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ABSTRACT

The development of a flight test methodology for
predicting the performance characteristics of a half-scale
Unmanned Air Vehicle (UAV) is discussed. This methodology is
the first step in developing a UAV flight test program which
will ultimately be used to help improve and/or validate the
performance characteristics of these type of vehicles,
currently being integrated into the U.S. Navy. The
methodology determined powerplant characteristics through
torgue stand tests and aerodynamic characteristics through
wind tunnel and flight tests. The data frow these tests were
used to construct power required and drag polar curves. These
curves were then used to predict the basic performance
characteristics of the half-scale Pioneer. The results appear
reasonable for the type of aircraft tested, within the
constraints of the limited instrumentation available at this
stage 1in the program development. The next step 1in the
program is to use this methodology to conduct further testing

in order to develop a solid data base.
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I. INTRODUCTION

Military weapon technology has become more and more
complex and expensive, especially in the area of airborne
weaponry. Military aircraft technology is advancing far
faster than the ability of pilots to oversee it. The
increased sophistication of air-to-air and surface-to-air
missiles have caused the airborne battlefield to become too
hazardous, in rany cases, for manned flight. A solution to
this preocbler was demonstrated by the Israelis in June, 19€2.
A relatively simple sgquadron of Israeli-built Unmanned &ir
Vehicles (UAV) led the attack on a Syrian stronghold in the
Belkaa Valley during the Israel-Lebancn conflict. The remotely
piloted UAVs provided key decoy work and Ggathered
reccnnaissance data on surface-to-air missile sites in the
valley. The UAV's emitted electronic signals that mimickegd
radar signals generated from Israeli jets. When the air to
surface missile radar systems locked on to these signals, the
UAV's identified and passed on their 1location and
characteristic radar emissions, enabling 1Israeli smart
missiles to destroy 29 SAM sites in an hour. Following the
battle the UAV's were used for battle damage assessment and
to monitor Syrian troop movement [Ref. l:pp. 38-43).
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On 4 December 1983, U.S. Navy aircraft launched an attack
on Syrian positions in retaliation for earlier attaczks on
reconnaissance aircraft. Two aircraft were shot down, one
pilot killed, one crewman captured and several civilians on
the ground killed from one of the lost aircraft. As a result
of the loss of the U. S. Navy aircraft over Lebanon, then
Secretary of the Navy John Lehman was convinced that UAV's
could have spared pilots from danger, and he set out to
procure such a system for the U.S. military [Ref. 2:p. 1].
In 1986 the Pioneer was selected as the U.S. Navy and Marine
Corps short-range UAV system, The procurement of a UAV
syster, once thought useful only as a target drone, rarked
the beginning of the UAV ccncept as an important weapon
systen, worthy of an increased role in U.S. military thinking

[Ref. 1l:p. 38:.
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II. SCOPE

This increased attention in the UAV concept has sparked
an interest in the Department of Aeronautics and Astronautics
at the Naval Postgraduate School (NPS). The relatively low
cost, small size, reduced risk and inherent flexibility of an
UAV will allow the department to become actively involved in
research test and evaluation of these vehicles.

Anticipating the delivery of a full scale UAV similar to
those currently operational in the U.S. Navy, the NPS
Aeronautics and Astronautics department has established its
own UAV prograr. One gcal of the NPS UAV program is to
investigate methods of improving and/or validating the
perfcrrnance characteristics of these vehicles. This
validation is reguired as the current U.S. Navy UAV prograns
are not adhering tc standard Test and Evaluation processes.
Due to the urgency of obtaining a viable UAV system, current
systers are being procured as "off the shelf" systems, where
Test and Evaluation and operational use are being conducted
concurrently. The advantage to this method is that the systen
is integrated into the fleet quickly. The disadvantage is
that the system is not tested prior to fleet integration and
subseguent problems encountered are difficult to fix.

Another goal is to use these type vehicles as research

test beds for other inflight research projects in a real




flight environment. High 1ift devices, winglets, boundary
layer control methods, and improved propeller design represent
areas of interest which could easily be applied to a UAV. The
use of a UAV would allow research of aerodynamic phenomena in
a relatively hazard free environment at a fraction of the cost
of full scale research. Another advantage teo inflight testing
is the capability of making dynamic measurements.

In order to study the effects of design changes on
aircraft performance, or prior to using these vehicles as a
test bed, the vehicle's baseline performance must first be
deterrined. The goal of this investigation is to establish
a UAV testing facility and to develop a flight testing
methodclogy which will predict the performance characteristics
of these vehicles. This goal will be accomplished using a
radio contreolled, half-scale version of the U.S. Navy's
current short-range UaAV, the Pioneer. The half~scale Pioneer
will also serve as an external pilot trainer for the full

scale vehicles.
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U. S. Navy's current short-range UAV, the Pioneer. The half-
scale Pioneer 1is currently being used as an intermediate
trainer for UAV flight school by the Navy and Marine Corps.
The half-scale Pioneer is a twin tail boom, pusher type,
vehicle constructed primarily of fiberglass with quarter-inch
plywood bulkheads and support ribs. The half-scale Pioneer
has a wing span of 8.19 feet, a chord of 0.91 feet and an
aspect ratio of 9.03. The rectangular wing consists of a
Clark Y airfoil with no sweep, dihedral or twist. The
fuselage has a trapezoidal cross-sectional area of 0.29 square
feet and 1is 4.17 feet in length. The twin tail boomns,
constructed of l-inch aluminum tubing, are 2.67 feet long and
support the elevator and twin rudders. The overall length of
the aircraft is 5.92 feet. A 3-D view of the half-scale
Pioneer is shown in Figure 2 and a summary of the vehicle's
specifications is listed in Appendix A.

The aircraft is powered by an O. S. MAX-108 FSR two-stroke
glow plug engine. The engine has a 1.088 cubic inch
displacement and is rated at 3 HP at 16000 RPM. The engine
RPM range is 2000 to 16000 RPM. The engine drives a l4-inch
diameter, 6-inch pitch pusher (14 X 6 P) propeller. The
engine fuel-to-air mixture is controlled by a needle valve
located on the carburetor venturi. The engine is also equipped

with a muffler to reduce engine noise.
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Figure 2. 3-D View of Half-Scale Pioneer




The radio control gear consisted of an eight-channel
Futaba transmitter and receiver, two Futaba rate gyros, seven
Futaba servos and a 4.8-volt, 1200-milliamp, Sanyo battery
pack. The Futaba transmitter used a pulse coded modulated
signal which provided increased signal reliability. The
transmitter was also equipped with an optical tachometer wand
to measure propeller RPM to * 100 RPM. The Futaba rate gyros
were mounted on the aircraft longitudinal center of gravity
(CG) and were used to help stabilize the aircraft pitch and
roll axes during flight testing and to lighten the pilot's
workload. Figure 3 shows the electronic gear layout used in
this investigation. The aircraft's control surfaces, throttle
and nose wheel steering were controlled through servos. All
control surface servos were mounted externally, near the
surface being controlled in order to reduce the length of
control surface linkages.

The suggested center of gravity (CG) was 33 percent mean
aerodynamic chord (C,.). To achieve this CG position 2 pounds
of additional weight were placed in the nose which put the
flight test gross weight for this investigation at 27.0
pounds.

The fuel supply system consisted of an 18-ounce fuel tank,
a fuselage mounted fueling connection and a Perry Regulated
fuel purp. The fuel tank was mounted on the aircraft
longitudinal CG so as to minimize CG movement during flight.

Because the fuel tank was 1located approximately 15 inches
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behind and 5 inches below the engine, the fuel pump was
install~1 to ensure a positive fuel head to the engine. The
fuel system provided an endurance time of approximately 20
minutes.

A Minarik PK-1 magnetic proximity sensor was installed on
the aircraft radial engine mount as shown in Figure 4. Two
steel posts, 0.125 inches in diameter and 0.75 inches 1in
length, were mounted 180 degrees apart in the engine drive

washer. Once the optimum distance between the magnetic

MAGNETIC
SENSOR

Figure 4. 1Inflight RPM Indication System
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proximity sensor and the steel posts for the best signal was
obtained, both the steel posts and the PK-1 were locked into
position with permanent threadlock. The rotating steel posts
passing the magnetic pickup generated a 0.5 volt sawtooth
electrical signal which was recorded on an onboard tape
recorder. The wiring between the tape recorder and the pick-
up was shielded to ensure interference with the radio control
gear would not occur. Following the flight the tape was
played back into a frequency counter which enabled the

calculation of the inflight engine RPM.

B. ENGINE TEST STAND

To facilitate the required engine break-in period and to
test the effectiveness of different RPM indicators, a hardwood
test stand was constructed and mounted on a heavy steel bench
as shown in Figure 5. To minimize vibration effects rubber
pads were mounted between the test stand and the bench and
also between the engine and the test stand. The fuel system
for the test stand consisted of the same elements as the those
of the half-scale Pioneer. The fuel tank, located behind the
test stand face as shown in Figure 6, was mounted on foam

rubber to keep engine vibrations from foaming the fuel.

C. WIND TUNNEL
The Naval Postgraduate School low speed, vertical wind
tunnel was used in this investigation. The tunnel, shown in

Figure 7, is a subsonic, single return, closed circuit type.

11




Figure 5. Engine Test Stand

Figure 6. Engine Test Stand (Top View)
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Figure 7., NPS Vertical Low Speed Wind Tunnel

The test section has a 3.5 X 5.0 foot octagon cross-section
and is eight feet long. The tunnel was originally designed
to operate with two sets cf counter-rotating propeller blades
driven by two, 150-HP AC electric motors. The top set of
blades were removed and the associated engine disengaged due
to blade damage. The removal of these blades decreased the
wind tunnel maximum speed from approximately 300 ft/s to 200
ft/s and introduced some swirl to the flow [Ref. 3:pp. 35-36].
The wind tunnel turbulence level was 1.2 percent. Some of
the swirl was removed by adjusting the turning vanes, and

previcus studies of the test section flow quality with one set

13




of blades operating showed a uniform distribution of velocity
across the test section. These same studies showed that the
remaining irduced swirl was only a factor near the wind tunnel
walls. [Ref. 4:pp. 11-12].

Two sets of static pressure port rings were used to
measure tunnel speed. One ring set was located at the test
section entrance and the other was located just upstream of
the contraction cone. The pressure differential across the
two ring sets was measured on a water micro-manometer. The
pressure differential, once calibrated, corresponds to the
dynamic pressure in the test section. Wind tunnel calibration

and the calibration factor are discussed in Section VA.

D. WIND TUNNEL BALANCE

The wind tunnel balance for this investigation was
designed by the author and machined by the school's metal shop
personnel. The reguirements for the balance were that it
measure forces in the longitudinal direction for both tractor
and pusher type configurations and serve as a model wing
tunnel mount. Appendix B details the factors involved in the
selection of the balance dimensions and the theory involved
in the force measurement.

The balance was constructed out of aluminum and was 18.3§
inches tall, 3.00 inches wide and 0.50 inches thick. A 2.2%

inch by 1.50 inch "window" was cut out of the aluminum beamn,
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as shown in Figure 8, in order to reduce the cross-sectional
area. The purpose of this "window" was twofold. The reduction
provided an effective cross-sectional area small enough to
allow the beam to bend while still maintaining a cross-
sectional area large enough at the beam ends for mounting the
model to the balance and the balance to the tunnel floor.
Four 120 OHM bonded resistance strain gages were mounted in
the "window" as shown in Figure 8.

The strain gages were wired into a four arm active bridge
at the balance. Four strain gages were used to increase
sensitivity and to provide automatic temperature compensation.
A ten wire hook-up (Figure 9) from this bridge was then run
through shielded cable to a Pacific Instruments, Model 8255,
Transducer Amplifier. The bridge was completed at the balance
in order to increase the noise damping capability of the
amplifier. This amplifier provided bridge excitation, balance
and amplification for the four arm strain gage set-up. The
ten wire shielded input was recommended by the Pacific
Amplifier manual as the best set-up for the highest accuracy,
resolution and sensitivity. Two Hewlett Packard Digital
Multimeters (DMM) were used to monitor the amplifier operation
and output. One DMM monitored the amplifier excitation
voltage and the other DMM was used to display the output
voltage. Figure 10 shows a schematic drawing of the wind
tunnel balance, strain gage orientation and instrumentation.
The balance was statically calibrated to set the excitation
voltage so that 0.01 millivolts on the DMM corresponded to
1.00 1b of horizontal force in the longitudinal direction.

15
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E. WIND TUNNEL MODEL

wind tunnel testing was conducted to determine propeller
efficiency. The pusher configuration of the half-scale
Pioneer necessitated an accurate modeling of the airflow
through the propeller disk plane. To meet this requirement
great care was taken to construct a model which consisted of
the components that affected the flow through the disk plane.
These components for this investigation were the fuselage,
wing and engine. The fuselage was constructed out of
fiberglass and had the same cross-sectional size and shape but
was shortened to accommodate the wind tunnel balance. The
wings were constructed by covering a foam replica of the wing
with fiberglass. Because only a small portion of the wing

affects the flow through the propeller disk plane and to

span was shortened to three feet. Since an electric motor was
used as the model powerplant, the half-scale Pioneer engine
had to be modeled to obtain the proper blockage. A wooden
cylinder head and the actual engine muffler were securely
attached to the model in the same relative position as on the
test vehicle. Figures 11 and 12 show the model as it was
mounted in the wind tunnel test section.

The engine used to turn the propeller on the wind tunnel
model was an AC/DC reversible motor. An electric motor was
chosen over the actual engine for several reasons. The

running of an 1internal combustion engine in a closed wind

18




Figure 11. Wind Tunhel Model (Aft View)

Figure 12. Wind Tunnel Model (Side View)
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tunnel results in pollution problems on the tunnel walls from
engine exhaust and requires purging of the tunnel. Safety
considerations were also a factor. Starting a glow plug
engine with a hand held starter in a small space and the
presence of fuel in a wooden tunnel were determined to be
hazardous operations. Engine control and fuel supply
limitations were also problems. The use of an electric engine
would eliminate these problems, would be easier to control and
would run with less vibration.

Propeller RPM was controlled by varying the input voltage
to the electric motor through a variable transformer. The
transformer was capable of varying the voltage from 0 to 140
volts. The propeller drive shaft was equipped with a 30 tcoth
pick-up wheel and a non-contact magnetic transducer was
mounted on the model as shown in Figure 13. The mechanical
motion of the rotating pick-up wheel as it passed the magnetic
proximity switch generated a 0.5 volt sawtooth electrical
signal. This signal was sent to a Minarik VT-3 Digital
Tachometer which converted the signal to RPM. The gate time

for the RPM was set at 2 seconds.

F. TORQUE STAND

An engine torque stand was used to collect electrical
motor and half-scale Pioneer engine torque data. The torque
stand was constructed out of aluminum and mounted on a heavy

steel bench. The torque stand consisted of an engine mount
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Figure 13. Wind Tunnel Model RPM Indication System

face plate, shaft, shaft housing, torque arm and a scale.
Figure 14 illustrates the basic torque stand parts. The
engine mount face plate was attached to a shaft which was
supported by two thrust bearings. The thrust bearings were
mounted in the shaft housing assembly which was =securely
mounted to the bench. This design allowed the engine mount
face plate to rotate freely with the shaft. A 2-foot torque
arm was attached to the face plate on one end and the other
end rested on the scale. The force dgenerated by the
propeller-engine action-reaction, acted to rotate the face

plate. This rotation was transferred through the torque arm
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Figure 14. Engine Torque Stand
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to the scale where the generated rotational force could be
measured. Plywood shielding (not shown) protected the torque
arm and scale from the effects of the prop wash.

Both the electric motor and the engine were tested on the
torque stand. RPM control and RPM measurement for the
electric motor were conducted in the same manner as the wind
tunnel test. RPM control for the engine was accomplished
using the transmitter, receiver, battery pack and throttle
servo discussed in the flight test vehicle section. These
components were securely attached to the test bench. The
throttle servo for the torque stand was oriented in the same
relative position as the flight test vehicle servo so throttle
settings for the torque stand and the vehicle would be
identical. RPM measurements were conducted on the torque
stand with the same apparatus as that on the flight test
vehicle, except the RPM signal was sent to the digital
tachometer 1instead of the tape recorder. The digital
tachometer had the capability to program the number of teeth
passing the magnetic sensor in one revclution. The tachometer
was set for two teeth per revolution and gate time was set for
3 seconds.

The fuel system components for the torque stand engine
tests were identical to the flight test vehicle components.
The same length fuel lines between the components and their
relative position on the flight test vehicle were maintained

to ensure engine operating conditions were the same.
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Iv. THEORY

Aircraft performance is a function of aircraft and
powerplant characteristics. The aerodynamic characteristics
of the aircraft define the power required and the powerplant
defines the power available. A good combination between
aerodynamic and powerplant characteristics is an essential
element in an aircraft's ability to best perform its mission
[Ref. 5:p. 5.3]. 1In order to analyze aircraft performance a
methodology to determine the aerodynamic and powerplant
characteristics must be developed.

Inflight testing to determine aircraft performance is
desired because the testing is done under actual conditions
and corrections are minimized. However, means to accurately
measure the propeller thrust and the engine power inflight are
nct feasible for a minimally instrumented UAV. It was
therefore necessary to use wind tunnel tests to determine
propeller efficiency and torque stand tests tc measure the
engine shaft brake horsepower (SBHP). This information along
with inflight engine RPM and velocity data will allow
construction of drag polar and power reguired plots. From
these plots the basic aerodynamic characteristics can be
determined for the given aircraft configuration.

The theory for this investigation was broken into three

sections related to the three phases of experimentation. The
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first phase measured powerplant SBHP versus RPM using an
engine torque stand. The second phase measured propeller
efficiency using propulsive thrust, velocity and RPM data from
wind tunnel tests and motor SBHP and RPM data from the engine
torque stand tests. The third phase consisted of flight tests
which determined the inflight RPM versus aircraft velocity and
used the propeller efficiency data and powerplant data to

construct drag polar and power required plots.

A. POWERPLANT CHARACTERISTICS

A torque stand is a relatively simple device for measuring
the torque reaction from an operating engine. The torque
developed by the engine-propeller action-reaction is
transferred along the torque arm. The force (F) at the end
of the arm is measured and the torque (Q) can be computed from
the fcllowing equation:

Q =Fl (1)
where 1 1is the distance measured from the engine axis of
rotation tc the application point of the force measurement
[Ref. 6:p. 25]. The test shaft brake horsepower (SBHP;) can

then be calculated:

271nQ
SBHP, =

(2)
550

where n is the propeller revolutions per second (RPS) [Ref 6:
p. 26].

To standardize the data for air breathing engines, the
SBHP, must be corrected to standard day sea level conditions:
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29.92 T, 172

SBHPy,, = SBHP, (3)

P,-PP,, 518.6
where P, is the test condition barometric pressure, T; is the
test condition atmospheric temperature and PP, is the water

vapor partial pressure [Ref. 6: p. 26].

B. PROPULSIVE EFFICIENCY

The propeller efficiency required for this investigation
is termed propulsive efficiency (7). It is the most useful
way of expressing efficiency because it evaluates only the net
thrust which the propeller develops when acting on a given
installation. It is this efficiency which relates the power
delivered to the propeller by the engine and the power
required to power the aircraft [Ref. 7:p. 2871:

P, =nSBHP,, (4)

Propulsive efficiency (7) is defined as:

TV

n = — (5)
P
where T, is the effective thrust, V 1is the free strean
velocity and P is the SBHP,, of the engine [Ref. 8:p. 625.
T, is defined as:
T, = T-AD (6)
and the propeller horizontal thrust (R) for a turning

propeller is defined as:

R = T-D-AD (7)
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where T 1s the thrust of the propeller operating in the
presence of a body, D is the drag with the propeller removed
at the same free stream velocity and angle of attack and AD is
the increase in drag due to the action of the propeller. The
AD term includes the profile drag, induced drag due to lifting
surfaces in the system and jet boundary interference drag due
to testing in a wind tunnel ([Ref. 8:p. 629]. Rearranging
Equation 7 and substituting into Equation 6 gives:
T = R+D (8)
Fropulsive efficiency can then be written as:
| (R+D)V
P
Ir. crder to utilize the data from this investigatiocr fer
any free strearx velocity--propeller RPM corbination, the ncn-
dirensicnal parameter advance ratio (J) 1s usez. Advance
ratio is defined as:
v
J = — (10)
nD

where V 1s the free stream velocity, n is propeller revolution

irn RFS and D is the propeller diameter in feet [Ref. 6:p. 287.

C. FLIGET TEST
The flight test method utilized in this investigation
rakes the assumption that thrust and aircraft drag act throvgh

the same pcint and are parallel. For cruise performance in




steady flight conditions, the additional assumption is that
the flight path angle is small such that [Ref. 5:p. 5.4]:

T =D (11)

L=W (12)

It is also assumed that due to the low flight test speeds

involved, wave drag is negligible and the total drag can be

written as follows:

Cp = Cpo + Cp; (13)

Where C, is the total drag coefficient, C,, is the parasite

drag coefficient and C;; is the induced drag coefficient. C,,

can also be defined as: ,
C

L

C,, = (14)
TARe

Wrere C 1s the coefficient of 1lift, AR is the aspect ratio
anl e is the Oswald efficiency factor [Ref. S5:pp. 5.4-5.5].

The Cswald efficiency factor is an indication of how efficient

the aircraf:t is. Cormbining Egquations 13 and 14 gives the
fcllowing eguation:
c?
L
C, = C, + (13)
nARe

The coefficients of 1lift and drag are defined as follows:

2L

C = —— (16)
pVe’s
2D

CD = -———-—2— (17)
pve’s
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where p  is sea level density, V, is the equivalent velocity

e
and S is the wing area [Ref. 5:p. 5.7].

From Equations 11 and 12, Equations 16 and 17 can be

written:
2W
c = — (18)
pVe's
2T
C, = — (19)
pve's

where thrust (T) is determined from the following expression:
NSBHP, .

T = —n (20)
\7

:
and the SBHEP, . can be found from:
SBHF, ;, = 0SBHP, (21)
here ¢ is the test day density ratio [Ref. 9:p. 274]:
o= p/b, (22)
The true velocity (V,) was determined by timing the
aircraft over a known distance over the ground. To compensate
for wind effects two runs over the same course in opposite
directions were performed while maintaining a constant
magnetic heading. The true velocity was calculated by
averaging the speeds for the two runs. The equivalent
airspeed (V,) is defined as [Ref. 9:p. 274]:

v, = v,0'/2 (23)

E

The relationship between C, and C;, as shown in Equation

15, is parabolic and a plot of C versus C, is called the drag
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polar. From the assumption of a parabolic drag polar, a plot
of C, versus Cf is an equation of a straight line with C,,
being equal to the Y intercept and C,; being equal to the slope
(Ref. S5:p 5.5].

The power required plot also provides useful performance
data. Since an aircraft can fly at many weights and
altitudes, a data reduction scheme was used to reduce the
flight test data to standard weight and altitude. The
standardization technique used for this investigation was the
P, -V;, method. V, 1is defined as the true airspeed corrected

to a standard weight and sea level conditions:

3/2
;
“S

P, = NSBHP,, )/

Tw

(0 (24)

wT
where W, is the standardized weight and W, is the test weight.
P. 1is defined as the power required corrected to standard

Tw

weight, sea level conditions:
- 172 _
vV, =V, [ — (o) (25)

Standard weight for this method is an arbitrary weight and for
this investigation was chosen as the aircraft's gross weight.
The final plot of P,, versus V,, provides useful performance
data. The bottom of the curve indicates the minimum power
required and therefore the velocity for maximum endurance.

The tangent from the origin to the curve is the point of
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maximum velocity per fuel or the velocity for maximum range.

A plot of P, V., versus V,‘ yields a straight line of the form:

W W

P.V. = AV, *

W W W

+ B (26)
where A is the slope of the line and B is the Y-intercept.
From this information C,, and e can be determined from [Ref.

5:pp. 5.11-5.13]:

11002
c,, = (27)
p.S
W’
e = (28)

275MmAR Sp B

Propeller RPM inflight was determined by recording the
electrical signal generated by the RPM indication systen
discussed in Secticn IIIa, playing the tape back through a
freguency counter and measuring the signal frequency (f).
Propeller RPM was determined from the following calculation:

n = 30f (2¢)
where n is prcpeller speed in RPM and f is the freguency in
hertz.

The drag polar and power required curves can also be
generated using the thrust generated from the wind tunnel
tests rather than the power generated from the torque stand
tests. 1In order to apply the wind tunnel thrust to inflight
conditions the coefficient of thrust (C,) must be defined:

Te

Cig = (30)

pn°D*
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where T, is the effective thrust found in the wind tunnel
runs, p is the wind tunnel air density, n is the propeller RPS
and D is the propeller diameter [Ref. 5:p. 28]. If C, is
plotted versus advance ratio then C; can be determined for

any flight condition. For the advance ratios determined

inflight, the C, can be determined and the thrust (T) for that
condition can also be calculated. Once this thrust is
determined for all of the inflight test conditions, the C, can
be calculated using Eguation 19. P,, can be determined by

solving for 1nSBHP,, in Equation 20 and substituting into

Eguation 25 to get the following equation:

W 372

P, = 0TV, | — o'/? (31)

where T 1s the thrust determined from the plot of C, versus J

and from Egquaticn 30 for each inflight test condition.
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V. EXPERIMENTAL PROCEDURE

A. WIND TUNNEL TEST SECTION CALIBRATION

The wind tunnel test section calibration was conducted to
determine the relationship between the actual free stream
dynamic pressure (g) in the test section and the static
pressure differential (Ap) across the contraction cone. This
relationship was then used to determine the test section free
stream velocity by measuring Ap.

In order to measure g in the test section a pitot-static
tube was placed in the center of the test section. A hand
held pressure transducer was connected across the total and
static ports of the pitot-static probe to measure q. The
static pressure differential across the contraction cone, &p,
was measured using the wind tunnel micro-manometer. The
micro-rnanoneter was connected across the two static port ring
asserblies, one mounted in the plenum section and one mounted
at the entrance to the test section. Delta P and g are
linearly related and can be expressed as:

q = Fip (32)
where ¥ is the Tunnel Calibration Factor. F is the slope of
the line generated by plotting the measured values of g and
Ap. Once F has been determined, test section g can be

calculated using Equation 32 [Ref. 10:pp. Al-1-Al-6].
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Calibration measurements were taken every 2 cm of water
from 0 cm to 24 cm of water. Delta p and q were recorded for

each calibration point and the data are listed in Appendix C,
Table I. Figure 15 shows the plot of g versus Ap. The

relationship was found to be linear and the tunnel calibration

25
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Figure 15. NPS Vertical Wind Tunnel Test Section Calibration
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factor was determined to be 0.954. The wind tunnel test
section free stream velocity was calculated from the following

equation:

Vo= —— (33)

where Ap was measured from the micro-manometer board an?
converted to pounds per square foot and p is the density of
the wind tunnel air in slugs per cubic foot determined from
measurements of temperature and atmospheric pressure [Ref.

10:p. Al-4].

B. WIND TUNKEL BALANCE CALIBRATION

The wind tunnel balance was first checked to ensure that
the strain gages were mounted properly. Each gage was checked
individually using a Measurements Group P-3500 portakle strain
indicator. The balance was loaded statically with known
weights and the resulting strain was recorded. The strain
reading was then put into the proper equation relating strain
and bending force generated shown in Appendix A. The bending
force obtained from this equation was compared to the known
static 1load. Each strain gage measured the bending force
applied to the beam to within 5 percent of the actual reading.
The 5 ©percent difference was attributed to stress
concentrations caused by the "window" cutout. The balance
was loaded and unloaded many times to ensure repeatability.

The strain gage readings were repeatable to within 0.1
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percent. Pairs of strain gages were also checked against each
other. Since the window was symmetrical any stress
concentration factors should affect each pair of strain gages
equally. The values of strain obtained from gages one and
four were within 1 percent of each other as were the values
for gages two and three for each static load.

The balance was then calibrated with all four strain gages
hooked up in the ten wire configuration to the Pacific
Amplifier. The balance was statically locaded with a known
weight. The excitation voltage on the amplifi:-r was adjusted
so that 0.0100 millivolts was equivalent to 1.00 pounds of
force in the longitudinal direction along the thrust axis.
The lalance was then statically loaded for various known
weights to ensure the readings were repeatable and that for
the expected range of forces to be measured the balance
readings were linear. The data obtained from this calibration
are listed 1in Appendix C, Table II and the plot of the
calibration force versus the DMM voltage output is shown in
Figure 16. The plot shows a linear relationship between force
and voltage output with a slope of 1.00.

Due to the orientation of the strain gages, the balance
also measures the torque reaction of the electric motor.
Because of this, during the wind tunnel tests, the DMM reading
(Ryuww) gives a combination of the propeller thrust longitudinal

force voltage reading (R) and the voltage reading due to
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Figure 16. Wind Tunnel Balance Calibration Plot

engine torque

(Qpuy) - In order to obtain the pure propeller

thrust force (R) the following relationship was used:

R = Ry = Qo

Qo was determined by performing a calibration test in which

(34)

the DMM output voltage was measured as the balance was loaded

laterally with known weights.

are listed in Appendix C,

The data from this calibration

Table III and a plot of output
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voltage versus the applied torque was constructed as shown in
Figure 17. The maximum torque generated by the test
propeller was determined to be less than 1.00 ft-lbs and for
this region the plot was linear and the slope was calculated
as 0.175. The equation relating torque (Q) and output voltage
(Qu«) was then developed as:

Quuy = 0.175 Q (35)
The force (F) generated by the 14 X 6 P test propeller was
measured on the torque stand for various n's and these data
are listed in Table IV, Appenliix C. Equation 1 was used to
calculate the engine torque (Q) from the force data for each
n tested and these results are plotted as shown in Figure 18.
A curve fit for these data were constructed using a least-
square regression and the equation generated from this curve
fit is shown on the plot. To correct the Ry, reading to pure
longitudinal force at each n tested in the wind tunnel,
propeller torque (Q) for that RPM was calculated from the
least-squares equation, Equation 35 determined the correction
factor and substituting into Equation 34, the pure propeller
horizontal thrust (R) was obtained. Q,, calibration data are

listed in Appendix C, Table IV.

C. HALF-SCALE PIONEER RF! INDICATION SYSTEM CALIBRATION
The inflight engine RPM indication system was calibrated
on the engine test stand. Figure 19 shows a close-up detail

of the RPM indication system components for the half-scale
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Figure 19. Engine Test Stand with RPM Indication System

engine. RPM for different throttle settings were measured
with the magnetic proximity sensor/digital tachometer and with
a optical tachometer attached to the Futaba transmitter and
compared with the RPM obtained from recording the magnetic
sensor signal and replaying the tape back through a frequency
counter. This comparison showed that the inflight RPM system
agreed with the optical method to +100 RPM. or, for the range

of inflight RPM, within 1.5 percent.

D. ENGINE BREAK-IN
The 0.S. MAX-FSR engine was broken in as per the

manufacturer's recommended instructions. The engine was
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securely mounted to the engine test stand as shown in Figure
5. The break-in procedure consisted of running the engine at
four-cycle operation for a period of three to four minutes and
then two-cycle operation for approximately 30 seconds. This
procedure was repeated, alternating between two-cycle and
four-cycle operation while gradually increasing the four-cycle
run time, until the fuel tank was empty. The fuel tank was
refilled, the engine restarted and the needle valve was
adjusted for maximum RPM. Once the engine maintained a steady
speed the throttle adjustment on the carburetor was set to
ensure steady 1idling and smooth acceleration at medium
rotational spééd;. To keep the engine from overheating during
the break-in period only tractor propellers were used to

ensure cooling airflow over the engine.

E. TORQUE STAND TESTS

Torque stand tests were conducted for the electric motor
used in the wind tunnel test and for the half-scale Pioneer
engine. The electric motor was mounted on the test stand as
shown in Figure 20. The mount was designed so the center of
rotation of the torque stand shaft and the electric motor
shaft were aligned. The variable transformer voltage range
was divided into equal settings and assigned a "percent
throttle" setting with 140 volts corresponding to 100 percent
throttle and 10 volts corresponding to 0 percent throttle.

The assignment of these settings was arbitrary but necessary
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Figure 20. Electric Motor Mounted on Torque Stand

for purposes of repeated test conditions and the settings were
used as reference points for all the tests which utilized the
variable transformer and electric motor.

The electric motor SBHP, versus RPM was determined by
loading the engine with different diameter propellers. Prior
to the tests the propellers were reamed to the proper shaft
size and then carefully balanced in order to minimize
vibrations. To ensure adequate RPM coverage the fcllowing
propellers were tested: 10 X 7, 11 X 8, 14 X 8, 16 X 8, 18
X 8, 20 X 8 and the 14 X 6 pusher test propeller.

The RPM and the associated force exerted on the scale by

the torque arm were measured for throttle settings from 20 to
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100 percent at 10 percent increments for each of the six
propellers tested. Prior to each run and after each run a
tare weight with the engine stopped was recorded and
subtracted from the measured force. Force measurements for
each of the wind tunnel RPM's were recorded with the test
propeller installed so engine torque corrections (Q,,) could
be applied to the wind tunnel test results as discussed in
Section IVB.

The flight test vehicle engine was tested in the same
manner as the electric motor. The engine was mounted on the
torque stand as shown in Figure 21. The mount was designed

so the torque stand shaft axis and the engine shaft axis were

Figure 21. Half-Scale Pioneer Engine Mounted on Torque Stand
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aligned. The propellers used to vary the load for this test
were a 12 X 9, 14 X 6 P, 14 X 8, 16 X 8 and a 18 X 8. The
transmitter throttle position indicator was divided into 24
detent positions. This range of detents were divided equally
into percent throttle readings with detent 24 equal to 100
percent throttle and detent 5 equal to 5 percent throttle.
A change in one detent position corresponded to a ‘5 percent
change in throttle. These settings were arbitrary and were
used as reference positions for all tests done with this
engine and transmitter. Propeller RPM and the associated
force were recorded for each load and throttle setting. Prior
to each run, the local barometric pressure, atmospheric

temperature and partial pressure water vapor were recorded.

F. WIND TUNNEL TEST

Wind tunnel tests were conducted to determine the
effective thrust required for the propulsive efficiency
calculation. The wind tunnel model was mounted on the wind
tunnel balance, as shown in Figures 11 and 12, at
approximately the wing quarter chord point in order to
minimize the bending contribution due to wing 1lift. The
strain gage bridge resistance was measured to ensure proper
hook-up. The amplifier was calibrated and the excitation
voltage determined from the static calibration of 1.870 V was
set. The propeller was removed from the model and the bridge

was balanced. Prior to each run wind tunnel temperature and
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pressure were recorded. The wind tunnel was turned on and the
tunnel drive blade pitch was set for a test section AP of 2 cm
of water as measured by the micro-manometer. Depending on
tunnel temperature, pressure and calibration factor this
corresponded to a test section speed of approximately 60 ft/s.
The tunnel was allowed to stabilize and the system drag (D)
was recorded from the DMM. The wind tunnel was shut down and
the propeller was attached to the model motor drive shaft.
The bridge was rebalanced, the wind tunnel was restarted and
the tunnel drive blade pitch was set for a tunnel AP of 2 cm
of water. The horizontal propeller thrust plus engine torgque
reading (R,.) was recorded from the DMM for predetermined
values of RF!M. Tc ensure the wind tunnel test and torque
stand test were conducted for the same conditions, the voltage
settiny cn the variable transformer for each RPM was noted.
Motor vcltage and RPM were the two values reguired to enter
the SEHF... versus RPM chart to obtain the power corresponding
tc the conditicns of the wind tunnel. After each run the DMM
output was checked to ensure a zero reading, and the tunnel
temperature and pressure were recorded. The start and end
tunnel terperatures were averaged and used to calculate wind

tunnel velccity.

G. FLIGHT TEST
The day before each test flight the aircraft was readied

for flight. The transmitter battery and aircraft battery pack
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were recharged and the test instrumentation was installed and
checked to ensure proper working order. The aircraft center
of gravity was checked for full and empty fuel tanks for this
configuration and weight was either added or subtracted from
the dead weight in the nose to put the aircraft CG at 33
percent C,,.. The method used to check aircraft center of
gravity was to measure the weight on each wheel, sum moments
around a fixed point on the aircraft and solve for the cg
position.

Flight testing was conducted initially at Fritsche Arny
Airfield at Ft Ord, CA, and then switched to a grass strip
near Los Banos, CA, due to intermittent radio interfcrence
from an unknown source at Fritsche Field. The aircraft was
assembled and preflighted to ensure all components were
securely fastened. Once the aircraft was preflighted and
fueled, a transmitter-receiver check was accomplished tc
ensure proper working order and that there was no outside
interference affecting the control signal. During this check
the aircraft control surfaces were checked to ensure the
transrmitter neutral position corresponded to the control
surface neutral position. The aircraft was started by
energizing the engine glow plug with 1.5 volts from a ground
starter control panel. This same control panel provided 12
volts to a hand held aircraft starter. Starting was
accomplished by applying torque to the aircraft engine through

a friction coupling between the starter and the propeller
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spinner. The engine was allowed to warm-up and then tuned by
ear for maximum performance by adjusting the engine needle
valve.

The first flight of the day was conducted to warm-up both
the engine and the pilot and to ensure the RPM indication
system was working. During this flight the pilot also checked
to see if the control surfaces for straight and level flight
were approximately in the neutral position on the transmitter.
After the initial flight the aircraft was refueled and the
contreol surfaces were retrimmed as required. Prior to start
the tape recorder and an elapsed time stop watch were started
sinultaneously. The engine was started and retuned for peak
performance, and the aircraft was launched for the initial set
of data runs.

The technique used to collect true velocity (V,) data
versus RPI for various throttle settings was the constant
altitude method. Maxinur throttle was set on the transmitter
(detent 24) and aircraft speed was allowed to stabilize while
maintaining a constant altitude. The true velocity was
determined by tirmi~g the aircraft over a known distance marked
on the ground. To compensate for any crosswind effects, two
runs at the same throttle setting in opposite directions were
perforned while the aircraft was allowed to drift with
crosswind. The elapsed time for each run was also noted so

the RPM could be determined on the ground from the taped
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signal.

position.

This

process

was

completed for
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VI. RESULTS

A. TORQUE STAND TESTS

The raw test data from the electric motor torque stand
tests are listed in Table V, Appendix C. Equation 1 was used
to determine engine torque (Q) for each load and throttle
setting and Equation 2 was used to calculate the corresponding
SBHP,. Electric motor power data are 1listed in Table I,
Appendix D and the SBHP, versus n plot for the electric motor
is shown in Figure 22. A least-squares regression was used
to curve fit data for each throttle setting. The parabolic
shape of the curve for each throttle setting is typical for
a piston engine-propeller combination. These curves were
developed to provide SBHP information for any n and voltage
tested in the wind tunnel. The number of propellers tested
provided an adequate coverage over the range of test n's and
helped in developing the overall curve shape.

The raw data from the half-scale Pioneer engine torque
stand test are tabulated in Table VI, Appendix C. The method
of determining SBHP, versus RPM was the same as that for the
electric motor. Because the flight test engine was an air
breathing engine, the SBHP, was corrected to standard day, sea
level conditions using Equation 3. The half-scale Pioneer

engine power data are listed in Table II, Appendix D. SBHPg,
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Figure 22, Electric Motor Power Curves
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was determined for each throttle setting and locad and is shown
in Figure 23. The characteristic peak to these curves is not
evident for all throttle settings, primarily due to the lack
of testing a low load propeller. The advantages of testing
a 1low 1load propeller for this case were determined
insufficient compared to the disadvantage of overspeeding the
engine or loosing a propeller. The cluster of curves for the
higher throttle settings was due to the non-linearity of the
engine throttle system. These curves were developed in order
to deterrine 1inflight SBHP from the propeller rotational
speed, which was easily measured inflight. The number of
propellers tested to generate these curves was adequate to

cover the range of n's encountered inflight.

B. WILD TUNNEL TEST

The raw data obtained from the wind tunnel tests are
listed in Tekle VII, Appendix C. The propeller effective
thrust was coiculzted by adding the horizontal propeller
thrust (R), corrected for engine torque effects using Equation
33, and the systen drag (D) for each n. The data used to
deterrmine the effective thrust and effective thrust
coefficients for each n tested in the wind tunnel are listed
in Takle 111, Appendix D. The effective thrust data were
used to determine propeller efficiency. The plot of effective
thrust (T,) versus n is shown in Figure 24. The plot was

generated in order to determine the behavior of the data

51




POWER (SBHPstd)

1.7

1.6

1.5 4

1.4 4

1.3 -

1.2 4

1.1 //'\.

1.0

094
8 100% THROTTLE )

. ®  90% THROTTLE
a 80% THROTTLE

07- ©  70% THROTTLE
= 60% THROTTLE

06 o 50% THROTTLE

. — T a4 40% THROTTLE

05 a 30% THROTTLE
u 20% THROTTLE

04 T T — T T T T v ¥ T v T v

T
4000 5000 6000 7000 8000 9000 1C000 11000 12000

n (RPM)

Figure 23. Half-Scale Pioneer Engineer Power Curves
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Figure 24. Effective Thrust Plot

generated from this test. The data plot behaves in an orderly
fashion with little scatter. The effective thrust coefficient
(C;¢) was determined using wind tunnel data and Equation 30 and
plotted versus advance ratio as shown in Figure 25. This plot
was then used to determine the effective thrust coefficient
for the advance ratios determined during flight tests. These

coefficients were used to calculate inflight thrust, again
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Figure 25. Effective Thrust Coefficient Plot

using Egquation 30, and from this data drag polar and power
required curves were generated.

Propeller efficiency for each n tested was calculated
using Equation 9 and the data from the wind tunnel and torque
stand tests and is listed in Table IV, Appendix D. The plot
of propeller efficiency versus advance ratio is shown in

Figure 26. The data are well behaved, show little scatter,

54




PROPELLER EFFICIENCY (%)

80

50

e TESTDATA

40
30
230
10 A
0 T T T g T 2 g T
0.3 0.4 0.5 0.6 0.7
ADVANCE RATIO
Figure 26. 14 X 6 Pusher Propeller Efficiency Chart

55

0.8




and exhibit the characteristic shape of the plots of this
type. This plot was wused to determine the propeller
efficiency for the advance ratios measured during the flight
test portion of this investigation so that inflight power

required could be determined using Equation 4.

C. FLIGHT TEST

The aircraft true velocity (V,) was determined by
averaging the velocity calculated for each direction flown for
each test throttle setting. The inflight tape of propeller
frequency was played back through a frequency counter and the
inflight RPM was determined for each throttle setting using
Eguation 29. The flight test raw data are tabulated in Table
VIII, Appendix C. For each throttle setting the inflight
advance ratio was calculated and Figure 26 was used to
determine the associated propeller efficiency. The SBHP,
found from the engine torque stand tests was corrected to
flight test conditions using Equation 21. The inflight power
required was then calculated using Equation 22. This
procedure was done for each throttle setting tested. The
power required versus velocity data were then standardized
using the P, -V, method. The standard weight (W) used in this
analysis was 27.0 lbs and the test weight (W,) was determined
from fuel flow data and the elapsed time for each throttle
setting. Power and velocity were corrected to standard

welght, standard day conditions using Equations 24 and 25.
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The smooth flight test data are listed in Table V, Appendix
D and the power required data are listed in Table VI, Appendix
D. The P, versus V., plot is shown in Figure 27. The solid
line curve fit through these data points was carried out by
plotting the equation of the line generated from the P, V,.
versus Vw‘ linear regression plot shown in Figure 28. This
method is a standard flight test data analysis reduction
technique. The Oswald efficiency factor, e, and C,, for this
method were determined using Equations 27 and 28 and the
constants generated from the linear regression and were 0.0513
and 0.22€ respectively. The P,, versus V;, plot also

deterrined a velocity for maximum endurance of 55 ft/s and a

The half-scale Piocneer drag polar is shown in Figure 29.

Q

The data points for this plot were determined using Equations
1¢ and 2C and the arplicable data developed from the wind
tunnel, tcrgue stand and flight tests (Table V, Appendix D)
and are listed in Table VII, Appendix D. The solid line curve
fit <care fror the eguation generated from the linear
regressicn plct of C, versus Cf as shown in Figure 30. The
cluster of points on this plot was due to the non-linearity
effects of the throttle position discussed earlier in this
section. Frorm the slope and Y-intercept of the 1linear

regressicn eguation, the C and e for this method were

[o19)

deterrmined to be 0.0516 and 0.221 respectively.
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Figure 30. Drag Polar Linear Regression Plot

Another method of obtaining the power required and drag

polar

wind

curves uses the propeller thrust determined from the

tunnel test, From the C,, versus advance ratio plot

(Figure 25) the inflight thrust was determined using Equation

30 for the inflight n and advance ratio data. Substituting

these

these

thrust values into Equation 19 to find C, and plotting

data versus C , the aircraft drag polar values using the
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wind tunnel thrust data were generated and are listed in
Table VIII, Appendix D. This plot was analyzed in the same
manner as the drag polar obtained using the power generated
from the torque stand tests. The two drag polars are plotted
together in Figure 31 for comparison purposes. The Cp, @and e
obtained from this method were 0.0697 and 0.371 respectively.

The thrust method can also be applied to generating power
required curves. Using the thrust and Equation 31, P, data
can be generated and plotted versus V,;,. The data for this
plot are listed in Table IX, Appendix D. These data were
analyzed as for the power method and are plotted with the
power method power reguired data for comparison purposes as
shown in Figure 32. The C,. and e obtained from this method
were C.C€21 and 0.197 respectively. The maximum endurance
velocity was determined to be 55 ft/s and the maximum range
velocity was 70 ft/s.

The performance characteristics obtained from the drag
polar agree close.y with the characteristics obtained freom the
power reguired curves for each method. tor all methods the
Oswald efficiency factor was low. This was an indication that
the high aspect ratio wing on the high drag body was not the
most efficient combination.

The two methods used to obtain the drag polar and power
required curves, as shown in Figures 31 and 32, differ
significantly in the performance values obtained. The power

reguired and drag polar curve developed using the data
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determined from the torque stand predicts higher drag for the
same 1lift and less power required for the same velocity than
the curves developed from wind tunnel thrust data. One
possible reason for this difference 1is in the type of
propellers used in each test. For the tests conducted on the
torque stand, the power curves were constructed using only
tractor propellers. In the wind tunnel test, only the test
pusher propeller was used. The air flow generated by the
tractor propeller provided cooling air over the motor during
the torque stand tests. The combination of a pusher propeller
and the pcsition of the motor in the wind tunnel nodel
resulted in little cooling air flow. This may have caused the
electric rotor to work more efficiently on the torgque stand
than 1t did for the wind tunnel tests resulting in the
differences noted in these curves.

The scatter in the data for the thrust method ray .lie in
the accuracy of the measurement of the propeller rotational
speed, n. The thrust method, in the use of the C,; equation,
uses the sguare of n, and from the RPM indication systen
calibraticn, inflight measurement of n has, at best, a $100
RPM accuracy. In order to determine the significance of this
uncertainty in n, the C, was calculated for n plus 100 RPM
and n mninus 100 RPM for each method. The error in C;
deterrined from the power data generated from the torque stand
data was 1.8 percent and the error in the C, determined from

the thrust data generated from wind tunnel data was 10.7
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percent. The $100 RPM accuracy in n results in a factor of
five difference in the C, calculation between the two methods

wizh the power method being the most accurate method.
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VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The goal of this investigation was to develop a
methodology to predict basic aircraft performance. This
methodology consisted of wind tunnel and torque stand tests
to determine propeller efficiency, torque stand tests to
determine powerplant characteristics and flight tests to
determine inflight propeller RPM for various flight speeds.
The data from these three phases were then used to determine
the power reguired and drag polar curves for the half-scale
Picneer.

This 1investigation was able to determine the basic
perforrance characteristics and the results obtained appear
reasonabkle for the aircraft tested within the constraints cf
the instrumentation. The method of obtaining propeller
efficiency and static SBHP worked well and 1is the best
alternative until inflight measurement of propeller thrust is
developed. The flight test methodology and analysis of the
data also worked well in the development of the required
curves.

Since the purpose of this paper was not to obtain the
half-scale Pioneer performance characteristics, the next
logical step for the UAV program is to begin generating a data

base so a more indepth analysis can be completed, and the
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basic performance <characteristics calculated in this
investigaticn can be validated. Future plans for the half-
scale Pioneer include the installation of a rate sensor
package, autopilot system and a down-link telemetry system.
The rate sensor package will allow a quantitative
determination of the flying qualitues of the vehicle. The
down-1link will provide real time inflight test data.

Once the performance and stability characteristics are
determined and validated through further testing, the vehicle
will be ready to be used as a research tool for test,
evaluation and validation of design changes to these type
vehicles and as a test bked vehicle for other research
projects. The UAV programn has the capacity of providing
ancther dimension to the Department of Aeronautics and

Astronautics research capability.

BE. RECOMMEINDATIONS

There are several recommendations to be made for future
research into UAV flight testing. These recommendations are
broken down 1into the three phases of experimentation and
include: wind tunnel testing, torque stand tests and flight
tests.

1. Wind Tunnel Tests

The use of an electric motor as the wind tunnel model
pcwerplant worked well and eliminated the problems associated

in working with an air breathing engine. However, the effects
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of electric motor heating on the motor efficiency, need to be
investigated. One metho2 to minimize the heating effects would
be to measure engine torgque and propeller thrust at the same
time in the wind tunnel. This could be accomplished by adding
four more strain gages to the wind tunnel balance oriented to
measure the bending moment due to the motor torque.

To improve the wind tunnel data, the voltage to the
wind tunnei model powerplant should be regulated and a more
accurate way of measuring that voltage should be investigated.
This would provide a steady power source to the motor which
would improve the RPM reasurement accuracy.

Efforts are being made at this time to :r-prove the NPS
vertical wind tunnel. Honeycormb and fine mesh screens are
being installed in the plenum section which should reducs the
swirl ani lower the wind tunnel turbulence level. Alsc a data
acquisition system is being installed which should increase
the accuracy of the measurement of wind tunnel velocity and
propeller thrust data. Once the screens and data acquisition
syster are installed, the wind tunnel tests conducted in this
investigation should be completed again, and the results
compared.

2. Tcrague Stand Tests

The plywood shielding installed to eliminate the prop
wash fror irpinging on the torque arm and scale needs to be
redesigned. The shield was positioned approximately 14 inches

behind the prcpeller disk plane, and it may have affected the
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fiow of air through the disk plane. The torque arm and scale
need to be protected in a less intrusive manner.

The mechanical scale used to measure the engine torque
was adequate for this investigation. A digital load cell was
first utilized but did not work well due to engine vibration.
The large mass inertia effects of the scale provided natural
damping which minimized these vibrations. However, as can be
seen from Figure 21, the scale platform was 3 to 4 inches
higher than the horizontal position of the torque arm.
Although a geometric correction was applied to account for
this, a scale which would allow measurements to be made with
the tcrgue arm horizontal would provide better accuracy.

3. Flight Tecst

The RPM signal measured inflight was noisy and had to
be amplified ana filtered prior to analysis with a freguency
ccunter. Onbcard signal arplification and filtering prior to
taping would irprcve and standardize the taped signal for
analysis by the frequency counter, and thereby increase the
accuracy cf the inflight propeller measurement.

The inflight method of determining the power available
curves for the half-scale Pioneer needs to be investigated.
This could be accorplished by installing an altimeter,
measuring the vehicles excess power through rate of climb
tests and adding this excess power to the appropriate power

regquired curves.
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APPENDIX A

HALF-SCALE PIONEER SPECIFICATION SUMMARY

TOTAL LENGTH:

FUSELAGE LENGTH:

WING SPAN:

WING CHORD:

WING ASPECT RATIO:

GROSS WEIGHT:

WIN3S LOADIKG:

HCRIZOLTAL TAIL SPaAN:

EZFIZOWTAL TAIL CHORD:

(0T IZONTAL TAIL AREA:

EIRIZOWTAL TAIL ASFPECT RATIOC:

EZ-IZ0NTAL TAIL VOLUME:

VERTICAL TAIL CHCRD:

VERTICAL TAIL ARER (2):

VERTICAL TAIL ASPECT RATIO(1):

VERTICAL TAIL VOLUME (2):

FT
FT
FT

FT

LBS

LBS/FT?

(€8]
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APPENDIX B

WIND TUNNEL BALANCE/STRAIN GAGE THEORY

A horizontal force acting on a rectangular beam, as shown
in Figure B.1, can be found by measuring the bending moment,

M,, at a known distance, 1, using the following relationship:

F = (B.1)

I SECTION A-A

—»hn—!—-vhc——l

< "%J' f

| S
A A
BEANM AXIS O
SYMMIETTRY
Figure B.1. Wwind Tunnel Balance Theory Detail Diagram
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The bending moment, My, is a function of the bending stress,

0 and can be determined for any distance ¢ from the beam

8!

neutral axis from the following [Ref. 11l:p. 157]:
Mg = — (B.2)

The "window" cutcut described in Section IIID reduces the beanm
cross-sectional area and changes the main beam into two
smaller beam elements as shown in the section A-A detail in
Figure B.1. Since both beam elements have the same dimensions
and are symmetric about the beam axis of symmetry, the rmoment

of inertia of the bean elements can be written as:

bh’ N
T = 2| — + Ag?Y (B,
12 i

where k 1= the bear width, h 1is the depth of each bear

~——

(@]

elerent, 2 1is the cross-sectional area of each bear elemernt
arZ < is the distance between the bean axis of symmetrv and
each kear elerent axis of symnmetry (Ref. 1l:p. 582.

The keam bending stress for small deformations is directly
prcporticral to the bear strain and is related as follows:

0, = E€g (B.4)

where ¢, is the beam strain due to the horizontal force and E
is the raterial modulus of elasticity [Ref. 11l:p. 15¢€¢1.
Corkining Eguations B.1, B.2, B.3 and B.4, the eguation for
tre herizental force can be written:

2E¢, [~ bn’®
F = + bha (B.2)

Cl 12

73




For this investigation the beam width, b, was 0.500
inches, the individual beam depth, h, was 0.375 inches, the
moment arm, 1, was 14.906 inches and d was 1.313 inches. The
value of c for strain gages one and four was 1.500 inches and
for strain gages two and three was 1.125 inches.

The beam strain was measured using four ©bonded,
electrical-resistance type strain gages mounted as shown in
Figures 8 and 10. Strain gages of this type are based on the
principle that electrical resistance of the strain gage wiring
changes when subjected to a mechanical deformation. The
strain gages were bonded to the alurminum bear under nc load
conditions. Wwhen the hcorizontal force was applied, the bearn
and the strain gages were subjected to a deformation. The
deforraticn caused a change 1in gage resistance which was
measured as a change in voltage on the DM, The kalance
calibraticn described ir Section VB deterrined the
relaticnship used in the wind tunnel test betweern the

herizontal force and the DMM voltage output.

j\Y)
ct

Equaticn B.5 was used to ensure each gage was bonded tco
the balance beam correctly. The balance was loaded statically
with a known weight and for each weight the beam strain was
measured using a strain measurement indicator. Equation B.5
was then utilized to determine the force required to produce
this strain. If the force determined frox Equation B.5 and
the known iocad where equal, then the gages were assumed to be

bonded to the beam correctly.
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APPENDIX C

RAW DATA TABLES

TABLE I

VERTICAL WIND TUNNEL CALIBRATION DATA

AP gq
(CM WATER) (CM WATER)
0.00 0.00
2.00 1.75
£2.00 3.80
6.00 5.65
8.00 7.55
10.00 9.40
12.00 11.50
14.00 13.50
16.00 15.40
18.090 17.10
20.00 18.90
DATE: 12-16-88
TEMPERATURE: 67.0 F
PRESSUREL: 30.09 IN HG
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TABLE II

WIND TUNNEL BALANCE CALIBRATION DATA
(LONGITUDINAL DIRECTION)

STRAIN GAGE OUTPUT WEIGHT ON BALANCE

(MILLIVOLTS D.C.) (LBF)
0.0000 0.00
0.0022 0.21
0.0122 1.21
0.0223 2.21
0.0322 3.21
0.0424 4.21
0.0522 5.21
0.0621 6.21
0.0720 7.21
0.0820 8.21
0.0922 9.21
0.1024 10.21
0.1123 11.21
0.122¢ 12.21
0.1322 13.21
0.1421 14.21
0.1522 15.21

EXCITATION VOLTAGE = 1.870 VOLTS

DATE: 1-22-89
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TABLE III

WIND TUNNEL BALANCE CALIBRATION
(LATERAL DIRECTION)

STRAIN GAGE OUTPUT BALANCE LOAD

(MILLIVOLTS D.C.) (LBF)
0.00000 0.00
0.00175 1.21
0.00305 2.21
0.00420 3.21
0.00610 5.21
0.00800 7.21

EXCITATICN VOLTAGE = 1.870 VOLTS

DATE: 01-20-89
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TABLE IV

TORQUE STAND CALIBRATION DATA
FOR 14 X 6 PUSHER PROPELLER

n 3 Qo
(RP¥) (LBF) (mV)
4400 2.21 0.173
4700 2.22 0.191
5100 2.23 0.210
5600 2.26 0.263
6200 2.2¢ 0.320
69006 2.33 0.392
7700 2.39 0.502
85GC0 2.45 0.611
START TARE 2.11
END TARE 2.12

DATE: 02-24-8¢

1l =21.e3 IN
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TABLE V

ELECTRIC MOTOR TORQUE STAND RAW DATA

10 X 7 11 X 8 14 X 8
THROTTLE VOLTAGE n F n F n F
(PERCENT) (VOLTS)  (RPM) (LBF) (RPM) (LBF) (RPM) (LBF)
20 36 3670 2.15 3230 2.15 2280 2.16
30 49 5150 2.16 4525  2.17 3390 2.18
40 62 6425 2.18 5720 2.19 4425  2.22
50 75 7665 2.20 6870 2.22 5365  2.26
60 88 8830 2.22 8000 2.26 6240 2.31
70 101 9890 2.24 8850 2.29 7015  2.37
80 114 10880 2.27 9830 2.31 7760  2.41
90 127 11700 2.30 10550 2.34 8240  2.45
100 140  ~———- ---- 11080 2.38 8600 2.50
START TARE 2.12 2.12 2.12
STOF TARE 2.12 2.12 2.12
16 X 8 18 X 8 20 3 €
THROTTLE VOLTAGE n F n F n F
(PERCENT) (VOLTS) (RPM) (LBF) (RPM) (LBF)  (RPM) (LBF)
20 36 1720 2.16 1450 2.16 1365 2.16
3¢ 49 2715 2.19 2325  2.19 2140 2.20
4¢ 62 3630 2.25 3135  2.26 2875 2.26
50 75 4425  2.29 3825  2.32 3520 2.33
60 88 5175  2.36 44585  2.38 4065 2.40
70 101 5520 2.42 5100 2.45 4650 2.4¢€
80 14 6460 2.48 5560 2.52 4500 2.54
90 127 6860 2.53 5605 2.59 5100 2.60
10¢ 140 7000 2.59 6000 2.64 5400 2.65
START TZFE 2.12 2.13 2.13
STOP TARE 2.13 2.13 2.13

DATE: 02-24-89

—
it

22.93 IN
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HALF-SCALE PIONEER ENGINE TORQUE STAND RAW DATA

THROTTLE DETENT
(PERCENT)

20 8

30 10

40 12

50 14

60 16

70 18

80 20

90 22

100 24
START TARE
STOI' TARE
THROTTLE DETENT

(PERC
20

30

40

50

€0

70

80

¢0
100

START
STOP

ENT)
&
1C
12
14
16
18
20
22
24
TARE
TARE
DATE:
TEMPERATURE:
PRESSURE:
PP, :

TABLE VI

12 X 9

n F
(RPM) (LBF)
7630 2.23
9060 2.30
9870 2.34
10560 2.38
10890  2.39
11050 2.40
11110  2.41
11140  2.42
11160  2.42

2.01
2.02
16 X 8
n F

(RPM) (LBF)
S660  2.30
6480  2.39
7000  2.45
7300  2.47
7450  2.46
7490  2.50
7500  2.50
7620 2.51
7640  2.53

2.01
2.01

02-25-89

66 F

30.10 IN HG
0.13 IN HG

80

14 X 6
n F
(RPM) (LBF)
6990 2.25
8500 2.31
9200 2.37
9540 2.41
9820 2.43
9910  2.44
9940  2.45
10030  2.45
10020  2.46
2.01
2.01
18 X 8
n F
(RPM)  (LBF)
4700  2.35
5730  2.43
6070  2.49
6280 2.52
6370  2.54
6410 2.55
6430 2.56
6450 2.56
6500 2.58
2.01
2.01

14 X 8

n F
(RPM) (LBF)
6730 2.26
7810 2.18
8600 2.39
9080 2.42
9450  2.44
9600  2.45
9650 2.46
9680  2.46
9630  2.53
2.01
2.01




TABLE VII

WIND TUNNEL RAW DATA

n MOTOR VOLTAGE Ry D
(RPM) (VOLTS DC) (LBF) (LBF)
4400 42,28 -0.95 -1.10
4500 44.80 -1.05 -1.30
4700 49.84 -0.65 -1.10
4900 54.60 -0.50 -1.30
5100 59.22 -0.20 -1.10
5400 65.66 0.10 -1.2
5€00 69.86 0.55 -1.10
5800 73.92 0.70 -1.30
€200 81.76€ 1.50 -1.10
6500 87.64 1.90 -1.3C
6500 95.48 2.90 -1.10
7400 105.84 3.65 -1.30
77CC 112.5¢ 4.50 -1.10¢
8100 122.08 5.20 -1.30
8300 127.12 5.55 -1.3¢
€500 132.58 6.30 -1.1¢C
DATE: 01-20-89
TEMPERATURE: 66.5 F
PRESSURE: 30.17 In Hg
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TABLE VIII

FLIGHT TEST RAW DATA

RUN THROTTLE SETTING TIME FREQUENCY
(PERCENT) (SECS) (HZ)
A 100 9.81 344.3
B 100 10.22 354.4
A 95 9.62 349.1 :
B 95 10.47 352.2
A 90 9.75 340.1
B 90 10.37 348.2
A 85 9.93 340.8
B 85 10.22 238,
A 80 9.81 338.7
B 80 10.41 341.3
A 75 9.91 334.5
B 75 10.42 336.8
A 70 10.00 336.2
B 70 10.45 337.8
A 65 9.65 340.4
B 65 10.94 329.¢€
A 60 9.82 336.2
B 60 10.86 330.1
A 55 10.27 339.3
B 55 10.42 325.7
A 50 10.45 330.1
B 50 10.68 333.¢ °
A 45 10.60 336.1
B 45 10.81 327.2
A 40 106.72 337.6€
B 40 11.60 317.7
A 35 12.50 319.¢
B 35 12.69 315.2
A 30 15.23 252.5
B 30 15.36 247.5
A 25 15.35 241.5
B 25 17.73 235.1
DATE: 2-11-89
TEMPERATURE: 51.0 F
PRESSURE : 30.32 IN HG

DISTANCE: 1000 FT




APPENDIX D

SMOOTH DATA

TABLE I

ELECTRIC MOTOR TORQUE STAND POWER DATA

10 X 7 11 X 8 14 X 8
THROTTLE n SBHP n SBHP n SBHP
(PERCENT) (RPM) (HP) (RPM) (HP) (RPM) (HP)
20 3670 0.041 3230 0.036 2280 0.025
30 5150 0.075 4525 0.082 3390 0.073

40 6425 0.139 5720 0.143 4425  0.157

50 7665  0.219 6870 0.224 5365 0.265

60 8830  0.313 8000 0.395 6240  0.417

70 9890  0.420 8850 0.530 7015  0.615

80 10886 0.576 9830 0.657 7760  0.78%

90 1170C  0.741 10550 0.815 8240 0.95
100 me——- _— 11080 1.010 8600  1.143

16 X 8 18 X 8 20 ¥ 8

THFOTTLE n SBHP n SBHP n SBHF
(PERCENT, (RPX) (HP) (RPM) (HP) (RPN} (HP)
29 1720  0.022 1490 0.017 1365 0.015

30 2715  0.062 2325 0.050 2140 0.0%54

4¢ 3630  0.160 3135 0.144 2875  0.132

50 4425  0.257 3825 0.256 3520 0.247

£0 5175  0.427 4455 0.391 4065  0.38%

7C 5920  0.612 5100 ¢.571 4650  0.537

80 6460 0.803 5560 0.758 4900 0.703

9C 6860  0.972 5605 0.901 5100 ..838
100 7000  1.140 6000 1.070 540C 0.9g1
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THROTTLE
(PERCENT)
20
30
40
50
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70
80
90
10%

THROTTLE
(PERCENT)

20

30

40
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€c

70

80

c

- v

10¢C

TABLE II

HALF-SCALE PIONEER ENGINE POWER DATA

12 X 9
n SBHP
(RPM) (HP)
7630 0.587
5060 0.918
9870 1.138
10560 1.366
10890 1.446
11050 1.506
11110 1.552
11140 1.596
11160 1.596
16 X 8

n SBHP
(RPM) (HE)
5660 0.574
6480 0.861
7000 1.076
7300 1.17¢4
7450 1.250
7450 1.283
7500 1.284
7620 1.332
7640 1.388

14 X 6
n SBHP
(RPM) (HP)
6990 0.586
8500 0.891
9200 1.158
9540 1.333
9820 1.441
9910 1.489
9990 1.536
10030 1.542
10020 1.576
18 X 8

n SBHP
(RPM) (HP)
5660 0.558
5730 0.841
6070 1.018
6260 0.11%
6370 1.180
6410 1.210
6430 1.236
6450 1.240
6500 1.295
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14 X 8

n

(RPM)

6730
7810
8600
3080
9450
9600
9650
968¢0C
9630

R S ke PO O

SBHP
(HP)
.588
.873
.142
.301
.420
.476
.518
.522

.548
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TABLE IV

PROPELLER EFFICIENCY DATA

n J T SBHP n

(RPM) (LBF) (HP) (PERCENT)
4400 0.6177 0.120 0.083 15.11
4ECO C.6568 0.219 0.096 23.84
47.0 0.628¢% 0.417 0.124 35.14
4900 0.6032 0.764 0.152 52.58
5100 0.5795 0.862 0.179 50.32
5400 0.5473 1.358 0.231 61.37
5600 0.5278 1.605 0.255 65.77
5€00 0.5096 1.952 0.308 66.22
6200 G.4767 2.545 9.403 65.82
6500 0.4547 3.139 0.479 68.4¢
6900 0.4284 3.931 0.590 69.62
7400 0.3994 4.870 0.714 71.27
7700 0.3839 5.513 0.800 72.01
8100 0.3649 6.403 0.910 73.52
8300 0.3561 6.748 0.971 72.62
8500 0.3477 7.293 1.055 72.58
86




€ve L
86C° L
569°9
oLY"9
PES°9
096°9
61V°9
£EVE"9
vLz-9
6v2°9
Zvs°9
9£8°9
L96°9
v09°L
16€° b
6ET" ¥
(sg71)

66L0°0
L0800
bvL0°0
2eLo0°0
veELO0
S¥L0°0
8€L0°0
veL00
SeL0°0
9¢L0°0
v¥080°0
2980°0
¢s60°0
8Ze1°0
TeETT"0
9% WAL B 0

o)

066°1
8LG°1
G661
A2
sbs°1
vest1
sev°1
69V °1
Syy°-1
gee "1
0ge"1
ove-1
ovi-t
vso°1
0,870
82L°0
Emm:v
dHYS

8°LY
8°L9
0°L9
0° LY
0°L9
0°L9
0°L9
0°L9
0°L9
0°L9
8° L9
8°89
€69
6°0L
2 oL
L°0OL

(LNZDO¥Ad)

u

6v-0
6V 0
0580
0670
06°0
06°0
0670
056°0
060
06°0
6v°0
8v°0
LY*"O
Ev-0
av-0
vv-o

08°92
SL°92
0L°9¢
G992
09°9¢
G692
06°92
Sv-92
oy 92
08°92
SL 92
0L°92
G9°9¢
09°92
6692
06°92
ﬁmmqv
M

VAvd LSdL LHOT1TA

O

dTUNVL

038v0T
025071
GZ€OoT
0ST10T
002071
022071
0TTIO0T
05001
G666
GL66
0966
0666
0£86
GZS6
00GL
0GTL

(Wdyd)

68°66
€L°66
05°66
82°66
00°66
vy 86
v¥8°L6
2GS L6
96°96
L9°96
99°t6
Zv- €6
vL°68
ov° 6L
8€°G9
LL*09
AmAemv

00T
S6
06
G8
08
SL
oL
S9
09
GG
06
Gv
ov
St
o€
¥4
(LNJOY3d)
dTLLOYHL

87




THROTTLE
(PERCENT)
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

TABLE VI

DRAG POLAR DATA
(POWER METHOD)

0.790
0.684
0.465
0.364
0.337
0.329%
0.316
0.309
0.306
0.305
0.302
0.299
0.298
0.297
0.296
0.296
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Co

0.1430
0.1362
0.0931
0.0682
0.0653
0.0673
0.0646
0.0662
0.0661
0.0667
0.0668
0.0665
0.0659
0.0659
0.0€72
0.0674




TABLE VII

POWER REQUIRED DATA
(POWER METHOD)

THROTTLE

(PERCENT) (HP) (FT/S)
25 0.540 61.75
30 0.639 66.37
35 0.780 80.50
40 0.822 20.92
45 0.885 94.56
50 0.947 95.72
55 0.966 97.68
60 1.021 98.70
65 1.036 99.20
70 1.051 99.41
75 1.068 95.92
80 1.080 100.41
85 1.076 100.60
90 1.081 100.72
95 1.107 100.87

100 1.112 100.94
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DRAG POLAR DATA
{THRUST METHOD)

TEROTTLE
(PERCENT)

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

TABLE VIII

380

0.790
0.684
0.465
0.364
0.337
0.32¢
0.316
0.309
0.306
0.305
0.302
0.299
0.298
6.297
0.296
0.296

C

0.1233
0.1131
0.1328
0.09¢52
0.0862
0.0804
0.0736
0.0735
0.0734
0.0738
0.0645
0.0734
0.0722
0.0744
0.0807
0.079¢




TABLE IX

POWER REQUIRED DATA
(THRUST METHOD)

THROTTLE P, v,
(PERCENT) (HP) (FI/S)
25 0.480 61.75
30 0.537 66.37
35 1.145 80.50
40 1.176 90.92
45 1.204 94.56
50 1.217 95.72
55 1.133 97.68
60 1.167 98.70
65 1.183 99.20
70 1.198 99.41
75 1.229 99.92
80 1.227 100.41
85 1.215 100.60
90 1.256 100.72
95 1.369 100.87
100 1.357 100.94
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