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Procedures for separations with batches of values,
I. The orderly tool kit and heuristics

Thu Hoang* and John W . Tukey**

*Universite Rene Descartes
Laboratoire de Statistique Medicale
45, Rue des Saints-Peres
75270 Paris Cedex 06
Paris, France
and
**Princeton University
Fine Hall
Washington Road
Princeton, NJ 08544

A. Overview.
This is the first of a group of technical reports, directed toward the

question "Is it desirable to treat this batch of values together, or to separate
them into at least two parts?”. This question arose most prominently for us in
connection with the analysis of multicenter clinical trials, where we anticipate
that centers are truly different, at least to a degree, but need not - - in fact
should not - - be analyzed separately, one by one. It may be, however, that at

least one analysis should treat them in two or three groups!

Most of the present report is concerned with the tools that seem
appropriate for attacking this question. Since these tools are based upon order
statistics, it is natural to refer to them as "the orderly tool kit". The simple
aspects of order statistics involve, first, their typical values and then, more
importantly, the distributions of the corresponding gaps, multiples of gaps, and

other functions of gaps. Typical values are well approximated by

Prepared in connection with research at Princeton University sponsored by the Army
Research Office (Durham), DAA03-86-K-0073. .
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F~1((3i-1)/(3n+1)), whose values we call working values. Gaps and multiples
of gaps, including those we call leaps (chosen to have similar average values),

are distributed roughly exponentially and roughly independently.

Whenever our concern is even partially with spread, once we sort a set of
values, our focus of concern almost automatically changes from values to leaps.
In the present problem, among others, it is natural to look at the shorter of the
observed leaps as a tasis for assessing undisturbed scale. This means sorting
the leaps themselves - - and, hence, focusing on the leaps of the leaps, which

we will call e-leaps.

An important tool in managing indicators of spread/scale is the notion of
"d.f." - - classically thought of as "degrees of freedom" but in the present
context better thought of as "degrees of firmness" - - defined by some sort of
matching of distribution of the quantity of concern with the distribution of

some multiple of 2 "

on the appropriate df". (Notice that "zero" is to be
preserved.) We use d.f. to describe the distribution of any always positive
quantity, in particular, both quantities quadratic in the observations and
quantities linear in the ordered observations. (The d.f. for the square-root of
some quantity will be roughly 4 times the d.f. for the quantity itself.) One
reason why d.f. are convenient is that exponential distributions have d.f. = 2,
so that individual leaps will have (linear) d.f. close to 2 and sums of

(sufficiently nearly) independent leaps will have (linear) d.f. close to 2 times

the number of summands.

If the leaps were exactly i.i.d., the gaps (from which the leaps came) would

March 29, 1989
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be independent and exponential with differing scales. Thus the sum of the gaps
- - the range - - would have fewer d.f. than the leapall - - the sum of all leaps.
Thus the leapall should often be a helpful replacement for the range. Indeed,
for average gaps spaced like a Gaussian, dropping something like 7% of gaps
recovers about half the difference between df for range and df for leapall.
Merely rescaling one gap at each end does as well, and also rescaling a second

gap next to each end recovers half of what is left.

When we look at gaps from an exponential: (i) we go to e-leaps by
multiplying by 1 (outer end), 2, 3, ... and (ii) the sum of the e-leaps is

identically the sum of the observations.

It is often natural to leave out the largest (not usually the end-nearest)
leaps, which leads us to use e-leaps, treating the end-nearest ones specially. If
it were natural to leave out the largest e-leaps - - a situation yet to arise - - we

would want to use leaps of e-leaps.

Guidance for our specific problem is offered by the average leaps (say as
calculated for a single Gaussian sample of 20). For two Gaussian samples, say
of k£ and 20-k values, respectively, from two distributions with well-separated
averages, all average leaps are somewhat increased, those near the single valley

(between the batches from the two distributions) most.

A sample of 20 from a 50-50 mixture of two unit Gaussians separated
about 3.5¢ behaves, so far as average leaps go, much like 10 + 10

observations, 10 from each of two widely separated Gaussians.

March 29, 1989
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A parallel problem - - that of multiple comparison, where we are most
often comparing long-run averages associated with each of several treatments,
and where we do have an estimate of an appropriate error, both serves to
illuminate plausibility of approach to our central problem and offers a likely
application of the orderly tool kit. Uses of multiple compari,ons usually require
attaining focused knowledge (knowing that something unspecified is different
from something else unspecified is rarely, if ever, useful). Focused knowledge
comes in gradations that often parallel the evolution of knowledge in the
subject-matter field. The gradations for qualitative answers range from "can we
say anything specific (say about some pair of treatment averages)" to "have we
settled the order of all treatment averages". The early stages of qualitative
knowledge - - as well as the classical procedure for quantitative knowledge - -
currently involve using the range of a set of results (often treatment means)
and comparing that range with (the square root of) an estimated variance for
these results. Our earlier comparison of leapall and range raises the question

whether replacement of range by leapall will be helpful here.

For our present problem, in which we have no useful separate estimate of
variability, but which corresponds in flavor with the earliest stage of qualitative
-~
multiple comparison, our current understanding of multiple comparison
suggests that we should compare the leapall with an assessment of between-

treatment variability (between-center in our original problem) chosen to be

relatively immune to the presence of a valley - - or a few valleys.

We are now ready to focus the orderly tool kit on our main problem in
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more detail. Our work to this point suggests comparing the leapall (which is
also the sum of the e-leaps) with a sum or mean of low-index e-leaps. This
turns out to be equivalent to comparing a mean of high index e-leaps with a
mean of low-index e-leaps, a comparison for which the classical F-table offers
approximate % points. Once we have got this far, we shortly see no need for
all leaps to be either high-index or low-index. By converting A/B 2 ¢ through
(A/B) =c 2 0to A-cB2 0, we can even calculate an approximation - - of
unknown quality - - to the power of such a procedure. This lets us look at
alternative pairs of high-index and low-index means, suggesting the cases for

which we might well begin simulation, in which some leaps are omitted.

When we think harder about the approach so far developed, we conclude
that working with the four largest leaps may be fairly good, it is not good
enough, especially since we probably want power against single valleys (and
perhaps pairs of valleys). Only simulation seems likely to attack the question of

what restrictions to apply. Its application is left for a later report.

Appendix A looks, in considerably more detail, at typical values of order
statistics, particularly at typical values for gaps and leaps. Since exponentially
distributed quantities have large (100%) coefficients of variation, biases of even
* 10% are not important. As a result, working values (based on
(3i-1)/(3n+1) ) are quite precise enough for most situations. Similarly, even
the difference between basing leaps on the Gaussian distribution and basing
them on a t-distribution on 3 d.f. has rather weak consequences (the leapall’s

d.f. goes down about 3% near n = 20). Thus the exact distribution used to
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generate leaps is ordinarily not important, so long as it is, say, smooth and

single humped.

If, for reasons of neatness or intellectual curiosity, we look into order-
statistic typical values in more detail, we find such things as: (i) in the
Gaussian case, working values are increasingly nearer the medians than the
means as we move away from the ends of the sample; (ii) simple formulas
describe the differences quite well; (iii) differences between mean and median
(for Gaussian order statistics) are small compared to differences between
Gaussian and logistic order statistic medians (and means); (iv) when we look at
differences in typical value from one order statistic to the next, all three choices
of typical gaps (as differences of means. or of working values, or of medians)
give very similar results (displacement by a few % of the value); (v) on the
contrary, median gaps are about 70% of mean gaps (since gaps are nearly
exponential); (vi) means of lower-tail order statistics from the exponential (or
the rectangular) behave rather as if 0 were an additional observation, while
upper-tail order statistics deviate from working values in the opposite direction
and by about half as much; (vii) when we ask what % point of each order-
statistic distribution is given by the corresponding working value, all are
between 48.66% and 51.34%, and indeed if we set aside the end order statistics,
between 49.63% and 50.37% (very close to the median!), (viii) order-statistic
means correspond to % points a few to several times further from the median,

but still by only a few % of their value - - by a few hundredths of ©.

Appendix B looks at a single example of how grouping, with its
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concomitant ties, makes it difficult for gaps, leaps and e-leaps, and how
surprisingly well a simpie "spreading-out" modification manages to keep the

situation under control.

Appendix C hints, very briefly, how the orderly tool kit might be used to

study skewness, etc.

1. The problem.

This is the first of a series of reports, aimed at the problem of examining a

batch of values to inquire:

a) Is there evidence that it would be better to treat the values as two or
more subbatches (as if there was a valley dividing the parameters they

estimate)?
b) If there is, which splitting into two subbatches is most reasonable?

We address these inquiries initially for the case where we wish to treat the
values as equally variable, but we wish to use (and may have) no inforriation
as to what this common variability may be. Later (perhaps in the third report)
we plan to turn to the case where we have information about the distribution of

variability for the different values.

2. Leading cases.

We want to have reasonable control of both size and some sort of power
for our proposed procedure. So we need to fix a null situation and one or more
families of alternative situa.ions. Through doing this we seek guidance, but

regard ourselves as looking at leading cases - - rather than making assumptions.
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While the possible degree of robustness for this class of problems may well be
quite limited, it is our eventual intention to have techniques that are at least
moderately robust. As usual, however, we do not plan to begin our attack on a
new problem by requiring robustness. (We will give some incidental thought to

avolding the worst forms of non-robustness.)

As the nullest null situation, we choose a random sample from a Gaussian
distribution with unknown U and 6. (We hope to look at least briefly at

random samples from other distributions, say the logistic and the slash.)

As our initial set of alternatives we consider pairs of Gaussian distributions
with a common ¢ and different u. Here we feel free to consider either
subsamples of fixed sizes, one from each distribution, or a single random
sample from a mixture of the distributions. Again we start with the Gaussian
case, but are ready to consider others. We shall say that such alternatives
involve a single valley or slot, dividing one group from the other. (The

otherwise better term "gap” has been seized for a different use.)

3. Additional criteria,

Clearly we need criteria to guide - - rather than enforce - - our choices of
procedure. We plan to use the two-step approach set out in the introduction,
asking:

a) first, should we make a separation, and

b) second, what ses2. .ion seems indicated.

Our ideas of size and power or course refer to the first of these questions.
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If we have a need to answer the first question at all - - if the need for
some separation is not crystal clear - - it is most unlikely - - even for our initial
set of alternative situations, where there are really two subsamples, separated by
a single valley, and hence a single correct answer to the second question - - that
we will often reach that exactly correct answer to the second question. We
ought to expect a greater or less degree of misclassification. We shall strive to
hold misclassification near a minimum - - but expect to be guided by some
typical amount of misclassification, and not by the probability of perfection - -
which here would be choosing the separation into two batches that exactly

matches how the simulated data was generated.

4. Heuristics.

We do our best to be concerned with real problems. This always makes an
asymptotic approach uncomfortably weak, since neither of us has secen a real
problem where "n really tends to infinity". The present problem is even more
difficult for asymptotics than usual, because so much of our interest in the

problem of separations is confined to small values of n.

We endeavor, therefore, to be as realistic as we can. This means admitting
we are working with approximations, frequently asking for some insight into
how well our approximations do, and emphasizing "heuristics" rather than
"theorems". In particular, an effect, a phenomenon, or an approximation that,
in samples of usual size, contributes only a small part on our overall
uncertainty will only be allowed for explicitly if it is quite easy to do this.

Otherwise we will do better to just regard it as unimportant and not worth our
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attention.

5. Stimuli.

Our attention was directed to this problem by a situation familiar in multi-
center clinical trials, where it frequently seems natural to ask whether or not
the clinics need to be separated into two (or more) subbatches at least, as one
of the analyses. Since a clinic-to-clinic variance component could be substantial
when clinics were randomly sampled from a single-humped population of
clinics, it would be inappropriate to compare between-clinic variability with
within-clinic variability as a basis for answering such questions (since estimates

based on within-clinic variability might be badly biased downward).

We feel that the separation problem (the valley-seeking problem), as
formulated generally above, is an appropriate general framework in which to
approach such multi-center questions. We plan to discuss the details of such an

approach in later technical reports of this series.

The formulation of the orderly tool kit - - and our orientation toward that
kit - - were substantially influenced by the numerical results of empirical trial

(simple simulation) of some earlier formulations of a "separation statistic".

THE ORDERLY TOOL KIT

6. Character.

By this label we identify a fairly generally applicable, finite sample approach

that emphasizes order statistics and quantiles, and that depends on

March 29, 1989




-11 -

approximations of varying quality, some very good, and on a willingness to
treat distributions as smooth (while privately recognizing that actual
distributions are almost all discrete at some level of detail). This kit gives
much more widely applicable results than can be provided by the classical
Gaussian tool kit, which has constraining emphases on narrow specifications, on
maximum likelihood, and, almost automatically, on exact optimality, and which
consequently lacks robustness (and calls for a major role for moments). Our
use of the orderly tool kit will be two fold: (in this report) as a source of
suggestions for what to calculate, and (in the next report) as a framework for
interpolation (based on its approximations) among simulation-based specific

results.

7. Order-statistic typical values.

Under the null hypothesis thaty; < y, < ...< y, is an ordered sample
from a cumulative distribution F(y), each of the order statistics y; will have a
median depending upon i, n and F. Moreover, F(y;) £ F(yp) £ ... F(y,)
must be an ordered sample from the uniform [rectangular] distribution
on [0, 1], whose medians we may write a’u(il n) and pronounce "a-split of the

i of n". Because F and F~! preserve order, we must have

I4 ’
ap(i |n) = median{y;| n, F} = F~(a,(i| n))
4
so that, once we have a satisfactory approximation to a, (i| n), we are very well
equipped as far as medians of order statistics go.
It is often helpful to work with the means of order statistics, for which we

gain some simplicity by writing them in a similar form, in terms of @z (i | n),
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defined by
mean {y;|n, F}= ap(iln) = F~ X a@r(i|n))
Here a,z(i| n), which is implicitly defined, changes somewhat - - but not too
much - - from one F to another. One reason for such helpfulness is that
ave (yip1=y;} = ave i1} — ave {y;}
an exact relation that does not extend, exactly, to medians. (In fact, since gaps

are roughly exponential, while the order statistics are typically one-humped, the

corresponding relation for medians fails by a factor of nearly 0.7.)

Since the distributions of order statistics for,the usual single-hump parents
(like Gal;ssian, logistic, etc.) are skewed outward - - as are the upper-tail order
statistics of the exponential - - we can confidently expect that, in these
situations as well as many others, the mean of a given order statistic will be

outboard of its median.

Moreover, we can expect that 3z (il n) will often be moderately close to
a,,.-(il n) so that there is hope that we can approximate both a’,.-(il n), for all
continuous distributions, and 3@z (i| n), for at least many well-behaved

distributions, by a single approximation.

8. Working values, and other related quantities.

Observation teaches us that

’ . 3i-1
i S -l 22—
ap(iln) (3n+1)
is a surprisingly good approximation - - as we can see most simply, perhaps, in

terms of the percentile of the distribution of the order statistic to which
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a',.-(i | n) corresponds. The largest deviation of this percentile from 50% arises
for the extremes, i=1 or n, when n is large, where a’p(l| n) or a',.—(n| n) is the
51.34% or 48.66% point of the distribution of the corresponding order statistic.
For i=2 or n-1 the corresponding extreme values are 50.37% and 49.63%. For
i=3 or n—2, 50.18% and 49.82%. For all other i the percentiles delivered by

this approximation are even closer to 50%.
Accordingly we write

. -1, 3i—1
= F-l(—=——
ap (il n) (3n+1)
and feel free to use ap (il n) wherever the null median of y; would seem
appropriate - - and in many instances where its null mean would seem
appropriate. We omit the F when it is clear from context what F is intended,

and we call a (i| n) a working value for the corresponding order statistic.

We show numerically, in appendix A (Sections 39 to 48), (i) that for the
usual distributions the working values fall between means and medians, and (ii)
for the Gaussian and the logistic at least, that the differences between mean
and median are not large. Thus it is sensible to use the working value as an
approximation for either @(i| n), the mean of the i*" order statistic, or for
a’(i[ n), its median. (When, as for the end order statistics for certain
stretched-tailed distributions, the means are very extreme or even no longer

finite, a (i| n) approximates only the median.)

We have reached working values of broad usefulness by seeking, on the

y-scale, a simple combination

-1, 3i-1
F (3n+1)
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of the underlying cumulative distribution F with { and n. One useful thing
that expression in terms of F~1 does, is to automatically adjust for changes of

location and scale within a given shape of distribution.

If we want to describe order-statistic typical values - - for instance their
mean or their median - - in more detail than is given by the working values (a

rather uncommon occurrence), it is plausible to write

numg (il n)

typical valueg (il n) = F~!
ypical valueg(i| n) ( It

and to plan to compare numpg (il n) with 3i—1. Solving for numg(i| n), we get

numpg (il n) = (3n+1) F(typical valueg (il n))

= (3n+1)(own tail area)

a form that is not hard to think about, and one that leads to numg(i|l n) that are

often easily compared with 3i—1. (Compare Sections 41-45.)

9., Medians, etc.
Giveny; € y, £ ...< y,, we naturally consider the median - - the

value of y; for which i = —;—(n+ 1), using interpolation for even n - - as one

natural indicator of centering (location). This has an efficiency of 2/3rds or
more for most relevant distributions. It often seems worthwhile to bring in

more order statistics to enhance efficiency.

When interpolation seems not to be desirable, a reasonable solution is to
use the lomedian, which is the central order statistic for n odd and the lower of
the two central order statistics for n even. Thus i(lomed) = Li(med)J , where

[ | indicates "the greatest integer <
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An impure (from the point of view of order), but often convenient,
approach is to go in the direction of the midmean - - defined as the mean of
the middle-half of the order statistics. A slightly purer approach would use a

"medmid"” in which we first form the mids

1

3()’;‘ + Yn+1-i)
and then take the median of these mids. (The impurity, from the point of view
of order, is now confined to averaging y; with y, . 1_;, @ process that does not

commute exactly with monotone transformation.) For hand calculation, with

hinges defined by i(H) or n+ 1-i(H") equal to %(1 + i(lomed)), the trimean

1
'Z‘()’i(H) + 2Vitmed) T Vi %)

is essentially as efficient as the midmean.

For careful computer work and n 2 8, we may want to use the more

efficient - - and more impure - - biweight.

The main purpose of discussing centering here is to clear the way for

discussing other aspects of batches and distributions.
10. Gaps and leaps, syms.

* gaps %*
The second fundamental set of facts about the distribution of order

statistics is equally important. As can be seen from a theoretical, heuristic

argument summarized below:

March 29, 1989




- 16 -

o thegaps g, =y,-¥1,83= Y37 Y2, .. 81 = Yn~Yn-1 aIE
approximately uncorrelated when the {y;} are order statistics from a

smooth null distribution F.
(We can see why this is plausible in moderate generality by observing that:

(i) the order-statistics of a sample, regarded as a stochastic process, satisfy

the strong Markov condition,

(ii) the strong Markov condition often leads to an approximate weak

Markov condition,

(iii) an exact weak Markov condition would make the gaps exactly

uncorrelated.)

However, the empirical results, showing low correlations for specific
distributions and finite sample sizes are better evidence. (The sophisticated
argument helps by suggesting that if we tried still other distributions we would

find the same phenomenon.)
Moreover, empirical calculation also shows that:

e each gap is roughly exponentially distributed. (This approximation fails
seriously only for the end gaps g, = y,—y; and g, = ¥,—Yn,_; of samples

from extremely-tail-stretched F. Compare Filliben (1969).)

Most of the simple aspects of the behavior of order statistics and functions
of order statistics involve gaps (or simple modifications of gaps, like those we
are about to introduce). The approximations for means-or-medians of the
distributions of order statistics are useful in conjunction with the nice properties

of gaps. Together, these two points are the foundation of a widely applicable
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approach, the essence of the orderly tool kit.

*  leaps  *
If now we introduce leaps (sometimes called "normalized gaps" or

"standardized gaps") by

8i+1 - Yiv1 = Vi
ap(i+1|n) = ap(iln)  ap(i+1n) = ap(il n)

hivy =
we will have

ap(i+1|n) - ap(iln) . ap(i+1|n) = ap(iln) _

mean {h; .1} = - - = - : =
vy ap(i+1n) = ap(ifn)  ap(i+1lln) - ag(iln)

If F in ag(i| n) refers to a standard form of some distribution shape,
rather than to the distribution of our y’s, and the y’s are distributed ¢ times as
widely, but in the same shape, then

mean{h;, |} =0
In both cases, the h’s are approximately exponential.

We will sometimes find it convenient to work with the denominator, D;,

where
D"+1 = ap(i+1| n) - aF(il n)

and to recall the simple relations

gap
denominator

leap =

gap = (denominator)(leap)

as well as the fact that denominators often come from working values of an

assumed - - or reference - - distribution.
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The clearest virtues of the h;,, are that they (i) are approximately i.i.d.,
(ii) we know their approximate distribution is exponential, (iii) they tell us
about ©.
*  syms ¥
For many purposes it is convenient to use the A;,; themselves; for others
we might like to use transforms that are more "nicely"” distributed than being
exponential. To this end, we may want to go over to the syms

Vie1 = 3.3(hi, 1)0'3

for which

median(v;,) =3.36%3

pseudosigma(v;, 1) = g3

so that pseudosigma (v;,) = —é-l?(median(v,-ﬂ)) where "pseudosigma” refers

to an indication of standard deviation based on a symmetrical pair of % points.
Similarly "mid" is an indication of center location based on a symmetrical pair
of % points. Exhibit 1 shows how well these approximations hold for
something exactly unit exponential. We see (a) that the pseudosigma of the
syms decreases somewhat as we move into the tails, so the distribution is
somewhat squeeze-tailed, and (b) that the mids drift somewhat to higher values
as we move toward the tails, so the distribution is somewhat positively skewed.

Both deviations are a lot smaller than we might have feared.

exhibit 1 about here
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exhibit 1

Behavior of syms when 4, is unit* exponential

% points %opoints pseudosigma*=*

Tail area of leaps, A;,, of syms, v, for syms mid»+*
50% .6932 2.9565 2.956
20% 2231 1.60%94 2.1041 3.806 1.011 2.955
10% .1054 2.3026 1.6802 4.2382 0.998 2.959

5% .0513 2.9957 1.3538 4.5863 0.982 2.970
2% .0202 3.9120 1.0236 4.9687 0.960 2.996
1% .01005 4.6052 .8302 5.2178 0.943 3.024
0.5% | .00501 5.2983 6737 5.4420 0.926 3.057
0.2% | .00200 6.2146 5115 5.7087 0.902 3.110
0.1% |.00100 6.9078 4155 5.8927 0.886 3.154

sFor o# 1, multiply the two "% points of h;, " columns by &,
and all columns further to the right by o®>.

#»These are pseudosigmas for v;,;. For comparison, the pseudosigmas of A, itself are:
.824, .857, .895, .948, .968, .988, 1.028, 1.079, 1.118

=*»These are mids for v;,,. For comparison, the mids of h,, itself are:
693, .916, 1.204, 1.524, 1.966, 2.308, 2.652, 3.108, 3.459.

pseudosigma = (difference of p% points for given quantity)/(difference of p % points for unit Gaussian)

mid = (sum of the two p % points)/2
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If we look at mids and pseudosigmas for h;,, itself in comparison with
these quantities for v;, |, we see (a) that we would need an exponent below .3
(perhaps about .27) to keep the mids nearly constant and an exponent above .3
(perhaps about .38) to keep the pseudosigmas nearly constant. Thus 3isa
reasonable compromise. (Since we want our symmetrizing transformation to
work for all ¢ > 0, we have little convenient choice but to use some power

transformation.)

11. Stretches and sumleaps, leapalls.

Beside the gaps, y;, ;—Y;. it is natural to consider 3-stretches

Yier=¥Yi = Qs Yie 1) + Qiv1=Yi) = Giv2 + i1

or 4-stretches

Yiezs = i = Qiez=Yiey ¥ Qiv2=Yie ) + Qiv1= Y1)
= 8iv3t Siv2t 8iv1

and their further generalizations.
While we could stabilize the scale of g;,, + g;, by dividing by

a(i+2/n) = a(iln), it seems better to stabilize the individual gaps, going to

Yiv 2~ Yis1 + Yiv 17 Vi
a(i+2/n)-a(i+1n) a(i+1ln)~adiln)

hiva+ hipy =
and its generalizations, which it would be natural to call sumleaps, since they are
sums of adjacent leaps.
To the extent that the individual leaps are exponentially distributed - -
behave like a certain multiple of %2 on 2df - - and reasonably independent, a

sum of & leaps is distributed rather like the same multiple of 2 on 2k degrees
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of freedom. This approximation is helpful, rather than very exact. In the null
situation, if we compare a sum of k leaps with the corresponding (k+1)-
stretch, and measure stability by equivalent degrees of freedom, we should
expect to have more stability for the sumleap (where all the summands - - the
leaps - - have essentially the same scale) than for the corresponding stretch

(where the summands - - the gaps - - do not have a common scale).

In particular, the leapall - - the sum of all the leaps - - should be somewhat

more stable than the range.

12. e-leaps and iterated e-leaps.

One way to let our leaps tell us of the underlying scale is to summarize
them directly. A simple - - and even efficient, if we had exact exponentials - -
approach is to add them up, which corresponds to looking at the leapall. If we
were deeply enough dedicated to the null hypothesis, we might do just this. In
many practical non-null instances, however, we anticipate that the most leaps
will approximate null behavior, but some will be rather inflated. If we want to
take account of this, we will want to use the small 4°’s to tell us about G,

without being bothered by large ones. How is this to be done?

To about as good an approximation as the original y; were a sample (of n)
from F(y), the h;, are a sample (of n—1) from an exponential. So it is
natural to reorder them, starting with index 2, so that A, < hy < ... £ h,

and to form first their e-gaps and then their e-leaps, namely, first

* *
hiv2 — hixy
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and then, if we continue to use working values as a denominator,

.‘ - h~.
€iv2 = - ir2 ke - (temporary)
In(1- =Ly _jp1- 342,
3n-2 3n-2

Recalling that we adopted a denominator based on working values as,
among other things, an approximation to one based on order-statistic means,
we should be ready to take advantage of the simple form of the mean gaps
from an exponential distribution and plan to use

eiv1= (n=G+ 1)) -1 (permanent)
where we include k| as automatically = 0, and calculate either form of e,
accordingly (as well as calculating ez, e4, . . ., e, which depend wholly on

data-derived A;%).

The e;,’s will again be (i} nearly i.i.d., (ii) nearly exponential, (iii) nearly
uncorrelated. Clearly we could iterate the process - - but it is not clear that it

will pay us to do so.

The more plausible approach would be to take the ¢;,, corresponding to
small values of i (which means small values of ¥, the same as small values of
h) and regard them as telling us about the ¢ corresponding to the well-behaved
values of &. This they can do easily through the value of the corresponding

sumleap.

13. Seductive, but not recommended.

Given a set of ¢;,|’s say m in number, someone sufficiently hipped on an

orderly approach might suggest the following scheme:
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a) Orderthee’s,ase; < e; < ...< e,

b) Notice that, for the exponential distribution,

3i-1
3m+1

ag(ifm) = —o-In(1- )

¢) Form

3i-1
3m+1

-In(1- )

as an estimate of G.
d) Combine these, using a median, a midmean, or a mean.

The weak point in this procedure is the severe lack of independence of the ¢;".
The e;,, were, roughly, independent, the ¢;} | —¢;* are roughly independent, but
the ¢;" are very far from independent (in particular because their values are
ordered). Consequently this is a much poorer approach than that of the last

section.
A simple, distantly related example may help to clear the ideas! If
Zy,22, ..., Zy_ all estimate O, with similar precision and small correlations,

then each of zy, —;-(z1+ z,), %—(z1+22+z3), ..., also estimates 6. The mean of

the latter quantities is 1/(n—1) times their sum

1 1 1 1 1 1
l+ —4+ —+.. .+ + (—+—+... .+
+r2+3 At (373 n—1

which for n=20 reduces to 1/19 of

1
)z2+(—3-+...+ —

3.5521 + 2.5522+ 2.0523 + 1.7IZ4+. ..o+ .23216+ .17ZI7+ .11218"“ .05219

which, with its largest weight ratio of (3.5477/.0526) = more than 67 to 1, is

obviously a poor utilization of z’s of similar precision and small correlations.
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14. Going further (another time)?

We have explored centering (location estimation) and widthing (scale
estimation). There clearly remains a question of shape estimation, which
should almost certainly be approached as a matter of direction, character, and

behavior of deviations from some reference shape.

We are not going to need to do this in the present report, so we need at

most suggest directions of inquiry.

Some sort of fitting or smoothing procedure seems the natural approach.
The question is "which sort, applied to what?" the most naive approaches would
use (discrete) orthogonal polynomials or (discrete) Fourier functions, applied
perhaps to the h;,; or the v;, ;. We defer further discussion, except for

Appendix C (Section 53).

EQUIVALENT D.F.

When dealing with problems of spread or scale, we usually calculate
quantities that are essentially positive, whose stability often concerns us. We
want to describe stability in a way unaffected by taking a constant multiple.
Two solutions have often been used (other than to look at the "coefficient of
variation"), one is to look at the variance of the logarithm of our positive
quantity, the other is to use "d.f.". In the present context, the latter seems

more convenient.

15. Equivalent degrees of freedom. - - or of firmness.
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If we have a reasonébly well-behaved distribution of positive values, it is
natural to relate it - - with a degree of approximation to be looked into in each
special case - - to a multiple of 2 with some equivalent degrees of freedom,
referred to as "d.f.". In such a situation the "f" can more usually be regarded as
referring to "firmness" since multiples of %2 with more d.f. are quantities whose
standard deviations are smaller fractions of their mean. This will probably
seem most natural when the values whose distribution is being discussed are
values of a homogeneous quadratic function of the observations, like
5= Z(y,-—?)zl(n— 1), which, under exact Gaussian hypotheses, is distributed
like a multiple of x% on n—1 degrees of freedom. But we need not confine

ourselves to such (quadratic) d.f.!

If, say, 52 is positive, 5o too is s, its positive square root. And we can
attach a (linear) equivalent number of d.f. to s, just as we can attach a

2. For both cases,

(quadratic) equivalent number of degrees of freedom to s
our reference is the distributions of %?, so that s, with its smaller relative
variability (smaller coefficient of variation), will have many more (linear)

equivalent d.f. than s? has (quadratic) equivalent d.f. .

*  Dbases for assessing d.f. *

Before we illustrate this possibility, we turn aside to ask how one might
calculate an equivalent number of d.f., given more or less information about
the distribution shape in question - - which is essentially sure to be specified by
giving an example distribution belonging to the shape. Our means of assigning

d.f. need to be dimensionless, in the technical sense of that word, so that we
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assign the same number of d.f. to different distributions belonging to a single
shape.
If we know % points, it seems natural to form such ratios as

upper 10% point
lower 10% point

upper 5% point
lower 5% point

upper 1% point
lower 1% point

(all of which are dimensionless) and then to interpolate in a table giving the
corresponding ratios for x2’s with various d.f. . (When we need to be specific,

these are naturally called 10/10% d.f., 5/5% d.f. and 1/1% d.f. .)

If instead (or additionally) we know some moments, it is natural to start

with dimensionless moment ratios, like

(average)?/ variance

which is the reciprocal of the square of the coefficient of variation. A look at

the low moments of %2 shows that, for this prototypic case,

2
df. = 2—(2‘%;)— (for multiples of chi-square)

so that it is natural to put, rather generally, in the quadratic case
(ave)? (= 2

var (c.v.)2

moment d.f. = 2

* a first example *

To see how this all works out in a simple case where we know both %

points and moments for both a quantity and its square root, it is easy to take
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chi-square (with various d.f.) as the quantity. Exhibit 2 shows the results.

exhibit 2 about here

Clearly the paired-% point and moment assessments agree (for the square root)
better than we might have anticipated. In this case - - namely v x? - - it seems
to make very good sense to assign (linear) equivalent d.f. and plan to make

heavy use of them.

In particular we note how closely

(linear scale equiv.d.f.) = -1 + 4 (quadratic scale equiv.d.f.)

holds for this case. Indeed, adding (0.7)/(quadratic scale equiv.d.f.) to the
right-hand side gives almost perfect agreement. (Most deviations are
apparently due to rounding in the tables of moments or percent points.) We
may be able to do well - - hopefully - - by borrowing this relation for other

situations.

16. Ranges and leapalls.

The Gaussian range provides another convenient example. Exhibit 3 gives
some equivalent degrees of freedom for Gaussian ranges, calculated as
indicated. For n < 45, the short-tailedness of the Gaussian parent makes the
number of degrees of freedom greater than 2(n—1) (recall that the range is the

only n-stretch). For n 2 50, the converse is true.

exhibit 3 about here

For a logistic F, with its nearly exponential tails, our leaps will be more

nearly exponentially distributed, and more nearly independent. (For a single
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exhibit 2
Equivalent degrees of freedom for %2 (quadratic scale)
and ¥ P (linear scale) using either % points and moments

to fix the equivalent degrees of freedom

d.f. d.f. (quadratic scale)for 2 d.f. (linear scale) for ¥ x2 4Q-1
tabular | 10/10% 5/5% 1/1% moments |10/10% 5/5% 1/1% moments |+ .7/Q#*
3 3 3 3 3 10.07 9.83 9.31 11.23 11.23
5 5 5 5 5 17.95 17.67 1699 19.14 19.14
9 9 9 9 9 33.87 33,51 32,79 35.08 35.08
19 19 19 19 19 73.86 73.81 72.66 75.04 75.04
29 29 29 29 29 113.83 11350 112.63 115.03 115.02
40 40 40 40 40 157.79 157.50 156.62 159.02 159.02
50 50 50 50 S0 197.80 197.45 196.57 199.00 199.01
60 60 60 60 60 237.80 23745 236.57 238.99 239.01
100 100 100 100 100 397.79 379.44 356.55 399.03 399.01

*Q is the "quadratic scale” equivalent d.f. and the form 4Q-1 + -z was found empirically.

Q

L is linear scale

(A corresponding approximation would be Q él‘:—l- - Lfl

).
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exhibit 3
Equivalent degrees of freedom (as a multiple of x2, linear scale)
for the Gaussian range. [Note that X2 is here being used to

approximate the distribution of a /inear function of order statistics.]

matching ratios* first two ratio of
n 10% 5% 1% moments** 2(n—1) lasttwo (**%)

5 13.6 133 12.7 14.5 8 .55 (95.6)
10 29.2 290 285 29.8 18 .60 (84.9)
15 428 418 415 42.2 28 .66 (76.6)
20 53.0 52.7 525 52.54 38 723 (70.0)
30 704 704 70.1 70.51 58 .823  (61.3)
40 848 850 85.0 83.39 78 935 (58.8)
50 97.1 971 973 95.21 98 1.030 (46.5)
60 107.6 107.7 108.0 105.49 118 1.119 (44.8)
70 117.2 117.3 117.6 114.48 138 1.205 (41.6)
80 125.7 125.8 125.8 122.72 158 1.287 (39.0)
90 133.6 133.8 133.9 130.45 178 1.365 (36.7)

100 141.5 140.7 141.4 137.43 198 1.441 (34.8)
200 188.3 398 2.11 (23.7)
500 268.7 998 3.71 (13.5)
1000 340.3 1996 3.87 (8.5)

*Degrees of freedom to match ratio (upper p % point)/(lower p % point).
*+Value of twice (average) 2/ variance.

=*sFor X2 the linear df is f, = 4(n—1) — 1+(.7/(n—1)). This column gives 100
(moment df)/ f,, a measure of the efficiency of the range.
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exponential F, each gap y;, —y; is exactly exponential, both unconditionally
and conditionally on y;. Consequently the gaps are exactly independent in this
case.) In the logistic situation then, the approximation of 2(n—1) degrees of
freedom for the logistic leapall seems likely to be quite good for all n.
Morcover, the degrees of freedom for the logistic range should be appreciably

less than for the logistic leapall.

17. Relation to variance of the logarithm.

The variance of log(sz), where s2 is distributed like a multiple of xz, is

approximately (Bartlett and Kendall, 1946)

2
(d.f.g)-1

where d.f.Q is the (quadratic) d.f. for the x2 concerned. So another way to set

(check this!)

d.f. would be to start from this approximation which implies

2
+
var(log(quantity))

de =

Clearly

var (log(¥ quantity)) var(-;—log(quantity)) ,

-‘lrvar(log(quantity)) :
12
4 (dfg)-1 "~

so that the corresponding d.f., say d.f.; for V quantity satisfies
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d fL = 2 - + 1= 2 + 1,
var (log(V quantity)) 1 2
4 (dfg)-1
= 4dfg-D+ 1,
= 4de -3 s

which again illustrates linear d.f. as about 4 times quadratic d.f. .
SOME HELPFUL SPECIAL CASES

18. L.i.d. leaps.

If the leaps are i.i.d. with a distribution for which 2ave?/var = 20, then the
leapall, as the sum of n—1 independent terms, will have a value of 2 ave?/var

that is (n—1) times as large.

Hence we have

2 - z
2(ave(leapall)) = 2n~1) (ave (basicleap shape))” _ 2n—-1) 0 .

t d.f.(1 1) =
momen (leapall) var (leapall) var (basicleap shape)

If {D;} are the denominators that convert gaps into leaps, then

range = Y (gaps) = Y D;(leaps)

so that (using i.i.d. for leaps)

ave(range) = Y D; ave(leap) ,
var(range) = Y, D2 var(leap) ,

D;)?
(XD 0

moment df(range) = 2——
: >D?

Y

where the last relation follows from [ave(leap)]z/[var(leap)] = 0.
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If our i.i.d. leaps come from gaps that have averages proportional to the

average gaps of a unit Gaussian sample, these gap averages can serve as the D;,

making it easy to calculate Y D; and Y D2 Exhibit 4 shows results for selected

values of n. We see that, particularly for somewhat larger », the stability of

such a range is appreciably less than for the corresponding leapall.

exhibit 4 about here

There is some interest in understanding where this loss in efficiency for

ranges is concentrated. What if we fix up only a few near-end gaps? For
n=10, for instance, the range, in terms of gaps, is

((Y=y) + (Y3=y) + (Yg—y3) + sy + ... )

while the leapall, also in terms of gaps is

Y=Y Y3=y2 Ya—J¥3 Ys=Ya Yio0~Ye
+ + + + ...+
.538 .538

A compromise would be to use

Y2~ ¥ Y10~Y9
T (Y3=y2) + (Ya—y3) + (Ys—ya) + ...+ =

where ?? is chosen to produce a multiple of

Ya~=Y1 + Yo—Y2 + Y10~ Y9
.538 1.001/3.5 .538

where 1.001 = ~ag,, (2] 10) = +ag,, (9] 10).

(This gives ?? = (.538)(3.5)/(1.001) = 1.874.) We call the result the one-step

compromise.

A more refined compromise would be to choose ??? and ???? to do as

well with
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exhibit 4
Values of ¥ D; and ¥ D2, and of moment d.f. for a
range based on ii.d. leaps (shape fixes 6)

when the D; are proportional to average Gaussian gaps

Moment d.f. Moment d.f. .
an YD, YID? forrange  for leapall  ratio

10 3.078 1.16227 16.3030 186 90.5%
20 3.735 928121 30.0450 380 79.10%
30 4.086 .8060 41,300 580 71.2%
45 442 7119 54.710 8860 62.2%
50 4.50 6936 58.390 986 59.60%

*(moment d.f. for range)/(Moment d.f. for leapall)
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(y2-y1) (y3-y2)
575 T T T Oy E

as we can. We shall call this the 2-step compromise (And so on.)

Exhibit 5 shows the consequences of (a) dropping end gaps entirely and

(b) using compromise weights.

exhibit 5 about here

We see from the exhibit that, roughly, fixing up one pair of gaps takes us
half way up to 100%, fixing up a second one takes us about another half, and
so on. Dropping a well-chosen number of gaps gains one of these powers of

two for n=50 - - but gains much less for n < 30.

19. Samples from a Gaussian.

We have already examined (see exhibit 3) the linear degrees of freedom
for the Gaussian range. We can now try borrowing the ratio
df(leapall)/df(range) from the i.i.d. situation of the last section and applying in
to the Gaussian case, where (a) gaps or leaps are somewhat shorter-tailed than
an exponential and (b) there are some non-zero correlations. The result is an
approximation - - of unknown quality - - to the moment d.f. for a Gaussian

leapall when the underlying distribution is Gaussian.

Exhibit 6 shows the results of such a calculation. We clearly expect the
Gaussian leapall to be more stable than the Gaussian range, more and more

noticeably as n increases.

exhibit 6 about here
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exhibit §

Fixing-up the ends only; the consequences, under Gaussian hypotheses,

in (linear-scale) moment d.f. terms** of (a) omitting end gaps, and

(b) rescaling them appropriately

n=10 n=20 n=30 n=50
Range 16.30+ 30.04 41.11 58.82
Drop 1 + 1 gaps 13.74 31.32= 46.70 7297
Drop 2 + 2 gaps 9.97 28.98 46.37 77.21
Drop 3 + 3 gaps 6.00 25.60 44.10 77.76
Drop 4 + 4 gaps 2.00 21.36 40.99 76.52

Range (again) 16.30(90.6%) 30.04(79%)

1-step compr. 17.74(98.58%) 35.20(92.6%)

2-step compr. 17.97(99.8%

) 36.96(97.3%)

3-step compr. 17.99(99.9%) 37.60(98.9%)

4-step compr. 18.00(100%)

(leapall) (18(100%))

*Marks maximum in column.
#*All values omit a factor of 0,

37.86(99.6%)

(38(100%))

March 29, 1989

41.31(71.2%)
50.63(86.6%
54.35(94.0%)
56.0(96.5%)

56.93(98.3%)

(58(100%))

58.82(60.0%)
76.78(78.3%)
85.06(86.8%)
89.66(51.5%)
92.44(94.3%)

(98(100%))
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Exhibit 6
Approximate (linear) moment d.f. for Gaussian leapall,
calculated as (linear) moment d.f. for the Gaussian range

multiplied by the ratio (leapall d.f.)/(range d.f.) for the i.i.d. case

d.f. for ratio of approximate linear d.f.

n range d.f’s  d.f. for leapall* for s ratio

S 145 979 14.83 19.14 (.77)
10 29.8 905 3292 35.08  (.93)
15 42.1 .843 49.94 59.04 (.85)
20 525 7911 66.36 (79.03) (.84)
30 69.57 712 97.71 (119.02) (.82)
45 89.49  .622 143.87 (179.03) (.80)

*The corresponding quadratic-scale d.f., using the approximation reached in exhibit 2, are:
3091, 8.46, 12.72, 16.84, 24.66, 36.23 whose ratios to 4, 9, 14, 19, 29, 44 are .983, .939, .909, .886, .8545, .823.
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20. Samples from an exponential.

There are two striking results for samples from an exactly exponential
distribution:

e the sum of the observations is a sufficient statistic for the parameter,

and since the observations are i.i.d. with 6=1, the moment d.f. for this

sum is 2(n—1),

e the e-leaps are also i.i.d. exponential, so their sum, the e-leapall, is also

sufficient, again with moment d.f. = 2(n—-1).

It seems anomalous to have two sufficient statistics, both for the same
parameter, (although it is comforting that they do not have different equivalent

degrees of freedom). It is easy to resolve the seeming paradox.

If aE(iI n) is the mean of the i** smallest order statistics from the

exponential, with ag (0| n) = 0 and hy = 0, then

. . 1
ag(i+1|n) - ag(ifn) = p—

so that the e-leapall is

n(hi{=hg) + (n=1)(hy=h{) + ...+ (hy—h,_1)

which collapses to

hi+hy + ... h,
which is the original leapall. Thus our two exceptional results say the same

thing about two quantities whose values are always identically the same. (What

could be simpler?)

There is a simple generalization of this result, namely:
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e a low-index sum of e-leaps is a Winsorized sum of (ordinary) leaps.

We illustrate for the 15 low-index e-leaps for n=20, for which

ey = 19(hi~h¢)
e, = 18(hi~h})

= 5(his~hys)

o
..‘
“n

|

so that (since hg = hy = 0)
e;+ ey+..+ es=hi{ + hy +..+ 5h{s
in the right-hand side of which k[ to kg have each been Winsorized to give
his.
For the exponential, ordinary leapall and e-leapall coincide. As we move

away from the exponential, which should we follow?

21. Alternatives, alternatives!

So far we have discussed the orderly tool kit as if only one situation
needed to be considered. (We have occasionally used the words "null situation”
but have not contrasted it with an alternative.) Yet essentially all statistical or
data analytic procedures are only useful because "there might be alternatives!".
(The natural candidates for exceptions are goodness-of-fit procedures, which
seem to concentrate on the null situation. Yet if no alternative was possible, a
bad fit is at most something to include in Guinness’s book of records! The
usefulness of a sufficiently bad fit is that it urges us to take alternatives quite

seriously!)

Again much of our analysis is directed toward quantitative alternatives - -
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quantitative diversity - - in situations where a few-parameter model may be
quite diverse enough. That is not the kind of situation we plan to attack in this

overall account - - where the basic alternatives are:
e it appears reasonable to treat our batch of numbers as a single entity,
e it appears better to treat it as consisting of at least two subbatches.

It is in this situation that careful formulations - - for both null and alternative
situations - - can make the orderly tool kit applicable to as many alternatives

and partial problems as we can arrange.

22. Alternatives and the "choice among exponentials".

We can go quite a way with a rather qualitative discussion of alternatives,
especially in connection with the choice between leaps, e-leaps, or iterated
e-leaps as the basis for a scale estimate. If we knew that a very narrowly
described alternative, localized in terms of the original gaps - - say that our
batch of 20 was the union of two samples of 10 (from populations of similar
variance and distinctly different location), so that the most affected gap would
be y11— Yo - - then we would know which gaps, in terms of their original
identity (e.g. g,;) were likely to be non-null, so that we could begin by setting
these gaps aside - - and using the remaining leaps as a basis for assessing

spread.

If, on the other hand, our knowledge was less specific, saying only that at
most a few gaps - - here, there, or elsewhere - - are likely to be seriously

affected, we could not proceed in such a way even if we wanted to. If we are to
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set aside anything in this latter case, it should be something like the large

(long) leaps.

To identify the long leaps, we need to sort the leaps. After we have set
aside some predetermined number, we have a collection of ordered values
(beginning with one additional zero), and we should act in accordance with the
basic principle:

"Once we sort a set of values, our concern, so far as spread (width, scale,

etc.) is concerned, shifts from the values themselves to their gaps, leaps,

etc.

This means that we will want to look at the e-leaps (leaps of the leaps) and
to set aside those that involve the largest leaps - - those associated with leaps
that come at the end of the sequence of leaps as originally ordered, not

necessarily those at the end of the sequence of ordered e-leaps.

So far, we have been unable to imagine a pair of situations such that it is
natural to leave out the largest e-leaps. In such a situation we would be driven
- - by a similar logic to that just described - - to working with the iterated e-
leaps (leaps of leaps of leaps). Knowing none such, we presently see no excuse

for working with iterated e-leaps.

23. Alternatives illuminating separation procedures.

We would find assessing an underlying (original?) spread simplest when
we need only to set aside a small % (for smaller n, a few) of the longest leaps -
- a few e-leaps with the largest sorted-leap indices. A sufficiently naive view of

the "separations” problem might suggest it would be such a nice case. What
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appears to be true is that this is not what happens - - although guidance based

on such an oversimplified model may serve us quite well.

To get an idea of what actually might go on, let us use for guidance the
leading case of two Gaussian samples, of sizes £ and 20—k, respectively, drawn
from populations of equal variance fairly substantially separated. We can find
working values for the samples separately, one set being displaced from the
other by a substantial amount. For (k—1) + (19-k) of the gaps, we can
approximate median (or average) lengths in terms of working values. For the
remaining gap, the gap between the highest of the low sample and the lowest of
the high sample, we begin by only saying "might be large" and mark it down as

"Lll‘

exhibit 7 about here

The upper part of exhibit 7 shows leap with valley averages - - as multiples
of single sample (of 20) averages for k = 10, 7, 4, 2 and 1. We see that the

effects of splitting into two samples affects all gaps to a degree and that, while

these effects are concentrated ar and near the gap between the subsamples, they
taper off more slowly than we would like (though perhaps faster than we might
fear). These values are shown graphically in exhibit 8, using 3.3(ratio)?3-3.3

as the vertical scale, whose values are also shown in the upper part of exhibit 7.

exhibit 8 about here
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sxhibis 7
Ratios of ave {y;,1) = ave [y;) for separsted nait Gmessian samples

to J(i+ 1] 20) — J(i] 20) asod 2 sear-vnit pear-aymmatric re-sxpression of these ratios

rasios 3.3(ratio) > 33
i ]10410 1347 1644 1842 19+41[10¢ 10 1347 16+ 4 1842 1941

19 | L1628 1098 1048 14 1.011 157 O 047 L4 DN
18 | L2485 1134 1065 1S 1014 224 Jd% D63 01 014
17 | 1333 L1176 1081 1038 1014 297 J65 o 037 04
16 ] 1.8 102 1097 1040 1017 3% 204 093 0% 017
15 ] 1587 1277 113 w052 126 A0 25 A 050 025
14 | 1.782 1338 1141 1083 1128 £25 307 JA33 Q61 028
13 ] 2105 1429 1180 1075 1.03% 826 m 168 o0 0
121 2595 1549 1203 1083 1039 | 1143 A6l Jsg 083 038
11 | 4288 1720 1256 L.104 1048 | 1.807 83 234 098 /T
10 L 1992 1306 1177 1.056 L g8 215 A1 058
4288 2512 1392 Ll44 1064 ) 1307 1050 344 136 062
255 3938 1508 1160 1078 } 1143 1673 433 168 QOIS
2108 L 1.632 1S 1.098 826 L S22 208 054
1,782 419 2077 1.269 1120 625 1712 A9 261 114
1.587 2606 3103 145 1,155 49 1099 1335 35 146
1.438 2,006 L 1.614 1210 380 266 L S09 194
1333  1.687 3486 2238 1338 297 5% 1500 902 301
L2245 1458 2144 L 1.67% 224 396 84t L 382
LI68 1298 1595 2.456 L 157 267 496 1022 L

N AARNINO

) 19 1.55 13t 1.13 1.06
(=) 133 129 113 1.06 1.03
(10 135 1.30 1.15 1.06 1.03
(15 1.5
(18) 195

L = aon-anegative (because non-overlapping), and possibly large

(%) = medisn, (%) = median of Jow 10, (10) = mem of low 10, (15) = mean of low 1S, (18) = mem of low
19, 3er0 and first approximations for interval rate chifts, f.

Shift 10410 13+7 1644 1842 19+1

'y (T.44)  (134) (6865) (5.84) (4.89)
0 33 3120 2511 1685 1.857
© 8% L1313 626 44
(8 337 3433 3083 2209 _

45 (AT (1109) (9.71) (1.65) (5.77)
(9 40521 AM2 2931 2064 1.652
€ UM UM ! 1N W
(s) 4052 4004 3355 2386 .

s. (1591) (14.84) (12.56) (9.46) (6.96)
(s) 4246 3892 3058 2198 L6710
(c) 1555 14388 1246 948 696
() 46 4155 3461 2608

S5 (1954) (I1859) 15.40) (1126) (7.95)
() A3 A3 309 2229 1674
(© 195¢ 1859 1541 N7 145
(0 423 155 a2 2452

6 (BN (R34 (1825 (13.07) (0.041)
() 4235 3938 3303 2356 1.61S
€ BIST 23 1525 1307 9.0¢
() 428 4190 3486 2456 _

(2) = ratio for adjaceat Isap, (c) = ratio for lssp st valley: both second spproximation (sse text)
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The lower part of exhibit 7 shows two approximations to the behavior of
the leap at the valley. First, in parentheses, is shown the first approximation,
correct to the extent that the two samples (of &k and 20—k respectively) do not
overlap at all. Thus, for example, for a shift of 5 (55, that is) the highest of
one sample of 10 will average +1.539 and the lowest of the other will average
5 = 1.539 for an average difference of 5 — 1.539 — 1.539 = 1.922 which has to
be divided by the denominator of .1240, to obtain 15.50 as shown in the

parentheses.

The second approximation allows for as many as one crossover, and was

calculated using the approximation

ave {|z-a| when z follows Gau (0, 62)} = |a| + 1.540 (tail area)!?

where “tail area” = Gau(-|a|/c). The approximation is good to + 0.003 for
la|/c 2 .8. We are using this Gaussian approximation in a quite non-Gaussian

case, but we think it good enough for our purposes.
For shift 5 and 10 + 10, this involves 6 = (.34344+.34344)/2 = 82987

which for a = 1.922 gives |a|/0 = 2.3160, tail area = .01028, 1.54 (.82987)

(tail area)!?

.0053. Since the average of the absolute difference is .0053
greater than the average, |a |, of the signed difference, .0053 must be the
contribution of crossover which, when divided by .12399, is to be added to the
ratio at the valley, and, when divided by .12496, is to be subtracted from the

ratios for each of the two adjacent gaps.

Parallel calculations lead to the results in the lower panel of exhibit 7.

While the results for the NW corner of the panel are likely not to be good
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approximations (because of more than one overlap, if for no other reason),
those in the rest of the panel seem likely to meet our needs. Near the foot of
the panel the approximations coincide, and it seems likely that the first

approximation is quite good there.

Instead of insisting on the numbers in the two samples, we can ask for a
simple sample from a mixture of two Gaussian distributions. The results are

compared in exhibit 9

exhibit 9 about here

The divisors for 10 + 10 are surprisingly similar to those for the mixtures,
especially for mixtures with spacings a little larger than 3.5. It does not seem
likely to matter which approach we keep in mind, when we are dealing with

large shifts.

24. Minimum misclassification for 50-50 Gaussian mixtures.

If we use the 50-50 mixture alternative (separated by 28) knowing that a

value falls at y leaves us with a chance

e—(y—5)’/2 ey5 1

e~ (=0Y2 L p—(+8Y2 T y8  ,-¥8 T | 4 o-yd

that that observation came from the second distribution. Our classification, if
we decide to split in two, can at most depend on the y values. Thus,
conditional on a value at y, the minimum average misclassification of that one

observation must be at least the lesser of this chance and its complement

1 1
1428 14728 | 14e4rI8

q(y) = min
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exhibit 9

The working values and their first differences for a 50-50 mixture of unit
Gaussians separated by ro for ¢ = 2.5, 3, 3.5 and large.
Also compared with the fixed 10 + 10 case (two widely separated samples of 10 each).

working values for 50 - 50 denominators = differences of
mixtures, separated by adjacent working values
index 2.5 3 35 (o) 2.5 3 3.5 o0 (10 + 10)
-~1.5098 -1.5096 -1.5096 -1.5094
1.5 .5304 5311 5311 5311 St
-.9794 -.9786 -.9784 -.9783
2.5 3405 3419 3419 3419 340
-.6389 -.6367 -.6363 —-.6364
3.5 2766 2787 2796 2995 277
-.3623 -.3578 -.3569 -.3569
4.5 2481 2523 .2533 2539 252
-.1142  -.1053 -.1033 -.1030
5.5 2365 2443 .2468 2474 242
1223 .1390 +.1433 1444
6.5 2352 .2496 2550 5552 252
3575 .3886 +.3982 .4008
7.5 2416 .2688 .2815 2866 277
.5991 .6574 +.6798 .6874
8.5 2639 3028 3417 3598 340
.8517 9610 1.0190 1.0472
9.5 .2688 3346 .4498 .6055 S11
1.1156  1.3115 1.4723 1.6527
(10.5) - 3924 .5574 L L
1.3844  (1.6885) (2.0277) L
(11.5) - (.3346)  (.4998) (.6055) (.511)
- (.3026) (.3417) (.3598) (.340)
etc. etc. etc.

NOTE: The similarity (even identify to four decimals) of the values in the first few lines
of the working value columans reflects the trivially small chance that the lowest of the observed
values comes from the component distribution with the higher mean.
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The average rate of misclassfication must thus be at least the average of this

over the distribution of y, which is equal to the average over a unit Gaussian of

%q(y-ﬁ) + -;——q(y + J), as separation of terms and two simple substitutions

show. Since -%—q (y-9) and -%—q (y+6) will have the same average, by

symmetry, our lower bound reduces to the average of

1
2| y+i|d

1+ e
over the unit Gaussian, which is easily evaluated numerically with the results
shown in exhibit 10. (These bounds are, of course, far below the actual

misclassification rates.)

exhibit 10

Lower bound for average misclassification rates when observations
are drawn from an equal mixture of two Gaussians, separated by 23

28 lower bound

(0) (.5000)
(1 (.0915)
(2) (.0290)
(2.5) .0118
3 .0038
3.5 .0008
4 .0002

MULTIPLE COMPARISONS - - ANALOGY AND DISTINCTION

25. The "stages of knowledge".

Multiple comparisons in the narrow sense, involves measurements of

several quantities, under circumstances where the relevant variability can be
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separately estimated, and a desire to "learn as much as one can" about the
differences among the values of the quantities. (In valley-seeking, of course,
we do not have a separate estimate of variability.) Just what w~ are straining to
learn even a little better depends on how far down the road of knowledge we
have previously gone, especially in so far as the planning of our data collection
goes. Are we, for example, just beginning to learn? Have we learned a lot,
but have a long way to go? Have we almost settled the sign of all the
differences, but know less than we would like about their size? Have we

measured each difference to within a percent of itself?

In areas where measurement is only moderately painful, we can expect to
begin our early studies near the start of this list, and progress till our later
studies come toward its end. In areas where measurement is very painful - -
effort-wise, financially, or ethically, (as in most clinical trials) - - we are likely
to begin and remain close to the start of this list. (In areas where measurement

is easy we may even, by contras!, begin near the end of this list.)

At duferent stages of knowledge gathering we have different strivings, so it
is not surprising that it is appropriate to use different kinds of multiple
comparison procedures. Two distinctions are of overriding importance: Is it
appropriate to seek quantitative knowledge or qualitative knowledge? Will we

get focused knowledge or unfocused knowledge?

26. Qualitative or quantitative knowledge?

In general we expect to emphasize qualitative knowledge at the early stages

- - as all we can reasonably hope for - - only emphasizing quantitative
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knowledge after having qualitative knowledge more or less in hand. The most
natural exception to this arises with what we might call "TBA knowledge" - -
where TBA stands for "to be adjusted”. A simple agricultural prototype would
involve the measurement of yield improvement from the application of various
types and amounts of fertilizers. The biological facts may be expected to
continue in the future with little change, but the ratio: (value of crop)/(cost of
a specific fertilizer) are likely to change. Our "qualitative knowledge" of what is
best to do can change accordingly. We may do quite well if we can pick out
what to do, but the qualitative knowledge we need is qualitative ad justed
knowledge, involving a price-ratio not known today. Such future knowledge
has to be based on the best guantitative knowledge that we have today. TBA

knowledge aside, though, we expect to begin with qualitative knowledge.

27. Focused or unfocused knowledge?

Unfocused knowledge - - in the multiple comparison framework - - is at its
very best barely useful. To know that some of the things we are looking at are
different, to an unknown amount, and in unknown directions, is of very little
use. (We know, overall, that almost everything is different to some degree - -
in some decimal place. This overall knowledge has a wide base of inference \
and holds at a very extreme significance level. Thus it is much better
knowledge than what we are learning from the study before us. So long as the
result of the current study is unfocused, it does very little, if anything to help

us.)
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In multiple comparison situations, by contrast, focused knowledge,
knowledge that refers to specific comparisons, teaches us something new.

(Usually the more it is focused, the more it is useful.)

28. Our probiem.

In the problem to which this report is ultimately directed, matters are
somewhat different. At an early stage, we are asking "would it be wise to treat
this batch of numbers as two subbatches?". If this question deserves careful
attention, we know so little that, even if we reach a positive conclusion, it is
hopeless to expect certainty - - even 90% or 60% certainty - - that we have
selected exactly the two subbatches that infinite wisdom would find best. We
expect only to do as well as we can. We will miss, by at least a little, much of
the time. We are seeking guidance - - since we understand that knowledge - -
even 95% knowledge - - is not available. We have, in such circumstances, to
be prepared to accept imperfect guidance, if it is the only kind of guidance that

is available.

29. The stages of qualitative multiple comparison.

After we throw out unfocused forms of "multiple comparison" - - including
those based on the F-test - - there remains a sequence of stages from early
qualitative knowledge to late gualitative knowledge, with differing multiple-
comparisons procedures at different stages. There are also stages of
quantitative knowledge, from early to late (in specific instances, some of these

may overlap some of the qualitative stages) but these guantitative stages do not
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seem to be associated with more than a single set of multiple-comparisons
procedures. It will help to clarify our ideas about the separations problem to

discuss the qualitative stages briefly.

At the first stage, we are seeking any focused positive result that we can
reach. The natural response is to use the studentized range and, if this
provides significance, call out the apparently most positive value as more
positive than the apparently least positive one. (We return below to the logic

involved.)

At the second stage, we ask first for demonstrable separations into two
subsets, followed - - to the extent available at no extra cost - - by separations of
all but one, all but two, ... . Here the procedures of Welsch(1977) can serve

us well.

The third qualitative stage is one where we strive to be (simultaneously)
confident about the sign of as many differences as possible. Some of the more
modern methods, such as those of Ramsey (1981) may well be appropriate

here.

Finally, we come to situations where we are trying to be qualitatively
confident about the sign of every difference. (The background belief is, of
course, that every pair of quantities do differ, in some decimal place.) At this
stage, the method recently proposed by Braun and Tukey (1983c) has

demonstrable advantages over the more classical methods.
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30. Quantitative multiple comparisons.

If we need quantitative confidence statements, either intrinsically or
because we need TBA gualitative results, the natural simultaneous tool is the
studentized range. The essence of the matter, if

Yp = Up + €

YE = Hg *+ €

where the [’s are long-run values and the &’s are errors, is summarized in

| (yp=yg) — (Mp—HE)| = | eg—¢g
and
max | (ya~¥£) = (Lp—HEg)| = range(e’s}
So that, if we combine an independent estimate of variability and the
studentized range distribution to set a bound, say a 95% bound, on the range of
the {€’s}, we can use the same bound simultaneously for all differences

(y—=Yg) = (Mp—MHEg)

This result can of course be written, if V is the bound:

(yp=Ye) -V S Ug—Up S (g=ye) +V (all B and E, 95% simultaneous)

Since we are really working with the €’s, nothing about the whole process
depends on the values of the W’s, so in particular, we always spend all our error

rate, conditionally, in every individual situation.

(An extension, using logical implication, to bounds for all contrasts is

easy.)

*  relation to the qualitative case  *
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The first stage of qualitative comparison uses the studentized range. If the
studentized range is significant at the chosen significance level, say because the
lower limitation is positive, we will have,

0< Omax—Ymin) =V £ Hmax = Hmin (max, min for y’s)
where the comment in ( ) means that "max" is the subscript i that maximizes
y; and "min" is the subscript j that minimizes y;. It follows that py,, = W;
exceeds Kmijp = W;. Thus the quantitative procedure provides logical support

for the weakest stage of qualitative inference.

31. The leapall in qualitative multiple comparisons.

We have already seen (Section 16) that, specifically in the Gaussian case,
the leapall provides more degrees of freedom than the range - - that is, that its
standard deviation is a smaller fraction of its mean. This result is encouraging,
but does not clarify the question of comparative power against any specific
family of alternatives. As we leave the null distribution, all gaps will change
their average values somewhat for most - - if not all - - such families and the
relative effect on range and leapall of these changes is not easy to assess

theoretically.

There is also a logical question. Does a leapall beyond the upper 5% point
of the null distribution mean that we are 95% sure that fl .0 > Hpin Where
max and min refer to the observed y’s? It would surprise us if this were not

true, but there appears to be no highly obvious proof that it is true.

It seems to be a problem appropriate for either crude simulation or Monte

Carlo to adequately compare the studentized leapall with the studentized range.
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* and in our problem *

Thus the analogy with multiple comparisons suggests that, in our problem,
we compare the leapall with a between-values assessment of spread that is

relatively little affected by the presence of an actual valley - - or a few valleys.

HEURISTIC APPROACH TO VALLEY-SEEKING

32. A scale estimate.

The following discussion assumes n=20, but analogies for other n are

simple and direct.

We naturally seek a scale estimate that is not too much affected by
separation. In terms of leaps, we can expect to want to shun the longest ones.
Thnis means shunning high-index e-gaps, or shunning high-index e-leaps. So
our problem is combining a list of low-index e-leaps.

In the null situation, these will be approximately i.i.d. exponential, and

thus most naturally combined as a sum or a mean.

We have already seen that a low-index sum of e-leaps is a (rank)
Winsorized sum of ordinary leaps. For the null situation, such a Winsorization
seems a natural way to shun the high-rank ordinary leaps. In the presence of
real separation, however, when the largest leaps are substantially inflated, the
heuristic excuse for Winsorizing has essentially disappeared. Accordingly, we
might want to consider equal weights on the low-rank ordinary leaps as a

second possibility.
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This would correspond to, for instance
h{ + hy +..+ hs (n=20)
which converts into
—es+..+ —e€;; (n=20)

We put this on the back burner, and press on with such combinations as

€1+ €4 +..+ €5 (n=20)

which can also be written
hi{ + hy +..+ h{y + 5h{s . (n=20)
33. A response and its analogs.

If we believe the multiple-comparisons guidance developed above, we

naturally take the leapall

e+ e+t €15+ €15 +...F €19 (n=20)

as our first response.

Let us, as a matter of convenience write

A= e, + €y +..+ €15

for the low-index sum of e-leaps and

B = €igt €17+ e;g+ e

for the high-index sum, so that leapall= A + B
We now have:
scale estimate basis = A

response basis= A + B
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The naive ratio reduces as follows:

A+ B B 4 (B4
= + —=14 ———
A 1+ 2 15 (A/15)

so that we may as well use the ratio

b
a
of the high-index mean (of e-leaps)
B
b=7
to the low-index mean (of e-leaps)
i A
15

in place of the ratio of the all-index sum (the leapall) to a low-index sum or

mean.

A virtue of writing things this way is that @ and b are approximately null
distributed like 62 2/v with v = 15x2 = 30 and 4x2 = 8 respectively,
approximately independently of one another. Thus Snedecor’s F offers us

approximate % points for b/a.

* alternate scale *

So much for the simplest scale estimate, for the instant. What if we are to
consider the alternate situation? We would only do this because we take the
non-null situation quite seriously. And when we go back to the multiple-
comparisons guidance, we see that the thinking was basically null-situation

thinking. Thus if A" is the tapered sum for scale
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and B" is its complement

B*= _1%81 + 14_882 +..+ %els + e+ e+ egt e
= hig + hi; + hig + hi
the argument for using exactly A + B = A*+ B* seems at best weak.
The plausibility of mixing - - of using, for example, A* and B, which will,
by contrast, be approximately independent - - seems much more reasonable.

Accordingly, once we have studied the use of A and B - - and what that use

suggests - - we may want to look at the use of A*and B.

*  other approximately independent choices  *
Let now

e;+ ey +..+ eg

ag = 2
€90-h + €y1_p +..+ €9
h

be more general simple low-index and high-index means of e-leaps. So long as

bh=

g < 20 - h, so there is no overlap (of leaps), these will be approximately
independent, and we can turn to an F-table for approximate % points.
Once we have looked, approximately, at g + & = 19, we may as well

explore g + h < 19.

*  first, the null situation *

If we focus first on n=20, g=15, h=4 we begin with Fg 3, , whose 5%

point is 2.27. Asking whether

b
> 227

ais
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is equivalent to asking whether

c = b4" 2.270152 0
In the null situation the averages of b4 and a5 are both approximately 1.00 and
their variances are approximately 1/4 and 1/15 respectively. Hence the critical
ratio is

ave(c)  _ 1-2.27 _o127 e
(var(c))V?  (25+(2.27)2.0666T)2 7704 ‘

quite consistent with 2 0 having 5% probability.

*  next, power for shift=5  *

Suppose now that the situation is two subsamples of 10, one shifted
(relative to the other) by 5 (i.e. 56). The leapall will involve gaps increased on
average, in total, by somewhat less than 5 - - because the end observations will
be extremes of 10, rather than extremes of 20. If we choose

a(20/20) - a(10{ 10) = 1.867-1.539 = .328
as the adjustment for each end, the total range will be increased by something
like
S5 - 2(.328) = 3.344

Most of the increase will take place for central gaps, where, for n=20:

1 ~ _&2_‘& = R
eap 125 8 gap
so that the leapall will be increased on, average, by something like

3.344 x 8 = 26.75

Since
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e-leapall = leapall= A + B

we now need to judge, at least roughly, how this increase, on average, divides

between A and B. (This will not prove a simple task.)

We then ought to look at some other separations, like 7+ 13, 4+ 16, 2+ 18,

1+ 19.

It is much easier to understand how the leaps indexed by gap number
respond to such a shift than to understand how the ordered leaps respond.
And it is also somewhat easier to understand how the individual ordered leaps ‘
respond than to understand how their gaps and hence the e-leaps behave. The
easiest of these three questions has been answered, in terms of averages, in
exhibit 7 (section 23) for a shift of 5 between 10 and 10 we will have average
leaps of 1.17, 1.24, . .. 2.60, 4.29, 15.55, 4.29, 2.60, . . ., 1.17. If any one
observed leap is going to be really large, it will be the central (as indexed)

leap-with average 15.55.

What about the second largest leap. Suppose its size is 2 9. If it comes
from a specified leap with average 4.25, this is an event of probability
exp(-9/4.25) = 12.0%. If it comes from a specified one of the leaps with
average 2.60, the probability is exp(~9/260) = 3.1%. For average 2.10 (the
next in size) exp(—9/2.10) = 1.4%. For average 1.782, 0.6%. If we take these
as independent, the total probability of 2 9 from one of the "other 18" is

somewhat larger than

1 - (.880)2(.969)2(.986)2(.994)2 = .302
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of this 30% about 24% is contributed by the two leaps (with average 4.25)

adjacent to our valley.

34. Which leap is largest - - and how often.

Let us next turn to the question: Given the situation - - and the
averages - - just considered, how large would the largest of the "other 18" be if
all leaps were exponentially and independently distributed? The chance that
this largest leap exceeds L is 1 MINUS the product of the chances that each
exceeds L, and equals
] - (1-e-L/4286)2 (1_p-L/2595)2  (q_,-L/1.163)2

which takes the values shown in exhibit 11,

exhibit 11 about here

If we plot the last column against the second one, using L to parametrize a
curve, we get exhibit 11A where the areas above and below the curve are the
probabilities that the largest leap will come (a) from one of the other 18 or (b)
from the one large leap. We see that the "other 18" will provide the largest leap

more than a third of the time.

exhibit 11A about here

Turning back to exhibit 11, we see that the "largest of the 18" is more
tightly distributed than a single exponential but more loosely than the
maximum of as many as 18. Column (+), which corresponds to the largest of
7 exponentials of size 3, gives a reasonable approximation. There is no
reasonable hope for the largest leap to come from the valley, but what about

"one of the largest".
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Distribution of the largest of the "other 18" leaps
for a true valley between 10 and 10 for ¢t = 5
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Exhibit 11

(calculated as if leaps were exactly independent and exactly exponential)

L Pr(z L) (* (*+) (***) (+) Prob(exp(ave = 15.55) 2 L)
1 99.95721% 952 (9991%) 99.9958% 93.77%
2 (98.44%)  99.6858 87.93
3 977139 1.893  (93.68%) 97.451% 95.97% 82.45
4 922231 1977 (85.34%) 91.352% 77.32
5 80.469 1.045 (74.59%) 81.26% 72.50%
6 66.15% 2.112 62.95% 68.75% 63.88% 67.99%
7  52.50% 2.182 51.674% 55.78 63.75
8 40.6832% 2.257 41.51% 43.79 59.78
9 31.34% 2.325 32.80% 33.54 56.06

10 24.02% 2.381 25.60% 25.22 52.57

11 18.43% 2452 19.80% 18.71% 18.34 49.29

12 14.18% 2.519 15.20% 13.75 46.22

13 10.92% 2574 (11.61%) 10.03 43.34

14 8.85% 2.655 (8.83%) 7.28 40.64

15 6.56% 2.687 6.70% 5.26 38.11

20 1.898% 2.922 1.64% 1.01% 0.89% 27.63

(*)Size of 18 equal exponentials such that the largest exceeds L with probability
Pr(zL)

(**)Probability that the largest of 5 independent exponentials with average 3.5 will
exceed L

(»*=*)Probability that the largest of 10 independent exponentials with average 3 will
exceed L

(+)Probability that the largest of 7 independent exponentials with average 3 will
exceed L.
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exhibit 11A
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*  another approach  *

Let us begin with three independent exponentials of averages
C/f,Clg, C/h. How often will the first be the largest? The density of a
convenient multiple of the first is fe /* and the probability of the same

multiple of the other two being less is (1-e~8%)(1-e~ ). Thus the answer is

. ~fup1_ ,—gu _ p—hu - _ f _ f f
fjoe (1—e 8)(1—e ™)du = 1 i3 TR Frevh

with the answer for more competitors an analogous sum, first over pairs, then

over triples, etc.

If we begin with three leaps, the valley leap and one on either side, and
take f = 1, we have g, h = 15.55/4.246 = 3.662 so that the chance that the

valley gap is the largest of the three is

1 1 1
1+3.662  1+3.662 © 113.662+3.662

By symmetry the chance that a specified adjacent leap is the largest of the three

1 - 1 - .2145 - 2145 + .1201 = 69.1%

is (10% -69.1%)/2 = 15.45%.

If we add two more leaps, one on each side, for which
J = k = 15.55/2.595 = 5.992, the terms we need to consider are (sorted by

number of terms in the denominator)

1 1 1 1

1+3.662 © 143.662 © 145922 &« 135922  2(:2145) + 2(.1445) = 7179
1 4 1
113.662+3.662 = 143.662+5922 © 14592245922 _ 1201+ .3779 + .0779 = .5759
2 2
1+3.662+ 3.662+ 5.992 | 1+3.662+5.992+5.992  -1397 + .1201 = .2599
1

1+3.662+ 3.662+ 5.992+5.992  -0492
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leading to
1 - 7179 + 5759 - .2599 - 0492 = 64.7%
for the chance that the valley leap will be largest of the five.
A similar calculation give 6.34% chance that the largest of the five will be
one of the leaps not even next to the valley leap and 100 - 64.7 = 28.96%
chance that one of the adjacent leaps will be largest.
Continuing in this way, we will get a result similar to
at the valley leap 63.6%
next to " " 28.5%
one away from " " 6.2%

further away from " " 1.7%

indicating that one of the central five leaps are relatively sure to provide the

largest, while the central three will fail to provide it perhaps once in 12 times.

35. And the shortest leap?

The complementary calculation, with e /“ exchanged with I—e™ /%, gives
us the distribution of the smallest of 18 independent exponentials with the
averages already noted. The resulting cumulative probabilities can be
converted 10 a common average for 18 exponentials that matches a particular %
point for smallest exponentials from 0.01 to 10. This gives the same answer,
1.669, 1o 3 decimals. As we might have expected, 1.669 is the harmonic mean

of the 18 average exponcentials with which we started.
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Since the equivalent averages for the largest were above 2 - - and thus
greater than 1.669 - - it is reasonable to anticipate that the equivalent average
for a low-value group of leaps will also be somewhat greater than 1.669. Thus

we pay an appreciable penalty for the larger leap averages among the 18.

Using fewer of the low-value leaps should reduce the equivalent average,
but only toward - - not beyond - - 1.669. Thus the optimum number of
low-value leaps, which corresponds to an equal number of low index e-leaps, is
likely to be an intermediate between too many and too few, and the optimum is

likely to be flat.

36. High index e-leaps?

We have some insight into the largest leap, whether from the valley leap
or from the 18 others. what we need to understand is the behavior of the
high-index e-leaps, which are multiples of leap-to-leap differences (e-gaps). A
fine large leap, if we are only looking at the highest index e-leap, can have its
effect spoiled by whenever the next largest leap is close to it. Something
similar will always happen at the inclusion-exclusion boundary, though not as
vigorously if more high-index leaps are considered. Taking too few high-index
e-leaps can be costly.

But so can taking too many. In our prototype situation, only 3 indexings
(at - - and adjacent to - - the valley) are likely to produce quite large leaps.
Two or three of the largest leaps - - one of which may be "spoiled” by a nearby
value for the fourth largest - - should be enough to trap the "recal” effect - - at

least when the effect is large enough to be worth trapping. (Five would almost
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surely be enough.)
To understand better what we should do would require some careful
simulation. Doing this for independent exponentials would be as much work as

doing it for the real problem. So why do less than simulate the real problem?

37. Suggestions for empirical trial.

High-index group sizes from 1 to 5 and low-index groups sizes of 10 to 20
ought to cover the optimum (at least for 10 + 10). We cannot, of course - - in
the face of misbehavior we have seen for a shift of 5, a shift large enough so
that only about 0.6% of one distribution overlaps (0.6% of the other - - look

forward to extremely high power, for any choice.

The next step should be simulation.

38. Restricted sums.

The discussion of the last few sections was founded on e-leaps, particularly
on those corresponding to relatively very large and relatively moderately small
ordinary leaps. This enabled us to use approximations based on e-leap
behavior, but it involved throwing away which leap was which - - something
which makes good sense on the null hypothesis - - but which must be
somewhat wasteful on the simple alternative. If the 4 largest leaps in a batch of
n=20 values are hiy, hq, hyo and k4, corresponding to gaps y4—y3, Y7= Yoo
Yi12= Y11 and y 93—y they hardly combine to point toward a single valley in the

underlying situation.
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It power against single valleys, or possibly pairs of valleys is what we most
want, we will need to restrict the sets of, say, 4 leaps, whose sum or mean is to
serve as our indicator.

Simulation experiments will probably be essential in choosing a satisfactory
restriction, but it may be helpful to suggest some possibilities for n around 20).

We might restrict ourselves to:
a) four leaps adjacent (in y) - - 16 candidates
b) four leaps omitting at most one of five adjacent - - 16 + 153 = 61
candidates (the old 16 and 45 new ones)
¢) four leaps omitting at most two of six adjacent - -
16 + 15°3 + 14:6 = 145 candidates
d) four leaps omitting at most three of seven adjacent
16 + 153+ 14 -6 + 1320 = 405 candidates
where these numbers of candidates are to be compared with
(]4()) = [9-17-15°12 = 5814 candidates for four unrestricted choices.
These numbers suggest hope for much improved power, and urge trials by

simulation.
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APPENDIX A on ag(i| n)’s

39. What size biases don’t matter?
In using the orderly data kit, we are almost always dealing with

exponentially distributed quantities. We need to remember that such quantities

have

standard deviation = mean
so that we cannot reach

standard deviation < -1-!6 mean

until we combine at least 100 such exponentially distributed quantities. This
ought to tell us that + 10% is not very much, especially when it happens to only
I or 2 of a set of roughly exponentially distributed quantities.

We saw, for n=2(), that using a’s instead of @ ’s biases the end leaps by
only a few %, and those inside even less. What if the biasing is 5% for each
end leap, 3% for each next leap, 1.5% for the next, etc. The total biasing is
2(6% + 3%+ 1.5% ...) = 24%. The bias of the mean leap is (24/n)%. The

standard deviation of the mean leap is sV ;. so that, for the mean leap,
bias/ standard deviation = (24/5sVn )%
namely 8% for n=10, 5% for n=20, 2.4% for n=100 all of which are quite

negligible (the MSEs are increased by factors of 1.0058, 1.0029 and 1.0006,

respectively). In fact, as we shall see shortly, the actual bias is even less.

Thus we have no real need to do better in converting gaps to leaps, than to

use working values. Any more detailed attention we pay to ap(iln) has to be
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cither (a) from a sense of neatness, or (b) with some other application in mind.

40. Mismatch of distributions.

Similar arguments are important whenever we think harder about

converting gaps to leaps. This conversion requires using denominators which

come, almost always, from some assumed distribution shape (perhaps even the
Gaussian). If there is a true distribution shape, which there might be, it is
almost certain to differ from the shape we assume for conversion. How

worried should we be about this?

The nearly-exponentially distributed leaps will now have different typical
sizes, in particular decreasing the d.f. associated with the leapall. How much?
If in 2m denominators, m are 10% short, while the other m are 10% long, we
wili have ¥.0; = 2m and ¥.D;? = 2m (1.01) corresponding according to a 1%
loss of d.f. Equal amounts of +20% and ~20% would lead to a 4% loss. (Equal
amounts of +30% and - 30% would lead to only 9% loss.) Roughly uniform
spread between such limits would only have 1/3 the effect of having everything
at the ends. Mismatch of distribution shape can have as large consequences as

one likes, but only if the distributions are quite different!

The mismatch, for n=20, between a Gaussian distribution and the
distribution of ¢ on 3 d.f. - - really a rather large mismatch - - only involves

% 30% (for differences of working values).

41. a(;au(il n), for a Gaussian parent.

* (=] (or, by symmetry, i=n) *
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Our earlier illustration showed that the differences among various
approximations and exact forms of ag,, (il n) are concentrated near i=1 and,

symmetrically, near i=n. Exhibit 12 shows some relevant numbers for i=1.

exhibit 12 about here

The C* column does moderately well in describing the "y = mean for Gaussian
order statistic” column. The C™ column does very well in describing the "y =
median for Gaussian order statistics” column. (Thus if we ever need more
accurate medians for end order statistics, the formula for C** will provide them
to high accuracy.) The working-value column lies between "medians"” and

"means for Gaussian" columns, closer to the median for large n.

The final column shows how small the difference between mean and
median is (for n 2 10) in comparison with the difference between "Gaussian
parent” and "logistic parent" (when both are being analyzed as if Gaussian). (In
practice, we are unlikely to be sure whether we "should" use Gaussian or
logistic. So how can we, in practice, even distinguish "means for the Gaussian
case" from "medians for some other case"?? Thus this is a further reason, so
far as order statistics themselves go (though not as far as gaps or leaps go), not
to distinguish between mean and median in practice - - though in theoretical

work, it may be important to be clear which is which.)

* =2 (or, by symmetry, i=n- i) *
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when
y = mean
for Gaussian Working
n order statistic c* value
1 2.0000 2.000 2
2 1.9693 1.974 2
5 1.9587 1.943 2
10 1.9190 1.915 2
20 1.8855 1.886 2
50 1.8507 1.850 2
100 1.8233 1.826 2
200 1.8126 1.809 2
(400) (1.8131) (1.796) )
500 1.794 1.793 2
1000 1.7850 1.785 2
el 5 _ -2285(n-1)°7
=2 (n=-1%4+ 179
C™ = g4 7%=

«+«This column also applies for "(3n+1) F(y) where y is the median of the end order
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exhibit 12

Values of (3n+ 1) Gau (y) for specified situations and
approximations for i=1 or i=n (end order statistic)

(n—

N7 4 58

C“

2.0503
2.0503
20712
2.0760
2.0780
2.0789
2.0792
2.0793
2.0794
2.0794
2.0794

when

y = median
for Gaussian

(o“)

2.0000
2.0503
20712
2.0760
2.0779
2.0789
2.0792
2.0793
(2.0794)
2.0794
2.0794

statistic in a sample from the same continuous F(*)".
(a) When logistic matched to unit Gaussian in variance

(b) When logistic matched to unit Gaussian in central density

(c) When logistic scaled an intermediate way

svws(Gaussian median MINUS Gaussian mean)/(Gaussian median MINUS logistic

median, version (c))

NOTE: 2is 27% of the way from 2.0794 to 1.785
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when

y = median for logistic
order statistic

(a)

2.0000
2.1946
2.3470
2.2693
1.9875
1.3982
9271
5394
2743
2144
0910

(b)

2.000
2.0323
1.8583
1.5304
1.0994
5605
2779
1160
.0406
0279
0077

(c)

2.0000
2.0780
1.9896
1.7182
1.3090
7344
3971
1830
0716
0511
0106

(lt.t)

-2.93
1.38
44
.25
17
.15
.14
A3
.14
.14
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Exhibit 13 shows the same sort of information for i=2 as exhibit 12

showed for i=1.

exhibit 13 about here

Most of the comments about exhibit 12 apply with only minor changes. The

working value is now much nearer the median than it is to the mean.

* [=3 (or, by symmetry, i=n-2) *
Exhibit 14 shows the same sort of information for i=3 as exhibits 12 and

13 showed for i=1, respectively.

exhibit 14 about here

*  larger i (deeper i) *

We do not propose to follow details further here.

*  the leap denominator  *

For the main purposes of this account, we are interested in

a(i+1 n) - a(il n) whose behavior for small i is shown in exhibit 15.

exhibit 15, 16 about here

We see that the difference between "difference of means" and "difference
of medians” is only a few %. Our largest question, of course refers to the bias
of using working-values in place of @(i|n). (The bias using working values for
medians is, as we have seen, smaller and of opposite signs.) Exhibit 16 shows
numbers for i=1 and 2. The bias is usually of the order of 2%, which is quite

trivial for most situations, including those that most concern us. (Remember
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exhibit 13

Values of (3n+ 1) Gau (y) for specified situations and
approximations for i=2 or i = n—1 (next-to-end order statistic)

when when when
y = mean y = median y = median for logistic
for Gaussian Working for Gaussian order statistic

n order statistic C° value c* (ose) (a) (b) (c)
3 5.000 5.000 5 5.0000 5.0000 3.9866 3.82528 3.8911
4 4.982 4970 5 5.0145 5.0145 43304 4.0553 4.1329
5 4,965 4953 5 5.0211 5.0210 4.5821 4.1714 4.2865
10 4908 4.908 5 5.0300 5.0300 5.1839 4.2244 4.4846
20 4.857 4.866 5 5.0329 5.0331 5.3330 3.7509 4.1591
50 4.803 4.817 L] 5.0313 5.0314 4.6674 2.5980 3.0457
100 4.771 4.782 5 5.0347 5.0347 36642 1.5770 2.0231
200 4.746 4.748 5 5.0348 5.0349 2.5306 .8244  1.1489
(400) 4.725 4.715 (5 5.0349 (5.0350) 1.5314 3623 5554
500 - 5 5.0349 5.0350 1.2660 2679 4245
1000 - 5 5.0350 5.0350 0.6408 .0932 .1651

C*=5S-.08(In n/3)°?

.0350(n-3)!!

C==5 .
* (n=-3)" + 141

**+This column also applies for "(3n+1)F(y) where y is the median of the next-to-end
order statistic in a sample from any continuous F(*)".

*sss(Gaussian median MINUS Gaussian mean)/(Gaussian median MINUS logistic
median, version (c))

(a) When logistic matched to unit Gaussian in variance
(b) When logistic matched to unit Gaussian in central density
(c) When logistic scaled an intermediate way

NOTE: 5is 11% of the way from 5.0349 10 4.715
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exhibit 14

Values of (3n+ 1) Gau (y) for specified situations and

approximations for i=3 (next-to-end order statistic)

when when when
y = mean y = median y = median for logistic
for Gaussian Working for Gaussian order statistic

n order statistic C° value c” (oe9) (a) (b) (c)
5 8.000 8.000 8 8.0000 8.0000 6.0684 5.8141 5.8862
10 7.933 7.905 8 8.0159 8.0158 74188 6.5189 6.7687
20 7.882 7.856 8 8.0197 8.0199 8.2752 6.4389 6.9295
50 7.806 7.805 8 8.0213 8.0215 8.0953 5.0643 5.8138
100 7.768 7.772 8 8.0218 8.0218 6.9324 3.5137 4.2938
200 7.739 7.742 8 8.0218 8.0220 5.2322 2.0637 2717
(400) 7.713 7.714 (8) 8.0219 8.0220 3.4655 1.0209 1.4661
500 - 8 8.0219 8.0221 2.9003 7443 1.1613
1000 - 8 8.0220 8.0220 1.6369 3076  .5050

C*= 8-.118(In n/5)*®

.02197(n - 5)1!

C™=8 .
* n=5)i+ 2.23

(‘t“)

.07
13
.10
07
.05
.05

«»«This column also applies for "(3n+1)F(y) where y is the median of the next-to-end

order statistic in a sample from any continuous F()".

ssss(Gaussian-median MINUS Gaussian mean)/(Gaussian median MINUS logistic

median, vcrsion (¢))

(a) When logistic matched to unit Gaussian in variance

(b) When logistic matched to unit Gaussian in central density
(c) When logistic scaled an intermediate way

NOTE: 8 is 7% of the way from 8.0219 to 7.714
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exhibit 15

Behavior of a(i+1|n) — a(i|n) for i small, Gaussian parent,
and cither mean a’s (3(i|n)’'s) or median a’s (a (i |n)'s)

i=1, Gaussian i=2, Gaussian double
n mean median ratio mean median ratio ratio*

211128 1.089 95.5% - - -

5 .668 614 96.5% | .495 485 98.0% | 98.5%
10 537 514 95.7% | .345 3378 97.6% | 98.1%
20 460 4360 95.0% | .277 2691 97.1% | 97.9%
50 394 3702 94.0% | .2262 2185 96.6% | 97.4%

100 .359 3355 93.5% | .2018 1941 96.2% | 97.3%
200 333 3090 92.8% | .1837 1761 96.2% | 96.6%
400 311 2871 92.3% | .1696 1621 95.6% | 98.7%
*(ratio for i=1)/(ratio for i=2)
exhibit 16

Behavior of a(i+1|n) — a(iln) for i small, Gaussian parent,
and either mean a’s (@(i|n)’s) or Gaussian working values (wovals)

i=1, Gaussian i=2, Gaussian double
n mean  woval ratio mean  woval ratio ratio*

2 | 1128 1.131, 99.7% - - -

5 667 6620 100.8% | .495 4884 101.3% | 99.5%
10 537 .529 101.5% | .345 3401 101.4% | 99.9%
20 460 449  102.1% | 277 2712 102.1% | 100.0%
50 394 382, 103.1% | .2262 .2203 102.7% | 100.4%

100 359 346, 103.6% | .2018 .1957 103.1% | 100.5%
200 333 319, 1044% | .1837 1715 103.5% | 100.9%
400 311 296 104.7% | .1026 .1634 1034% | 101.3%

*(ratio for i=1)/(ratio for i=2)
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that the standard deviation is 100%!)

* mean gaps and median gaps  *

Whether we work with m=ans or medians of order statistics has turned out
to matter little. (The deviations from symmetry of order statistic distributions
are not too great, and ratios of their standard deviation to their mean shrink as
n increases for i/n constant.)

Gaps do not behave this way at all. The approximate distribution of all but
the most unusual gaps is like D X a unit exponential, for some constant D .
Since the unit exponential has mean = 1.00 and median = 0.69, the median of
our gap will be roughly 0.69D, about 70% of its mean (which is roughly

1.00D).

In other terms,

mean(Yi. 1| n—Yi|n)= Mmean(y;,q,) — mean(y;,)

while

median (¥, 1), = Yi|») = 0.7(median(y;, ) ,)—median(y; ,))

In fact, the mixed approximation

mean(y;, 1, = Yi|») = median(y;,q,) — median(y;,)
is very much closer than its right hand side comes to the median(y;, y,~¥in)-
42. aE(il n), for the lower tail of an exponential parent.

We turn now to first one tail and then the other of the (single)

exponential, where the order statistic means are the partial sums of
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This can be considered a closed form if there are not too many terms!

Exhibit 17 shows the values of "(32+1) (own tail area)" for the means of
lower-tail order statistics. They are mainly of interest in showing what happens
near a box-car-end-like cutoff. The usual values: 2, 5, 8, 11, .. ., for a "loose"
termination are increased to values tending to 3, 6, 9, 12, ... . (still spaced 3
apart). Starting with 3 is just as if 0 were an additional n+ 1% observation!
(The limiting values must be those that would apply for a very large sample

from a rectangular parent.)

exhibit 17 about here

43. ag(il n), in the upper tail of an exponential distribution.

The upper tail behaves rather differently. To display more familiar sorts of
numbers, exhibit 18 shows "(3n+1) x (own right tail area)"”, which of course

equals "(3n+1) MINUS [(3n+1) X (own left tail area)]" We now have different

asymptotic values (1.684, 4.579, . . . ) this time smaller than for the working-
value (namely 2, 5, 8, ...). Since the values in exhibit 18 are smaller than
the nominal 2, 5, 8, .... the corresponding medians (or exponential order

statistics) are larger, see column labelled **** in exhibits 12 to 14. By contrast,

the corresponding order-statistic means are nearer the nearby (upper) tail.

exhibit 18 about here

The good simple fits, of the form A + -i—, can be very useful, since they

can save us from evaluating a long, closed-form expression for the
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exhibit 17

Behavior of (3a+1) x (own lower tail area) for an exponential
distribution and means of near-to-lower-end order statisitcs

n fori=1 fori=2 fori=3 fori=4 fori=5

2 2.754 5.438 - - -
3 2.835 5.654 8.401 -
4 2.875 5.746 8.600 11.381 -
5 2.900 5.798 8.690 11.566 14.073
10 2.950 5.900 8.849 11.798 14745
20 2975 5.950. 8.925 11.900 14.875
50 2.990 5.980 8.970 11.960 14.950
100 2.995 5.990 8.985 11.980 14.975
200 2.9975 5.995 8.9925 11.990 149875
500 2.9992 5.998 8.997 11.996 14,995
1000 2.995 5.999 8.9985 11.998 14.9975

(n=w) (3) (6) % (12) (15)
3Bi-1) Q) (3) (8) aan (14)

Well fitted, for n 2 10, by: 3i - (2.5)i/n
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exhibit 18

A Behavior of (3n+1) X (own upper tail area) for an exponential
distribution and means of near-to-upper-end order statistics

n for i=n fori=n—-1 fori=n-2 fori=n-3 fori=n-4
2 1.5619 4246 - - -
3 1.5958 4.346 7.165 - -
4 1.6187 4.400 7.254 10.124 -
5 1.6311 4434 7.311 10.202 13.100
10 1.6570 4.504 7.426 10.364 13.308
20 1.6705 4.541 7.467 10.449 13416
50 1.6788 4.563 7.487 10.500 13.483
100 1.6816 4.571 7.524 10.518 13.505
200 1.6830 4.575 7.536 10.527 13.516
500 1.6838 4.577 7.543 10.532 13.523
1000 1.6841 4.578 7.546 10.534 13.525
2000 1.6842 4.578 7.548 10.534 13.526
(n=w) (1.6844) (4.579) (7.549) (10.535) (13.527)
Br+1-i)-1) (2) (5) (8) (11) (14)

Well fitted, for » 2 10 by:
1.6814 - '2% . fori=n

4.579 - —?- . fori=n-1

7.549 — l’%‘s— . fori=n-2
10.535 - -]—Zg , fori=n-3
2.19

13.52] - ==, fori=n-4
n
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order-statistic means for those values of n—j where we have found a fit.

44. arect(il n), the case of a rectangular parent.

Here a,,4 (il n) = i/(n+1), reflecting the exchangeability of the gaps, since

a is here its own left tail area, and

3n+1

(3n+1) (own left tail area) = i — 3 when n — o,

Exhibit 19 gives a few values.

exhibit 19 about here

45. a,ogis(il n), the case of a logistic parent.

A logistic parent distribution might reasonably supposed to behave
somewhat like the case of a Gaussian parent, except that the deviations of
means from medians (and hence the deviations of means from working values)
might well be larger, quite possibly substantially so. Exhibit 20 shows the
values of (3n + 1)(own tail area) for i = 1(1) 5 and 10 that can be computed

easily from the tables of Birnbaum and Dudman (1963).

exhibit 20 about here

Since the corresponding quantities for medians will stay in the intervals
[2,2.08], [5,5.035], [8,8.022], etc., as they do for all distributions, we can see
that the working values, corresponding to 2, 5, 8 . . . will approximate the
medians much better than they will approximate the means. (The ratios of

"errors” are roughly 4, 46 and 100 at n = 100 fori = 1, 2, 3))
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exhibit 19

Values of (3n+ 1) x (own left tail area) for order statistics
from the rectangular distribution

n fori=1 fori=2 fori=3 for i=4 for i=i

2 23333 4.6667
5 2.6667 53333 8.0000 10.6667 2.667i
iV 2.8i82 5.6364  8.43545 11.2727 2.818i
20 29048 58095  8.7143 11.6190 2.905i
50 29608 5.9216  8.8824 11.8431 2.961i
100 29802 5.9604 8.9406  11.9208 2.980i
200 29900 5.9801 8.9701 11.9602 2.990i
500 29960 59920 89880  11.9840 2.996i
1000 29980 59960  8.9940 11.9920 2.998i

(=) (3) (6) €9 (12) (3i)
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exhibit 20

Values of (3n+1)(own tail area) for means of logistic order statistics

n

WS WD e

—t
(=2 R e ]

15
20
50
100

i=1

2.000
1.882
1.823
1.792
1.772

1.758
1.748
1.740
1.734
1.729

1.714
1.707
1.693
1.688

316(n-1)1%5

C'=

T -1 4 1.69

(c?

(2.000)
(1.882)
(1.825)
(1.793)
(1.772)

(1.755)
(1.747)
(1.740)
(1.933)
(1.728)

(1.713)
(1.706)
(1.693)
(1.688)

(*#*)Entry at n=19 would be 31.000

i=2 i=3 i=4

4.642 8.000

4522 17.817
4428 7.663
4351 7.531 10.832
4286 7.419 10.681
4230 7.322 10.628

4,036 6.985 10.051
3915 6.756 9.730
3.591 6.173 8.866
3.387 5.811 -
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14.000
13.841

13.219
12.796
11.639
10.926

i=10

(*)
28.863
26.288
24.570
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If we had to take means of logistic order statistics seriously, we might not be

happy with the corresponding working values. |

46. Working-values and @’s as % points.

If we ask what percent point for y;, where i = n+1-j, the working value

3(n+1-j)-1

-1
X 3n+1

) corresponds to, we find, by direct calculation

n j=1  j=2  j=3  j=4  j=5

10 51.33% 50.35% 50.15% 50.07% 50.02% \
100 51.34% 50.37% 50.18% 50.11% 50.08%

1000 51.34% 50.37% 50.18% 50.11% 50.08%

These values apply to any F.

If we ask the same question for d@g,,, (il n) we find, by direct calculation

from tables of dg,,. (il n):

n j=1  j=2  j=3  j=4  i=5

10 47.24% 48.60% 49.20% 49.58% 49.87%
100 45.65 47.18 4786  48.26  48.53
200 45.34 4691 47.62  48.03  48.30

1000 45.10 46.70 4742 47.84  48.13

47. Sources.

Gaussian order sta'istic means are given in table C1 (pp 425-451) of Harter
(1969) for n up to 400 (selectively for n 2 100). Values for i=1 can also be

taken from table 28 of Pearson and Hartley as (half the values of mean range
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given there), thus going to n=1000, with a few extra decimal places for
n < 400.
The order-statistic means for exponential and rectangular parents are well
known (and are written down above).

Order-statistic medians can be found in two ways:

e Dby solving "complete beta function = .5", which can easily give many

decimal places when we are careful to rearrange the formulas

e Dby starting from tabulated 50% points of F , z or the incomplete beta

function.

The type of rearrangement needed to assist in preserving accuracy can be
illustrated for i=3, where (* stands for some constant to be determined
eventually)

* " 3(1-w)2du = * (u™ 3 - 2u" 2+ u* YHdy

which integrates to

u=% oyl u"? 20n=-2)u . (n—2)u?
* - + = % 1 -~ +
(n—-2 n-1 n ) n—2( n-1 n )
n-2 2
= 2 1)+ 2u  2u )
n-2 -1 n
n-2
= o ((1mw)? + (- )
n-2 1
u"? 2, 2u(l-u) 2u
= X% +
poz (1) n(n-1)

If we put u—1, this this gives

(0404 ——) = 1
n-2 nin-1) -

* ..
whence > = n(n—1) and the cumulative is
n—.
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n(n=-un~? (1-u)? + U=, 2u
n(n-1)
Doing similarly for other small i, we find the successive equations

u = .5

W N(-u) + £1= 5
n

nin-1u""2 [(1—u)2+ 2u(l-u) + 2u :l: 5
n n(n-1)

Moments of V P can be found in Table 35 of Pearson and Hartley.

48. History.

The original extended treatment of F~Y((3i-1)/(3n+1)) seems to have

been due to Gunnar Blédm (1958).

The observation that gaps were weakly correlated in the Gaussian case
began to be exploited by Ramanathan Gnanadesikan and Martin Wilk in about
1964. (All this was implicit in Wald’s earlier remark that the order statistics
were a strong Markov process and in the work of Pearson and Pearson (1932),
who stated that the correlation between gaps was "small, and for many

purposes, negiigible.".) (See Andrews et. al. 1972 for more detailed

exploitation.)

Limiting exponential behavior of gaps goes back to the work of von
Bortkiewicz (1915) on the uniform case. Empirical calculations, not yet(?)
published were made (at Princeton) by Christopher Bingham about 1965, and
more extended calculations appear in James Filliben’s Princeton Thesis

(Filliben 1969).
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APPENDIX B. HOW THREATENING IS GRANULATION?

We have discussed the behavior of gaps, leaps, and e-leaps in terms of
samples from continuous distributions - - where observations are available to
infinite precision, and the probability of even one tie is zero. In the real world,
observations are available with only limited precision, and ties are common.
Ties, which correspond to gaps of length zero and hence to zero leaps and even
zero stretches, are obviously a cause for concern. It is the aim of this appendix
to provide an indication of how much concern is likely to be needed, and of the
degree to which simple modifications of the observed values suffice to remove

the need for concern.

49. An initially ungranulated example.

We begin with a numerical example, based on 20 not very random
deviates, generated to illustrate a unit Gaussian sample. Exhibit 21 has the
calculations through e-leaps. (The final column is shown for qualitative
impressions only.) We have used working-value divisors (labelled D) and mean
multipliers (labelled M), and have shown data, leaps and e-leaps each in two
orders (as indexed, and as ordered by sorting). Such pairs of columns are
divided by a slashed vertical rule, since row identity does not carry across from
one to the other. "Gaps" always refers to differences down the previous
column, and the resulting numbers are placed opposite the value with the larger
subscript (the lower in the column). [Horizontal rules in IND columns indicate

subtotals generating the submeans listed below the main table (first 4, first 9,
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first 14, and mean of all).] Since the mean of all leaps is % (leapall), the

identity of leapalls for original observations and leapalls for leaps (e-leapalls) is

reflected by equality of "means of 19".

exhibit 21 about here

50. Granulating the example (grouping iis values).

If we induce granulation in this example by rounding (grouping) the
observations to the nearest 0.2, 0.5, 1.0 or 2.0, we get the results shown in

exhibits 22A to 22D.

exhibits 22A to 22D about here

From these examples our main concern is with the means of the first 14
e-leaps which, in a real situation, we might hope to find reflecting only residual
error, (so that their values can be used to estimate the size of residual error)
and the means of all 19 which, in a non-null situation, would reflect residual
error increased by the consequences of real effects. Exhibit 23 compares these

values across amount of granulation.

exhibit 23

The means of 14 and 19 leaps

original grouped to 0.2 grouped to 0.5 grouped to 1.0 grouped to 2.0

mean of 14 1.15 1.08 1.80 O(sic !) O(sic )

mean of 19 1.31 1.32(1.31) 1.36(1.32) 1.24(1.34) 1.43(1.44)
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An illustrative (randomly generated) example with n=20

Observations

IND ORD
807 / - 1.892
-1760 / -1.760
1.350 / -1.367
-1892 / ~1.135
-.129 / -1.033
1.573 / -.970
-1.135 / -.210
-.210 / -.190
1.165 / -.129
.086 / -.007
-.007 / .086
-1.033 / .566
566 / .785
2370 / .807
2370 / 1.123
-.970 / 1.165
-.190 / 1.350
-1.367 / 1.573
185 / 2.370
1.123  / 2.370

D =
(sorted).

submean of 1*' 14:

mean of 19:

Gaps

132
393
232
102
.063
.760
.020
061
122
.093
480
219
022
316
.042
185
223
793
.000

submean of 1¢ 4:

submean of 1* 9:

(leapall)

450
2N
207
174
154
141
132
127
125
122
125
127
132
141
.154
174
.207
271
.450

leaps
Gaps
IND ORD

!/ (0
293/ .000 .000
1450 / 151 151
1.121  / 167 .016
586 / 273 .106
409 / 293 .020
5390 / 409 116
JA51 480 Ky
480 / .586 106
97 / .762 .176
762 |/ 976 214
3.840 / 1.063 .087
1724 [/ 1.077 014
167 /0 1121 .044
2241 / 1450 329
273/ 1724 274
1.063 / 2241 517
1.077 / 2941 .700
2941 / 3.840 .899
000 / 5390 1.550

X X

X X

X X

1.31 1.31
(24.944)  (24.944)

Z

Pt et bd it bt bd et et et
- N W A O] 00O

b
—_ WAL NNO0 OO

e-leaps
IND ORD
/
00 / .00
272 |/ 11
27 |/ 27
1.70 / .30
30 / .31
1.62 |/ .78
92 7 .92
1.27 /  .1.27
193 / 1.37
214 |/ 1.55
78/ 1.62
Jd1 1.70
31/ 1.80
1.97 / 1.93
1.37 / 1.97
207 ¢/ 2.07
2,10 / 2.10
1.80 / 2.14
1.8 / 2.72
1.17 x
1.19 X
1.15 X
1.31 1.31
(24.93) (24.93)

NOTE: If 2 decimals are carried for leaps and €-leaps, the leapalls are 24.78.
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exhibit 22A

The numerical example of exhibit 21 granulated to steps of 0.2

Observations leaps e-leaps
Gaps Gaps
IND ORD D IND ORD M IND ORD
08 / -18 !/ (0) /
-18 / -18 0 450 0 /! 0 0 0 / 0
14 / -14 4 271 148 /O 0 0 / 0
-18 / -12 2 207 97 /O 0 0 /] 0
~2 / =10 2 174 1as /0 0 0 /] 0
16 / =10 O 154 0 / 0 0 0 / 0
-12 / -2 8 .141 567 [+ O 0 0 / 0
-2 J -2 0 A32 0 / 0 0 0 /0
12 / -2 0 d27 0 / 0 0 0 / 0
0 / 0 2 125 160 / 97 97 11 1067 / O
0 / 0 0 122-0 / 97 0 10 0 [/ 0
-1.0 / 6 6 .125 48 / 115 .18 9 1.62 / .15
0.6 / 8 2 127 157 / 115 O 8 0 / .33
24 |/ 8 0 Jd32 0 /] 148 33 7 231 / .54
24 |/ 1.2 4 141 284 /[ 157 .09 6 54/ .87
-1.0 / 12 0 154 0 /] 160 03 5§ A5/ 162
-2 |/ 1.4 2 174 11S / 284 1.24 4 496 /[ 231
-14 / 1.6 2 207 97 | 295 A1 3 33 / 370
08 / 2.4 8 271 295 / 480 185 2 370 / 496
1.2/ 24 0 450 0 / 567 87 1 87 | 10.67
submean of 1¥ 4: x X 0 X
submean of 17 9: b3 x 1.19 x
submean of 1* 14: x x 1.08 X
mean of 19: 132 132 1.32 132

D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordrred
(sorted).
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exhibit 22B

The numerical example of exhibit 21 of granulated to half integers

Observations leaps e-leaps
Gaps Gaps
IND ORD D IND ORD M IND ORD
1 /! -2 /  (0) /
-2 /] =2 0 A4S0 O / 0 0 0 !/ (0)
1. / =15 S 271 185 |/ 0 0 0 !/ (0)
-2 /] -1 S5 207 242 ./ 0 0 0 !/ (0)
0 /] -1 0 74 0 / 0 0 0 / (0)
1.5 / -1 0 154 0 / 0 0 0 [ (0)
-1 / 0 1 141 7.09 / 0 0 0 / (O
0 / 0 0 132 0 / 0 0 0 / )
1 /] 0 0 127 0 / 0 0 0 / (0)
0 / 0 0 J25 0 / 0 0 0 / )
0 / 0 0 d22 0 / 0 0 0 / 0
-1 / 1 1 128 8.00 / 0 0 0 / (0)
0.5 / 1 O 127 0 / 0 0 0 / (0)
25 |/ 1 0 Jd32 0 / 0 0 0 / 0
25 |/ H 0 141 0 / 185 18 6 1110 [/ 91
-1 / 1 0 .154 0 / 242 57 5 285 / 180
0 / 1.5 s 174 287 |/ 287 45 4 180 [/ 246
-1.5 / 1.5 207 O / 369 82 3 246 / 285
1 / 25 1 271 3.69 / 709 340 2 680 [/ 6.80
1 / 25 0 450 0 / 8.00 91 1 91 / 11.10
submean of 1 4: x x 0 X
submean of 1 9: x X 0 x
submean of 1" 14: x x .80 X
mean of 19: 1.36 1.36 1.36 1.36
(leapall) (25.92) (25.92) (25.92) (25.92)

D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordered
(sorted).

March 29, 1989




.91 -

exhibit 22C

The numerical example of exhibit 21 granulated 1o integers

Observations leaps e-leaps
Gaps Gaps
IND ORD D IND ORD M IND ORD
1/ -2 / (0) /
-2 / =2 0 450 0 / 0 0 0 /] 0
1/ -1 1 271 369 [/ O 0 0 !/ (0)
-2/ -1 0 207 0 / 0 0 0 /
0o / -1 0 174 0 /! 0 0 0 /
2/ -1 0 154 0 / 0 0 0 /
-1/ 0 1 41 709 /1 O 0 0 /
0 7/ 0 0 A32 0 / 0 0 0 /
1/ 0 0 127 0 /! 0 0 0 /
o / 0 0 A25 0 / 0 0 0 /
o / 0 0 d22 0 /! 0 0 0 /
-1/ 1 1 25 800 / O 0 0 /
1/ 1 0 Jd27 0 / 0 0 0 /
2/ 1 0 132 0 / 0 0 0 /
2/ 1 0 141 0 / 0 0 0 /
-1/ 1 0 54 0 /] 0 0 0 / (0)
0o / 1 0 174 0 /] 369 369 4 1476 |/ 91
-1 / 2 1 207 483 / 483 114 3 342 / 342
1/ 2 0 2711 0 /] 709 226 2 452 /| 4.52
1/ 2 0 450 0 / 800 91 1 91 / 1476
submean of 1 4: X X 0 x
submean of 1 9: X x 0 x
submean of 17 14: X x 0 x
mean of 19: 1.24 1.24 1.24
(leapall) (23.61) (23.61) (23.61) (23.61)

D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordered
(sorted).
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exhibit 22D

The example. of exhibit 21 granulated to steps of 2

Observations leaps e-leaps
Gaps Gaps
IND ORD D IND ORD M IND ORD
o / -2 0 .450 !/ (0) 0 0 o0 / O
-2/ =2 0 / 0 /
2/ =2 0 / /
-2 / =2 0 / /
o / -2 0 / /
2/ 0 2 154 1299 |/ /
-2 |/ 0 0 / /
o / 0 0 / /
2/ 0 0 / /
o |/ 0 0 / /
o / 0 0 / /
-2 / 0 0 / /
o / 0 0 / /
2 / 2 2 41 1418/ /
2 |/ 2 0 / /
o / 2 0 / /
0o / 2 0 / /
-2 / 2 0 / 0 0 3 0 /0
0o / 2 0 / 1299 1299 2 2598 / 119
2 |/ 2 0 450 / 1418 119 1 119 / 2598
submean of 1* 4: x x 0 x
submean of 1* 9: x b3 0 x
submean of 17 14: x x 0 x
mean of 19: 143 143 143 1.43
(leapall) (2717 (27.17) (2717 (27117

D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordered
(sorted).
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*  comparison with Sheppard’s correction *

Sheppard’s correction corresponds to

2

(ungrouped variance) = (grouped variance)— —}1%

where h is the interval from one grouped value to the next. (Recall that this
correction is associated with "high contact” at the tails of the density and is
equal in size, but opposite in sign, to what would happen if the ungrouped
values were uniformly distributed over each grouping interval.) If we write this

first as

2
(grouped variance) =(ungrouped variance)+ %

h2
12(ungrouped variance)

=(ungrouped variance)(1+
and then take square roots on both sides (using 1 + (#/2) as the approximate

square root of 1 + u), we find

h2
24(ungrouped variance) )

(grouped variance) /2 = (ungrouped variance)/2 (1 +
Thus if we start with an ungrouped variance of (1.31)2 and grouped with A=2,

)1/2

we anticipate a (grouped variance of, approximately

1 2
1. + —(——)% = 1.44
31 24(1.31) )=1
The parenthetic entries in exhibit 23 were calculated from the (original)

ungrouped values in this way. The overall increase in the mean of 19 leaps due

to grouping is crudely what this approach would predict.

*  overall comparison  *
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On the whole, the mean of 19 leaps is quite well behaved throughout. The
mean of 14 leaps first falls rapidly, then rises and finally falls drastically - - so

that we are unlikely to be able to use it without some modification.

51. The simple adjustment.

In exhibit 22C, there are four —1’s. If 4 such arise, as these four did, by
grouping to integers, their initial values fell somewhat between - 1.5 and -.5.

If we make the five spaces equal, as in

(-1.5) (~1.5)

2
-1 -1.3

2
-1 - ~1.1

2
-1 -0.9

2
-1 -0.7

2
(-0.5) (-0.9)

we do something simple which may help.

For reasons discussed in the next section, even if either extreme value (or

both extreme values) are tied, we do not adjust them.

Exhibits 24A to 24D shows what happens, in this inadequate example,
with this style of adjustment. The results for means of 14 and means of 19 are

summarized in exhibit 25.

exhibits 24A to 24D about here
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exhibit 24A

The granulated-10-steps of 2 example of exhibit 22D
expanded at intermediate values and analyzed

Observations leaps e-leaps
Gaps Gaps
RAW EXP D IND ORD M IND ORD
=2 /] =2 / /
-2 /! -2 0 450 0 / 0 /
-2 /f =2 0 271 0 /0 /
-2 /[ =2 0 207 O /0 /
-2 / =2 0 74 0 /] 0 /
0 / -8 12 15¢ 779 [/ O /
0 / -.60 2 Jd41 142 /0 /
0 /[ =40 2 132 152 /0 /
0 /[ =20 2 027 157 /0 /
0 /0 2 125 160 / O /
0 / .20 2 022 164 / 142 142 10 142 / 0
0 / 40 2 125 160 / 1.52 09 9 /0
0 / .60 2 027 157 /7 152 O 8§ O /0
0 / .80 2 132 152 /.57 05 7 35 12
2 /2 1.2 .14) 851 / 157 O 6 O / .15
2 /2 0 154 O / 160 03 5§ A5/ 35
2 /2 0 174 0 / 160 0 4 0 / 72
2 /2 0 207 0 / 164 04 3 g2/ 9
2 /2 0 271 0 [/ 279 615 2 1230 / 1230
2 /2 0 450 0 / 8.51 72 1 g2/ 1420
mean of 14: x x 1.10 x
mean of 19: 1.0, 1.51 1.51 x
leapall: (28.74)  (28.749) (28.74)  (28.74)

EXP = expanded, D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordered (sorted).
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exhibit 24B

The granulated-10-integers example of exhibit 22C
expanded at intermediate values and analyzed

Observations leaps e-leaps
Gaps Gaps
RAW EXP D IND ORD M IND ORD

-2 /] =2 0 /! 0 0 /

~2 / =2 0 450 0 / 0 0 /

-1 /[ ~13 g 27T 258 /0O 0 /

-1 /! ~-11 2 207 97/ 0 0 /

~1 /! -9 2 174 115 / 86 86 16 1376 [/ .07

-1 !l = 2 154 130 / 9 .05 15 as .08
0 / -.33 37 .41 262 / .97 06 14 84 |/ .10
0 /{ -17 16 132 121 / 99 02 13 26/ .18
0 / 0 A7 0127 134/ 106 .07 12 84 |/ .26
0 / A7 017 125 136 /115 09 11 99 / 27
0 / 33 .16 122 131/ 1.8 03 10 30 / .30
1 / 64 31 125 248 / 1.2 03 9 27 30
1 / 79 05 127 118 / 130 .09 8 72 .51
1 / 93 .14 132 106 / 131 or 7 07 / 72
1 /[ 1.07 4 141 99 [/ 134 03 6 A8/ 75
| /121 14 154 91 / 136 02 § 0/ .84
1 /135 15 174 B6 / 248 112 4 448 / 84
2 /2 64 207 309 / 258 0 3 30 .99
2 /2 0 271 0 / 262 04 2 .08 / 448
2 /2 0 450 0 !/ 3.09 47 1 47 13.76

mean of 14: x x 1.36 x

mean of 19: 1.28 1.28 1.28 1.28

leapall: (2441) (2441 (24.41) (24.41)

EXP = expanded, D = divisor (working value), IND = as indexed, M = multiplicr, ORD = ordered (sorted).
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exhibit 24C

The granulated-to-0.5 example of exhibit 22B
expanded at intermediate values and analyzed

Observations leaps e-leaps
Gaps Gaps
RAW EXP D IND ORD M IND ORD
-2 !/ =2 /. (0) /
-2 !/ -2 0 450 0 /0 0 19 0 /
-1.5 [/ -15 S 271 185 / O 0 18 O /
-1 / =112 38 .207 184 / 63 63 17 1071 / .05
-1 / =100 .12 .174 69 / 64 01 16 16/ 13
-1 / -.88 .12 .154 .78 |/ 65 .01 15 A5/ 15
0 / =17 .71 141 S5.04 / 68 .03 14 A2/ .16
0 / -.08 .09 .132 .68 / 69 .01 13 .13 |/ .18
0 /0 .08 .127 63 / 1 02 12 24/ .20
0 / .08 08 .125 64 / 74 .03 11 33 .24
0 / A7 09 122 4/ .76 .02 10 20/ 33
0s / .5 33 125 264 / 78 .02 9 18/ .36
1 / .85 35 .127 276 / 87 .09 8 72/ 42
1 / 95 .10 132 76 / 149 62 7 434 / 72
1 / 105 .00 .41 71 / 18 35 6 210 / 120
1 / 115 .10 .154 65 / 18 01 S5 05 / 1.68
1.5 / 141 26 174 149 / 264 79 4 316 / 210
1.5 / 159 .18 207 .87 / 276 .12 3 36 /  3.16
25 /25 91 271 336 / 336 .60 2 120 / 4.84
25 /25 0O 450 O /] 504 168 1 168 / 10.71
mean of 14: x X 141 X
mean of 19: 1.38 1.38 1.38 1.38
leapall: (26.13) (26.13) (26.13) (26.13)

EXP = expanded, D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordered (soried
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exhibit 24D .

The granulated-10-0.2 example of exhibit 22A
expanded at intermediate values and analyzed

Observations leaps e-leaps
Gaps Gaps
IND ORD D IND ORD M IND ORD
-18 / -18 0) / 0 /
-18 /[ -18 0 450 O /0 0 /
-14 [ -14 4 271 148 /0 0 /
-12 / =12 2 207 97 / 38 .38 17 646 [/ 0
-10 / -1035 .167 .174 96 [/ 39 01 16 .16 / O
-1.0 /J -.967 .066 .154 43 /A3 04 15 60 [/ O
-2 / =25 .717 .41 509 / 43 000 14 0O /.10
-2/ -2 .050 .132 38 / S50 .07 13 91 / .16
-2 [/ =-.15 050 .127 39 /54 04 12 48 /.32
0 / -.033 117 .12§5 96 [ 96 42 11 462 / .60
0 / 033  .066 .122 54 [ 96 000 10 O / .64
06 / .6 567 125 454 /97 o1 9 29 /7 9
08 / 767 167 127 131 / 97 000 8 O !/ 1.02
08 / 833 .066 .132 050 / 1.05 08 7 .56 / 110
1.2/ 1.167 .334 141 237 / 131 36 6 156 [/ 1.82
1.2 / 1233 .066 .154 43 / 148 17 5 85 / 232
14 / 14 183 .174 105 / 237 89 4 356 / 445
1.6 / 1.6 2 207 97 [ 295 58 3 174 |/ 4N
24 [/ 24 3 271 295 [/ 454 159 2 318 / 552
24 / 24 0 450 O / 5.09 55 1 55 | 546
mean of 14: x x 1.10 x
mean of 19: 1.33 1.33 1.33 x
leapall: (25.32) (25.32) (25.32) (25.32)

EXP = expanded, D = divisor (working value), IND = as indexed, M = multiplier, ORD = ordered (sorted).
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exhibit 25

Behavior of means of 14 and 19 under simple adjustment

original gran 10 0.2 gran to 0.5 granto 1.0 gran t0 2.0

means of 14
raw 1.15 1.08 .80 0 0
adjusted (1.15) 1.10 1.41 1.36 1.10
“Shepparded™ 1.15 1.15 1.16 1.19 1.30
means of 19
raw 1.31 1.32 1.36 1.24 1.43
adjusted (1.31) 1.33 1.38 1.28 1.31
"Shepparded™  1.31 1.31 1.32 1.34 1.44

s"Shepparded” refers to the values obtained for the original (ungrouped) example
(exhibit 10) when adjusted by the inverse of Sheppard’s correction for grouping.
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The simple adjustment has (a) provided usable values for the means of 14
when the example was heavily granulated, and (b) provided adjusted values for
means of 14, some of which are closer (than unadjusted means of 14) to the
results of making a correction for grouping to the original mean of 14, and
some of which are not. Clearly a much more detailed study would be needed
to yield definite results here, but if we needed to use means of 14 leaps for

heavily granulated data, we are very likely to gain by adjustment.

52. Discussion and heuristics.

The results of this one/one instance are encouraging, but it would require
a much larger simulation to leave us comfortably sure of how this adjustment

behaves.

We can, however, explain why we thought it better not to adjust the
extreme values. Nearer the center of the batch, such a value as —1 may be
known to lie between —1.5 and —0.5. When this is so, the distribution of
original values grouped at —1 may be moderately uniform, and any reasonable-
seeming adjustment by spreading is likely to be sensible. At the extremes,
where we may know that +2 came from somewhere between +1.5 and +2.5,
we also know that the distribution of original values ending up at +2 is very far
indeed from being uniform. The two reasonable choices are (a) leave the
extremes alone or (b) spread them out quite unsymmetrically. Doing the latter
is intrinsically more complicated. Since we are trying to be simple, it is natural

for us to follow route (a).
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APPENDIX C: A future possibility of handling shape using the tool kit

53. How we might proceed further with our syms.
We may as well suggest a method of proceeding further, into the shape

arena, with our syms. It is quite unclear how well the proposed approach will
work, but it seems worth writing down, if only for a threshold against which

other approaches can be compared, if desired.

We shall let G be a satisfactory method of smoothing, and shall begin by
focussing our attention on how such a smoothing procedure can be built into an
overall procedure. We shall turn a little later to suggestions for what smoother

to use for G.

*  the general procedure  *

We begin with a sequence of syms, {y,}for1 < ¢ £ n, and a "good"
smoother G. Our first step is to accept {4,"} = G {4, } as our smoothed version,

and to at once proceed to assess its stability.

A reasonable approach is to simulate the anticipated sampling valuability,
first for the syms themselves and then, by applying G to several parallel
realizations, for the smoothed values. If we knew the true mean for each sym,
this would be both easy and direct. The best we can do is to work with a
substitutes for these unknown means. We have chosen here to use

{u,‘} = G {4, )} as the substitute. (We might also consider using {u,"} =G {u,'}.)

We now ask for 8 (or some other number) of well-balanced realizations,

each of n i.id. unit Gaussians. Call these {v,(1)}, (v,(2)}, ..., {v(8))
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If ave{u,} = ..,, then med {u,} =}, and hence (see section 13)

—l—u,. Thus

pseudosigma {u, } = 33

Ly, vii)

Het 33

which we shall approximate by

u'+ =——u, v,(j)

33

has about the same 1% and 2"¢ moments as u,. Thus the variability of

313 U Vi (J)}

from one j to another, should provide an estimate of about the correct

vi(N) = Glu +

variability for »,. (Recall that here G is a smoothing operator.)

Put

t

PIRAC)
i

L
8
1 ot
St= = T (D-%)°
J

52} = G{2k 1(5“" +.4+ 520}
where 2k +1 is the odd integer approximating the greater of 1 and n/5. (For
individual values of ¢t near 1 or n we shrink k£ as necessary.)

Here 35,2 is a rough estimate of var {4,'} and 5,2 is roughly a smoothed
version of a local smooth of var {1;'}. So we can probably take s, as an estimate
of the standard deviation of u,. We should also calculate a few serial

correlations of the {v,'(j)}, (across j), each within one of the (first, second, or

last) thirds in ¢.
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. we want individual + 20 limits on u,”, we can probably do well enough
with

(ut‘ - 2Sr, u[‘+ 2Sr)

so that a plot of these limits against ¢ (perhaps in pencil-point form, (cf.

Hoaglin and Tukey 1985) should be informative, making clear:

e whether or not we are forced to believe that what is estimated by u," is

not constant, and

e how what is thus estimated may behave when it is not constant.

But we might reasonably want simultaneous limits rather than individual
ones. To do this we must do something equivalent to asking how many
“independent” values of r seem to exist. The serial correlations we have
calculated should offer a basis for such an estimate. (For plausible G, it feels
as if the number would fall between n/5 and n/15 once n 2 350, but we will

have to try things out to learn what does happen.)

*  good smoother  *

Cleveland’s lowess [1979] was defined in terms of moving fits of various
parametric expressions, but all realizations of it seem to have used linear fits.
In the present context, where we want to preserve wiggles, both a quadratic fit
and a moderately narrow window seem to be desirable. But we cannot expect

the result to be smooth enough. So we suggest for G the following:

e First, lowess with a quadratic fit and window length 20% to 30% of the

total.
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e a2

e Then, smoothing by 3RSSH, twice.
e Finally, smoothing by HH, twice.

It is far from intuitively clear whether or not (i) the first step should also be

twiced, and/or (ii) the third step be made "H, twice" instead of "HH, twice".

Smoothers designed to have smooth differences may also have a place

here.

Only trial will teach us either how well this prescription is likely to do, or

in which directions it might be well to modify it.
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