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Abstract

We discuss novel phenomena in dynamic shearing flows of 4on-Newtonian
fluids of importance for polymer processing. A striking example is "spurt' which
was observed experimentally in the flow of monodispersive polyisoprenes through
capillaries; the volumetric flow rate increased dramatically at a critical stress
independent of molecular weight. We show that satisfactory explanation of spurt
requires studying the full dynamics of the equations of motion and constitutive
relations characterized by a non-monotonic relation between the steady shear
stress and strain rate. The increase in volumetric flow rate is shown to correspond
to jumps in the strain rate when the driving pressure gradient exceeds a critical
value. Motivated by scaling suggested by accurate numerical computations of the
governing dynamic problem that yielded qualitative and quantitative agreement
with experiment, we introduce a system of ordinary differential equations that
approximates dynamic behavior of highly elastic and very viscous fluids. The
complete dynamics of the system of ode's is determined by phase plane analysis.
These results are then used to explain not only spurt but also shape memory,
hysteresis, latency, and other effects that have also been observed in numerical
simulations.
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1. Introduction

The purpose of this paper is to analyze novel phenomena in dynamic shearing flows of
non-Newtonian fluids that are important for polymer processing. Understanding such be-
havior has proved to be of significant physical, mathematical, and computational interest.
One striking phenomenon, called "spurt," was observed by Vinogradov et al. [20] in the
flow of monodispersive polyisoprenes through capillaries. They found that the volumet-
ric flow rate increased dramatically at a critical stress that was independent of molecular
weight. Until recently, spurt had been overlooked or dismissed by rheologists because no
plausible mechanism was known to explain it in the context of steady flows that are linearly
stable.

We find that satisfactory explanation and modeling of the spurt phenomenon requires
studying the full dynamics of the equations of motion and constitutive equations. The
common feature of constitutive models that exhibit spurt is a non-monotonic relation
between the steady shear stress and strain rate. This allows jumps in the steady strain rate
to form when the driving pressure gradient exceeds a critical value; such jumps correspond
to the sudden increase in volumetric flow rate observed in the experiments of Vinogradov
et al. Hunter and Slemrod [7] studied the qualitative behavior of these jumps in a one-
dimensional viscoelastic modei of rate type and predicted shape memory and hysteresis
effects related to spurt. A salient feature of this model is linear instability and loss of
evolutionarity in a region of state space. By contrast, the equations that are analyzed in
the present work derive from a fully three-dimensional constitutive relation and remain
stable and evolutionary, as we would expect of a realistic model. This model also exhibits
spurt, shape memory, and hysteresis; furthermore, it predicts other effects, such as latency,
normal stress oscillations, and molecular weight dependence of hysteresis, that can be
tested in rheological experiment.

In Refs. [9, 12, 131, effective numerical methods were developed for simulating one-
dimensional shear flows at high Weissenberg (Deborah) number; calculations using these
methods agreed qualitatively and quantitatively with experiment. We discussed prelimi-
nary results on global existence and stability of discontinuous steady states, and we intro-
duced a system of ordinary differential equations that approximate the dynamics of highly
elastic and very viscous fluids, such as those in the experiments of Vinogradov et al. The
objective of the present paper is to analyze this approximating dynamical system. Based
on this analysis, we explain the shape memory, hysteresis, latency, and other effects that
have been observed in the numerical simulations. Similar results are known for related
constitutive models: a model with two or more relaxation times and no Newtonian vis-
cosity is analyzed mathematically in Ref. (14]; and another model with a single relaxation
time and Newtonian viscosity is studied numerically in Ref. [10]. Therefore we believe that
our results are not limited to the specific model that we study.

The paper is organized as follows: Sec. 2 formulates and discusses the flow model;
Sec. 3 provides a complete description of the dynamics of the approximating quadratic

system of ordinary differential equations by means of a phase plane analysis; Sec. 4 uses
the results of Sec. 3 to describe features of the mathematical model in relation to the
experiments of Vinogradov et ad. and explains latency, shape memory, and hysteresis
analytically; and Sec. 5 discusses certain physical and mathematical conclusions.

Availabilityr Codes
Avail and/or
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2. The Flow Model

The motion of a fluid under incompressible and isothermal conditions is governed by
the balance of mass and linear momentum. The response characteristics of the fluid are
embodied in the constitutive relation for the stress. For viscoelastic fluids with fading
memory, these relations specify the stress as a functional of the deformation history of
the fluid. Many sophisticated constitutive models have been devised; see Ref. (1] for a
survey. In the present work, we focus on a particular differential model that is explained
in more detail in Ref. [13]. This model can be regarded as a special case of the Johnson-
Segalman model [8] and of the Oldroyd constitutive equation [171. We believe, however,
that qualitative aspects of our results are not limited to this particular model; results on
similar models [14, 10] confirm this.

Essential properties of constitutive relations are exhibited in simple planar Poiseuille
shear flow. We study the Poiseuille shear flow between parallel plates located at x = ±h/2,
with the flow aligned along the y-axis (see Fig. 1). Therefore, the flow variables are
independent of y, and the velocity field is v = (0, v(x, t)), which implies that the balance
of mass is automatically satisfied. The stress is decomposed into three parts: an isotropic
pressure p; a Newtonian contribution, characterized by viscosity 77; and an extra stress,
characterized by a shear modulus p and a relaxation rate A. In shear flow, the components
of the extra stress tensor E can be written E" = Z(x,t)1(1 + a), Ezy = y = a(xt),
and .YY = -Z(x, t)/(1 - a), while the pressure takes the form p = p0(x, t) - f(t)y, f being
the pressure gradient driving the flow. Here a E (-1, 1) is a slip parameter defining the
model.

To simplify notation, we nondimensionalize the variables by scaling distance by h,
time by A- ', and stress by 1. Furthermore, if we replace a, v, and f by & := (1 -a2)1/2 a)

:= (1 - a2 )1 / 2v, and f := (1 - a2 ) 1 /2 f, respectively, then the parameter a disappears
from the governing equations. Since no confusion will arise, we omit the caret. There are
two essential dimensionless parameters:

a :"- ph2A 2/p ,(2.1)

a ratio of Reynolds number to Deborah number (p being the constant density); and

(2.2)

a ratio of viscosities.
The resulting initial-boundary-value problem governing the flow [13] is the system

avt - ax = EVZZ + f I

- (Z + )V=-, (Js)
Zt + av = -Z

on the interval [-1/2, 01, with boundary conditions

v(-1/2,t) = 0 and v,(O,t) = 0 (BC)
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y

-h/2 0h/2

Fig. 1: Shear flow through a slit-die.

and initial conditions

v(x,O) = v(x), ,(x,O) = o(x) , and Z(x,O) =Zo(x) , (IC)

where the compatibility conditions vo(-1/2) =0, v'(0) =0 and ao(0) = 0 are assumed to

hold.
If e = 0, the system can be classified according to type: when Z + 1 ! 0, the system is

hyperbolic, with characteristics speeds 0 and ±[(Z +1)/a]'/'; if Z+1I < 0, by contrast, the

system has a pair of pure imaginary characteristic speeds, in addition to the speed 0, and

(JS) ceases to be evolutionary. This classification, however, is not applicable when e > 0,
which we assume throughout the present work. In the case e > 0, it was shown recently [6]

that the problem (JS), (BV), (IC) possesses a unique classical solution globally in time for

smooth initial data of arbitrary size. However, it is has not been proved that the solution

* tends to a limiting steady state as t tends to infinity.
The steady-state solution of system (JS), when the forcing term f is a constant f

* plays an important role in our discussion. Such a solution, denoted by U, F, and Z, can

be described as follows. The stress components -6 and Zare related to the strain rate 'g-

through
(2.3)
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and

+ 1(2.4)
1 + V2

Therefore, the steady total shear stress T := F + e is given by T= w(U,3), where

w(s) =1 + + e. (2.5)

W

W
Twaw

TM

Tm

t/ I  .VX

0

Fig. 2: Total steady shear stress T vs. shear strain rate 9, for
steady flow. The case when f > 0 and there are three critical points
is illustrated; other possibilities axe discussed in Sees. 3 and 4.

The properties of w, the steady-state relation between shear stress and shear strain
rate, are crucial to the behavior of the flow. By symmetry, it suffices to consider non-
negative strain rates, s > 0. For all e > 0, the function w has inflection points at s = 0
and s = v/3. *When e > 1/8, the function w is strictly increasing, but when e < 1/8,
the function w is not monotone. Lack of monotonicity is the fundamental cause of the
non-Newtonian behavior studied in this paper, so hereafter we assume that e < 1/8.
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The graph of w is shown in Fig. 2. Specifically, w has a maximum at s = sM and a
minimum at s = sm, where

8 M,,m= 2 [1-2cFV/ ] , (2.6)

respectively, at which points it takes the values TM : w(sM) and Tm := w(sm). As
a - 1/8, the two critical points coalesce at s V3.

V

A 0
C-

W X

-h/2 X, 0

Fig. 3: Velocity profile for steady flow.

The momentum equation, together with the boundary condition at the centerline,
implies that the steady total shear stress satisfies T = -fx for every x E [- , 0]. Therefore,
the steady velocity gradient can be determined as a function of x by solving

w(g.) = -fx. (2.7)

Equivalently, a steady state solution V,, satisfies the cubic equation P(U5) = 0, where

P(s) := s 3  Ts 2 +(1 + C)s -T . (2.8)

-6-



Spurt Phenomena Malkus, Nohel, and Plohr

The steady velocity profile in Fig. 3 is obtained by integrating "U and using the boundary
condition at the wall. However, because the function w is not monotone, there might
be up to three distinct values of U., that satisfy Eq. (2.7) for any particular x on the
interval [-1/2, 0]. Consequently, 'U, can suffer jump discontinuities, resulting in kinks in
the velocity profile (as at the point x. in Fig. 3). Indeed, a steady solution must contain
such a jump if the total stress T 8 j7 = 17f/2 at the wall exceeds the total stress TM at the
local maximum M in Fig. 2.

Equation (2.7) implies that the stress E := a + ev, + fx vanishes throughout the
channel in steady state. The numerical simulations of (JS) in Ref. [13] suggest that E
tends to zero as t tends to infinity for every x, even though the limiting solution can
suffer discontinuities in U_ and F whenever -if Ix lies between the values Tm and TM of
w in Fig. 2. Therefore the discontinuities in a and -v, seem to cancel. This behavior has
been proved recently [16] for a simpler model problem that captures several key features of
(JS). It is also shown that the discontinuous steady solution is stable with respect to small
perturbations of initial data. Current work of Nohel, Pego, and Tzavaras indicates that a
similar stability result holds for solutions of (JS) whenever the parameter a is sufficiently
small.

3. Phase Plane Analysis for System (JS) When a = 0

A great deal of information about the structure of solutions of system (JS) can be
garnered by studying a system of ordinary differential equations that approximates it in
a certain parameter range. Motivation for this approximation comes from the following
observation: in experiments of Vinogradov et al. [20], a = ph2 A2 /'1 is of the order 10-12;
thus the term avt in the momentum equation of system (JS) is negligible even when vt is
moderately large. We axe led to study the approximation to system (JS) obtained when
a = 0. The behavior of solutions of the resulting dynamical system offers an explanation
for several features of the solutions of the full system (JS) observed in the computations of
Refs. [9, 13]; in fact, these calculations prompted the following analysis, which determines
the dynamics of the approximating system completely.

When a = 0, the momentum equation in system (J.5) can be integrated, just as in
the case of steady flows, to show that the total shear stress T := a + ev, coincides with
the steady value T(x) = -fx. Thus T = T(x) is a function of x only, even though a and
v, are functions of both x and t. The remaining equations of system (JS) yield, for each
fixed x, the autonomous planar system of ordinary differential equations

S- - (3.1)

Here the dot denotes the derivative d/dt. We emphasize that a different dynamical system
is obtained at each point on the interval [-1/2,0] in the channel because T depends on x.
These dynamical systems can be analyzed completely by a phase-plane analysis, which we
carry out in some detail.
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The critical points of system (3.1) satisfy the algebraic system

V (T 1(3.2)

Eliminating Z in these equations shows that the a-coordinates of the critical points satisfy
the cubic equation Q(a/T) = 0, where

Q(0):= (-1 1+ (-)+ .(3.3)

Since
p( ()) P p -a) T = Q(a-/T) (3.4)

[cf. Eqs. (2.8) and (3.3)], each critical point of the system (3.1) defines a steady-state
solution of system (JS): such a solution corresponds to a point on the steady total-stress
curve (see Fig. 2) at which the total stress is T(x).

By symmetry, we may focus attention on the case T > 0. Consequently, for each
position x in the channel and for each e > 0, there are three possibilities:
(1) there is a single critical point A when T < T..;
(2) there is also a single critical point C if T > TM;
(3) there are three critical points A, B, and C when Tm< T < TM.
For simplicity, we ignore the degenerate cases, where T = TM or T = T,, in which two
critical points coalesce.

To determine the qualitative structure of the dynamical system (3.1), we first study
the nature of the critical points. The behavior of orbits near a critical point depends on
the linearization of Eq. (3.1) at this point, i.e., on the eigenvalues of the Jacobian

evaluated at the critical point. The character of the eigenvalues of J can be determined
from the signs of the trace of J, given by

- TrJ = Z + 1 + 2,; (3.6)

the determinant of J, given by

c DetJ = Z +1 +e+- 2 (3.7)
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and the discriminant of J, given by

2 DiscrmJ (Z + 1)2 ST 2  a 3 +1 T (3.8)

We note a useful fact: at a critical point,

c Det J = Q'(a/'T) ; (3.9)

this follows by using the second of Eqs. (3.2) to replace Z in Eq. (3.7). This relation is
important because Q' is positive at A and C and negative at B.

Z &=0 / z0

a

ir=r

Di..cr J -

Discr J < 0 / Disa~ J > 0

Fig. 4: The phase plane in the case of three critical points.

The character of the eigenvalues can be understood using these formulae together with
Fig. 4. In this figure is drawn the hyperbola on which & = 0 and parabola on which Z = 0
[see Eqs. (3.2)]. These curves intersect at th,- critical points of the dynamical system for
the given choice of c and T; Fig. 4 corresponds to the most comprehensive case of three
critical points. Notice that, having scaled the a-coordinate by T, the hyperbola on which
& = 0 is independent of T. Also drawn in Fig. 4 is the hyperbola on which Discrm J
vanishes. We draw the following conclusions:

-9-
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(1) Tr J < 0 at all critical points;
(2) Det J > 0 at A and C, while Det J < 0 at B; and
(3) DiscrmJ > 0 at A and B, whereas DiscrmJ can be of either sign at C. (For typical

values of e and T, DiscrmJ < 0 at C; in particular, DiscrmJ < 0 if C is the only
critical point. But it is possible for Discrm J to be positive if T is sufficiently close to

Standard theory of nonlinear planar dynamical systems (see, e.g., Ref. [2, Chap. 15]) now
establishes the local characters of the criticad points:
(1) A is an attracting node (called the classical attractor);
(2) B is a saddle point; and
(3) C is either an attracting spiral point or an attracting node (called the spurt attractor).

6, 0

0 ....

Fig. 5: The phase plane when the spurt attractor C is the only
critical point.

To understand the global qualitative behavior of orbits, we construct suitable invariant
sets. In this regard, a useful tool is the identity

- { +-1 -+ (Z + 1 2 -[ 2 (3.10)
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which is obtained by multiplying the first of Eqs. (3.1) by a and adding the second,
multiplied by Z + 1. Thus the function V(u, Z) := a2 + (Z + 1)2 serves as a Lyapunov
function for the dynamical system.

Let F denote the circle on which the right side of Eq. (3.10) vanishes, and let C,
denote the circle of radius r centered at a = 0 and Z = -1; each Cr is a level set of V.
The curves F and C1 are shown in Fig. 5, which corresponds to the case of a single critical
point, the spiral point C; and in Fig. 7, which corresponds to the case of three critical
points. Notice that if r > 1, r lies strictly inside Cr. Consequently, Eq. (3.10) shows
that the dynamical system flows inward at points along C,. Thus the interior of Cr is an
invariant set for each r > 1. Furthermore, the closed disk bounded by C1 , which is the
intersection of these sets, is also invariant. For later convenience, denote by D the point
where C1 intersects the parabola on which Z = 0.

We will also rely on some theorems for quadratic dynamical systems. The hypothe-
ses for these theorems requires Pn analysis of the behavior of orbits at infinity, which is
accomplished as follows. First, we introduce the variables p > 0 and V E [0, 27r) such that
a = p-I cos p and Z = p-I sin W. Thus p = 0 defines the circle at infinity. Second, we
ir ke a singular change of independent variable, from t to s, defined by p ds = dr, and we
let a prime denote differentiation with respect to s. Then a simple calculation shows that

P= [1 + 6- cos2 #] P2 + O(p 3 ), (3.11)

W' =6_ 1 cos W + O(p) .

Therefore the critical points at infinity (p = 0) occur at the angles W = ±r/2. Corre-
spondingly, the eigenvalues in the angular direction are :F, - 1, while the eigenvalues in the
radial direction vanish. Because the leading order term in p' is positive, the critical point
at W = 7r/2 is a saddle-node for which the separatrix leaves infinity, and the critical point
at W = -ir/2 is a repelling node.

A.

Let us first consider the structure of the flow when there is a single critical point,
located at C; see Fig. 5. As shown above, the point C must be an attracting spiral point.
According to a theorem of Coppel [4], there is no periodic orbit for this quadratic dynamical
system because the separatrix leaves the saddle-node at infinity. Thus the orbit through
each point in the phase plane muist spiral toward C.

In the application to the shear flow problem, we are interested in the particular solution
of Eq. (3.1) with initial data a = 0 and Z = 0 (point 0). This solution initially remains
inside the region 7Z bounded by ODVCO in Fig. 6, eventually exits through the arc CV
of the parabola, and finally spirals toward C. Indeed, the orbit through 0 must remains
inside C1 and outside F because of Eq. (3.10); and for points along the portion of the
parabola between D and V, Z = 0 and & < 0, so that orbits cannot leave through DV.
Therefore it must leave 1Z along the arc CV of the parabola, whereupon it spirals into C.
'This solution is illustrated in Fig. 6.

-11-
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z
=0

D T0.6

= 0.005r L

C'

Fig. 6: The orbit through origin when the spurt attractor C is the
only critical point.

B.

Next consider the case when there are three critical points, illustrated in Fig. 7. As
shown by A. Coppel [private communication] using the Bendixson criterion, there are no
periodic orbits or separatrix cycles for this quadratic dynamical system. Therefore, as t
approaches infinity, the orbit through any point in the plane either: tends to A; tends to
C; or tends to B along its stable manifold.

We first prove that the closed set ." bounded by the curved triangle OAD is invariant
with respect to Eqs. (3.1). To this end we show that orbits starting from points along
OAD remain in 2. For points along C, strictly between 0 and D, this follows from the
invariance of C1. For points along the portion of the parabola between A and D (excepting
A), 2 = 0 and & < 0, so that orbits lead into I. Similarly, the flow leads into I along
the arc of r -trictly between A and 0; this is because 2 < 0 and because of Eq. (3.10).
Finally, A is a critical point, while the orbit through 0 must remains inside C, and outside
r because of Eq. (3.10). One consequence of the invariance of 2 is that the solution of
Eq. (3.1) with initial data a = 0 and Z = 0 flows into the classical attractor A.

Next we study the stable manifold for the saddle point B in Fig. 7. Through this point
we have drawn the circle CB centered at a = 0 and Z - -1, which intersects the parabola

-12-
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0 0'

V

Fig. 7: Invariant regions in the case of three critical points.

at E. Let S denote the closed set bounded by the curved triangle ECB. At points on the
boundary, the flow is directed as follows: outward from $ along EB because of Eq. (3.10);
outward along GB, where Z < 0 and V; = 0; and inward along CE because & > 0 and
Z = 0. As a result, one branch of the stable manifold at B must enter S through the
arc EC and remain is S, as illustrated in Fig. 7. The other branch of the stable manifold
enters B through the sector exterior to F and the circle GB.

Notice that the basin of attraction of A, i.e., the set of points that flow toward A as
t approaches infinity, comprises those points on the same side of the stable manifold of B
as is A; points on the othei side are in the basin of attraction of C. For the purpose of
analyzing the spurt phenomenon, we now show that the arc of F between B and the origin
O is contained in the basin of attraction of A. This follows because the flow is directed into
the region bounded by the following curves: P between B and A; the parabola between
A and D; C1 between D and 0; the parabola between 0 and E; and GB between E and
B. Therefore this region is invariant. In particular, the stable manifold for B cannot cross
the boundary, so that it cannot cross I' between B and 0.

Finally, consider the unstable manifold of the saddle point B. Let U41 be the set
bounded by the arcs of the parabola Z = 0 and the hyperbola & = 0 between the critical
points B and A. Along the open arc of the parabola BA, & > 0, while along the open arc

-13-
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of the hyperbola, Z > 0. Therefore, one branch of the unstable manifold at B lies in U1
and connects B to A. Next consider the set U2 bounded by the are BVC of the parabola

-= 0 and the arc CB of the hyperbola 6, = 0. The flow is directed into 12 both along BV,
where 6, < 0, and along CB, where Z < 0. Therefore, the second branch of the unstable
manifold at B remains in 12 until it exits through the arc VC. If C is a spiral point, this
branch enters and leaves U2 infinitely often as it spirals into C, while if C is an attracting
node, it does not reenter 12 as it tends to C.

Z

. T = 0.5

A= 0.015

Fig. 8: Phase portrait in the case of three critical points, with C
being a spiral.

To summarize the above description of the dynamics of the system (3.1) in the case
of three critical points, with C being a spiral point, the reader is referred to Fig. 8.

C.
Finally consider the case of a single critical point at A, which is an attracting node. For

quadratic dynamical systems, a periodic orbit must enclose a center or a spiral point [3];
thus there is no periodic orbit. As a result, all orbits are attracted to the node at A. The
orbit through the origin remains in a region that is analogous to the region I in Fig. 7.

-14-
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4. Features of the Mathematical Model in Relation to Experiment

The numerical simulations of (JS) described in Refs. [9, 13] exhibited several effects

related to spurt: latency, shape memory, and hysteresis. For example, Fig. 9 shows the

result of simulating a loading sequence in which the pressure gradient 7 is increased in

small steps, allowing sufficient time between steps to achieve steady flow [9]. The loading

sequence is followed by a similar unloading sequence, in which the driving pressure gradient

is decreased in steps. The initial step used zero initial data, and succeeding steps used

the results of the previous step as initial data. The resulting hysteresis ioop includes the

shape memory described in Ref. [7] for a simpler model. The width of the hysteresis loop

at the bottom can be related directly to the molecular weight of the sample [9].

16

14_

12-7

10-S
8

6 - C

4

2 /
Sd / a

0.0 0.5 1.0 1.5 2.0 2.5 3.Oxl0

Twal1

Fig. 9: Hysteresis under cyclic load: normalized throughput S

vs. wall shear stress T..11 [9].

In this section we explain these effects using the results of the phase plane analysis

of the dynamical system (3.1). We consider experiments of the following type: the flow is

initially in a steady state corresponding to a forcing 7, and the forcing is suddenly changed

to 7 + A7. We call this process "loading" (resp. "unloading") if Af has the same (resp.

opposite) sign as f.
Let us first establish some convenient terminology. Given a value of 7, the channel
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-1/2 < x < 0 can be subdivided into three contiguous zones (subintervals) according to
tha size of T(z) = -fx. (Refer to Figs. 2 and 3.) We define Zone 1, which is nearest
to the wall x = -1/2, to comprise those points x for which T(x) _> TM; this subinterval
is nonempty if f is supercritical, i.e., f/2 > TM. For points in Zone 1, the only critical
point of the system (3.1) is C, as in Fig. 5. In Zone 2, where Tm T(x) TM, there are
three critical points, A, B, and C, as in Fig. 7; this subinterval is nonempty if f/2> T,,,.
Zone 3, which is nearest to the centerline x = 0, consists of x for which T(x) Tm.; the
corresponding phase plane has only A as a critical point.

Notice also that the critical points for Eq. (3.1), with any value of T, lie on the circle
r, which is independent of T. Let (aM, ZM) denote the degenerate (double root) critical
point that occurs when T = TM, i.e., at "top jumping" in Fig. 2; and let (am, Zm) denote
the degenerate critical point for T = T,, i.e., for "bottom jumping." These points serve
to divide 1 into arcs: rA, the upper arc of r between (aM, ZM) and (-aM, ZM); rc,
the lower arc between (am, Zm) and (-am, Zm); and rB, the remaining two arcs where
Z E [Zm, ZM]. For any value of T, positive or negative, the classical attractor A lies in rA,
the spurt attractor C lies in rc, and the saddle point B lies in FB. Furthermore, as ITI
is increased, the critical points A and C move downward along F, while B moves upward.
This follows from Eq. (3.3) by differentiating the relation Q(a/T) = 0, to determine how
a/T varies with T, and by using the first of Eqs. (3.2).

A. Startup

As a first experiment, consider starting from the quiescent state at the origin a = 0,
Z = 0 and loading to f> 0. For each x in Zones 2 and 3 (near the centerline), the origin
in the corresponding phase plane lies in the basin of attraction of the node at A, so that
the orbit through the origin tends to A; this is illustrated in Fig. 8. For each x in Zone 1,
by contrast, the origin is attracted to the sole critical point at C, as in Fig. 6. Accordingly,
we draw two conclusions: (a) if 7 is subcritical, the flow approaches the classical solution
corresponding to A at every point x; (b) if f is supercritical, the flow approaches a steady
spurt solution in which the jump in strain rate occurs at the shear stress maximum TM
(which is top jumping in Fig. 2), i.e., such that the kink in the velocity profile (see Fig. 3)
is located as close as possible to the wall.

B. Loading

Next, consider increasing the load from a supercritical value f> 0 to 7, > f. This
causes the three zones to shift: some points x previously in Zone 2 or 3 for f now lie
in Zone 1 for f 1 . For each x in the new Zone 1, the corresponding phase plane for the
system (3.1) has a unique critical point C1, the spiral point. If such an x was previously in
Zone 1 or 2, C1 lies further down along Fc than was the corresponding attractor C for the
smaller load f. Similarly, for each x in the new Zone 2, there are three critical points, A 1,
B 1 , and C1. Again, the spurt attractor C1 lies further down along rc, while the saddle
point B1 lies further up along FB and the classical attractor A1 lies further down along FA,
as compared to the corresponding critical points for f. In particular, the stable manifold
of B, lies above that of B, at least near to B 1 . Finally, in the new Zone 3, there is a single
critical point A1 located downward along rA with respect to A.

Let us now determine how the steady profile changes as a result of the increased load.
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For every x E 0], we take the steady solutibn (a 0 , Zo) attained at the load f as the
initial point for an orbit in the phase portrait for the new load f1. If x belongs to the
new Zone 1, the initial point (ag, Z 0 ) is either a classical attractor A, which disappeared
as the loading was increased, or a spurt attractor C. Regardless, the orbit through this
point leads to C1 as time progresses because C1 is the only critical point for the load f7.
Thus spurt continues throughout the new Zone 1. By contrast, if x lies the new Zone 2
or 3, the initial point (a 0 , Z0 ), which is a classical attractor A on rA between A, and the
origin, lies in the basin of attraction of the node A,, and the corresponding orbit tends to
A 1 . To see this for points in Zone 2, notice that neither branch of the stable manifold of
B 1 can intersect r between B, and the origin, as was shown in Sec. 3. Thus the domain
of attraction of A,, which is bounded by the stable manifold of B1 , contains A.

As a result, a point in x in the channel can change only from a classical attractor to a
spurt attractor, and then only if T, (x) = -f, x exceeds TM. In other words, loading causes
the position x. of the kink in Fig. 3 to move away from the wall, but only to the extent
that it must. (Formulas for the precise location are found in Refs. [9, 14].) Therefore,
a loading process, without an intervening unloading, yields a jump in strain rate at total
stress TM, i.e., top jumping.

C. Latency

Our next task is to explain the latency effect that occurs during loading. In this
context we assume that e is small. It follows from Eqs. (2.5) and (2.6) that the total stress
TM at the the local maximum M is 1/2+O(e), while the local minimum m corresponds to a
total stress Tm of 2V%[1 + O(e)]. Furthermore, for x such that T(x) = 0(1), a = T +O(e)
at an attracting node at A, while a = 0(e) at a spurt attractor C (which is a spiral).
Consider a point along the channel for which T(x) > TM, so that the only critical point
of the system (3.1) is C, and suppose that that T < 1. Then the evolution of the system
exhibits three distinct phases, as indicated in Fig. 6: an initial "Newtonian" phase (0 to
N); an intermediate "latency" phase (N to S); and a final "spurt" phase (S to C).

The Newtonian phase occurs on a time scale of order e, during which the system
approximately follows an arc of a circle centered at a = 0 and Z = -1. Having assumed
that T < 1, Z approaches

ZN = -2 (4.1)

as a rises to the value T. (If, on the other hand, T > 1, the circular arc does not extend
as far as T, and a never attains the value T; rather, the system slowly spirals toward the
spurt attractor. Thus the dynamical behavior does not exhibit distinct phases.)

The latency phase is characterized by having a = T+O(e), so that a is nearly constant
and Z evolves approximately according to the differential equation

T Z .(4.2)
Z+1

Therefore, the shear stress and velocity profiles closely resemble those for a steady solution
with no spurt, but the solution is not truly steady because the normal stress difference
Z still changes. Integrating Eq. (4.2) from Z = ZN to Z = -1 determines the latency
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period. This period becomes indefinitely long when the forcing decreases to its critical
value; thus the persistence of the near-steady solution with no spurt can be very dramatic.
The solution remains longest near point L where Z = -1 +T. This point may be regarded
as the remnant of the attracting node A and the saddle point B.

Eventually the solution enters the spurt phase and tends to the critical point C.
Because C is an attracting spiral, the stress oscillates between the shear and normal com-
ponents while it approaches the steady state.

D. Unloading: Shape Memory and Hysteresis
Now consider unloading from a steady solution for the load f1 to the load f < f

assume, for the moment, that 7 and 71 are both positive. The initial steady solution need
not correspond to top jumping, as would be obtained by a pure loading process. Again the
zones shift: some points previously in Zone 1 move into the new Zone 2 or 3. The orbit
through any point in the new Zone 1 tends to the spurt attractor C for 7, and the orbit
through any point in the new Zone 3 tends to the classical attractor A. More generally, the
orbit through any point starting at a classical attractor A1 leads to a new classical attractor
A; this follows, as before, because the stable manifold for B cannot cross r between B and
the origin. For points in the new Zone 2 that initiate at a spurt attractor C1, however,
there is an apparent choice of final rest state.

Clearly, the answer depends on whether C1 lies on the same side of the stable manifold
through B as does C. If this is true, the orbit through this point tends to C, so that spurt
continues at this point. Suppose, for example, that it is true of all points in the new Zone 2
that initiate at a spurt attractor. Then all points that were classical remain classical, and
spurt continues at all other points. Thus the position x. of any jump in strain rate stays
fixed, even though other flow characteristics (such as the magnitudes of the velocities)
change. This phenomenon was termed "shape memory" by Hunter and Slemrod [7].

As an instance of this, suppose that the stress T(x) of smallest magnitude for points
x in the spurt layer is strictly greater than Tm,-. Then if f is sufficiently close to71, T(x)
for each x in the layer remains larger than Tmn; thus no point in the layer belongs to
the new Zone 3. Moreover, for such an x, the stable manifold through B is only a slight
perturbation of the stable manifold through D1, which surrounds C1 , so that it surrounds
C. Thus shape memory occurs in the situation where the stress in the layer is separated
by a gap from Tm and the loading increment is sufficiently small. Because the stress at a
jump in strain rate falls in the open interval Tm < T <TM, such solutions are referred to
as "intermediate jumping;" this is the case illustrated in Fig. 2.

If, on the other hand, the minimum stress in the layer is Tm so that one layer boundary
corresponds to bottom jumping, then the spurt layer must shift upon unloading. Indeed,
there are points x in the layer for which T(x) < T,, so that they have moved into the new
Zone 3 and must flow to a classical attractor. The layer moves to the point x. farthest from
the wall such that T(x.) = Tm.. Similarly, shape memory is lost if 7 is lowered enough
that T(x) drops below T, in the layer. It is also possible, when the change in loading is
large, for spurt attractors C1 to lie on the opposite side of the stable manifold of B from C.
This causes the formation of a region of classical flow next to the wall, which can coexist
with intermediate spurt layers as well as the classical flow in the center of the channel.

This picture of shape memory explains the hysteresis loop in Fig. 9 obtained in a
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loading-unloading sequence. In this figure, the throughput S, which is proportional to the
area under the velocity profile in Fig. 3, is plotted as a function of the wall shear stress
Twl = f/2. The portion of this curve between the origin and a corresponds to subcritical
loading, Tw. 11 < TM, while the segment ab corresponds to top jumping in supercritical
loading. Unloading commences at b and continues along be and cd. The throughput
along bcd is different from the loading curve because intermediate and bottom jumping
solutions occur along the unloading curve. In fact, the layer does not move during the
process be because of shape memory, so that the spurt layer is wider during unloading,
resulting in larger throughput. At some point between b and c, the imposed T,,a becomes
lower than TM; yet the flow remains supercritical. In such a situation, the flow would
be subcritical at the corresponding stress in loading, and the difference in throughput in
loading and unloading is particularly dramatic. At point c, bottom jumping commences,
and the throughput decreases much more rapidly because the layer moves toward the wall.
This accounts for the discontinuity in slope at c.

The salient features of this explanation of hysteresis are: the hysteresis loop opens
from the point at which unloading commences; no part of the unloading path retraces the
loading path until point d; and there is a discontinuity in slope of the unloading portion
of the loop. These features stand in marked contrast to other plausible predictions of the
nature of the hysteresis in spurt [15]; experiments are needed to verify which theory is
correct.

E. Reloading and Flow Reversal

It is possible, of course, to apply more complex load sequences than those just de-
scribed. For example, a loading sequence can be followed by unloading, which, in turn,
is followed by reloading. Arguments extending the ones given above can be used to make
qualitative predictions in such cases. For example, the layer position can remain fixed
upon reloading.

Another striking phenomenon predicted by this analysis occurs when f7 and 7 have
opposite signs and 171 < 171. This more general form of unloading (defined in Ref. [9])
causes a reversal of the flow direction; surprisingly, though, the layer position can remain
unchanged. For this to happen, the magnitude of the stress at the layer boundary must
not fall below T,,,, and the stable manifolds of all saddle points B (which are now in the
left half-plane of the phase portrait) must extend far enough into the right half-plane to
enclose the spurt attractors C1. For small e, the stable manifold for a saddle point B is
nearly a circle, and shape memory in flow reversal is more the rule than the exception.
Because we doubted our observation of shape memory during flow reversals in numerical
simulations, we were motivated to pursue the the more rigorous analysis described above.

F. Summary
To summarize, the phenomena of top jumping upon loading and shape memory and

hysteresis upon unloading follow from analyzing the phase portraits of the approximating
system (3.1). The analysis reduces to asking, for each point in the channel, whether or not
the steady state for the initial load lies in the basin of attraction of the classical attractor
for the new load. More complicated load sequences can be analyzed easily by answering
this question.
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5. Conclusions

The phase plane analysis of the approximating dynamical system (3.1) accurately re-
produces the spurt behavior in viscoelastic shear flows that was observed experimentally by
Vinogradov et al. [20] and numerically in Refs. [9, 12, 13]. Furthermore, this analysis pre-
dict" several associated phenomena, also observed numerically, such as latency, hysteresis,
and shape memory; rheological experiments to verify these effects would be valuable.
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