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THE DENSE Z-PINCH AS A PLASMA RADIATION SOURCE

I. QUASI-STATIC BENNETT MODEL

I. INTRODUCTION

This work is an extension of a previous investigation on the dynamics of

a frozen deuterium fiber driven by a current pulse and has potential as a

Plasma Radiation Source (PRS) for DNA applications. This radiation source is

similar to those being used in the dense z-pinch experiments being undertaken
(1) (2)at the Naval Research Laboratory and Los Alamos National Laboratory

3ecause of its similarity with the DZP work, we will refer to this source as a

Dense Z-pinch Plasma Radiation Source (DZPRS). The DZPRS is a solid fiber of

deuterium, although other materials can be used, that is heated and compressed

using a long rise time current pulse. The long rise time allows the plasma to

be slowly heated and compressed as compared to the impulsive heating and

compression that occurs in a normal PRS. It is the purpose of this

investigation to show that it may be more efficient to produce high energy

radiation by heating and compressing in this manner. We employ Bennett

hydrostatic equilibrium( 3 ) in our model to simulate the DZPRS. The Bennett

equilibrium model approximately includes electron degeneracy effects on the

pressure. Furthermore, the model is self-consistently coupled to a circuit

describing the pulse power generator. A description of the model and the

results of a typical simulation are discussed in the following sections.

For conventional puff gas or wire array PRS schemes the load begins

imploding at some distance from the axis, on the order of centimeters, and the

current rise is fast, 10 - 100 kA/nsec. The kinetic energy rises with the

current as the increasing JxB force does work on the plasma during the run-in

phase. Then as the plasma begins to stagnate on axis, some of the stored

kinetic energy is converted into internal energy by P-d(volume) work and shock

heating. The result is a hot, highly ionized plasma which produces a radiation

spectrum largely dependent upon the temperatures and densities achieved at

stagnation. Zero- and 1-D PRS analyses show that there are two main

requirements for producing radiation above the 1 keV range. First, there must

be sufficient kinetic energy per ion to insure that large enough temperatures

are obtained at stagnation, and secondly, the ion density has to be high so

Manuscript approved January 23, 1989.
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that the plasma can efficiently radiate. Although a modest current is

theoretically capable of heating a small load to the necessary temperatures,

it cannot do this and at the same time push on enough mass to produce the ion

densities needed for significant radiative emission. This theoretical result

is supported by an experimental 14 scaling law(4 ) observed for K-shell

emission in Neon plasmas. (Note, in order to conserve energy, at high
2currents this scaling law must turn over and be less than or equal to I2.) On

the other hand, the K-shell emission might not be produced by direct

conversion of kinetic energy into thermal energy as is proposed in the simple

0- and 1-D simulations. Rather it could arise from runaway electrons and hot

spots generated by instabilities or other three-dimensional phenomena. The

actual origin of the emission is still subject to theoretical and experimental

investigation. From simple scaling arguments based on conventional z-pinch

PRS loads, Apruzese and Davis (5) found that a 60 kJ yield from the K-shell of

iron, which is in the 10 keV photon range, would require a superclass

generator of 100 TW. Further analysis of the-state-of-the-art PRS sources can

be found in the review by Pereira and Davis (6) In lieu of a superclass

device it is worthwhile to investigate alternative schemes such as the DZPRS.

The essential difference between the DZPRS and the PRS is that ian

densities at implosion are much larger for the DZPRS. Densities are higher

because the load is initially at solid state density and rapid shock heating

is minimized. The longer rise time of the current pulse in the DZPRS leads to

a gentler "cooking" and compression compared to the rapid implosion in a PRS.

These conditions make it possible to keep the plasma in a quasi-equilibrium or

Bennett-like state whereby the average particle pressure inside the plasma is

in equilibrium with the magnetic pressure at the edge of the plasma. The

evolution of the plasma is determined by slow changes in this equilibrium

pressure. There are three mechanisms controlling the pressure. They are: 1)

the ohmic heating rate, 2) the radiative cooling rate and 3) the rate of

change of the current. If the radiative rates dominate then the plasma will

collapse, hence the name "radiative collapse". In general the ohmic heating

rate is larger than the radiative cooling rate until the time at which the
(7)current becomes greater than or equal to the "Pease-Braginskii" current

There is experimental evidence to indicate that these plasmas remain stable

while the c'irrent is rising: stable pinches have been observed for currents up

to 640 kA(I) . If the DZPRS is found to be stable for higher currents and

smaller line densities then have already been achieved, it will be possible to
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obtain the temperatures and densities needed to produce significant radiation

yields above 1 keV, as the plasma radiatively collapses. In this theoretical

work we find that a deuterium plasma of 2 x 1018 cm-1 line density yields -40

k of radiation above 3 keV while undergoing the radiative collapse.

II. MODEL EQUATIONS

A. Bennett Relation

To model the dynamics of a dense z-pinch undergoing a slow collapse we

shall consider the simple case of a pinch with a uniform current density in

Bennett equilibrium. Although such a pinch is in hydrostatic equilibrium, we

will allow the plasma column to expand or contract in order to balance the

resistive heating with the radiative cooling. Let R (t) be the outer radius

of the plasma column and I(t) the current supplied by an external generator to

the plasma load. For the assumed spatially uniform current density Jz along

the z-axis one has

I~ )0 < r <Ro
nR 2 (t) 0

Jz(t) (1

0, r > R (

From Ampere's law the azimuthal magnetic field B is given by

r

Ro(t) Bo(t) , 0 < r < Ro;
B,(r~t)(2)

R B (t)

r Bo(t) r > RO

and B = 21/R 0 c in cgs-gauss units where c is the speed of light. Note in0 2

these units the current I is in statamps [=statcoulomb/sec=I(ergs-cm/sec 2)].

The model of a uniform current and linear magnetic field inside the plasma

column is valid as long as the time scale for magnetic diffusion through the

whole plasma is small compared to the dynamic timescale.

In cylindrical symmetry the total momentum equation in the radial

direction is
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8t + 1 -(rpv) + -(pi+ pe)  JzB+ (3)

where p is the mass density, v the radial velocity, pi the ion pressure, and

Pe the electron pressure. The hydrostatic condition of Bennett equilibrium

neglects the inertial terms and seeks a balance between the pressure forces

and the current forces. This neglect is reasonable as long as the radial

velocity is small compared to the plasma sound speed. Given the relations of

eqns. (1) and (2), and the boundary condition of zero pressure at the outer

plasma surface, one finds

i 2 M r 2 . (4)
Pi + Pe - R 2M(c 2  R 2t)

Let N1 be the line density for the ions:

R

N1 M So ni2nrdr (5)

Furthermore, assume that the ion and electron temperatures are equal and

uniform (Ti = Te = T), that the mean charge state of the ions is also

spatially uniform (Zi = ne/ni), and that the plasma obeys the simple gas

pressure formula. Equations (4) and (5) then lead to the classical Bennett

relation:

Nl(1+Zi)kBT _ 12 3> T 2 1x18cm-1 )2(

I(Z.2c 2 - eV 3x2 NI(I+Zi ) " (6)

The ion density follows from eqn.(4):

ni(rt) = 2( ( 1 r (7)

This density profile is consistent with the ion continuity equation as long as

v(r,t) - Ro ) V t) (8)
0(t)
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where V = DR /Dt is the velocity of the outer radius. The velocity profile0 0
of eqn. (8) describes homologous motion of the plasma column.

Under some conditions the plasma column may collapse to such a small

radius that electron degeneracy becomes important. To account for the

degeneracy pressure in a simple manner we add the zero temperature Fermi

pressure to the electron gas pressure:

2 h2 3n 2/3 2
p =n k T = nekBT + 5 nekTTFe (9)e e B e2m iT8uj e BT e B nBF(ne)e

where the Fermi temperature TF is defined through the above relation and is a

function of the electron density [TF(ne) = (ne/4 .5xlO 21cm-3)2/3 eV]. If we

use the average electron density ne = ZiN 1/nRo
2  to evaluate the Fermi

temperature, the classical Bennett relation (6) is replaced by

NlkBT[1 + Zi~l +i Ty(ne) - 12 (10)
1B5 T 2 2

or

3.lx1 3 [( 11 8cm 1  N 1  2/3 (1 -5 cm 4 3

1V-(+iZ N 1ll (j11cm'd A)2 'o (11

Note that this revised relation requires a minimum current to support a

Bennett pinch of a specified line density and radius. If the proper Fermi-

Dirac integrals were used for the arbitrarily degenerate electron pressure

instead of the approximation in eqn.(9), then a minimum current is also found.

This latter approach, which requires extensive iteration for the degeneracy

parameter, always leads to a positive pressure, unlike relation (11). For the

present report we employ relation (11) and restrict our investigation to those

solutions which maintain a positive temperature.

B. Dynamic Equation

So far we have adopted a uniform current density and employed the

hydrostatic approximation in the momentum equation to obtain the classical

Bennett relation for the plasma temperature in terms of the current and the
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line density [eqn.(6)], we have found a quadratic profile for the plasma

density assuming a spatially uniform temperature [eqn.(7)], and we have shown

that a linear velocity law is consistent with the continuity equation

[eqn.(8)]. The degeneracy pressure can be approximately included, leading to

a revised Bennett relation [eqn.(1l)]. We now turn our attention to the

internal energy equation, which, in cylindrical symmetry, is given by

Tt(PiCi+ Pe e) + 1 !r[rv(pici+ PeCe)] + (pi+ pe) r F(rv)

+ 1 L[r(qi+ qe)] = J - A , (12)

where hi is the perpendicular resistivity and A is the volumetric radiative

cooling rate. By our previous assumption of a spatially uniform temperature

the heat flux terms qi and qe can be dropped. For an ideal gas with a ratio

of specific heat of y = 5/3 we have

C (p + p ) =1n k T[1+Z.il+- 13Pi'i+ Pe e- 2 (Pi e 2 iB5 T (13)

As indicated by the last expression on the right hand side, the Fermi internal

energy and pressure for the electrons at zero temperature likewise follow the

ideal gas relation. The above profiles of eqns.(7) and (8) for the density

and velocity are not necessarily consistent with the internal energy equation.

Instead, we satisfy this equation in a global sense by integrating it over the

plasma column. For an arbitrary function f(r,t) we note the following

relation:

R R

J0 f(rt d 0

J0 at )nrdr dt JO f(r,t)2nrdr - f(Ro,t)2RoVo , (14)

where d/dt is the Lagrangian time derivative following the plasma. Applying

this operation to eqn.(12), using eqn.(7) for the density, eqn.(8) for the

velocity, eqn.(13) for the pressure and internal energy, the generalized

Bennett relation (10), and eqn.(1) for JZ leads to

d 312 12 V 1 2 Prd
d( 2 + 2 R i - i-- -AZ (15)

4c c 0 t
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where ± is the spatial average of the electrical resistivity over the plasma

column, Prad = fA2nrdrdz, and 6Z is the length of the plasma column along the

z-axis. Equation (15) can be used to solve for the velocity of the outer

radius of the plasma column:

dR 0 c2R 12 Prad 3 2 (16)dt 0 V =  12 [h u2 6Z 4c2 dt ](6

-I nR~ 4c0

Thus the dynamics of the plasma column is determined by the "p-d(volume)" work

required to satisfy the internal energy equation (15). Under the condition

that the velocity is small compared to the sound speed, one can neglect the

kinetic energy equation. Note that radiative losses and an increasing current

tend to constrict the plasma column, while resistive heating tends to expand

it. The Pease-Braginskii current (7 ) 1PB is determined by balancing the

resistive heating term against the radiative cooling term.

C. Circuit Model

The current I is determined by coupling the voltage drop across the

plasma load (Vload) to a circuit equation describing the generator. Let the

generator be characterized by a constant inductance (L ), a constant
g

resistance (Z ), and a constant generator voltage (V ). The equation for the

circuit is simply

LdI ZI =V V (17)L + Zg g Vload (

We can determine the load voltage drop by looking at total plasma plus

magnetic field energy conservation. The conservation relation for the field

energy is given by Poynting's theorem:

2± - 1 -- irEZB = - JzEz (18)

where EZ is the z-component of the electric field. Applying an operation

similar to eqn.(14) on the above equation we find
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R 2 2 r=R r=RR

j-4 C8) 2 rd rd z - Ck 2nrvaZ) ~ E -rEB ,2na)I = - IJ' JE 2frdrdz,
0 

0

(19)

where Rw is a fixed radius outside of the plasma column. The first term can

be broken into an integral over the plasma column (r=0 to r=R ) and an

integral over the surrounding vacuum region (r=R 0  to r=Rw). In these two

regions B is given by eqn.(2) and the integrals can be done explicitly. The

second term vanishes because the velocity is zero at both boundaries. For the

term on the right hand side the upper limit to the integral can be replaced by

R since the current density is restricted to the plasma column. Within this

region the electric field is given by

Ez - B + (20)

z c * .L zJ z

Using eqns.(l), (2), and (8) this integral over J.E can be performed. The

result for the field energy equation is

d (2\ d ~2 12w V 1 2V~ 3+ - ~-ln-J - IEZ(Rw) - 2 (21)
4c c 0 c o fR,0

The first term is the time derivative of the magnetic field energy per unit

length in the plasma column, the second term is the time derivative of the

magnetic field energy per unit length in the vacuum region between the plasma

and the outer radius Rw , the third term is the Poynting energy flux per unit

length into the plasma plus vacuum region, and the terms on the right

represent the J-E energy exchange rate per unit length within the plasma. The

sum of eqn.(21) with eqn.(15) gives the the total plasma plus field energy

equation:

d- 2fi + d 2 14j-)] = IEZ(R,,) - P rad (22)
c c 0

This conservation relation shows that the rate of energy input to the system

consisting of the plasma column and surrounding vacuum is IEz(Rw )A.Z. In turn,
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this expression must be the rate of energy drawn off the generator circuit,

and the load voltage drop is

Viod - LR1L l n R 2 O1 I 2 Vo I ]1 (3
- z(w2 c 20R)Jc 2 R (23)

0

The result on the right hand side comes from evaluating eqn.(21). The circuit

eqn.(17) can now be written as

n K _Xin d -& 2 o ] (24)2Zz C2 + 2 Ro d" AZ rZZ - c2 FR° 
+ ;;:2 • 24

C0C 0 TL

The generator inductance is enhanced by a small constant term and a motional

inductance term given on the left of the above equation. In addition to the

generator impedance one finds on the right of the above equation a motional

impedance and a resistive impedance term.

D. Resistivity

Equations (16) and (24) are the basic equations for the radius and

current in our model of the quasi-static Bennett pinch collapse. To solve

these equations we must first specify the relations used for the electrical

resistivity and radiative cooling loss. For the resistivity we employ the

standard Spitzer formulas8):

m e-14 Ziln(A e)

1 2 1.14xl0 3/2 sec , (25)
e neTei TV

where xe. is the electron-ion collision time (9 ) and ln(Aei) is the classical

Coulomb logarithm for electron-ion collisions. We evaluate the Coulomb

logarithm at the average column density for n1 in eqns.(16) and (24) above.

At high densities the effects of electron degeneracy, strong coupling, and

ion-ion correlations significantly change the electrical resistivity. For the

present report these effects are neglected. The Coulomb logarithm is floored

at 2.0 to prevent unphysical negative values for the resistivity.

9



E. Radiation Transport

For a deuterium z-pinch at temperatures above 10eV one can take the

plasma to be fully ionized. Hence only free-free transitions occur with the

Bremsstrahlung emissivity:

8 1/2 6  - hv/kBT

iv = e/22 gffneni 1/2 (26)
m ec e (k T)

where gff is the free-free Gaunt factor. If the plasma column were optically

thin throughout its evolution, then the frequency and volume integral of j

would be the radiative loss term:

R

Prad(thin) =0 °O 4tj dv)2nrdrdz

2,8 L2n ( n 1/ e nZ.<gff 1/2
o 0m3 3/2c3 h nenI Igff> (kBT) . (27)

e
Here ni and ne are the mean ion and electron densities in the plasma column

and <gff> is the frequency average of the Gaunt factor. For frequencies near

the peak of the blackbody spectrum at temperatures between 0.1 and 10 keV the

free-free Gaunt factor can be taken as unity(10)

We will find, however, that the plasma collapses to small enough radii

that opacity effects become important. Since the radiation output from the

dense z-pinch is of primary interest in the present report we must account for

the opacity changes. For Bremsstrahlung absorption the coefficient is given

by Kirchhoff's law K = j /B , where B is the Planck function:

4 1/26h2  n.Z.-hv/kBT

K 4 (2 2) 3/2 neniZ1 1 - e (28)
V 3 3--) m3/2 c (kBT)772 gff (hv/kBT)3

e B0

10



The solution to the radiative transfer equation for the specific

intensity at a point R0  on the surface of the plasma column in the ray

direction 2 is

S(Ro'1Q) -K Vs' I -K ( 1) (9
IR = V (0,)J e ds' B\(l - e (29)

0

Here s(R0 Q) is the path length through the plasma looking backwards along the
ray 2 from the point R0 . To solve the radiative transfer problem for the
dense z-pinch we will make several simplifying approximations. First, in

addition to the uniform temperature in the plasma column, we take the plasma2 Fro2
column to have a uniform density as given by the average value N/R °  From
eqn.(7) only the outer 13% of the column differs by more than a factor of two

from the average density. This approximation was used to obtain the last

equality in the above equation. Second, we consider only a single ray along

the diameter of the plasma column. Then s(R ,) reduces to 2R . Third, we

seek a frequency-averaged value for the opacity, K V -> K, such that the

blackbody and optically thin limits are properly recovered. To this end note

that the radiation loss rate of the plasma column is equal to the surface area
times the radiative flux at the plasma surface in the radially outward

direction:

Prad = 2rRoZ JFVdv = 2nRoAZ U- eRIV d)dv

= 2 R...ZfnBv(I e - R2R0), (30)

where aSB is the Stefan-Boltzmann constant = 2n5kB4 /(15c 2h3 ). In the

optically thick limit (K2R -> -), Prad obviously becomes the emission rate
from a blackbody column. In the opposite limit, Prad of eqn.(30) must reduce

to P rad(thin) of eqn.(27). This requires

- - 22n eh2 nei 1 15
( 3/2 (kT7/2 <gff> -1 (31)

3 P) 3/ (kT) 7/2n
e B

= 1e



The effective opacity of eqn.(30) agrees with eqn.(27) evaluated at the non-

dimensional frequency hv/k BT = 1.75 in eqn.(27). For comparison, the peak of

the blackbody spectrum occurs at hv/kBT = 2.82.

The combination of eqns.(30) and (31) is in essence a probability of

escape model for the radiation transport. This approach is both economical

and reasonably accurate for calculating the effects on the dynamics due to

radiative losses. However, this frequency-averaged approach provides no

information on the shape of the emitted spectrum. For this reason a ray-trace

code was developed which solved for the specific intensity of eqn.(29) at

distinct frequencies by determining s(R0 ,Q) for a large number of ray

directions. The results were then used to calculate the angle integral for

the radiative flux of eqn.(30). Hence the frequency dependence of the

radiative losses were determined exactly subject to the approximation of a

uniform density and temperature plasma column. The details of the analysis

will be presented in a later report on radiation from dense z-pinches. Due to

the time consuming nature of the calculations, the ray-tracing code was

employed only to postproccess a solution once the evolution of the radius and

temperature were known.

III. RESULTS AND DISCUSSION

In order to solve eqns.(16) and (24) for the radius and current as a function

of time we must first specify the parameters of the generator device and the

initial conditions. We will present detailed results for a single run whose

parameters are:

N1 = 2.0x101
8 cm-1,

L = 100.0 nanohenries,g

Z = 10-1 ohms,g

V = 500 kvolts,
g

R = 1.0 cm,
1

A= 1.0 cm,

12



R0 (t=0) = 0.02 cm,

I(t=0) = 0.07 MA. (32)

The starting conditions correspond to an initial temperature of 7.1 eV. The

physics included in the present model is inadequate to correctly describe the

cold start-up problem. Hence we chose an initial radius and temperature which

could represent the state of the fiber after it has been substantially ionized

and come into Bennett equilibrium. The simulation time t=0 is offset by an

undetermined, but probably small, amount from the time of the circuit opening.

The time evolution of the radius, current and temperature are shown in

Figs. la, 1b, and Ic, respectively. Blow-ups around the time of collapse for

these same variables are displayed in Figs. 2a, 2b, and 2c.

As long as degeneracy effects are not significant and the ionization

energy is constant, the Bennett relation [eqn.(10)j indicates that the

internal energy and temperature are solely dependent upon the line density NV,

which is known, and the current I, which is found by solving eqn. 17. Since

L is fixed and Z is negligible in eqn.(17), the current I can be determinedg g
if the voltage across the plasma load, Vload' is known. Until the time of

dramatic plasma collapse, which begins at t = 550 nsec, Vload is small

compared to the machine parameter L . At this time the plasma inductance hasg
reached about 1/8 of the machine inductance and the resistive and motional

components of the plasma impedance are still negligible. Because all three
-1

components of Vload in eqn.(23) depend upon some function of R0  , Vload only

becomes significant late in the collapse phase of the implosion. Therefore,

during the early stages of the implosion the current is practically

independent of Vload and is given approximately by I = (V /L )t, where t is

the elapsed time.

The early time expansion of the fiber radius can be explained by the fact

that most of the electrical energy is initially going into charging the

machine inductance rather then changing the internal energy of the fiber, i.e.

d/dt(312/4c2 ) is small in eqns.(15) and (16). Therefore the plasma expands or

contracts according the to the relative strengths of ohmic heating and

radiative cooling. In our case the plasma expands because ohmic heating is

initially dominant. However, if we had chosen a larger driving voltage or

smaller machine inductance, then the internal energy would initially increase

13
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more rapidly. If it were fast enough, the increase could not be solely

provided by ohmic heating but would have to be accompanied by contraction of

the plasma in the form of P-d(volume) work. In this example, the rate of

change of internal energy is sufficient at t 20 nsec that the plasma starts

to collapse.

At t = 320 nsec the the current has reached the "Pease-Braginskii"

current, IPB , i.e. the current at which the ohmic heating rate is equal to

the radiative cooling rate. As the current is increased above IPB the

radiative cooling rate begins to dominate and further enhances the plasma

collapse. This is a highly non-linear situation because, as the plasma

collapses, the radiation rates go up as the density squared in the optically

thin limit. Eventually, as the current continues to rise and the radius

decreases the plasma impedance begins to influence the circuit. At t = 543

nsec the current begins to decrease because the plasma impedance has increased

to the point that the voltage across the plasma, Vload' is now equal to the

machine voltage, Vg.

After the peak in the current, radiative rates continue to dominate and

drive the plasma to further collapse. The most dramatic stage of this

collapse occurs at t = 554 nsec and lasts less than 1 nsec. The collapse is

eventually stopped and the plasma begins to expand when the ohmic heating rate

exceeds the opacity limited radiative rate. The opacity is so large at this

stage, due to large densities, that the spectrum is nearly blackbody.

During the rapid collapse, electron degeneracy also indirectly

contributes to limiting the plasma radius by lowering the overall temperature

according to eqn.(10) This allows the ohmic heating rate to overtake the

radiative cooling rate at a higher current than would occur without degeneracy

effects. The importance of electron degeneracy is indicated by the large

Fermi temperature that occurs at maximum compression as shown in Fig. 2c.

When the radius reaches its minimum value at R = 3 x 10- 5 cm (Figs. la

and 2a) the current is still near peak value. However, the current quickly

decays because the plasma impedance is now large, on the order of 100's of

ohms, and therefore Vload >> V . Under these circumstances, the current decay

is given to first approximation by,

dI/dt = - Vlad /L
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Although the internal energy decreases by a factor of 5, a difference of

2 k, during the final collapse, most of the energy that is radiated out of

the system at this time is not the result of direct conversion of thermal

energy. Instead it is supplied by the discharging magnetic field energy,

which is stored in the inductive components of the machine and plasma, as the

current decreases from 1.9 to .8 MA. This electrical energy is channeled into

the plasma in the form of ohmic heating and P-d(volume) work and is quickly

radiated out of the plasma. The integral of L I(dI/dt) over the time interval

from peak current until minimum current, = 5 nsec, reveals that there is over

150 kJ of energy discharged through the machine inductor. This does not take

into account the additional magnetic energy discharged through the plasma.

The radiated power during the entire run is shown in Fig.3. The photon

energy, E , is divided into three bands; E <1 keV, 1<E <3 keV, and E >3 keV.

One can clearly see the sharp spike in the radiated power denoting the

collapse of the plasma column. Simple analysis of eqn.(22) shows that at the

time of peak current, the radiative emission is limited to IVloadl.0 TW.

However, as dI/dt becomes negative, the peak radiative power grows to -100 TW,

most of which is in the E >3 keV energy range. A blow-up of the radiated

power for the same energy bands as above over the temporal region around the

collapse is given in Fig.4. The sudden drop in the power immediately

following the peak in each band reflects the rapid decrease in the radius and

temperature of the nearly blackbody plasma column. The spectral distribution

of the emitted radiation is shown at three distinct times in Fig.5. The

emission spectrum at the peak of the current (543 nsec) is presented in the

left hand panel of Fig. 7; at the minimum radius of the collapse (554.8 nsec)

in the center panel, and at the minimum current (564 nsec) in the right hand

panel. The transition in the spectra from thin to thick, and back to

partially thin during the collapse phase is evident. The time integral of the

radiative output in the same three bands as above is displayed in Fig.6.

About 100 kJ of radiation is produced with -40% of the energy emitted as

photons above 3 keV.

Finally, we again note that the radiation results displayed in this

report are calculated by post processing the temperature and density profiles

using the detailed ray-trace radiation transport model described earlier

(§II.E). The calculation from which the temperature and density profiles were

obtained assumed a frequency independent opacity according to eqn.(28). This

was done in order to speed up the calculation but at the same time retain the
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essential radiation physics. In general the results of the two calculations

agree to well within a factor of two.

IV. CONCLUSION

The single example simulation was presented here more in the spirit of a

"proof of principle" discussion rather than a complete and exact analysis of

the dense z-pinch concept for a plasma radiation source. Taken at face value,

the results of this one simulation does indicate that a dense z-pinch could

produce over 40 kJ of photons, with energies exceeding 3 keV, in a 1 nsec time

span. We conclude that a fiber z-pinch driven by a slowly rising current is a

potentially robust plasma radiation source. We emphasize potentially robust,

first of all, because of the need to verify the simple theoretical model used

in the text. Several key issues associated with the rapid and strong collapse

phase are currently under study. These include:

- a more rigorous inclusion of electron degeneracy effects on the electron

pressure and internal energy instead of the simplified approximation

used in eqn.(1O);

- the inclusion of degeneracy and strong coupling effects on the Coulomb

logarithm and resistivity to replace the Spitzer formula of eqn.(25);

" the reduction of Bremsstrahlung emission in eqn.(26) due to the cutoff

of available states in a degenerate plasma;

" a determination of the regime wherein the Bennett pressure equilibrium

condition remains valid;

" and finally a determination of the conditions which will maintain a

uniform current density within the plasma.

Second, we emphasize potentially robust because experiments need to be run in

order to obtain a better understanding of these pinches. Finally, the

duration of the radiation pulse could potentially be increased above a

nanosecond by arranging a set of dense z-pinches to collapse sequentially in
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time. Perhaps the most important feature of the present study is that a keV

photon energy source could be accomplished with present day technology

machines.
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Fig.la Temporal evolution of the radius for the model parameters given by

eqn.(32) of the text.
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Fig.2a Blow-up of the temporal evolution of the radius during the rapid

collapse phase of the implosion.
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Fig.2b Blow-up of the temporal evolution of the current during the rapid

collapse phase of the implosion.
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Fig.2e Blow-up of the temporal evolution of the temperature during the rapid

collapse phase of the implosion. The thermal temperature is denoted by

the A-line, and the Fermi temperature by the B-line.
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Fig.3 Temporal evolution of the radiative power in different energy bands for

the model parameters given by eqn.(32) of the text.
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energy bands during the rapid collapse phase of the implosion.
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Fig.5 Spectra of the radiative emission at the time of peak current (a), at

the time of peak compression during the collapse (b), and at the time

of minimum current (c).
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