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Abstract

This paper explores a new direction in the formal theory of learning - learning in the sense of

improving computational efficiency as opposed to concept learning in the sense of Valiant. Specifically,

the paper concerns algorithms that learn to solve problems from sample instances of the problems. We

develop a general framework for such learning and study the framework over two distinct random sources

of sample instances. The first source provides sample instances together with their solutions, while the

second source provides unsolved instances or "exercises". We prove two theorems identifying conditions

sufficient for learning over the two sources, our proofs being constructive in that they exhibit learning

algorithms. To illustrate the scope of our results. we discuss their application to a program 'hat learns to

solve restricted classes of symbolic integrals.
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1. Introduction

In [1], Valiant introduced a rich framework for the analysis of algorithms that learn to approximate
sets from randomly chosen elements within and without the sets. This framework and its extensions has
been analyzed by a number of authors, [2, 3, 4, 5] amongst others. In this paper, we present a new
framework concerning algorithms that learn to solve problems approximately. instances. Early steps in
this direction were taken in [4]. In a sense, this can be viewed as learning to improve computational
efficiency as opposed to concept learning in the sense of Valiant. We believe that this is an important
new direction in the formal theory of learning.

Consider the problem of symbolic integration. Given the definition of the problem and a standard
table of integrals, we have complete information on how to solve the problem. Yet, although we are
capable of solving instances of symbolic integration immediately, we are by no means efficient in our
methods. It appears that we need to examine sample instances, study solutions to these instances, and
based on these solutions build up a set of heuristics that will enable us to solve the problem fast. In this
sense, the learning process has helped improve our computational efficiency. Similarly, given some other
problem, say Rubik's cube, and the instructions concerning its solution, we would like to become
proficient at it just as quickly. In essence, we would like to behave in the following manner: given the
specification of a problem, we quickly learn to be efficient at solving the problem. Stated more abstractly:
Consider a class of problems, such that each problem in the class is known to possess an efficient
algorithm. We are interested in a meta-algorithm for the class - an algorithm that takes as input the
specification of a problem drawn from the class as well as sample instances of the problem, and produces
as output an efficient algorithm for the problem. As we will see, the sample instances play a crucial role in
the process, as in their absence, constructing an algorithm for the input problem can be computationally
intractable. In this paper, we are interested in examining learning in the aforementioned sense.
Specifically, we inquire into the conditions under which such learning is possible. Our methods of
analysis are probabilistic in flavour, akin to those of Valiant [1].

In Section 2, we present a formal definition of the learning framework. The framework formalizes
learning in the above sense, demanding that the learner learn to solve a problem, given a source of
randomly chosen solved instances of the problem. We prove a theorem identifying conditions sufficient to
allow such learning. In Section 3, we consider an :plication of our theorem to a restricted version of
symbolic integration. In particular, we show how to construct an algorithm that is capable of learning to
solve such restricted casses of integrals from randomly chosen examples. In Section 4, we change the
source of sample instances to one that provides unsolved instances that are chosen in a random but
slightly benevolent manner. Specifically, rather than present the learning algorithm with randomly chosen
solved instances of the problem, the learning algorithm is only allowed randomly chosen "exercises" on
the problem - unsolved instances of the problem, chosen according to a probability distribution measuring
their importance to the learner. This is very much the same as the exercises in a work-book, such as one
might find at the end of a book dealing with say symbolic integration or differential equations. We are
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able to prove that the conditions sufficient for learning from solved instances are sufficient for learning

here as well. The proof is constructive in that we give a general learning algorithm that learns by solving

the exercises, solving them in order of least difficult to most difficult. This theorem constitutes our main

result.

2. Learning From Solved Instances

Let ! be the (0, 11 boolean alphabet.

Defn: A problem D is the pair (G, 0), where

(a)The goal G:'.* -- (0,11 is function from V to (0,1) computable in polynomial time.

(b)O is a finite set of operators (o1, 02,...] where each o :Y_*-.* is a function computable in
polynomial time.

A specification of a problem D = (G,O) is a set of programs for G and C that run in polynomial time.

Defn: We say an instance x r ,* of a problem D =(G,O) is solvable if there exists a sequence of

operators a such that G(c(x)) = 1. The sequence c is a solution sequence for x. The sequence length of

a solution sequence is the number of operator applications in it, i.e., the length of a = a l. Unless

demanded by context, we use the tdrm length to refer to the sequence length of a solution sequence. A

solution sequence a is optimal for x if its length is as short as that of any solution sequence for x.

Defn: Let a = pp 2P3...p, be a solution sequence to x, where the pi are operators in 0. We say x,

pt(x), P..lp,(x).... are steps in the solution of x and that p,(x), P,.1 p(x).... are intermediate steps in the

solution of x. The step-length of aF with respect to x is the maximum of {L, p,(x)l, LP,_p(x)l., i.e., it is

the length of the longest instance encountered in using a to solve x.

Defn: An algorithm for a problem D is a program that takes as input a string xe V and produces as

output a solution sequence for x, if such exists.

A family of problems M is simply any set of problems. We are interested in an algorithm that is

useful over a family of problems, in that it is capable of learning to solve any of the problems in the family.

To this end, we define the notion of a meta-algorithm for a family. Loosely speaking, a meta-algorithm for

a family M is an algorithm that takes as input the specification of a problem D in M and attempts to

construct an algorithm for D. Given the scope of our definition of a family of problems, it is easy to see

that the task of the meta-algorithm will be NP-hard for most non-trivial families. See [4]. This is true, even

if we guarantee that every problem in the family has a polynomial-time algorithm - the difficulty lies in

finding such an algorithm, given the specification of the problem. In order to reduce this complexity and

thereby aid the meta-algorithm in its task, we provide the meta-algorithm with sample instances of the

problem specified in ts input. Specifically, we consider two distinct sources of such sample instances,
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one providing the meta-algorithm with randomly chosen solved instances, and the other providing

unsolved instances that are randomly chosen, although in a slightly more benevolent manner than the

first source. The first source is the simpler to analyze and will be the subject of the remainder of this

section. The second source is considered in Section 4.

We place at the disposai of the mera-algorithm a subroutine INSTANCE which acts as a random

source of solved instances. We may view INSTANCE as a black box with a button, such that at each

push of the button, INSTANCE outputs a randomly chosen solved instance of the input problem D.

Specifically, at each call, INSTANCE returns a pair (x,a). The string xE V is randomly drawn according to

an arbitrary and unknown probability distribution P on "*. The operator sequence a is a randomly chosen

optimal solution sequence or x, being the null-sequence if x is not solvable or if x is solved as it is. By

randomly chosen, we mean that at any stage in the solution of x, the next operator used by INSTANCE is

picked randomly from among those that are useful. In order to make this precise, we need the following

definition.

Defn: Let D=(GO) be a problem. For each operator OE 0, consider the set

U(o) = (xl 3 an optimal solution of the form a.o forx)

We call U(o) the projection of o, and U(D) = {U(o)lo E DI the projections of D.

For any x in Z*, let O, be the set of operators useful on x, i.e.,

0,,={oloE 0,xE U(o)1.

When solving x, the first operator used by INSTANCE is picked at random from 0,. Specifically, if there

are p operators in 0,, each is picked with probability ip 1 . Similarly, the second operator is picked at

random from OY, where y is the result of applying the first operator to x. And so on.

With these definitions in hand, we attempt to make precise our notion of a meta-algorithm. In

essence, a meta-algorithm A for a family of problems M will take as input an error parameter h and the

specification of a problem D in M. A will then compute for time polynomial in various parameters and

output a program H that efficiently approximates an algorithm for D. By this we mean that we mean that

H will behave like an algorithm for D with probability (1-1/h). A formal definition follows.

Defn: An algorithm A is a meta-algorithm for a family of problems M if there exists an integer k such

that

(a)A takes as input an integer h and the specification of a problem D e M. Let I be the string length
of this input.

(b)A may call INSTANCE. INSTANCE returns examples for D, chosen according to some unknown
distribution P over Z*. Let n be the longest step-length and m the longest sequence length of the
solutions so provided by INSTANCE. For inputs of length n, let t(n) be the sum of the running

'It is sufficient if each is picked with probability at least llpoly(n), where n =ixi and poly(n) denotes a polynomial i n.
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times of the programs in the specification of D. A computes in time (Ihmt(n))k, i.e., in time
polynomial in the length of its input 1, the error parameter h and the time required to evaluate the
programs in the specification of D on the examples seen. A may be a randomized algorithm.

(c)For all DE M, and all distributions P over V, with probability (1-1/h) A outputs a (possibly
randomized) program it that runs in time t(n)k on inputs of length n and approximates an algorithm
for D in the sense that

y P(x) < 1/h
XES

where = {xl H fails on x)

Since 1; ,nay be randomized, by "H fails on x", we mean that It fails to solve x with probability
greater than 1/2, although x is solvable.

We now inquire into the conditions under which a family of problems posseses a meta-algorithm.

Theorem 1 identifies conditions sufficient to guarantee the existence of a meta-algorithm. Necessary

conditions appear to be much harder to obtain, perhaps requiring a greater understanding of learning with
"advice" as explored in [4]. The statement and proof of Theorem 1 are based on previous results on

learning sets with one-sided error [3]. These results are reviewed briefly in Appendix A. We refer the

unfamiliar reader to that section before proceeding to the theorem.

Theorem 1: A family of problems M possesses a meta-algorithm if there exists a family of sets F

such that
(a)F contains the projections of every problem D in M.

(b)F is polynomial-time learnable with one-sided error. (See Appendix A for details.)

Proof: (sketch) For a given problem D, if we can test membership in the projections of D efficiently,

[hen we can construct an efficient algorithm for D. The following is such an algorithm.

input x: string;
begin

-+- null-sequence;
While G(x) * I do

pick oE O such thatxe U(o);
if no such exists, halt; ---x is not solvable---
x +- o(x)
a -- oao;

end
output cy as solution for x;

end

The key idea in the proof is as follows: Given a problem D, the meta-algorithm will construct

approximations to the projections of D using the solved instances. It will then substitute these

approximations in the above algorithm to obtain an approximate algorithm for D. If the conditions of the

theorem are satisfied, this can be carried out in random polynomial-time, yielding a good approximation of

an algorithm for D.

The rest of the proof deals with the details. Specifically, we will exhibit a meta-algorithm for M. We
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need the following definition. Let D be a problem in M. We define the quantity iD(n) to be the set of all
instances in D that possess optimal solutions of step-length less than n.

ID(n) = (xtx has an optimal solution in D of step-length at most n)
When the problem D is clear from the context, we will simply write 1(n). Also, for 8E (0,1) define the

quantity n, as the least integer n such that

y P(x) > 1-8
xE (n)

That is, n8 is the least integer such that the probability of occurrence of an optimal solution of step-length

greater than n8  is less than 6. In what follows, we will arrange for the meta-algorithm to learn
approximations to the projections of D that are good for strings of length ns or less, for a value of 8 that

be appropriately chosen.

Let F be a family as in the statement of the theorem. By Theorem A of Appendix A, F must possess

a polynomial-time ordering Q. We use Q to construct a meta-algorithm A for M as shown below. The
algorithm uses Q to construct good approximations for the projections of D and then uses these
projections to build an algorithm for D.
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Meta-Algorlthm A,
Input h, D=(G,O)
Let F be of dimension d(n):
Let 0 {o~li= I.k};
Let S(ol..S(ok), V(oI),... V(ok) be sets, initially empty;
begin
Section 1:
---This section estimates nl,3, with confidence (1-1/3h)---
call INSTANCE lh-log(3h) times.
Let n be the longest step-length amongst those seen.
Section 2:
---This section generates examples for projections -----
repeat 3h(kd(n))+Iog(3h)) times

call INSTANCE to obtain (x,a);
let a be the sequence o, 0 ... Ox

S(ox) -- S(o )U(XJ

S(o1') <-- S(o1 ) o, (x))

S(o,' ) < S(oxr)k o,,,._ 1-° (x) }

end
Section 3:
---This section constructs approximations of projections---
repeat i=1..k times

V(oi) <-- Q(S(oj));
if Q is randomized, repeat to confidence of 1-1/3h;

end
Section 4:
Output the following as an approximate algorithm for D
Algorithm H
Input x: string;
begin

a +- null-sequence;
While G(x) e I do

let 0 = {oLxE V(o));
if A is empty then halt

else pick o in 0 uniformly randomly.
x +- o(x);
a <-- 0a;

end
output a3 as solution for x;

end

end

We now show that the above is indeed a meta-algorithm for M. Consider Section 1 of the alaorithm.

We need to show that drawing 3h.log(3h) instances will produce a step-length m such that n3h. n. For

any single call of INSTANCE, the probability of a step-length of less than ni,3, occurring is (1-1/3h) by

definition. In t calls of INSTANCE, the probability of all the step-lengths being less than n/3, is hence

(1-1/3h)'. We only need pick t such that

(1-1/3h)' < 1/3h
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Which inequp'"' is satisfied by choosing t = 'h loi 3h)

We will consider Sections 2, 3. and 4 of the algorithm simultaneously With respect to strings of
length n or less. each set vio) can be chosen in F,! ways in Section 3 of the algorithm. Hence, the

number of distinct algorithms that can be constructed in Section 4 is IF, . Let S be the set of algorithms

so constructible. If n _> n 1 h' at least one of these algorithms will approximate an algorithm for D within

I h This is because the statement of the theorem demands that F contains the projections of D Now.

the aim of Sections 2 and 3 is to eliminate those algorithms in S that are bad approximations. Consider

algorithms in S that do not approximate an algorithm for D within iSh. Call such algorithms "bad" The

probability that a particular bad algorithm will correctly solve a randomly chosen instance is (1-113h. and

the probability that the algorithm will correctly solve all of r randomly chosen instances is (1-l/3hr The

probability that any bad algorithm in S will correctly solve r random instances is at most !Si l-1,3h' To

eliminate all bad algorithms in S with confidence (1-1/3h). we only need to make the above quantity less

than 13h That is,

S;I-,-l3h)r S 1/,h

Since, S1 <_ F, and F) <_ 2 'tn . we have.

or

r ? Sh(kd(m + og 3h)).

This is exactly the number of instances employed by Sections 2 and 3 to eliminate the bad algorithms in

S. Since Sections 1, 2 and 3 are each carried out to a confidence of (1-/3h), the overall confidence is

1 -1/hi. Furthermore, the elimination of bad algorithms from S constructs an algorithm that approximates

an algonthm for D within (2/3h). This is so because the best approximation within S need only be within

1/3h owing to our choice of m, and the elimination process will construct an algorithm within 1/3h of this

best algorithm.

In all. with probability (1-1/h) the meta-algorithm constructs an algorithm for the input problem D that

is within 2,Sh in accuracy. Hence, A is a meta-algorithm for M and the theorem is proved. *

3. An Application to Symbolic Integration

In this section we discuss an aoplication of Theorem 1 to the domain of symbolic integration. There

have been reports in the Al literature of programs that learn to carry out restricted forms of symbolic

integration. See [61 for instance. We will show how this can be achieved by a straightforward application

of Theorem 1.

Consider the class of integrals that can be solved by the following standard integrals.
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f lx dZx = k fl[x)dxf kxfrxk

J flx)-g i n, = J flx)dz-f g(x)dx

f f(r)+vl , (Jt = J f(t)dx + f g(x)dx

J tdx = A
f x

f sinxdx =-cox

COSLXd -3lU

ud(v) = uv - f vd(u)

Suppose we wish to construct an algorithm that can solve this class of integrals.

Consider the following grammar F.

prob f-* exp var I d(exp)

exp - term Iterm + expl term - exp I term / term I

term ightarrow p-term I p-term * term

p-term - const var I - term I trig power prob I exp

power -* var ** term

trig - SIN var I COS var

const -*int I a I k

var -4 xIyIz

int rightarrow 1121314151617181910

This grammar generates a superset of the strings that will be seen as input to the integration algorithm.

Let a be any sentential form in the grammar F. Define L(a) to be the set of strings derivable in F from a.

That is,

L(ct) = (xla --+ r x

Let F be the family of all such sets, i.e.,

F = fL(ct)l a is a sentential form in r}.

It is easy to see that F is polynomial-time learnable with one sided error. To do so, we only need

invoke Theorem A of Appendix A and check that (a) F is closed under intersection. We show the

equivalent condition [3] that for any set of strings, there exists a "least" sentential form that generates

them. By least, we mean that any other sentential form that generates tnese strings will be a super set of

the least sentential form. To see this, given a set of strings we can efficiently compute the least sentential

form that generates them as follows. Construct the parse trees for these strings in F, and then march up

these parse trees simultaneously to pick off points common to all of them. Since the parse trees are

unique in F, the claim follows. (b) F posseses a polynomial-time ordering. Indeed, we will exhibit a

deterministic linear time ordering for F. For any set of strings, compute the least sentential form that

generates them as described above. Once we have this least sentential form, it is a simple matter to
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output a program that recognizes strings that can be generated from it. (c) Since the number of sentential

forms of length n is at most c" for some constant c. F is of dimension n log(c).

We now hope that F contains the projections of all the standard integrals listed earlier. (T- be

honest, it does contain them.) We can then invoke the meta-algorithm of Theorem 1, and provide it with

randomly chosen solved instances of these integrals. By Theorem 1, the output of the meta-algorithm will

indeed be a good algorithm for the class of integrals in question. Tadepalli, in [41 implemented this

algorithm and verified this to be the case.

4. Learning From Exercises

In the foregoing, we considered a model of learning wherein the external agent INSTANCE provided

solved instances of the problem of interest. In this section, we consider a model of learning wherein the

external agent provides unsolved instances of the problem of interest, although these instances are

chosen a little more carefully than in the previous model. The unsolved instances are exercises, in much

the same sense as those that may be found at the end of a text book on symbolic integration. Note that

the exercises in the back of the book are not representative of the "natural" distribution of problem
instances, but are chosen to reinforce the techniques required to solve them. In this section, we formalize

the notion of learning from exercises and prove a theorem similar to that of Theorem 1.

We now replace the routine INSTANCE of the previous section with a routine EX. The key idea is to

provide the learning algorithm with a source of unsolved instances of varying difficulty. This will permit

the learning algorithm to consider increasingly difficult instances, improving its capabilities as it
progresses. Let P be a probability distribution on Z*, and let INSTANCE be defined according to P as

described earlier. We can best describe EX in terms of INSTANCE, as shown below. In essence, EX

takes as argument an integer I and returns an instance x such that the optimal solution of x has length 1.
The probability that a particular instance x will be returned by any call of EX is the probability that x will be

used in a solution by INSTANCE. This is a measure of the importance of knowing how to solve x, with

respect to the natural distribution P.

function EX(I)
begin

call INSTANCE to obtain (x,a);
If Ial < 1, output the null instance.
else
let a = a71a2, where Icll = I
output al(x).

end

"1'/ now define the notion of a meta-algorithm for a family of problems in this setting. This defin;tion

is largely identical to that of Section 2, except for the use of EX instead of INSTANCE.
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Defn: An algorithm A is a meta-algorithm for a family of problems M if there exists an intege'- such

that

la).A takes as input integer h and the specification of a problem D E M,. Let I be the string length of
this input

(b)A may cai EX. EX returns instances of D drawn according to some unknown distribution P over
V-. Let n be the least integer such that all the instances so produced by EX are in I(n) and let rn
be the largest integer used as argument to EX. For inputs of length n, let the sum of the running
times of the programs in the specification of D be r(n). .4 computes for time less than lhMr(n k,
i e., in time polynomial in the length of its input 1, the error parameter h, the length m of the optimal
solutions of the instances seen, and the time required to evaluate the programs in the
specification of D on the instances seen. .- may be a randomized algorithm.

(c)For all De M, and all distributions P over _*, with probability (I-1/h) .4 outputs a (possibly
randomized) program It that runs in time itur))k on inputs of length r and approximates an
algorithm for D in the sense that

where S = {xl H fails on x)

Since H may be randomized, by "H fails on x", we mean that It fails to solve x with probability
greater than 1/2, although x is solvable.

We now inquire into the conditions under which a family of problems possesses a meta-algorithm in

this model. As it happens, the theorem we prove for this model is identical in its statement to Theorem 1.

Theorem 2: A family of problems M possesses a meta-algorithm if there exists a family of sets F

such that

(a)F contains the projections of every problem D in m.

(b)F is polynomial-time learnable with one-sided error. (See Appendix A for details.)

Note that this pertains to the model wherein the meta-algorithm seeks unsolved instances from

EXERCISE.

Proof: (Sketch) The key idea in this proof is similar to that of Theorem 1 - the meta-algorithm

constructs approximations to the projections of D. The catch is that it must provide solutions to the

instances on its own. To do so, the meta-algorithm iteratively learns to solve problems with increasingly

longer solution sequences. Specifically, the meta-algorithm first learns to solve problems with solution

sequences of length one. Knowing how to solve problems with solution sequences of length i. it learns to

solve problems with solutions of length i+1. in order to describe such an algorithm, we need the following

definition.

Defn: For D e M and 8e (0,1) define the quantity m8 to be the least integer such that

I Px) _ [-5
xE S

where S = (xlx has a solution of lenoth m or less in D ).

I I I IU



11

Meta-Algorlthm A,
Input h, D=(G,O)
Let F be of dimension d(n);
Let 0 = {oI i= 1..k};
Let S(oI )....S(ok), V(ol)....V(o.) be sets, initially empty;
begin
Section 1:
let a = 1/4h.
Estimate m2mC, to a confidence of (1-a).
Let E = 1(2hmZ).
Estimate n >nE to a confidence of (1-E).
Substitute the null sets for the V(o)'s in the algorithm of Section 3
to obtain the algorithm I1o.
Section 2:
for I= 1, 2, ... m do

pick t, such that /in(t) >- l/E(kd(n) + In(1/E)) +n(1/E)
call EX(1) t times
let E be the set of instances so obtained;
for each o E 0 and each xE E do

run HI-1 on o(x), repeating to a confidence of (I-E/kt).
If H_11 solves o(x) in 1-I steps then

S(o) = S(o)tj (x)
od
for eacho E Odo

V(o) = Q(S(o));
if Q is randomized, repeat to confidence of (1-E)

od
construct the algorithm of section 3 using the newly computed values of
the V(o)'s. Call this algorithm H,.

od

Section 3:
Algorithm H
Input x: string;
begin

a -- null-sequence;
While G(x) I 1 do

let Ox = olx E V(o)};

If O is empty then halt and report failure.
else pick o in 0 x uniformly randomly.
x 0(X);
a" -- o.0";

end
output a as solution for x;

end

Output Hm as an approximate algorithm for D
end

We will prove the above meta-algorithm correct in stages. First we consider Section 1. The

estimation here is to be done exactly as in Section 1 of Meta-Algorithm 1, and the corresponding proof

holds.
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We now consider Sections 2 and 3 simultanously. We proceed by induction, with the following being

our inductive hypothesis. To simpify the proof, let us assume that our estimate n for n. is to a confidence

of unity. We will account for this at a later stage.

Inductive Hypothesis: In any run of the meta algorithm, with probability (O-E)41

P x) >_ (1-E)l eqn(l)
x S

where S = (xWH is correct 2 on x) and P is the conditional distribution given by

Px) = Pr(x is produced by any call of EX(1) I xE 1(n)).

Basis: For I = 0: H10 produces the empty sequence as solution for the set (xl, G(x) = 1) and fails on

all other inputs. Hence L. sOPo(x) = 1, and the inductive hypothesis is satisfied for I =0.

Induction: Assume that the inductive hypothesis is true for (1-1) and prove true for I.

Let Sp), S,_,(o), V,(o), V_ 1 (o) represent the sets S(o) and V(o) for operator o at the end of iterations I

and 1-1 respectively of the outer for loop in the meta-algorithm. "4ow, consider the following algorithm.

Algorithm H-,.
Input x: string;
begin

let Ox = (olx r Ve(o)};
If Ox is empty then halt and report failure.
else pick o in O uniformly randomly.

x *-- o(x).
run H,_1 on x.
If H,_ 1 solves x with solution aF

output ao and halt.
else report failure.
end

II' is different from H, in that it uses the V,'s for deciding only on the first operator in the solution of

an input instance x. After that it runs H. 1. By the inductive hypothesis, Hl-, can be as inaccurate as

(I-E ) . Hence, I- cannot do better than that. The important thing is that it is possible to choose the

V,(o)'s from F so that this accuracy is attained. To see this, recall that F contains the projection of 0 - the

U(o)'s. And choosing V(o) = U(o) for each o will satisfy our demands. Furthermore, since the probability

distribution P1 is non-zero only on instances of length n (and the null instance), it follows that we could just

as well pick V(o) = U(o)rT,". That is, we could pick V(o) from F, rather than from F.

2By this we mean that H, solves x with probability a 1/2 if x is solvable.
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We will now show how to construct good approximations to the U(o)r Z's so that the inductive
hypothesis may stand. Consider tF. For a given H 11 , there are IF,1 ways to choose each of the k sets
V,(o), and hence there are at most LFk choices for it. Call a choice "bad" if it does not satisfy eqn(1) of
the inductive hypothesis. We wish to eliminate the bad choices. To do so, we will call EX(I), so that if our
current choice is bad, EX(!) will produce a witness to this with high probability. That is, EX() will produce
an instance x such that x is not in V(o) for any o, and yet there exists o, such that o,(x) can be solved by
I,1 in 1-1 steps. Now, at any call of EX(i), given that the call resulted in an instance x e 1(n), the
probability that a bad choice of F will be correct on the instance produced is at most (1-)t. If we make s
calls of EX(f), given that all of them resulted in instances from 1(n), the probability that a bad choice of it °

will be correct on all s instances is at most (I-E) s . Hence, the probability that any bad choice of it will be
correct on all s instances is bounded by (1-E)IsF,,j>. We choose s so that the probability of the above
event is at most E. That is, we choose s so that

(l-E)S[FlI <_ E.

It certainly suffices to pick s to satisfy

s > l/(E)(kd(n) + n(l/1)), where d(n) is the dimension of F.

But by our choice of n, the probability that any call of EX(1) will result in an instance from 1(n) is only (I-E.
Hence, we will call EX(!) t times, for some t>s so that with probability (1-E), these t calls will result in at
least s instances from 1(n). A simple Chernoff estimate yields that if t should satisfy din(t) > s+ln(I/t)
Such a choice would imply that with probability (l-E) 2, we have eliminated the bad choices for H*, i.e, with
probability (l-E) 2, Ft satisfies eqn(1), given that H 1, satisfies eqn(1).

We also have to account for verifying these witnesses. That is, given an instance x, for each
operator o, we must run H,_I on o(x). Since H,_1 is randomized, it has a certain probability of failure and
this must be accounted for. To do so, we run H_1. sufficiently many times so that our confidence in the
result is (]-E/kt). This will require O(ln(kt/t)) repetitions. Since we must run H i- on kt inputs, our
simultaneous confidence in the results of all the ki computations is (I-Elkt)I, which is bounded by (1-I).
Finally, we not . 'at picking a candidate V(o) from F, is done with the ordering Q, which may be
randomized. We carry out this computation to a confidence of (1-Elk) for each operator 0, leading to a
confidence of (1-Flk)k> (-e) for all the k operators. Combining the above estimates with the result of the
last paragraph, we conclude that with probability (1-e) 4, Ft satisfies eqn(1), given that /it_- satisfies

eqn(1). By the inductive hypothesis, If,-, satisfies eqn(1) with probability (l-E) 4
11

- 1). Therefore, it

satisfies eqn(1) with probability

(-E) 4(1-1)(l-E )4 = (i-E) 4 1.

Then, since S-11 (o) _ St(o) for each o, it follows from the definitions of Appendix A3that V'_t(o) g V,(o).

This directly implies that the set of instances solved by - is a subset of the set of problems solved by H1.

Therefore, H, satisfies the inductive hypothesis as well.

3Conditon (b) of the definition of ordenng Q, Appendix A.
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We now seek to bound the error of f,, with respect to the natural distribution P. Specifically, we

seek a lower bound on the following quantity.

s P(xl

where S,, = {xW,,, is correct on x].

Let N be the set of instances that are not solvable.

.,= (xl x is not solvable .

We define the following sets, parametric in 1, with respect to /I,.

X, = (xlx e 1(n). optimal solution of x has I steps, Ht solves x)

Y1 = (xloptimal solution of x has fewer than I steps orx is not solvable).

Z, = (xloptimal solution of x has more than 1 steps).

Also, for an instance x, define the event B(x) as follows.

B(x) = (x is an intermediate step in the solution produced by INSTANCE)

Now consider the sum -xE st P(x). We can decompose this sum as follows.

cPls(x) = P(x)+ 2 PrB(x)) + I P(x).
xZS 1  x x X x E Y

In the above, c is a normalization factor to account for the fact that P is conditional on those instances

that are in I(n). By our choice of n:n, (recall that we are still under the assumption that our estimate of

ntis of confidence unity), this normalization factor satisfies c 5 (1-e). To see this, simply note that

I E 1(nE) P(x) > l-€, by the definition of n. By the definitions of B(x), X1 and Zt,

I Pr(B(x)) 5 z P(x) eqn(2)
xe Xl_ 1  x EZ

Therefore,

y Pr{B(x)I+ I P(x) _ , P(x)+ P(x) < 1. eqn(3)
xe X I1  xG rY xe Z1  xe I

Summing I., sCPl(x) over I = 0,1,2...m and substituting eqn (3) in the sum (m-1) times we obtain,

3'(x 3!5 Px+3Pr(B(x)) +(Pn-1)+ E. N(
SXES 1  1P(x M x)

Using eqn 2) to replace the second term on the right, we get
I=mc111W) <!5- P(X)+j P(x)+(M-1)+ I P(x)

xr S I  ; xI m+1 xF N

But by our choice of m, with probability (1-a), ,.,Xe zm+l P(x) !5 (x. Therefore we can rewrite our inequality

thus, to hold with probability (l-E).

, cPt(x) !5 P(x)+oz+(m-I)+ I P(x) eqn(4 )
I=OxE St I ' xe N

Now, by the inductive hypothesis, with probability (I-E) 4
1
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PI(X) >_ (l-E)'
ze S.

Henc4,

t " PA~X )  - M(I-E)r eqn(5)

e S1

Noting that eqn(4) and eqn(5) hold with probability (1-a) and probability (I-E)4m respectively, we can

substitute eqn(5) in eqn(4) to write: With probability (I-E) 4m(1-(X)
I=M

CM(l-E) m  P(x)+aX+(m-1)+ 2: P(x) eqn(6)
1=0 x X1  xEN

Grouping the first and last terms on the right hand side and substituting c > (1-E), we get,
I P(x) >- m(1-E)(l-E)M-Oa-(m-l) eqn(7)

XE S

Where S = {x-i 1 is correct on x). We desire the quantity on the right hand side to be greater than (1-1/h).

Simplifying, we find that E < 1/(2hm 2) suffices.

Finally, we estimate our confidence that eqn(7) holds. Under the assumption that our estimate n for

n was to unit confidence, we obtained the confidence estimate of (1-a)(l-E)4 as noted with eqn(6).

Since the confidence in our estimate of n. is only (1-E), the overall confidence that eqn(7) holds is

(1-E)4 +2). We need to check whether our choice of E 5 1/(2hm2) is sufficient to ensure that this

confidence level exceeds (1-1/h). As it happens, this is the case.

We have therefore proved that A is indeed a meta-algorithm for M. *

5. Conclusion

This paper explored a new direction in the formal theory learning - algorithms that learn to solve

problems from sample instances of the problems. Two random sources of sample instances are

considered, one providing solved instances and the other providing unsolved instances or exercises. For

both sources, general theorems are proved identifying conditions sufficient to permit learning. To

illustrate the scope of these results, the are applied to the construction of an algorithm that learns to

perform a restricted versions of symbolic integration.
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Appendix A

This section reviews some necessary definitions and results on learning families of sets with one-

sided error as presented in [3].

Letf denote a subset of -* and F be a family (a set) of such sets.

Defn: A family of set F is polynomial-time learnable with one-sided error if there exists an algorithm

A and an integer k such that
(a)A takes as input integer h, the error parameter.

(b)A may call EXAMPLE, where EXAMPLE returns randomly drawn elements of some set f in F.
These elements are drawn according to an arbitrary and unknown probability distribution P on f.
A computes in time (hok , where I is the length of the longest example produced by EXAMPLE. .4
may be randomized.

(c)For allf in F and all probability distributions P on these setsf, with probability (l-1/h) A outputs a
program C that runs in time n'

k on inputs of length n and accepts a set g in F such that gcf and

Prob{f-g} 5 1/h.

Defn: Let f g Z*. For natural number n, the induced set fn is defined by f, = (xlxE f, lxl!n).

Similarly Fn = {,E F).

Defn: The dimension of a family F is d(n) if for all n, IF,,! < 2 d(n) . If d(n) is a polynomial in n, we say F

;s of polynomial dimension.

Defn: An algorithm Q is said to be a polynomial-time ordering for family F if there exists an integer k

such that
(a)Q takes as input a set of strings S. Q outputs a program C such that C accepts a setf in F, S f.

Also, for all g in F, S c g impliesf ; g.

(b)Both Q and C run in (possibly randomized) time 1k on inputs of length 1.

Theorem A: A family F is polynomial-time learnable with one-sided error ;' unU only if F is of
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polynomial dimension, F is closed under intersection, and F possesses a polynomial-time ordering.

Proof: See [3] for details. *


