ě.

1 1

OFFICE OF NAVAL RESEARCH

Contract No. N00014-85-K-0129

Work Unit No. 431a007

Technical Report No. 1

RAMAN SPECTROSCOPIC STUDY OF THE RARE EARTH SESQUISULFIDES

by

Diane S. Knight and William B. White

Materials Research Laboratory The Pennsylvania State University University Park, PA 16802

Prepared for Publication in

JOURNAL OF SOLID STATE CHEMISTRY

7 28 018

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

89

SEC 3 14	1. 433.F	I A TION	OF	THIS PAGE

1

٩.

.

кл Э

ſ

REPORT DOCUMENTATION PAGE

			FAGE			
13 REPORT SECURITY CLASS-FICATION		16 RESTRICTIVE	MARKINGS			
Unclassified Za SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT						
26 DECLASSIFICATION DOWNGRADING SCHEDU	Approved for public release, distribution					
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)					5)	
No. 1		N00014-85-K	-0129			
6aNAME OF PERFORMING ORGANIZATION6b OFFICE SYMBOL (If applicable)7a. NAME OF MONITORING ORGANIZATIONThe Pennsylvania State(If applicable)0ffice of Naval Research Dr. Robert Schwartz					<u> </u>	
6c. ADDRESS (City, State, and ZIP Code)7b. ADDRESS (City, State, and ZIP Code) Code 373210 Materials Research Laboratory University Park, PA 16802Naval Weapons Center China Lake, CA 93555-6001						
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable)					IMBER	
8c. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF F	UNDING NUMBER	s		
PROGRAM PROJECT TASK WORK UNIT ELEMENT NO NO NO NO						
11 TITLE (Include Security Classification)						
Raman Spectroscopic Study of Rare Earth Sesquisulfides						
12 PERSONAL AUTHOR(S) Diane S. Knight and William B. White						
13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT Technical FROMTO July 17, 1989 15					COUNT	
16 SUPPLEMENTARY NOTATION						
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)						
FIELD GROUP SUB-GROUP						
IS ABSTRACT (Continue on reverse if necessary and identify by block number) Raman spectra have been measured on carefully synthesized and characterized sesquisul- fides of the rare earth ions plus yttrium and scandium. Six structure types are represented. The Raman spectra are diagnostic of the structures type. Raman line widths indicate structural disorder only in the defect gamma type structure. High wavenumber bands shift with ionic radius of the rare earths and only slightly with cation coordination number.						
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT	PT DTIC USERS	21 ABSTRACT SE	CURITY CLASSIFIC	ATION		
22a NAME OF RESPONSIBLE INDIVIDUAL	LI UTIC USERS	226. TELEPHONE (I	Include Area Code,	22c. OFFICE S	MBOL	
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted All other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE						

Raman Spectroscopic Study of the Rare Earth Sesquisulfides*

DIANE S. KNIGHT and WILLIAM B. WHITE** Materials Research Laboratory The Pennsylvania State University University Park, PA 16802 USA

<u>Abstract:</u> Raman spectra have been measured on carefully synthesized and characterized sesquisulfides of the rare earth ions plus yttrium and scandium. Six structure types are represented. The Raman spectra are diagnostic of the structures type. Raman line widths indicate structural disorder only in the defect gamma type structure. High wavenumber bands shift with ionic radius of the rare earths and only slightly with cation coordination number.

[•] Work supported by the Office of Naval Research under Contract No. N00014-85-K-0129.

^{**} Also affiliated with the Department of Geosciences.

INTRODUCTION

The sesquisulfides of the rare earths exist in six different crystallographic forms depending on temperature of synthesis and ionic radius of the rare earth. The structures and crystal chemistry have been studied intensively particularly by Flahaut and his colleagues [1-6]. Because of the range of crystal structures and coordination polyhedra of the rare earth ions, it is of interest to examine the vibrational spectra of these compounds. The spectra may then be compared with the vibrational spectra of related ternary rare earth-containing sulfide structures, $\{7, 8\}$.

EXPERIMENTAL METHODS

The rare earth compounds were purchased from Cerac, Inc. X-ray powder diffraction patterns were obtained to determine which structure was represented and to determine phase purity. All compounds were fired for 24 hours at 1000 C in an atmosphere of flowing H_2S . This treatment converted any oxidized or hydrolysed material to sulfide and also improved the crystallinity. The sulfides did not hydrolyse or oxidize rapidly under laboratory ambient. It was possible to handle the compounds and measure their spectra in the open atmosphere.

The high temperature gamma polymorph was obtained by sealing the low temperature form in evacuated silica tubing and heating for 48 hours at 1300 C. The epsilon structures, Yb_2S_3 and Lu_2S_3 also gave clean x-ray diffraction patterns after they had been heated to 1300 C for 24 hours in evacuated sealed silica tubes or in flowing H_2S .

Raman spectra were obtained using an Instruments SA, Ramanor U-1000 microfocus spectrometer. The samples were measured as powders dispersed on a microscope slide at the focal point of the microscope attachment. The

632.8 nm line of a He-Ne laser was the excitation source. Because the band gaps of these materials range from 2.3 to 2.8 eV [9], resonance enhancement of the Raman scattering allowed good spectra to be obtained with a 15 mw laser, amounting to 0.7 mw at the focal point. Five or more scans were taken of each sample; these were coaddded to increase signal to noise ratio. The spectra reproduced in this paper were taken directly from the plotter of the instrument control computer.

RESULTS

Structural information on the rare earth sesquisulfides is summarized in Table 1. The Greek letter notation introduced by Flahaut is retained. The alpha, beta, and delta structures are unique whereas the gamma, epsilon, and tau structures belong to established structure types as indicated on the table. Capital letter notations have also been suggested [10]. However, it has long been customary to refer to the structures of the rare earth oxides as the A, B, and C types and the sulfides are not isostructural with the oxides. Overall, it appears to be less confusing to retain the Greek letter notation.

As expected, there are strong similarities between the Raman spectra of compounds belonging to the same structure type. The spectra and their description are, therefore, arranged according to structure.

DIC

COPY

V

7 Codes

and/or

Special

Dist

The Alpha Structure

The alpha structure was determined by Prewitt and Shannon [11]. It consists of a three-dimensional framework of interlocked GdS7 and GdS8 polyhedra. Factor group analysis (Table 2) predicts 30 Raman lines.

Raman spectra of alpha structure compounds (Fig. 1) show a relatively sparse pattern of bands. There are a few intense lines with a larger

number of weak ones. The total number of lines observed above background is only about one third of the predicted number. It was not possible to prepare α - La₂S₃ completely free of the beta structure and its spectrum is not shown. The most intense features are very similar to the spectra in Fig. 1.

The three high wavenumber bands, which are likely Ln-S stretching modes, vary in a nearly linear fashion with rare earth ionic radius (Fig. 2). The slopes of the three lines are very similar. Band wavenumber decreases with increasing ionic radius, thus longer bonds and smaller force constants, but increases with increasing atomic weight of the rare earth ion.

The Beta Structure

The beta structure appears mainly as an oxysulfide with the formula $Ln_{10}S_{14}O_{x}S_{1-x}$. The 15th sulfur anion occupies a unique structural position [13] and it alone can be replaced by oxygen. There is a solid solution as indicated in the formula but there has been argument whether or not the pure sulfide end member (x = 0) exists. We found that minuscule amounts of oxygen were sufficient to stabilize the beta structure. Although the beta structure of the larger rare earths was easily synthesized, it was not certain that any of the preparations were oxygen-free. Accordingly, we do not report a spectrum here.

The beta structure has a large and complex unit cell leading to the prediction of 93 Raman lines. Raman spectra of the oxysulfides usually contain less than 20% of the predicted lines although the lines are very sharp and the spectrum complex. The entire problem of the stability of the beta structure and its spectrum is discussed elsewhere [14].

The Gamma Structure

Ln₂S₃ compounds belong to the cubic Th₃P₄ structure type. The cations occupy the 12(b) equipoints and the anions the 16(c) equipoints. There are four formula units in the unit cell. For compounds such as $CaLa_2S_4$ and $SrNd_2S_4$ which also belong to the Th₃P₄ structure the 16 S-atoms occupy the 16(c) sites and Ca + 2La (or Sr + 2Nd) occupy the 12(b) sites. All sites are exactly filled and there are no vacancies. However, because the cations sites contain divalent and trivalent cations on the same site, there is an intrinsic disorder which leads to the broadening of certain of the Raman lines of the otherwise ordered compounds [7].

It is apparent from the chemical formula, Ln_2S_3 , that there are too few atoms to fill the equipoints and thus the γ - Ln_2S_3 compounds must be defect structures. One defect structure has balanced cation and anion vacancies: $Ln_2 \square S_3 \square$. However, some crystallographic evidence has been offered that the anion site is filled and that the formula should be written as $Ln_{2.67} \square 0.33S_4$ [10].

The spectra for four compounds with the gamma structure are shown in Fig. 3. These were obtained by coadding 10 - 15 individual scans. The spectra are very similar from one compound to another with five broad bands easily recognizable. Band wavenumbers decrease linearly with increasing ionic radius. Calculations for the gamma structure [7] give A₁ (Raman) + $2 A_2$ (inactive) + 3 E (Raman) + 5 T₁ (inactive) + 5 T₂ (IR + Raman) in factor group T_d. Analysis of the cation and anion sublattices indicates that the A₁ mode contains only motions of the S-atoms and does not involve the cations. Thus only anion vacancy disorder would contribute to the broadening of this mode. In compounds of the type MLn₂S₄, the 230-250 cm⁻¹ band is much sharper than the others, as would be expected if the anion

sites were completely filled. This band may be assigned to the A_1 mode in the gamma structure. In the Raman spectra of the solid solutions along the join SrNd₂S₄ - Nd₂S₃, the band width of the A_1 mode increases abruptly from 8 cm⁻¹ to 16 cm⁻¹ at x = 0.4 [15].

The 230 - 250 cm-1 band in the Raman spectra of the gamma structures is somewhat narrower than the other bands but it is still very broad compared with the Raman lines of the other sesquisulfide structures. We conclude from the results in Fig. 3, that there are vacancies on both cation and anion sublattices. The Raman spectra do not support the model with a completely filled anion sublattice.

The Delta Structure

Ho2S3 is the prototype compound based on the structure analysis of White et al. [16]. Half of the rare earth ions are in 6-fold coordination and half are in 7-fold coordination. The primitive monoclinic cell contains 6 formula units. Factor group analysis (Table 3) predicts 45 Raman-active modes.

The spectra of delta-structure compounds are complex (Fig. 4) but the lines are very sharp and of various intensities. Somewhat more than half of the predicted lines are observed. However, given the number of lines, accidental overlaps and weak bands lost in the background are to be expected. The narrow lines indicate a highly ordered structure. The broad intense feature near 400 cm⁻¹ in the Ho₂S₃ spectrum is a luminescence band. The Raman spectrum of Y_2S_3 is very similar to the spectra of the rare earth sesquisulfides except for some small wavenumber shifts.

The Epsilon Structure

The epsilon structure of the rare earth sesquisulfides is is isostructural with the corundum structure found widely in oxide materials.

The prototype is Al_2O_3 for which detailed single crystal Raman spectra have been measured [17]. The classification of normal modes is $2 A_{lg}$ (Raman) + $3 A_{2g}$ (inactive) + 5 E_g (Raman) + 2 A_{1u} (inactive) + 2 A_{2u} (IR) + 4 E_u (IR). Seven Raman lines are expected in the powder spectra.

Only the two smallest rare earth ions take on the 6-coordination of the epsilon structure. The spectra (Fig. 5) consist of six sharp lines. The 252 cm⁻¹ band appears as a sharp line in the Lu₂S₃ spectrum but as a broad band centered at 234 cm⁻¹ in the Yb₂S₃ spectrum. Samples of Yb₂S₃ from different sources with and without a pretreatment firing in H₂S all produced the same spectra. This rather odd feature appears to be real. All other lines have corresponding shapes in the spectra of the two compounds.

The pattern of lines in the corundum structure sulfides matches in only a rough way the pattern of lines in corundum structure oxides. The triplet of high wavenumber lines appears in both sulfide and oxide spectra but the wavenumbers of the sulfide lines are much lower than would be expected from scaling by the reduced masses, suggesting that the force constants of the thiocorundum compounds are substantially lower than the oxide corundum compounds.

The Tau Structure

 Sc^{3+} is not a rare earth ion but it's crystal chemistry is often similar to rare earth crystal chemistry although the ionic radius is distinctly smaller, 87 pm. The structure of Sc_2S_3 was called the tau structure by Flahaut and co-workers. It is isostructural with one of the structures of the sesquioxides of the rare earths, the C-type rare earth oxide or bixbyite structure. The bixbyite structure has a large and complex cubic unit cell with all cations in 6-fold coordination although

there are two cation sites with different site symmetries. The factor group is T_h . The normal modes have been classified [18] as $4 A_g$ (Raman) + $4 E_g$ (Raman) + $14 T_g$ (Raman) + $5 A_u$ (inactive) + $5 E_u$ (inactive) + $16 T_u$ (IR).

Figure 6 shows the spectrum of Sc_2S_3 . The Raman lines are sharp and well defined but only 11 of the predicted 22 modes are observed. The pattern of bands is very similar to that of the isostructural oxide but with wavenumbers shifted to lower values by a factor of approximately the square root of the sulfur to oxygen mass ratio.

DISCUSSION AND CONCLUSIONS

The Raman spectra of the sesquisulfides of the rare earths and similar ions occur in distinct patterns related to the structure type of the rare earth. These patterns are similar to the spectra patterns for isostructural oxides only in a general way. Metal-sulfur bonding is sufficiently different from metal-oxygen bonding that there are substantial differences in bond force constants in addition to the mass differences. In general, band wavenumbers decrease with increasing ionic radius (decreasing atomic number) for any series of rare earth ions within the same structure type.

With the exception of the gamma structure, all Raman lines have band widths on the order of 3 - 5 cm⁻¹, typical of well-ordered compounds. Band widths in the spectra of the gamma structures are on the order of 20 - 40 cm⁻¹, representative of disordered structures with randomly distributed vacancies. It was concluded that the Th₃P₄ structure was achieved in the Ln₂S₃ compounds by a distribution of vacancies on both cation and anion sites.

There is a small average decrease in mean vibrational wavenumber with increasing coordination number. However, unlike certain families of ternary sulfides [8], the trend is weak and except for the 8-coordinated gamma structure, the mean of the wavenumbers of the bands above 200 cm-1 decreases only slightly with increasing coordination number. The variation between compounds is larger than the variation between structures. With regard to the application of these compounds as IR window materials, except for the gamma structure, there is no benefit in first order phonon wavenumber from one structure to the next.

REFERENCES CITED

- M. PICON, L. DOMANGE, J. FLAHAUT, M. GUITTARD, and M. PATRIE, <u>Bull</u>. <u>Soc. Chim. France</u>, 221 (1960).
- J. FLAHAUT, M. GUITTARD, M. PATRIE, M.P. PARDO, S.M. GOLABI and L.
 DOMANGE, <u>Acta Cryst</u>. 19, 14 (1965).
- [3] J. FLAHAUT and P. LARUELLE, in <u>Progress in the Science and Technology</u> of the Rare Earths, L. Eyring, ed., Pergamon Press, Oxford, p. 149 (1968).
- [4] P. BASANCON, C. ADOLPHE, J. FLAHAUT, and P. LARUELLE, <u>Mat. Res. Bull</u>
 <u>4</u>, 227 (1969).
- [5] P. BESANCON, D. CARRE and P. LARUELLE, Acta Cryst. B29, 1064 (1973).
- [6] J. FLAHAUT, in <u>Handbook on the Physics and Chemistry of Rare Earths</u>,
 Vol. 4, K. Geschneidner and L. Eyring, eds., North-Holland,
 Amsterdam, p. 1 (1979).
- [7] P.L. PROVENZANO, S.I. BOLDISH, and W.B. WHITE, <u>Mat. Res. Bull</u>. <u>12</u>, 939 (1977).
- [8] H.L. PARK, C.A. CHESS, and W.B. WHITE, in <u>The Rare Earths in Modern</u> <u>Science and Technology</u>, Vol 2, G.J. McCarthy, J.J. Rhyne, and H.B.
 Silber, eds, Plenum Press, New York, p. 451 (1980).
- [9] O. SCHEVCIW and W.B. WHITE, <u>Mat. Res. Bull.</u> 18, 1059 (1983).
- [10] A.W. SLEIGHT and C.T. PREWITT, Inorg. Chem. 7, 2282 (1968).
- [11] C.T. PREWITT and A.W. SLEIGHT, <u>Inorg. Chem. 7</u>, 1060 (1968).
- [12] R.D. SHANNON, in <u>Structure and Bonding in Crystals</u>, Vol. II,
 M.O'Keeffe and A. Navrotsky eds., Academic Press, New York, 53-70 (1981).
- [13] P. BESANCON, D. CARRE, and P. LARUELLE, Acta Cryst. B29, 1064 (1973).

- [14] C.M. VAUGHAN and W.B. WHITE, <u>Mat. Res. Soc. Symp. Proc</u>. <u>97</u>, 397 (1987).
- [15] P.L. PROVENZANO and W.B. WHITE, Mat. Lett. 5. 1 (1986).
- [16] J.G. WHITE, P.N. YOCOM and S. LERNER, <u>Inorg. Chem. 6</u>, 1872, (1967).
- [17] S.P.S. PORTO and R.S. KRISHNAN, J. Chem. Phys. 47, 1009 (1967).
- [18] W.B. WHITE and V.G. KERAMIDAS, Spectrochim. Acta 28A, 501 (1972).

Notation	Symmetry	Space Group z		Cation Coordination** Structure Type	Structure Type
ಶ	Orthorhombic	Pnma	4	8-7	Gd ₂ S ₃ Type
ß*	Tetragonal	14 ₁ /acd	8		
٢	Cubic	1 <u>4</u> 3d	4	8	Th ₃ P ₄ Type
Ş	Monoclinic	P2 ₁ /m	9	7-6	Ho ₂ S ₃ Type
ω	Trigonal	R3c	2	6	Corundum Type
T	Cubic	Ia3	16	9	Bixbyite Type (C-Type Rare Earth Oxide)

TABLE 1. Structures of the Rare Earth Sesquisulfides

* Usually written Ln₁₀S140xS1-x

;

** "8-7" etc. indicates two cation sites with different coordination numbers

D _{2h}	Acoustic	Vibrations	Selection Rules
Ag	-	10	Raman
B _{1g}	-	5	Raman
B _{2g}	-	10	Raman
B _{3g}	-	5	Raman
Au	-	5	Inactive
^B lu	Z	9	IR, ENC
B _{2u}	У	4	IR, EII b
^B 3u	x	9	IR, Eqa

TABLE 2. Factor Group Calculation for the α Structure

C _{2h}	Acoustic	Vibrations	Selection Rules
Ag	-	30	Raman
Bg	-	15	Raman
A	z	14	IR, EII b
B _u	х, у	28	IR, E⊥b

TABLE 3. Factor Group Calculation for the δ Structure

Legends for Figures

- Fig. 1 Raman spectra for powdered rare earth sesquisulfides with the alpha structure. Asterisks indicate plasma lines.
- Fig. 2 Relation of band wavenumber to cation radius for alpha structures. Sulfide crystal radii for 8-coordination from Shannon [12].
- Fig. 3 Raman spectra for powdered rare earth sesquisulfides with the gamma structure.
- Fig. 4 Raman spectra for powdered rare earth sesquisulfides with the delta structure. Asterisks indicate plasma lines.
- Fig. 5 Raman spectra for powdered rare earth sesquisulfides with the epsilon structure. Asterisks indicate plasma lines.
- Fig. 6 Raman spectrum of Sc_2S_3 with the tau (bixbyite) structure. Asterisks indicate plasma lines.

1

:

:
