94.3%)

(leapall) (18(100%)) (38(100%)) (58(100%)) (98(100%))

*Marks maximum in column.

**All values omit a factor of 0.
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Exhibit 6

Approximate (linear) moment d.f. for Gaussian leapall,

calculated as (linear) moment d.f. for the Gaussian range

multiplied by the ratio (leapall d.f.)/(range d.f.) for the i.i.d. case

d.f. for ratio of approximate linear d.f.
n range d.f.'s d.f. for leapall* for s ratio

5 14.5 .979 14.83 19.14 (.77)

10 29.8 .905 32.92 35.08 (.93)

15 42.1 .843 49.94 59.04 (.85)

20 52.5 .7911 66.36 (79.03) (.84)

30 69.57 .712 97.71 (119.02) (.82)

45 89.49 .622 143.87 (179.03) (.80)

*The corresponding quadratic-scale d.f., using the approximation reached in exhibit 2, are:
3.91, 8.46, 12.72, 16.84, 24.66, 36.23 whose ratios to 4, 9, 14, 19, 29, 44 are .983, .939, .909, .886, .8545, .823.
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20. Samples from an exponential.

There are two striking results for samples from an exactly exponential

distribution:

* the sum of the observations is a sufficient statistic for the parameter,

and since the observations are ii.d. with 0= 1, the moment d.f. for this

sum is 2(n- 1),

* the e-leaps are also i.i.d. exponential, so their sum, the e-leapall, is a!so

sufficient, again with moment d.f. = 2(n-1).

It seems anomalous to have two sufficient statistics, both for the same

parameter, (although it is comforting that they do not have different equivalent

degrees of freedom). It is easy to resolve the seeming paradox.

If ar (ij n) is the mean of the th smallest order statistics from the
exponential, with aE(OI n) 0 and h- 0, then

1
aE (i+ 11 n) - aE(il n) = n-i

so that the e-leapall is

n(h*-h0) + (n-1)(h*-h*) + + (hn*-hn1)

which collapses to

h* + h* + .. h*

which is the original leapall. Thus our two exceptional results say the same

thing about two quantities whose values are always identically the same. (What

could be simpler?)

There is a simple generalization of this result, namely:
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* a low-index sum of e-leaps is a Winsorized sum of (ordinary) leaps.

We illustrate for the 15 low-index e-leaps for n=20, for which

el = 19(h*-h*)

e 2 = 18(h2-h*)

e15 = 5(h h5 -h 4 )

so that (since h =h = 0)

1 + e2 +...+ e 15 = hj* + h +...+ 5h 5

in the right-hand side of which h*6 to h 1 9 have each been Winsorized to give

h 15

For the exponential, ordinary leapall and e-leapall coincide. As we move

away from the exponential, which should we follow?

21. Alternatives, alternatives!

So far we have discussed the orderly tool kit as if only one situation

needed to be considered. (We have occasionally used the words "null situation"

but have not contrasted it with an alternative.) Yet essentially all statistical or

data analytic procedures are only useful because "there might be alternatives!".

(The natural candidates for exceptions are goodness-of-fit procedures, which

seem to concentrate on the null situation. Yet if no alternative was possible, a

bad fit is at most something to include in Guinness's book of records! The

usefulness of a sufficiently bad fit is that it urges us to take alternatives quite

seriously!)

Again much of our analysis is directed toward quantitative alternatives - -
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quantitative diversity - - in situations where a few-parameter model may be

quite diverse enough. That is not the kind of situation we plan to attack in this

overall account - - where the basic alternatives are:

" it appears reasonable to treat our batch of numbers as a single entity,

" it appears better to treat it as conisting of at least two subbatches.

It is in this situation that careful formulations - - for both null and alternative

situations - - can make the orderly tool kit applicable to as many alternatives

and partial problems as we can arrange.

22. Alternatives and the "choice among exponentials".

We can go quite a way with a rather qualitative discussion of alternatives,

especially in connection with the choice between leaps, e-leaps, or iterated

e-leaps as the basis for a scale estimate. If we knew that a very narrowly

described alternative, localized in terms of the original gaps - - say that our

batch of 20 was the union of two samples of 10 (from populations of similar

variance and distinctly different location), so that the most affected gap would

be Yii-Yio - - then we would know which gaps, in terms of their original

identity (e.g. g 11) were likely to be non-null, so that we could begin by setting

these gaps aside - - and using the remaining leaps as a basis for assessing

spread.

If, on the other hand, our knowledge was less specific, saying only that at

most a few gaps - - here, there, or elsewhere - - are likely to be seriously

affected, we could not proceed in such a way even if we wanted to. If we are to
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set aside anything in this latter case, it should be something like the large

(long) leaps.

To identify the long leaps, we need to sort the leaps. After we have set

aside some predetermined number, we have a collection of ordered values

(beginning with one additional zero), and we should act in accordance with the

basic principle:

"Once we sort a set of values, our concern, so far as spread (width, scale,

etc.) is concerned, shifts from the values themselves to their gaps, leaps,

etc."

This means that we will want to look at the e-leaps (leaps of the leaps) and

to set aside those that involve the largest leaps - - those associated with leaps

that come at the end of the sequence of leaps as originally ordered, not

necessarily those at the end of the sequence of ordered e-leaps.

So far, we have been unable to imagine a pair of situations such that it is

natural to leave out the largest e-leaps. In such a situation we would be driven

- - by a similar logic to that just described - - to working with the iterated e-

leaps (leaps of leaps of leaps). Knowing none such, we presently see no excuse

for working with iterated e-leaps.

23. Alternatives illuminating separation procedures.

We would find assessing an underlying (original?) spread simplest when

we need only to set aside a small % (for smaller n, a few) of the longest leaps -

- a few e-leaps with the largest sorted-leap indices. A sufficiently naive view of

the "separations" problem might suggest it would be such a nice case. What
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appears to be true is that this is not what happens - - although guidance based

on such an oversimplified model may serve us quite well.

To get an idea of what actually might go on, let us use for guidance the

leading case of two Gaussian samples, of sizes k and 20-k, respectively, drawn

from populations of equal variance fairly substantially separated. We can find

working values for the samples separately, one set being displaced from the

other by a substantial amount. For (k-1) + (19-k) of the gaps, we can

approximate median (or average) lengths in terms of working values. For the

remaining gap, the gap between the highest of the low sample and the lowest of

the high sample, we begin by only saying "might be large" and mark it down as

"L".

exhibit 7 about here

The upper part of exhibit 7 shows leap with valley averages - - as multiples

of single sample (of 20) averages for k = 10, 7, 4, 2 and 1. We see that the

effects of splitting into two samples affects all gaps to a degree and that, while

these effects are concentrated at and near the gap between the subsamples, they

taper off more slowly than we would like (though perhaps faster than we might

fear). These values are shown graphically in exhibit 8, using 3.3(ratio)0 3-3.3

as the vertical scale, whose values are also shown in the upper part of exhibit 7.

exhibit 8 about here
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The lower part of exhibit 7 shows two approximations to the behavior of

the leap at the valley. First, in parentheses, is shown the first approximation,

correct to the extent that the two samples (of k and 20-k respectively) do not

overlap at all. Thus, for example, for a shift of 5 (5c, that is) the highest of

one sample of 10 will average + 1.539 and the lowest of the other will average

5 - 1.539 for an average difference of 5 - 1.539 - 1.539 = 1.922 which has to

be divided by the denominator of .1240, to obtain 15.50 as shown in the

parentheses.

The second approximation allows for as many as one crossover, and was

calculated using the approximation

ave{Iz-al when z follows Gau(O, a 2)) =a I + 1.54a(tail area)1 .2

where "tail area" = Gau(- (a /a). The approximation is good to ± 0.003 for

la I/a - .8. We are using this Gaussian approximation in a quite non-Gaussian

case, but we think it good enough for our purposes.

For shift 5 and 10 + 10, this involves Y = (.34344+.34344) 11 2 = .82987

which for a = 1.922 gives Ia I la = 2.3160, tail area = .01028, 1.54 (.82987)

(tail area) 1 2 = .0053. Since the average of the absolute difference is .0053

greater than the average, Ia I, of the signed difference, .0053 must be the

contribution of crossover which, when divided by .12399, is to be added to the

ratio at the valley, and, when divided by .12496, is to be subtracted from the

ratios for each of the two adjacent gaps.

Parallel calculations lead to the results in the lower panel of exhibit 7.

While the results for the NW corner of the panel are likely not to be good
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approximations (because of more than one overlap, if for no other reason),

those in the rest of the panel seem likely to meet our needs. Near the foot of

the panel the approximations coincide, and it seems likely that the first

approximation is quite good there.

Instead of insisting on the numbers in the two samples, we can ask for a

simple sample from a mixture of two Gaussian distributions. The results are

compared in exhibit 9

exhibit 9 about here

The divisors for 10 + 10 are surprisingly similar to those for the mixtures,

especially for mixtures with spacings a little larger than 3.5. It does not seem

likely to matter which approach we keep in mind, when we are dealing with

large shifts.

24. Minimum misclassification for 50-50 Gaussian mixtures.

If we use the 50-50 mixture alternative (separated by 28) knowing that a

value falls at y leaves us with a chance

e- (y - _)2/2 eY 8 1

e-(Y-8)/2 + e- ( +8)2 /2 ey' + e- Y ' + e - 2y 8

that that observation came from the second distribution. Our classification, if

we decide to split in two, can at most depend on the y values. Thus,

conditional on a value at y, the minimum average misclassification of that one

observation must be at least the lesser of this chance and its complement

q(y) = min =
+ec2yh' l e_2y l+29,Yl1
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exhibit 9

The working values and their first differences for a 50-50 mixture of unit
Gaussians separated by tc for t = 2.5, 3, 3.5 and large.

Also compared with the fixed 10 + 10 case (two widely separated samples of 10 each).

working values for 50 - 50 denominators = differences of
mixtures, separated by adjacent working values

index 2.5 3 3.5 (co) 2.5 3 3.5 00 (104+ 10)

-1.5098 -1.5096 -1.5096 -1.5094
1.5 .5304 .5311 .5311 .5311 .511

- .9794 - .9786 - .9784 - .9783
2.5 .3405 .3419 .3419 .3419 .340

- .6389 - .6367 - .6363 - .6364
3.5 .2766 .2787 .2796 .2995 .277

- .3623 - .3578 -.3569 - .3569
4.5 .2481 .2523 .2533 .2539 .252

-. 1142 -. 1053 -. 1033 -. 1030
5.5 .2365 .2443 .2468 .2474 .242

.1223 .1390 +.1433 .1444
6.5 .2352 .2496 .2550 .5552 .252

.3575 .3886 + .3982 .4008
7.5 .2416 .2688 .2815 .2866 .277

.5991 .6574 +.6798 .6874
8.5 .2639 .3028 .3417 .3598 .340

.8517 .9610 1.0190 1.0472
9.5 .2688 .3346 .4498 .6055 .511

1.1156 1.3115 1.4723 1.6527
(10.5) - .3924 .5574 L L

1.3844 (1.6885) (2.0277) L
(11.5) _ (.3346) (.4998) (.6055) (.511)

- (.3026) (.3417) (.3598) (.340)

etc. etc. etc.

NOTE: The similarity (even identify to four decimals) of the values in the first few lines
of the working value columns reflects the trivially small chance that the lowest of the observed
values comes from the component distribution with the higher mean.
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The average rate of misclassfication must thus be at least the average of this

over the distribution of y, which is equal to the average over a unit Gaussian of

q(y- ) + --q(y + 8), as separation of terms and two simple substitutions

show. Since -q(y- 8) and lq(y+8) will have the same average, by
2 2

symmetry, our lower bound reduces to the average of

1

1 + e2jy+
ij8

over the unit Gaussian, which is easily evaluated numerically with the results

shown in exhibit 10. (These bounds are, of course, far below the actual

misclassification rates.)

exhibit 10

Lower bound for average misclassification rates when observations
are drawn from an equal mixture of two Gaussians, separated by 28

28 lower bound

(0) (.5000)
(1) (.0915)
(2) (.0290)
(2.5) .0118
3 .0038
3.5 .0008
4 .0002

MULTIPLE COMPARISONS - - ANALOGY AND DISTINCTION

25. The "stages of knowledge".

Multiple comparisons in the narrow sense, involves measurements of

several quantities, under circumstances where the relevant variability can be
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separately estimated, and a desire to "learn as much as one can" about the

differences among the values of the quantities. (In valley-seeking, of course,

we do not have a separate estimate of variability.) Just what Vw are straining to

learn even a little better depends on how far down the road of knowledge we

have previously gone, especially in so far as the planning of our data collection

goes. Are we, for example, just beginning to learn? Have we learned a lot,

but have a long way to go? Have we almost settled the sign of all the

differences, but know less than we would like about their size? Have we

measured each difference to within a percent of itself?

In areas where measurement is only moderately painful, we can expect to

begin our early studies near the start of this list, and progress till our later

studies come toward its end. In areas where measurement is very painful - -

effort-wise, financially, or ethically, (as in most clinical trials) - - we are likely

to begin and remain close to the start of this list. (In areas where measurement

is easy we may even, by contras*, begin near the end of this list.)

At diiferent stages of knowledge gathering we have different strivings, so it

is not surprising that it is appropriate to use different kinds of multiple

comparison procedures. Two distinctions are of overriding importance: Is it

appropriate to seek quantitative knowledge or qualitative knowledge? Will we

get focused knowledge or unfocused knowledge?

26. Qualitative or quantitative knowledge?

In general we expect to emphasize qualitative knowledge at the early stages

- - as all we can reasonably hope for - - only emphasizing quantitative
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knowledge after having qualitative knowledge more or less in hand. The most

natural exception to this arises with what we might call 'TBA knowledge" - -

where TBA stands for "to be adjusted". A simple agricultural prototype would

involve the measurement of yield improvement from the application of various

types and amounts of fertilizers. The biological facts may be expected to

continue in the future with little change, but the ratio: (value of crop)/(cost of

a specific fertilizer) are likely to change. Our "qualitative knowledge" of what is

best to do can change accordingly. We may do quite well if we can pick out

what to do, but the qualitative knowledge we need is qualitative adjusted

knowledge, involving a price-ratio not known today. Such future knowledge

has to be based on the best quantitative knowledge that we have today. TBA

knowledge aside, though, we expect to begin with qualitative knowledge.

27. Focused or unfocused knowledge?

Unfocused knowledge - - in the multiple comparison framework - - is at its

very best barely useful. To know that some of the things we are looking at are

different, to an unknown amount, and in unknown directions, is of very little

use. (We know, overall, that almost everything is different to some degree - -

in some decimal place. This overall knowledge has a wide base of inference

and holds at a very extreme significance level. Thus it is much better

knowledge than what we are learning from the study before us. So long as the

result of the current study is unfocused, it does very little, if anything to help

uS.)
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In multiple comparison situations, by contrast, focused knowledge,

knowledge that refers to specific comparisons, teaches us something new.

(Usually the more it is focused, the more it is useful.)

28. Our problem.

In the problem to which this report is ultimately directed, matters are

somewhat different. At an early stage, we are asking "would it be wise to treat

this batch of numbers as two subbatches?". If this question deserves careful

attention, we know so little that, even if we reach a positive conclusion, it is

hopeless to expect certainty - - even 90% or 60% certainty - - that we have

selected exactly the two subbatches that infinite wisdom would find best. We

expect only to do as well as we can. We will miss, by at least a little, much of

the time. We are seeking guidance - - since we understand that knowledge - -

even 95% knowledge - - is not available. We have, in such circumstances, to

be prepared to accept imperfect guidance, if it is the only kind of guidance that

is available.

29. The stages of qualitative multiple comparison.

After we throw out unfocused forms of "multiple comparison" - - including

those based on the F-test - - there remains a sequence of stages from early

qualitative knowledge to late qualitative knowledge, with differing multiple-

comparisons procedures at different stages. There are also stages of

quantitative knowledge, from early to late (in specific instances, some of these

may overlap some of the qualitative stages) but these quantitative stages do not
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seem to be associated with more than a single set of multiple-comparisons

procedures. It will help to clarify our ideas about the separations problem to

discuss the qualitative stages briefly.

At the first stage, we are seeking any focused positive result that we can

reach. The natural response is to use the studentized range and, if this

provides significance, call out the apparently most positive value as more

positive than the apparently least positive one. (We return below to the logic

involved.)

At the second stage, we ask first for demonstrable separations into two

subsets, followed - - to the extent available at no extra cost - - by separations of

all but one, all but two ..... Here the procedures of Welsch(1977) can serve

us well.

The third qualitative stage is one where we strive to be (simultaneously)

confident about the sign of as many differences as possible. Some of the more

modern methods, such as those of Ramsey (1981) may well be appropriate

here.

Finally, we come to situations where we are trying to be qualitatively

confident about the sign of every difference. (The background belief is, of

course, that every pair of quantities do differ, in some decimal place.) At this

stage, the method recently proposed by Braun and Tukey (1983c) has

demonstrable advantages over the more classical methods.
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30. Quantitative multiple comparisons.

If we need quantitative confidence statements, either intrinsically or

because we need TBA qualitative results, the natural simultaneous tool is the

studentized range. The essence of the matter, if

YB = B + B

YE = P'E + EE

where the t's are long-run values and the e's are errors, is summarized in

J(YB-YE) - (4B- 9E)i = I -BEEI

and

max I (YB-yE) - (9tB--4E)I = range(e's}
B,E

So that, if we combine an independent estimate of variability and the

studentized range distribution to set a bound, say a 95% bound, on the range of

the {e's}, we can use the same bound simultaneously for all differences

(YB-YE) - (PB-P-E)

This result can of course be written, if V is the bound:

(YB -YE) - V :5 9B - 9-E :- (YB -YE) + V (all B and E, 95% simultaneous)

Since we are really working with the 's, nothing about the whole process

depends on the values of the Pt's, so in particular, we always spend all our error

rate, conditionally, in every individual situation.

(An extension, using logical implication, to bounds for all contrasts is

easy.)

* relation to the qualitative case *
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The first stage of qualitative comparison uses the studentized range. If the

studentized range is significant at the chosen significance level, say because the

lower limitation is positive, we will have,

0 < (Ymax- Ymin) -V < Pmax - 9min (max, min for y's)

where the comment in ( ) means that "max" is the subscript i that maximizes

yi and "min" is the subscript j that minimizes yj. It follows that lgmax = 'i

exceeds p-ain "= itj. Thus the quantitative procedure provides logical support

for the weakest stage of qualitative inference.

31. The leapall in qualitative multiple comparisons.

We have already seen (Section 16) that, specifically in the Gaussian case,

the leapall provides more degrees of freedom than the range - - that is, that its

standard deviation is a smaller fraction of its mean. This result is encouraging,

but does not clarify the question of comparative power against any specific

family of alternatives. As we leave the null distribution, all gaps will change

their average values somewhat for most - - if not all - - such families and the

relative effect on range and leapall of these changes is not easy to assess

theoretically.

There is also a logical question. Does a leapall beyond the upper 5% point

of the null distribution mean that we are 95% sure that g.tmax > Ptmin where

max and min refer to the observed y 's? It would surprise us if this were not

true, but there appears to be no highly obvious proof that it is true.

It seems to be a problem appropriate for either crude simulation or Monte

Carlo to adequately compare the studentized leapall with the studentized range.
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* and in our problem *

Thus the analogy with multiple comparisons suggests that, in our problem,

we compare the leapall with a between-values assessment of spread that is

relatively little affected by the presence of an actual valley - - or a few valleys.

HEURISTIC APPROACH TO VALLEY-SEEKING

32. A scale estimate.

The following discussion assumes n=20, but analogies for other n are

simple and direct.

We naturally seek a scale estimate that is not too much affected by

separation. In terms of leaps, we can expect to want to shun the longest ones.

THis means shunning high-index e-gaps, or shunning high-index e-leaps. So

our problem is combining a list of low-index e-leaps.

In the null situation, these will be approximately i.i.d. exponential, and

thus most naturally combined as a sum or a mean.

We have already seen that a low-index sum of e-leaps is a (rank)

Winsorized sum of ordinary leaps. For the null situation, such a Winsorization

seems a natural way to shun the high-rank ordinary leaps. In the presence of

real separation, however, when the largest leaps are substantially inflated, the

heuristic excuse for Winsorizing has essentially disappeared. Accordingly, we

might want to consider equal weights on the low-rank ordinary leaps as a

second possibility.
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This would correspond to, for instance

h* + h* +...+ h*5  (n=20)

which converts into

15 14 1" ej + -14e2+...+ 1 -e 15  (n=20)

We put this on the back burner, and press on with such combinations as

e 1 + e2 +...+ e15  (n=20)

which can also be written

h* + h +...+ h*4 + 5h' 5 . (n=20)

33. A response and its analogs.

If we believe the multiple-comparisons guidance developed above, we

naturally take the leapall

e1 + e2 +...+ e 15 + e 16 +...+ e 19  (n=20)

as our first response.

Let us, as a matter of convenience write

A = e 1 + e2 +...+ e 15

for the low-index sum of e-leaps and

B = e 1 6 + e 17 + e 18 + e1 9

for the high-index sum, so that leapall = A + B

We now have:

scale estimate basis = A

response basis = A + B
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The naive ratio reduces as follows:

A + B + B 4 (B/4)
A A 15 (A/15)

so that we may as well use the ratio

b
a

of the high-index mean (of e-leaps)

b =B
4

to the low-index mean (of e-leaps)

A
a = 1

15

in place of the ratio of the all-index sum (the leapall) to a low-index sum or

mean.

A virtue of writing things this way is that a and b are approximately null

distributed like ; 2X2/v with v = 15x 2 = 30 and 4x 2 = 8 respectively,

approximately independently of one another. Thus Snedecor's F offers us

approximate % points for b/a.

* alternate scale *

So much for the simplest scale estimate, for the instant. What if we are to

consider the alternate situation? We would only do this because we take the

non-null situation quite seriously. And when we go back to the multiple-

comparisons guidance, we see that the thinking was basically null-situation

thinking. Thus if A * is the tapered sum for scale

A*=15 141
A= -Lel + -L4-e2 ++ e5
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and B * is its complement

4 4 4
B*= --- e 1+ -j--e2+...+ yei 5 + e1 6 + e 1 7 + e 18 + e19

- h 6 + h*7 + h*8 + h 9

the argument for using exactly A + B = A * + B* seems at best weak.

The plausibility of mixing - - of using, for example, A * and B, which will,

by contrast, be approximately independent - - seems much more reasonable.

Accordingly, once we have studied the use of A and B - - and what that use

suggests - - we may want to look at the use of A * and B.

• other approximately independent choices *

Let now

ag=e 1 + e2 + ... + e
g

bh = e20 h + e21 h +...+ ei 9

h

be more general simple low-index and high-index means of e-leaps. So long as

g < 20 - h, so there is no overlap (of leaps), these will be approximately

independent, and we can turn to an F-table for approximate % points.

Once we have looked, approximately, at g + h = 19, we may as well

explore g + h < 19.

• first, the null situation *

If we focus first on n=20, g= 15, h=4 we begin with F 8,30 , whose 5%

point is 2.27. Asking whether

- > 2.27

a 15
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is equivalent to asking whether

c = b 4 - 2.27a 15 
-> 0

In the null situation the averages of b4 and a1 5 are both approximately 1.00 and

their variances are approximately 1/4 and 1/15 respectively. Hence the critical

ratio is

ave(c) 1-2.27 -1.27=- = - 1.648
(var(c)) 1' 2  (.25+(2.27)2.06667)1/2 .7704

quite consistent with 0 having 5% probability.

* next, power for shift = 5 *

Suppose now that the situation is two subsamples of 10, one shifted

(relative to the other) by 5 (i.e. 5a). The leapall will involve gaps increased on

average, in total, by somewhat less than 5 - - because the end observations will

be extremes of 10, rather than extremes of 20. If we choose

d'(20 20) - ff(10 10) = 1.867- 1.539 = .328

as the adjustment for each end, the total range will be increased by something

like

5 - 2(.328) = 3.344

Most of the increase will take place for central gaps, where, for n = 20:

leap z gap = 8"gap
.125

so that the leapall will be increased on, average, by something like

3.344 x 8 = 26.75

Since
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e-leapall = leapall = A + B

we now need to judge, at least roughly, how this increase, on average, divides

between A and B. (This will not prove a simple task.)

We then ought to look at some other separations, like 7+ 13, 4+ 16, 2+ 18,

1+ 19.

It is much easier to understand how the leaps indexed by gap number

respond to such a shift than to understand how the ordered leaps respond.

And it is also somewhat easier to understand how the individual ordered leaps

respond than to understand how their gaps and hence the e-leaps behave. The

easiest of these three questions has been answered, in terms of averages, in

exhibit 7 (section 23) for a shift of 5 between 10 and 10 we will have average

leaps of 1.17, 1.24, . . . 2.60, 4.29, 15.55, 4.29, 2.60, . . ., 1.17. If any one

observed leap is going to be really large, it will be the central (as indexed)

leap-with average 15.55.

What about the second largest leap. Suppose its size is _ 9. If it comes

from a specified leap with average 4.25, this is an event of probability

exp(-9/4.25) = 12.0%. If it comes from a specified one of the leaps with

average 2.60, the probability is exp(-9/260) = 3.1%. For average 2.10 (the

next in size) exp(-9/2.10) = 1.4%. For average 1.782, 0.6%. If we take these

as independent, the total probability of __ 9 from one of the "other 18" is

somewhat larger than

1 - (.880)2(.969)2(.986)2(.994)2 = .302
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of this 30% about 24% is contributed by the two leaps (with average 4.25)

adjacent to our valley.

34. Which leap is largest - - and how often.

Let us next turn to the question: Given the situation - - and the

averages - - just considered, how large would the largest of the "other 18" be if

all leaps were exponentially and independently distributed? The chance that

this largest leap exceeds L is 1 MINUS the product of the chances that each

exceeds L, and equals

1 - (1-e-L/4 . 2 4 6 ) 2 (1-e-L/ 2. 95) 2 . .. (-e-L/168) 2

which takes the values shown in exhibit 11.

exhibit 11 about here

If we plot the last column against the second one, using L to parametrize a

curve, we get exhibit 11A where the areas above and below the curve are the

probabilities that the largest leap will come (a) from one of the other 18 or (b)

from the one large leap. We see that the "other 18" will provide the largest leap

more than a third of the time.

exhibit 11A about here

Turning back to exhibit 11, we see that the "largest of the 18" is more

tightly distributed than a single exponential but more loosely than the

maximum of as many as 18. Column (+), which corresponds to the largest of

7 exponentials of size 3, gives a reasonable approximation. There is no

reasonable hope for the largest leap to come from the valley, but what about

"one of the largest".
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Exhibit 11

Distribution of the largest of the "other 18" leaps
for a true valley between 10 and 10 for t = 5

(calculated as if leaps were exactly independent and exactly exponential)

L Pr(> L) (*) (**) (***) (+) Prob(exp(ave = 15.55) > L)

1 99.95721% .952 (99.91%) 99.9958% 93.77%
2 (98.44%) 99.6858 87.93
3 97.7139 1.893 (93.68%) 97.451% 95.97% 82.45
4 92.2231 1.977 (85.34%) 91.352% 77.32
5 80.469 1.045 (74.59%) 81.26% 72.50%

6 66.15% 2.112 62.95% 68.75% 63.88% 67.99%
7 52.50% 2.182 51.674% 55.78 63.75
8 40.6832% 2.257 41.51% 43.79 59.78
9 31.34% 2.325 32.80% 33.54 56.06

10 24.02% 2.381 25.60% 25.22 52.57

11 18.43% 2.452 19.80% 18.71% 18.34 49.29
12 14.18% 2.519 15.20% 13.75 46.22
13 10.92% 2.574 (11.61%) 10.03 43.34
14 8.85% 2.655 (8.83%) 7.28 40.64
15 6.56% 2.687 6.70% 5.26 38.11

20 1.898% 2.922 1.64% 1.01% 0.89% 27.63

(*)Size of 18 equal exponentials such that the largest exceeds L with probability
Pr(> L )

(**)Probability that the largest of 5 independent exponentials with average 3.5 will
exceed L

(***)Probability that the largest of 10 independent exponentials with average 3 will
exceed L

(+)Probability that the largest of 7 independent exponentials with average 3 will
exceed L.

March 29, 1989



- 62.

exhibit IA

0 20% 40% 60% 80% 100%

37%
80%.

60%[

63%
40%

20%

.Prob (brges of 18 2 L)



* another approach *

Let us begin with three independent exponentials of averages

C/f, Cig, C/h. How often will the first be the largest? The density of a

convenient multiple of the first is fe - f " and the probability of the same

multiple of the other two being less is (1-e-gu)(l-e-hu). Thus the answer is

a f f_~=1-+ f
f fO e-fU(1- e-9U)(1- e -hU)du =  1 - f +----f

f+g f +h f +g+h

with the answer for more competitors an analogous sum, first over pairs, then

over triples, etc.

If we begin with three leaps, the valley leap and one on either side, and

take f = 1, we have g, h = 15.55/4.246 = 3.662 so that the chance that the

valley gap is the largest of the three is

1 _ 1 11 + = 1 - .2145 - .2145 + .1201 = 69.1%
1+3.662 1+3.662 1+3.662+3.662

By symmetry the chance that a specified adjacent leap is the largest of the three

is (10% -69.1%)/2 = 15.45%.

If we add two more leaps, one on each side, for which

j = k = 15.55/2.595 = 5.992, the terms we need to consider are (sorted by

number of terms in the denominator)

1 1 1 1
1+3.662 + 1+3.662 ' 1+5.922 1+5.922 - 2(.2145) + 2(.1445) = .7179

1 4 1
+ + = .1201 + .3779 + .0779 = .5759

1+3.662+3.662 1+3.662+5.922 1+5.922+5.922
2 2+ = .1397 + .1201 = .2599

1+3.662+3.662+5.992 1+3.662+5.992+5.992
1

1+ 3.662+ 3.662+ 5.992+ 5.992 = .0492
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leading to

I - .7179 + .5759 - .2599 - .0492 = 64.7%

for tile chance that the valley leap will be largest of the five.

A similar calculation give 6.34% chance that the largest of the five will be

one of the leaps not even next to the valley leap and 100 - 64.7 = 28.96%

chance that one of the adjacent leaps will be largest.

Continuing in this way, we will get a result similar to

at the valley leap 63.6%

next to .. . 28.5%

one away from 6.2%

further away from .... 1.7%

indicating that one of the central live leaps are relatively sure to provide the

largest, while the central three will fail to provide it perhaps once in 12 times.

35. And the shortest leap?

The complementary calculation, with e-f" exchanged with I-e-f" , gives

us the distribution of the smallest of 18 independent exponentials with the

averages already noted. The resulting cumulative probabilities can be

converted to a common average for 18 exponentials that matches a particular %

point for smallest exponentials from 0.01 to 10. This gives the same answer,

1.669, to 3 decimals. As we might have expected, 1.669 is the harmonic mean

of the 18 average exponentials with which we started.
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Since the equivalent averages for the largest were above 2 - - and thus

greater than 1.669 - - it is reasonable to anticipate that the equivalent average

for a low-value group of leaps will also be somewhat greater than 1.669. Thus

we pay an appreciable penalty for the larger leap averages among the 18.

Using fewer of the low-value leaps should reduce the equivalent average,

but only toward - - not beyond - - 1.669. Thus the optimum number of

low-value leaps, which corresponds to an equal number of low index e-leaps, is

likely to be an intermediate between too many and too few, and the optimum is

likely to be flat.

36. High index e-leaps?

We have some insight into the largest leap, whether from the valley leap

or from the 18 others. what we need to understand is the behavior of the

high-index e-leaps, which are multiples of leap-to-leap differences (e-gaps). A

fine large leap, if we are only looking at the highest index e-leap, can have its

effect spoiled by whenever the next largest leap is close to it. Something

similar will always happen at the inclusion-exclusion boundary, though not as

vigorously if more high-index leaps are considered. Taking too few high-index

e-leaps can be costly.

But so can taking too many. In our prototype situation, only 3 indexings

(at - - and adjacent to - - the valley) are likely to produce quite large leaps.

Two or three of the largest leaps - - one of which may be "spoiled" by a nearby

value for the fourth largest - - should be enough to trap the "real" effect - - at

least when the effect is large enough to be worth trapping. (Five would almost

March 29, 1989

I II PI



- 66 -

surely be enough.)

To understand better what we should do would require some careful

simulation. Doing this for independent exponentials would be as much work as

doing it for the real problem. So why do less than simulate the real problem?

37. Suggestions for empirical trial.

ligh-index group sizes from 1 to 5 and low-index groups sizes of 10 to 20

ought to cover the optimum (at least for 10 + 10). We cannot, of course - - in

the face of misbehavior we have seen for a shift of 5, a shift large enough so

that only about 0.6% of one distribution overlaps 0.6% of the other - - look

forward to extremely high power, for any choice.

The next step should be simulation.

38. Restricted sums.

The discussion of the last few sections was founded on e-leaps, particularly

on those corresponding to relatively very large and relatively moderately small

ordinary leaps. This enabled us to use approximations based on e-leap

behavior, but it involved throwing away which leap was which - - something

which makes good sense on the null hypothesis - - but which must be

somewhat wasteful on the simple alternative. If the 4 largest leaps in a batch of

n =2() values are It., h 7 , I 12 and 17, corresponding to gaps Y4- Y3, Y7-Yb,

Y 12-YI I ld Y 17-Y 16 they hardly combine to point toward a single valley in the

underlying situation.
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If power against single valleys, or possibly pairs of valleys is what we most

want, we will need to restrict the sets of, say, 4 leaps, whose sum or mean is to

serve as our indicator.

Simulation experiments will probably be essential in choosing a satisfactory

restriction, but it may be helpful to suggest some possibilities for n around 20.

We might restrict ourselves to:

a) four leaps adjacent (in y) - - 16 candidates

b) four leaps omitting at most one of five adjacent-- 16 + 153 = 61

candidates (the old 16 and 45 new ones)

c) four leaps omitting at most two of six adjacent - -

16 + 15"3 + 14"6 = 145 candidates

d) four leaps omitting at most three of seven adjacent

16 + 15"3 + 14 *6 + 13"20 = 405 candidates

where these numbers of candidates are to be compared with

1= 19" IT 15 12 = 5814 candidates for four unrestricted choices.

Ihese numbers suggest hope for much improved power, and urge trials by

siu ulation.
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APPENDIX A on a(iI n)'s

39. What size biases don't matter?

In using the orderly data kit, we are almost always dealing with

exponentially distributed quantities. We need to remember that such quantities

have

standard deviation = mean

so that we cannot reach

standard deviation I mean
10

until we combine at least 100 such exponentially distributed quantities. This

ought to tell us that ± 10% is not very much, especially when it happens to only

I or 2 of a set of roughly exponentially distributed quantities.

We saw, for n=20, that using a's instead of T 's biases the end leaps by

only a few %, and those inside even less. What if the biasing is 5% for each

end leap, 3% for each next leap, 1.5% for the next, etc. The total biasing is

2(6% + 3% + 1.5% ... ) = 24%. The bias of the mean leap is (2 4/n)%. The

standard deviation of the mean leap is s 4 n, so that, for the mean leap,

bias/standard deviation = (24fs4In)%

namely 8% for n= 10, 5% for n=20, 2.4% for n= 100 all of which are quite

negligible (the MSEs are increased by factors of 1.0058, 1.0029 and 1.0006,

respectively). In fact, as we shall see shortly, the actual bias is even less.

Thus we have no real need to do better in converting gaps to leaps, than to

use working values. Any more detailed attention we pay to aF(iI n) has :o be
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either (a) from a sense of neatness, or (b) with some other application in mind.

40. Mismatch of distributions.

Similar arguments are important whenever we think harder about

converting gaps to leaps. This conversion requires using denominators which

come, almost always, from some assumed distribution shape (perhaps even the

Gaussian). If there is a true distribution shape, which there might be, it is

almost certain to differ from the shape we assume for conversion. tHow

worried should we be about this?

The nearly-exponentially distributed leaps will now have different typical

sizes, in particular decreasing the d.f. associated with the leapall. How much?

If in 2m denominators, m are 10% short, while the other m are 10% long, we

will have ,D i = 2m and ,D 2 = 2m(1.01) corresponding according to a 1%

loss of d.f. Equal amounts of +20% and -20% would lead to a 4% loss. (Equal

amounts of +30% and -30% would lead to only 9% loss.) Roughly uniform

spread between such limits would only have 1/3 the effect of having everything

at the ends. Mismatch of distribution shape can have as large consequences as

one likes, but only if the distributions are quite different!

The mismatch, for n=20, between a Gaussian distribution and the

distribution of t on 3 d.f. - - really a rather large mismatch - - only involves

± 30% (for differences of working values).

41. a(;au(ij n), for a Gaussian parent.

* i= 1 (or, by symmetry, i=n)
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Our earlier illustration showed that the differences among various

approximations and exact forms of aGau (ij n) are concentrated near i= 1 and,

symmetrically, near i= n. Exhibit 12 shows some relevant numbers for i= 1.

exhibit 12 about here

The C* column does moderately well in describing the "y = mean for Gaussian

order statistic" column. The C' column does very well in describing the "y =

median for Gaussian order statistics" column. (Thus if we ever need more

accurate medians for end order statistics, the formula for C** will provide them

to high accuracy.) The working-value column lies between "medians" and

"means for Gaussian" columns, closer to the median for large n.

The final column shows how small the difference between mean and

median is (for n >_ 10) in comparison with the difference between "Gaussian

parent" and "logistic parent" (when both are being analyzed as if Gaussian). (In

practice, we are unlikely to be sure whether we "should" use Gaussian or

logistic. So how can we, in practice, even distinguish "means for the Gaussian

case" from "medians for some other case"?? Thus this is a further reason, so

far as order statistics themselves go (though not as far as gaps or leaps go), not

to distinguish between mean and median in practice - - though in theoretical

work, it may be important to be clear which is which.)

* i=2 (or, by symmetry, i=n- ) *
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exhibit 12

Values of (3n+ 1) Gau (y) for specified situations and
approximations for i= I or i=n (end order statistic)

when when when
y = mean y = median y = median for logistic

for Gaussian Working for Gaussian order statistic
n order statistic CO value C" (**.) (a) (b) (c) (..)

1 2.0000 2.000 2 2.0503 2.0000 2.0000 2.000 2.0000 -

2 1.9693 1.974 2 2.0503 2.0503 2.1946 2.0323 2.0780 -2.93
5 1.9587 1.943 2 2.0712 2.0712 2.3470 1.8583 1.9896 1.38

10 1.9190 1.915 2 2.0760 2.0760 2.2693 1.5304 1.7182 .44
20 1.8855 1.886 2 2.0780 2.0779 1.9875 1.0994 1.3090 .25
50 1.8507 1.850 2 2.0789 2.0789 1.3982 .5605 .7344 .17

100 1.8233 1.826 2 2.0792 2.0792 .9271 .2779 .3971 .15
200 1.8126 1.809 2 2.0793 2.0793 .5394 .1160 .1830 .14

(400) (1.8131) (1.796) (2) 2.0794 (2.0794) .2743 .0406 .0716 .13
500 1.794 1.793 2 2.0794 2.0794 .2144 .0279 .0511 .14

1000 1.7850 1.785 2 2.0794 2.0794 .0910 .0077 .0106 .14

C"= 2- .2285(n- 1)0.7
(n- 1)0-7 + 7.9

.0794(n- 1)1 17
(n- 1)' 1 

+ .58

-',This column also applies for "(3n+ 1) F(y) where y is the median of the end order
statistic in a sample from the same continuous F(')".

(a) When logistic matched to unit Gaussian in variance
(b) When logistic matched to unit Gaussian in central density
(c) When logistic scaled an intermediate way
* (Gaussian median MINUS Gaussian mean)/(Gaussian median MINUS logistic

median, version (c))

NOTE: 2 is 27% of the way from 2.0794 to 1,785
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Exhibit 13 shows the same sort of information for i=2 as exhibit 12

showed for i= 1.

exhibit 13 about here

Most of the comments about exhibit 12 apply with only minor changes. The

working value is now much nearer the median than it is to the mean.

* i=3 (or, by symmetry, i=n-2) *

Exhibit 14 shows the same sort of information for i=3 as exhibits 12 and

13 showed for i= 1, respectively.

exhibit 14 about here

* larger i (deeper i) *

We do not propose to follow details further here.

* the leap denominator *

For the main purposes of this account, we are interested in

a (i+ 11 n) - a (ii n) whose behavior for small i is shown in exhibit 15.

exhibit 15, 16 about here

We see that the difference between "difference of means" and "difference

of medians" is only a few %. Our largest question, of course refers to the bias

of using working-values in place of .(ij n). (The bias using working values for

medians is, as we have seen, smaller and of opposite signs.) Exhibit 16 shows

numbers for i= 1 and 2. The bias is usually of the order of 2%, which is quite

trivial for most situations, including those that most concern us. (Remember
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exhibit 13

Values of (3n+ 1) Gau (y) for specified situations and
approximations for i=2 or i = n-I (next-to-end order statistic)

when when when
y = mean y - median y - median for logistic

for Gaussian Working for Gaussian order statistic
n order statistic C" value C6 (*..) (a) (b) (c) (so..)

3 5.000 5.000 5 5.0000 5.0000 3.9866 3.82528 3.8911 -

4 4.982 4.970 5 5.0145 5.0145 4.3304 4.0553 4.1329 .04
5 4.965 4.953 5 5.0211 5.0210 4.5821 4.1714 4.2865 .08

10 4.908 4.908 5 5.0300 5.0300 5.1839 4.2244 4.4846 .22
20 4.857 4.866 5 5.0329 5.0331 5.3330 3.7509 4.1591 .20
50 4.803 4.817 5 5.0313 5.0314 4.6674 2.5980 3.0457 .12

100 4.771 4.782 5 5.0347 5.0347 3.6642 1.5770 2.0231 .09
200 4.746 4.748 5 5.0348 5.0349 2.5306 .8244 1.1489 .07

(400) 4.725 4.715 (5) 5.0349 (5.0350) 1.5314 .3623 .5554 .07
500 - 5 5.0349 5.0350 1.2660 .2679 .4245

1000 _ 5 5.0350 5.0350 0.6408 .0932 .1651

C'= 5-.08(n n/3) ° '0

C-= 5+ "0350(n - 3)'-'(n-3)' + 1.41

-..This column also applies for "(3n+ 1)F(y) where y is the median of the next-to-end
order statistic in a sample from any continuous F(')".

* (Gaussian median MINUS Gaussian mean)/(Gaussian median MINUS logistic
median, version (c))

(a) When logistic matched to unit Gaussian in variance
(b) When logistic matched to unit Gaussian in central density
(c) When logistic scaled an intermediate way

NOTE: 5 is 11% of the way from 5.0349 to 4.715
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exhibit 14

Values of (3n+ 1) Gau (y) for specified situations and
approximations for i=3 (next-to-end order statistic)

when when when
y = mean y = median y = median for logistic

for Gaussian Working for Gaussian order statistic
n order statistic C" value C" (..*) (a) (b) (c) (****)

5 8.000 8.000 8 8.0000 8.0000 6.0684 5.8141 5.8862 _
10 7.933 7.905 8 8.0159 8.0158 7.4188 6.5189 6.7687 .07
20 7.882 7.856 8 8.0197 8.0199 8.2752 6.4389 6.9295 .13
50 7.806 7.805 8 8.0213 8.0215 8.0953 5.0643 5.8138 .10

100 7.768 7.772 8 8.0218 8.0218 6.9324 3.5137 4.2938 .07
200 7.739 7.742 8 8.0218 8.0220 5.2322 2.0637 2.7171 .05

(400) 7.713 7.714 (8) 8.0219 8.0220 3.4655 1.0209 1.4661 .05
500 - 8 8.0219 8.0221 2.9003 .7443 1.1613 -

1000 _ 8 8.0220 8.0220 1.6369 .3076 .5050

C*= 8-.118(n n/5)-6

Cfi 8+ 02197(n- 5)11
(n-5)' 1+ 2.23

*.This column also applies for "(3n+ 1)F(y) where y is the median of the next-to-end
order statistic in a sample from any continuous Fo".

*.**(Gaussian-median MINUS Gaussian mean)/(Gaussian median MINUS logistic
median, version (c))
(a) When logistic matched to unit Gaussian in variance

(b) When logistic matched to unit Gaussian in central density
(c) When logistic scaled an intermediate way

NOTE: 8 is 7% of the way from 8.0219 to 7.714
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exhibit 15

Behavior of a(i+ I In) - a(i In) for i small, Gaussian parent,
and either mean a's (Z'(i In)'s) or median a's (d (i n)'s)

i= 1, Gaussian i=2, Gaussian double
n mean median ratio mean median ratio ratio*

2 1.128 1.089 95.5% _ _
5 .668 .614 96.5% .495 .485 98.0% 98.5%

10 .537 .514 95.7% .345 .3378 97.6% 98.1%
20 .460 .4360 95.0% .277 .2691 97.1% 97.9%
50 .394 .3702 94.0% .2262 .2185 96.6% 97.4%

100 .359 .3355 93.5% .2018 .1941 96.2% 97.3%
200 .333 .3090 92.8% .1837 .1761 96.2% 96.6%
400 .311 .2871 92.3% .1696 .1621 95.6% 98.7%

*(ratio for i= 1)/(ratio for i=2)

exhibit 16
Behavior of a(i+I In) - a(i In) for i small, Gaussian parent,

and either mean a's ('(i In)'s) or Gaussian working values (wovals)

i= 1, Gaussian i=2, Gaussian double
n mean woval ratio mean woval ratio ratio*

2 1.128 1.1312 99.7% - - -

5 .667 .6620 100.8% .495 .4884 101.3% 99.5%
10 .537 .529 101.5% .345 .3401 101.4% 99.9%
20 .460 .4495 102.1% .277 .2712 102.1% 100.0%
50 .394 .382, 103.1% .2262 .2203 102.7% 100.4%

100 .359 .3465 103.6% .2018 .1957 103.1% 100.5%
200 .333 .319o 104.4% .1837 .1715 103.5% 100.9%
400 .311 .296, 104.7% .1026 .1634 103.4% 101.3%

*(ratio for i= 1)/(ratio for i=2)
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that the standard deviation is 100%!)

* mean gaps and median gaps *

Whether we work with means or medians of order statistics has turned out

to matter little. (The deviations from symmetry of order statistic distributions

are not too great, and ratios of their standard deviation to their mean shrink as

n increases for i/n constant.)

Gaps do not behave this way at all. The approximate distribution of all but

the most unusual gaps is like D x a unit exponential, for some constant D.

Since the unit exponential has mean = 1.00 and median = 0.69, the median of

our gap will be roughly 0.69D, about 70% of its mean (which is roughly

L.OOD ).

In other terms,

mean(yi+ 1n-Yi n)= mean(yi+11n) - mean(yil,)

while

median(yi+1j,1 - Yil ,,) 0.7(median(yi+ll n)-median(Yil ,))

In fact, the mixed approximation

mean(yi+ 11,n - Yij n) - median(yi+11 n) - median(Yi ,n)

is very much closer than its right hand side comes to the median(Yi+ 1n-Yiln)"

42. aE(il n), for the lower tail of an exponential parent.

We turn now to first one tail and then the other of the (single)

exponential, where the order statistic means are the partial sums of

1 1 1
-+ + I ..

n n-1 n-2
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This can be considered a closed form if there are not too many terms!

Exhibit 17 shows the values of "(3n+ 1) (own tail area)" for the means of

lower-tail order statistics. They are mainly of interest in showing what happens

near a box-car-end-like cutoff. The usual values: 2, 5, 8, 11, .. ., for a "loose"

termination are increased to values tending to 3, 6, 9, 12 ..... .(still spaced 3

apart). Starting with 3 is just as if 0 were an additional n+ 1s observation!

(The limiting values must be those that would apply for a very large sample

from a rectangular parent.)

exhibit 17 about here

43. aEi ] n), in the upper tail of an exponential distribution.

The upper tail behaves rather differently. To display more familiar sorts of

numbers, exhibit 18 shows "(3n+ 1) x (own right tail area)", which of course

equals "(3n+ 1) MINUS [(3n+ 1) x (own left tail area)]" We now have different

asymptotic values (1.684, 4.579 .... ) this time smaller than for the working-

value (namely 2, 5, 8 .... ). Since the values in exhibit 18 are smaller than

the nominal 2, 5, 8 .... the corresponding medians (or exponential order

statistics) are larger, see column labelled **** in exhibits 12 to 14. By contrast,

the corresponding order-statistic means are nearer the nearby (upper) tail.

exhibit 18 about here

B
The good simple fits, of the form A + -, can be very useful, since they

n

can save us from evaluating a long, closed-form expression for the
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exhibit 17

Behavior of (3n+ 1) x (own lower tail area) for an exponential
distribution and means of near-to-lower-end order statisitcs

n for i=I for i=2 for i=3 for i=4 for i=5

2 2.754 5.438 - _ _
3 2.835 5.654 8.401 _
4 2.875 5.746 8.600 11.381 _
5 2.900 5.798 8.690 11.566 14.073

10 2.950 5.900 8.849 11.798 14.745
20 2.975 5.950- 8.925 11.900 14.875
50 2.990 5.980 8.970 11.960 14.950

100 2.995 5.990 8.985 11.980 14.975
200 2.9975 5.995 8.9925 11.990 14.9875
500 2.9992 5.998 8.997 11.996 14.995

1000 2.995 5.999 8.9985 11.998 14.9975

(n=-*) (3) (6) (9) (12) (15)

(3i- 1) (2) (5) (8) (11) (14)

Well fitted, for n 2 10, by: 3i - (2.5)i/n
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exhibit 18

Behavior of (3n+ 1) x (own upper tail area) for an exponential
distribution and means of near-to-upper-end order statistics

n for i=n for i=n-1 for i=n-2 for i=n-3 for i=n-4

2 1.5619 4.246 _ _
3 1.5958 4.346 7.165 _
4 1.6187 4.400 7.254 10.124 -

5 1.6311 4.434 7.311 10.202 13.100
10 1.6570 4.504 7.426 10.364 13.308
20 1.6705 4.541 7.467 10.449 13.416
50 1.6788 4.563 7.487 10.500 13.483

100 1.6816 4.571 7.524 10.518 13.505
200 1.6830 4.575 7.536 10.527 13.516
500 1.6838 4.577 7.543 10.532 13.523

1000 1.6841 4.578 7.546 10.534 13.525
2000 1.6842 4.578 7.548 10.534 13.526

(,I=ao) (1.6844) (4.579) (7.549) (10.535) (13.527)

(3(n + I- i)- 1) (2) (5) (8) (11) (14)

Well fitted, for n k 10 by:

1.6814 - .274 for i=n
n

.75
4.579 - 7 , for i=n- 1

7.549- 1.26 for i=n-2
n

10.535 - 1.70 for i=n-3n

13.527 - 2.19 for i=n-4
n
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order-statistic means for those values of n-j where we have found a fit.

44. arect(i[ n), the case of a rectangular parent.

Here (i[ n) = i/(n+ 1), reflecting the exchangeability of the gaps, since

" is here its own left tail area, and

3n+ 1
(3n+ 1) (own left tail area) = i 3 -4 3i when n -4 *

n+1

Exhibit 19 gives a few values.

exhibit 19 about here

45. alogis(ii n), the case of a logistic parent.

A logistic parent distribution might reasonably supposed to behave

somewhat like the case of a Gaussian parent, except that the deviations of

means from medians (and hence the deviations of means from working values)

might well be larger, quite possibly substantially so. Exhibit 20 shows the

values of (3n + 1)(own tail area) for i = 1(1) 5 and 10 that can be computed

easily from the tables of Birnbaum and Dudman (1963).

exhibit 20 about here

Since the corresponding quantities for medians will stay in the intervals

[2,2.081, [5,5.035], [8,8.022], etc., as they do for all distributions, we can see

that the working values, corresponding to 2, 5, 8 . . . will approximate the

medians much better than they will approximate the means. (The ratios of

"errors" are roughly 4, 46 and 100 at n = 100 for i = 1, 2, 3.)
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exhibit 19

Values of (3n+ 1) x (own left tail area) for order statistics
from the rectangular distribution

n for i= I for i=2 for i=3 for i=4 for i-i

2 2.3333 4.6667
5 2.6667 5.3333 8.0000 10.6667 2.667i

10 ).Si82 5.6364 8.4545 11.2727 2.818i
20 2.9048 5.8095 8.7143 11.6190 2.905i
50 2.9608 5.9216 8.8824 11.8431 2.961i

100 2.9802 5.9604 8.9406 11.9208 2.980i
200 2.9900 5.9801 8.9701 11.9602 2.990i
500 2.9960 5.9920 8.9880 11.9840 2.996i

1000 2.9980 5.9960 8.9940 11.9920 2.998i

(mo) (3) (6) (9) (12) (3i)
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exhibit 20

Values of (3n+ I)(own tail area) for means of logistic order statistics

n i=I (C ")  i=2 i=3 i=4 i=5 i=lO

1 2.000 (2.000)
2 1.882 (1.882)
3 1.823 (1.825) 5.000
4 1.792 (1.793) 4.795
5 1.772 (1.772) 4.642 8.000

6 1.758 (1.755) 4.522 7.817
7 1.748 (1.747) 4.428 7.663
8 1.740 (1.740) 4.351 7.531 10.832
9 1.734 (1.933) 4.286 7.419 10.681 14.000

10 1.729 (1.728) 4.230 7.322 10.628 13.841

15 1.714 (1.713) 4.036 6.985 10.051 13.219 (**)
20 1.707 (1.706) 3.915 6.756 9.730 12.796 28.863
50 1.693 (1.693) 3.591 6.173 8.866 11.639 26.288

100 1.688 (1.688) 3.387 5.811 - 10.926 24.570

C"= 2- .316(n- 1)'0 65

(n - 1)' -065 + 1.69

(**)Entry at n= 19 would be 31.000
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If we had to take means of logistic order statistics seriously, we might not be

happy with the corresponding working values.

46. Working-values and i's as % points.

If we ask what percent point for yi, where i = n+ 1-j, the working value

F~(3(n+ 1-])- 1
F 3n+ 1 ) corresponds to, we find, by direct calculation

n j=l j=2 j=3 j=4 j=5

10 51.33% 50.35% 50.15% 50.07% 50.02%

100 51.34% 50.37% 50.18% 50.11% 50.08%

1000 51.34% 50.37% 50.18% 50.11% 50.08%

These values apply to any F.

If we ask the same question for 'fGauss(i n) we find, by direct calculation

from tables of aGauss(ij n):

n j=l j=2 j=3 j=4 i=5

10 47.24% 48.60% 49.20% 49.58% 49.87%

100 45.65 47.18 47.86 48.26 48.53

200 45.34 46.91 47.62 48.03 48.30

1000 45.10 46.70 47.42 47.84 48.13

47. Sources.

Gaussian order sta istic means are given in table C1 (pp 425-451) of Harter

(1969) for n up to 400 (selectively for n >_ 100). Values for i= 1 can also be

taken from table 28 of Pearson and Hartley as (half the values of mean range
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given there), thus going to n= 1000, with a few extra decimal places for

n < 400.

The order-statistic means for exponential and rectangular parents are well

known (and are written down above).

Order-statistic medians can be found in two ways:

* by solving "complete beta function = .5", which can easily give many

decimal places when we are careful to rearrange the formulas

e by starting from tabulated 50% points of F , z or the incomplete beta

function.

The type of rearrangement needed to assist in preserving accuracy can be

illustrated for i= 3, where (* stands for some constant to be determined

eventually)

* un- 3 (1-u) 2 du = * (Un- 3  2un- 2 + uu- 1 )du

which integrates to

un-2  2un-1 + u n  u n-2  2(n-2)u + (n-2)u2

n-2 n-1 n n-2 n-1 n
U n - ' 2U 2U 2

= *----_ ((l-u) 2 +)

n-2 n-1 n
= , 2((l_u)2 + U_ n )

-(--- U))
n-2 n n-I
un- 2 ((1-u)2 + 2u(1-u) 2u

n-2 n n(n-1)

If we put u- 1, this this gives

* 1-- (0+0 + - ) = In-2 n(n- 1)

whence = n(n- 1) and the cumulative is
n-2
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n(n-l)un-2[( l u)2+ 2u ( - u ) + n(n-1)2u ]
Doing similarly for other small i, we find the successive equations

un .5

u n1[(1-u) + -] =.5
n

n(n-1)un- 2 [(1-U)2+ 2u(l-u) + 2u.n n (n- 1) =_ .

Moments of I can be found in Table 35 of Pearson and Hartley.

48. History.

The original extended treatment of F-((3i- 1)/(3n+ 1)) seems to have

been due to Gunnar Bldm (1958).

The observation that gaps were weakly correlated in the Gaussian case

began to be exploited by Ramanathan Gnanadesikan and Martin Wilk in about

1964. (All this was implicit in Wald's earlier remark that the order statistics

were a strong Markov process and in the work of Pearson and Pearson (1932),

who stated that the correlation between gaps was "small, and for many

purposes, negligible.".) (See Andrews et. al. 1972 for more detailed

exploitation.)

Limiting exponential behavior of gaps goes back to the work of von

Bortkiewicz (1915) on the uniform case. Empirical calculations, not yet(?)

published were made (at Princeton) by Christopher Bingham about 1965, and

more extended calculations appear in James Filliben's Princeton Thesis

(Filliben 1969).
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APPENDIX B. HOW THREATENING IS GRANULATION?

We have discussed the behavior of gaps, leaps, and e-leaps in terms of

samples from continuous distributions - - where observations are available to

infinite precision, and the probability of even one tie is zero. In the real world,

observations are available with only limited precision, and ties are common.

Ties, which correspond to gaps of length zero and hence to zero leaps and even

zero stretches, are obviously a cause for concern. It is the aim of this appendix

to provide an indication of how much concern is likely to be needed, and of the

degree to which simple modifications of the observed values suffice to remove

the need for concern.

49. An initially ungranulated example.

We begin with a numerical example, based on 20 not very random

deviates, generated to illustrate a unit Gaussian sample. Exhibit 21 has the

calculations through e-leaps. (The final column is shown for qualitative

impressions only.) We have used working-value divisors (labelled D) and mean

multipliers (labelled M), and have shown data, leaps and e-leaps each in two

orders (as indexed, and as ordered by sorting). Such pairs of columns are

divided by a slashed vertical rule, since row identity does not carry across from

one to the other. "Gaps" always refers to differences down the previous

column, and the resulting numbers are placed opposite the value with the larger

subscript (the lower in the column). [Horizontal rules in IND columns indicate

subtotals generating the submeans listed below the main table (first 4, first 9,
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first 14, and mean of all).] Since the mean of all leaps is 1(leapall), the
19

identity of leapalls for original observations and leapalls for leaps (e-leapalls) is

reflected by equality of "means of 19".

exhibit 21 about here

50. Granulating the example (grouping its values).

If we induce granulation in this example by rounding (grouping) the

observations to the nearest 0.2, 0.5, 1.0 or 2.0, we get the results shown in

exhibits 22A to 22D.

exhibits 22A to 22D about here

From these examples our main concern is with the means of the first 14

e-leaps which, in a real situation, we might hope to find reflecting only residual

error, (so that their values can be used to estimate the size of residual error)

and the means of all 19 which, in a non-null situation, would reflect residual

error increased by the consequences of real effects. Exhibit 23 compares these

values across amount of granulation.

exhibit 23

The means of 14 and 19 leaps

original grouped to 0.2 grouped to 0.5 grouped to 1.0 grouped to 2.0

mean of 14 1.15 1.08 1.80 0(sic !) 0(sic !)

mean of 19 1.31 1.32(1.31) 1.36(1.32) 1.24(1.34) 1.43(1.44)
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An illustrative (randomly generated) example with n=20

Observations leaps e -leaps

Gaps Gaps
IND ORD D IND ORD M IND ORD

.807 / - 1.892 / (0) /
-1.760 / -1.760 .132 .450 .293 I .000 .000 19 .00 / .00

1.350 I -1.367 .393 .271 1.450 / .151 .151 18 2.72 / .11
-1.892 I -1.135 .232 .207 1.121 I .167 .016 17 .27 I .27
-. 129 / -1.033 .102 .174 .586 I .273 .106 16 1.70 I .30
1.573 / -. 970 .063 .154 .409 / .293 .020 15 .30 / .31

-1.135 / -. 210 .760 .141 5.390 / .409 .116 14 1.62 / .78
-. 210 / -. 190 .020 .132 .151 / .480 .071 13 .92 I .92
1.165 / -. 129 .061 .127 .480 I .586 .106 12 1.27 I .1.27
.086 I -. 007 .122 .125 .976 / .762 .176 11 1.93 / 1.37

-. 007 / .086 .093 .122 .762 / .976 .214 10 2.14 / 1.55
- 1.033 / .566 .480 .125 3.840 / 1.063 .087 9 .78 / 1.62

.566 / .785 .219 .127 1.724 / 1.077 .014 8 .11 / 1.70
2.370 I .807 .022 .132 .167 / 1.121 .044 7 .31 / 1.80
2.370 / 1.123 .316 .141 2.241 / 1.450 .329 6 1.97 / 1.93
-. 970 / 1.165 .042 .154 .273 / 1.724 .274 5 1.37 I 1.97
-. 190 / 1.350 .185 .174 1.063 / 2.241 .517 4 2.07 / 2.07

-1.367 / 1.573 .223 .207 1.077 / 2.941 .700 3 2.10 / 2.10
.785 / 2.370 .793 .271 2.941 I 3.840 .899 2 1.80 / 2.14

1.123 / 2.370 .000 .450 .000 I 5.390 1.550 1 1.55 / 2.72

submean of 1' 4: x x 1.17 x

submean of 1" 9: x x 1.19 x

submean of It 14: x x 1.15 x

mean of 19: 1.31 1.31 1.31 1.31

(leapall) (24.944) (24.944) (24.93) (24.93)

D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordered
(sorted).

NOTE: If 2 decimals are carried for leaps and i'-leaps, the leapalls are 24.78.
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exhibit 22A

The numerical example of exhibit 21 granulated to steps of 0.2

Observations leaps e-leaps

Gaps Gaps
IND ORD D IND ORD M IND ORD

0.8 / -1.8 / (0) /
-1.8 / -1.8 0 .450 0 / 0 0 0 / 0

1.4 I -1.4 .4 .271 1.48 / 0 0 0 / 0

-1.8 / -1.2 .2 .207 .97 I 0 0 0 / 0

-. 2 / -1.0 .2 .174 1.15 / 0 0 0 / 0

1.6 ! -1.0 0 .154 0 / 0 0 0 / 0

-1.2 / -. 2 .8 .141 5.67 / 0 0 0 / 0

-. 2/ -. 2 0 .1320 / 0 0 0 / 0

1.2 / -. 2 0 .127 0 / 0 0 0 / 0

0 / 0 .2 .125 1.60 / .97 .97 11 10.67 / 0

0 / 0 0 .122 0 I .97 0 10 0 / 0

-1.0 I .6 .6 .125 4.80 I 1.15 .18 9 1.62 / .15

0.6 / .8 .2 .127 1.57 / 1.15 0 .8 0 / .33

2.4 I .8 0 .132 0 / 1.48 .33 7 2.31 / .54

2.4 I 1.2 .4 .141 2.84 / 1.57 .09 6 .54 / .87

-1.0 I 1.2 0 .154 0 I 1.60 .03 5 .15 I 1.62

-. 2 / 1.4 .2 .174 1.15 / 2.84 1.24 4 4.96 / 2.31

-1.4 / 1.6 .2 .207 .97 I 2.95 .11 3 .33 I 3.70

0.8 I 2.4 .8 .271 2.95 / 4.80 1.85 2 3.70 / 4.96

1.2 / 2.4 0 .450 0 / 5.67 .87 1 .87 / 10.67

submean of 11 4: x x 0 x

submean of 11 9: x x 1.19 x

submean of 1' 14: x x 1.08 x

mean of 19: 1.32 1.32 1.32 1.32

D = divisor (working value), IND = as indexed. M - multiplier. ORD - ordfred

(sorted).
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exhibit 22B

The numerical example of exhibit 21 of granulated to half integers

Observations leaps c-leaps

Gaps Gaps
IND ORD D IND ORD M IND ORD

1 / -2 / (0) /
-2 1-2 0 .450 0 / 0 0 0 /(0)

1.5 I -1.5 .5 .271 1.85 / 0 0 0 / (0)
-2 /-1 .5 .207 2.42./ 0 0 0 /(0)

0 / -1 0 .174 0 1 0 0 0 I (0)
1.5 / -1 0 .154 0 / 0 0 0 / (0)

-1 / 0 1 .141 7.09 / 0 0 0 /(0)
0 / 0 0 .132 0 / 0 0 0 /(0)
1 / 0 0 .127 0 / 0 0 0 /(0)
0 I 0 0 .125 0 I 0 0 0 /(0)
0 I 0 0 .122 0 / 0 0 0 /(0)

-I 1 1 .125 8.00 I 0 0 0 /(0)
0.5 / 1 .0 .127 0 / 0 0 0 /(0)
2.5/ 1 0 .132 0 / 0 0 0 / 0
2.5 I 1 0 .1,1 0 / 1.85 1.85 6 11.10 I .91

-1 / 1 0 .154 0 / 2.42 .57 5 2.85 / 1.80
0 / 1.5 .5 .174 2.87 / 2.87 .45 4 1.80 / 2.46

-1.5 / 1.5 0 .207 0 / 3.69 .82 3 2.46 / 2.85
1 / 2.5 1 .271 3.69 / 7.09 3.40 2 6.80 / 6.80
1 / 2.5 0 .450 0 / 8.00 .91 1 .91 / 11.10

submean of 1' 4: x x 0 x

submean of 1 t 9: x x 0 x

submean of 1"r 14: x x .80 x

mean of 19: 1.36 1.36 1.36 1.36

(leapall) (25.92) (25.92) (25.92) (25.92)

D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordered
(sorted).

March 29, 1989



-91 -

exhibit 22C

The numerical example of exhibit 21 granulated to integers

Observations leaps C -leaps

Gaps Gaps
IND ORD D IND ORD M IND ORD

1 -2 I(0) I
- 2 / -2 0 .450 0 I 0 0 0 / 0

1I -1 1 .271 3.69 / 0 0 0 / (0)
-2 / -1 0 .207 0 / 0 .0 0 /
0 /-I 0 .1740 / 0 0 0 /

2 /-1 0 .154 0 / 0 0 0 /

-1/ 0 1 .141 7.09 /0 0 0 /

0 / 0 0 .1320 / 0 0 0 /
1 / 0 0 .1270 / 0 0 0 
0 / 0 0 .1250 / 0 0 0 /

0 / 0 0 .1220 / 0 0 0 /

- I 1 1 .125 8.00 / 0 0 0 /

I / 1 0 .1270 / 0 0 0 /
2 / 1 0 .132 0 / 0 0 0 /
2 I 1 0 .141 0 / 0 0 0 /

-1 1 1 0 .154 0 I 0 0 0 / (0)
0 / 1 0 .174 0 / 3.69 3.69 4 14.76 / .91

-1 / 2 1 .207 4.83 / 4.83 1.14 3 3.42 / 3.42

1 / 2 0 .271 0 / 7.09 2.26 2 4.52 / 4.52

1 / 2 0 .450 0 / 8.00 .91 1 .91 /14.76

subm ean of 1" 4: x x 0 x

submean of 1" 9: x x 0 x

submean of V' 14: x x 0 x

mean of 19: 1.24 1.24 1.24

(leapall) (23.61) (23.61) (23.61) (23.61)

D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordered

(sorted).
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exhibit 22D

The example of exhibit 21 granulated to steps of 2

Observations leaps e -leaps

Gaps Gaps

IND ORD D IND ORD M IND ORD

0 -2 0 .450 I(0) 0 0 0 / 0

-2 / -2 0 / 0 /
2 / -2 0 / I

-2 -2 0 / /
0 / -2 0 / /
2 I 0 2 .154 12.99 I /

-2 / 0 0 / /
0 / 0 0 / /
2 / 0 0 / /
0 / 0 0 / /
0 / 0 0 / /

-2 / 0 0 / /
0 / 0 0 / /
2 / 2 2 .141 14.18 / /
2 / 2 0 /
0 / 2 0 /
0 / 2 0 /

-2 / 2 0 / 0 0 3 0 / 0

0 / 2 0 / 12.99 12.99 2 25.98 / 1.19

2 / 2 0 .450 / 14.18 1.19 1 1.19 / 25.98

submean of 1" 4: x x 0 x

submean of 1" 9: x x 0 x

submean of 1" 14: x x 0 x

mean of 19: 1.43 1.43 1.43 1.43

(leapall) (27.17) (27.17) (27.17) (27.17)

D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordered
(sorted).
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* comparison with Sheppard's correction *

Sheppard's correction corresponds to

(ungrouped variance) - (grouped variance)- "
12

where h is the interval from one grouped value to the next. (Recall that this

correction is associated with 'high contact" at the tails of the density and is

equal in size, but opposite in sign, to what would happen if the ungrouped

values were uniformly distributed over each grouping interval.) If we write this

first as

h2(grouped variance) *(ungrouped variance)+ 1

-(ungrouped variance)(l 2
p2(ungrouped variance)

and then take square roots on both sides (using 1 + (u/2) as the approximate

square root of 1 + u), we find

(grouped variance) 112 - (ungrouped variance) 112 (1 + h2

24(ungrouped variance)

Thus if we start with an ungrouped variance of (1.31)2 and grouped with h=2,

we anticipate a (grouped variance) 1/ 2 of, approximately

1.31(1 + .!( 21 )2) = 1.44
24 1.31

The parenthetic entries in exhibit 23 were calculated from the (original)

ungrouped values in this way. The overall increase in the mean of 19 leaps due

to grouping is crudely what this approach would predict.

* overall comparison *
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On the whole, the mean of 19 leaps is quite well behaved throughout. The

mean of 14 leaps first falls rapidly, then rises and finally falls drastically - - so

that we are unlikely to be able to use it without some modification.

51. The simple adjustment.

In exhibit 22C, there are four - l's. If 4 such arise, as these four did, by

grouping to integers, their initial values fell somewhat between - 1.5 and -. 5.

If we make the five spaces equal, as in

(- 1.5)(-15

.2
-1 -1.3

.2
-1 -- -1.1

.2
-1 -0.9

.2
-1 -0.7

.2
(-0.5) (-0.5)

we do something simple which may help.

For reasons discussed in the next section, even if either extreme value (or

both extreme values) are tied, we do not adjust them.

Exhibits 24A to 24D shows what happens, in this inadequate example,

with this style of adjustment. The results for means of 14 and means of 19 are

summarized in exhibit 25.

exhibits 24A to 24D about here
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exhibit 24A

The granulated-to-steps of 2 example of exhibit 22D
expanded at intermediate values and analyzed

Observations leaps e -leaps

Gaps Gaps
RAW EXP D IND ORD M IND ORD

-2 I-2 I I
-2 /-2 0 .450 0 /0 /
-2 / -2 0 .271 0 / 0 /
-2 1-2 0 .207 0 /0 /
-2 /-2 0 .174 0 /0 I

0 / -. 80 1.2 15A 779 / 0 /
0 / -. 60 .2 .141 1.42 I 0 /
0 / -. 40 .2 .132 1.52 / 0 /
0 / -. 20 .2 .127 1.57 / 0 /
0 / 0 .2 .125 1.60 / 0 /
0 / .20 .2 .122 1.64 I 1.42 1.42 10 14.2 / 0
0 / .40 .2 .125 1.60 / 1.52 .10 9 .9 / 0
0 I .60 .2 .127 1.57 /1.52 0 8 0 / 0
o / .80 .2 .132 1.52 / 1.57 .05 7 .35 / .12
2 / 2 1.2 .141 8.51 /1.57 0 6 0 I .15
2 / 2 0 .154 0 /1.60 .03 5 .15 / .35
2 / 2 0 .174 0 /1.60 0 4 0 / .72
2 / 2 0 .207 0 /1.64 .04 3 .12 / .9
2 / 2 0 .271 0 / 7.79 6.15 2 12.30 / 12.30
2 / 2 0 .450 0 /8.51 .72 1 .72 /14.20

mean of 14: x x 1.10 x

mean of 19: L.. 1.51 1.51 x

leapall: (28.74) (28.74) (28.74) (28.74)

EXP = expanded, D - divisor (working value), IND = as indexed, M = multiplier. ORD = ordered (sorted).
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exhibit 24B

The granulated-to-integers example of exhibit 22C
expanded at intermediate values and analyzed

Observations leaps e -leaps

Gaps Gaps
RAW EXP D IND ORD M IND ORD

-2 /-2 0 /0 0 /
-2 /-2 0 .450 0 /0 0 /
-1 / -1.3 .7 .271 2.58 / 0 0 /
-1 / -1.1 .2 .207 .97 / 0 0 /
-1 / -. 9 .2 .174 1.15 I .86 .86 16 13.76 / .07
-1 / -. 7 .2 .154 1.30 I .91 .05 15 .75 / .08
0 / -. 33 .37 .141 2.62 / .97 .06 14 .84 I .10
0 / -. 17 .16 .132 1.21 / .99 .02 13 .26 / .18
0 I 0 .17 .127 1.34 / 1.06 .07 12 .84 / .26
0 / .17 .17 .125 1.36 I 1.15 .09 11 .99 / .27
0 / .33 .16 .122 1.31 I 1.18 .03 10 .30 I .30
1 / .64 .31 .125 2.48 / 1.21 .03 9 .27 I .30
1 / .79 .15 .127 1.18 / 1.30 .09 8 .72 / .51
1 / .93 .14 .132 1.06 / 1.31 .01 7 .07 / .72
1 / 1.07 .14 .141 .99 I 1.34 .03 6 .18 / .75
1 / 1.21 .14 .154 .91 / 1.36 .02 5 .10 I .84
1 / 1.35 .15 .174 .86 / 2.48 1.12 4 4.48 / .84
2 / 2 .64 .207 3.09 / 2.58 .10 3 .30 / .99
2 / 2 0 .271 0 /262 .04 2 .08 / 4.48
2 / 2 0 .450 0 /3.09 .47 1 .47 /13.76

mean of 14: x x 1.36 x

mean of 19: 1.28 1.28 1.28 1.28

leapall: (24.41) (24.41) (24.41) (24.41)

EXP = expanded. D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordered (sorted).
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exhibit 24C

The granulated-to-0.5 example of exhibit 22B
expanded at intermediate values and analyzed

Observations leaps e -leaps

Gaps Gaps

RAW EXP D IND ORD M IND ORD

-2 / -2 I (0) I
-2 / -2 0 .450 0 / 0 0 19 0 /

-1.5 / -1.5 .5 .271 1.85 / 0 0 18 0 /
-1 / -1.12 .38 .207 1.84 / .63 .63 17 10.71 / .05

-1 / -1.00 .12 .174 .69 / .64 .01 16 .16 / .13

-1 / -.88 .12 .154 .78/ .65 .01 15 .15/ .15

0 / -. 17 .71 .141 5.04 / .68 .03 14 .42 / .16

0 / -. 08 .09 .132 .68 / .69 .01 13 ..13 I .18

0 / 0 .08 .127 .63 / .71 .02 12 .24 / .20

0 / .08 .08 .125 .64 / .74 .03 11 .33 / .24

0 / .17 .09 .122 .74 / .76 .02 10 .20 / .33

0.5 / .5 .33 .125 2.64 / .78 .02 9 .18 / .36

1 / .85 .35 .127 2.76 / .87 .09 8 .72 / .42

1 / .95 .10 .132 .76 / 1.49 .62 7 4.34 / .72

1 / 1.05 .10 .141 .71 / 1.84 .35 6 2.10 / 1.20

1 / 1.15 .10 .154 .65 / 1.85 .01 5 .05 / 1.68

1.5 / 1.41 .26 .174 1.49 / 2.64 .79 4 3.16 / 2.10

1.5 I 1.59 .18 .207 .87 I 2.76 .12 3 .36 / 3.16

2.5 / 2.5 .91 .271 3.36 / 3.36 .60 2 1.20 / 4.84

2.5 / 2.5 0 .450 0 / 5.04 1.68 1 1.68 / 10.71

mean of 14: x x 1.41 x

mean of 19: 1.38 1.38 1.38 1.38

leapall: (26.13) (26.13) (26.13) (26.13)

EXP = expanded. D = divisor (working value), IND = as indexed, M = multiplier. ORD = ordered (sortee
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exhibit 24D

The granulated-to-0.2 example of exhibit 22A
expanded at intermediate values and analyzed

Observations leaps e -leaps

Gaps Gaps
IND ORD D IND ORD M IND ORD

-1.8 / -1.8 (0) / 0 /
-1.8 / -1.8 0 .450 0 / 0 0 /
-1.4 I -1.4 .4 .271 1.48 / 0 0 /
-1.2 / -1.2 .2 .207 .97 / .38 .38 17 6.46 / 0
-1.0 I -1.035 .167 .174 .96 1 .39 .01 16 .16 / 0
-1.0 / -. 967 .066 .154 .43 .43 .04 15 .60 / 0

-. 2 / -. 250 .717 .141 5.09 .43 0.00 14 0 I .10

-. 2 / -. 2 .050 .132 .38 / .50 .07 13 .91 I .16

-. 2/ -. 15 .050 .127 .39 / .54 .04 12 .48 / .32

0 I -. 033 .117 .125 .96 / .96 .42 11 4.62 / .60
0 I .033 .066 .122 .54 / .96 0.00 10 0 / .64

0.6 I .6 .567 .125 4.54 I .97 .01 9 .29 / .91

0.8 / .767 .167 .127 1.31 I .97 0.00 8 0 / 1.02

0.8 / .833 .066 .132 0.50 1 .05 .08 7 .56 / 1.10

1.2 / 1.167 .334 .141 2.37 / 1.31 .36 6 1.56 / 1.82
1.2 / 1.233 .066 .154 .43 / 1.48 .17 5 .85 / 2.32
1.4 / 1.4 .183 .174 1.05 / 2.37 .89 4 3.56 I 4.45

1.6 I 1.6 .2 .207 .97 / 2.95 .58 3 1.74 / 4.77
2.4 / 2.4 .8 .271 2.95 I 4.54 1.59 2 3.18 / 5.52

2.4 / 2.4 0 .450 0 / 5.09 .55 1 .55 / 5.46

mean of 14: x x 1.10 x

mean of 19: 1.33 1.33 1.33 x

leapall: (25.32) (25.32) (25.32) (25.32)

EXP = expanded, D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordered (sorted).
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exhibit 25

Behavior of means of 14 and 19 under simple adjustment

original gran to 0.2 gran to 0.5 gran to 1.0 gran to 2.0

means of 14

raw 1.15 1.08 .80 0 0

adjusted (1.15) 1.10 1.41 1.36 1.10

"Shepparded"* 1.15 1.15 1.16 1.19 1.30

means of 19

raw 1.31 1.32 1.36 1.24 1.43

adjusted (1.31) 1.33 1.38 1.28 1.31

"Shepparded"* 1.31 1.31 1.32 1.34 1.44

*"Shepparded" refers to the values obtained for the original (ungrouped) example
(exhibit 10) when adjusted by the inverse of Sheppard's correction for grouping.
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The simple adjustment has (a) provided usable values for the means of 14

when the example was heavily granulated, and (b) provided adjusted values for

means of 14, some of which are closer (than unadjusted means of 14) to the

results of making a correction for grouping to the original mean of 14, and

some of which are not. Clearly a much more detailed study would be needed

to yield definite results here, but if we needed to use means of 14 leaps for

heavily granulated data, we are very likely to gain by adjustment.

52. Discussion and heuristics.

The results of this one/one instance are encouraging, but it would require

a much larger simulation to leave us comfortably sure of how this adjustment

behaves.

We can, however, explain why we thought it better not to adjust the

extreme values. Nearer the center of the batch, such a value as - 1 may be

known to lie between - 1.5 and -0.5. When this is so, the distribution of

original values grouped at - 1 may be moderately uniform, and any reasonable-

seeming adjustment by spreading is likely to be sensible. At the extremes,

where we may know that +2 came from somewhere between + 1.5 and 4-2.5,

we also know that the distribution of original values ending up at +2 is very far

indeed from being uniform. The two reasonable choices are (a) leave the

extremes alone or (b) spread them out quite unsymmetrically. Doing the latter

is intrinsically more complicated. Since we are trying to be simple, it is natural

for us to follow route (a).
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APPENDIX C: A future possibility of handling shape using the tool kit

53. How we might proceed further with our syms.

We may as well suggest a method of proceeding further, into the shape

arena, with our syms. It is quite unclear how well the proposed approach will

work, but it seems worth writing down, if only for a threshold against which

other approaches can be compared, if desired.

We shall let G be a satisfactory method of smoothing, and shall begin by

focussing our attention on how such a smoothing procedure can be built into an

overall procedure. We shall turn a little later to suggestions for what smoother

to use for G.

* the general procedure *

We begin with a sequence of syms, {u, } for 1 < t < n, and a "good"

smoother G. Our first step is to accept {ut*) = G [ut I as our smoothed version,

and to at once proceed to assess its stability.

A reasonable approach is to simulate the anticipated sampling valuability,

first for the syms themselves and then, by applying G to several parallel

realizations, for the smoothed values. If we knew the true mean for each sym,

this would be both easy and direct. The best we can do is to work with a

substitutes for these unknown means. We have chosen here to use

{t) = G {i9 ) as the substitute. (We might also consider using fp**} = G {*

We now ask for 8 (or some other number) of well-balanced realizations,

each of n i.i.d. unit Gaussians. Call these {vt(l)}, {v,(2) , ..... {v,(8)}.
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If ave{ut} = ., then med {ut) - and hence (see section 13)

1
pseudosigia (u } " -- 4t. Thus

1t+ -L tVi(j)

which we shall approximate by

Ut* + Ut Vt(j)

has about the same I' and 2d moments as ut. Thus the variability of

, 1
{vt*(j)} G {ut' + -1- u, vt (j)}

from one j to another, should provide an estimate of about the correct

variability for ut*. (Recall that here G is a smoothing operator.)

Put

vt - Zvt*(Q)
-L y1St= (v*(J)-

~..I

{st2 } = G k +..+2 St1 k)

where 2k+ 1 is the odd integer approximating the greater of 1 and n/5. (For

individual values of t near 1 or n we shrink k as necessary.)

Here St2 is a rough estimate of var {ut*) and St2 is roughly a smoothed

version of a local smooth of var (ui ). So we can probably take st as an estimate

of the standard deviation of ut. We should also calculate a few serial

correlations of the {v (j) 1, (across j), each within one of the (first, second, or

last) thirds in r.
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we want individual + 2o limits on u,*, we can probably do well enough

with

(u,* - 2s,, u,* + 2st)

so that a plot of these limits against t (perhaps in pencil-point form, (cf.

Hoaglin and Tukey 1985) should be informative, making clear:

e whether or not we are forced to believe that what is estimated by ut* is

not constant, and

* how what is thus estimated may behave when it is not constant.

But we might reasonably want simultaneous limits rather than individual

ones. To do this we must do something equivalent to asking how many

"independent" values of t seem to exist. The serial correlations we have

calculated should offer a basis for such an estimate. (For plausible G, it feels

as if the number would fall between n/5 and n/15 once n > 50, but we will

have to try things out to learn what does happen.)

* good smoother *

Cleveland's lowess [1979] was defined in terms of moving fits of various

parametric expressions, but all realizations of it seem to have used linear fits.

In the present context, where we want to preserve wiggles, both a quadratic fit

and a moderately narrow window seem to be desirable. But we cannot expect

the result to be smooth enough. So we suggest for G the following:

9 First, lowess with a quadratic fit and window length 20% to 30% of the

total.
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" Then, smoothing by 3RSSH, twice.

" Finally, smoothing by HH, twice.

It is far from intuitively clear whether or not (i) the first step should also be

twiced, and/or (ii) the third step be made "H, twice" instead of "HH, twice".

Smoothers designed to have smooth differences may also have a place

here.

Only trial will teach us either how well this prescription is likely to do, or

in which directions it might be well to modify it.
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