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Abstract .
This paper presents some formal results on learning. In particular, it concerns algorithms that leam
sets and functions from examples. We seek conditions necessary and sufficient for learning over a range
of probabilistic models for such aigorithms.




1. Introduction

- This paper concems algorithms that learn sets and functions from examples for them. » The results
presented in this paper appeared in preliminary form in.{Natarajan, 1986; 1988].3The motivation behind
the study is a need to better understand the class of problems known as "concept leaming problems” in
the Artificial Intelligence literature.

What follows is a brief definition of concept (or set) learmning. Let Z be the (0,1) alphabet, Z* the set of
all strings on Z, and for any positive integer n, Z* the set of strings on I of length ». Let f denote a subset
of Z* and F a set of such subsets. An example for f is a pair (xy), xe Z*, ye Z, such that xe fiff y=1.
Informally, a learning algorithm for F is an algorithm that does the following: given a sufficiently large
number of randomly chosen examples for any set f € F, the algorithm identifies a set g € F, such that g
is a good approximation of /. (These notions will be formalized later.) The primary aim of this paper is to
study the relationship between the properties of F and the number of examples necessary and sufficient
for any leaming algorithm for it.

To place this paper in perspective: There are numerous papers on the concept learing problem in
the artificial intelligence literature. See [Michalski et al., 1983] for an excellent review. Much of this work
is not formal in approach. On the other hand, many formal studies of related problems were reported in
the inductive inference literature. See [Angiuin & Smith, 1983] for an excelient review. As it happened,
the wide gap between the basic assumptions of inductive inference on the one hand, and the needs of
the empiricists on the other, did not permit the formal work significant practical import. More recently,
[Valiant, 1984] introduced a new formal framework for the problem, with a view towards probabilistic
analysis. The framework appears to be of both theorstical and practical interest, and the results of this
paper are based on it and its variants. Related results appear in [Angluin, 1987; Rivest & Schapire, 1987;
Berman & Roos, 1987; Laird, 1986; Keamns et al., 1986] amongst others. [Blumer et al., 1986] present an
independent development of some of the results presented in this paper, their proofs hinging on some
classical results in probability theory, while ours are mostly combinatorial in flavour.

We begin by describing a formal model of learning, our variant of the model first presented by
[Valiant, 1984]. Specifically, we define the notion of polynomial leamability of sets in Section 2. We then
discuss the notion of asymptotic dimension of a family of concepts, and use it to obtain necessary and
sufficient conditions for learnability. In doing so, we give a general leaming algorithm that turns out to be
surprisingly simple, though provably good. Section 3 deals with a slightly different leaming model, one in
which the leamer is reqdired to learn with one-sided error, i.e., his approximation to the set to be leamed
must be conservative in that it is a subset of the set to be leamed. Section 4 deals with the time
complexity of leamning, identifying necessary and sufficient conditions for efficient learning. Section 5
generalizes the leaming model to consider functions instead of sets. instead of sets. Notions of
asymptotic learnability and asymptotic dimension are defined in this setting and necessary and sufficient
conditions for leamability obtained. This requires us to prove a rather interesting combinatorial result
called the generalized shattering lemma. Finally, Section 6 deals with a non-asymptotic model of
leaming, where the division is hetween finite and infinite, rather than on asymptotic behaviour. In




particular, we consider leaming sets and functions on the reals, introducing the notion of finite-leamability.
We review the elegant results of [Blumer et al., 1986] on conditions necessary and sufficient for

leamability in this setting. We then identify conditions necessary and sutﬂcient for the finite-learnability of
functions on the reais.




2. Feasible Learnability of Sets
We begin by describing our variant of the leaming framework proposed by [Valiant, 1984].

Let I be the binary alphabet (0,1), =* the set of all strings on Z, and for any positive integer », let Z*~
be the set of strings of length » or less in =*. A concept' fis any subset of =*. Associated with each
concept f is the membership function . — (0,1}, such that ™(x) =1 iff x € f. Uniess otherwise required,
we will drop the superscript in /™ and use f to refer both to the function and to the set. An exampie for a
concept is a pair (x,y), xe L', ye (0,1} such that y = Ax). A family of concepts F is any set of concepts on
I*. A leaming algorithm (or more generally, a leamning function) for the family £, is an aigorithm that
attempts to infer approximations to a concept in F from exampiles for it. The algorithm has at its disposal
a subroutine EXAMPLE, which when called returns a randomly chosen example for the concept to be
leamed. The example is chosen randomly according to an arbitrary and unknown probability distribution P
on I*, in that the probability that a particular example (x/(x)) will be produced at any call of EXAMPLE is
P(x).

Defn: Let f be a concept and » any positive integer. The projection f, of f on Z*~ is given by f, =
A,

Defn: Let S be any set. A sequence on S is simply a sequence of elements of S. S’ denotes the set
of all sequences of length { on S, while A(S) denotes the set of all sequencas of finite length on S.

Defn: Let f be a concept on £* and P a probability distribution on X*. A sample of size ! for f with
respect to P is a sequence of the form (x, fix)), (x;/{x)),....(x;f(x))) where x,, x,...., x; is a sequence of
elements of Z°, randomly and independently chosen according to 2.

Deln: Letfani g4 be any two seis. The symmetric difference of £ and g, denoted by fAg, is defined
by fAg = (-gyr(z-.

With these supporting definitions in hand, we present our main definition. Intuitively, we will call a
‘amily F feasibly leamnable if it can be leamed from polynomially few exampies, polynomial in an error
parameter A and a length parameter . The length parameter n controls the length of the strings the
concept is to be approximated on, and the error parameter A controls the error allowed in the learnt
approximation.

Defn: Formally, a family F is feasibly leamable if there exists an algorithm? A such that
(a) A takes as input two integers n and h, where n is the size parameter, and h is the error
parameter.

(b) A makes polynomially few cails of EXAMPLE, polynomial in » and . EXAMPLE returns
examples for some fe F, where the examples are chosen randomly and independentty according

'we use the term concept instead of a set to conform with the artificial intaliigence literatura.

Uniess spbd otherwise, by “aigorithm® we mean a finitely representable procedure, not necessarily computable. That is, the
procedure might use well-dafined but non-computabie functions as primitives.




to an arbitrary and unknown probability distribution P on *.

(c) For all concspts f € F and all probability distributions P on 2™, with probability (1-1/4), A outputs
a concept ge F such that

P(x) < 1/A
e

Defn: Let N be the set of natural numbers. The leaming function W:NxN>A(Z*x(0,1})—>F
associated with a leaming algorithm A is defined as follows.

Leaming Function ¥

input », Aiintegers; C: sample;

begin

Let C = (xy, y1), (%3, Y9)soo-

Run A on inputs nh;

In place of EXAMPLE, at the #* call of EXAMPLE by A,
give A (x;.y;) as exampie.

Output A’s output.
end

We now introduce a measure called the dimension for a family of concepts. Recall that we defined
the projection f, of fon Z* by f_ = (fnZ") Similarly, the projection F, of the family F on " is given by F, =
(f)f € F}. We call F, the n**-subtamily of F.

Defn: The dimension of a subfamily F,, denoted by dim(F,) is defined by
dim(F ) = log,(\F D).
(Notation: For a set X, IX1 denotes the cardinality, while for a string x, i denotes the string iength.)

Defn: Let &:N— N be a function of one variable, where N is the natural numbers. The asymptotic
dimension (or more simply the dimension) of a family F is d(n) it dim(f,) = &(d(n)). That is, there exists a
constant ¢ such that

V n.dim(F,) < d(n)

and dim(F,) 2 cd(n) infinitely often.
We denote the asymptotic dimension of a family F by dim(F). We say a family F is of polynomial
dimension if the asymptotic dimension of F ie 2 polynomial in n.

With these definitions in hand, we can give our first result. The result is a lemma conceming the
notion of shattering. Let F be a family of subsets of set X. We say that F shatters a set ScX, if for every
Sy <, there exists fe F such that /nS = §,. To our knowledge, this notion was first introduced by [Vapnik
& Chervonenkis, 1971).

We can now state our first result.

Lemma 1 (Shattering Lemma:) if £, is of dimension 4, then F, shatters a set of size
3ceiling(d/(n+2)). Also, every set shattered by F is of size at most d.

:’cciling(r) is the least integer greater than r.




Proof: First, v.4 prove the upper bound. Suppose a set § is shattered by by F,. Since there are 2%
distinct subssts of F,,, it follows from the definition of shattering that 289 < \F,l. Taking logarithms on both
sides of the inequality, we get 51 < log(IF,)) = d, which is as desired. To prove that the upper bound can
attained, simply iet £ be all possible subsets of some d strings in Z™.

We prove the lower bound part of the lemma through the following claim. A variant of the claim is
given by Vapnik & Chervonenkis (1971} amongst others.

Claim: Let X be any finite set and let / be a set of subsets of X. If k is the size of the largest subset
of X shattered by H, then
H < (X 1)E.

Proot: By induction on X1, the size of X.
Basis: Clearty true for X1 =1.

Induction: Assume the claim hoids for X1 = m and prove true for m+1. Let X1 =m+] and let H be any
set of subsets of X. Also, let k£ be the size of the largest subset of X shattered by H. Pick any xe X and
partition X into two sets (x} and Y = X—{x}. Define H, to be the set of all sets in H that are reflected about
x. That is, for each set A, in H,, there exists a set 1 ¢ H such that  differs from &, only in that 1 does not
inciude x. Formaily,

Hy={h)hje H 3 he H h2h and h, = hu(x}}.

Now define #, = HH-H,. Surely, the sets of H, can be distinguished on the elements of Y. That is, no
two sets of H, can differ only on x, by virtue of our definition of H,. Hence, we can consider H, as sets
defined on Y. Surely, H, cannot shatter a set larger than the largest set shattered by #H. Hence, H,
shatters a set no bigger than k. Since IN < m, by the inductive hypothesis we have IH,! < (IYk1)~.

Now consider H,. By definition, the sets of H, are all distinct on Y. That is, for any two distinct sets
hy, by in Hy, Y # bynY. Suppose H, shattered aset S ¢ Y, 151 2 k. Then, H would shatter SU(x}. But,
Su(x}12 k+1, which is impossible by assumption. Hence, H, shatters a set of at most (k-1) elements in
Y. By the inductive hypothesis, we have

IH,} < (V1)L

Combining the two bounds, we have
\H = \H-H\) + \H|] = [H,} + IH|)
< (IN+DX + (VD! < (maD)E + (me1)!
S (me 1)1 (m+2) S (m+2)k s (X +1D)*,
Thus the claim is proved.s

Retumning to the lemma, we see that it X is all strings of length » or less on the binary alphabet, X1 =
2*1. By our claim, if the largest set shattered by F,, is of size ,




F )< @™l+k

He .a,k 2 log(IFul)/Iog(Z""H) 2 dim(F )/(n+2).
Since k& must be an integer, we take the ceiling of the right-hand side of the last inequality. This
compietas the proof of the lemma.

Wae can now use this lemma to prove the main theorem of this section.
Theorem 1: A family F of concepts is feasibly learnable if and only if it is of polynomial dimension.

Proof: (if) Let F be of dimension d(n). The following is a leaming algorithm for F, satistying the
requirements of our definition of leamability.
Learning_Algorithm A,
input: », A
begin
call EXAMPLE h(dim(F,)in(2) + in(h)) times.
let S be the set of examples seen.

pick any concept g in F consistent with S

output g.
end

We need to show that A, does indeed satisfy our requirements. Note that A, may not be
computable, but, as noted earlier, this is not a difficuity. Let f be the concept to be learmed. Since P is a
distribution on ", EXAMPLE retums exampies of /.. We require that with high probability, A, should
output a concept ¢ € F, such that the probability that f and g differ is less than (1/h). Lst C,() be all
concepts in F, that differ from f, with probability greater than 1/4. By definition, for any particular ¢ such
that g, € C,(f. the probability that any call of EXAMPLE will produce an example consistent with g is
bounded by (1-1/4). Hence, the probability that m calls of EXAMPLE will produce examples all consistent
with g is bounded by (1-1/A)™. And hence, the probability that m calls of EXAMPLE will produce exampies
all consistent with any g, € C,(f) is bounded by IC,(NI(1-1/h)™. We wish to make m sufficiently large to
bound this probability by /4.

IC{PN1-1/RY™ < 1/h.

But surely, IC,()l < IF,| < 24"

Hence, we want

24m)(1~1/hy™ < 1/h

Taking natural logarithms on both sides of the inequality, we get

d(n)in(2) + m-In(1-1/h) < in(1/h)

-m-In(1-1/h) 2 d(n)in(2) +in(h)

-m (=1/h) 2 d(n)in(2) + In(h)

Or

m 2 h(d(n)in(2)+In(h)).
Hence, it A(d(n)in(2)+In(h)) examples are drawn, the probability that all the examples seen are consistent
with a concept that differs from the true concept by 1/k or more, is bounded by 1/h. Since, A, draws as




many examples and outputs a concept consistent with the examples seen, with probability 1-1/4, A, will
output a concept that differs from the true concept with probability less than 1/k. Hence, A, does satisty
our requirements. Clearly, if d(n) is a polynomial in », the number of examples called by A, is polynomial
in », A and hence F is feasibly leamable.

(only if)

Now suppose that F is of super-poiynomial dimension d(n) and yet F were feasibly learnable by an
algorithm A from (nh)* examples, for some fixed k. Let W be the learning function corresponding to A.
Now pick » and & 2 5 such that

dim(F,) 2 2n+1)(nh)*.
By the shattering lernma, there exists a set S ¢ " such that 512 dim(F)/(n+1), and S is shattered by F .
Let X' 5! denote the sequence x;, x..... x; and let fe F,. Define the operator 3 as follows.

8, X'\¥) = P(x)

x€ fog

where g ='¥(n, h, (x,flx))), (% flx))....(x;Tx)))),
in words, 8(f, X', ¥) is the probability error in the concept output by A on seeing the sample (x, x,)),
(5 flx))....(xflxp) for f. Let G, < F, be such that for each S, c 5, there is exactly one ge G, such that gnS
= §,. Such G, must exist as F, shatters S. Let P be the probability distribution that is uniform on S and
zero elsewhere.

Claim: Let [ = (nh)*. Then for each fe G,, and X'e &, there exists unique ge G, such that 3(/.x'.¥)
< 1/n if and only it (g X.¥) 2 1/h.

Proof: Let (X'} denote the set of strings occuring in X', i.e., (X'} = (xix occurs in X!}. By the
definition of G, for each f, X*, there exists unique ge g, such that fAg = S—{X'}. Hence,

SFXL¥) + 8(g. X, ¥) 2 Y P&
xe 5~(x')
> 12

The last step follows from the fact that {X’) has at most half as many elements as §, and P is uniform on
S. Since h25, 1/h < 1/5, at most one of the terms on the left can be smaller than (1/5), if the inequality is
to hold. Hence the claim. e

Since V¥ is a learning function for F, for each fe F,

Pr(8¢ X', ¥) s 1/h)} 2 (1-1/h)
(Notation: Pr{Y} denotes the probability of event Y.)

Define the switch function 6:{true.false} — N as follows. For any boolean-valued predicate Q,

= F 1,if Q is true
% 1 0 otherwise
Now write

Pricy X' W) < U/n) = x; aSX W) 2 1/h)Pr(X')
e st




Substituting the above in the last inequality, we get,
rz 8(X' ) 2 URPH(X') 2 (1-1/h)
es

Summing over G,,

8((¢rX' ) 2 /n)Pr(X'} 2 (1~1/k)
fe%u XES" fE n
Flipping the order of the sums,
x; 2, Gexiy) 2 ynPrX) 2 3 (-1
€ SJ fe Gn fe G"
By the last Claim,
8 X W) 2 YhPHX) < (12)Pr{x})
feG, feG,

Hence, we have

xzs‘ 3, (12)Prxly 2 2 (1-Vh)

1eG, feG,
Flipping the order of the sums again,

(172)Pr(xt) 2 (1-1/h)
Which reduces to

(1) 2 (1-1/k)
fea, feG,
which is impossible as 2 > 5.

The last contradiction implies that A cannot be a leaming aigorithm for F as supposed and hence the
result.

This completes the proof. e
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3. Learning Sets with One-Sided Error _

We now consider a leaming framework in which the leamer is only allowed to see positive examples
for the concept to be learmed, and is required to be conservative in his approximation in that the concept
output by the learner must be a subset of the concept to be leamt. Historically, this was the framework
tirst studied by [Valiant, 1984].

Let F be the family of concepts to be leamed. EXAMPLE produces positive examples for some
concept f € F. Specifically, EXAMPLE produces a string x € f. Let P be a probability distribution on Z*.
The probability that a string x € fis produced by any call of EXAMPLE is the conditional probability given
by,

P(x)

Y P&

x€ f

assuming the denominator is non-zero. If the denominator is zero, EXAMPLE never produces any
examples. We can now define leamability as we did eartier.

Defn: A tamily of concepts F is feasibly learnable with one-sided error if there exists an algorithm A
such that
(a) A takes as inputs integers n and A, where » is the size parameter and i the error parameter.

(b) A makes polynomially few calls of EXAMPLE, polynomial in »n and . EXAMPLE returns positive
examples for some concept f € F, chosen according to an arbitrary and unknown probability
distribution P on £™.

(c) For all concepts f € Fand all probability distributions P on Z*, with probability (1-1/k), A outputs
g€ F such that g<fand

P(x) < 1/h.
i

Defn: We say a family of concepts F is well-ordered if for all n, F, @ is closed under intersection.
With these definitions in hand, we state and prove the following theorem.

Theorem 2: A family F of concepts is feasibly leamable with one-sided emor, if and only if it is of
polynomial dimension and is well-ordered.

Proof: (If) This direction of the proof begins with the following claim.

Claim: Let Sc ™ be any non-empty set such that there exists a concept g € F, containing S. i.e.
ge F,,andScg. It Fis well-ordered, there exists a /east concept f in F, containing g, i.e.,
V ge F, Scgimplies fcg.

Proot: Let § ¢ Z™ be non-empty and let (f,, ,...} be the set of concepts in F, containing S. Now the
intersection of all these concepts f = (f,~f;,n...}, is in F,. To see this, notice that since F, @ is closed
under intersection, fe F,u@. But, fxD as S= and Scf. Hence,fe F,. o
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This allows us to write the following leaming algorithm for F.
Learning_Algorithm 4,
input: », A
begin
call EXAMPLE A(d(n)-in(2) + (n(h)) times.
let S be the set of examples seen.
output any g in F such that g_ is the least
concept in F, containing S.
end

Let f be the concept to be learmned. Since g, is the least concept consistent with S, surely, ¢, < f,.
Using arguments identical to those used in our proof of Theorem 1, we can show that with probability
greater than (1-1/k), g will not differ from the concept to be learned with probability greater than 1/4. This
completes the "if" diraction of our proof.

(only if) Let F be feasibly learnable with one-sided error by an aigorithm A. Let us show that F is
well-ordered, i.e., for ail n, F,UQ is closed under intersection. Suppose for some n, F,UQd were not
closed under intersection, and that f, g were two concepts in F @ such that f~g is not in F,uD. Now,
surely frg = @, and hence fng is not in F,. Place the probability distribution that is uniform on f~g and
zero elsewhere on ™, and run the learning aigorithm A for A = 21 At each call of EXAMPLE, a
randomly chosen element of f~g will be retumed. Since frg is not in F,, A must fail to learn with
one-sided eror. To see this, suppose that A outputs some concept ee F. Now, since A claims to leam
with one sided error, e, cf, it f were the concept to be leamed. Similarly, e, < g, since g could well be the
concept to be leamed. Hence, ¢,cfrg. But since k=1/2"*!, ¢, must be f~g, which contradicts the
assumption that fng is not in F,. By arguments similar to those of our proof of Theorem 1, we can show
that F must be of polynomial dimension. An altemate proof is presented in [Natarajan, 1986]. Hence the
claim. e

This completes the proof. e

We now exhibit a curious property of the weli-ordered families. Specifically, we show that each
concept (except the empty set) in a well-ordered family has a short and unique "signature”.

For a well ordered family F, define the operator M,al“' — F, as follows.

M(S)= least fe F, such that Scf, if such f exists

In words, #,(S) is" Sty The oSSR in £, consistent with S.

Proposition 1: M, is idempotent, i.e.,
M (M (5)) = M (S)
Proof: By the definition of M, M (S) is the least concept fe F, such that Scf. Surely, M_(f) = f and hence
the proposition.

Proposition 2: ForAcBgI™, i M, (A) and M, (B) are both defined, then
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M (A) < M (B).
Proot: By the definition of M,, BC M, (B). Since AcB, ACM,(B). Hence, M, (A) M, (B), by Proposition
1.0

Proposition 3: ForA,B cX*, it M,(A) and M (B) are defined,
M (AUB) = M, (M, (AYUM,(B))

Proof: Since AcM (A), BCM,(B), AUB < M, (A)UM, (B). Whence it follows from Proposition 2 that,

M (AUB) ¢ M (M, (A)uM (B)). And then, since ACAUB, we have by Proposition 2

M, (A) ¢ M, (AUB)

and similarly

M (B) c M (AUB)

Hence,

M (A)UM (B) C M, (AUB)

Applying Proposition 2 again, we get

M, (M (A)UM (B)) < M (M, (AUB))

Applying Proposition 1 to the right-hand side,

M (M (AYUM,(B)) < M, (AUB).
Hence, the proposition. e

With these supporting propositions in hand, we can show that every concept in F has a small
"signaturae”.

Proposition 4: If F is well-ordered, then for every fe F,, f+@ there exists Sec -, IS4 < dim(F,),
such that f= M (S).

Proof: Letf ¢ F, and let Sybe a set of minimum size such that f = M, (Sp. Consider any two distinct
subsets §,, 5, of s, We claim that M,(S,) = M,(S,). To prove this, we will assume the contrary and arrive
at a contradiction. Suppose M,(S,) = M, (S,) for S| # S,. Without loss of generality, assume IS5, < IS,!.
Now,

Sg= (S-S,

Applying M, to both sides,

M (Sp = M, ((S52)USo)

Applying Proposition 2 to the right-hand side, we get

M, (S) = M, (M, (S-S M (Sy))

Since M (Sy) = M, (S)),

M (Sp = M, (M, (Sr-S))uM,(S1)

Applying Proposition 2 again,

M, (Sp =f=M,((SS)S))

But IS-Sus,l < 1S4,
which contradicts our assumption that Sf was a set of minimum size such that f = M,,(s,;. Hence, each
distinct subset of S¢ corresponds to a distinct f € F,. (Notice that we have really shown that S is

—
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shattered by 7. ) Which in turn implies that
w225
or
dim(F,) 2 1S}

Hence the proposition. e

Conversely, we can show that Proposition 4 is tight in the following sense.

Proposition S: it F is well-ordered, there exists fe F, such that
f=M(S) implies IS 2 dim(F J(n+1).

Proof: A simple counting argument. There are at most 2**! distinct examples. If every fe F, were
definable as the least concept containing some set of d examples, then
20+ > F or
(n+1)d 2 dim(F ) implying d 2 dim(F )/(n+1).
Hence, the proposition. e




—
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4. Time-Complexity Issues in Learning Sets

Thus far, we concemned ourselves with the information complexity of leaming, i.e.,, the number of
examples required to leam. Another issue to be considered is the time-complexity of leaming, i.e., the
time required to process the examples. In order 1o permit interesting measures of time-complexity, we
must specity the manner in which the leaming algorithm identities its approximation to the unknown
concept. In particular, we will require the learning algorithm to output a name of its approximation in
some predetermined naming scheme. To this end, we define the notion of an index for a family ot
concepts.

In order for each concept in a family F to have a name of finite length, F would have to be at most
countably infinite. Assuming that the family F is countably infinite, we define an index of F to be a
function I:F — 2F such that

Vfge F.f = gimplies I(Hni(g)=D.
For each fe F,I(f) is the set of indices for f.

We are primarily ilterested in families that can be leamt efficiently, i.e., in lime polynomial in the
input parameters n, A and in the length of the shortest index for the concept to be learned. Analogous to
our definition of learnability, we can now define polynomial-time learnability as follows. Essentially, a
family is polynomiai-time learnable, if it is feasibly learnable by a polynomial-time algorithm.

Defn; A tamily of concepts F is polynomial-time leamable in an index I if there exists a deterministic
leaming algorithm A such that
(a) A takes as input integers n and A.

(b) A runs in time polynomial in the error parameter 4, the length parameter n and in the length of
the shortest index in 7 for the concept to be leamned /. A makes polynomially few calls of
EXAMPLE, polynomial in n, . EXAMPLE retums examples for f chosen randomly according to
an arbitrary and unknown probability distribution P on Z*.

(c) For all concepts f in F and all probability distributions P on £*~, with probability (1-1/k) the
aigorithm outputs an index iy € I(g) of a concept g in F such that

P(x) < 1/h
x€ fAg

We are interested in identifying the class of pairs (F, 1), where F is a family of concepts and 7 is an
index for it, such that F is polynomial-time leamable in 7. To this end, we define the following.

Defn: For a tamily F and index /, an ordering is a program that
(a) takes as input a set of exampies S = ((x,.y), (x.¥p).--(x;,y;..} such that
Xy, %, X3... € L', and y,, y,.. € (0,1},

(b) produces as output an index in / of a concept f € F that is consistent with §, if such exists. i.e.,
outputs i, e I for some f € F such that

vV (xy) € S, y=flx).

“Alternatively, we could permit A to make as many calis of EXAMPLE as possible within its time bound. This will not change our
discussion substantially. In the interest of clarity we will not pursue this altlerative.
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Furthermore, it the ordering runs in time polynomial in the length of its input and the length of the
shortest such index, we say it is a polynomial-time ordering and £ i8 polynomial-time orderable in 1.

With these definitions in hand, we can state the following theorem.

Theorem 3: A family of concepts is polynomial-time learnable in an index 7 (1) if it is of polynomial
dimension and is polynomial-time orderable in 7. (2) only it F is of polynomial dimension and is random
polynomial time orderable in 7.5

Proof: (if) Let Q be a polynomial-time ordering for F in /. The following is a polynomial time leaming
algorithmfor Fin I.
Learning_Algorithm A,
input: n, 4
begin
call EXAMPLE h(dim(F,) + log(h)) times;

let S be the set of examples seen;

output Q(S);
end

Given Theorem 1, we know that A, learns £, and only need bound its running time polynomial. Now,
Q runs in time polynomial in the size of its input and the length of the shortest index of any concept
consistent with S. Since the concept to be leamed must be consistent with S, surely Q runs in time
polynomial in ~, & and in the length of the shortest index of the the concept to be learned. Hence, A, runs
in time polynomial in a, # and in the length of the shortest index for the concept to be learned. Therefore,
F is polynomial-time leamable in /.

(Only if) Assume that F is polynomial time ieamabile in an index / by an algorithm A. Since A calls for
polynomially few examples, ¥ must be of polynomial dimension by Theorem 1. It remains to show that
there exists a randomized polynomial-time ordering for #. The following is such an ordering.

Ordering 0
input: S:set of examples, n:integer;

begin

piace the uniform distribution on S;

let A= Ske1:

run A on inputs », A, and

on each call of EXAMPLE by A

return a randomly chosen element of S.
output the index output by A.

end

Let fbe a concept consistent with S, whose index length is the shortest over all such concepts. Now,
with probability (1-1/k) A must output the index of a concept g that agrees with f with probability greater

$A randomized aigorithm is one that tosses coins during its computation and produces the correct answer with high probability
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than (1-1/h). Since the distribution is uniform and 4 > 151, g must agree with f on every exampie in S.
Hence with high probability, g is consistent with 5. Furthermore, since A is a polynomial-time learning
algorithm for F, our ordering O is a randomized polynomial-time ordering for F in /. To see this, notice
that A runs in time polynomial in n and 4, and /, the length of the shortest index of /. By our choice of 4, it
follows that A runs in time polynomial in a, S| and /. Hence, O runs in time polynomial in a, &k and [, and is
a randomized polynomial-time ordering for F in /.

This completes the proof. «

Woe can state analogous resuits on the time-compiexity of leamning with one-sided error. Specifically,
an ordering for a well-ordered family would be an ordering as defined sarlier with the exception that it
would produce the least concept consistent with the input. Also, we can modify our definition of
polynomial time learnability to allow only one-sided error. We can then state and prove the following.

Theorem 4: A family F is polynomial-time learnable with one-sided error; (1) if it is of polynomial
dimension, weil-ordered and possesses a polynomial time ordering; (2) only if it is of polynomial
dimension, well-ordered and possesses a random polynomial time ordering.

Proof: A straightforward extension of earlier proofs. e
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5. Learning Functions

In the foregoing, we were concerned with learming approximations to concepts or sets. In the more
general setting, one may consider learming functions from I’ to £*. To do so, we must first modify our
definitions suitably and generalize our formulation of the problem.

Defn: Wae define a family of functions to be any set of functions from Z* to Z*. For any fe F,, the
projection f,.Z"* —» X" of fon Z" is given by

- , it Iflx)k=n
fx) = { f,fffengt x)preﬁx of x, otherwise

Defn: The »**-subfamily F, of F is the projection of F on ", i.e,
F,={ffe F).

The above two definitions are the analogues of the corresponding definitions for sets. The notion of
the projection £, of a function f attempts to capture the behaviour of f on strings of length n. If for some
x€ I, flx) is not of length at most a, it is truncated to »n characters.

An example for a function f is a pair (x,y), xy € Z' such that y = f{x). A leaming aligorithm (or more
precisely a leaming function) for a family of functions is an aigorithm that attempts to infer approximations
to functions in F from examples for it. The leaming algorithm has at its disposal a subroutine EXAMPLE,
which at each call produces a randomly chosen example for the function to be leamed. The examples
are chosen according to an arbitrary and unknown probability distribution P in that the probability that a
particular example (x/{x)) will be produced at any call is P(x).

As in the case of sets, we define leamnability as follows.

Defn: A family of functions F is feasibly learnable it there exists an algorithm A such that
(a) A takes as input integers » and i, where n is the size parameter and 4 the error parameter.

(b) A makes polynomially few calls of EXAMPLE, polynomial in n and A. EXAMPLE retumns
examples for some function f, € F,, chosen according to an arbitrary and unknown probability

distribution P on ™.

(c) For all tunctions f, € £, and alil probability distributions P on Z*, with probability (1-1/k), A
outputs a a function g e F such that
P(x) s 1/
=g,
Our definition of dimension in this setting is exactly the same as the one given earlier for concepts.
We can now generalize the notion of shattering as follows.

Defn: Let F be a family of tunctions from a set X to a set Y. We say F shatters a set ScX if there
exist two functions £, g € F such that
(a) for any s € S, fls) # g(s).
(b) for all §; ¢ 5, there exist ¢ € F such that ¢ agrees with fon S, and with g on 5-5,. i.e.,
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Vse §:es)=As)
Vs e 5-5,:e()=g(s).

Wae can now generalize our shattering lemma for functions as follows.

Lemma 2 (Generalized Shattering Lemma): If F, is of dimension d, F, shatters a set of size
ceiling(d/(3n+3))). Also, every set shattered by F_ is of size at most 4.

Proof: The upper bound part of the lemma can be proved exactly as the corresponding part of
Lemma 1. To see that this upper bound can be attained, we simply need to consider a family F, of
{0,1}-valued functions.

The lower bound part of the lemma is proved through the following claim.

Claim: Let X and Y be two finite sets and let H be a set of functions from X to Y. If k is the size of
the largest subset of X shattered by H, then

I < (XTAQYT-.
Proof: By induction on XI.
Basis: Clearly true for iX1 = 1, for all IY1.

Induction: Assume true for IXi =/, IYl= m and prove true for X1 = [+1,IN=m. LetX = (x,,x,...,x} and
Y ={y),y3....y). Define the subsets H; of H as follows.

H;={fIfe H fix))=y]}.

Also, detine the sets of functions #; and H, as follows.
fori=j: H;= {fife H,3g ¢ H; such that f= g on X-{x,} }.

Now,

=+ N Hi s i+ HL.
iz

We seek bounds on the quantities on the right-hand side of the last inequality. By definition, the functions
in H,, are all distinct on the m elements of X—{x,}. Furthermore, the largest set shattered in #, must be of
cardinality no greater than k. Hence, we have by the inductive hypothesis,

Hyl S Fm2k.
And then, every H‘7 shatters a set of cardinality at most k-1, as otherwise H would shatter a set of
cardinality greater than k. Also, since the functions in ”z,' are all distinct on X - (x,}, we have by the
inductive hypothesis,

Fori # j, IH,-,J's P21
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Combining the last three inequalities, we have
I S K2k e), B2 < o2k o p2pt-lpngd(61) < g2k 12k

]
< mlK(mel) < (me )42
Which completes the proof of the claim. e

Returning to the lemma, we have X = ¥ = ™, and hence [ = m = 2**1. If k is the cardinality of the
largest set in * shattered by £,, we have by our claim,
IF ) s mhmy2
< 2HIm3),
Taking logarithms,
log(F ) = dim(F,) =d < k(3n+3)
Hence, k = d/(3n+3), which is as desired. e.

Using this lemma, we can prove the following theorem.
Theorem 5: A family of functions is feasibly learnable if and only if it is of polynomial dimension.

Proof: Similar to the proof of Theorem 1, except that we need use the generalized notion of
shattering and the corresponding generalized shattering lemma.

Analogous to our davelopment of time-complexity considerations for concept learning, we define the
following.

For a family of functions F of countable cardinality, we define an index 7 to be a naming scheme for
the functions in £, in a sense identical to that for a family of concepts.

We say a family of functions F is polynomial-time learnable in an index I, if there exists a
deterministic learning algorithm A such that
(a) A takes as input integers n and A.
(b) A runs in time polynomial in the error parameter A, the length parameter n and in the length of

the shortest index in / for the function to be leamed f. A makes polynomially few calls of
EXAMPLE, polynomial in n, . EXAMPLE retums examples for f, chosen randomly according to

an arbitrary and unknown probability distribution P on Z*.

(c) For all concepts f in £ and ali probability distributions P on Z*, with probability (1-1/h) the
algorithm outputs an index ig € 1g) of a function g in F such that

P(x) < 1/h
L) =g (x)

We are interested in identifying the class of pairs (F, ), where F is a family of concepts and / is an
index for it, such that £ is polynomial-time leamable in /. To this end, we define the following.

Defn: For a family # and index /, an ordering is a program that

(a) takes as input a set of examples § = ((x,.y)), (x3, yp)-o (x,3)..}. Let n be the length of the
longest string among the x; and y;.
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(b) produces as output an index in 7 of a concept f € F that is consistent with S, if such exists. i.e.,
outputs i, € I(f) for some f € F such that

YV (xy) € S, y=f(x.
Furthermore, if the ordering tuns in time polynomial in the length of its input and the iength of the shortest
such index, we say it is a polynomial-time ordering and F is polynomial-time orderable in /.

With these definitions in hand, we can state the following theorem.

Theorem 6: A family of functions is polynomial-time leamnable: (1) if it is of polynomial dimension
and polynomial-time orderable; (2) only if it is of polynomial dimension and is orderable in random
polynomial time.

Proof: Similar to that of Theorem 3.
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6. Finite Learnability

Thus far we explored the asymptotic learnability of families of sets and functions, that is to say, we
considered the asymptotic variation of the number of examples needed for leaming with increasing values
of the size parameter. We will now investigate a different notion of leamability, one that asks whether the
number of examples needed for leaming is finite, i.e, varies as a finite-valued function of the error
parameter, without regard to the size parameter. We call this notion of leamability “finite learnability” as
opposed to the notion of asymptotic fearnability.

For the case of families of sets, [Blumer et al., 1986] present conditions necessary and sufficient for
finite-learmnability. Their elegant results rely on the powerful results in classical probability theory of
(Vapnik and Chervonenkis, 1971]. In the following we review their results briefly and then go on to
present learnability results for families of functions, relying in part on the same resuits of [Vapnik and
Chervonenkis, 1971].

Defn: Let F be a family of sets on R, where R is the set of reals and « is a fixed natural number.
We say F is finitely learnable it there exists an algorithm A such that
(a) A takes as input integer 4, the error parameter.

(b) A makes finitely many calls of EXAMPLE, although the exact number of calls may depend on A.
EXAMPLE retums examples for some function f in F, where the examples are chosen randomly
according to an arbitrary and unknown probability distribution P on R.

(c) For all probability distributions P and all functions fin F, with probability (1-1/k), A outputs ge F

dP < 1l/h
fzg

The following theorem is from [Biumer et al., 1986).

Theorem 7: [Blumer et al., 1986] A family of sets F on RX is finitely learnable if and only it F shatters
only finite subsets of R*. ([Blumer et al., 1986] refer to the size of the largest set shattered by F as the
Vapnik-Chervonenkis dimension of the family F).

Let us now formalize the notion of finite learnability of families of functions on the reals.

Defn: Let 7 be a family of functions from R* to R, where R is the set of reals and « is a fixed natural
number. We say F is finitely learnable if there exists an algorithm A such that
(a) A takes as input integer A, the error parameter.

(b) A makes finitely many calls of EXAMPLE, although the exact number of calls may depend on .
EXAMPLE returns examples for some function f in F, where the examples are chosen randomly
according to an arbitrary and unknown probability distribution P on R.

(c) For all probability distributions P and all functions f in F, with probability (1-1/k), A outputs ge F
such that

dP < 1/h
f=g

We need the following supporting definitions. Let fbe a function from R* to RX. We define the graph
of £, denoted by graph(f), to be the set of all examples for f. That is,




graph(f) = ((xy)l y = fln)}.
Clearty, grapa(f) c R*R*. Analogously, for a family of functions F, we define graph(F) to be the set of
graphs for the functions in 7. That is,

graph(F) = (graph(f)lf € F}.

We now state the main theorem of this section. The theorem is not tight in the sense that the
necessary and sufticient conditions do not match. (In [Natarajan, 1988], a tight version of the theorem
was reported, on the basis of an incorrect proof.) Indeed, we will identify a finitely learmable family of
functions that sits in the gap between these conditions.

Theorem 8: A family of functions F from R* to R is finitely ieamabie

(a) If there exists a bound on the size of the sets in R4R* shattered by grapa(F). (simple shattering
as detined in Section 2.)

(b) Only if there exists a bound on the size of the sets in R* shattered by F. (Generalized shattering
as defined in Section 5.)

Proof: (If) This direction ot the proof follows from the convergence results of [Vapnik and
Chervonenkis, 1971] exactly as shown in [Blumer et al., 1986]. Essentially, the "if* condition :mplies that
the tamily graph(y) is finitely learnable. Whence it follows that the family £ is finitely learnable.

(Only if) This direction of the proof is identical to the asymptotic case of Theorem 4, which in turn
followed the arguments of Theorem 1. o

While Theorem 8 is not tight, it appears that tightening it is a rather difficult task. Indeed we
conjecture that the "it* condition shouid match the "only if* condition as stated below.

Conjecture: A family of functions F from R to R* is finitely learnabie if and only if there exists a
bound on the size of the sets in R4 shattured by F.

To give the reader a flavour of the difficulties involved in tightening Theorem 8, we give an example

of a family F of functions that lies in the gap between the necessary and sufficient conditions of Theorem
8, i.e
(a) F shatters sets of size at most one.

(b) graph(F) shatters arbitrarily large sets.
(c) F is tinitely learnable.

Example: Let N be the natural numbers in binary representation. For any ae N, define the function
foN—N as follows.
() = a, if the ¥# bit of aLis 1
fa® { 0 otherwise .

Define the family F as follows.
F={fja e N}
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Claim: F shatters sets of size at most one.

4

Proof: Suppose F shatters a set of size greater than one. Then F must shatter a set of size 2. Let
S = {ab) be such a set. By definition, there exist three tunctions f, g, e in F such that fla) #g(a), f(b) = g(b)
and e(a) = fla), e(b) = g(b). Since, fla)#g(a), one of them must be zero and the other non-zero. Without
loss of generality, assume that f{a) is non-zero. Now, by the definition of the functions in F, fla) = e(a) = 0
implies that f= . This contradicts the assumption that e(b) = g(b) # f(b), and hence the claim. e

Claim: graph(F) shatters arbitrarily farge sets.

Proot: Let S, be any arbitrarily large but finite subset of N. Consider § = 5,x{0}. It is easy to see
that graph(F) shatters S, as for any subset S, of S, there exists a set f € F such thatf~ S =3, To see
this, notice that for any subset S, of S, we can pick an integer ae N, such thatf, nS= S, Since S was
picked to be arbitrarily large, the claim is proved. e

Claim: F is finitely learnable.

Proof: The following is a leamning algorithm for F.

Learning Algorithm A,
input A;

begin
call for hlog(h) examples.
It any of the examples seen is of the
form (x.y), y=0
then output fy
else output f,,.
end

It is easy to show that the probabilities work out for algorithm A above. Suppose the function to be
learned were f,, for some a=#0. Then, if

dP 2 1/h,
fa ’fo

with probability (1-1/k), in hlogh examples there must be an example of the form (x,a). In which case, the
algorithm wil’ output /., implying that with probability (1-1/4), the aigorithm learns the unknown function
exactly. Hence the claim. e

The interesting thing about the functions in F is that each function differs from the base function f, on
finitely many points, and on these points, the vaiue of the function is the name of the function. Hence, it
the learning algorithm sees a non-zero value in an example, it can uniquely identify the function be
leamed. o

Thus far, we considered functions on real spaces, requiring that on a randomily chosen point, with
high probability the leamner’'s approximation agree exactly with the function to be learned. This requires
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infinite precision arithmetic and hence is largely of technicai interest. But then, if all the computations are
carried out only to some finite precision, Theorem 5 would apply directly. Alternatively, we couid require
that the leamed function approximate the target function with respect to some predetermined norm. In
the following, we consider the case of the square norm, for a single probability distribution P.

First, we limit the discussion to families of "nomalized” functions. Let E(a.b) denote the euclidean
distance between any two points a and b. Let F:R¢— R* be a family of functions such that for every fe F
and xe R¥, E(flx),0%) < 1, where 0% is the origin in R%. Then, we fix the probability distribution 2.

Defn: We say that F is finitely learnable with respect to the square norm and a distribution P on R,

if there exists an algorithm A such that:
(a) A takes as input an integer A, the error parameter.

(b) A makes finitely many calls of EXAMPLE, though the exact number may depend on h.
EXAMPLE returns examples for some function fin F, where the examples are chosen according
to the distribution P.

(c) For all functions f € F, with probability k, A outputs a function g € F such that
J’ E(0)g(x)dP < 1/h.
xe RF

Before we can state our result in this setting, we need the following definition, adapted from
[Benedeck and Itai, 1988].

Defn: For small positive 3: K¢ F is a §-cover with respect to the square norm and distribution 2 if, for
any fe F there exists ge K such that,

j LERDg@aP <5

Theorem 9: A tamily of functions is finitely leamable with respect to the square norm and a
distribution P, it and only if for all positive 5, there exists a finite 5-cover for F.

Proof: The details of the proof are identical to that of the main theorem of [Benedeck and itai,
1988). A learning algorithm A for F can be described as follows: on input A, A constructs an 1/k-cover of F
of minimum size. A then calls for sufficiently many examples to permit it to pick one of the functions in the
knot with sufficiently high confidence. e
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