-

PR

AD-A210 548

CECOM CENTER
FOR
SOFTWARE ENGINEERING

SOFTWARE
METHODOLOGY)

. 7"‘5

CATALOG '&!
Second Edition :_.Z\vo B

<

il STATIMENT X
L Apprevad 1o P-ziiz rejeasey
Dismpuncy Unlimited

&2
)

RESEARCH AND DEVELOPMENT TECHNICAL REPORT
C01-091JB-0001-01

SOFTWARE
METHODOLOGY
CATALOG

Second Edition

Prepared by

Laurel Von Gerichten
Marilyn Ginsberg S
Richard Pirchner e, Accesion For]

Richard Guilfoyle NTIS CRA&I d

DTIC TAB a
Unannounced]
Justihication

R

Teledyne Brown Engineering
151 Industrial Way East
Eatontown, NJ 07724

March 1989 BY
Dostiibutinr]

P [
r‘ hesi ety Codes
Approved for public release; distribution is unlimited. P —; TR andlor

o Special

Prepared for

CECOM CENTER FOR SOFTWARE ENGINEERING

US ARMY COMMUNICATIONS-ELECTRONICS COMMAND
FORT MONMOUTH, NEW JERSEY 07703-5000

NOTICES

Qisclaimer

The citation of trade names and names of manufacturers in this report
{s not to be construed as official Government indorsement or approval
of commercial products or services referenced herein.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE
Form Approved
REPORT DOCUMENTATION PAGE OMB8 No. 0704-0188
1a. REPQRT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release; distribution is
25 DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
C01-091JB-0001-01
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE $YMBOL 7a. NAME OF MONITORING ORGANIZATION
Teledyne Brown Engineering (if applicable) US Army Communications-Electronics Command
(CECOM), Center for Software Engineering
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
151 Industrial Way East ATTN: AMSEL-RD-SE-AST-SE
Eatontown, NJ 07724 Fort Monmouth, NJ 07703-5000
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL J 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
' DAAB0O7-86~D-R001
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT : TASK WORK UNIT
ELEMENT NO. | NO. NO. ACCESSION NO.
612783 AQ94 01 01
11. TITLE (include Security Classification)
SOFTWARE METHODOLOGY CATALOG, SECOND EDITION (U)
12, PERSONAL AUTHOR(S)
Laurel Von Gerichten, Marilyn Ginsberg, Richard Pirchner, Richard Guilfoyle
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) J15. PAGE COUNT
Technical Report from Apr 88 to Mar 89 1989 March 445

16. SUPPLEMENTARY NOTATION
This report is a revision of Report No. C01-901JB- 0001, same title,

dated December 1988, ADB128594.

17. COSATI CODES 18. SUBJECT TERMS (Continue oR reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Software Methodology; Software Engmeermg ;
12 05 ~ Computer Programmi ng

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

" This technical report provides a consolidated reference for software methods used over the
 total spectrum of software development, The primary objective is to provide, for each
method included, a brief overview of the method and to give some insight into the underlying
assumptions, the software development activities which it supports, and other characteris-
tics associated with its use. A second objective is to provide sources for further informa-

tion. The second edition of the catalog reports on 73 software methods. ,'\ e,
20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
R uncLassiFieoruNumiTED [SAME AS RPT. [DTIC USERS Unclassified .
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢ OFFICE SYMROL
Harold L. Tamburro (2G1) 544-2029 AMSEL -RD-SE~AST-SE
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

TABLE OF CONTENTS

CHAPTER 1: CATALOG OVERVIEW

1.1 INTRODUCTION
1.2 BASIS OF CATALOG
1.3 CONTENT OF CATALOG

...

...

...

1.4 CONCLUSIONS AND OBSERVATIONS ..ottt resesvesnesenssiessnnes

CHAPTER 2: AN OVERVIEW OF BASIC CONCEPTS

2.1 INTRODUCTION

.......................

...

2.2 SOFTWARE PROCESS ABSTRACTIONScvvmiiiiiiinininnniniseiessinisnses et st caseanses
2.3 RELATIONSHIPS BETWEEN METHODS, APPROACHES, TOOLS, AND

...

CHAPTER 3: METHODS CURRENTLY IN USE

3.1 ABDLSLCM .- Ada Based Design Language System Life Cycle Methodology ...
3.2 ADM -- Ada Development Methodc.cccvininmeicninnininienc et eiesreaesneens
3.3 AISLE -- Ada Integrated Software Lifecycle Environmentcccouviinnicrncnnnnns
3.4 BOX STRUCTURES -- The Box Structure Methodology for Information

35

36

37

3.8

39
3.10
.1
3.12
313
3.14
3.15
3.16
ER Y}
3.18
3.19
3.20
321
3.22
3.23
3.24
3.25
12k

Systems Development

...

BYRON -- Byron PDL and Document Generatorcoccvvvvenvincniannnsreisessescsseens
CORE -- Controlled Requirements EXPressionccecieiiennessiirenniernsnscsisssennes
DARTS -- Design Approach for Real-Time Systemscoovvmiiivvniniinnnicnienens

DBO -- Design by Objectives

...

DCDS -- Distributed Computing Design Systemcccoeiveveinrievencennrecninnnnnenees
DSSAD -- Data Structured Systems Analysis and Designevvveivinennnninene
E-DEV/ESA -- Essential Systems Development/Essential Systems Analysis

GYPSY -- Gypsy Methodology

...

HOOD -- Hierarchical Object Oriented Design ..o snnnenes
IBM/4LDM -- The Four Level Design Method ...
IEM -- Information Engineering Methodologyccccoeviviviniinisninnnniineeiiinnens
ISAC -- Informations Systems Work and Analysis of Changesc.cevrirnicnnns
IStar -- Integrated Project Support ENVIironmentoocomiinmninieseenssiinens
JSD -- Jackson System Developmentcoeeviniecniieinniienreniini s
MASCOT -- Modular Approach to Software Construction, Operation and Test
MBOOD -- Model-Based Object-Oriented Designcoovvvninnneniiiveiinincnnnns
MINI-ASYST —~ The MINI-ASYST Development Methodologycecceeiiciinnn
MULTU/CAM -- MULTI/CAM - SDM/STRUCTUREDcovuvrrverrrriernnrnnene

ObjectOrycoccovvvinivirnnn

QOA -- Object Oriented ANalySiSccccoverirvnrininenmnee s
OOA/ST -- Object Oriented ANAIYSISccoccvirmeiniiniiiinr e

OOD -- Object Oriented Design

fii

1-1
1-2
1-4
1-7

3-2
37
3-11

3-15
3-19
3-24
3-28
3-32
3-37
3-43
3-47
3-54
3-58
3-63
3-68
3-73
3-77
3-82
3-87
3-92
3-96
3-100
3-105
3-110
3-114
3-118

3.27 PAISLey -- Process-oniented, Applicative, Interpretable Specification Language
3.28 PAMELA 2 -- Parts Assembly Method for Embedded Large Applications
3.29 PDL/81 -- Program Design Language/81ccocovceerercmncnnncenenceensecesescesesenencacs
3.30 PRIDE -- "PRIDE" Family of Products for Information Resource Management

(TR coeeiniieceiectecteee e seeeetesese et e s eres s s anesearestossassessesesnasontessstrsssansesensasentasearesesaseanen
3.31 PROMOD -- the Project Modelscccovcevmvciniiccninnrcinisssisssssssssm e ssesasene
332 PROTOB ...t es st s ot seston seasssbsas st sue e s es b st seestsessanssessossssseneanans
3.33 PSL/PSA -- Problem Statement Language/Problem Statement Analyzer
3.34 RM -- Refinement Methodcccoviiciinccsincinieinc ettt ssencene
3.35 SADT -- Structured Analysis and Design Techniqueooeireriiriviinsiirinionnienen,
3.36 SCR -- Software Cost ReUCHONccccoeomioviuiinincivcitreniirisiirveciunnesessssss s issnrerens
3.37 SD -- Structured Designccoceeoiinriiiiiiiinrceie s s cesresessssssnserssssesaeens
3.38 SEM -- System Engineering Methodologyccooeveviiciimnninnnncnnninnsnesncsnenns
3.39 SSD -- Hatley/Pirbhai - Strategies for System Developmentccococcvvnvinnennnens
3.40 STATEMATEooiiiinietnrtseressecsesnst s sse s ssasessonssasesssnsasesis s sassecsssssasassesess
3.41 StP -- Software through PICTUIEScccciiiemiiinienicnrunrsseniennsiriene et resessssssesssenes snes
3.42 STRADIS -- Structured Analysis, Design and Implementation of Information

SYSIEIMS .eeiciiviiniricetrresintietstseemsse e bsat s e ssenastsansatensassosesssrtssbn s sresessssasestasesrbstasssnsenens
3.43 TAGS -- Technology for the Automated Generation of Systemsc.conivivcnnnne
3.44 UCRA -- User-Centered Requirements Analysisccoeveruerecserimscctesecccnsuesnnnnnas
3.45 WARD/MELLOR -- Ward/Mellor Real-Time Methodc.ooeceiennnnreconccrnnrennne

CHAPTER 4: EMERGING METHODS

4.1 ABDP -- Actor Based Design and Prototypingccecceveeviiininiinenessnsinnensnnnns
4.2 ADARTS -- Ada based Design Approach for Real Time Systemsccccocvvevenrvinen
4.3 CAEDE -- Carleton Embedded System Design Environmentccocoevnviivnccncnne
4.4 CODE-TOP -- Concurrent System Development Using Transformations of
Predicate-transition NEtSccocoviiriniicnicnnnc i teeesaess e sssasetesssnsesensesassvense

4.5 COMIC -- Conceptual Modelling and Information Constructioncccceveemserecen.
4.6 ERAE -- Entity Relationship Attribute Eventccocoviinininnnncccnnnneciciennene
4.7 GANDALF -- Gandalf System for Structure Oriented Environment Generation
4.8 GOOD -- General Object-Oriented Software Developmentccoiviineiicennne.
4.9 HCDM -- Hierarchical CHILL Design Methodcccceiiciniinininncenenccicnniccnreennns
4.10 HPS -- Hierarchical Planning for Software Development and Evolution
A1 INNOVAR ...ttt a s st s s st s sa bt e e
4.12 MC -- Machine Chartscociecnininiiintierennisissiessis i ssinstssiessssssssessescssssssnees
4.13 MMAIM -- Martin Marietta Ada Implementation Methodccccoevevirrriiiniannne
4.14 PROSPECTRA - PROgram development by SPECification and TRAaslation
415 REMORA et scsr st sstsasrs st s s s sas s st st sn e e e susrasassbsmebbsenses
A6 TEDIUM ...ttt se e sreetse e et stess st sseos seaee st sunensbestsseesssasessenesstnessnnsasens
4.17 UOSE -- User Oriented Software ENgINEeringccccovcviveerecmecssncrosseisreninens

iv

4-2
4-6
4-8

4-11
4-15
4-18
4-21
4-24
4-27
4-31
4-33
4-36
4-39
4-42
4-46
4-49
4-52

CHAPTER 5: OTHER METHODS CURRENTLY IN USE

5.1 AUTO:G ...ttt st er s e s e st s b s s e e bbb abe s are st eseneenaneesenns
5.2 DSSD -- Data Structured Systems Developmentccocovirniivivniiecrccenicinnceens
5.3 MERISE -- the MERISE Method ..ot cenens
5.4 NIAM -- Nijssen’s Information Analysis Method ...
5.5 PRECISE ...ttt er sttt sess s b s st s s bbb asnaon st st an
5.6 SAM -- Syslog Automation Methodologyccvvivnininiiniinrnininencneseenenenneneenenns
5.7 SBP -- Specification Based Programmingcccoeeeviiiiniiccnieneencnenienieseneneceeenens
5.8 SEPP -- Software Engineering Practices and Procecntesc.cccocvvcenevcnneeenennene
5.9 SSPM -- Software Standards and Procedures Manuatc..cccecceerererceereeneeneveneecs
5.10 S-JAD -- Structured Joint Application Developmentcocoevvennsiriioenvinienens
5.11 VDM -- Vienna Development Method ... e

CHAPTER 6: SUMMARIES OF RESPONSES TO SELECTED SURVEY
QUESTIONS

6.1 DEVELOPMENT ACTIVITIES ADDRESSED BY THE METHOD
6.2 APPROACHES USED BY THE METHODccooiiiiecicitneescrceemee e eecaesennans
6.3 THE RELATIONSHIP OF METHODS TO SOFTWARE
PROCESS PARADIGMS ...ttt et sransestsas s e ssssassessesen
6.4 EXTENT OF USAGE OF THE METHODcccovveniirinntrenirnnenencssnsensessssssasessanes
6.5 APPROPRIATE APPLICATION AREAScccooiivimiieicnnestneeenescsareseeseseenns
6.6 RELATION OF THE METHOD TO PROJECT SIZEccocoemivcecmereecerecesenene
6.7 RELATIONSHIP OF METHODS TO PROGRAMMING
PRACTICES/CONCEPTSooiircticrcmscssesssstisnic sttt sesesesesessassesensncassosses
6.8 ABILITY TO ADDRESS REQUIREMENTS OF THE TARGET SYSTEM
6.9 TEXTUAL MODES OF COMMUNICATIONccooervirimminricrmeceneensrensrnsessssaseserens
6.10 ICONOGRAPHICAL MODES OF COMMUNICATIONccoccoimmneninnricrennns
6.11 TECHNIQUES FOR REQUIREMENTS CLARIFICATIONccccoovminninrrnennas
6.12 ANALYSIS AND REVIEW TECHNIQUES USED BY THE METHOD
6.13 PROJECT MANAGEMENT SUPPORT PROVIDED BY METHOD

6.16 DOCUMENTATION REQUIRED BY THE METHODccccooeiivninniiceccenene
6.17 QUALIFICATIONS NEEDED FOR USE OF THE METHODccccocvceinivinenenen.
6.18 ASSISTANCE AVAILABLE FOR TRAINING IN THE USE OF THE

METHOD

APPENDIX A: BIBLIOGRAPHYocciiimrrnertiinesnineicnenenseessessssssnisssnsessssensscns
APPENDIX B: SURVEY OF SOFTWARE METHOD DEVELOPERS

APPENDIX C: SURVEY OF EMERGING METHODS...........co.ccoomncvmrmnnrnnraiennnens

5-2

5-5

5-8
5-11
5-13
5-15
5-17
5-20
5-22
5-25
5-28

6-5
6-9

6-13
6-17
6-21
6-25

6-29
6-33
6-37
6-41
6-45
6-49
6-53
6-59
6-63
6-67
6-73

6-75
6-79

This page is intentionally left blank.

i E S G B0 50 G B BN G WS BN B NR O WE BN O o

CHAPTER1

CATALOG OVERVIEW

1.1 INTRODUCTION

Purpose

This catalog provides a consolidated reference for methods used over the total spectrum of software
development. A primary objective is to provide a brief overview of each method, and to give for each method
some insight into its underlying assumptions, the software development activities which it supports, and other
characteristics associated with its use. A second objective is to provide sources for further information,
including literature references and points of contact. One final objective is to provide a facility for contrasting
the various methods relative to selected attributes.

The software process is but one component of the larger goal of building a computer-based system.
There are few methods which address the total development process. Although some of the methods described
in the catalog deal with total system development, it is the purpose of this catalog to focus upon methods
associated with developing the system software. The catalog represents an effort to obtain the most current
information available for each method. To this end, surveys were developed, and responses were solicited from
developers. In writing the catalog the authors have elected to serve as reporters rather than evaluators.
Evaluative statements that appear in the catalog are based upon survey responses.

Intended Audience

The catalog is intended for software engineering professionals involved in either the technical or
managerial aspects of software development. In order to present each method in a way that the reader would find
informative and predictable, a fixed format for describing methods was chosen. It is assumed that the reader has
some background experience with software development projects, as well as some familiarity with methods.

The catalog offers the reader brief descriptions of different methods and their associated characteristics.
While the descriptions of methods are not of sufficient depth to function as a tutorial, they should provide
enough detail to portray the essentials of the method and of related usage characteristics. The catalog also
provides a discussion of some of the main ideas in the software development process. This discussion
establishes the basic terminology and concepts used in the catalog, and should be consulted for background
information and for an understanding of the authors’ perspective.

It is hoped that the software engineering community will find this document useful for gaining insight
into particular methods, as well as for solidifying an understanding of some of the principal ideas in the field.
For this latter purpose, a bibliography has been provided in an appendix. Thus, the catalog may serve as a
reference for ones own work, or for understanding software development methods used by others.

-1

1.2 BASIS OF CATALOG

Background

In November, 1982, in a study commissioned by the Ada Joint Program Office, Peter Freeman and
Anthony Wasserman set forth the requirements for a software development methodology. This study [Free§82],
commonly known as Methodman, related software process issues to the Ada Programming Support Environment
(APSE) and presented an evaluation of a set of methods. Included in the report were a summary of questionnaire
responses and a study plan for evaluating software design methods for use with Ada.

A follow-up study to Methodman was performed by the Institute for Defense Analyses under the
auspices of the Software Technology for Adaptable and Reliable Systems (STARS) Joint Program Office
{Conv85], [McDo085]. Volume II of the report [McDo085] has become known as Methodman II, and summarizes
the work of the STARS Methodology Coordination Team. The report addressed issues related to the total
software development process. The report also suggested an approach to classifying, evaluating, and selecting
methods.

The two studies above provided much of the initial background for the current catalog. The issues
discussed in those reports were reviewed and contrasted with reports of other related research in software
engineering. Among the latter was a report published by the Department of Industry, London, in September,
1981 [DInd81). This study correlated features of the Ada language with the system development process and
described a number of well-known methods. In addition, the study provided an informative discussion of
software process issues and analyzed the concepts of encapsulation, concurrency, and formalized approaches to
software development.

Also reviewed was a report which detailed the problems of NASA’s MSOCC [RoyD84]. The approach
taken in this study was to identify the "...many influences within the workplace that affect the productivity of
software developers...” [Free82]. The study reported on problems in software development as seen from the
developer’s viewpoint, current trends in methods and tools that might alleviate the problems, and some other
projected solutions.

Ideas emanating from various conferences and workshops have further influenced the perspective of this
catalog. The International Workshop on the Software Process and Software Environments held in March, 1985,
provided definitions and discussions that have aided in reconciling terms and concepts that have evolved in
recent times. The presentations and proceedings of the Ninth International Conference on Software Engineering
[ICSES87] held in April, 1987, provided a further update to the issues. Additionally, the emergence of a field
known as Computer Aided Software Engineering (CASE) has brought about an emphasis on the connection
between environments and methods, and has affected the way automated tools have been regarded in the catalog.

Finally, the authors have had an opportunity ‘o refine the approach to this second edition of the catalog,
based on insight gained from their creation of the first edition [Maha87]. The principal difference between the
two editions is the approach towards gathering information for the catalog.

Scope of the Catalog

In developing the scope of the catalog, there was a need to clarify the definitions of method, approach,
tool, and environment. Definitions given in the Conference Proceedings of the 1985 International Workshop on
the Software Process and Software Environments [[WSP85] were used to derive a set of working definitions that
follow. In the discussion which follows, the word scheme has been used to mean "a way of performing a set of
activities.”

1-2

Method: A definite, established, logical, or systematic plan. The steps and purposes have been
thought out beforehand in detail. A scheme is a method when it guides the user to a predictable result
given an appropriate set of starting conditions.

Approach: A way of beginning or managing an effort; a way of analyzing, planning or directing a
project; a way of conducting operations. A scheme is an approach when it suggests ways to identify
goals initially and/or suggests, at an abstract level, ways to proceed toward goals.

Tool: Anything used to do specialized work or to obtain a specific result; there is a unity of purpose.
A scheme is a tool when it is essentially automatic. The user supplies input data or changes, but the
tool produces the associated work product.

Environment: An integrated collection of tools supporting an approach. The components of an
environment are designed to reduce the effort required to carry out the software development process

whether they are used individually or in combination.

The use of the term method in this catalog needs further explanation. Both tools and approaches exist
over wide spectra. Within these spectra, making a clear distinction between a sophisticated tool and a method on
the one hand, or between a method and a prescriptive approach on the other, is difficult. Thus, the authors’ use
of the term method in this catalog has been widened to include schema that could be termed tools or approaches.

By way of examples, consider th. following. An integrated set of tools with a prescriptive user’s
manual might be offered as a software development environment. In such a case, an implied method or approach
exists by virtue of the fact that there is only one way to use the set of tools in order to arrive at a final software
product. On the other hand cousider a scheme which prescribes the order in which activities occur and how these
activities are to be managed, but is not limited to one specific way of accomplishing individual activities. This
scheme might be offered as an approach. Nevertheless, the instantiation of such a scheme implies a definite
systematic plan for developing software. Accordingly, this catalog includes those schema that have been judged
to satisfy the essence of the definition for method given above: a definite, established, logical, or systematic
plan.

The term methodology occurs often in the context of software development. It was observed that the
meaning assigned to the term varied widely throughout the software community. Furthermore, recent practice
within the software engineering field has encouraged the use of the term methodology only in reference to the
study of methods. Accordingly, the meaning of the term in this catalog is restricted to the study of methods.

Survey Efforts and Results

For a method to be included in the catalog, it was decided that information should be provided by the
developer or vendor of the method. Some important methods may have been omitted due to a lack of response
from developers who were contacted, or due to inadequate contact information with respect to other developers.

For the first edition, an initial set of candidate methods was compiled from prior methodology surveys,
conference proceedings, technical journals, bibliographies published by professional organizations, and
responses to a bulletin board notice posted on various nation-wide electronic networks. In some cases, an initial
contact letter was used to further clarify the suitability of these candidates. The candidate methods for the
second edition were identified based on the efforts of the first edition as well as on updated information. In
addition, the authors made a decision to de-emphasize inclusion: of methods which were considered to be single-
purpose and oriented towards data-processing systems. Emphasis was placed on obtaining multi-purpose
methods as well as methods oriented towards developing real-time systems.

1-3

-

The strategy for obtaining information for the first edition of the catalog differed significantly from the
strategy used for the second edition. In the first edition. the survey of method developers was designed such that
the responses from this survey could be "verified” by a method-user survey vehicle. This approach was taken in
the light of criticisms of previous studies which failed to include the perspectives of users of methods. The
questions for both the developer and user surveys for the first edition were, in the main, formulated for multiple-
choice response, in order to simplify data analysis and to provide the opportunity to contrast methods.

In the initial phases of the efforts to update the catalog, an analysis was made of the results of the first
edition and the inherent data-gathering approach. Based on this analysis. an extensive revision was made of the
questionnaire, with emphasis placed on soliciting more specific information on various method aspects.
Additionally. an extensive analysis was made of the attempt to gather data from method users. The authors
concluded that gathering meaningful data about individual methods from users requires information about the
respondents themselves, and would involve significantly more resources than were available in the project.
Accordingly, it was decided to use only developer/vendor information as a basis for the second edition of the
catalog. Two survey vehicles were developed: a survey for methods currently in use in the software engineering
community. and a survey for methods which have not yet become availible for general use.

The data gathering results for the second edition were as follows. 143 initial letters were distributed in
order to determine the appropnate type of survey to send: from responses to this initial mailing and from sources
identifying known methods, approximately 137 developer survey questionnaires were distribuied. Completed
questionnaires were received for 63 (45%) methods. This total represents the combined response for both types
of survey vehicles.

In summary. candidate methods were identified by researching software development literature and
recent conference proceedings, and by an initial contact letter sent to professionals in the field. The information
used to describe each method was obtained primarily from responses to the developer questionnaire: technical
literature provided additional information. The results of the survey also provided the basis for comparing
methods to each other.

1.3 CONTENT OF CATALOG

Determination of Descriptive Characteristics

The particular set of characteristics chosen to describe methods was determined in the following
manner. An initial set was identified based upon terms used primarily in the two Methodman studies. with some
further input from other methodology research sources. This set, based upon the considerable previous efforts of
others, provided a foundation for further analysis and refinement.

During the next step in the selection process. the authors individually scored each characteristic for
identifiability and importance. The word "identifiability” is used to mean the capability of establishing that a
given method has the given characteristic. A consensus rating was then determined. It was evident in this
process that various studies were not consistent in the meaning assigned to such characteristics. Additionally, for
some characteristics of high importance it was difficult to establish their identifiability. This difficulty was due
to one or more factors. In the first case, the characteristic may be an abstraction representing a collection of
other characteristics which themselves are more identifiable. Secondly, the characteristic may represent a
concept that has come into being before any well-defined sub-characteristics have been associated with it
[Abbo83]. Finally. the determination of whether a given method possesses a certain characteristic may require
some form of experimentation.

As a result of the above process. the characteristics selected for describing methods in this catalog were:

- Activities covered by the method,

- Extent of usage,

- Appropriate application areas,

- Ability to incorporate requirements of the target system,
- Support of communication during development,
- Client involvement,

- Support of changeability,

- Support of project management,

- Automated facilities supporting the method,

- Available training in the use of the method, and
- Acquisition factors.

Additionally, some information has been provided about characteristics associated with the resulting
software, including maintainability, portability, testability, reliability, and reusability.

It may be observed that these characteristics are similar to those derived in previous studies. Where this
analysis does differ from these previous studies is in the emphasis placed on the method itself as opposed to the
software resulting from use of the method. When characteristics that apply more to the qualities of the resulting
software than to the method are discussed, such as portability or maintainability, the focus is to describe the
intent of the method to impart these qualities rather than to evaluate the effectiveness of that intent. Thus, some
important software qualities have been de-emphasized in the catalog due to the lack of measurable criteria. What
has been provided is a framework for reporting information on a wide range of methods.

Organization of the Catalog

Chapter 1, "Catalog Overview", discusses the procedures that were followed in arriving at the content of
this catalog, as well as the organization of the information in this document.

Chapter 2, "An Overview of Basic Concepts”, provides background information on software process
concepts. Examples of software process models are given, followed by a discussion of approaches to software
development. Additionally, the relationships between methods and approaches, as well as between tools and
environments, are explored.

Chapter 3, "Methods Currently in Use", presents descriptions of methods which are used to develop
software systems, and for which a developer survey was completed.

Chapter 4, "Emerging Methods”, presents brief descriptions of additional methods for which a
developer survey was returned but which are classified as in development or exploratory.

Chapter 5, "Other Methods Currently in Use”, summarizes information on several methods which were
included in the first edition but for which more current information could not be obtained.

Chapter 6, "Summaries of Responses to Selected Survey Questions”, contains the authors' syntheses of
responses to selected developer survey questions. Additionally, summaries of these responses are presented in
tabular form.

Appendix A, "Bibliography”, i< divided into a general reference section and a method-specific section.
Individual items have been included ¢ " “12r because they were referenced in the catalog or because they provide
an additional source of information related to the software process.

Appendix B, "Survey of Software Method Developers", provides a copy of the questionnaire used to
compile information about methods currently in use.

Appendix C, "Survey of Emerging Methods", provides a copy of the questionnaire used to compile
information about methods not yet available for general use.

Format for Describing Methods

The information which is used to describe an individual method is based upon the responses from the
developer's survey, and on literature references. a list of which is provided at the end of each write-up. The
acronyms used in the catalog are those assigned by the developers. When a developer had no preferred acronym
for his or her method, the authors chose an acronym to serve as an identifier of the method in this catalog.

The first section of the description provides background information which includes a synopsis of the
method and a brief history including a list of other methods from which the current method evolved.

The next section presents a summary description of the method, with information on such topics as
approach, the sequence of events followed in using the method, the components of the method, and where these
components are used in the software development process.

The third section, "Technical Aspects”, reports estimates of the number of organizations using the
method and of the number of delivered systems. Opinions of the developer are reported regarding appropriate
application areas, and the appropriate size of application for which to use the method. Further information on
applicability is provided related to the method’s ability to incorporate particular characteristics of the target
system, and any relationship of the method to programming languages. Also, the modes of expression required
by the method are reported, as well as any mapping rules prescribed for transiating from one mode of expression
to another, and the way that the method assists in translation across phases of the software process. Further,
techniques for analysis and requirements clarification are discussed, as well as aspects of the method which
address changes in the requirements, maintenance, portability, and reusability of the resulting software.

The fourth section, "Project Control and Communication”, discusses the way the method addresses
project management activities, as well as the communication channels provided by the method within the
technical team, for management, and for understandability with the software client. The means by which the
method involves the software client in the development process is reported, as well as the software
documentation associated with the method. Quality assurance issues such as verification and validation
techniques. as well configuration management, are presented.

The fifth section, "Ease of Use”, provides information on technology insertion, including the
developer’s opinion of the essential concepts that must be understood and the minimum qualifications of a team
leader for successful use of the method. Also given are estimates of leamning times, and the training available for
learning the method. The facilities for incorporating automation are summarized, including an overview of
specific support tools.

The sixth section, "Acquisition Factors”, lists cost estimates, presents the required hardware and
software configuration needed to support the method, and gives contact information. If the acronym used in the
catalog to represent a method is not a standard product name, this will be noted under the contact information
section.

The final section, "References", lists books or articles which should be consuited by readers who wish
to learn more about the method. These references are also listed under "Method-Specific Literature"” in the
bibliography which appears in Appendix A.

1-6

EE EE N U W G G5 UGN UGN Un G 0N AN Sm R WR 0 W -

Comparing and Contrasting Methods

In Chapter 6, "Summaries of Responses to Selected Survey Questions”, the reader is provided with a
convenient format for contrasting methods. The authors have selected a set of questions whose format provided
a ready basis for comparison of responses. For each of the selected questions, the responses of the developers
have been summarized in tabular form. Topics which have been taken up in this chapter include development
activities addressed and approaches used by the method, extent of usage of the method, recommended size of
application with which to use the method, appropriate application areas for use of the method, and the ability of
the method to address specific constraints of the target system. Additionally, this chapter addresses modes of
communication used by the method, support provided by the method for changeability, for verification, for
project management and for documentation, assistance available for training in the method, and estimates of
times needed to learn the method. Further topics include the relationship of the method to software process
paradigms and to programming practices or concepts, and the developer’s opinion of minimum qualifications
needed for successful use of the method.

The results reported in these tables represent the responses of the developers. The authors have not
attempted to evaluate these responses in any manner, but do provide the reader with caveats for how he or she
may best interpret these responses.

1.4 CONCLUSIONS AND OBSERVATIONS

The data for the second edition of the catalog was based solely on the responses provided by developers
to survey vehicles, with reference to technical literature for supplemental information.

The definitions given in this catalog and the set of characteristics chosen to describe methods may not
meet with universal agreement. The experience of creating the catalog convinced the authors that these choices
were reasonable. Accordingly, the authors conclude that (1) the broad criteria chosen to select methods were
appropriate, and (2) useful information about methods can be communicated by using a largely descriptive
approach.

Several observations have been drawn by the authors as a result of the effort to produce this catalog.
First, methods developed more recently appear to be more prescriptive, are being tailored to specific application
areas, and/or attempt to involve the client more closely in the development process. Secondly, methods which
use formal justifications to show correctness are prominent in the European community, and are finding
increased importance in the United States. The authors have also observed that the European methods, both
current and emerging, tend to have more demanding requirements for education than methods originating in the
United States. A fourth observation is that there is a movement towards object-oriented approaches. Finally,
structured analysis is a progenitor of many current methods: that is, many methods, both those that have been
used extensively and those which have emerged recently, prescribe some form of structured analysis for concept
exploration and system specification.

1-7

This page is intentionally blank.

1-8

CHAPTER 2

AN OVERVIEW OF BASIC CONCEPTS

2.1 INTRODUCTION

Terminology and Complexity

Software engineering encompasses many concepts, from project management through system design
and software coding, to maintenance. Consequently, the terminology associated with the field is extensive and in
a state of change, making descriptive clarity somewhat difficult. The concepts associated with the software
process involve both the study of distinct ideas as well as their interrelationships. As in all fields, there is a need
to categorize concepts in order to attain some level of abstraction.

Currently, terminology in software engineering is not universally agreed upon - terms are overloaded,
unnecessarily synonymous with others, or represent concepts which have not yet stabilized. In addition, proper
terms to convey distinctions between overlapping concepts may not exist. Moreover, there are attributes of
software systems which are very difficult to understand and/or measure. Consider, for example, terms like
maintainability, reusability, portability, robustness, testability, and changeability. Casual use of such a term
could give the mistaken impression that the concept itself is well-defined.

In the sections which follow, an attempt has been made to provide the reader with a brief overview of
software process concepts pertinent to this catalog. The reader is also provided with the authors’ observations on
the similarities and differences between some of these concepts. Because of the extensive amount of software
process literature, the authors are not attempting to make an in-depth presentation. Instead, the authors’ focus is
intended to highlight the differences between concepts, guiding the reader to other sources. It is hoped that for
those readers who are new to this field, this chapter provides some clarification of terminology. For all readers,
it is the authors’ intent to establish a basis of terminology and concepts used in the catalog. The reader is
encouraged to consult the general bibliography in this catalog to gain a more thorough acquaintance with
software process research.

Definitions

In this section, definitions of key terms used in the catalog are stated. They are provided so that the
reader can get some sense of the authors’ understanding about methods and related ideas. Furthermore, the
definitions set a standard for the terms used throughout the catalog. Three important definitions stated in
Chapter | are repeated here.

Method: A definite, established, logical, or systematic plan. The steps and purposes have been
thought out beforehand in detail. A scheme is a method when it guides the user to a predictable
result given an appropriate set of starting conditions.

Approach: A way of beginning or managing an effort; a way of analyzing, planning or directing
a project; a way of conducting operations. A scheme is an approach when it suggests ways to
identify goals initially and/or suggests, at an abstract level, ways to proceed toward goals.

Environment: An integrated collection of tools supporting an approach. The components of an
environment are designed to reduce the effort required to carry out the software development
process whether they are used individually or in combination.

The following definitions were offered by the steering committee of the March 1985 International
Workshop on the Software Process and Software Environments [IWSP85].

Software Process: The collection of related activities, seen as a coherent process subject to
reasoning, involved in the production of a software system.

Software Process Model: A software process model is a purely descriptive representation of the
software process. A software process model should represent attributes of a range of particular
software processes and be sufficiently specific to allow reasoning about them.

In the sections that follow and throughout this catalog, the authors strive to use terms in a manner
consistent with the above definitions. The reader is encouraged to join with the authors in this effort to be
consistent and careful in the use of terminology associated with the software process.

2.2 SOFTWARE PROCESS ABSTRACTIONS
2.2.1 Introduction

Models and approaches are abstractions which help to conceptualize the process of software
development. A software process model offers a means of representing the components of the development
process, while a software approach offers a means of specifying how activities are to be performed in accordance
with some model.

The model concept, taken at a high level of abstraction, and applied to software development, is
exemplified by the concept known as the "software life-cycle”. This life-cycle notion captures the idea of
software existing beyond the design and programming stage of development. The life-cycle concept implies that
software exists even in the conceptual stages of problem definition, that it needs to be maintained after formal
development has been completed, and that it functions until retirement. This idea has served to expand the
boundaries of what software is by emphasizing the importance of factors outside of the development
environment, such as the software client and software support centers for maintaining systems. In spite of the
generality of this idea, however, it is the authors’ opinion that the use of the term life-cycle has often been
restricted to a single model. Accordingly, in this catalog the authors have elected to use the term "software
process" in order to convey a more broadly based concept.

Models, be they of the software development process or of the software itself, are constructed with the
model builder’s bias of what is important. This bias determines what set of concerns will receive greater
visibility. One of the more recent concerns in many of the process models is the concept of "assurance”, that is,
that the software product matches the client’s intent. A model may deal with this concept by including the role
of the software client in validating the system. Another model may incorporate this concept through a structured
formalism which ties requirements to the end-product. Assurance may also correlate to other considerations such
as the type of system to be developed, the technical orientation of people involved in the development eifort, or
the tools used in the effort. Consequently, the appropriate considerations need to be represented in the process
model.

2-2

Approaches to software development also cover a range of abstraction. An example of a high level
approach might be a corporation’s strategy for managing a project, including the choice of environments and
methods to be used for software development. At a lower level, the software decomposition strategy proposed
by a method may also be called an approach. Such a decomposition strategy is, in turn, based upon a model of
the target system as seen from a technical viewpoint. The model itself is biased by the parts of the system given
a high priority by the model maker. Thus, some models assign data a primary position while other models
choose to focus on the tasks the system must perform.

An opinion exists among some experts that there are benefits to having different views of the target
system. These experts advocate a strategy of using different models simultaneously to produce multiple views.
On the other hand, the same goal may be attained by linking one distinct model to another, creating a hybrid.
For example, some models that are data oriented have been modified to incorporate control constructs.

At times, it is difficult to partition software process abstractions in a manner that distinguishes an
approach from the underlying model. The attempt to conceptualize certain process models requires some
elaboration of the approach to be followed. The model represents "what" is to happen in the software
development process; an approach specifies "how" this is to be accomplished. It is not always easy to separate
the two. Examples of this are the rapid prototyping model, and the spiral model. On the other hand, approaches
are proposed for which no related process model has been explicitly elaborated.

In summary, abstraction is required in order to reason about the software process. On the other hand,
the establishment of clearly defined concepts has proven difficult to achieve.

2.2.2 Software Process Models

An interesting insight into the concept of models and their relevance to software engineering is quoted
by M. Lehman from a reprinted article which originally appeared in "The Encyclopedia of Ignorance":

In general, as knowledge and understanding of an artificial, man changeable, system increases,
we attempt individually and collectively to modify the behavior of that system.... The resultant
configuration is and must be treated as a different system which requires a new model to
represent it. Thus artificial systems and their models appear to be essentially transitory,
’continuously evolving’. [Lehm85]

In the following paragraphs, the models presented exhibit various ways of viewing the software
development process; these viewpoints, in tumn, contribute to the formulation of other models. For a relevant
collection of articles on this topic, see "New Paradigms for Software Development" [Agre86].

The Waterfall Model

The Waterfall model is one that many view as the classic description of the software process. This
model was first introduced by W. Royce [Royc70]. This model divides the process into the following phases:
system requirements, software requirements, analysis, program design, coding, testing and operations. Each
phase is conceived in terms of inputs, processes, and outputs. In this model, it was intended that the software
process proceed through the above sequence of steps with iterative interaction between phases confined to
successive steps. Experience showed, however, the need for more interaction between non-successive steps.
Variations of the model which allow for such interaction have been proposed.

Though there has been much criticism of the model, R. Pressman states:

... the classic life cycle paradigm has a definite and important place in software engineering
work. It provides a template into which methods for analysis, design, coding, testing, and
maintenance can be placed.... While it does have weaknesses, it is significantly better than
haphazard approach to software development. [Pres87]

The Spiral Model

The Spiral concept has evolved at TRW under the leadership of B. Boehm. The model involves
multiple iterations through cycles with the intent of analyzing the results of prior phases and determining risk
estimates for future phases. At each phase, alternatives are evaluated with respect to the objectives and
constraints, forming the basis for the next cycle of the spiral. Each cycle is completed with a review involving
relevant parties.

Boehm states:

The model reflects the underlying concept that each cycle involves a progression that addresses
the same sequence of steps, for each portion of the product and for each of its levels of
elaboration, from an overall concept-of-operation document down to the coding of each
individual program. [Boch88]

The Prototyping Model

The Prototyping model advocates the early development of components representing the eventual
system. Often these components represent the user interface to the system. A skeletal implementation of this
interface is developed with the intent of providing an opportunity for feedback from the software client before
the final system is specified and designed.

In an overview of prototyping, W. Agresti states:

A software prototype is an executable object for which the users and developers have different
expectations than they have for the corresponding delivered software product.

"The expectations for prototypes often include less functionality or poorer performance than the
delivered product will provide. [Agre86]

While the clarification of the user interface is one goal, prototyping may also be employed as a concept
within the context of another model. In this case, the second model of the software process may regard

prototyping as but one component of the process, to be used to clarify the behavior of the system at an early
point in development.

Incremental Model

In the Incremental model, an initial subset of the system is fully developed. Then in successive steps,
more elaborate versions are built upon the previous ones. The architectural design of the total system is
envisioned in the first step, but the system is implemented by these successive elaborations. The software is
developed in increments which represent degrees of functional capability.

The advantages of incremental development over either a pure top-down approach or prototyping are:

The increments of functional capability are much more helpful and easy to test than the
intermediate level products in level-by-level top-down development. The use of the successive

increments provides a way to incorporate user experience into a refined product in a much less
expensive way than the total redevelopment involved in the build-it-twice approach. [Boeh81]

Operational Model

Behaviors particular to the problem domain are modeled and simulated in the beginning stages of the
operational model, in order to explore with the software client the way and order in which events happen. This
exploration is made possible with the construction of an operational specification of the system. The concemn at
the specification level with how the system behaves is in contrast to models whose specifications define the
system in terms of a black box mapping inputs to outputs.

While the behavior of the problem domain is emulated in the specification, the software structures that
will eventually be used in the actual system to produce this behavior are determined later in the development
process.

P. Zave describes the operational approach as follows:

During the specification phase, computer specialists formulate a system to solve the problem and
specify this system in terms of implementation-independent structures that generate the behavior
of the specified system.... This description may make an operational specification sound like a
design, but it is not. First of all the structures provided by an operational specification language
are independent of specific resource configurations or resource allocation strategies ... while
designs actually refer to specific runtime environments. [Zave84)

Transformational Model

The Transformational model starts with a program specification and ends with a program, not unlike the
Waterfall model. The difference is that in the former, progress between the two points is made through an
automated series of transformations.

Definitions of terms associated with this model are given by H. Partsch and R. Steinbrueggen:

"Transformation rules’ are partial mappings from one program scheme to another such that an
element of the domain and its image under the mapping constitute a correct transformation....
"Transformational programming’ is a software process of program construction by successive
applications of transformation rules. Usually this process starts with a (formal) 'specification’,
that is, a formal statement of a problem or its solution, and ends with an executable program.
[Part83]

According to Agresti [Agre86], the benefits associated with this model include:

- Reduction of the labor intensity of software production through the automated
transformation;

- Assistance in preserving correctness through the application of formal transformations;

- Replacement of final product testing by verification of the program specifications;

- The ability to produce the desired transformations through a combination of small units of
specialized programming knowledge.

2-5

Fourth Generation Techniques

Recently, approaches to software development have emerged which make extensive use of fourth
generation tools. These tools allow specification at a high level with code automatically generated based upon
some formalized specification. The approach involves specification in a notation which captures functionality,
or in a language which is close to a natural language. The goal is to produce the software from a high-level
specification.

The approach utilizes an environment which supports some combination of capabilities such as the
following: nonprocedural database query languages, spreadsheet functions, report generators, screen
definition/interaction capabilities, automated code generation, and high-level graphics facilities.

The major steps in the fourth generation techniques involve ucfinition of the requirements, choice of a
design strategy, implementation using fourth generation languages. and production of the final system. Several
iterations occur through these steps to allow the developer and client to clarify the precise requirements for the
system.

In summarizing the current state of this approach, Pressman states:

With very few exceptions the current application domain for 4GT is limited to business systems
applications, specifically, information analysis and reporting keyed to large data bases....

"Preliminary data collected from companies using 4GT seem to indicate that time required to
produce software is greatly reduced for small and intermediate applications and that the amount
of design and analysis for small applications is also reduced.

"However, the use of 4GT for large software development efforts demands as much or more time

for analysis, design, and testing (software engineering activities) thereby negating the substantial
time saving achievable through the elimination of coding. [Pres87]

2.2.3 Software Approaches

In the following sections, the authors describe some basic schema by which software is conceived. An
examination of different methods shows that these schema, or variations thereof, occur frequently.

Structured Approaches

Structured approaches have been proposed for both analysis and design. In the analysis phase,
hierarchical and functional relationship between objects and activities are identified. At each level in the
decomposition, components of the system are characterized in terms of the parent component, input, output,
control, activity, and mechanism supporting the component.

Classic structured analysis was introduced by T. DeMarco, based upon the use of data flow diagrams
[DeMa78]. Data flow diagrams model the process in terms of data flows and transformations; they form a
network showing data entering as input, proceeding through a transformation process, perhaps in conjunction
with other data, and becoming output. Additionally, data flow diagrams provide a distinct representation of the
external entities involved in the system. For example, the people or job functions may be represented directly,
such as “"customer” or "billing department".

L. Peters summarizes structured analysis as follows:

2-6

Requirements definition and logical design are linked or integrated into a single phase called
structured analysis ... user participation is also employed to ensure that the results of analysis do
reflect the customer’s needs based on the present situation (current physical modet), its abstract
equivalent (current logical model), and the new system or solution model (new logical model).
[Pete81]

Structured design proposes to map the flow of data from its problem domain into its software structure.
The steps of structured design involve characterization of the data flow through graphical representation,
identification of the various transform elements, assembling these elements in an hierarchical program structure,
and refinement and optimization.

A key component of structured design involved the evaluation of the modular structure of the design
relative to the concepts of coupling and cohesion. W. Stevens, G. Myers, and L. Constantine stated:

Coupling is the measure of the strength of association established by a connection from one
module to another. Strong coupling complicates a system since a module is harder to understand,
change, or correct by itself if it is highly interrelated with other modules. Complexity can be
reduced by designing modules with the weakest possible coupling between modules. [Stev74]

The related concept of cohesion is a measure of the single-purposeness of a module. Modules with a
high degree of cohesiveness not only are understandable but are excellent candidates for reuse.

In assessing the wide popularity of structured design, L. Peters states:

Structured design has gained wide popularity for two primary reasons. One is that it allows the
software designer to express his perception of the design problem in terms he can identify with:
data flows and transformations. The notation with which he expresses these flows is simple,
easy to use, and understandable by management, customer, and implementor.

“The other primary reason for this method’s popularity is that it provides the designer with a
means of evaluating his (and others’) design, serving as a sort of benchmark against which to
measure his success or progress. In this regard, the method is unique. In fact, if this method
consisted of nothing more than the design evaluation concepts of coupling and cohesion,
structured design would still be a significant contribution to the software field. [Pete§1]

Object-Oriented Approach

The Object-Oriented approach to the software process is one in which models of entities are constructed
as self-contained components. The system is defined by the interactions and behavior of these components. An
important aspect of the design process patterns the behavior of the model so that it is "visible" only where there
are interactions expected with other entities. Thus, the behavior that is self-contained is undetectable by these
other entities.

In this approach, the concept of type is extended to class in which a model inherits or extends the
characteristics of other models. Further, program entities may refer to objects of more than one class, a
characteristic known as polymorphism.

A system’s behavior is patterned upon the behavior of objects manipulated by the system, not the

"function” of the system. The point is to address what it is that the system acts upon, rather than what the system
does.

2-7

G. Booch says that:

... object-oriented development requires certain facilities of the implementation language. In
particular, we must have some mechanism to build new classes of objects (and ideally, a typing
mechanism that serves to enforce our abstractions). It is also the case that object-oriented
development is only a partial-lifecycle method and so must be coupled with compatible
requirements and specification methods. [Booc86]

Entity-Relationship Approach

This approach uses the Entity-Relationship (ER) model [Chen76] to categorize the information from the
real-world problem domain. It recognizes that the database, as well as the code, needs to be considered at both a
logical and physical level. Such information is conveyed by defining the entities in the domain, the
interrelationships of those entities, and the attributes possessed by those entities. Ultimately, these concepts must
be mapped into a schema which is implementable on a database management system.

In the early stages of development of systems which involve an underlying database structure, the ER
model is often used as a means of conceptualizing information at a high level. In [Davi83], a perspective is

given on the origins and use of the ER approach, as well as some reasons for its increased popularity since 1975.

Event-Oriented Approach

This approach is characterized by the concept of stimulus- response, where events are the stimuli to the
system, and responses are comprised of actions taken by the system and the resuitant outputs. Event-orientation
builds the system based upon the types of events the system is likely to encounter.

Stepwise Refinement

In a seminal paper published in 1971, N. Wirth proposed the concept of stepwise refinement, a top-
down design strategy. The process starts at a high level of abstraction, and incorporates details through a
sequence of elaborations. This method of program decomposition parallels the process of partitioning and
refinement that is frequently used in the analysis of requirements.

Wirth summarizes the refinement steps as follows:

In each step, one or several instructions of the given program are decomposed into more detailed
instructions. This successive decomposition or refinement of specifications terminates when all
instructions are expressed in terms of an underlying computer or programming language, and
must therefore be guided by the facilities available on that computer or language. The result of
the execution of a program is expressed in terms of data, and it may be necessary to introduce
further data for communication between the obtained subtasks or instructions. As tasks are
refined, so the data may have to be refined, decomposed, or structured, and it is natural to 'refine
program and data specifications in parallel’. [Wirt71]

During the refinement process, a notation which is natural to the problem should be used as long as
possible. Ultimately, the implementation language will determine the direction in which the notation must
evolve.

Wirth further states that each refinement step involves incorporating design decisions, such as
efficiency, clarity, and regularity of structure. Various aspects of design alternatives must be weighed. At times

2-8

is is necessary to revoke early decisions, and to retumn to an earlier step. If done carefully, stepwise refinement
provides a modularity which facilitates later change.

2.2.4 Associated Principles and Practices

Frequently used practices supporting development that do not constitute methods or approaches are
described below. They are not methods or approaches because they do not specify how to develop the system;
rather, they merely provide guidance about how to structure the software.

Information Hiding

The concept of information hiding was introduced by D. Parnas. It proposed a way of decomposing a
system to allow for changeability, comprehensibility, and the possibility for parallel development of system
components. This is accomplished by hiding internal design considerations from other modules, and by
avoidance of shared data and the modification of data "owned by" other modules. Furthermore, the knowledge
of how data is implemented is hidden within the module to which the data belongs.

Parnas states that when information hiding is used, "modules no longer correspond to steps in the

processing.... Every module in [such a] decomposition is characterized by its knowledge of a design decision
which it hides from all others.” [Pam72]

Structured Programming

In 1969, E. Dijkstra’s article, "Structured Programming" [Dijk69] drew the attention of the software
community to the concept of structured programming. The goal of structured programming is to achieve
program verification in a formal manner.

Initial focus was on the limited set of control structures proposed for coding. These structures feature a
single- entry/single-exit characteristic that facilitate an understanding of the control-flow of a software program.
Though not appearing in this initial article, concepts associated with stepwise refinement and top-down design

were also being incorporated by Dijkstra into the concept of structured programming. These concepts were
elaborated in (Dijk72].

In looking back at the beginnings of structured programming, H. Mills states:

... Dijkstra’s first article on structured programming did not mention syntax, typography,
readability, stepwise refinement, or top-down development. Instead, his main argument for
structured programming was to shorten the mathematical proofs of correctness of programs!
That may seem a strange argument when almost no one then (and few now) bothered to prove
their programs correct anyway. But it was an inspired piece of prophecy that is still unfolding.
[Mill86]

29

2.3 RELATIONSHIPS BETWEEN METHODS, APPROACHES, TOOLS, AND ENVIRONMENTS

2.3.1. Introduction

The following sections discuss the problems in distinguishing the concepts of method, approach, tool,
and environment. Observations are made on the similarities and differences between these concepts.

2.3.2 The Relationship of Method to Tools

Many of the methods surveyed in this catalog are embodied in an automated tool. In some cases, the
method may be extracted from the tool without losing the essence of the method. In other cases, the tool and the
method are so closely coupled that the method cannot stand alone.

The way in which a method develops influences its relationship to a tool. Methods which evolved
without incorporating software tools may now receive support from a number of different tool vendors. Other
developers treat antomated support as a necessary component of their method, in which case the method and tool
are likely to be synonymous.

Tools may also extend the scope of a method by addressing concepts beyond those originally
considered by the method. In this case, it is difficult to distinguish whether the method has been redefined to
encompass these additional concems, or continues as but one part of a more elaborate scheme. In such a case, it
can be difficult to determine whether the method incorporated the tool, or the tool subsumed the method.

This difficulty becomes even more complicated as a method which can exist independently
disassociates itself from the tool in which it was first "incarnated”. On one hand, the method developer may
propose new aspects for the method that are not supported by the tool. On the other hand, the toolmaker may
have his own ideas about the way development should be done, diverging from the developer’s original ideas. A
relationship still exists, but the ease with which the components of this relationship may be distinguished varies
considerably.

All of the above reveals why it is difficult to clearly distinguish methods and tools. Though there are
schema which are clearly tools, and other schema which are clearly methods, there is a broad spectrum over
which these two types of schema merge.

2.3.3 The Relationship of Approaches to Environments

The correspondence between an approach and an environment parallels the correspondence between a
method and a tool, but at a higher level of abstraction.

An approach may be likened to a framework in which specific methods can be incorporated. The
approach is a general strategy for accomplishing goals; the particular methods incorporated in an approach
specify the detailed steps for meeting these goals.

Tools are also specific resources for accomplishing particular tasks; tools are the entities which
constitute an environment, which itseif becomes a framework for the toolset.

An approach is necessary for addressing factors outside the scope of a particular method; the idea of

coverage correlates more with approach than with method. Similarly, considerations associated with
environments must consider broader issues that those addressed by an individual tool within the environment.

2-10

These considerations are necessary to provide a truly integrated environment which will support the total
development process.

Both approaches and environments may be linked to particular methods and tools; they may also
represent generic frameworks that can accommodate a variety of methods and tools. Some approaches make
assumptions about the nature of the development environment, while existing environments imply a strategy
which constitutes an approach. Because of this overlap in approaches and environments, it is often difficult to
clearly distinguish one from the other. This difficulty with taxonomy parallels the problem of distinguishing
methods and tools.

2.3.4. The Relationship of Methods to Approaches and Environments

Methods and tools may be seen as embedded components in a system characterized by an approach and
an environment. Tools and environments comprise syntactic suppont for development. Methods and approaches
support development from a semantic standpoint. Ideal support for the development process consists of a blend
of these four components. This idea appears in the following statement from [Free82]:

... one cannot choose a tool, a management practice, or any other element of the total
environment without considering that element in its relation to the other parts of the
development system.

2.3.5 Summary

The sections above are intended to alert the reader to the multifaceted and complex issues which are
associated with the concepts of method, approach, tool, and environment. In particular, it may be possible in the
abstract to make precise distinctions among such concepts; however, in practice, such clear delineations cannot
always be made. Because precise distinctions are difficult to make, for this catalog, the authors have assigned a
wide interpretation to the term "method”.

2.4 COMPARISON CRITERIA FOR METHODS

2.4.1 Establishing a Basis for Comparison

The information contained in this catalog is intended to provide a basis upon which the software
engineering community can compare methods. The task of comparing methods can be addressed by examining
the software produced using the method, by examining the impact of the method on the development process, or
by examining features of the method itself. Unfortunately, a comparison of methods based upon an examination
of either the resultant software, or the process of development, represents a formidable challenge.

Ideally, it would be desirable to show that use of a particular method results in more reliable software,
or in more well-structured and maintainable software. Similarly, being able to demonstrate that use of a
particular method results in greater productivity during the software process, or in better control of the process
would be valuable. Attempting to confirm such cause and effect relationships requires that one demonstrate that
the desired effect results primarily from use of the method, and not from the other factors associated with
software development. Such factors include the composition of the development team, the environment provided
for development, the organizational structure used to manage the project, the nature of the problem domain, and

even the time-frame associated with development. Isolating the respective impact of each of these factors is an
unresolved problem.

There is evidence to suggest that it is both possible and practical to create a basis by which methods can
be compared by providing descriptive data about methods themselves. Furthermore, the comparison can be
facilitated through use of an appropriate representation of the data. Such a basis is provided in this catalog
through the use a uniform format in the description of individual methods, and by providing tables where
specific features of methods are represented.

The underlying premise for this catalog is that an absolute comparison, or ranking, of methods is neither
possible nor desirable. In a report on the assessment of methods, W. Wood and associates at the Software
Engineering Institute made a similar assertion, stating:

There is no such thing as an overall 'best’ method for developing all software, only the method
that will work best to help develop a system with particular characteristics and will blend with an
vrganization's software development practices. [Wood88]

Thus, what is required is information by which a judgment can be made as to the suitability of the
method to the problem domain, to the needs of the development team, to the available development environment,
and to the organization's management practices.

As part of the task of creating this catalog, the authors developed a list of high-level comparison criteria
associated with methods. The set of descriptive characteristics detailed in Section 1.3 are indicators of these
high-level criteria. In the section following, each of these criteria is discussed briefly, and, for those methods
listed in Chapter 3, the reader is directed to those places in the catalog where method-specific information
associated with the criteria can be found.

2.4.2 Discussion of the Criteria

Coverage and Prescriptiveness

Two key criteria by which methods can be compared are coverage and prescriptiveness. By coverage is
meant the set of activities of the software development process addressed by the method. By prescriptiveness is
meant the level of detail which is supplied by the method insofar as providing direction on how to accomplish
the various activities. Also associated with these criteria is the type of process model for which the method is
suited, since the model influences which activities are addressed and to what degree of detail.

Information associated with these criteria is primarily found in the Description sections for the methods
found in Chapter 3. Additional information is provided in Sections 6.1 and 6.3. Also, the legend in several of the
tables of Chapter 6 is designed to specify the level of guidance provided by the method for the particular activity.

Robustness

By the criterion of robustness is meant the variety of problem domains for which the method is
applicable. In other words, is the method geared toward a specific type of problem, or can the method be used
for different types of applications? Associated with this criterion is the type of application and the size of
application for which the method is intended. Additional related descriptive characteristics include the extent of
use of the method, and how suitable the method is to the programming language in which the software system is
to be developed.

2-12

The individual method summaries in Chapter 3 contain information associated with robustness under
the sections entitled Applicability and Usage. Additionally, the Target Constraints sections contain information
regarding the ability of a method to address specific features of the target system, such as timing or spatial
constraints, fault tolerance, and security of access. The presence or absence of capabilities such as these may
well dictate which problem domains the method can address. The reader is also referred to Tables 4, 5, 6 and 8
in Chapter 6.

Expressiveness

The criterion of expressiveness refers to the facilities provided by the method to represent the evolving
system. Related to this criterion are the modes of representation used by the method along with the support
provided by the method for communication among members of the development team, with the client, and with
management.

Information associated with expressiveness has been provided in the sections of Chapter 3 entitied
Modes of Expression, and Communication Channels. Summaries of survey responses for the modes of
representation used by methods are provided in Sections 6.9 and 6.10.

Analyzability and Stability

Important criteria by which to compare methods include those features which assist the developers in
designing complex systems, and those features which assist the development team in contending with the
inevitable changes which will occur during the development of a large system. In particular, it is expected that
there will be changes in requirements and changes in design decisions. Analyzability is that criterion which
addresses the support provided for the activities of analysis and design. Stability involves the capability to
continue to employ the method in spite of changed requirements or design modifications.

Achieving a clear comparison of methods based on these criteria requires the actual experience of using
a method. Nevertheless, some level of comparison can be achieved by examining what aspects have been
provided in the method to address these criteria, and such information has been provided in this catalog. These
aspects are described in the section of Chapter 3 entitled Techniques for Analysis and Requirements
Clarification. Additional information is provided in Tables 2, 11, 12, and 14.

Correctness and Effectiveness

The criterion of correctness involves the reliability of the software product produced using the method
and the conformity of the product to the client’s requirements. The effectiveness criterion involves the total
quality of the resuitant product. In addition to reliability, effectiveness is associated with how well the product
software system is structured and the quality of the documentation for the system. In essence, an effective
method will produce reliable and maintainable code.

Achieving a comparison of methods based on these criteria requires that one examine the product
system. The difficulties of establishing a clear cause and effect relationship for such criteria was discussed
above. It is possible, however, to list for methods those descriptive characteristics which assist in developing a
quality system. It is this latter type of information which is provided in this catalog.

With regard to the criteria of correctness and effectiveness, the reader should consult in Chapter 3 the
sections on Quality Assurance, and on Other Technical Aspects. With respect to effectiveness, additional
appropriate information can be found in the sections associated with documentation and with recording
decisions. In Chapter 6, Tables 7, 12, 15, and 16 contain related information.

2-13

Manageability

The criterion of manageability refers to the support provided by the method relative to planning,
controlling, and monitoring the software development process. Assistance for the various aspects of project
management provides a basis upon which to judge this criterion. Of related concem are those features of the
method which assist in the preparation of required documentation for the system.

Information associated with this criterion is presented in the sections of Chapter 3 entitled Project
Management, and Documentation Formats. Summaries of responses to questions related to this criterion are
presented in Sections 6.13 and 6.16.

Productivity

The criterion of productivity refers to those aspects of a method which facilitate the process of
developing software. Establishing that use of a particular method results in software being produced in less time
or with less effort would, without doubt, be of great value. The difficulty of establishing control on the other
factors of the process so as to claim a cause and effect relationship was discussed above, and may well be an
impossible task. Accordingly, for this catalog, information is provided on those features of a method which are
intended to facilitate the development process.

Foremost among features associated with productivity are the automated facilities available for use with
the method. It is recognized that most of the other features of methods may also assist in reducing the effort
needed to develop software. For example, this effort can be lessened by the availability of modes of
represeatation which ease the analysis task, or by features which assist in the early detection of inconsistencies.
For information appropriate to this criterion, the reader is referred to the Automated Facilities Sections of
Chapter 3. The tables found in Sections 6.9, 6.10, 6.13, 6.14, 6.15, and 6.16 also contain information about
automated support.

Ease of Adoption

The criterion of ease of adoption addresses those aspects associated with the introduction of a method
into a development organization. Descriptive characteristics related to this criterion include the available
training, the hardware/software configuration needed to support the method, and the cost of acquisition.
Additionally, it is important to know what type of education and experience is required of the development team
in order to gain proficiency in the use of the method.

Information associated with this criterion is provided in Chapter 3 in the Technology Insertion sections

and the Acquisition Factors sections. In addition, Tables 17, 18, and 19 contain information related to this
criterion.

2.4.3 The Catalog as a Resource

In concluding this section, the authors reiterate how the information provided in this catalog should be
viewed. The information focuses on descriptive characteristics of features directly associated with methods. The
information is based on responses from method developers obtained through the use of a questionnaire, and on
method-related literature. The information is reported in a format intended to provide the reader with a basis
upon which to compare methods.

2-14

Thus, by using the list of comparison criteria as a guideline, and the descriptive method-specific
information about characteristics as a resource base, the reader is in a position to judge how well a particular
method meets his or her current needs.

2-15

This page is intentionally blank.
2-16

S GE W Gk S bR O &n B

CHAPTER 3

METHODS CURRENTLY IN USE

This chapter contains descriptions of methods currently in use. Among these are methods which are
available commercially, methods which are company proprietary and available to the Government, and methods
which are company proprietary and unavailable to the Government. In some instances, methods which are part
of a company’s resources are not being marketed but are available to the development community. Finally,
certain methods may be in the public domain.

For the methods in this chapter, developer’s questionnaires were distributed and responses received.
Information presented is derived largely from these questionnaires and from technical references supplied by the
developer. A sincere attempt has been made to include in this chapter all methods for which a developer survey

was returned. In addition, extensive efforts were made to obtain survey responses from developers of other
known methods.

Each of the methods described in this chapter is presented again in the tables in Chapter 6. In some
sections of the method writeups, references have been made to the corresponding tables. This has been done
primarily to avoid presentation of information in the writeup that was intended for presentation in tabular format.
The reader is encouraged to use the tables to gain additional information about a particular method.

In reading the following descriptions, the reader should keep in mind that each description is a temporal

"snapshot"” of the method as of the publication date of this catalog. Many of these methods are undergoing
change and their representations can be expected to differ in the future from what is presented here.

3-1

ABDLSLCM

3.1 ABDLSLCM -- Ada Based Design Language System Life Cycle Methodology

3.1.1 BACKGROUND

Synopsis

ABDLSLCM is based upon certain characteristics (e.g., modularity, data expression, scope) of the Ada
language. These characteristics are combined with the use of a Program Design Language (PDL) and extended
to the earlier life cycle activities of requirements and design specification. The Ada Based Design Language
(DL) statements are intended to formalize the ambiguous English language of the requirements or design

documents.

History

ABDLSLCM was developed by Robert Weissensee and was first used for the development of a
deliverable system in 1986.

The Program Design Language (PDL) component of ABDLSLCM originated with S. Caine and E.
Gordon. Methods whose graphical diagramming techniques are compatible with the method include Structured
Analysis/Structured Design and the Hatley/Pirbhai method.

3.1.2 DESCRIPTION

ABDLSLCM, Ada Based Design Language System Life Cycle Methodology, is based on a design
language approach which specifically addresses the activities of requirements definition, system specification,
and system design. The statements of this language are designed to be used for tracing requirements, generating
documentation, and facilitating communication among people involved in the project. The language statements
are structured in a format that can be utilized by tools for generating documentation to assist in the above
functions. Associated with the method is a structured data base which can distribute current technical data to

dispersed development teams.

Specific directions are available for tailoring the method to DOD-STD-2167A. Documentation levels
of the method correspond to required Data Item Descriptions (DIDs) in the standard. A number of activities are
iteratively performed at each documentation level over the course of the development process. These activities

include:

- creation or updating of a program or project data base;

- annotation and definition of data;

- assignment of traceability information;

- decomposition of requirements or functions to separate paragraphs or subfunctions:
- development of context diagrams or functional hierarchy charts;

- analysis of risks;

- analysis of quantitative measures;

- performance of walkthroughs and formal reviews;

- baselining and generation of the document for that level.

3-2

2 S D & & s

ABDLSLCM

3.1.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer stated that the method is well-suited for use on applications involving embedded systems
or process control, time critical or real-time processing, systems programming, data processing, and large scale
simulation or modeling. Examples of systems developed using the method are a commercial real-time
petrochemical tank leakage detection system, a computer-aided design language tool set, and a program
management data base reporting system.

Between 5 to 20 delivered systems were estimated as having been developed using the method, in as
many organizations. The method is intended for use on projects of all sizes; it has been used on small and
medium-sized projects. The implementation languages most frequently used in conjunction with this method are
Ada and Machine_Code_80386.

Target Constraints

ABDLSLCM addresses a number of target system requirements. When there is a requirement for
timing constraints, quantitative timing estimates are made and later refined at various design stages, and
compared to actual compiler and/or assembler code timing analyzer numbers at the coding and Computer
Software Unit (CSU) stages. Spatial requirements are addressed in the method by estimating processor, memory
and secondary storage, adding design language statements for data elements, verifying actual data usage refining
the estimates, and comparing actual compiler or assembler code usage numbers.

Several of the method’s design statements correspond to Ada language features found in Chapter 13 of
ANSI/MIL-STD-1815A. These are MACHINE_CODE and utilization of Ada’s representation clauses for
addressing special features of the target hardware architecture, and OTHER_LANGUAGE, corresponding to
Pragma INTERFACE, for addressing special features of the target operating system.

The method addresses concurrency issues by making estimates of concurrency requirements during
system design. Tasks, task type structuring constructs, and assembler concurrency processes are used throughout
the design and summarized in separate document sections at each level of decomposition. Fault tolerance issues
are handled by specifying the exception processing that should occur at a particular level. Missing exception
processing can be flagged by automated analyzer tools.

Modes of Expression (Tables 9,10)

The method requires several modes of textual representation: specified documentation templates,
narrative overviews of modules, program design language, and formal specification language. Required
iconographical modes are data-flow diagrams and hierarchy charts. The method encourages transaction timing
diagrams. Automated support is provided by the method for all of the above modes.

The primary mode of expression in ABDLSLCM is an Ada based design language which maps directly
into a number of iconographical diagrams in the following ways:

- design language program unit identifiers are the same identifiers used in the hierarchy diagrams:

- design language unit identifiers and their formal parameters including mode are the same
identifiers and directional flow indicators that are used in the Data Flow Diagrams (DFDs});

- the hierarchy diagram identifiers are the same identifiers used in the DFD bubbles;

33

ABDLSLCM

- the flowcharts can be generated from the program unit body section design language processing
statements;

- the Transaction Timing Diagrams and Performance Models utilize the same data as the DFDs and
selected timing records to help generate the diagrams or models.

By using an Ada based design language throughout the development process, the developer states that
problems associated with phase or activity level transformations are eliminated.

Technigues for Analysis and Requirements Clarification (Tables 11,12)

ABDLSLCM requires incremental or evoluationary development to clarify system requirements.
Design reviews, code walk-throughs and design language analysis are also required techniques.

Other Technical Aspects

The method provides a means for tracking requirements throughout the development project. Each
requirement is uniquely identified, made into a design language statement, categorized, and recorded in the
functional/capabilities design language section that satisfies the requirement. Using the right tools, the developer
stated that a software developer could thus determine the scope and magnitude of the requirement change as well
as exert less effort to incorporate changes in requirements.

3.1.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

ABDLSLCM provides guidelines for many project management activities, and provides automated
support for some of these, including support for quantitative metrics.

Communication Channels

Within the development team the method uses a combination of Ada based design language for textual
representation and graphical diagrams to facilitate communication within the team. The diagrams are consistent
with the design language and can be automatically generated from the text with the proper tools, which tools can
also generate associated interface documents, e.g., Interface Requirement Specification, Interface Design
Document.

Between the technical development team and management, the method uses the same representations as
above. Associated with each of the method’s structuring mechanisms, or Logical/Program Units, is a Preface
section which can contain a number of information items which may be of interest to management, e.g.,
traceability, accountability, security, origin, resources. These information items may be requested by
management throughout the various development activities. In conjunction with Airspace Technology’s
Program Management Forecasting, Tracking, and Reporting System tool, a variety of reports, graphs, and slides
can be produced for use by management.

Communication between the client and the development organization is based on the textual and
graphical modes listed above, at a level which can be comprehended by both Ada trained and non-Ada trained
personnel. Moreover, requirements are recorded in the functional/capabilities sections that satisfy the

ABDLSLCM

requirements, which provides visibility to the client. A third aspect of communication with the client is the
feasibility of doing rapid prototyping of selected system components, due to the production of compilable or
assembly code as a by-product of the method’s requirements and design phases. Finally, the method encourages
close involvement of the client with the development organization throughout the life cycle, in terms of walk-
throughs and informal as well as formal reviews.

Quality Assurance (Tables 12,14,15)

Prescriptive checking of interfaces are specifically addressed and provided with automated support by
the method. The method provides guidelines for testing activities and automated support for test planning, test
generation based on system requirements, and unit/integration testing.

Text files are analyzed for consistency and omissions within a given activity level. Consistency across
a level is ensured by generation of associated documents, e.g., interface documents. Between activity levels,
requirements are linked to logical/program unit section structures.

The method provides tailorable document formats for recording design decisions, problem logs, and

change logs. It also provides a framework for configuration management activities, with automated support.

Documentation Formats (Table 16)

All documents required by the method are tailorable within the method, and most such documents are
automatically generated based on data produced from other steps in the method.

3.1.5 EASE OF USE

Technology Insertion

The developer estimated that minimum qualifications for a development team leader’s successful use of
the method would be a bachelor’s degree, three to five years of development experience, working knowledge of
two programming languages, and experience working on two different software systems. Successful use of the
method by an experienced developer requires that the developer understand the concepts of functional
decomposition, modularity, and partitioning as well as concurrency and exception processing as they occur at all
decomposition levels. In addition, the developer should be able to use an Ada based design language as a formal
requirements specification language, and know how to distinguish and treat separately on-line transaction
processing versus real-time processing.

The developer offers overview presentations, classroom tutorials, on-site consulting, a "hot line"
service, user manuals, and periodic technical updates as means for training in the method. One day would be
required for a project manager to acquire a basic understanding, ten days required for an experienced developer
to leam to use the method’s essentials, and two months required for an experienced developer to achieve the
level of expert user.

35

ABDLSLCM

Automated Facilities

ABDLSLCM provides automated support for a number of required and encouraged modes of textual
and graphical representation. There is automated suppon for all the documents required 1o be produced by the
method. Several verification and project management activities are assisted with automated support.

When the method is used in conjunction with RAMTEC's "Ada Based Design Language System Life
Cycle Documentation Guide" and DL Tool Kit, a design language text analyzer is used to automatically ensure
consistency and will report errors and omissions. The tool kit’s Technical Assessment option provides for
quantitative analysis of the documents being developed or maintained. Such quantitative analysis can be
performed form the developmental or maintenance perspective and involves requirements, transactions,
Logical/Program Units, and test procedures.

Airspace Technology Corporation provides a tool called the Program Management Forecasting,
Tracking, and Reporting System. This tool supports managerial activities, e.g., forecasting, tracking, ad hoc
reporting, slide preparation. An optional feature is a direct interface with the DL Tool Kit which provides
automatic data updating and verification.

3.1.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

The Ada Based DL Tool Kit, which supports the ABDLSLCM, requires an IBM PC configuration.

Acquisition Costs

Contact the developer for quote on costs. The licensing policy for the DL Tool Kit encompasses
various options with discount schedules.

Contact Information

RAMTEC Inc. 201-477-8248

727 Eastern Lane

Bricktown, NJ 08723 [Provider of method and tool]
Airspace Technology Corporation (Tool vendor}

3.1.7 REFERENCES

Contact the developer for publications by RAMTEC on the method.

3.2 ADM -- Ada Development Method

3.2.1 BACKGROUND

Synopsis

The developer characterizes this method as an iterative "design a little, code a little, test a little” method,
founded upon both data flow-oriented and object-oriented approaches. The method specifically addresses almost
all activities associated with software development and is tied to the use of Ada for expressing and
communicating the design. A major aspect of the method is the production of compilable designs and tested
code early in the life of a project. ADM is available for general use.

History

The principal architect of ADM is Donald G. Firesmith. An early version of this method was first used
in 1985, on the U. S. Army’s Advanced Field Artillery Tactical Data Systems (AFATDS). ADM is related to
several pre- existing methods, including Booch’s OOD, PAMELA 11, and Extended Bubhr Design Method. It
also incorporates ideas from NASA’s Generalized Object-Oriented Development, Bulman’s Model-Based OOD,
and EVB’s OOD.

3.2.2 DESCRIPTION

ADM, Ada Development Method, addresses almost all activities associated with software system
development. The method considers object-oriented development to be the paradigm promoting its most
effective use, and is well- suited for use within the context of the incremental and recursive life-cycle models.
ADM’s essential concepts and programming practices include stepwise refinement, information hiding, process
abstraction, abstract data-types, structured programming, genericity, and module coupling/cohesion.

The developer stated that the major aspects which differentiate the method from others directed towards
the same application domain are object-orientation instead of functional decomposition and the fact that the
method follows a recursive model instead of the Waterfall life-cycle model. In addition, ADM covers
Requirements Analysis and Tasking Architecture, which, according to the developer, most other OOD methods
do not address.

The steps of ADM consist of identifying "Assemblies” and "Builds”, as well as scheduling and staffing
the assembly development. In addition, the steps for each build consist of iteratively developing the relevant
subassemblies from assemblies, testing the build, and releasing the build software and documentation to
configuration management. Development of each subassembly involves Subassembly Requirements Analysis
and Design, Subassembly Code, Test, and Integration, and Assembly Integration.

During Subassembly Requirements Analysis and Design, a number of activities occur. One of these
activities involves initiating subassembly development by scheduling milestones and staffing the development
teams. Another activity, analysis of subassembly requirements, includes storing the subassembly requirements in
the subassembly Software Development File, stating the subassembly objective, reviewing of the subassembly
requirements, and identification of all subassembly abstract objects. Also included are the development of an
initial Object Diagram, analysis and organization of the subassembly requirements by abstract object, and
development of a subassembly object-oriented Data/Control Flow Diagram. Other activities involve:

- creating a logical design for the subassembly,

3.7

ADM

- analyzing all abstract objects in the subassembly,

- identifying abstract object packages and generic packages,

- designing the tasking architecture,

- coding and compiling all package and generic package specifications,

- making additional design decisions (e.g., reuse, recursion),

- performing Subassembly Requirements and Design Inspection, and, as necessary,
- repeating operations to form new subassemblies.

The Subassembly Code and Test activities involve coding and compiling of all package bodies.
Subassembly testing is planned, and subassembly test software is designed and coded. After initial test, the
subassembly software is integrated. After the performance of Subassembly Code and Test Inspection, the
subassembly is integrated into the assembly, and whatever deliverable documentation exists is updated.

3.2.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer stated that the method is well-suited for use in applications involving embedded systems
or process control, time critical or real-time processing, scientific or engineering processing, data processing or
database applications, and large scale simulation or modeling. The method has been used on the U.S. Army’s
Advanced Field Artillery Tactical Data Systems (AFATDS). Less than five organizations have used this
method, and there are less than five delivered systems that have been developed using ADM. Although the
method is intended for projects of all sizes, it has been used on a large project only. Ada has been the
implementation languaze most frequently used with the method.

Target Constraints

ADM addresses timing constraints imposed by the target system by means of timing diagrams.
Concurrency issues are addressed with Buhr diagrams, timing diagrams, Petri nets, and task sequencing
language. The method also addresses fault-tolerance issues with an exception handling architecture. The
developer stated that, by being an object-oriented method, the design naturally maps well to hardware
peripherals, so that when hardware changes, the impacted code is highly localized.

Modes of Expression (Tables 9,10)

The method requires a program design language and several iconographical modes of representation,
including Petri nets, data-flow diagrams, control- flow diagrams, hierarchy charts, Buhr diagrams, and Firesmith
diagrams. Mapping rules for translating from data/control-flow diagrams to subassembly OOD diagrams, and
from object diagrams to data/control-flow diagrams, are prescribed by the method. Translation across phases of
the software process is aided by use of Ada-oriented graphic. and a compilable PDL that evolves into the
deliverable code. The developer states that the object-oriented DFDs, or requirements, lead naturally into
subassembly OOD diagrams, or design.

Techniques for Analysis and Requirements Clarification (Tables 11.12)

A recursive version of rapid prototyping, incremental or evolutionary development, and executable
specifications are techniques required by ADM for clarifying system requirements. Required analysis and

3-8

ADM

review techniques include data and control-flow analyses, design reviews, code walk-throughs, and Change
Control Board review.

Other Technical Aspects

The developer reported that software produced with ADM via its object- oriented approach is more
extensible because changes to requirements are better localized in the design due to lower data coupling. The
early detection of inconsistencies and/or errors results from the iterative nature of the method, which produces
compilable designs and tested code early. Assistance in identifying possible reusable components is given in the
"Additional Design Decisions" step of the method. The developer also says that all code is naturally more
reusable since the default packages implement Abstract Data Types (ADTs) and Abstract State Machines

(ASMs).

3.2.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

ADM prescribes specific procedures for assessing complexity and tracking project progress. It also
specifically addresses project planning, scheduling and/or manpower loading, and allocation of personnel to
tasks.

Communication Channels

The aspects of ADM which the developer reports as being designed to facilitate communication
between all parties involved in the software process are: graphics, verb/direct object PDL, and Ada. Involvement
of the client is accomplished with a recursive type of rapid prototyping, in which the design and code are
developed at an early stage. Since the design is compilable, the client gets a tested design as opposed to only one

on paper.

Quality Assurance (Tables 12,14,15)

Test planning at one or more precise points in the software process and unit/integration testing are
specifically addressed by the method. Consistency between the design and code is maintained through the use of
Ada- oriented graphics and a compilable PDL that eventually becomes the code that is a result of the object-
orientation of the DFDs which in the developer’s opinion transform naturally into subassembly OOD diagrams.

ADM provides guidelines for configuration management. While requiring that a record be kept of
specification/design options which were considered, personnel involved in decisions, and changes related to
specification/design decisions, the method does not provide specific directions for recording these types of
information.

Documentation Formats (Table 16)

Documents required by the method do not have their formats prescribed by the method.

39

3.2.5 EASE OF USE

Technology Insertion

According to ADM’s developer, the minimum qualifications needed by a development team leader for
successful use of the method were a bachelor’s degree, one to two years of development experience, working
knowledge of one programming language, and experience with one software system. In addition, the major
theoretical constructs required for successful use of the method include abstract state machines, abstract data
types, object abstraction, process recursion, and Ada.

Training assistance is available in the form of overview presentations, classroom tutorials, and on-site
consulting by the vendor. Two days would allow a project manager to acquire an understanding of ADM’s
major features and benefits. An experienced developer would need five days to leamn to use the essentials of the
method, and three months to become an expert user.

Automated Facilities

The developer reported that any tools supporting DFDs, Buhr diagrams, Petri nets, and other
iconographical modes required by the method would be useful.

3.2.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

High-resolution graphics workstations are appropriate for hosting the tools which provide support for
the representation modes used by ADM.

Acquisition Costs

The cost for acquiring the method or for technical training is $10,000. A management overview costs
$4,000. There is no licensing policy.

Contact Information

Mr. Donald G. Firesmith, President 219-456-9260

Advanced Software Technology Specialists

3418 Broadway

Fort Wayne, Indiana 46807 [Developer and provider]

3.2.7 REFERENCES

The main source of information on the method are the training materials in courses taught by Mr.
Firesmith through Technology Training Corporation. A "white paper” on the method is being submitted by Mr.
Firesmith for publication in a professional journal.

----------J

AISLE

3.3 AISLE - Ada Integrated Software Lifecycle Environment

3.3.1 BACKGROUND

Synopsis

This method is associated with ADADL, a Program Design Language (PDL) based on Ada, and a set of
software tools designed to automatically produce Mil-Std documentation and unit test plans or procedures. The
ADADL processor has analysis capabilities designed to detect errors in the logical description of the design.
The method specifically addresses system design and system implementation activities.

History

ADADL PDL, which is an extension of Ada, was created by Dr. Thomas S. Radi. The AISLE family
of tools was first used with respect to a deliverable system in 1986.

3.3.2 DESCRIPTION

AISLE, Ada Integrated Software Lifecycle Environment, is a collection of tools for addressing several
activities of the software development process. It is used to describe, document, and assist the testing of the
executable code. This method can be used to develop designs to be coded in languages other than Ada as well.
The intent of the method is for the user to compose or change the design with PDL, then use the ADADL
processor to analyze the logical description and consequences of the new or changed design, and finally derive
the executable Ada code corresponding to the PDL. The developer states that the method provides specific
procedures for conducting system design and implementation activities, and provides a framework or guidelines
for accomplishing requirements definition, system specificaiton, software quality assurance, and project
management activities. The method is compatible with almost any approach.

In addition to ADADL, AISLE includes a number of other tools. These tools and some of their
capabilities are listed below:

- DocGen is an automatic Mil/DoD-Std document generator for producing documentation from the
Ada source code;

- TestGen is a verification tool helping to prepare unit test procedures in conjunction with the PDL
or source code;

- GrafGen is a graphic output display for the Ada program and interfaces, allowing user to work in a
graphical environment with Buhr-like and Booch-like descriptions;

- ASEis an Ada/ADADL syntax directed editor;

- ARIS, Ada/ADADL Requirements Interface System, can extract information from a Real Time
Structured Analysis (RTSA) database;

- AIEM (InfoGen), or ADADL Integrated Environment Manager, allows for on-line access to all
design information;

- QualGen, Ada Quality Analysis and Metrics Generator, calculates over 60 quality metrics:

- RETT, Requirements Evaluation and Traceability Tools, provides forward and backward
traceability of requirements and allows for seeing the effects of changing a requirement.

AISLE

3.3.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer rated the method well-suited for embedded systems, scientific or engineering systems,
systems programming, image processing or pattern recognition, and large scale simulation or modeling.
Delivered systems built with the method include weapons systems, navigation and guidance, and command and
control systems. Between 21 to 100 diiivered systems have been developed using the method in between 51 to
100 organizations. The method is intended for use on projects of all sizes and has been used as such. The
implementation language most frequently used when coding systems developed with AISLE is Ada.

Target Constraints

Timing and spatial constraints of the target system are handled by production of reports of information
entered by user for each program unit. Concurrency issues are handled through use of the Ada tasking modeis.

Modes of Expression (Tables 9,10)

Textual modes required and supported automatically are specified documentation templates, narrative
overviews of modules, structured English, and program design language. Required iconographical modes are
data-flow diagrams and control-flow diagrams. The method strongly encourages and provides automated
support for Buhr diagrams and Booch diagrams. In addition to representation modes used, the method is
considered inconsistent with a number of other modes; see Tables 9 and 10.

Mappings are provided for translating from requirements to top level design, and from design to code.

A tool, ARIS, produces top level Ada design automatically from a database, such as one found with Teamwork
or Excellerator.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Incremental or evolutionary development is required for clarifying system behavior. Techniques for
analysis and review include data-structure analysis, design reviews, and code walk-throughs.

Other Technical Aspects

By providing a way to cross-reference requirements to the program units that satisfy each requirement,
the method assists in incorporation of changes in the requirements. Consistency is maintained among
specification, design, and code by having the design and code in the same file, by generating quality analysis
reports that check the design vs. code, and by a cross-referencing capability for the requirements.

3-12

AISLE

3.3.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

Specific procedures and automated support is provided for analyzing risk, assessing complexity, and
tracking project progress. Configuration management is required but not provided by the method.

Communication Channels

Communication is facilitated and coordinated between all parties involved in the software development
process by the integrated tool support and the varied views of the development process that are produced. The
client is involved by the method’s encouragement of design reviews and the support for such reviews provided
by TestGen's Design Review Expert Assistant.

Quality Assurance (Tables 12,14,15)

Specific procedures are provided for test planning. Also specifically addressed as well as provided with
automated support are unit testing, field testing, and generation of test data. A quality assurance or test plan is
automatically generated from previous steps in the method. In addition, the method provides automated
recording procedures for maintaining a record of technical decision-making during the software development
process; see Table 14.

Documentation Formats (Table 16)

A number of documents are required to be produced, the majority of which are automatically generated
based on data produced from other steps in the method. See Table 16 for particular formats.

3.3.5 EASE OF USE

Technology Insertion

The developer estimated that a development team leader, for successful use of the method, would need
as a minimum a bachelor’s degree, no development experience other than some experience with one software
system, and working knowledge of Ada. He also stated that good software design practices should be
understood by an experienced developer in order to successfully use the method.

Training assistance includes hands-on demonstrations, overview presentations, classroom tutorials, on-
site consuiting by the vendor, on-line help facility, a "hot line" service, user manuals, a users’ support group, and
related publications from third-parties.

Estimates of leaming times were given as two days for a project manager to understand the major

features and benefits, four days for an experienced developer to leam to use the essentials, and two months for an
experienced developer to achieve expert user level.

3-13

AISLE

Automated Facilities

The developer provides a number of automated tools which are integrated into AISLE. See the
description section and Tables 9, 10, 13, 14, 15 and 16.

3.3.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Appropriate configurations for hosting the tools of the method are:

- VAX and Micro Vax/(VMS, Unix or Ultrix)
- DataGeneral/MV-AOS

- Gould (SEL)/(MPX or UTX)

- Concurrent

- Harris

- HP800

- Sequent

- Pyramid

- Apollo

- HP9000/3xx.

Acquisition Costs

Tools in the AISLE family are priced individvally according to host configuration. Training and
consulting is provided by the developer at $2000 per day plus travel expenses. Licensing is per CPU or per

node.

Contact Information

Dr. Thomas S. Radi 714-625-6147
Software Systems Design, Inc.

3627 Padua Avenue

Claremont, California 91711 (Developer]

3.3.7 REFERENCES

Further information is available from Software Systems Design, Inc.

3-14

BOX STRUCTURES

3.4 BOX STRUCTURES -- The Box Structure Methodology for Information Systems Development

3.4.1 BACKGROUND

Synopsis

The box structure methodology is described as a complete, mathematics-based theory that extends
software engineering principles to systems. Each part of the system under development is viewed at three
different levels of detail: as a black box, a state box, and a clear box. Defining the parts of the system each in
terms of these three data abstractions reduces the size of the analysis and design steps used in systems
development [Hevn88].

History

First used in 1987 for the development of a deliverable system, this method is an extension of data
abstractions, objects, usage hierarchies of data abstractions, and mathematical verification of programs and
systems. The evolution of the method occurred at IBM Federal Systems Division. The principal architects are
H. D. Mills, R. C. Linger, and A. R. Hevner.

3.4.2 DESCRIPTION

Box Structures, or the Box Structure Methodology for Information Systems Development, specifically
addresses activities concerning requirements definition, system specification, system design, implementation,
and software quality assurance. The method uses stepwise refinement and verification to produce a system
design from the specification. The design is composed of small steps that allow immediate verification using
mathematical derivation techniques that map one step into another.

The design process of the method is founded on three principles [Mill88]:

1. All data to be defined and stored in the system is hidden in data abstractions.
2. All processing is defined by sequential and concurrent used of data abstractions.
3 Each use of a data abstraction in the system occupies a distinct place in the usage hierarchy.

The box structures of the method are three different ways of viewing parts of the system under
development. Essentially a data abstraction is defined in three forms, using boxes. Beginning with a black box,
the developer expands the description into a state box, and then into a clear box. With each expansion, there is
an immediate verification step that ensures the correctness of the expansion, ot transformation.

More specifically, the black box view provides a description of the external behavior of a defined data
abstraction in terms of stimulus-response. The initiation of a black box with an entry and any required data is
described as the stiivalus, and the completion of the black box, with an exit and the data that may be produced, is
described as the response. This stimulus- response description is seen as a mathematical function from the
stimulus history of the black box to the next response of the black box.

Expansion of the black box into a state box requires that the stimulus history of the black box be

transformed into a state description. This is described as a mathematical function where the stimulus and state
histories correspond to the new response and state.

3-15

BOX STRUCTURES

The clear box view describes the behavior in terms of the four procedural structures needed to derive the
state and black box views. The structures are sequence, alternation, iteration, and concurrency. These structures
are used to replace the internal data abstraction defined in the state box.

Assisting in the effective use of box structures for development of information systems are four
principles: referential transparency, transaction closure, state migration, and common services.

3.4.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer rated the method well-suited for all applications. Examples of delivered systems
developed using the method are large-scale simulation, forms processing, and satellite tracking. Box Structures
have been used on less than five delivered systems; between five and twenty organizations have used the method.
The method is intended for and has been used on projects of all sizes. Most frequently used implementation
languages on projects developed with the method have been COBOL, C, and Pascal.

Target Constraints

The method can handle a number of target constraints, including timing and spatial constraints, special
features of the target hardware architecture and operating system, concurrency and fault-tolerance issues, and
security of access. These target system requirements are stored in box structure formats.

Furthermore, if a designated target system is not a requirement, then box structure designs are
independent of target hardware and software.

Modes of Expression (Tables 9,10}

Textual modes of expression which are required and provided with automated support are structured
English, a program design language, formal specification languages, and mathematical notation. Hierarchy
charts is a required iconographical mode. Finite-state diagrams and entity-relationship diagrams are strongly
encouraged. All of these iconographical modes are provided with automated support.

Creative invention is required to go from a black box to a state box, and from a state box to a clear box.
However, analysis and mathematical derivation techniques allow one to go from a clear box to the corresponding
state box, and from a state box to the corresponding black box. Other mappings are not required, as all
representations are in box structures. These box structures are the integrating concept across the complete system

(and software) development process.

Techniques for Analysis and Requirements Clarification (Tables !1,12)

A number of techniques are strongly encouraged by the method for clarifying system requirements or
behavior. Required for analysis and review are formal proof techniques and design reviews.

T GE N AN N O N Il .

BOX STRUCTURES

Other Technical Aspects

Concerning the assistance provided to incorporate changes in the requirements, box structures represent
requirements. Changes in the requirements necessitate modifications in the box structures. The method provides
a principle called "referential transparency” in order to isolate these changes.

Since specification, design, and code are all stored in box structure formats, consistency and integrity

checking are straightforward. The uses hierarchy of the box structure method provides a disciplined, rigorous
means for performing object-oriented design, which is seen to assist in the identification of potential reusable

components.

3.44 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The method provides a framework for performing activities associated with project management.

Communication Channels

The developer stated that the underlying mathematics-based theory and representation allow precise
technical communication and management control. Between the client and the development organization, box
structure graphics provide a visual means of client communication. These box structures are used during
analysis and design to review with the client the requirements which he has presented.

Quality Assurance (Tables 12,14,15)

The method requires test planning at precise points in the software process, and provides guidelines for
the prescriptive checking of interfaces. The method requires a quality assurance or test plan document.

Specific directions are provided for maintaining a record of technical decision-making, including

specification or design options, trade-off studies, rationale for any decision, personnel involved in making
decisions, and changes related to specification or design changes.

Documentation Formats (Table 16)

All documents required to be produced are tailorable in format, and generated automatically based on
data produced from other steps in the method. See the associated table for specific documents.

3.45 EASE OF USE

Technology Insertion

In the opinion of the developer, minimum qualifications needed by a development team leader for
successful use of the method include a bachelor’s degree, one to two years of development experience, working
knowledge of two programming languages, and experience with three or four different software systems. In

3-17

BOX STRUCTURES

addition, concepts which should be understood by an experienced developer for successful use were software
engineering concepts, object-oriented methods, as well as mathematical correctness of systems and programs.

Training is available in the form of hands-on demonstrations, overview presentations, classroom
tutorials, on-site consulting, video tapes, related publications from third-parties, and periodic technical updates.

A project manager would require 15 days to acquire an understanding of the major features and benefits

of the method, while an experienced developer would need 60 days to leam to use the essentials. Six months
would be required for an experienced developer to achieve expert user level.

Automated Facilities

Provided with the method is automated support for the textual and iconographical modes used by the
method and the documents required to be produced (see Tables 9, 10, and 16). Useful tools supporting the
activities of the method would be a word processor, a database system and a report generator.

3.4.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

A PC, like PS/2 50, or a workstation, e.g., Sun, are appropriate for hosting the tools of the method.

Acquisition Costs

Cost to acquire the method, including hardware, software, and training, is $10,000. Technical training
alone is $3,000, and a management overview is $1,000. There is no licensing policy.

Contact Information

Information Systems Institute 407-569-3722
2770 Indian River Blvd.
Vero Beach, Florida 32960 [Provider]

3.47 REFERENCES

[Hevn88] A. R. Hevner, "An Integrated Systems Development Environment with Box
Structures”, paper preseated at INTEC Symposium on Systems Analysis and Design,
Atlanta, Oct./Nov. 1988.

[Mili88] H. D. Mills, "Stepwise Refinement and Verification in Box-Structured Systems",
IEEE Computer, Vol. 21, No. 6, June 1988, pp. 23-36.

[Mill87] H. D. Mills, R. C. Linger, and A. R. Hevner, "Box Structured Information Systems",
IBM Systems Joumnal, Vo. 26, No. 4, 1987, pp. 395-413.

3-18

-----u-----‘

BYRON

3.5 BYRON -- Byron PDL and Document Generator

3.5.1 BACKGROUND

Synopsis

The Byron Program Design Language (PDL) and Document Generator supports an approach to
software development that uses an Ada-based PDL together with keyword-based comments as a basis for
defining, capturing information on, and expressing high-level and detailed design. It produces documentation as
an automated byproduct of this process. Byron supports the use of keyword-based comments to express system
specifications that result from the use of PSL/PSA or other methods.

History

Byron has been available and marketed since 1982, First used in development of a deliverable system
in 1983, it was originally built to generate Mil-Std Design Specifications (C5s) for the U. S. Air Force Ada
Compilation System (ACS) and was written in Pascal. As of March, 1987 Byron accepts the full Ada language
and is totally written in Ada.

3.5.2 DESCRIPTION

Byron, consisting of the Byron PDL and Document Generator, provides guidelines for requirements
definition, system specification, system design, and software quality assurance and also prescribes specific
directions and procedures for system implementation. It addresses preliminary design, detailed design, and
coding activities, as well as providing for configuration management, documentation, integration, and
maintenance. It provides a PDL processor, the Byron Analyzer, a Program Library Manager, and three
documentation tools.

Byron is a program design language which is an extension of the Ada language. Byron is itself
completely written in Ada and uses the front end of a validated Ada compiler, the Byron Analyzer, to ensure that
the PDL can be successfully compiled. The Program Library Manager supports revision control and allows links
to other users’ libraries. Byron’s Document Generator takes input from the Program Library and produces
documents according to predefined and user-defined templates, including the reports specified by Mil-Std 2167.

A high-level design is expressed initially using the Byron PDL. It is then entered into the program
library and maintained there. More detail is then added to the design until a fully implemented, compiled Ada
program results. Byron may be used in conjunction with functional or data-oriented decomposition methods. It
can be incorporated into an integrated environment or provide a framework for customizing the software
development process with the use of other methods and tools.

Byron is frequently used in conjunction with PSL/PSA for requirements definition and system
specification. Intermetrics is currently working on a prototype to interface directly between PSL/PSA and
Byron. The RSI tool provided by MetaSystems for use with PSL/PSA may also be used to produce such an
interface.

3-19

BYRON

3.5.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer states that the method is well-suited for use in the areas of embedded systems/process
control, time critical/real-time systems, scientific/engineering, systems programming, and image
processing/pattern recognition. It has been used in more than one hundred organizations for completing an
estimated twenty-one to one hundred medium and large projects.

Since Byron is an extension of the Ada language, it possesses Ada’s features of readability and
modularity; it supports structured programming; design decisions can be deferred: and it supports data
abstractions and information hiding. The developer states that it is also compatible with the concepts and
practices of stepwise refinement and genericity.

Target Constraints

Byron can be used to capture information concemning target constraints through its pre-defined or user-
defined keyword capabilities. Additional design information, not expressible or required in Ada, can be stated
through the use of Byron constructs embedded in Ada comments. The choice of an Ada-based PDL is intended
to reduce the effort required to port end-product systems to different target configurations and to adapt end-
product systems to new applications.

Modes of Expression (Tables 9,10)

Byron utilizes textual, rather than iconographical, modes of representation. It provides an Ada-based
program design language and automated support. It requires the use of narrative overviews of modules.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Byron typically relies upon the use of PSL/PSA for requirements specification. Byron provides
guidance for the transformation of the evolving software across phases of the software process. The phase is
specified as a parameter to the tool. The later the phase of the software process, the more information required in
the code and options file. The tool will give warnings if the source code is not consistent with the phase.

Other Technical Aspects

Because the Byron PDL information is placed within Ada comments, the annotated source can be
processed by the compiler. Thus, code and commentary can be maintained together, ensuring that documents
will always reflect the latest version of the program. The source code is maintained in the program library in an
intermediate form (DIANA) where it is available for further development work as well as for use by the
documentation tools.

3-20

BYRON

3.5.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

Byron does not provide managerial assistance, but does provide technical capabilities that aid in project
management and control, as described in the following sections.

Communication Channels

Byron facilitates and coordinates communication within the development team and with the client,
during the software process and continuing development, maintenance, and support. The master library and
annotated comment structure of Byron produce technical documentation, providing information about design to
other members of the development team during the later phases of the development process, as well as during
maintenance and support, when the original designers are not available for questions. The phase checking done
by the Byron Analyzer and configuration management and revision control of the program library also assist in
technical control and communication. The automatic document generation capability is designed to facilitate and
coordinate communication between the client and the development organization.

Quality Assurance (Tables 12,14,15)

Byron provides support for assessing conformity of the developing software to system specifications by
utilizing Ada’s capabilities for prescriptive checking of interfaces, by its relationship with the PSL/PSA formal
specification language, by its provisions for embedding requirements and design information as annotated
comments within the code, and by its incorporation of tools leading to verification. The user specifies the
appropriate degree of completeness checking, done in conjunction with Ada rules.

Byron provides early detection of inconsistencies and/or errors based on an unambiguous PDL and
automated interface checking. The front end of the Ada compiler will check syntax and semantics of the code,
detecting programming errors such as type and naming inconsistencies. The post-semantic processor will detect
errors and missing information in the comments. Correct completion of the method is confirmed through "phase
checking”, which checks for required information as a function of the asserted degree of completion.

The Program Library Manager supports configuration management in that it:

- generates builds and releases of the software;

- tracks multiple versions o: variants of software;

- can re-create any version or variant;

- insures that changes are made to the appropriate version;

- prevents multiple concurrent updates;

- provides tracing of recompilation dependencies;

- helps to determine what needs to be retested-after changes.

Documentation Formats (Table 16)

The Byron PDL package includes three documentation tools. The Document Generator requires the
use of a document template. A user can create new templates, modify existing templates, or use those provided.
The predefined templates include a call-tree generator, data dictionary, user manual, dependency table, Mil-Std
CS, STLDD (Software Top Level Design Document), and SDDD (Software Detailed Design Document). The

321

BYRON

Program Library Access Package allows the user to write Ada programs to access the contents of the program
library. It is used in conjunction with the VAX Ada compiler. The third tool is a general purpose text formatter.

3.5.5 EASE OF USE

Technology Insertion

The developer states that Byron can be used successfully by a development team leader with two to
three years of college-level technical education, less than one year of development experience, a working
knowledge of one programming language, and development or maintenance experience on one software system.
A project manager could acquire an understanding of the major features and benefits of Byron in one day, while
an experienced developer could learn to use the essentials in five days and could become an expert user of the
method in two months.

Training is available in the form of user manuals, on-line tutorial and help facilities, "hot-line" service,

periodic technical updates, and on-site consulting by independent consultants. There is a users support group,
the Byron Users Group, which meets twice a year at SIGAda/AdaJUG meetings.

Automated Facilities

The method embodied in Byron cannot be separated from the automated tool. It can be incorporated in
an integrated environment or provide a framework for customizing the software development process with the
use of other methods and tools.

The available CASE tools include several supplied with the method by Intermetrics. These are Byron
PDL, Byron/Ada (the part needed for the Analyzer), Byron Analyzer, and the Byron Document Generator. In
addition, several tools are supplied by other vendors. These include PSL/PSA from Meta Systems, Xinotech
Program Composer from Xinotech Research, Inc., Keyone from LPS, and Procap from Promod, Inc.

3.5.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Byron requires a DEC VAX/VMS.

Acquisition Costs
The unit cost to acquire the me*hod and the required components is estimated at $8,000 to $35,000. The

unit cost for technical training is between $5,000 and $9,000. Primary licenses, secondary licenses, site licenses,
and corporate licenses are available for purchase.

3.22

BYRON

Contact Information

Intermetrics 617-661-1840
733 Concord Avenue
Cambridge, MA [vendor]

3.5.7 REFERENCES

ll Information is available from the developer.

I
I

3-23

CORE

3.6 CORE -- Controlied Requirements Expression

3.6.1 BACKGROUND

Synopsis

CORE is aimed at the requirements analysis phase of software development. It attempts to create a
model! of the required system whose behavior can be understood by customer and analyst alike, and to derive
requirements of functions, performance, and other attributes in a complete and consistent manner. CORE
emphasizes the importance of the different groups of people involved in the development effort by composing
the system in terms of the different "viewpoints” of these groups as well as by assigning specific roles to
representatives from these groups.

History

CORE was developed by Systems Designers in Camberley, England, and by British Aerospace in
Warton, England. It was developed in the late 70s and shares techniques in common with other requirements
and specification methods. It was first used for the development of a deliverable system in 1980.

3.6.2 DESCRIPTION

CORE, Controlled Requirements Expression, addresses the very earliest stage of concept identification
or requirements elicitation. It involves requirements analysis, risk analysis, and system specification. The
approaches upon which the method is founded are data flow, data structure, control and event-oriented
approaches, as well as functional decomposition. It is well-suited for yse in the context of the Waterfall, the
spiral, and the rapid prototyping paradigms, and considers stepwise refinement an essential concept.

The method starts by identifying the organizations or individuals who have a "viewpoint” in the
proposed system. The concept of viewpoints is fundamental to CORE, and adopts the premise that different
groups see the system in different ways and prefer different formats for presenting information. These groups
are formalized into the roles of Customer Authority, User Authorities, and Analysts. Each role has defined
responsibilities and powers for arriving at a requirements specification acceptable to all parties.

This requirements specification is reached by means of the following seven stages in the method:

1) Problem Definition,

2) Viewpoint Structuring,

3) Tabular Collection,

4) Data Structuring,

5) Single Viewpoint Modelling,

6) Combined Viewpoint Modelling,
7) Constraints Analysis.

In the first stage, problem definition, the business or strategic objectives of the system are documented
from a senior management perspective. This perspective would include a statement of the current problems with
the existing system (if one exists), goals to be achieved by the new system, indications of future plans or future
directions for the system, and initial constraints. At this stage, the Customer Authority is identified.

3-24

CORE

In the next stage, viewpoint structuring, relevant views are drawn up to represent the system and its
environment. These viewpoints may be derived by considering relationships like supply and support of the
system, e.g., design or maintenance; users of the system, e.g., companies or organizations; operational aspects,
e.g., embedded systems: and fanctional aspects, e.g., logical groups of functions. The Customer Authority is
involved at this stage to detcrmine which aspects require analysis to become direct viewpoints of the system, and
which aspects are sources or sinks of information and can be considered indirect viewpoints. Viewpoint
Authorities are selected, each to be a spokesperson for a particular direct viewpoint. Also at this stage the
Analysts can provide an assessment of the work required for the analysis task.

Stages 3 through 7 of the method are performed iteratively to successively refine each viewpoint level.
Stage 3, tabular collection, is concerned with collecting, representing, and checking information provided for
each direct viewpoint in the viewpoint hierarchy. This information is derived for a particular viewpoint by
interviewing the Viewpoint Authority or by examining relevant documents. The information is presented in a
five-field form, showing sources, inputs, actions, outputs, and destinations. The fields are connected by arrows
to show the flow and transformation of information within the viewpoint. Data structuring then is carried out,
examining the data in terms of its content, order, grouping, and repetition. Single viewpoint modelling takes the
information collected in the tabular collection and data structuring stages and creates a diagram to show the
inputs, outputs, and action of a viewpoint. These Single Viewpoint Models show the data-flows relating to other
viewpoints and the internal dataflows that link up the actions within the viewpoint. Next, a similar diagram,
called a Combined Viewpoint Model, is constructed in order to either confirm that the children viewpoints fulfill
the definition of their parent viewpoint, or to represent cross-system transactions involving multiple viewpoints.
Finally, constraints analysis is applied to the model of the system.

3.6.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer rated the method well-suited for applications areas such as embedded systems or process
control, time critical or real-time processing, distributed processing or networks, large-scale simulation or
modeling, and analysis of human/non-data processing systems. Delivered systems built with the method include
avionics software, naval systems, gas industry systems, and space station software. Between 21-100 delivered
systems have been developed using CORE, within 21-50 organizations. The method is intended for use on
projects of all sizes and has been used as such. Implementation language is not really relevant in the developer’s
opinion; however, the implementation languages most frequently used with the method were CORALG66, Ada,
and Pascal.

Target Constraints

The method addresses concurrency issues by means of the Single Viewpoint Diagrams, in which critical
and non-critical dataflows can be used to identify concurrency. Fault tolerance issues are addressed via the
Combined Viewpoint modeling, where specific fault tolerance situations can be identified and studied.

Modes of Expression (Tables 9,10)

Data-flow and control-flow diagrams are required; specified documentation templates, narrative
overviews of modules, and structured English are strongly encouraged. The method’s Tabular Collection
diagrams identify inter-viewpoint dataflows and actions. These can be used to provide a starting point for Single
Viewpoint models, thus assisting in translating from one mode of expression to another.

3-25

CORE

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Required techniques are data-structure, data-flow, and control-flow analyses. Dynamic animation and
simulation are possible and encouraged for clarification of system requirements.

QOther Technical Aspects

As a method which specifically addresses requirements identification, CORE supports the identification
of changes to the requirements. There are built-in self-consistency checks designed to identify inconsistencies
and errors. CORE can also be used retrospectively to analyze existing system specifications.

3.6.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

Specific directions are provided for analyzing risk; other project management activities are not
addressed specifically by the method.

Communication Channels

Diagrammatic representations are designed to give good visibility of the requirements between all
parties involved in the creation of a software system. The client is involved in the software development process
since the method requires nominating a "spokesperson" to represent each group of organizations or individuals
associated with the application area. These groups form the "viewpoints” of the system.

The method prescribes the responsibilities of these spokespersons according to the roles they will take.
The Customer Authority role iuvolves defining the scope and plan for analysis, identifying the User Authorities
(later called Viewpoint Authorities), resolving disputes, and deciding on all changes of scope and planning. User
Authorities are the sources of information for the Analysts, and must provide a description of the system in terms
of any predecessor, as well as the interface desired. The Users must also come to agreement among themselves
on the description. The role of the Analyst is to conduct interviews with the Customer and Users and structure
the specification. In addition, the Analyst must make the specification understood by ail parties and check the
specification for inconsistencies, omissions, and premature design. Finally, the Analyst has responsibility to see
that conflicts are resolved by the Customer, that decisions are recorded and understood, and that no information
is lost.

Quality Assurance (Tables 12,14,15)

CORE does not address this aspect; it only addresses requirements identification.

Documentation Formats (Table 16)

The method does not prescribe document formats although it does prescribe specific types of
representations.

3-26

CORE

3.6.5 EASE OF USE

Technology Insertion

In order to successfully use the method, a development team leader need have less than two years of
college-level technical education, one to two years of development experience, and experience with at least two
software systems. No programming language experience is necessary. In addition, use of regular grammars,
data-flow techniques, and control-flow techniques should be understood, but are not required as a pre-condition
since they are all covered in the standard CORE training course.

Training assistance is available in the form of hands-on demonstrations, overview presentations,
classroom tutorials, and on-site consulting by the vendor. There also are on-line help facilities, a "hot line"
service, and user manuals. A project manager would need one day to acquire an understanding of the major
features of the method, while an experienced developer would need five days to leam to use the essentials of the
method, and six months to become an expert user.

Automated Facilities

The developer provides a tool called "Analyst"”, which assists in the production and checking of CORE
diagrams and provides training support.

3.6.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

A Maclintosh2 is appropriate for hosting the method’s tool.

Acquisition Costs

Cost to acquire the method for a single user is $5,000. F . low-volume users it is $3,000, and for high-
volume users, $2,000. Technical training is $1,500 and a management overview is $300. There is a licensing
policy.

Contact Information
SD-Scicon PLC 0276 686 200
Pembroke House, Pembroke Broadway
Camberley, Surrey GU15 3XD, England [provider]

3.6.7 REFERENCES
{Muli82] G. Mullery, "CORE, A Method for Controlled Requirements Specification”,

Proceedings of the 4th International Conference on Software Engineering, sponsored
by the IEEE, 1982.

3-27

DARTS

3.7 DARTS -- Design Approach for Real-Time Systems

3.7.1 BACKGROUND

Synopsis

This method extends Structured Analysis/Design into the real-time problem domain by providing
design criteria for multitasking. The steps of the r :;tho< provide structural criteria for identifying concurrent
tasks and guidelines for defining task interfaces. These steps occur after a structured system specification has
been developed and before each task is designed. The method is available for general use.

History

The precursors of DARTS are Real-Time Structured Analysis and Structured Design. Dr. Hassan
Gomaa developed the method in order to take into account the characterisitcs of real time systems which
typically consist of several concurrent tasks or processes. The method was first used for the development of a
deliverable system in 1982.

3.7.2 DESCRIPTION

DARTS, Design Approach for Real-Time Systems, addresses the activities of software system
specification and design. The method is founded upon approaches which are data flow-oriented, control-
oriented, and event-oriented. A number of software process paradigms are considered to be well-suited for use
with the method, although the most effective use is not dependent upon any particular paradigm. However, the
method does encourage incremental development or evolutionary prototyping, and considers the
transformational model and the 4GL model inappropriate for use with DARTS. Essential concepts of the method
include information hiding, abstract data-types, structured programming, and module coupling/cohesion.

DARTS may be considered an extension of the Real Time Structured Analysis and Structured Design
methods by providing an approach for structuring a real time system into concurrent tasks as well as a
mechanism for defining the interfaces between tasks. The steps of the method are:

1. Develop Structured System Specifrication using Real Time Structured Analysis. The
Ward/Mellor, Boeing/Hatley or ESML approaches may be used.

2. Structure the system into concurrent tasks using the task structuring criteria.

3. Define task interfaces.

4. Design each task, which represents a sequential program, using the Structured Design method.

The task structuring criteria guide the designer in decomposing a real time system into concurrent tasks.
The main consideration in identifying tasks is the asynchronous nature of the functions within the system. A
task may exhibit more than one of the task structuring criteria. The Event Dependency criteria include Device
1/0 Dependency, User Interface Dependency, Periodic, Periodic I/O and Entity Modelling. The task cohesion
criteria include Sequential Cohesion, Temporal Cohesion, and Functional Cohesion. The Task priority criteria
are the Time Critical and Computationally Intensive criteria.

In defining Task Interfaces, a data flow between two tasks is designed as a message. Either loosely

coupled or tightly coupled message communication is supported. Event signals are used for synchronizing
purposes between two tasks when no data needs to be communicated. Data stores are encapsulated into

3-28

--ﬁ-—-—-ﬁ---r

DARTS

information hiding modules, in which the data structure is defined as well as the access procedures. The access
procedures also synchronize access to the data.

3.7.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer states that the method is well-suited for applications involving embedded systems or
process control, time critical or real-time processing, distributed processing or networks, and image processing or
pattern recognition. Examples of delivered systems developed with the method are a robot controller and an
image processing and pattern recognition system. The method has been used by between five and twenty
organizations, with between five and twenty delivered systems developed with the method. The method has
been used on small and medium-sized projects; it is intended for projects of all sizes. Most frequently used
implementation languages for systems developed with the method are Pascal and C.

Target Constraints

DARTS prescribes steps for handling several requirements of the target system. Central to the method
are concurrency issues. The method also addresses timing constraints through the use of event sequence
diagrams which trace critical external events through the system. Special features of the target hardware
architecture are handled by allocation of tasks to CPUs. Message communication and event synchronization for
task interfaces are the ways the method handles special features of the target operating system. Finally, the
design documentation of the method is seen by the developer as assisting in porting end-product systems to
different target configurations.

Modes of Expression (Tables 9,10)

The method requires structured English as a textual mode of representation. Required iconographical
modes include finite-state diagrams, data-flow diagrams, control-flow diagrams, and Structured Design structure
charts. The method prescribes mapping rules for translating from data-flow diagrams to task structure diagrams,
and from task structure diagrams to module hierarchies. The developer states that transformation across phases
of the software process is facilitated by the criteria and guidelines for performing transformations.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

A number of techniques for clarifying system requirements are encouraged by the method. Data-flow
and control-flow analyses are required, as well as design reviews.

Other Technical Aspects

By emphasizing task structuring and information hiding, the method is reported to facilitate
incorporation of changes. By requiring design reviews, the method is intended to ensure consistency between
specification, design or code. Information hiding modules is also seen to assist in identification of possible
reusable design components.

3-29

DARTS

3.7.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

DARTS does not address project management issues.

Communication Channels

The specific features of the method designed to facilitate communication within the development team
are the iconographical modes of representation used and the decomposition of the system into tasks or modules
with well- defined interfaces. Between the technical development team and management, communication is
facilitated by means of an incremental development approach and well-defined milestones and deliverables.
Between the client and the development organization, the iconographical modes of representation are designed to
facilitate communication. In addition, the client is involved in the development process by means of reviews
during specification, and by means of rapid prototyping of the user interface.

Quality Assurance (Tables 12,14,15)

DARTS requires testing activities and recording of technical decision making during the software
development process, but does not provide directions for accomplishing these activities. It assists in the early
detection of inconsistencies and/or errors by means of design reviews, rapid prototyping, and incremental
development.

Documentation Formats (Table 16)

Several documents are required to be produced by the method. Where the method prescribes the
format, the format is either fixed or tailorable.

3.7.5 EASE OF USE

Technology Insertion

The developer estimated the following minimum qualifications needed by a development team leader
for successful use of the method: a bachelor’s degree, three to five years of development experience, working
knowledge of two programming languages, and experience on two different software systems. Major theoretical
concepts which should be understood are finite-state machines and concurrent tasks.

The developer offers overview presentations, classroom tutorials and on- site consulting as training in
the method. It was estimated that a project manager would need one-half day to understand the major features of
DARTS, while experienced developers would need one day to learn to use the method’s essentials and 3 to 6
months to achieve the level of expert user.

Automated Facilities

Not applicable.

3-30

DARTS

3.7.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

The method is compatible with SA/SD PC tools and workstation tools.

Acquisition Costs

Not applicable.

Contact Information

Dr. Hassan Gomaa 703-764-6191
George Mason University 703-323-3530
School of Information Technology & Engineering

4400 University Drive

Fairfax, Virginia 22030-4444 [(Provider of method]

3.7.7 REFERENCES

[Goma84] H. Gomaa, "A Software Design Method for Real Time Systems", Communications of
the ACM, Sept. 1984,

{Goma86} H. Gomaa, "Software Development of Real Time Systems", Communications of the
ACM, Vol. 29, July 1986, pp. 657-668.

(Goma87] H. Gomaa, "Using the DARTS Software Design Method for Real Time Systems",
Proceedings of the Twelfth Structured Methods Conference, Chicago, Aug. 1987.

[Goma88] H. Gomaa, "Extending the DARTS Software Design Method to Distributed Real

Time Applications”, Proceedings of the 21st Hawaii International Conference on
System Sciences, Jan. 1988.

3-31

3.8 DBO -- Design by Objectives
3.8.1 BACKGROUND
Synopsis

Design by Objectives requires the identification of system objectives and the assignment of quantitative
measures to all system attributes. Such measures allow these attributes to be integrated with each other and
tested, providing information for the trade-off analysis of different technical solutions so as to determine whether
objectives are being met. The method addresses quality control and advocates the incremental development of
well-understood subsets of the system for early validation.

History

DBO was mainly developed by Tom Gilb. Dr. Lech Krzanik developed the Aspect Engine software
tool for use with DBO; the Inspection part of the method originated with Michael Fagan. The basic ideas
evolved over the decade spanning the 1970’s and have been elaborated in a textbook by the developer.
Components of the method were first used with respect to a deliverable system in 1968 and eardier.

3.8.2 DESCRIPTION

Design by Objectives (DBO) incorporates a number of techniques for problem and requirements
definition, specification, analysis, estimation, preliminary design, planning, testing and maintenance. It views
the construction of software as but one part of a total system.

The following passage from [Pete81] explains a central concept of DBO, which is concerned with how
attributes shall be specified:

"The emphasis in DBO is on what is measurable, rather than what is desired. For
example, if the customer wishes to have a system developed to improve customer
service, this must be stated in a measurable way, in terms of an index or some such
measure of customer service whose minimum value and desired value after
installation have also been established."

The basic method consists of the following steps:

- Decide initial functional requirements, using any method;

- Decide initial attribute (quality and resource) requirements which are quantitative and testable;
- Identify initial solutions for meeting attribute requirements;

- Estimate effects of all solutions on all attributes;

- Make and execute an evolutionary step-wise system delivery plan for early experience and
feedback;

- Use Fagan’s Inspection method on all written material;
- Iterate until all requirements are satisfied.

The attribute specification for the system includes such items as definition of scales of measure, ways of

testing the attribute, time or condition when the measure is applicable, worst acceptable case level, and planned
levels of acceptability. Attributes may also be defined with a set of sub-attributes. The functional solution and

3-32

DBO

delivery step specifications consist of hierarchical lists of ideas which can be "tagged"” for quality control
crosschecking.

The method requires that specifications be analyzed in order to understand the consequences of muitiple
technical design decisions. The impact of changes to one attribute is assessed across other attributes by means of
impact estimation tables and impact analysis tables. Solution comparison tables are used to determine which
technical solution has the best net impact on a set of attribute level requirements. The method also makes use of
an "engineering handbook”, which is a database of potential technical solutions containing information on the
degree to which, according to certain criteria, a particular solution is expected to measurably affect a selected set

of attributes. Early quality control is provided for all DBO documentation by the use of Fagan’s Inspection
Process.

3.8.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer regards the method as independent of the type of application in the sense that DBO can
also be used for the development of non-computer systems. Examples of applications for which delivered
systems have been built using the method include computer supplier software, aircraft co-simulations,
bank/insurance applications, software organizational planning, and software package selection. The method is
considered to be independent of size and language as well; projects of all sizes have been built with DBO and a
variety of implementation languages have been used with it. The method is employed at the architectural and
design level, not at a program logic level.

In summary, more than 250 delivered systems have been developed using the method within more than
100 organizations. The developer stated that these figures include some applications of usage without all
components or tools associated with the method.

Target Constraints

The developer reported that DBO prescribes steps for handling timing and spatial constraints, as well as
special features of the target hardware architecture and operating system; further description of how these issues
are addressed by the method was not provided. Concurrency and fault-tolerance issues, and security of access

are not explicitly addressed, but the developer considers that these are issues that could be addressed along with
any other design issue.

Because DBO is not a programming method, it does not deal specifically with portability issues;

however, attribute specification is strongly encouraged to specify the degree and types of portability, which are
then engineered into the system.

Modes of Expression (Tables 9,10)

£
The developer stresses the fact that DBO operates at a level above the detail level where most textual
and iconographical modes of representation are used. Therefore, the modes of representation shown in Tables 9
and 10 are considered to be largely outside the scope of the method.

DBQ’s textual modes of representation include impact estimation, a formally defined planning language
called "Planguage”, tagging and cross-referencing, and formal separation of objectives/solutions/delivery steps.

3-33

DBO

Decision tables are compatible with the method. Iconographical modes include N-squared charts, which are
strongly encouraged.

Transformation across phases of the software process is accomplished by a) by relating design to the
requirements specification quantitatively in all quality and cost dimensions, b) by Fagan’s Inspection to ensure
consistency after the transformation, ¢) by referencing "tagged” once-only definitions, d) by optiunal use of a
CASE tool, “Aspect Engine", and e) by a relatively formal specification language, "Planguage".

Techniques for Analysis and Requirements Clarification (Tables 11,12)

The method requires the use of incremental or evolutionary development to clarify system requiements.
The use of rapid prototyping is strongly encouraged.

Analysis and review techniques utilized are Fagan'’s Inspections (which replace design reviews and code
walkthroughs), impact estimation of solutions on quality/cost/function, and measurement of properties at each
evolutionary step delivery. Change Control Board review is also strongly encouraged.

Other Technical Aspects

The method assists in reducing the effort needed to fully incorporate changes in the requirements by an
extensive network of "tags": cross-references to these tags are used in all aspects of design and planning
documentation. Also used is a disciplined application of Fagan's Inspection of all design documents and code.
Thirdly, small-risk incremental build and change, or evolutionary development, is followed. These three aspects

of the method are seen to assist in ensuring consistency of the developing system and the early detection of errors
in the system.

3.8.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

DBO prescribes specific directions and procedures for conducting a variety of activities associated with
project management, some of which are supponted with automated tools. These are shown in Table 13.

In addition to the activities shown in the table, DBO has specific procedures for addressing issues
conceming quality, in particular, tracking and estimating quality. The method does not address the assessment of

complexity, as this is regarded as an intermediary device for assessing risk and cost, both of which the method
addresses specifically.

Communication Channels

Particular to the method'’s facilitation of communication within the development team is the quantified
definition of all critical quality/advantage/resource results. All other sub-techniques relate to this aspect.

In addition to the above, several features of the method are designed to facilitate and coordinate
communication between management and the technical development team, and between the client and the
development organization. These include attribute specification, impact estimation, inspection, and evolutionary
delivery. The method requires substantial involvement of the client in the software development process. The

3-34

DBO

initial involvement includes the negotiation of attribute specification, which is essentially a contract for results.
Additionally, the client participates in determining process standards and in inspecting documents. He or she
may also be involved in impact estimation reviews. Finally, the client is involved when evolutionary steps are
delivered either to the client or to a simulated use environment.

Quality Assurance (Tables 12,14,15)

DBO specifically addresses test planning, generation of tests based on system requirements, and early
“testing” of documentation using Fagan’s Inspection. Other verification activities are outside the direct scope of
the method.

Automated recording procedures and specific directions are provided by the method for maintaining

records of technical decision-making: the specification/design options considered, trade-off studies, rationale for
any decisions, personnel involved in making decisions, and all changes related to specification/design decisions.

Documentation Formats (Table 16)

All of the documents required to be produced by the method do not always require use of automated
facilities. However, several of them can be produced with the "Aspect Engine", a prototype tool. Normally
other support tools are used (e.g., PC word processors, outlines, spread sheets) For formats and type of
automated support for these documents, see Table 16.

In addition to the above, the method requires impact estimation tables, evolutionary delivery step

specification, inspection process standards, and inspection checklists. All of these documents receive automated
support or can be manually produced.

3.8.5 EASE OF USE

Technology Insertion

The developer estimated that a team leader would need less than two years of college-level technical
education and three to five years of development experience. Knowledge of programming languages and
experience on different software systems were not considered necessary prerequisites for a team leader.

Training includes bands-on demonstrations, overview presentations, classroom tutorials, on-site
consulting, video tapes, an on-line help facility, user manuals, related publications from third-parties, and
periodic technical updates. One day is required for a project manager to acquire an understanding of the major
features of DBO. A minimum of five days would be required for an experienced developer to leam to use the
essentials of the method, five to ten days for subcomponents like "Inspection”. About one to two months would
be required for a developer to achieve expert user level.

Automated Facilities

A prototype tool, the Aspect Engine, supports all of the activities of the method. See Tables 13 and 16.
The developer mentions that normally other support tools are used for the method's activities, including PC word
processors, outlines, spread sheets, and charting facilities.

3-35

DBO

3.8.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

An Apple Maclntosh is appropriate for hosting tools associated with the method.

Acquisition Costs

Technical training for low-volume users is $2000, and for high-volume users is $500. A description of
the method is available in the book Principles of Software Engineering Maragement by Tom Gilb.

Contact Information

Absolute Software 213-293-0783

4593 Orchid Drive

Los Angeles, CA 90043 [Provider of method]
FI-LA Marketing 01-847-0471

14 Junction Rd.

London W54XL. [Provider of tool,
England manuscripts}]

3.8.7 REFERENCES

[Faga76] M. E. Fagan, "Design and Code Inspections to Reduce Errors in Program
Development"”, IBM Systems Journal, Vol. 15, No. 3, 1976, pp. 182-211.

[Gilb88] T. Gilb, Principles of Software Engineering Management. Addison-Wesley, 1988.

FI-LA (see Contact Information) provides a 450 page manuscript by T. Gilb, "Software Engineering
Design”. They also provide a working prototype of the Aspect Engine for the Maclntosh, as well as a wide
variety of teaching materials and articles on MacIntosh disks by Gilb.

3-36

DCDS

3.9 DCDS -- Distributed Computing Design System

3.9.1 BACKGROUND
Synopsis

DCDS provides an integrated approach for supporting the representation of system and software
requirements. It also supports the design and testing of systems. It provides languages supporting each phase
of development, with an emphasis on traceability between phases. A common language syntax is used at all
levels; common tools are used to translate the languages into a data base, analyze them for consistency and
completeness, and extract information for specifications and reports.

The method is available for general use, upon authorization from USASDC. The Systems Engineering
phase of DCDS has been productized with the RDD-100 tool commercially available from Ascent Logic
Corporation.

History

DCDS was developed by Mack Alford, Robert Loshbough, and others at TRW since 1973. In 1979
DCDS was first used on FAS/ADOP. From 1980-1984 it was used to develop a project which provided real-
time distributed processing of optical tracking data. Earlier versions of DCDS are known as SREM (Software
Requirements Engineering Methodology) and REVS (Requirements Engineering Validation System).

3.9.2 DESCRIPTION

DCDS, Distributed Computing Design System, is a collection of procedures and tools for addressing
various stages of development. These procedures include the use of the System Requirements Engineering
Methodology, the Software Requirements Engineering Methodology, the Distnbuted Design Methodology, the
Module Design Methodology, and the Test Support Methodology. DCDS is founded upon several approaches
to software construction and is said to be well-suited to a number of software process paradigms. Specifically,
the componert methodologies of DCDS include risk management and guided flexibility in the choice of a path
through the steps, based on Boehm’s Spiral Model.

DCDS begins with the definition of system level requirements in a System Specification Language
(SSL). SSL is used to define functions, their inputs and outputs, and their decomposition and allocations with
respect to hardware components, including the data processor. SSL also defines the interface designs, and
control functions dealing with resource management and fault tolerance. It is designed to preserve, by means of
a graphic method, the previous specification of function sequences and concurrencies, the conditions for state
transitions, and inputs and outputs. This phase of the method extends the MIL-STD-499 Functional Sequence
Diagrams to allow specification of the system behavior with regard to each of the objects handled by the system.
A simulation generator is available to generate a stand-alone Ada simulation of the system.

At the next level of the method, Software Requirements Engineering Methodology (SREM) is used to
decompose the previous specification of functions to the state machine stimulus-response level of requirements.
The Requirements Statement Language (RSL) used here overlaps with the SSL to preserve the specified
functional behavior and insure that no data is used before it has been given a value, thus verifying the
consistency of data flow. A simulation generator is available to generate an Ada simulation of the stimulus-
response processing requirements.

3.37

DCDS

The Distributed Design Methodology provides the language and tools for packaging the implementation
processing on distributed processors. This step identifies the required concurrent units of code and their
scheduling to satisfy response time requirements while at the same time satisfying execution time and memory
constraints for each processor. This step also identifies ways to partition state information into data objects. The
aim is to provide a way for deriving distributed real-time designs which preserve both stimulus-response and
data flow requirements. A process construction tool accesses the design database to build source code for each
processor.

The Module Design Methodology is then used to identify the application oriented modules, establish
interfaces at the variable data-type level, and develop the modules using an Automated Unit Development
Folder approach consiste1t with MIL-STD-2167. This step attempts to ensure strict traceability of the modules
and data flow to the stimulus-response level of requirements.

The Test Support Methodology provides a language, tools, and procedures for developing the

sequence of integration tests. These tests are intended to incrementally validate the code against the
requirements as it is developed.

393 TECHNICAL ASPECTS

Applicability and Usage (Tables 4.5,6)

DCDS is reported to be well-suited for use on applications involving timing constraints and process
control, among others. Specifically, the method has been used to develop the following delivered systems:
OTH-B. TDRSS, FAS/ADOP (au embedded real-time application), BM/C3 CD, GSS, SSDS, EV88.

In sum. between S and 20 systems have been delivered using this method, and between 21 and 50
organizations have used the method. DCDS is intended for large projects, and has been used only on large
projects.

While at present DCDS is language-independent, the Distributed Design and Module Development
phases may be tailored to be Ada-specific by extending the underlying elements, relations, and attributes used
to record design information. Pascal and Ada have been most frequently used for coding systems developed
with the method.

Ascent Logic’s RDD-100 is being used by GE to control the Phase I SD1 system requirements and is in
use at another five locations.

Target Constraints

There are a number of constraints which are addressed by language constructs within DCDS. General
constraints are represented with "CONSTRAINT", with traceability to design objects. Timing constraints can
be indicated at the requirements level by specifying COMPLETION_CONDITION (which is an attribute of
FUNCTION), and "DATA name DELAYS EVENT name". In the design, XQT_BUDGET (an attribute of
ROUTINE) can be specified for timing as well as SIZE (an attribute of ROUTINE) for spatial constraints. The
special features of the target hardware and operating system can be addressed within the language structures for
hardware design. including distributed design. message passing, event and state monitoring, priorities. cail, and
services. Methodology guidance is given for using these constructs. and for addressing concurrency and fault-

DCDS

tolerance issues using other language constructs. An analytical tool can be applied to concurrency problems
("CLUSTER data elements”).

Guidelines for estimating timing and sizing of the target hardware and the method’s distributed process
construction technique are designed to reduce portability problems. Tasks and data are developed so that their
locations are transparent to each other. Their allocation to processors resides in the database, which creates
tables for identifying their locations. Tools can then be used to extract the appropriate code segments with
respect to each processor. Simulations generated from the design specifications are used to verify response time
satisfaction.

Modes of Expression (Tables 9.10)

DCDS textual modes include specified documentation templates, narrative overviews of modules, and
formal specification languages. The required iconographical modes include control-flow diagrams and
flowcharts. Automated facilities are provided for these required modes as well as for a number of other modes
encouraged by the method.

DCDS prescribes mapping rules for translating between several of its modes of expression. In
particular, F_NET (control flow) and text database information can be mapped into an IDEFo diagram (data
flow). Logic flow diagrams are mapped into PDL, while extended entity-relationship-attribute (ERA) graphics
translate into HIPO and Hierarchy charts. All the above mappings are automated by both DCDS and RDD-100.

Transformation of information across the phases of the software process is semi-automated. Upon
completion of the system requirements database, the elements to be forwarded are automatically written to a file.
When the software requirements database is opened, this file is input to provide the initial information. Then
the elements from upstream must be transformed into elements of the downstream language. The same process
is repeated when opening the distributed design phase, the module development phase, and the test phase. The
languages for each phase are similar, though specific to the phase.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

DCDS requires simulation and executable specifications in order to clarify system
requirements/behavior. Review techniques that are required include analysis of data structures, data flow, and
control flow, as well as design reviews and code walkthroughs. "DECISIONS" are used to capture design
rationale during development.

Other Technical Aspects

In order to facilitate changes in the requirements, DCDS uses two element types: DECISION can be
used for special topics or refinements that arise during development, and CHANGE_REQUEST is used for
indicating formal changes in baselined requirements. Additionally, DCDS has rules and ERA constructs to
maintain traceability from end to end: requirements to design to code; and requirements to design to tests.

Regarding assistance for reusing components, the module development methodology gives
guidelines for selecting modules to be kept in a rensability library. It also leads the user in setting up and
maintaining a reuseability library on the DCDS tools. Reusability is also addressed by changing the desired
behavior and seeing which functions remain. The remaining functions will map to the same modules. Since
the module design is separate from the modules themselves, the modules can be reused.

3-39

DCDS

Both DCDS and RDD-100 provide users with the capability of tailoring the elements, relations, and
attributes of the database to a project, forming user-specified consistency checks on that information, and
generating reports containing that information.

3.9.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

Specific directions and procedures are provided for analyzing risk, tracking project progress, project
planning, scheduling and/or manpower loading, and configuration management. Automated support is
provided for the above activities in DCDS.

Communication Channels

English-like ERA languages, extensive graphics, and automated document generation are designed to
facilitate communication among all parties involved in a software development project. These can be extended
and tailored to a project.

In addition, within the development team, there is a query language with the following features:
retrieval of sets by relationship, attribute, qualifier, and hierarchy qualification; combination of information
(AND, OR, MINUS); creation of hierarchies, allowing attributes and qualifiers as well as relationships, with
various options to format listings; and a report command for formatting templates.

Project management is provided with detailed steps for determining quantified milestones, and
given tailored methodology paths in the implementation of Boehm'’s Spiral Model for risk management.

For involving the software client in the software process, DCDS automatically produces a SSS for
System Requirements Review, a SSDD for System Design Review, a SRS for Software Specification Review, a
SDD (preliminary version) for Preliminary Design Review, and a SDD (detailed version) for Critical
Design Review. DCDS also supports production of test reports for Functional and Physical Configuration
Audits. RDD-100 currently supports only the Systems Engineering phase, generating a standard SSS,
Interface and Traceability reports, as well as allowing the user to construct project-unique reports.

Quality Assurance (Tables 12,14,15)

DCDS and RDD-100 provide automated checking for completeness and consistency. A change
would be incorporated by locating the first place where behavior changes, using automated tools to identify
affected elements for an impact analysis, then modifying behavior, and using the tools to again assure
consistency. A check is provided for use at the end of every major step.

Technical decision-making records are tailorable and maintained for automatic traceability of the

progress of a project, in particular, logs on design decisions, problems, and changes. The method prescribes
specific directions and procedures for configuration management, test planning and test generation.

3-40

p—

DCDS

RDD-100 is hosted on Sun 3/60, Apollo, and MacIntosh II having 8 MB memory. There are plans to
host the tool on IBM PS/2.

Acquisition Costs

For DCDS, there is no separate cost for the method and software tools, other than the hardware and
operating system configurations required for use of the tools. There is also no licensing policy.

Contact the vendor for cost information on RDD-100.

Contact Information

U.S. Army Strategic Defense Command 205-895-3858

Dr. Virginia Kobler (DASD-H-SBT)

P. O. Box 1500

Huntsville, Alabama 35807 [DCDS provider]
Ascent Logic Corporation 408-943-0630
Suite 200, 180 Rose Orchard Way

San Jose, California 95037 [RDD-100 vendor]

3.9.7 REFERENCES

[Af088]

[Alfo87a]

[Alfo87b]

[Alfo85]

(TRW 87a])

[TRW 87b]

[TRW 87c]

M. Alford, "RDD Approach to Systems Engineering”, Requirements Driven
Developer, Vol. 1, No. 1, Dec. 1988.

M. Alford, "DCDS Multiple View Approach to Closing the Requirements/Design
Gap", presentation at the Fourth Conference on Methodologies aud Tools for Real-
Time Systems, Washington, DC, Sept. 14-15, 1987.

M. Alford, "Requirements Driven Test Planning”, presentation at Software Testing
and Validation Conference, Washington, DC, Sept. 23-24, 1987.

M. Alford, "SREM at the Age of Eight: the Distributed Computing Design System",
Computer, Vol. 18, April 1985, pp. 34-36.

TRW System Development Division, Distributed Comupting Design System: "A
Technical Overview". Huntsville, AL, 25 July 1987.

TRW System Development Division, Distributed Comupting Design System: "Tools
User’s Guide with Appendices”. Huntsville, AL, Oct. 1987.

TRW System Development Division, Distributed Comupting Design System:
"Methodology Guide with Appendices”. Huntsville, AL, Oct. 1987.

3.42

DCDS

Documentation Formats (Table 16)

DCDS provides a variety of documents, generally tailorable within the method and generated
automatically as result of data produced from other steps in the method. The list of specific documents is given
in Table 16.

RDD-100 provides a number of standard reports, and allows the user to generate his own reports.

3.9.5 EASE OF USE

Technology Insertion

Minimum qualifications for a software development team leader were estimated as a bachelor’s degree,
3to 5 years’ development experience, working knowledge of 2 programming languages, and experience
with 3 to 4 different software systems. In order to use the method successfully, an experienced developer
would need to understand F_NETS (control flow structure) and R_NETS (stimulus-response thread structure).

Among the types of training assistance available are overview presentations, classroom tutorials, on-
site consulting and help facility, "hot line" service, user manuals, and periodic technical updates. Estimates of
learning times were 3 days for project managers, 5 days for experienced developers to understand the
essentials of the method, and 2 months for an expetienced developer to become an expert user of DCDS.

The developer of RDD-100 felt that learning time would be reduced with the tool because of the
multi-window, menu-driven user interface.

Automated Facilities

DCDS includes a full suite of tools that are desigred to support large projects. The method provides
automated facilities for representations required by the method, as well as for other representations which
are encouraged. The method generates a number of software specification and other documents. There are
specific procedures for test planning, supported by automatic facilities, and guidelines for other types of test
activities which are also automated. Automated procedures are used to maintain a number of records of
technical decision-making during the development process, and project management activities specifically
addressed have automated support.

Mulu-user support is provided by DCDS in terms of an ASCII file export/import capability for
sharing data among several users. RDD-100 supports element ownership with export/import. Thus, a master
database can export a function and all of its related elements to an engineer for further refinement. The
elements not "owned by" the engineer appear as "read only". All changes are transmitted back to the master
database, where conflicts are automatically detected and diverted to a "conflict file" for case-by-case
resolution.

3.9.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

DCDS tools may be hosted on a VAX with VMS 4.6, or on a SUN 3 system with Sun 05 3.4 or 3.5.

3-41

DSSAD

3.10 DSSAD -- Data Structured Systems Analysis and Design

3.10.1 BACKGROUND

Synopsis

DSSAD addresses activities associated with requirements definition or clarification, system
specification, and system design. It is founded on a data structure-oriented approach and entity-relationship
modeling.

History

The precursor of this method is Jackson Structured Programming. DSSAD’s principal architect is Colin
Knight. The method was first used for the development of a deliverable system in 1981.

3.10.2 DESCRIPTION

DSSAD, Data Structured Systems Analysis and Design, consists of nine steps, which, while themselves
distinct, may overlap and reiterate upon each other. The developer rated the method well-suited for use in the
contex of the incremental model of the software process; he considers the method inappropriate for use with
rapid prototyping.

The following paragraphs summarize the nine steps of the method:

1: Define the outputs. A system is bounded either by its inputs or outputs; a definition of either one
defines the whole system. Since the user is interested in what the system produces, a definition of
the output fixes the system. If the output is defined in terms of physical output forms, the abstract
model will be revealed by removing the surrounding control and format data.

2: ldentify the entitics. Applying the techniques of data normalization reveals the entities underlying
the abstract data model. Construct an entity/attribute list.

3: Construct entity behavior models. For each entity identified construct a behavior model for its
total life from its beginning to the extinction of the entity. All the events that have any effect on
the entity or are affected by the entity are part of the behavioral model.

4: Refine behavior models. Resolve any parallelism existing between event patterns that occur
simultaneously. Refine the behaviors to account for the different types of relationship that can
exist between event patterns.

5: Construct interaction diagrams. List all the entities affected t-y a particular event, and identify the
controlling entity. Construct the entity interaction diagram to show the claiming sequence of the
event upon the entity behaviors, and the coordination of messages passing between entities.

6: Refine interaction diagrams. Introduce the high level behaviors necessary to maintain the list of
information stored by the system.

7: Queries and reports. Introduce the events necessary to enquire and report upon the state of the
abstract system.

3-43

DSSAD

8: Errors. Consideration of the effects upon the system of reversing or changing any event.
Consideration of events arriving in the wrong sequence. Missing events.

9: Physical implementation. By consideration of the volumes and frequencies estimated for each

event, decide upon the physical environment in which the system is to be implemented. The

practical coding of the system and the possible optimizations that can be effected in the chosen
environment.

3.10.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer stated that DSSAD is well-suited for time-critical or real-time applications, and data
processing or database projects. Types of applications for which delivered systems have been developed with
the method include classical order entry, stock control, invoicing system using on-line facilities, production of
responses to magazine reader inquiries, and training management. The estimated number of such delivered
systems is less than five, in the sam< number of organizations. The method is intended for projects of ail sizes; it
has been used for projects in the small to medium range. COBOL is the implementation language most
frequently used when coding systems developed with the method.

Target Constraints

The method does not prescribe steps for handling such constraints.

Modes of Expression (Tables 9,10)

DSSAD requires specified documentation templates and strongly encourages narrative overviews of
modules, structured English, and program design language. Required iconographical modes of expression
include data-flow diagrams, entity-relaationship diagrams, and hierarchy charts. There are several modes of
expression the developer considered inconsistent with the method; see the associated tables for specific modes.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Incremental or evolutionary development and executable specifications are techniques utilized by
DSSAD in order to clarify system requirements. Analysis and review techniques include data-structure analysis,
design reviews, and code walk-throughs.

Other Technical Aspects

A concept considered essential to the method is structured programming. The developer stated that
concepts such as abstract data-types and module coupling or cohesion are compatible with DSSAD.

3.44

DSSAD

3.10.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The method provides a framework in which complexity may be assessed; other activities associated
with project management are not addressed.

Communication Channels

Walk-throughs are conducted with the user at the end of Steps 1, 3, 5, 7 and during Step 9, described
earlier. Continuous involvement of the user takes place throughout the process.

Quality Assurance (Tables 12,14,15)

The developer reported that error analysis rules and techniques incorporated into the method ensure the
detection of all errors possible at each stage.

Documentation Formats (Table 16)

The method requires a series of documents to be produced. Those documents whose formats are
prescribed by the method are tailorable within the method. For the specific documents, see the associated table.

3.10.5 EASE OF USE

Technology Insertion

In the developer’s opinion, a development team leader, in order to use the method successfully, would
need a bachelor’s degree or two to three years of college-level technical education, no prior development
experience, working knowledge of one programming language, and experience with one software system.

Training is available in the form of overview presentations, classroom tutorials, on-site consulting by
the vendor, and user manuals. Five to ten days would be required for project managers to understand the major
features and benefits of DSSAD, as well as for experienced developers to learn to use the method’s essentials.
Two months would be required to bring an experienced developer to the level of expert user.

Automated Facilities

Not applicable.

3.10.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Not applicable.

3-45

DSSAD

Acquisition Costs

Technical training cost is $4,000. A management overview costs $1,000.

Contact Information

Colin Knight 0734 470440
23 Carlton Road

Caversham, Reading R447NT

England [Developer]

3.10.7 REFERENCES

[Knig81] C. Knight, L. Robertson, and L. Pink, "A Practical Implementation of Data Structured

Systems Analysis and Design”, Reader Enquiry Serivce, Jackson Method User Group,
Amsterdam, Sept. 1981.

E-DEV/ESA

3.11 E-DEV/ESA -- Essential Systems Development/Essential Systems Analysis

3.11.1 BACKGROUND

Synopsis

Essential Systems Development (E-DEV) provides a framework for system development, based on the
framework originally developed as part of Essential Systems Analysis (ESA), with strategies designed to
integrate requirements definition productivity techniques and tools. ESA addresses the activities of requirements
definition and specification, as well as preliminary design. E-DEV expands on ESA’s treatment of design
yielding the design technique Essential Systems Design (ESD), and adds a data modeling front-end,
Quintessential Systems Analysis (QSA). The E-DEV managerial strategy expands on ESA’s leveled systems
development concept, integrating data modeling, prototyping, and Joint Application Development (JAD).

[Authors’ note: E-DEV was developed as an extension to ESA by one of its co-developers, but ESA
continues to be used without these extensions. They are discussed together here and listed separately in the
tables in Chapter 6.]

History

Essential Systems Analysis is based upon DeMarco’s structured analysis. Essential Systems
Development incorporates techniques of information modeling, logical database design, Yourdon/Constantine’s
structured design, and IBM’s JAD. With ESA [McMe84], Stephen McMenamin and John Palmer introduced a
modeling approach based on separating the essence of a system from the details of its implementation and caused
modifications of Yourdon’s SA/SD, to deemphasize the practice of modeling the existing system. ESA was first
used on a deliverable system in 1980, and E-DEV in 1981.

3.11.2 PESCRIPTION

Essential Systems Development has three sub-methods: Quintessential Systems Analysis, Essential
Systems Analysis, and Essential Systems Design. QSA provides strategies for developing data models, ESA
provides strategies for developing logical process models, and ESD provides strategies for integrating logical
data and process requirements with implementation technology. E-DEV strategies are organized using both the
waterfall and spiral development process paradigms.

Taking a waterfall view, the E-DEV technical strategy presents the logic of systems development and
requirements definition. First the data model is developed using QSA. The output of QSA is transformed into a
logical process model through the application of ESA. Both logical process and data requirements are then
integrated with technology through the application of ESD.

Taking a spiral view, the E-DEV managerial strategy begins a project with the development of a first-
cut data model, logical process model, and implementation model using parts of QSA, ESA, and ESD. The
resulting models form the basis for the creation of a system prototype. They are also the basis for estimating the
complexity of detailed requirements definition work and for precise establishment of project scope. Detailed
requirements definition follows, during which the various models and the prototype are updated as additional
requirements are identified. The final system is either a fully evolved prototype or one coded from the combined
detailed passive requirements models and the prototype.

3.47

E-DEV/ESA

Essential Systems Analysis views the system being developed in terms of two different types of system
models - the "Essential Model"” and the "Incarnation Model". The creation of the Essential Model focuses on
analysis of the major activities of the system from a logical view - what the system must do. The Incarnation
Model is an extensive implementation environment requirements model. It provides a more physical view of the
system and its environment - how the system will be built.

Continuing the process, ESD consists technically of two activities: specifying the implementation
environment and mapping the essential requirements to the implementation environment model. The data flow
diagrams and entity-relationship diagrams are redefined, along with state transition diagrams, to show the
allocation of the essential model to processors. Based on this allocation, decisions are made related to the
concurrency requirements of each processor, and the system support environment for the application is modeled.

Next the code organization phase incorporates the techniques of Structured Design(SD) to perform
initial design and detailed design. An object-oriented design approach is also used to convert fragments of the
essential model to program designs. As in SD, lower level data flow diagrams are created using successive
refinement to produce hierarchical sets of diagrams at increasing levels of detail. Structure charts are used to
define the physical structure of the program units of the system. They show the calling hierarchy, that is, what
program units call or are called by what other units. Created by transform analysis from data flow diagrams,
they are refined based upon the aspects of coupling, cohesion, compiexity and reusability of individual models.
The process is also divided into an external and an internal design stage. As part of internal design, database and
program design are integrated.

3.11.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

ESA has been used in 51 to 100 organizations for developing 21 to 100 delivered systems, while ESD
has been used in S to 20 organizations for developing 5 to 20 systems. Both have been used on projects of all
sizes, including municipal bond insurance, utility customer service, pension fund account management, and
investment/debt portfolio management. The languages most frequently used have been COBOL and C.

The method is best suited for data processing or database systems. The developers indicated that it is
also well-suited for systems programming and distributed processing and it is compatible for use in embedded
systems or process control, scientific or engineering applications, time critical or real-time applications, or expert
systems.

P. Ward [Ward86] states that McMenamin and Palmer’s extensions to SA/SD apply to transaction-

oriented business systems. The extensions provided in the Ward/Mellor method include specific techniques for
generating the Essential Model and the Implementation (Incaration) Model for real-time applications.

Target Constraints

The method addresses details of the target configuration in the Incarnation Model and isolates
portability concerns through the distinction between the Essential Model and the Incamation Model. While ESA
identifies issues concerning the target hardware architectures and the operating system, ESD addresses these and
other target constraints in greater detail.

3-48

E-DEV/ESA

ESD provides support for the selection of target hardware architectures. All features are considered
within a cust/benefits framework. ESD treats target operating systems in a manner similar to hardware
architectures. In addition, opportunities for the expansion of system software are identified.

Entity state definitions in the "Q"/data model and response synchronization activities in the essential
model are E-DEV’s way of specifying technology independent timing constraints. ESD provides time-windows
for 1/0 and mandates the specification of maximum response times for events.

ESD allows the implementation environment model to contain standard fault tolerance design
templates, including transactic:. logging, parallel updates, backup systems, and mirror files. ESD’s
implementation environment model also contains standard access security design templates, such as password,
security profile, and hangup/dialback.

E-DEYV addresses portability through its division between intemnal and external views of the system.

Modes of Expression (Tables 9,10)

ESA primarily uses the data-flow diagrams of structured analysis and the entity-relationship diagrams
of information modeling to express and refine the system requirements. It calls for the use of structured English
to provide user-friendly narrative overviews of procedures, subroutines, and packages, in the form of mini-specs
for the components shown in the structure charts. It encourages the use of hierarchy charts, finite state diagrams,
and control-flow diagrams.

E-DEV’s modes of expression extend beyond those of ESA. Its use of entity-relationship based event
models, entity-state diagrams, and a data model context diagram and its requirements for hierarchy charts and
system flowcharts are the major differences.

ESA and E-DEV provide mapping rules for translating from one mode of expression to another. ESA
provides rules for translating from:

- physical data flow diagram (DFD) to logical DFD,

- entity/relationship diagram to DFD,

- entity/relationship diagram to data structure diagram,
- data flow diagrams to module hierarchy.

E-DEV adds rules for translating from:

- context diagram to entity/relationship diagram,

- entity/relationship diagram to entity state transition diagram,
- entity state transition diagram to DFD,

- entity state transition diagram to process description,

- attribute definition to DFD,

- attribute definition to process description,

- process description to module hierarchy,

- process data dictionary to module hierarchy.

Essential systems development views requirements definition as a series of requirements transformation

activities. Therefore, the developer states that the whole of E-DEV is geared toward facilitating the
transformation across phases of systems development in general and requirements definition in particular.

3-49

E-DEV/ESA

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Both ESA and E-DEV require rapid prototyping, data-structure analysis, data-flow analysis, control-
flow analysis, decision tables, and JAD. They encourage incremental development and Change Control Board
review. Although simulation is not addressed, an animated perspective of the static models could be used as an
aid to conceptualization. ESA encourages entity-relationship analysis, while E-DEV requires it, as well as
requiring design reviews and encouraging the use of formal proof techniques and code walk-throughs.

ESA uses two requirements perspectives, essential/logical and implementation/physical. E-DEV adds a
third perspective, the Quintessential view ("Q"), and then divides requirements into three major views,
data/quintessential, process/essential, and design/implementation.

E-DEV's use of event partitioning provides a common unit across all requirements transformations. A
given event will identify a well-defined portion in each of the models. Therefore, transformation of requirements
can be partitioned by event: one event's worth of essential model is derived from that event’s worth of
quintessential model; one event's worth of implementation model can be derived from that event’s worth of
essential model.

Other Technical Aspects

E-DEV uses the techniques of structured analysis, structured design, and entity-relationship analysis.
The developer states that elements of these techniques minimize the cost of changes in requirements. E-DEV
supports the early detection of inconsistencies and/or errors through its leveled systems development approach
with the technique of "blitzing", a refinement of JAD. Each method within E-DEV, QSA, ESA, and ESD, has a
blitzing strategy: a procedure for the rapid development of a first-cut model of a given type. These strategies are
used early, i.e., in the feasibility study phase for a project.

Tiie preliminary design resulting from the technique of blitzing is done by a group of developers and
users in a workshop setting. The appropriate models are built with the passive modeling tools of information
modeling, structured analysis, and structured design. Leveled system development also advocates the
construction of active requirements models through a variety of prototype types. It is stated that these passive
and active models make inconsistencies almost immediately clear.

In addition to addressing portability issues, the separation of concemns between the Essential Model and
the Incarnation Model is intended to assist in reducing the effort required to adapt end-product systems to new
applications.

3.11.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The E-DEV managerial strategy is an expansion of ESA’s leveled systems development concept. The
developer indicated that its techniques for analysis of business and technological problems provide a basis for
analyzing risk, assessing cost and complexity, tracking project progress, project planning, and scheduling and
allocation of personnel and other development resources. The techniques of function point analysis [Alhr84]
have been used for assessing complexity on projects under development with this method.

3-50

E-DEV/ESA

Commun‘cation Channels

E-DEV and ESA provide a medium for communication of the system requirements to management and
users and within the development team. The visual representations of the existing system and/or the proposed
system with data flow diagrams are in terms of processes and information that is meaningful to the user [Stev84].
Utilization of other visual representations, Structured English mini-specs, and a data dictionary provides
coordinatec communication within the development team and relevant sectors of the development organization.

Essential systems development uses blitz meetings, one-on-one interviews, and client walkthroughs to
involve the client in the development process. During the feasibility study, E-DEV includes the software client
in blitz meetings. Later in the project, one-on-one meetings are used to clarify specific issues with specific
clients. Throughout the project, client walkthroughs of models and prototypes are held.

Client walkthroughs of models and prototypes are held to assure quality and conformance to actual
needs. The list of identified events coordinates sessions of blitz meetings and walkthroughs. The work group in
a blitz meeting establishes requirements for a given event. The review group in a walkthrough reviews the
specified requirements for a given event.

The developer states that communication between team members is facilitated through the method’s
provision of a precise and comprehensive vocabulary, as well as detailed principles and heuristics from well-
known and new techniques.

The event-orientation is thought to facilitate communications between management and the technical
team. At each stage of requirements definition, requirements can be partitioned into event-based units. These
units are the basis for requirements complexity estimation, team/team member productivity estimation,
team/team member work assignments, and an overall project plan.

Quality Assurance {Tables 12,14,15)

The method requires testing activities and maintenance of records of technical decision-making. E-
DEV supports the early detection of inconsistencies and/or errors through its leveled systcms development
approach, including blitzing, walkthroughs, and prototyping. Each method within E-DEV has a blitzing strategy,
as described previously. Involving the user in a group-workshop approach for blitzing and walkthicughs
facilitates the early discovery of inconsistencies that would not be found during one-on-one interviews.
Additionally, the developer states that the passive models from information modeling, structured analysis, and
structured design, combined with the active models from prototyping, make inconsistencies almost immediately
clear. Although the "direct” technical strategy is preferred in E-DEV, the original strategy from ESA
("archaeological”) is still utilized, at least in part, since it provides for essential model "reality testing" and
quality assurance.

Documentation Formats (Table 16)

The textual and graphical information required by this method provides a basis for internal
documentation of the system as it is proposed, evolves, and is finalized. Some of the system models. in
particular the higher level diagrams, are suitable for insertion in deliverable documentation.

3-51

E-DEV/ESA

3.11.5 EASE OF USE

Technology Insertion

The minimum qualifications needed by a development team leader for use of the method include a
bachelor’s degree, three to five years of development experience, a working knowledge of one programming
language, and development experience with at least one previous software system. For successful use, a lead
developer should have an understanding of finite-state machines, entity-relationship modeling, parallel
processing, object-oriented programming, functional decomposition, virtual machines, data independence, and
device independence.

Training and information is available through the developers, through users’ groups such as the
Structured Methods Forum and those associated with various CASE tools, and through many independent
consultants. Types of training include:

- hands-on demonstrations;

- overview presentations;

- classroom tutorials from Atlantic Systems Guild, Technology Transfer Institute, and others;
- user manuals;

- on-site consulting;

- related publications, including Atlantic Systems Guild newsletters.

The developers estimated that 3-5 days would be required for a project manager to acquire an

understanding of the major features and benefits of the method, while it would take an experienced developer 10-
30 days to leamn the essentials and 6-12 months to achieve the level of expert user of the method.

Automated Facilities

The method does not require the use of an automated tool: however the techniques of the method, such
as data flow diagrams, entity-relationship diagrams, the data dictionary, and mini-specs are supported by many
CASE tools. These tools would identify many of the inconsistencies that can arise as a result of specification
definition and changes.

The available CASE tools which support QSA, ESA, and ESD include:

Product Vendor
Excellerator Index Technologies
DesignAide NASTEC
PROMOD PROMOD
Software through Pictures Interactive Development Environments
Teamwork/IM,SA SD Cadre Techniologies
S. E. Workbench Yourdon
Information Engineering Workbench KnowledgeWare
Information Engineering Facility Texas Instruments

3.11.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

The hardware/software configuration depends on the CASE tool selected.

3-52

E-DEV/ESA

Acquisition Costs
The cost per person for technical training is estimated to range from $2,000 to 10,000 and for a

management overview from $2,000 to 3,000. The costs for software tools are available from the individual tool
vendors.

Contact Information

John F. Palmer 914-472-9337

The Atlantic Systems Guild, Inc.

55 Walbrooke Road [Co-developer of ESA,
Scarsdale, NY 10583 developer of E-DEV]
Stephen M. McMenamin

c/o The Atlantic Systems Guild, Inc. 212-620-4282

353 W. 12 Street

New York, NY 10014 [Co-developer of ESA]

Technology Transfer Institute, Inc.
741 Tenth Street
Santa Monica, CA 90402-2899 [Provider of seminar]

3.11.7 REFERENCES

[McMe84] S. M. McMenamin and J. F. Palmer, Essential Systems Analysis. New York: Yourdon
Press, 1984.

(Palm87] J. F. Palmer, "Integrating the Structured Techniques with JAD: Leveled Systems
Development", presented at the Structured Methods Conference XII, Chicago, Aug.
1987.

[Palm38] J. F. Palmer, "CASE and ESA", Proceedings of the 14th Semiannual Seminar of the

NY Chapter of the IEEE/CS, November 1988.

[Palm89] J. F. Palmer, Essential systems Development: A Fourth Generation Methodology,
Seminar available at Technology Transfer Institute, Inc., Feb. 1989.

[Albr83] A.J. Albrecht and J. Gaffney, Jr., "Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation", IEEE Transactions
on Software Engineering, Volume 9, No. 6, November 1983, pp. 639-648.

Further information about methods which have been incorporated into E-DEV and ESA can be found in
[DeMa78], [Stev74], [Ward86], [Your79], [Your86a}, [Your86b].

3-53

GYPSY

3.12 GYPSY -- Gypsy Methodology

3.12.1 BACKGROUND

Synopsis

The emphasis of this method is on the construction of highly-reliable software systems. The method
consists of techniques for specifying, programming, and verifying 1n an environment supporting these
techniques so that they may be applied in practice, and uses the GYPSY language for programming and formal
specification. Predicate calculus is used for verification. The method is available for general use but the U.S.
Govemment must approve foreign export.

History

This method was first used for the development of a deliverable system in 1979; its principal architect
was Donald I. Good. It is based on methods of program verification, and has been described as one of the more
mature mechnancal program verification system.

3.12.2 DESCRIPTION

GYPSY, the Gypsy Methodology, prescribes specific procedures for accomplishing system
specification, system design, system implementation, software quality assurance, and formal verification/proof of
correctness. The concepts of process abstraction and use of assertions are essential to the method.

Gypsy integrates three approaches to formal specification. These are 1) program assertions, 2) state
machines, and 3) algebraic axioms. Any of these or a combination may be used. The Gypsy language itself
incorporates both specifications and programs, and may be called a program description language.

The method results in a system and its formal specification in the form of a number of Gypsy
components called units. Program units are intended to be specified and verified independently by the method.
Large programs are built from these smaller units.

Verification methods used by Gypsy include deductive proof, run-time validation, and conventional
testing. The deductive proof method consists of a set of well-defined rules for reducing a program and its
specifications to a set of theorems, or verification conditions. These verification conditions are sufficient to
demonstrate that all program executions meet their specifications. The run-time validation method evaluates the
specification as the program runs, to determine whether a precisely defined set of program states is true. If the
specification is found to be false in any of the states of the set, then an exception is raised.

The Gypsy Verification Environment (GVE) consists of a number of tools to support the development

of large verified systems and maintains a Gypsy library of such components as programs, specifications and
verification conditions.

3-54

GYPSY

3.12.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The respondent regarded the method to be well-suited for scientific or engineering applications, systems
programming, distributed processing or networks, and data processing or database. Originally developed for
communications processing applications, Gypsy is primarily used for development of secure systems. It is one
of two methods endorsed by the National Computer Security Ceater for this purpose. It has been used, for
example, in Honeywell LOCK, Honeywell SCOMP, and TRW’s AMPE, as well as on a number of other
security-related projects. The method is intended for use on projec:s of medium size; it has been used both on
small and medium projects. The estimated number of delivered systems developed with Gypsy was between five
and twenty, within the same number of organizations. Gypsy and C are the implementation languages most
frequently used when coding systems developed with the method.

Target Constraints

The explicit variable and data structure allocation allows for handling cf spatial constraints of the target
system. Formal modelling of hardware addressed special features of the target hardware architecture. The
method has explicit features for expressing concurrency, and it is possible to model secure systems using the
method.

Modes of Expression (Tables 9,10)

Two textual modes of representation are required by the method and each is provided with automated
support. They are a program design and formal specification language. The specification language is designed
to allow successive refinement of specification and code, with proofs possible at each level of abstraction.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Formal proof techniques are essential: rapid prototyping and incremental development are strongly
encouraged to clarify system requirements or behavior.

Other Technical Aspects

The method is seen as capable of reducing the effort needed to incorporate changes in the requirements
by enforcing modularity, thus localizing the effect of changes. The formal verification of conformity between
code and specification assists in ensuring consistency between these entities when changes are made. Each
module is self-contained and relevant features are fully defined in the external specification/interface
specification, which is seen as helping with the identificaiton of potentially reusable components.

3-55

GYPSY

3.12.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The method supports specification and proof at arbitrary levels of abstraction. Project planning may be
developed around a very high level system specification. Otherwise, Gypsy does not address project
management activities.

Communication Channels

Gypsy enforces very exact and very clean interface specifications. The interfaces are sufficient to fully
characterize all relevent aspects of a module. This feature is designed to facilitate communication within the
development team, and may be relevant between management and the technical team as well. High-level
specifications are said to be quite readable, and thus can facilitate communication between the client and the
development organization.

Quality Assurance (Tables 12,14,15)

The method provides automated support for formal verification techniques. This is seen as reducing the
burden of testing by catching design and logic errors early in the software development cycle.

Documentation Formats (Table 16)

The system specification is in the form of Gypsy code, i.e., Gypsy is a specification and programming
language combined.

3.12.5 EASE OF USE

Technology Insertion

The minimum qualifications needed by a development team leader for successful use of the method
were given as a bachelor’s degree, one to two years of development experience, knowledge of two programming
languages, and experience with two different software systems. Theoretical constructs whkich should be
understood by an experienced developer are formal logic and proofs. The respondent commented that facility
with mathematics, programming, proof techniques, and familiarity with Pascal-like languages such as Ada would
be helpful as well.

Assistance to train an organization in the use of Gypsy is available through hands-on demonstrations,
overview presentations, classroom tutorials, on-site consulting by the vendor, an on-line help facility, user
manuals, and a users’ support group. [t was estimated that one day would be required for a project manager to
acquire an understanding of t.ie major features of the method, and five days for an experienced developer to learn
10 use the essentials. Three to six months would be required for such a developer to achieve expert user level.

3-56

Automated Facilities

The method is supported by the Gypsy Verification Environment (GVE) from Computational Logic,
Inc. Included are tools such as a Gypsy parser for checking syntax and semantics, a Gypsy verification condition
generator, an interactive theorem prover, an automatic algebraic simplification system for the predefined data
types of Gypsy, a Gypsy to Bliss translator, and a Gypsy to Ada translator. Additionally, there are tools
supporting incremental development of programs and their verification, a data dependency tool for analyzing the
specifications of a trusted computing base, and information display, help, and session logging facilities.

3.12.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

A Sun 3-60 host with 12 mb of memory and 45 mb of swapping space is appropriate for the tools of the
method.
Acquisition Costs

Unit costs to acquire the method and required components are $12,000 for a single user but reduced to

$6.000 for multiple users. Technical training unit costs are $5,000 for a single user and $2,000 for multiple
users; with these courses, there is a management overview included.

Contact Information

Computational Logic, Inc. 512-322-9951
1717 West Sixth, Suite 290
Austin, TX 78703 [Provider]

3.12.7 REFERENCES

[Good85] D. I. Good, "Mechanical Proofs about Computer Programs", in C. A. R. Hoare and J.
C. Shepardson, eds., Mathematical Logic and Programming Languages. Englewood
Cliffs, NJ: Prentice-Hall, 1985, pp. 55-75.

[Good78] D. I. Good, R. M. Cohen, C. G. Hoch, L. Hunter, and D. F. Hare, "1978 Report on the
Language Gypsy, Version 2.0", Technical Report ICSCA-CMP-10, Certifiable
Minicomputer, Project ICSCA, The University of Texas at Austin.

3-57

HOOD

3.13 HOOD -- Hierarchical Object Oriented Design

3.13.1 BACKGROUND

Synopsis

HOOD is an architectural design method oriented towards the development of Ada programs. The
identification of target architecture is supported, leading to detailed design where objects, in the object-oriented
sense, are further designed by means of an Ada based program design language. The method is applied primarily
to the preliminary and detailed design phases of the software process.

History

The method is a merging of the Abstract Machine concept used by MATRA ESPACE and the concepts
of Object-Oriented Design. Hood was developed by the Euronean Space Agency Technical Directorate as an
Architectural Design Method for software to be programmed in Ada. It was first used with respect to a
deliverable system in 1987, and has since been selected for the Columbus Manned Space Station Program and
the HERMES Manned Spaceplane program, which are independent projects. The European Fighter Aircraft
project has also mandated HOOD and Ada for its contractors.

3.13.2 DESCRIPTION

Hierarchical Object Oriented Design (HOOD) has resulted from merging methods known as Abstract
Machine and Object-Oriented Design. The concept of machine in the first is similar to that of object in the
second. The abstract machine enforces a hierarchical structure where the other method did not. On the other
hand, the developers believe that the object-oriented method enforces the design of more coherent objects.

The developers addressed a need for a way of distributing the development of large systems among
several organizations by establishing two hierarchies:

L. The seniority hierarchy, present in the abstract machine method, permits senior objects to control
and use junior objects. Layers of objects are thus established with high cohesion and low
coupling.

2. The parent-child hierarchy allows an object to be the composition of other objects. This is basic
to the concept of subcontracting software objects to different organizations.

In the developer’s opinion, productivity is improved by means of a consistent, standard top-down
method of decomposition. The problem domain is successively mapped into the design and implementation, by
modelling the real world entities as a set of OBJECTS. These objects may in turn be decomposed further, into
objects that become more software oriented, called Abstract Data Types. HOOD supports the software
engineering principles of Abstraction and Data Hiding, so that Ada packages are built that encapsulate the data
(state of the objects) and provide access only through operations or procedures/functions. This, the developer
feels, leads to an inherently more maintainable system, with considerable benefits in the software integration
stage. The developer mentions that this result has been borne out on many Ada development projects. The
developer also feels that the consistency checks that are built into the decomposition and interface definition
process result in quality benefits. HOOD emphasizes the early and clear definition of interfaces, and these are
checked by the HOOD Toolset.

3-58

HOOD

HOOD can be used for prototyping at the design stage by means of an environment package and early
definition of the major objects.

3.13.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer rated the method well-suited for use with embedded systems or process control, time-
critical or real-time systems, scientific or engineering applications, and distributed processing or networks.
Examples of applications for which delivered systems are being developed using the method are space system
software, a general check-out system for ground support software, and real-time systems including data
acquisition and processing, avionics systems, telemetry, and control-command systems. The method is intended
for use on medium and large-sized projects; it has been used on projects of all sizes, with an estimate of between
five and twenty systems developed using HOOD within the same number of organizations. Implementation

languages most frequently used are Ada, which is the first target, and C or FORTRAN which are secondary
targets.

Target Constraints

The method prescribes steps for handling timing constraints, spatial constraints, and special features of
the target hardware architecture and operating system. This is accomplished by describing non-functional
constraints as informal comments in a field of the document template for each object. Concurrency and fault-
tolerance issues are treated in the same way.

Modes of Expression (Tables 9,10)

Textual modes of representation include narrative overviews of modules and a program design
language, both of which are required. Specified documentation templates are strongly encouraged. All three of
these textual modes are provided with automated support.

Required iconographical modes are data-flow diagrams and control-flow diagrams. Strongly
encouraged are finite-state diagrams, petri nets, and ESTEREL Formalism.

The method facilitates the transformation across phases of the software process by using informal text
description in a natural language before going to formal descriptions, PDL, and code. In the developer’s opinion,
the mixing of informal text with formalized notation will allow easy introduction of formal notations, so that
HOOD will be adapted as a back-bone framework in the use of advanced techniques.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

The method requires the use of incremental or evolutionary development to clarify system requirements.
Techniques required are design reviews, code walk-throughs, and Change Control Board reviews.

3-59

HOOD

Other Technical Aspects

The use of information hiding helps to localize changes, which is seen as assisting with reducing the
effort needed to fully incorporate changes in the requirements. The use of reverse engineering techniques, the
use of a data dictionary, configuration control and management all help to address the concept of traceability
between requirements and design, and between code and design.

The use of tools associated with HOOD allow import from or export to the tools components such as
design hierarchies or parts of them, thus potentially allowing reuse of other designs or design parts.

3.13.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

General guidelines are provided for allocation of personnel to tasks, and allocation of development
resources. Configuration management is required but not directly addressed. Other project management
activities are outside the scope of the method.

Communication Channels

Within the technical du velopment team, the use of graphical and textual formalisms applied to object
entities through the description templates is seen as facilitating communication, as well as the informal natural
language descriptions of objects. Between management and the development team, communication is facilitated
by the method’s definition of phases in the development, documents delineating milestones and checkpoints, and
the QA procedures for documents.

Between the software client and the development organization, the client is involved in the software

process and in QA by being involved in delivery of informal text documents, design prototyping (a milestone),
and reviews of documents.

Quality Assurance (Tables 12,14,15)

The method separates in time the step where an object interface is identified (specified) extemnally as a
child connected to its siblings, from the step where the object is implemented. QA procedures and verification
techniques are based on this key feature, leading, in the developer’s opinion, to the improved verification of
interfaces. The method provides automated support for prescriptive checking of interfaces, and provides a
framework for generation of tests based on system requirements and unit/integration testing.

Documentation Formats (Table 16)

The method requires a number of documents whose formats vary in tailorability. For more detailed
information, see the associated table.

3-60

|

HOOD

3.13.5 EASE OF USE

Technology Insertion

Minimum qualifications needed by a development team leader for successful use of HOOD were given
as two to three years of college-level technical education, one to two years of development experience,
knowledge of two programming languages, including knowledge of Ada, and experience with three to four
different software systems. In addition, major theoretical constructs which should be understood by an
experienced developer are data-flow diagrams, as well as state transition diagrams and related extensions or
tables.

Training is available with hands-on demonstrations, overview presentations, on-site consulting by the
vendor or independent consultants, user manuals, and a users’ support group. The developer estimated that a
project manager would need three days *o acquire an understanding of the major features and benefits of the
method, while an experienced developer would need 10 days to learn to use the method’s essentials. Depending
on the complexity of the projects worked on, an experienced developer would need three to six months to
achieve expert user level.

Automated Facilities

The developer listed several tools provided by external vendors which support activities of the method.
STOOD by TNI supports graphical, textual, and syntactic editing, Ada generation, configuration management,
and design checking. The Hood Toolset by Software Sciences LTD, VSF by Systematica, and Adanice by Intecs
all support syntactic edition, configuration management, and design checking.

3.13.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Appropriate configurations are Sun/UNIX workstations, VAXStations/VMS, Apollo/Aegis, and partial
support on PC compatibles.

Acquisition Costs
The method is in the public domain. Cost for technical training is $15,000 of a single user, $10,000 for

low-volume users, and $8,000 for high-volume users. Unit cost for a management overview is $20,000 for
single and low-volume users: for high-volume users, the cost is $10,000.

Contact Information

Cisi-Ingenierie (33)6120.4324
2, rue Jules Vedrine
31400 Toulouse
France {Provider]
3.61

HOOD

3.13.7 REFERENCES
[Heit88] M. Heitz, "Using Hierarchical Object Oriented Design for the Development of
Distributed Ada Systems”, Proceedings of Munich Ada-Europe 1988 Conference
"Ada in Industry”, Cambridge University Press, Ada Companion Series.

The Hood manuals are being revised and updates will be forthcoming in April and July 1989 from the
European Space Agency.

3-62

£ &R Oh & g 8 o E aE e

IBM/4LDM

3.14 IBM/4LDM -- The Four Level Design Method

3.14.1 BACKGROUND

Synopsis

IBM/4LDM provides a method for achieving a fully-targeted detailed design from the specifications for
a software system. It uses an Ada-based design language to produce and record the design at various levels of
abstraction. Use of Ada as a design language allows the use of an Ada compiler and related tools to support
semantic and syntactic checking of the design. The method is available for general use.

History

IBM/ALDM was developed by Don O’Neill, previously of the IBM Federal System Division. It is
based upon software engineering practices developed at that organization in the late 1970°s. The method was
invented and first used in 1979.

3.14.2 DESCRIPTION

IBM/4LDM, the Four Level Design Method, incorporates the use of an Ada-based design language into
the Software Factory approach used at IBM Federal System Division (FSD). The developer states that the use of
Ada as a design language permits “the design to obtain rigor in syntax and semantics through the use of the Ada
compiler product tools,” and thae its 1ise "provides a platform for systematically accomplishing rapid prototyping
through use of the emerging software design and product itself.” [ONei86]

IBM/4LDM is founded on a functional decomposition approach and is well-suited for use within the
context of several software process paradigms; however, it is not dependent on one particular paradigm. Top
down or bottom up design can be applied. Essential to the method are the concepts of stepwise refinement,
information hiding, process abstraction, abstract data- types, and structured programming. The respondent
reported that, as a result of using the method, testing is reduced. It was felt that errors are dramatically reduced
when systematic design is practiced.

The Four Level Design Method was adapted from software engineering practices used at FSD. These
practices have a goal of producing and verifying modular designs and structured programs. The design stages
ensure correspondence of design to specifications, provide for functional allocation and decomposition of
procedures and data, and elaborates the design through the use of stepwise refinement, a program design
language, and correctness techniques.

The four levels of IBM/4LDM are:

- Level 1. Create the user contract, where the user is considered in the same terms as other software
products which might utilize or interface with the system being designed;

- Level 2. Portray design parts and their relationships, both data interfacing and tasking;

- Level 3. Elaborate a detailed functional design which is independent of the target architecture or
operating system;

- Level 4. Provide detailed designs which are fully targeted to the operating system and instruction
set, and ready for consideration of efficiency and capacity constraints during implementation.

3-63

IBM/4LDM

Specific templates can be us:d to record each level of design. Furthermore, each level should be
communicated in such a way as to ensure understandability with the intended audience, whether that be technical
or non-technical personnel.

For purposes of management, levels | and 2 correspond to the specification review milestone, the
Preliminary Design Review. Levels 3 and 4 correspond to the design review milestone, the Critical Design
Review. Relative to MIL-STD 2167, level [and 2 designs are included in the Software Top Level Design
Document, and level 3 and 4 designs are included in the Software Detailed Design Document.

In level I, the specification is input io the process. The Ada package specification is used to express the
design. The design is reviewed by trained experts who must ensure that the design meets the criteria for
completeness, correctness, usability, performance, and overall user satisfaction.

At level 2, the design for each of the level 1 components is recorded as an Ada package specification
and package body. Tasking constructs and abstract data types are used to express the design. Procedural
elaborations are not carried out in this level, but simply appear as procedure calls. These level 2 Ada packages
are evaluated for possible reuse.

In level 3, procedure elaboration is used to express detailed functional design. In using the Ada design
language, the outer syntax function expressions, and the inner syntax data refinements must be specified. In order
to control the quantity of Ada design language being produced, level 3 may be limited to only those procedures
whose calls were specified in level 2.

At the final level, procedures and functions are sufficiently elaborated to provide a fully targeted,
detailed design document. At level 4, the product should conform fully to MIL-STD 1815A.

3.14.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The method is reported to be well-suited for several application areas, including embedded systems or
process control, time critical systems, scientific or engineering applications, distributed processing, and data
processing.

An estimated 5 to 20 delivered systems have been developed using this method, with the same number
of organizations having used the method. Both medium and large-size projects have been developed: however,
the method is intended for use on large projects.

The Four Level Design Method is based on Ada, and Ada has been used successfully as the

implementation language. Jovial was used with the method unsuccessfully.

Target Constraints

At level 2 the method includes tasking and permits exceptions, which address concurrency and fault-
tolerance issues. Other requirements of the target system are considered at level 4, which is target dependent. At
this level the method addresses timing and spatial constraints, as well as special features of the target hardware
architecture and operating system. By requiring target independence through Level 3, the method is intended to
assist in portability problems. '

3-64

[

IBM/4LDM

Modes of Expression (Tables 9,10)

Required modes of expression include specified documentation templates, a program design language,
and finite-state diagrams. Formal specification languages and mathematical notation are strongly encouraged. In
preparation for implementation, the use of Ada in both high- and low-level design is staged.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Rapid prototyping, incremental or evolutionary development, and executable specifications are
encouraged as techniques to clarify system behavior. A number of analysis techniques are also encouraged, while
design reviews and code walk-throughs are required.

Other Technical Aspects

Consistency of specification, design, and code as well as early detection of inconsistencies and/or errors
are addressed by using Ada compilation of design.

3.14.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

Analyzing risk, assessing complexity and estimating initial cost are among the project management
activities for which the method provides specific procedures. Other activities are addressed at a more generai
level.

Communication Channels

The four levels of IBM/4LDM correspond to different audiences. Level 1 provides the user interface
specification for communication with the software client. Level | and also Level 2 are prepared for ~ystems
engineers and software engineers to read and understand. These two levels form the link between program
managers and software engineers, through systems engineers. Level 3 designs are more detailed and intended for
algorithm and data designers and software engineers. Level 4 designs are intended for implementing programs.

Quality Assurance (Tables 12,14,15)

Review techniques required by the method include design reviews and code walkthroughs. Facilitated
Application Specification Techniques and Change Control Board review are encouraged.

Formal reviews are used in which the unanimous consensus of the reviewers is required. Use of
the Ada compiler to check the design assists in identifying syniactic and semantic errors. In addition, the

method incorporates an executable model, and uses informal proof of correctness techniques.

The method provides a framework for test planning at particular points in the software development
process and for prescriptive checking of interfaces.

3-65

IBM/4LDM

Documentation Formats (Table 16)

The following documents which are required to be produced have a format which is tailorable within
the method: functional specification, architectural specification, interface specification, system structure chart,
data dictionary, and design document.

3.14.5 EASE OF USE

Technology Insertion

A development team leader would need the following minimum qualifications to use the method
successfully: a Bachelor's degree, 3 to 5 years’ development experience, knowledge of two programming
languages, and experience with 2 different software systems. Theoretical constructs which should be understood
are finite state machines, and structured programming (prime programs, proper programs, daia dictionary,
disciplined data structures).

Classroom tutorials are provided for training purposes. A project manager could acquire an

understanding of the major features of the method in one-half day. Experienced developers would need 2 days to
learn the method’s essentials, and 6 months to achieve expert user level.

Automated Facilities

Not applicable.

3.14.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Ada-based development systems are appropriate for use with the method.

Acquisition Costs

There is no cost for acquiring the method, and no licensing policy.

Contact Information

Note: The acronym IBM/4LDM is not a standard product name.

IBM System Integration Division 301-493-1463

c/o John Rymer, Senior Programmer

6600 Rockledge Drive

Bethesda, MD 20817 [provider]
3-66

S &5 o & 2 P A D aE

3.147

REFERENCES

[ONei86)

[ONei83]

[ONei80]

IBM/4LDM

D. O’Neill, "Software Engineering and Ada in Design", presented at the Washington
Ada Symposium, March, 1986.

D. O’Neill, "An Integration Engineering Perspective”, The Joumal of Systems and
Software, Vol. 3, 1983, pp. 77-83.

D. O’Neill, "Management of Software Engineering", IBM Systems Joumal, Vol. 19,
No. 4, Dec. 1980.

3-67

3.15 IEM -- Information Engineering Methodology

3.15.1 BACKGROUND

Synopsis

IEM is directed toward the development of information systems. Its goals include a reduction of
excessive development time, effective support of business activities, and facilitating the incorporation of
changes into a system. The method specifically addresses the activities of requirements definition, system
specification, system design, software quality assurance, and project management, and stresses the involvement
of the client. Use of fifth-generation, CASE, database and code generation technology is encouraged. The
method is available for general use.

History

IEM was developed by Ian Palmer, Tames Martin and their colleagues. The basic «echniques, which
were termed "Data Analysis”, were developed in Britain from 1973 through 1978. Another precursor of the
method is D2S2, or Development of Data Sharing Systems. Further refinements involved providing a balance
between data and activity analysis, clear mapping from business modelling (analysis) to design, adding a project
management framework, and the creation of support tools. The current method was first used for a deliverable
system in 1982.

3.15.2 DESCRIPTION

Information Engineering Methodology, IEM, is composed of seven stages. Each stage consists of tasks,
techniques, and deliverables. Stage interconnections allow for alternate development paths, depending on the
complexity of the project. At the center of the method is the Encyclopedia, a database which records all analysis
and design decisions, progress, changes, and documentation. Varying views of this database are available to
support communication, documentation, and control among developers and project managers.

The underlying concepts upon which IEM is founded include entity-relationship modeling, functional
decomposition, development coordination of multiple projects within the same architectures, and separation of
analysis from design. The method is well-suited to several software process paradigms and is compatible with
the timebox paradigm. However, the most effective use of the method is dependent upon a paradigm which
emphasizes a balance between data and process analysis/design. The method itself emphasizes techniques which
describe how analysis and design are done, rather than only what is produced. The developer states that, due to
up-front emphasis on business modelling and user involvement as well as code generation, the activities of flow
charting, structured programming, code walkthroughs and testing can be skipped.

The seven stages of IEM are information strategy planning, business area analysis, business system
design, technical design, construction, transition, and production. The stages proceed in a top-down manner as
data-oriented, stepwise refinements. The first four stages are focused on diagrammatic techniques beginning
essentially with:

- Entity analysis -- identification of relevant objects and their interrelationships, ultimately leading
to data structure design and data storage distribution design,

3-68

IEM

- Functional analysis -- identification of relevant activities and their dependencies, ultimately
leading to a decomposition into primitives, the design of input/output layouts and human
interaction, and the generation of code.

The final three stages incorporate the traditional activities of code generation, testing, performance
analysis, hardware installation, and user training. All of these activities are directed by, and interact with, the
results of the analysis and design stages.

The information strategy planning stage requires extensive collaboration between the client and the
information staff. The major deliverables of this stage are:

- An information architecture, represented by an entity relationship model and a function
dependency model,;

- A system architecture, summarized through data-flow diagrams;

- A technical architecture, represented through hardware, software, and communication diagrams.

To assist project management, the following is also produced during this first stage:

- A problem analysis which identifies implementation difficulties and procedural limitations;
- A RAEW analysis which recommends division of responsibility, authority, expertise, and labor;
- Decomposition of objectives or a critical success factor analysis.

The purpose of the business area analysis is to refine the information aichitecture. Entity types,
relationships and attributes are documented, normalized, and life cycles for the major entities are estimated.
Functions are decomposed in further increasing detail. Selected end users are asked to review the business area
models to ensure accuracy.

The business system design stage stresses client involvement. Interfaces are defined, including screen
layouts, reports, and forms. Prototyping is used to achieve a better understanding of the system. In the next
stage, the technical design is evolved from the technical architecture. In this process the hardware elements, the
data storage structures, and the required software tools are defined. The software design is normally achieved
through use of database management systems, and through either structured languages, non- procedural
languages, or a code generator.

During the construction stage, modules are coded and the database structure is populated. It is expected
that automated code generators are used during this stage. Verification is accomplished through a three-phase
testing procedure. The transition phase includes deployment of the system at the client’s site, training, and trial
runs. The production stage involves performance monitoring, software tuning, and evaluation of actual
costs/benefits in light of design objectives.

Automated tools are not integrated into the framework of the method, but use of CASE analysis and
design tools, a database management system and automatic code generators is an integral part of the
development process.

3.15.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer rated the method well-suited for distributed processing or networks and data processing
or database applications. Examples of specific project areas in which delivered systems have been produced

3-69

using IEM are: financial control, insurance, inventory control, geological survey, marketing, banking, CASE
software, laboratory analysis, and manufacturing. More than 250 delivered systems were estimated as having
been developed with the method, used by an estimate of over 100 organizations. The method is intended for use
on medium and large-size projects; it has been used on projects of all sizes. COBOL and 4GL's are most
frequently used for coding systems developed with this method.

Target Constraints

IEM prescribes descriptions of special features of the target hardware architecture required, and guidelines for
handling security of access. The method addresses concurrency issues by means of dependency diagrams and
data structure paths. By making the application independent of configuration, the developer reports that the
method assists in portability.

Modes of Expression (Tables 9,10)

The method requires a textual mode of representation called action diagrams. Required iconographical
modes include data-flow diagrams, entity- relationship diagrams, and hierarchy charts. Also required are process
dependency diagrams, dialog flow diagrams, and data structure diagrams, with entity decomposition diagrams
and data analysis diagrams encouraged.

Among the above modes of representation are mapping rules within the method for translating from one
mode to another. One mapping is from the subject area diagram to the entity-relationship diagram to the process
logic and then to the action diagrams. Another mapping is from the function dependency to the process
dependency to the data-flow diagram to the dialog flow. Other mappings exist as well. By means of code
generation from data structure diagrams and action diagrams, as well a= by matrix analysis, walkthroughs, and
prototyping, the method is seen to facilitate the transformation across phases of the software process.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

A number of techniques are encouraged for clarifying system requirements, among them JAD (Joint
Application Development). Required review techniques inciude data-structure, data-flow, and control-flow
analyses, design reviews, Facilitated Application Specification Techniques (FAST), process logic analysis, and
development coordination.

Other Technical Aspects

The developer considers that the use of the method’s Encyclopedia, well- defined scoping, development
coordination, and maintenance of the business models all contribute towards reducing efforts to incorporate
changes in the requirements. Moreover, use of the Encyclopedia, consistency tests, and mapping from analysis
to design are intended to assist in ensuring consistency among specification, design, or code when changes are
made to these entities.

Reusable components are identified with the method by means of current systems analysis, the fact that

the decomposition network is top-down, automatic comparison of information views, and re-engineering
techniques.

3-70

IEM

3.154 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

Specific procedures for project planning and Development Coordination are incorporated in the method,
which provides guidelines for addressing other management activities.

Communication Channels

Among members of the development team, communication is facilitated via the Encyclopedia, quality
assurance activities, and diagram walkthroughs. Between management and the technical development team,
JAD, prototyping, and milestone reviews are used. JAD and prototyping are also used to facilitate
communication between the devels, ment organization and the client, as well as intensive executive planning
sessions. In addition, the client is involved during the software development process with intensive analysis
sessions and acceptance testing.

Quality Assurance (Tables 12,14,15)

Specific directions are provided by the method for test planning, unit/integration testing, and
prescriptive checking of interfaces. Early detection of inconsistencies and/or errors is assisted by the method's
use of matrix analysis, walkthroughs, and prototyping. The method does not specifically require that a record of
technical decision-making be maintained.

Documentation Formats (Table 16)

The method requires that a number of documents be produced, with none of the formats fixed; the
format is either tailorable within the method or is not prescribed. Tailorable formats for two types of documents
additional to those shown in Table 16 are provided. These two documents are a Business Model and the RAEW
matrix.

3.15.5 EASE OF USE

Technology Insertion

The developer estimated that a development team leader would need two to three years of college-level
technical education, three to five years of development experience, and experience on one software system in
order to use the method successfully. A project manager could acquire an understanding of the major features
and benefits of the method 1n three days, while an experienced developer would need 10 days to leam to use the
essentials of the method and 12 months to achieve expert user level.

A number of training procedures are provided by the developer and are listed in Table 18.

3-71

Automated Facilities

The developer mentioned three tools which specifically support activities of the method: IEW by
Knowledgeware, IEF by Texas Instruments, and POS by CSA. The method also provides internal program
documentation, generated automatically from data produced in other steps of the method.

3.15.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

An IBM PC/AT or an IBM 3900 or 3400 would be appropriate for hosting automated tools supporting
the method.

Acquisition Costs

The licensing policy is a corporate license.

Contact Information

James Martin Associates Inc. 703-620-9504
1850 Centennial Park Drive
Reston, Virginia 22180 [Provider]

Note: IEM and Information Engineering Methodology are trademarks of James Martin Associates.
3.15.7 REFERENCES

A three-volume set from Savant Institute, Information Engineering, by James Martin, is now in
publication by Prentice Hall.

3-712

2 B BN GE o B R B .

ISAC

3.16 ISAC -- Informations Systems Work and Analysis of Changes

3.16.1 BACKGROUND

Synopsis

This commercial method contains five development components which are named: Change Analysis,
Activity Studies, Information Analysis, Data Systems Design, and Equipment Adaptation. The following
activities are addressed by the method: problem definition, requirements definition, cost estimation,
specification, project management, scheduling, preliminary design, prototyping, detailed design, configuration
management, documentation, and field testing.

History

The ISAC method was developed at Stockholm University; A. Nilsson and M. Lundeberg are principal
contributors. It is a method that primarly deals with the description and decomposition of business functions and
belongs to the same tradition as Yourdon and Gane & Sarson. The method was first used for deliverable
systems in 1968 and it was included in the methods surveyed in Methodman I [Free82]. Today, the method has
its primary market in Sweden, Norway and the Netherlands.

3.16.2 DESCRIPTION

The Informations Systems Work and Analysis of Changes (ISAC) approach is that of functional
hierarchy/decomposition. In addition, it is founded upon data flow and data structure-oriented approaches. Itis
said to be somewhat more formal than other methods that are based upon a similar approach. It is well-suited to
the waterfall, incremental, and transformational models of the software process, as well as to the 4GL paradigm.
However, its most effective use is not dependent upon any particular software process paradigm. Essential
concepts to ISAC are stepwise refinement, process abstraction, structured programming, and module
coupling/cohesion.

The method is not coupled to any specific target environment and is often used in combination with
other methods, for example, entity-relationship modeling. The work products of the method listed below
describe aspects of the software process addressed by ISAC. These include:

- Activity model of current situation;

- Activity model of chosen change altemnative;
- Change plan;

- Activity model with information subsystems;
- Priority plan for information subsystems;

- Detailed information analysis model;

- Equipment-independent data systems model;
- Equipment-adapted data systems model.

Specific representations named by the method are called: Activity graphs, Information-flow graphs,
Component graphs, and Data system design graphs [Lund81].

3-73

3.16.3 TECHNICAL ASPECTS

Applicability and Usa_¢ (Tables 4,5.6)

The developer reported the method to be well-suited for applications in the areas of embedded systems
or process control, time critical or real-time processing, scientific or engineering systems, and data processing or
database systems. However, examples of delivered systems developed with the method are accounting, payroll,
order entry, inventory management, production control, and banking/insurance systems. The method has
widespread use: more than 100 organizations have used ISAC on more than 250 delivered systems. Although
the method is intended for medium and large applications, it has been used for projects of all sizes. COBOL and
4GL-languages have been most frequently used for the implementation of systems developed with ISAC.

Target Constraints

The developer stated that the method prescribes steps for handling timing and spatial constraints as well
as special features of the target hardware architecture; specific information was not provided on the nature of
these steps. The methud is seen to assist in porting end-product systems to different target configurations in the
development area called "equipment adaptation".

Modes of Expression (Tables 9,10)

The method requires specified documentation templates and provides automated support for this mode.
It also requires decision tables. Required iconographical modes include data-flow diagrams and hierarchy charts.

There are mapping rules within the method to assist in transforming from one mode of expression to

another. These rules apply to the wransformation from ISAC-graphs to JSP-diagrams. Transformation rules and
illustrations via examples are provided between the phases of the software process.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

ISAC requires incremental or evolutionary development and executable specifications in order to clarify
system requirements or behavior. It requires several analysis and review techniques, including data-structure,
data-flow, and control-flow analyses, decision tables, and Facilitated Application Specification Techniques.

Other Technical Aspects

The method utilizes the computer tool "Graphdoc" to facilitate incorporation of changes in the
requirements. During information analysis the step that addresses consistency between specification, design and
code as well as early detection of inconsistencies and errors is called "analysis of completeness and consistency".
The method also requires that a data dictionary and design document be produced.

Reusability is addressed in the development area called “data systems design".

3.74

__

ISAC

3.16.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

Specific directions and procedures are provided within the method for estimating initial cost, projecting
cost of completion, and providing incremental data about expenditures, as well as for scheduling and/or
manpower loading and configuration management.

Communication Channels

The developer states that communication is facilitated among all concerned in the software development
project by simple graphical documentation of the development work. ISAC involves the client by encouraging
users to take an active part during the development activities of change analysis, activity studies and information
analysis.

Quality Assurance (Tables 12,14,15)

The method provides guidelines for several testing activities. Automated recording procedures are
provided for maintaining a record of the specification/design options which were considered. Specific directions
are also provided for recording information pertaining to trade-off studies and rationales for decisions. Problem
and change logs are also required to be kept; the method does not provide specific directions for recording these
types of records.

Documentation Formats (Table 16)

A number of documents are required, with the formats specified by the method as either fixed or
tatlorable. Generation of a few documents is automated.

3.16.5 EASE OF USE

Technology Insertion

The developer provided the following estimates of minimum qualifications needed by a development
team leader for successful use of the method: two to three years of college-level technical education, three to five
years of development experience, working knowledge of one programming language, and experience on one
software system. Understanding of the concepts of business economy, information systems theory, and
structured programming was regarded necessary as well.

Training assistance includes hands-on demonstrations, overview presentations, classroom tutorials, and
on-site consulting by the vendor, as well as a "hot line" service, user manuals, and a users’ support group.

Leaming time estimates were given as one day for a project manager to acquire an understanding of the

major features and benefits of the method, three days of an experienced developer to learn to use the essentials of
the method. and three months for such a developer to become an expert user.

3-75

ISAC

Automated Facilities

The developer cited the tool "Graphdoc" as supporting the activities of change analysis, activity studies,
and information analysis. This tool is provided by Epoc System AB (Sweden).

3.16.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

IBM PC-compatibles are appropriate for hosting the automated tools supporting the method.

Acquisition Costs

The single-user price to acquire the method and required components is $3200, and $2000 for a high-
volume user. Technical training is $1000 per day, and a management overview is $1200 per day.

The method requires a training site license at $2000 per site.

Contact Information

Institute V +46-8-23 39 90
Box 6501

S-113 83 Stockholm

Sweden {provider]

3.16.7 REFERENCES

[Lund81] M. Lundeberg, G. Godkuhl, and A. Nilsson, Information Systems Development - A
Systematic Approach. Englewood Cliffs, N.J: Prentice-Hall, Inc., 1981.

[Auer(0] Auerbach Publishers, Inc., "The ISAC Approach to User-Oriented Systems
Specification", in Systems Development Management, Information Systems Analysis:
Analysis Methods and Tools.

3-76

[]

1Star

3.17 IStar - Integrated Project Support Environment

3.17.1 BACKGROUND

Synopsis

This method may be characterized as an integrated environment oriented towards project and data
management approaches to software development. IStar provides a framework within which foreign tools, such
as technical software development methods or language-specific compilers, may be integrated. Workbenches can
be modified to take advantage of the method’s user-interface and data-management facilities. In addition, IStar
has its own tools for supporting activities inherent to project, data, and configuration management.

History

Imperial Software Technology of London undertook the development of IStar in 1983. It was first
used commercially in 1986 and is available for general use. It varies from other support environments built from
the bottom-up; instead of starting with language-specific tools, IStar began in its own development by defining
the overall requirements for software project support and the associated database needs.

3.17.2 DESCRIPTION

IStar, Integrated Project Support Environment, supports the contractual approach to software
development. In this approach, each task in a development project is viewed as a well-defined package of work
that can be delegated to a contractor to perform for a client. It is up to the contractor to fulfill the contract within
any constraints that may be specified. [Dows87]

The software development activities for which IStar prescribes detailed procedures are project and data
management. The method assumes that the project organization is organized in a hierarchical manner, with the
working relationships between people made explicit. The approaches upon which it is founded are entity-
relationship modeling, binary-relationship modeling, and functional decomposition. There is no particular
software process paradigm upon which the method is dependent for its most effective use, and the method is
either well-suited or compatible with several important process models.

Within IStar there are a number of workbenches organized around activities regarded as necessary to
any software development project. These workbenches, accessed via a common interface, provide support for
project management, data and configuration management, technical development, Ada, quality management, and
office automation/system administration. Initially, support was provided for three methods: CORE, VDM, and
SDL.

Associated with each project task that is assigned by a client and accepted by a contractor is a contract
database, which initially contains the client’s specification of the work to be done. Over the course of the task,
this database expands to record the progress of the work. The tools in IStar assist in managing multiple versions
of the data items, keeping track of current status of the work, and sending completed deliverables to the client.

In addition to the contract database, there are work databases that are private to the user. These work
databases contain user-selected workbenches appropriate for accomplishing the task at hand. These
workbenches may be third-party tools which are compatible with the underlying operating system or tools
provided within IStar; IStar provides guidance for integrating external tools. Results from the work databases,
called transfer items, can be exported to the contract database. Within the contract database these transfer items

-n

IStar

are considered to be typed objects according to the tool used to create their contents. They also become part of
the untyped configuration item that is used to contain the deliverable for a contract. For both transfer items and
configuration items, IStar provides version control support.

3.17.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer rated the method well-suited for use on applications involving embedded systems or
process control, time critical or real-time processing, scientific or engineering processing, systems programming,
and distributed processing or networks. Examples of delivered systems developed with the method include
embedded defense, telecommunication systems, naval simulators, and a large-scale avionics project. It was
estimated that between 5-20 organizations have used IStar on the same number of projects. The method is
intended for medium and large-sized projects, and has been used on medium projects. The method is language-
independent in the sense that workbenches can be provided for any language. However, the implementation
languages which have been most frequently used for coding systems developed with IStar are C, Ada,
FORTRAN, and assembler.

Target Constraints

The method does not address this aspect.

Modes of Expression (Tables 9,10)

A number of textual modes of representation are strongly encouraged by the method, including
specified documentation templates, narrative overviews of modules, a formal specification language, and
mathematical notation. Most iconographical modes of expression are compatible with the method; Booch
diagrams are required and provided with automated support.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Incremental or evolutionary development is required and rapid prototyping is strongly encouraged as
means for clarifying system requirements. Change Control Board review is required and formal proof
techniques, design reviews, and code walk-throughs are strongly encouraged.

Other Technical Aspects

The method supports automated requirements tools, which are seen by the developer as reducing efforts
needed to incorporate changes in the requirements. It also supports, via the Genesis tool, Z and VDM proofs.

Assistance in ensuring consistency between specification, design, or code is provided via the problem
reporting and change control tool part of the environment, via support for automated design tools, and via the
configuration management system present. For Ada applications, the method’s Booch diagram editor provides
automated Ada code generation.

3-78

q

IStar

Reusability is addressed in terms of identification of reusable components by means of the library
management tool and library contract tool.

3.17.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

IStar provides specific procedures and automated support for many activities associated with project
management, including resource arbitration.

Communication Channels

The main way that the method is designed to facilitate communication among the parties involved in a
software development project is through the contract model. This model provides support for tasks, data models,
and roles. These roles correspond to project management activities and consist of project managers, resource
managers, and cost managers. IStar provides tools to assist in the administrative and clerical tasks associated
with these roles.

Quality Assurance (Tables 12,14,15)

Although IStar does not address quality assurance issues in particular, it can support the chosen quality
assurance policy through checklists. These QA checklists can be passed to subcontractors, used by the client, or
given to an independent QA contractor. QA checklists can form a hierarchy by referencing other checklists and
can be kept in a checklist library. Their format is fixed and is produced from user responses to computer-
directed prompts.

Automated recording procedures are provided for maintaining a record of specification/design options
which were considered during the work effort, of the personnel who were involved in making a decision, and of
all changes related to specificaiton/design decisions. Problem and change logs are provided in fixed format and
generated from computer-directed prompts or automatically from data produced from other steps.

Documentation Formats (Table 16)

The method provides both fixed and tailorable formats for the required documents, all of which are
provided with automated support. These documents are a quality assurance document, a user manual, and
problem and change logs.

3.17.5 EASE OF USE

Technology Insertion

For successful use of the method, a development team leader would need as a minimum a bachelor’s
degree, three to five years of development experience, working knowledge of two programming languages, and
experience on two different software systems. In addition, the concepts of structured programming and entity-
relationship attribute modelling should be understood.

3-79

IStar

Training support includes hands-on demonstrations and overview presentations, classroom tutorials, on-
site consulting by the vendor, an on-line help facility, "hot line" service, user manuals, a users’ support group,
and periodic technical updates. A project manager would need two to five days to acquire an understanding of
the major features of the method. For an experienced developer, five to ten days would be required to learn the
essentials of the method, and six months to achieve expert user level.

Automated Facilities

IStar itself provides a number of automated tools within itself. In addition, third-party tools support the
activities of the method. The developer mentioned the following tools as offering specific support for the
method and of interest to IStar users:

Name of tool Tool vendor Activities supported
Sun Trac Sun Project planning
Framemaker Frame Documentation
Interieaf Documentation

Ada compiler Alsys Ada

Teamwork Cadre Analysis and design
Software through Pictures IDE Analysis and design
Genesis IST Formal method support

3.17.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Configurations appropriate for hosting IStar include Sun Workstations, UNIX supported hardware, and
Dec VAX/VMS.

Acquisition Costs

These costs are dependent on the licensing policy, which can be based on the number of users, oron a
site, a multi-site, or a corporate license.

Costs to acquire the method and required components were given as $8,500 for a single user, $5,000 for
a low-volume user, and $2,000 for a high-volume user. Acquisition costs for other recommended components
supplied by the method vendor were not given, as they are particular to the number and type of tools. Training
costs were $2,000 for low-volume users and $1,500 for high-volume users. A management overview costs $500.

3-80

- EE O SN A EA Nl NI BN S N GF WA BN B Ul 9 EE Al

IStar
Contact Information
Imperial Software Technololgy 01 581 8155
60 Albert Court
Prince Consort Road
London SW7 2BH
England [Provider]
3.17.7 REFERENCES
[Dows87] M. Dowson, "Integrated Project Support with IStar", IEEE Software, Vol. 4, No. 6,
Nov. 1987, pp. 6-15.
[Dixo88] D. Dixon, "Integrated Support for Project Management", Proceedings of the 10th
Intemational Conference on Software Engineering, Singapore, April 11-15, 1988, pp.
49-58.
3-81

3.18 JSD -- Jackson System Development

3.18.1 BACKGROUND

Synopsis

This method employs the concept of a network of sequential processes which communicate with one
another to address both the process and data aspects of requirements. The development of a system proceeds by
composition, as opposed to decomposition. By precisely defining each successive increment to the system, the
method emphasizes a system which at intermediate stages is well-defined albeit incomplete, as opposed to a
system which though complete is imprecisely-defined.

History

First used for the development of a deliverable system in 1982, JSD is based upon JSP, or Jackson
Structured Programming. JSD was developed in England by Michael A. Jackson, John R. Cameron, and
colleagues.

3.18.2 DESCRIPTION

*

*y

JSD, Jackson System Development, addresses itself specifically to activities involving system
specification, system design, and system implementation. It is founded on object-oriented and event-oriented
approaches to software development, and the concepts of process abstraction and structured programming are
essential to the method. It is well-suited for use with rapid prototyping, the operational model, and the
transformational model. The most effective use of the method is with the rapid prototyping or operational
software process paradigms. As a result of using the method, parts of the coding activities can be skipped, since
code can be generated from the products of earlier steps in the method.

JSD conceptualizes the problem facing a software developer in terms of two separate worlds: 1) the
subject matter of the system, reflecting the "real world" entities and their behaviors, and 2) the implementation
environment, consisting of the machinery and associated software facilities for running the completed system.

In constructing a model of the subject matter, the developer uses events, their attributes, and their
orderings, to build a specification whose structure directly reflects the structure of the application domain. This
specification differs from a "black-box" because JSD views the internal structure of the system as part of the
problem statement, not a result of a particular implementation. The JSD model or specification thus elaborates
the necessary data, processes, and communication streams of the real world, including semantics for timing
requirements which may constrain the implementation of the system. This model is described as a network of
communicating sequential processes, and represents an explicit simulation of the system's subject matter.

Theoretically, this specification is an executable form of the required software. However, in order to
perform within the limited resources of the implementation environment, the system must usually be modified.

This modification is accomplished through a mapping, the method providing transformation rules for this
purpose.

Construction of the system specification is accomplished by following five steps in the method:

1) Entity/Action and Entity Structures Step;
2) Initial Model Step;

3-82

w—

3) Interactive Functions Step;
4) Information Functions Step; and
5) System Timing Step.

In the first step, the real world is described at an abstract level in terms of entities which perform and
suffer actions. Time-ordering is then considered when there are constraints in the sequence of actions, and other
structures are added when it is necessary to describe an entity in terms of several sequential processes. The
Initial Model Step then takes these structures of the first step and defines the set of sequential processes which
are to model the problem domain. This is done by viewing each structure as the definition of the text of a
particular type of process in the model. The addition of data stream or state vector communications enables
modeling of the connections between processes to reflect changes that correspond to the dynamics of the real
world. In the third and fourth steps, further executable operations and processes are added in order to produce
the outputs of the system. These outputs may be messages to an external system user, in which case they are
information functions, or functions which generate actions to be used in the model, in which case they are called
interactive functions. The last step, or System Timing Step, specifies any constraints which would be necessary
in the implementation to ensure reasonable performance. These include speed of execution and relative
scheduling.

Implementation of the JSD model consists of transforming the network of sequential processes into a
smaller set of programs which may be loaded and executed on the processors available in the implementation
environment. Three of these transformation techniques include:

1) Process Scheduling;
2) State Vector Separation;
3) Process Dismemberment.

The procedure for achieving an implementation from the specification involves distributing the
processes in the specification among the available processors or CPU’s. The set of processes assigned to a single
processor must then be combined into a single program, usually by means of a scheduler at the top level with a
hierarchical structure of inverted process texts below. The scheduling algorithm for each processor must be
defined, and a scheme devised for storing, accessing, and protecting the state vectors of the system. This may
requise the design of access logic to manipulate the data.

Thus, the method recognizes that the structure of the specification (which is in JSD an executable
object) should not be the same as the structure of the implemented system. The former reflects the requirements,
whereas the latter reflects the implementation environment.

3.18.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer rated the method well-suited for applications involving embedded systems or process
control, distributed processing or networks, data processing or databases, and large scale simulation or modeling.
Specific types of applications for which delivered systems have been developed with JSD include a bank
checking account system, software for a polyphonic music synthesizer, software for monitoring factory floor
personnel/activity, and embedded software for a torpedo. There have been an estimated 21-100 delivered
systems developed with the method, within 21-50 organizations. The method is intended for use on projects of
all sizes; it has been used on small and medium-sized projects. Most frequently-used implementation languages
for coding systems developed with JSD are COBOL, Assembly, and Ada.

3-83

Target Constraints

JSD addresses special features of the target hardware architecture with its rules for mapping the process
network onto an arbitrary real/virtual processor configuration. Portability is assisted by these rules as well, the
method’s transformations allowing a given specification to be mapped onto different hardware configurations by
using different process to processor mappings and different scheduling techniques. In addition, the method
addresses concurrency issues by the fact that concurrency is a basic specification primitive of the method.

Modes of Expression (Tables 9,10)

A formal specification language is required; the method provides automated support for such. Required
iconographical modes include process structures, process networks, and implementation diagrams, with
automated support provided for the first two modes. Mapping rules are provided from process structures to
process network, and from process network to implementation diagram. For facilitating transformation across
phases of the software process, the method automates transformation through design and code at the prototyping
level. For "production” software, the method provides rigorous transformation techniques which are partially
automated.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Executable specifications are required for clarifying system requirements or behavior, and several other
techniques are encouraged. Design reviews are encouraged by the method.

Other Technical Aspects

Assistance in reducing efforts needed to incorporate changes in requirements is provided by automatic
(re)generation of documentation and code via support tools, and a lack of redundancy in the technical
documentation. Consistency is guaranteed between design and code at the prototyping level, because the design
and code are generated from the specification; for "production” design and code, this consistency is partially
guaranteed by automation. A data dictionary of fixed format is automatically generated by data produced from
previous steps in the method.

The developer states that the method assists in the issue of reusability in the sense that code generated
for prototyping can be re-used in the final production software.

3.18.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

A framework is provided in the method for assessing complexity; otherwise, JSD does not address
management issues.

Communication Channels

Iconographic representations of the specification and design are the features of the method intended to
facilitate communication within the development team, between the team and management, and between the
development organization and the client. Prototypes are also used between management and the development
team and with the client. The client is specifically involved in the software development process by review of
the outputs of the modeling phase of the method, and review of the prototypes.

Quality Assurance (Tables 12,14,15)

Not addressed by the method.

Documentation Formats (Table 16)

A variety of formats and levels of automated support are provided for generating documents required to
be produced.

3.18.5 EASE OF USE

Technology Insertion

Minimum qualifications needed by a development team leader for using the method successfully
include two to three years of college-level technical education, three to five years of development experience,
knowledge of one programming language, and experience on one software system. Although JSD training does
not assume prior knowledge of any specific theoretical constructs, understanding of several topics (covered by
the training) is required to use the method. These include entity/process structures, modeling with concurrent
processes, and implementation techniques, such as scheduling/inversion.

Available training in the method includes hands-on demonstrations and overview presentations,
classroom tutorials, on-site consulting by the vendor and others, user manuals, and a users’ support group. It was
estimated that a project manager would need five days to acquire an understanding of the major features and
benefits of JSD. Ten days would be required for an experienced developer of five or more years’ practice to
learn to use the essentials of the method, and six months for an experienced developer to achieve the level of
expert user.

Automated Facilities

The method provides within itself automated facilities for the representation modes required, as well as
for several of the documents which the method requires be produced.

3-85

3.18.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Configurations appropriate for hosting the method’s tools include a PC or PS/2, IBM MVS, or DEC
VMS systems.

Acquisition Costs

The costs to acquire the method are given in terms of volume of users, and consist of recommended
components supplied by the vendor, as well as technical training and management overview. For recommended
components, the unit costs are: for single-user, $10,000, for low-volume user, $5,000, and for high-volume user,
$1000. Technical training costs run from $2,000 for a single user, to $1800 and $1000 for low and high volume
users, respectively. Management overviews are $1000 for a single person, $900 for a few, and $500 for many.

The licensing policy varies with the configuration and volume. PC-based software is priced per
machine, with price breaks at high volumes. Mainframe software is priced per site.

Contact Information

Michael Jackson Systems Ltd. (01) 499 6655
22 Little Portland Street

London WIN 5AF

United Kingdom [Provider]

3.18.7 REFERENCES

[McNe86] A. T. McNeile, "Jackson System Development", in Information Systems Design

Methodologies: Improving the Practice, T. W. Olle, H. G. Sol and A. A. Verrijn-
Stuart, eds., Elsevier Science Publishers B. V. (North-Holland), IFIP, 1986.

[Came86] J. R. Cameron, "An Overview of JSD", IEEE Transactions on Software Engineering,
Vol. SE-12, No. 2, Feb. 1986.

3-86

MASCOT

3.19 MASCOT -- Modular Approach to Software Construction, Operation and Test

3.19.1 BACKGROUND

Synopsis

Mascot, from the beginning of the software development process, addresses concurrency, distribution
and real-time behavior, and provides a means of discussing or reasoning about feasibility. This is in contrast to
other similar methods, which bring up these concerns late in the process. Mascot also provides explicit
directions and procedures for system specification, system design, system implementation, and software quality
assurance. The method is available for general use.

History

Mascot started out in the United Kingdom’s research and development establishment, RSRE, Malven in
1971. Its principal architects were Ken Jackson, formerly of the Ministry of Defense, and Hugo Simpson,
formerly of the Royal Air Force. Mascot2 has been in use since 1976 and Mascot3 since 1983.

3.19.2 DESCRIPTION

Mascot, Modular Approach to Software Construction, Operation and Test, addresses system
specification, design, implementation, and software quality assurance. It is founded upon a functional
decomposition approach, as well as on data flow-oriented, data structure-oriented, and object-oriented
approaches. Its use fits into the context of a variety of software process paradigms, but none of these paradigms
is strongly linked to the most effective use of the method. Essential to the method are the concepts of
information hiding, abstract data-types, generncity, and module coupling/cohesion. Additionally, Mascot defines
design architecture to be identical to implementation architecture, and therefore steps involving any
transformations between these two representations in certain process models can be skipped.

The starting point of the method is a "Design Proposal” which identifies the major functional
subsystems and Top Level Intemal Data Stores. The design progresses by decomposing the top level units into
lower level components identifying active, passive and device dependent components. The networks are
specified in terms of data flow and functionality with connectivity between components defined in terms of
Access Interfaces. The network decomposition terminates when "simple" elements have been identified which
can be directly implemented in a programming language. The complete design architecture is checked for self-
consistency by a process known as "status progression”. This procedure ensures that the design structure is
sound before implementation can proceed. The complete system can only achieve fully-checked status when all
modules depended upon have achieved a similar status.

The specification of Simple Element Templates can make use of techniques such as State Transition
Diagrams, Finite State Automata, PDLs, structured text, and so on. The "Intercommunication Data Areas"
(IDAs) make use of the special "kernel primitives" to achieve the required characteristics in terms of behavior
and integrity. Testing starts with these IDAs and then proceeds by gradually producing more complete test
networks. All the test networks use exactly the same architectural construction constraints as the main system
development. Thus the testing phase provides the first "re-use" (or perhaps it should be "pre-use") of the
templates developed for the main system.

3-87

MASCOT

3.19.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer states that Mascot is well-suited for applications involving embedded systems or process
control. time critical or real-time processing, distributed processing or networks, and large scale simulation or
modeling. Delivered systems developed using the method include guided missile systems, avionics systems,
military communications systems, process control (e.g. beer manufacturing), general telecommunications, and
traffic control (air and road). In all, more than 250 systems have been delivered that were developed with the
method, within between 21 to 50 organizations.

While the method is intended for medium to large systems, it has been used for projects of all sizes.
Implementation languages most frequently used in conjunction with the method's use are Coral66 (the United
Kingdom’s military language), C, Pascal, and RTL 2.

Target Constraints

Mascot prescribes steps for handling several target system requirements. The behavioral model, which
encompasses concurrency, process synchronization, and deterministic scheduling via the kemel (the method’s
own run-time system), enables timing constraints to be accomodated. Spatial constraints are addressed by
identifying all Internal Data Stores and enabling them to be placed in defined locations. The method specifically
supports multi-processor distributed architecture; automated support includes on-line debugging of such
distributed systems. Special features of the target operating system are addressed by Mascot’s defining its own
run-time system ("tokens™) which can be built on a bare target. In addition, Mascot provides the means for
creating an application-specific set of "operating system-like" facilities.

By specifically distinguishing between concurrent (active) processes and passive data objects in the
design representation, the method can address concurrency issues. There are also guidelines for assessing fall-
back modes to handle fault-tolerance issues. The developer states that, because the design architecture is
independent to a large extent from the target configuration, the method assists in porting systems to different
target configurations. Specific placement can be applied without changing the design, or, if necessary, by
changing specific "Intercommunication Data Areas" from single processor versions to distributed versions, and
by altering code in device-dependent "server” modules.

Modes of Expression (Tables 9,10)

The method requires narrative overviews of modules as well as Mascot-specified diagrams, for which
automated support is provided. Required iconographical modes include data-flow diagrams and Mascot-specific
hierarchy charts; automated support is provided for both of these modes of representation.

The method is seen to facilitate transformation of representations across phases of the software process

by making identical the design architecture and the implementation architecture, thus eliminating the need for a
transformation.

3-88

MASCOT

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Incremental or evolutionary development is required, as are data-flow analysis and design reviews.
Data-structure analysis is encouraged for stored "objects".

Other Technical Aspects

Mascot emphasizes well-defined interfaces and general architectural features in order to confine area(s)
of change within the design, thus facilitating the incorporation of changes in the requirements. By enforcing the
introduction of change at the design level, and "rippling down" the change into the implementation, the method
assists in ensuring consistency between the design structure and the implementation structure.

The concept of reuse is integral to the method, in that the design architecture is totally predicated on the
notion that all "components” are derived from "templates”. Thus, all templates are by their nature re-usable and
are always specified in terms of the Access Interfaces they provide or require (using Windows and Ports).

3.19.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

Guidelines are provided for a number of project management activities, and specific procedures are
incorporated for estimating initial cost and reliability, as well as for tracking project progress, for which the
method provides automated support.

Communication Channeis

Mascot facilitates communication among members of the technical team by providing a diagram
notation which gives a clear view of the system to be developed. This view includes identification of all
interfaces, distinguishing between active (concurrent processes) and passive data objects, 2 dynamic behavioral
model, and representation of placement of components in distributed hardware targets.

Communication with the client is facilitated by requiring the developer to identify required functions
and required interactions with the environment. The design enables traceability to be established back to these
items. The client is involved by having him sign off on these required functions and interactions at the beginning
of the design stage. He is also required to approve acceptance test procedures.

Quality Assurance (Tables 12,14,15)

Mascot provides specific procedures for test planning at one or more points in the software process,
generation of tests based on syster:i requirements, and unit/integration testing. Early detection of inconsistency
and/or errors is assisted by the "status progression” process, mentioned in the Description section above. Also
provided are specific directions for recording and maintaining information regarding the rationale for any
decision made during the software development process.

MASCOT

Documentation Formats (Table 10)

A number of documents are required to be produced. The prescriptiveness of the format varies between
the documents. For more specific information on the degree of prescription, the tailorability and the degree of
automation, see the associated table.

3.19.5 EASE OF USE

Technology Insertion

The developer estimated that a team leader would need less than two years of college-level technical
education, one to two years of development experience, knowledge of one programming language, and
experience on two different software systems in order to successfully use the method. The concepts of
asynchronous concurrency and data-flow analysis should be understood as well.

Training assistance included overview presentations, classroom tutorials, on-site consulting, a "hot-line"
service, a users’ support group, and periodic technical updates. One day would be required for a project manager
to understand the major features and benefits of the method, while an experienced developer could learn to use
the essentials in five days and become an expert user in two to four months.

Automated Facilities

The developer mentioned two tools that support diagram drawing: ECLIPSE, from Software Sciences,
and VSF from Systematica. In addition, the method provides automatically generated system structure charts
and automated support for tracking project progress.

3.19.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

The tools supporting the method are hosted on VAX/VMS.

Acquisition Costs

Technical training costs $1500 and a management overview, $300. These costs are set regardless of the
number of trainees. Product costs were not provided; however, the applicable licensing policy is per CPU.

Contact Information

Ken Jackson

SD-Scicon plc.

Pembroke House, Pembroke Broadway

Camberley, Surrey GU!5 3XD

England [Provider]

3-90

3.19.7 REFERENCES

[DRICO0]

[SEJ 86]

MASCOT

Defence Research Information Centre, "Handbook of Mascot 3.1", Glasgow,
Scotland.

Software Engineering Journal, May 1986: special edition on Mascot3 containing four
papers covering design representation, the method, use with Ada, and testing. Jointly
published by IEE/BCS in London.

3-91

MBOOD

3.20 MBOOD -- Model-Based Object-Oriented Design

3.20.1 BACKGROUND
Synopsis

This method provides a strategy for identifying objects from a model of the system to be built. This
model, based on the requirements of the system, is composed of four major components: the entity model, the
data model, the behavior model, and the use model. A data dictionary provides definitions for terms used in any
of these component modeis.

History

MBOOD was developed by David M. Bulman and Erin Bulman. It was first used for the development
of a deliverable system in 1985. The requirements analysis and preliminary design phases incorporated by the
method are derived from a combination of DeMarco’s Structured Analysis, McMenamin and Palmer's Essential
Systems Analysis, Hatley and Pirbhai’s Real-Time Analysis, all joined together with conceptual modelling
approaches, using a form of entity-relationship diagrams.

3.20.2 DESCRIPTION

MBOOD, Model-Based Object-Oriented Design, prescribes specific procedures for conducting
activities involving requirements definition, system specification, and system design. In the requirements
analysis phase, a model of the problem requirements in the problem domain is built. This model is an extended
form of a structured specification and includes four componeats: 1) the entity model, an informal representation
of how the user views his world in terms of objects and their relationships; 2) the data model, including data flow
diagrams and entity-relationship diagrams; 3) the behavior model, consisting of process specifications which
show responses of the system to events, and control specifications in the form of state transition diagrams; and 4)
the use model, which consists of the use case list and the services list [Jaco87) (Author’s note: see the description
of ObjectOry for an explanation of these terms).

In the preliminary design phase the method also uses the ideas of McMenamin and Palmer’s Essential
Systems Analysis in distinguishing between the essence of the problem and an incarnation of a solution. The
first part of the design is formed by constructing the incarnation of a solution, which takes into account all
constraints concemning hardware to be used, for example.

The information recorded in the previous phases is used to derive a list of candidate objects in the object
design phase. Each of the objects on this list is specified with a set of operations on the object; it is critical to
identify and completely specify the operations on an object, because objects consist of private data, together with
operations on that data. These operations are each specified with a name and parameters, and each parameter is
given a type and declared as in, out, or in-out.

The object catndidate list comes from all parts of the structured specification. When using the data flow
diagrams, for example, most objects are derived from the data stores, terminators, and some kinds of data flows.
The operations are determined by a technique called "carving” from the processes connected to the candidate
objects. The method also includes details for deriving objects from several other sources including entity-
relationship diagrams, and state transition diagrams. Additional objects are identified as resources for those
candidate objects already listed. This step includes the identification of abstract data type objects.

3-92

SR R W == .

MBOOD

Next, two different kinds of refining are done to the objects in the candidate list. First, object
candidates may be split into two or more objects, or some of them may be combined into one object. This is
normally done either to simplify the interfaces to objects, or to make them more reusable. Second, the
specification of individual objects is revised: operations may be added to make the object (more) complete, or
hugher-level operations, such as iterators, may be substituted. For each different kind of object in the taxonomy,
a check-list of "proto-operations” is used to help make objects more reusable.

Finally, the method addresses system architecture. Once the objects are defined and refined, they are
organized into a system. The method includes two approaches: one shows how to insert the objects into a known
architecture, e.g., a structured design. Alternatively, given a development environment that allows it, the method
shows how to construct an object-oriented architecture.

3.20.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer rated the method well-suited for a number of application areas (see Table 5) and reported
that delivered systems have been developed using the method for real-time data acquisition applications, flight
simulators, weapons control, and an on-line financial system. In all, the method is estimated to have been used
with between five to twenty delivered systems, within between 21 to 50 organizations. The method is intended
for use with projects of all sizes: it has been used on small and medium-sized projects. Ada and Objective-C
were listed as the implementation languages most frequently used when coding systems developed with
MBOOD.

Target Constraints

The method can address special features of the target hardware architecture by showing, when
applicable, how to encapsulate such features, e.g., making special 1/O devices into individual objects. Likewise,
the method shows how to derive objects which hide or encapsulate special or troublesome features of a target
operating system. The result, when changing to a different hardware target, is that only the internals of such
objects need to be changed. The operations of the objects remain unchanged, and thus the rest of the code which
uses those objects need not be changed, thereby assisting in portability.

The method also gives detailed guidelines for determining which objects should be concurrent and how

such objects must communicate. Fault-tolerance issues are addressed in a minor way in the identification and
use of "daemon” objects.

Modes of Expression (Tables 9,10)

The method strongly encourages using decision tables, finite-state diagrams, data-flow diagrams,
control-flow diagrams, and entity-relationship diagrams. Warnier/Orr diagrams and flowcharts were considered
inconsistent with the method.

The method prescribes mapping rules for translating from one more to another. Specifically, rules are
prescribed for transforming data-flow diagrams into object specifications and inter-object dependencies.

Across phases of the software process, the original purpose of the method was to show in detail how to
derive the detailed specification of the objects of an object-oriented design from a structured specification. More

3.93 -

MBOOD

recent versions of the method also show how to derive objects from only a partial structured specification. The
derived objects form the basis for writing the Ada package specifications and task specifications. This Ada code
is merely a simple transliteration of the object specifications derived in the design phase.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

A number of analysis and review techniques are strongly encouraged by the method. See Table 12 for
details.

Other Technical Aspects

The method assists in identifying possible reusable components in the following way. Most of the
objects derived by the method are one of two different kinds. The first are those which represent useful entities
in the problem domain, or devices the system must deal with. The representation is done by encapsulating the
data describing the entity, together with all the operations which can be performed on that data. The second kind
are abstract data type objects, which encapsulate a data type from a problem domain, together with the operations
on entities of that type. Both kinds of objects tend to be reusable in any programs which deal with the same
problem domain.

3.20.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The method provides guidelines for assessing complexity; otherwise, it does not address activities
associated with project management.

Communication Channels

All parts of the requirements analysis and preliminary design phases are designed to facilitate and
coordinate communication between all parties involved in the software project; additionally, all parts of the
object design phase are intended to facilitate communication within the development team.

Quality Assurance (Tables 12,14,15)

MBOOD provides guidelines for prescriptive checking of interfaces; unit/integration testing is required
but the method does not provide directions for accomplishing such testing. The developer stated that by
incorporating a full, and augmented, Structured Analysis as the first step, many kinds of errors are detected early.
The combination of all parts of the augmented Structured Specification (e.g., data dictionary, data/control flow
diagrams, control specifications in the form of state machines, entity-relationship diagrams, and event-entity
matricies) was seen as assisting with detection of most specification errors (both inconsistencies and ambiguities)
at an early stage.

MBOOD

Documentation Formats (Table 16)

A tailorable format is provided for most of the documents required by the method; see Table 16 for
details.

3.20.5 EASE OF USE

Technology Insertion

The developer offered the following estimates of the minimum qualifications needed by a development
team leader for successful use of the method: less than two years of college-level technical education, three to
five years of development experience, knowledge of one programming language, and experience with one
software system. An understanding of finite-state machines would be of help with problems with complex
control requirements.

Classroom tutorials and on-site consulting by the vendor or independent consultants are available to
train an organization in the use of the method. It was estimated that one day would be required for a project
manager to acquire an understanding of the major features of the method. An experienced developer would need
eight days to leam to use the method’s essentials, and two months to become an expert user.

Automated Facilities

The developer reported that most CASE vendors support the basic needs of the method.

3.20.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Not applicable.

Acquisition Costs

The applicable costs relate to technical training. For a single user, unit training costs are $1,200. Fora
low-volume user, the unit costs are $600, and for high-volume users, $500.

Contact Information

Pragmatics, Inc. 808-883-9011
P.O. Box 3429

68-1824 Pau Nani Street

Waikoloa, HI 96743 [Provider]

3.20.7 REFERENCES

[Bulm388) D. M. Buiman, unpublished manuscript submitted for publication.

3-95

MINI-ASYST

3.21 MINI-ASYST -- The MINI-ASYST Development Methodology

3.21.1 BACKGROUND

Synopsis

MINI-ASYST provides a framework for development of information systems which covers the entire
development process from user needs identification through implementation and maintenance. It is intended to
provide a closely defined process for development of small to large size systems.

History

MINI-ASYST is geared toward information systems development, and is based upon ASYST-
Development, a method developed in 1980-1981 by Atkinson Tremblay & Associates. ASYST-Development is
based upon structured techniques of analysis and design, incorporating data and systems modeling techniques.
MINI-ASYST was first used with respect to a deliverable system in 1986.

3.21.2 DESCRIPTION

MINI-ASYST is a method which provides a well-defined framework for developing information
systems using structured techniques. The method covers the entire software development process, partitioning
this process into five separate phases, namely, (1) mandate definition, (2) feasibility study, (3) design and
specifications, (4) build and test, and (5) implementation. The method specifies for each phase the activities
needed to carry out that phase. Specific methods are proposed for dealing with the important features of each of
the development phases. Within this framework, it is possible to tailor the method to individual needs of the
development organization, and of the particular application.

In the MINI-ASYST method, analysis and design aspects are treated concurrently during the
development phases. The technical feasibility of each element of the proposed functional solution must be
established, but internal details of the solution are not described. The systems architecture is developed in three
stages: a global architecture, a detailed analysis of the system’s functions and technical aspects, and a final
architectural review to adjust and finalize the system before it is built.

In conjunction with development, MINI-ASYST provides project management assistance, including
allocation of resources to activities, use of estimation techniques, and steps for monitoring phase progress. For
each phase, the method specifies what steps are necessary to ensure completeness, what activities should be
occurring during the phase, and what deliverables, including documentation, are to result.

3.21.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer considered the method to be compatible with applications involving systems
programming, distributed processing or networks, data processing or database, and large scale simulation or
modeling. The developer rated the method inappropriate for use in applications involving embedded systems or
process control, time-critical or real-time processing, or scientific/engineering systems. The method has been
used to develop small to very large business systems in different industries, including government, utilities,
manufacturing, and insurance. It is intended for use on projects of all sizes, and has been used as such, on an

]

m
Gl G G U) G Uh WU OGN G E EE S gn BE o Em am @

MINI-ASYST

estimated 21-100 systems developed within 51-100 organizations. While the method supports all languages,
most of the systems developed are business systems with COBOL as the language most frequently used. The
second most-frequently-used language is ORACLE.

Target Constraints

Timing and spatial constraints are handled through support of Operational Procedure Diagrams. Special
features of the target hardware architecture and operating system are addressed with the definition of four
architectures: 1) data, 2) systems, 3) technology (bardwa-e and software), and 4) 1.S. organization (people
architecture). Security of access is addressed by definition of data access, site access, and people access.

Although MINI-ASYST is totally independent of the target configuration, during Phase 2 (feasibility
study) the recommended alternative is proposed and planned in light of the chosen hardware and software.

Modes of Expression (Tables 9,10)

The method strongly encourages specified documentation templates and narrative overviews of modules
as textual representations. Strongly encouraged iconographical modes are data-flow diagrams, entity-
relationship diagrams, and flowcharts. Finite-state diagrams are considered to be inconsistent with the method.

The method prescribes mapping rules for translating from data-flow diagrams to structure charts, and
from entity-relationship diagrams to logical data structure. The transformation across the phases of the software
process is facilitated through iteration and refinement using data and systems modeling at the high level model,
the structure charts, and pseudo code.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

A number of techniques are strongly encouraged both for requirements clarification and for analysis and
review; see Tables 11 and 12.

Other Technical Aspects

The method facilitates incorporation of changes in the requirements by a log of changes that are
considered through the use of structured techniques. Ensuring consistency between entities such as specification,
design or code is addressed with techniques within the method.

With respect to identification of possible reusable components, the whole approach of MINI-ASYST is
based on re-using what are called "Development Components”; these can be any information produced during
the development process.

3.21.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The method provides guidelines for performing all the activities shown in Table 13, with the exception
of Pert or Gantt chart generation. In addition, it provides a framework for producing work breakdown structures.

3.97

MINI-ASYST

Communication Channels

Within the development team, communication is facilitated by the One Page Concept: the whole
method stands on a 3-ft. x 4-ft. poster intended to keep the whole process simple.

This One Page Concept is also seen as facilitating communication between the technical development
team and management, as well as between the development organization and the software client. The poster
clearly identifies the role of the project manager versus the systems developers, as well as the role of the outside
players. The method indicates for each phase of the development where the software client should be involved.
Moreover, throughout the development process, the method recommends structured walk-throughs involving the
client.

Quality Assurance (Tables 12,14,15)

MINI-ASYST provides a framework for accomodating various testing activities. It requires that records
of technical decision-making be kept, but does not provide specific directions for recording information.

Documentation Formats (Table 16)

A number of documents are required by the method; most of them can be tailored by the using
organization. See Table 16 for specifics.

3.21.5 EASE OF USE

Technology Insertion

Minimum qualifications needed by a development team leader for successful use of the method were
estimated as two to three years of college-level technical education, one to two years of development experience,
knowledge of one programming language, and experience with one software system.

The developer estimated that a project manager would need two days to acquire an understanding of the
major features of the method. An experienced developer would need ten days to learn to use the method’s
essentials, and three months to achieve expert user level.

Training is available in the form of hands-on demonstrations, overview presentations, classroom

tutorials, on-site consulting by the vendor and independent consultants, a "hot-line” service, user manuals, and
periodic technical updates.

Automated Facilities

The method is supported by the DEVELOPER, a front-end CASE tool. However, the method and the
DEVELOPER are sold completely separately.

3-98

C B B _B

MINI-ASYST

3.21.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

For further information on the DEVELOPER support tool, contact the provider of MINI-ASYST.

Acquisition Costs

Cost to acquire the method for a high-volume user was given as $25,000. Technical training for low-
volume users is $5,000. MINI-ASYST is sold under a corporate license.

Contact Information

ASYST Technologies, Inc. 514-871-0108

1080 Beaver Hall Hill, Suite 1400 1-800-361-3673 (U.S. only)
Montreal, Quebec

Canada H2Z 1S8 [Developer & Provider]

3.21.7 REFERENCES

Contact the developer for further information,

3-9

MULTVCAM

3.22 MULTIV/CAM -- MULTI/CAM - SDM/STRUCTURED

3.22.1 BACKGROUND

Synopsis

This method may be described as a workstation environment which integrates internal and external
tools into a unified development system. The interface between these tools makes moving between activities
transparent to the user. The approach to development is based on Structured Analysis and Design.

History

Initial system development and introduction of the method occurred in 1976, by AGS Management
Systems, Inc., the developer of the method; the current updated system was first used in 1986 for the
development of a deliverable system. The method is an extension of SDM/STRUCTURED, from the same
company, which is an aid for constructing information systems.

3.22.2 DESCRIPTION

MULTI/CAM operates as a workstation with integrated software development and project management
tools. The developer states that the method prescribes specific directions and procedures for all development
activities shown in Table 1, as well as for building purchased packages and small projects. In conjunction with
the framework of SDM/STRUCTURED, MULTI/CAM provides support for the development of new systems,
as well as for the enhancement and maintenance of existing systems.

SDM/STRUCTURED is the approach to software development provided within MULTI/CAM. A
project is initiated by a Service Request made by the software client. The framework provided by
SDM/STRUCTURED consists of several phases covering the work to be done on a project:

1. Project Valuation Assessment - a document assessing the potential project for risk factors and cost
effectiveness;

2. System Requirements Definition - the proposed system’s requirements are stated along with
objectives and basic problems which the system is intended to overcome;

3. System Design Alternatives - different solutions to the problem are evaluated;

4. System External Specifications - a specification of the system’s operation, understandable to the
software client, is prepared, in order to obtain the client’s approval.

5. System Intemnal Specifications - this phase develops the design of the system such that the external
specification is satisfied within the technical constraints.

6. Program Development - code is written according to the system design specifications.

7. Testing - this activity spans several phases and involves test planning, test specification, and
executions.

3-100

MULTI/CAM

9. Implementation - includes all activities supporting the transition to the new system, e.g., training,
installation.

10. Post Implementation Review - the new system is evaluated following the first six months of use of
the system.
3.22.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer reported the method well-suited for use with embedded systems or process control,
systems programming. distributed processing or networks, data processing or database, and large scale
simulation or modeling. Examples of delivered systems built with the method are financial information systems,
project management systems, and inventory control systems. The method is intended for and has been used on
projects of all sizes, amounting to more than 250 delivered systems developed with the method, within more than
100 organizations. Implementation languages most frequently used when coding these systems are COBOL,
FORTRAN, Ada, Pascal, and C.

Target Constraints

The developer stated that the method prescribes steps for handling all the requirements of the target
system as shown in Table 8, with the exception of fault-tolerance issues. Further information detailing how the
method addresses these constraints was not provided.

Modes of Expression (Tables 9,10)

Required textual modes are specified documentation templates, narrative overviews of modules, and
structured English. Data-flow diagrams are the required iconographical representation. The method prescribes
mapping rules for translating from data-flow diagrams to structure charts. Across phases of the software process,
the method facilitates transformation through detailed summarization of the phase work into a format suitable for
use by the next phase.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

The method encourages a number of techniques for requirements clarification; see Table 11. Data-flow
analysis is required, and several other analysis and review techniques are strongly encouraged; see Table 12.

Other Technical Aspects

The developer stated that the method assists in reducing the effort needed to incorporate changes
through complete change control guidelines and control worksheets. These procedures are reported as helping to
ensure consistency between specification, design, and code.

Through segregation of the code functions, the developer states that the method assists in identifying
possible reusable components.

3-101

MULTUCAM

3.22.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The method emphasizes support for project management and specifically addresses a number of such
activities. See Table 13 for further information.

Communication Channels

Specific features of the method designed to facilitate communication within the development team
include the definition of roles and responsibilities, as well as reviews and use of sign-off documents at the
conclusion of each phase. In addition, each team member can comrnunicate with other team members through
the mail facility and can access a centralized documentation repository for review at any time.

Between the technical development team and management, there are defined administrative functions.
Key checkpoints, roles, responsibilities and decision points are highlighted to give the project leader and
technical development team the guidelines needed to manage the life cycle process.

To facilitate communication between the client and the development organization, the method provides
procedures for performing an evaluation of the system proposed by the client. This evaluation considers
benefits, staffing, economic considerations, system scope, and justification. The client takes an active role in the
life-cycle process, helping to determine requirements during detailed interviews, and meeting with the
development organization throughout the process to review and sign-off on progress.

Quality Assurance (Tables 12,14,15)

The developer reported that the method provides specific procedures for test activities, as shown in
Table 15, and furnishes automated support for test planning. Relevant documents include internal program
documentation and a quality assurance/test plan. The method strongly encourages design reviews, code walk-
throughs, Facilitated Application Specification Techniques, and Change Control Board reviews.

Automated recording procedures are provided for maintaining a traceable record of technical decision-
making during the software development process. Documents automatically generated are a design decision log,
a problem log, and a change log. For further detail, see Table 14.

The method provides specific procedures for configuration management.

Documentation Formats (Table 16)

All documents required by the method are tailorable within the method and generated automatically
based on data produced from other step(s) in the method. See Table 16 for specific documents.

3-102

4 S B O g NN U BE am @&

MULTICAM

3.22.5 EASE OF USE

Technology Insertion

The developer estimated that the minimum qualifications for successful use of the method by a
development team leader were two to three years of college-level technical education, three to five years of
development experience, knowledge of one programming language, and experience with three to four different
software systems. Major theoretical concepts which should be understood by an experienced developer are
Structured Analysis and Design.

Training assistance is provided in the form of hands-on demonstrations, overview presentations,
classroom tutorials, on-site consulting by the vendor or independent consultants, on-line tutorials, on-line help
facility, a "hot- line" service, user manuals, a users’ support group, related publications from third-parties, and
periodic technical updates.

The number of days required for a project manager to acquire an understanding of the major features
and benefits of the method were estimated as five. An experienced developer would require two days to leamn to
use the essentials of the method. One month would be required for an experienced developer to achieve the level
of expert user.

Automated Facilities

The developer reported that MULTI/CAM supports the use of all CASE/IPSE tools, such as 4GL's,
diagramming, code generators, project management packages, reverse engineering activities, prototyping, and
business planning. MULTI/CAM can be customized to support a company’s preferred software products.

MULTI/CAM also provides automated facilities for several areas of software development. See Tables
13, 14, 15, and 16.

3.22.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

An IBM PC XT or AT with PS/2 and 20 MB hard disk is appropriate for hosting MULTI/CAM.

Acquisition Costs

Cost to acquire the method and required components is $4,000 for a single user. For a hign-volume
user, the cost is $97,000. Cost for technical training or management overviews is $850.

There is a perpetual site license for the system.

3-103

MULTIVCAM

Contact Information

AGS Management Systems, Inc.
880 First Avenue
King of Prussia, PA 19406

3.22.7 REFERENCES

Further product information is available from the developer.

3-104

215-265-1550

[Developer & Provider)

(]

3.23 ObjectOry

3.23.1 BACKGROUND
Synopsis

This method is an object-oriented technique for developing large systems. Comprising the method are
three independently-developed techniques: block design, conceptual modeling, and object-oriented
programming. All three of these techniques incorporate the major characteristics of object-orientation: data
abstraction, information hiding, dynamic binding and inheritance. The method is available for general use.

History

ObjectOry was developed by Ivar Jacobson and was first used in 1968 for the development of a
deliverable system. It is related to the AXE method, developed in 1969-1972. The design framework used by
the method, called block design, originated within Ericsson Telecom, a telephone company in Sweden.
ObjectOry is basically the paradigm behind the CCITT SDL, or Specification and Description Language.

3.23.2 DESCRIPTION

ObjectOry specifically addresses activities in the software process involving requirements
definition/clarification, system specification, system design, system implementation/installation, and software
quality assurance. It is founded on object-oriented, service-oriented, and user-oriented approaches. Regarding
software process paradigms, the most effective use of the method is in the context of the factory model, where a
factory encompasses both activities and objects manipulated by the activities, and where subfactories can be
defined at lower levels of detail. Concepts essential to the method are information hiding, process abstraction,
abstract data-types, inheritance, and module coupling/cohesion.

The method makes a distinction between blocks, or application modules, and components, or reusable
program elements. A system is built by means of creating application-specific blocks and combining them with
other blocks which already exist. Blocks may be made up of lower-level blocks or of components. At the lowest
level, blocks and components are implemented as classes in an object-oriented programming language.

System development is conceived as a factory with two sub-factories, System Analysis and System
Design. Within System Analysis are three sub- factories: entities modeling, use cases modeling, and services
modeling. Entity Modeling describes real world objects and the relations between those objects from a static
viewpoint. Use cases and services are extensions provided by the method to allow for dynamic behavior
modeling.

Use cases are behaviorally related sequences that describe different aspects of the system, which is
regarded at this level as a black box. People who participate in the operation of a system are called users, e.g.,
telephone subscriber or bank clerk, and these users, in a dialog with the system, can perform a series of
transactions, or use cases. The collection of use cases is represented in a conceptual diagram.

Related to the concept of use cases is the concept of services. This concept is introduced in order to
assist in modularizing the system, not easily done with use cases themselves. Services are clusters of the parts
which are similar among several use cases. Not only does the concept of services provide a means for
identifying packets of the system that contain behaviorally related functions, but also such a concept is useful for

3-105

ObjectOry

providing ordering units when offering the system to a client. Services are seen by the client as indivisible
packets of functions, which functions the client either wants in total or wants not at all.

Input to System Design consists of a system specification with conceptual diagrams representing
entities, use cases, and services. The three sub- factories of System Design are System Level Design, Block
Design, and Component Level Design. Each of these sub-factories contain sub-factories of its own.

An ideal structure for a system would consist of implementing as a block each entity and each service
that were defined during System Analysis. However, performance requirements and other behavioral
requirements will also influence the structure. The design is represented as blocks and communication paths
between the blocks. Related activities also occur involving further implementation of use cases and use case
testing. The method also provides guidance in concepts related to reusability, such as classification of blocks for
use in adaptation of a system for a customer, and incorporation of components from a library or planning new
components which would be useful in many other blocks.

3.23.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer rated the method well-suited for a number of application areas, including 3-D graphical
presentation, compiler design, and CASE development. Specific types of applications for which delivered
systems have been developed using the method include large systems with long life-times, e.g.,
telecommunication systems and automatic inventory systems. Estimated numbers of delivered systems using
this method were given as between five and twenty, within the same number of organizations. Although the
method is intended for medium-sized projects, it has been used to build both medium and large systems. Most
frequently used implementations langu..ges have been Smalltalk-80, Objective C, and PLEX, a programming
language developed by Ericcson Telecom.

Target Constraints

The developer stated that constraints are handled by applying specific transformation rules. These rules
depend on the application and implementation environment. The method addresses portability issues via
language independent design, or blocks, as well as via inheritance, which puts changes in one place.

Modes of Expression (Tables 9,10)

The method requires a number of textual modes of representation, all of which are provided with
automated support. Iconographical modes of representation required and provided with automated support are
finite-state, entity, use-case, service, interface, and block diagrams. Hierarchy charts are required but not
automated.

The method prescribes mapping rules for translating between use case model to service model, from
entity and service model to block model, from use case model to interface model, and from block model to
programming language.

Between specification and design, analysis models are mapped to blocks in a seamless way. Between

design and code, translation is facilitated by expressing the design in communicating blocks. Blocks are
implemented with code and components, which process is guided by a set of implementation dependent rules.

3-106

ObjectOry

Techniques for Analysis and Requirements Clarification (Tables 11,12)

The method utilizes several analysis and review techniques. These include entity analysis, use-case,
service analysis, interface analysis, and Change Control Board review, all of which are required. Several other
techniques are encouraged which would clarify system requirements or behavior.

Other Technical Aspects

Change in requirements is considered a normal process, and the solution is structured according to this
concept. System development is viewed "as an activity that changes a system from being one ’thing’ to being
another different thing’. The first development cycle is only a special case and a change from 'nothing’ to
"something’" [Jaco86]. One specific technique used by the method to facilitate change is inheritance, which is
also the way that reusable components are identified. The method assists in ensuring consistency between its
specification modelis, design models, and programming models by the principle of "seamlessness”. Two models
may be said to be seamlessly related to one another if concepts introduced in one of the models can be found in
the other model through a simple mapping [Jaco87].

3.23.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

ObjectOry does not address project management.

Communication Channels

The concepts which are designed to facilitate communication within the development team are the
factory concept, use cases, services, blocks, components, and entities. Between management and the
development team, the factory concept, use cases and services are used to facilitate communication. The client
and development organization communicate in terms of entities, use cases and services. In addition, all analysis
models can be used to involve the client, early in the analysis phase.

Quality Assurance (Tables 12,14,15)

The method prescribes specific directions and supports with automated procedures test planning, test
generation based on system requirements, unit/integration testing, field/acceptance testing, and testing oriented
towards use cases. Use cases are expressed in operations on entities. If an operation is missing, it implies
inconsistency. Design reviews and code walk- throughs are encouraged, and several analysis techniques are
required.

Automated recording procedures are provided by the method for maintaining a record of
specification/design options which were considered, trade-off studies, rationale for any decision, personnel
involved in making a decision, and all changes related to specification/design decisions. An object dictionary
and change log are automatically generated from other steps and follow a format fixed by the method.

3-107

Documentation Formats (Table 16)

All of the documents required to be produced by the method feature automated support. Tailorability
and level of automated support vary between documents.

3.23.5 EASE OF USE

Technology Insertion

The developer estimated the following as minimum qualifications a team leader should have in order to
successfully use the method: a bachelor’s or advanced degree (depending on the application), three to five years
of development experience, working knowledge of two programming languages, and experience on one software
system. Concepts needed for successful use are semantic networks and finite-state machines.

The developer provides training assistance in the form of overview presentations, classroom tutorials,
on-site consulting, and user manuals. It was estimated that a project manager would be able to acquire an
understanding of the major features and benefits of the method in one day. Experienced developers would need
between ten and twenty days to leam to use the method’s essentials, and four to six months to become expert
users.

Automated Facilities

Specific information on tools or environments supporting the method was not provided.

3.23.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

This information was not provided.

Acquisition Costs

No information was provided as to cost; however, there is a licensing policy which is negotiable with
each customer.

Contact Information
Objective Systems SF AB +468 730 45 30
Torshamnsgatan 39
Sweden [provider]

(Note: ObjectOry is a trademark of Objective Systems).

3-108

S U G & o5 MR S B aa .

3.23.7 REFERENCES

[Jaco87]

[Jaco86]

ObjectOry

I. Jacobson, "Object Oriented Development in an Industrial Environment",
Proceedings of OOPSLA 1987 Conference.

I. Jacobson, "Language Support for Changeable Large Real Time Systems”,
OOPSLA86, ACM, special issue of SIGPLAN Notices, Vol. 21, No. 11, Nov. 1986.

3-109

00A

3.24 OOA -- Object Oriented Analysis

3.24.1 BACKGROUND

Synopsis

Object Oriented Analysis represents the merging of an object-oriented approach and a data structure
approach with entity-relationship modeling. It provides a systematic method for problem analysis of real-time,
scientific and business-oriented systems based upon a rigorous, recorded development process. Changes are
propagated through all relevant steps and reviewed at each step. “Information”, “state” and "process” models are
used as part of the method to represent aspects of the target system.

History

Developed by Sally Shlaer and Stephen J. Mellor, the method was first used with respect to a
deliverable system in 1982. It is based upon entity- relationship modeling and information modeling.

There are other object-oriented analysis methods by the same name, OOA. In particular, see the
description of the OOA method by Smith and Tockey (designated OOA/ST in the catalog).

3.24.2 DESCRIPTION

Object-Oriented Analysis (OOA) primarily addresses requirements definition and clarification and
system specification, as well as providing guidelines for system design, risk/cost assessment, test planning, and
project planning and tracking. OOA utilizes a data-oriented approach that does not use functional decomposition
or stepwise refinement. It uses concepts from object-oriented and structured approaches, including information
hiding, abstract data-types, inheritance, and module coupling and cohesion. Intended to provide a simple
notation, it does not allow continuous processes.

There are four important steps which make up the OOA method. The first is termed Information
Models. In this step, the conceptual entities of the problem are identified and formalized as objects and
attributes. Significant emphasis is placed upon formalizing the relationships between objects. A model is
developed and is depicted graphically. Textual descriptions are used to define the model’s semantics.

The second step, State Models, formalizes the life or event histories of objects and relationships. The
developer describes state models as being able "... to communicate by means of events; this communication is
made orderly through a layering concept. State diagrams and transition tables are employed in this step.”

Step three, Process Models, makes use of data-flow diagrams to develop the processes required to drive
the objects through their event chains.

The final step, Boundary Statement/Requirements Definition, determines what information and

processes will be within the automated system as opposed to those which will be carried out by operators or
other external agents.

3-110

00A

3.24.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The method is well-suited for applications in areas such as process control, real-time, scientific, systems
programming, distributed processing, data processing, and large scale simulation. It has been used for small,
medium, and large projects, including election management software, an aluminum rolling mill, credit card
billing, laser isotope separation, fiber products manufacture, and war games. It has been used in developing
between 21 and 100 delivered systems by an estimated 51 to 100 organizations. The most frequently used
coding languages are Fortran/Ratfor, C, Ada, and Pascal.

Target Constraints

OOA addresses timing constraints and fault-tolerance issues as part of the analysis. It uses finite state
machines to model all concurrency, but does not allow continuous processes.

Modes of Expression (Tables 9,10)

OOA requires the use of finite-state diagrams, data-flow diagrams, and entity-relationship diagrams,
and encourages the use of specified documentation templates and mathematical notation. It provides mapping
rules for deriving the state model from the information model and data-flow diagrams from the state model.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

The method requires incremental or evolutionary development to clarify system requirements and may
be used in conjunction with rapid prototyping. It requires data-structure, data-flow, and control-flow analysis.

Other Technical Aspects

OOA addresses changeability with its provisions for a rigorous, recorded stepwise development process
and its requirement that changes be propagated through all relevant steps and be reviewed at each step. The
method requires analysis of the problem domain and partitions the problem so that fewer program units are
affected by requirements changes. The developer states that the analysis performed is, therefore, relatively
independent of changes to specific requirements and that use of the method assists one in anticipating and
minimizing the effects of requirements changes. The requirements for the use of a data dictionary and specific
directions provided for maintaining a traceable record of technical decision-making also assist in assuring
consistency and completeness of changes. .

3.24.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The method provides guidelines for analyzing risk and assessing complexity, as well as for project
planning and tracking. The project plan is represented in the form of a project matrix.

3-111

Communication Channels

OOA is designed to simplify the communication of specifications and of the constraints imposed by the
requirements to managemeat, the client, and within the development team. Its emphasis on information
modeling is intended to facilitate communication within the development team and between the client and the
development organization. Communication between management and the technical development team is
facilitated through the use of a project matrix.

The client is involved early in the analysis phase. This involvement may range from full participation
in the phase, including iaformation modeling, to review of models prepared by the gevelopers. Incremental
development is required, and thus allows for review and feedback on the evolving system from the client,
management, and others involved with the development effort.

Quality Assurance (Tables 12,14,15)

OOA prescribes specific directions and procedures for software quality assurance. Its rigorous
requirements for development and changes, as well as the use a data dictionary, ensure continuing consistency
throughout the development process. Although it does not require a test plan, OOA does provide guidelines for
test planning and requires generation of tests based on system requirements.

The developer stated that the use of the information model and state models assists in the early detection
of errors. The information model reveals symantic inconsistencies. State models are easily analysed for errors.

Encouraging design reviews, code walk-throughs, and change control board review, QOA provides
specific directions for maintaining records of specification/design options considered, any trade-off studies, and
the rationales for decisions and requires maintaining records of all changes related to specification/design
decisions. It requires some form of configuration management for the work products of the development
process.

Documentation Formats (Table 16)

OOA requires the production of the following documents and allows tailoring of their formats:
requirements definition, functional specification, behavioral specification, architectural specification, and
interface specification. The requirements definition is produced from user responses to computer-directed
prompts, while the functional and behavioral specifications are automatically generated based on data produced
from other steps in the method. The use of a tailorable data dictionary is also required.

3.24.5 EASE OF USE

Technology Insertion

The minimum qualifications needed by a development team leader would include a bachelor’s degree
with three to five years of development experience, a working knowledge of two programming languages, and
experience with two software systems. An understanding of relational theory, entity relationship/information
models, finite state machines, and data flow diagrams is required. These are covered within the method training.

The developer estimates that a project manager would need about five days to acquire an understanding
of the major features and benefits of the method. Developers with five or more years’ experience would need

3-112

00A
about ten days to learn the essentials of the method. Experienced system developers would take about three to
six months to reach expert-user level.
Assistance in learning to use the method is available in the form of classroom tutorials, on-site

consulting by the vendor and by independent consultants, a users’ support group, periodic technical updates, and
related publications from third-parties.

Automated Facilities

The method provides a framework for customizing the software process with the use of other methods
and tools. Available tools include Teamwork from Cadre Technologies and HP/Teamwork from Hewlett-
Packard. According to the developer, these products support all the required activities of this method, and in
particular, automated support is available for finite-state diagrams, data-flow diagrams, entity-relationship charts,
hierarchy charts, the data dictionary, and tailorable documentation templates. Documentation support, as well as
project management support, is provided through interfaces to other tools.

3.24.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

The hardware/software configuration required would be dependent upon the automated tools selected.

Acquisition Costs

The cost to acquire the method and required components is $2,500 for a single user, and $1,250 per
person for low- and high-volume users. Cost for technical training is the same. A management overview costs
$5.,500 for 25 people.

Contact Information

Project Technology, Inc. 415-845-1484
2560 Ninth Street Suite 214
Berkeley, CA 94710 [Developer]

3.24.7 REFERENCES

[Shla88a) S. Shlaer and S. Mellor, Object-Oriented Systems Analysis: Modeling the World in
Data. Englewood Cliffs, NJ: Prentice-Hall, 1988.

(Shia88b] S. Shlaer, S. Mellor, D. Ohlsen, and W. Hywari, "The Object-Oriented Method for
Analysis", Proceedings of the Tenth Structured Development Forum (SDF-X), San
Francisco, CA, Aug. 1988.

3113

00A/ST

3.25 OOA/ST -- Object Oriented Analysis

3.25.1 BACKGROUND

Synopsis

This method addresses the activities associated with requirements definition or clarification and system
specification. It calls for specifying the requirements of the system under development in terms of essential
object classes. Requirements thus stated are intended as input to an object-oriented approach to design; by
maintaining the same object-orientation, the need to shift perspective between analysis and design is eliminaied.

History

This method grew out of a research project at Boeing Computer Services. The project included
investigating methods’ suitability for software requireme-its analysis and software design. The method was first
used for a deliverable system in 1988.

Boeing’s OOA is an extension of information modeling, data-flow modeling, and finite-state modeling.
The principal architects of this method are M. K. Smith and S. R. Tockey. In this catalog, their method is called
OOA/ST to distinguish it from the OOA by Shilaer and Mellor. See also [Shla87].

3.25.2 DESCRIPTION

Central to object oriented analysis is the notion of an object. In Object Oriented Analysis, OOA/ST, an
object may be recognized by the data it carries, its behavior, and the processing it performs. However, of these
three aspects, only the aspects which are important in the problem domain are modeled in the system under
development. Additionally, there is another aspect, the role that the object performs, that helps to characterize an
object. This role may be expressed in terms of the operations which an object can perform on request, or
performs in response to an event or condition.

There are three essential activities which comprise OOA/ST: 1) Object identification and specification,
2) Object communication, and 3) Object classes and operations. In the first of these, objects in the problem
domain are discovered and described in terms of the information, behavior, and process models described above.
Specifying object communication entails acquiring an understanding of the communication interfaces which may
exist becrween object classes, providing a description in terms of messages and events passing between the
classes. The third activity, identification of class operations, bridges the gap between analysis and design phases
by helping to reconstruct information gained from the first two activities into a form which identifies the
operations on each object class.

3.25.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer reported that this method is well-suited for or compatible with a number of application
areas; however, it was reported that OOA/ST would be inappropriate for applications involving image processing
Or paitem recognition.

3-114

O0A/ST

There are two projects tor which the method is being used within Boeing Computer Services: one of
these parallels another effort to develop a production system through functional decomposition. The intent of
parallel efforts is to produce requirements and design specificaitons that can be compared. The other project is a
redevelopment of a large FORTRAN simulation program which models aircraft traffic flow through an airport.

The method is intended for projects of all sizes; it has been used for small and medium-sized
applications. Ada is the implementation language planned for use on the aircraft traffic simulation project.

Target Constraints

OOA/ST provides specific steps for addressing concurrency and fault- tolerance issues. In terms of
concurrency, each instance of each object class is allowed to be at any point in its bebavioral lifecycle. The
existence of, and response to, fault-related events may be inciuded in the specification.

Modes of Expression (Tables 9,10)

The method strongly encourages iconographical representation in terms of a number of diagrams: finite-
state, data-flow, entity-relationship, object communication and object operation diagrams. The developer
considers flowcharts, HIPO charts, and Nassi-Shneiderman charts to be inconsistent with the method.

The method provides rules for consistency between the representation models it uses, namely between
the Information mode! (entity-relationship), the behavior models (finite-state machines), the process models
(data-flow diagrams), communication model (Oject interaction/communication diagrams), and the object
operation model (modified Booch diagrams). Guidelines exist in the method for mapping from analysis to
design, i.e., mapping entity-relationship diagrams into Booch and Buhr diagrams.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Incremental or evolutionary development is strongly encouraged in order to clarify system requirc 2nts
or behavior. Required for analysis are data- structure analysis, data-flow analysis, and control-flow analysis.

Other Technical Aspects

By using object-class partitioning of requirements, the method is seen to assist in reducing the effort
needed to incorporate changes in the requirements. This is because the requirements are stated exactly once or
isolated, and because requirements are partitioned around other closely related requirements.

3.25.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

This method does not address activities associated wiih project management.

3-115

00A/ST

Communication Channels

In the opinion of the developer, the features of OOA/ST designed to facilitate coordination and
communication between all parties concerned with a project are the fact that the method is highly graphical,
precise, unambiguous, and uses object partitioning. In addition, the several models represent the information
from several perspectives and at various levels of detail. Provisions for involving the client in the software
process are interviews for gathering requirements and OOA/ST document walkthroughs.

Quality Assurance (Tables 12,14,15)

Not applicable.

Documentation Formats (Table 16)

The method requires that documents be produced for requirements definition, functional specification,
behavioral specification, and data dictionary. For all these documents, the format is tailorable within the method.

3.25.5 EASE OF USE

Technology Insertion

The major theoretical constructs hich should be understood by an experienced developer in order to
successfully use the method were given as entity-relationship-attribute modeling, data-flow diagrams, finite-state
machines, and objects/object classes, involving information hiding and abstract data types.

Training is available as overview presentations, on-site consulting by independent consultants (for
related methods), and related publications from third-parties. The developer estimated that a project manager
could acquire an understanding of the major features and benefits of the method in one day: an experienced
developer would require five days in order to leam to use the essentials and six months to become an expert user.

Automated Facilities

The method is not directly supported, but some integrated toolsets can be used. The developer listed
Cadre Technologies as having such tools, namely Teamwork/IM, /SA, and /RT, which support information,
process, and behavior modeling.

3.25.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Not applicable.

3-116

00A/ST

Acquisition Costs

Not applicable.

Contact Information

Boeing Computer Services 206-237-4236
P. O. Box 3707, MS 77-87
Seattle, Washington 98124 [Provider]

3.25.7 REFERENCES

(Smit88] M. K. Smith and S. R. Tockey, "An Integrated Approach to Software Requirements
Definition Using Objects”, Proceedings of the Tenth Structured Development Forum,

San Francisco, Ca., August 8-11, 1988; also listed in Proceedings of Ada Expo ’88,
Anaheim, Ca., Oct. 9-12, 1988.

3-117

(418)))

3.26 OOD -- Object Oriented Design

3.26.1 BACKGROUND

Synopsis

Object-Oriented Design is a method that focuses upon the Zesign and implementation aspects of the
software process. In the process of decomposing a system, this method relies upon the concepts of classes and
objects as key units of abstraction. Objects are taken to be entities whose behavior is characterized according to
the actions they require or undergo. A class serves to factor the common properties of a set of objects and
specify the behavior of all instances. In object-oriented approaches, objects are modeled in software, which is
analogous to developing a computer simulation. It is necessary to couple the method with some form of
requirements analysis [Booc86].

History

Grady Booch is the developer of this method, which was first used with respect to a deliverable system
in 1982. Object-oriented approaches have roots tracing back to the SIMULA programming language and
research efforts in the late 1960’s and early 1970’s by Alan Kay, which led to the Smalltalk language.

3.26.2 DESCRIPTION

Object-Oriented Design (OOD) addresses such activities as preliminary design, simulation, prototyping,
detailed design, coding, testing, and maintenance. To do this, it devises a model of a system based upon real
entities.

The development process includes the following steps:

- Identify the objects and their attributes;

- Identify the operations that may be meaningfuily performed on the object or by the object;
- Establish visibility of each object in relation to other objects;

- Establish the interface of each object;

- Implement each object.

The decomposition of systems into components is considered from a different perspective than that of
non-object-oriented methods. According to MacLennan [MacL86]: “"Whereas functional programming
concentrates on timeless mathematical relationships, object-oriented programming addresses directly the
behavior of objects in time." Objects are entities which assume different states, are characterized by their actions
in relation to other objects, are instances of some class, are denoted by names, have restricted visibility with
respect to other objects and may be viewed either by their specifications or their implementations. Objects are
classified as actors, agents or servers according to the relationship they have with other objects.

OOD builds upon the concepts of abstract data types. However, programming with abstract data types
tends to deal with passive objects and the operations suffered by these objects, while OOD adds actor objects that
act without stimulus from other objects and is also concerned with the operations that an object requires of other
objects. The purpose of this view, as described in {Booc86], is "to decouple the dependencies of objects,
especially when coupled with a language mechanism such as Ada generic units.” OOD is also based upon the
use of information hiding, genericity, inheritance and module coupling/cohesion, although in Booch’s view,
development without inheritance still constitutes object-oriented development.

3-118

(909)))

The notion of an object parallels the notion of a component of a system. The development of software
through OOD parallels the development of a software simulation. If one were simulating a system in software,
for example, then the designer might build the software modules so that they emulate the behavior of the actual
system components. The complete simulation is then built by assembling the modules into one software system
where the module interactions are designed to emulate component interactions occurring in the actual system. It
has been said that object-oriented programming is the systematic treatment of programming as simulation
[MacL86]. Thus, the above sketch also outlines the activities which would take place with an object-oriented
approach.

3.26.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

OOD is intended for use in developing real-time embedded systems, distributed processing, systems
programming, data processing, and large scale simulation. It has been used in an estimated 51 to 100
organizations for developing between 21 and 100 delivered systems, including systems for ship- board command
and control, banking systems, radar systems, geophysical research tools, a software development environment,
and reusable software components. OOD has been used most frequently in conjunction with object- based and
object-oriented programming languages, such as Ada, Smalltalk, C++, Object PASCAL, and the Common LISP
Object System.

Target Constraints

OOD prescribes steps for handling requirements of the target system. Timing constraints are handled
through the use of annotated state machines and Petri nets, as well as the use of software components available
from the developer. Hardware diagrams are used to capture special features of the target hardware architecture.
Special features of the target operating system may be represented with classes specifying the interfaces during
the design process. Class and object diagrams capture concurrency semantics. Exception semantics are
expressed for each abstraction to handle fault-tolerance issues. Spatial constraints are affected by the choices
among software components. Security of access is addressed through the use of visibility restrictions. OOD
assists in porting end-product systems to different target configurations through the distinct division made
between the logical and physical design of a system.

Modes of Expression (Tables 9,10)

OOD requires the use of specified documentation templates, narrative overviews of modules, and PDL.
It is based on the use of finite-state diagrams, data flow diagrams, Petri nets, and an object-oriented diagramatical
notation, as developed by either G. Booch or R. Buhr.

0OD specifically provides steps for the evolution of a design and prescribes mapping rules for

translating from data flow diagrams to class diagrams and object diagrams, as well as from class diagrams to
object diagrams to architecture diagrams to hardware diagrams.

3-119

QoD

Techniques for Analysis and Requirements Clarification (Tables 11,12)

OOD requires incremental or evolutionary development. It encourages rapid prototyping, dynamic
animation, simulation, and the use of executable specifications to clarify system requirements or behavior.

Other Technical Aspects

OOD addresses changeability, reverse engineering, and reusability as follows. OOD is intended to
reduce the effort needed to fully incorporate changes in the requirements. Primitive classes and objects are
generated that map to a small set of requirements; changing requirements generally involves inventing new
objects or altering the behavior or existing ones. The traceability between the logical and physical design is
claimed to make reverse engineering possible. That is, it is possible to recreate the design from the
implementation. The developer states in [Booc86] that "there is a basic relationship between reusable software
components and object-oriented development: Reusable software components tend to be objects or classes of
objects.” The identification of patterns of classes is an integral part of the OOD process. The developer has
established a library of reusable objects.

3.26.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The method provides guidelines for analyzing risk, assessing complexity, tracking project progress, and
configuration management. It requires estimating initial cost, projecting cost of completion, providing
incremental data about expenditures, as well as project planning and reliability estimation.

Communication Channels

The precise specification of abstraction interfaces and abstraction relationships is designed to facilitate
and coordinate communication within the development team. The development of executable prototypes is
intended to facilitate and coordinate communication between management and the technical devefopment team,
as well as between the client and the development organization. The executable prototypes are used as
milestones in the development process.

Quality Assurance (Tables 12,14,15)

OOD provides specific directions and procedures for checking unit interfaces. The unit interfaces are
generated early in the design process in order to assist in the detection of inconsistencies and/or errors. OOD
requires or provides guidelines for some specific testing activities.

Documentation Formats (Table 16)

The method specifies a fixed format for the documentation of behavioral, architectvral, and interface
specifications, as well as system structure charts. Design documentation and internal program documentation
formats are tailorable.

3-120

|

oop

3.26.5 EASE OF USE

Technology Insertion

Successful use of the method by an experienced developer requires an understanding of abstract data
types, information hiding, finite state machines and object-oriented programming. The minimum qualifications
needed by a development team leader for use of OOD include a bachelor’s degree, with an advanced degree
preferred. Additional qualifications include three to five years of development experience, a working knowledge
of at least two programming languages, and development, programming, or maintenance experience with three to
four different software systems. Although more experience is preferable, the method’s developer felt that a user
with too much experience may be less likely to make the conceptual transition required to use the method.

Training is available in the form of demonstrations and presentations, on-site consulting by the
developer and independent consultants, video tapes, and through reference to various books and technical
articles. The developer estimates that a project manager can acquire an understanding of the major features and
benefits of the method in three days. It would take an experienced developer one week to learn to use the
essentials of the method. To achieve the level of expert, an experienced developer would take six months.

Automated Facilities

Automated support tools are currently under development.

3.26.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

No specific requirements were listed by the developer.

Acquisition Costs

The method is effectively in the public domain.

Contact Information
Grady Booch 303-986-2405
c/o Rational
835 S. Moore Street
Lakewood, Colorado 80226 [Developer]

3-121

3.26.7 REFERENCES

[Booc87]

[Booc86]

[Booc82}

[MacL86]

(010))]

G. Booch, Software Components with Ada. Menlo Park, CA: Benjamin Cummings
Publishing Co., 1987.

G. Booch, "Object-Oriented Development”, IEEE Transactions on Software

Development, Vol. SE-12, No. 2, Feb. 1986, pp. 211-221.

G. Booch, Software Engineering with Ada. Menlo Park, CA: Benjamin Cummings
Publishing Co., 1982.

B. MacLennan, Principles of Programming Languages, 2nd Ed. New York, NY: Holt,
Reinhart and Winston, 1986.

3-122

PAISLey

3.27 PAISLey -- Process-oriented, Applicative, Interpretable Specification Language

3.27.1 BACKGROUND
Synopsis

The PAISLey system is an executable language for describing real-time and embedded systems as a set
of concurrent processes. Execution of a PAISLey description is meant to simulate the behavior of the described
system rather than to implement it. PAISLey is supported by a set of software tools, forming an environment for
analyzing and executing specifications.

History

Work on PAISLey was begun by Pamela Zave at the University of Maryland, with some early
contributions to the concepts by D.R. Fitzwater. Since 1981, it has been expanded at Bell Laboratories. William
Schell contributed in the effort of creating the PAISLey language execution system and associated tools. The
method was first used with respect to a deliverable system in 1985.

PAISLey was formed by merging two distinct models of digital computation: asynchronous processes
and functional programming. Asynchronous processes were first described by Homing and Randell [Hom73] as
an abstraction of concurrency in multi-programming systems; they are used to represent the developing system.

3.27.2 DESCRIPTION

PAISLey represents a Process-oriented, Applicative, and Interpretable Specification Language
(PAISLey). PAISLey is an operational specification language, i.e., it specifies a system in terms of an "abstract
program" that produces the same bebavior as the specified system. PAISLey allows the user to create an explicit
model of a proposed system that interacts with an explicit model of the system’s environment. Both submodels
consist of sets of asynchronously interacting digital processes. The entire model is executable and the internal
computations of the processes are specified with a functional language.

"Applicative" (or "functional”) languages are defined in [Zave82] as "those based on side-effect-free
evaluation of expressions formed from constants, formal parameters, functions, and functional operators."
PAISLey takes advantage of both applicative and process-oriented constructs.

PAISLey is intended to support the operati--»al approach to software development; that is, one where
behavior is simulated. The resultant life-cycle model views the activities of software development in terms of 1)
problem understanding, 2) creation of an operational specification, 3) transformation of the specification, and 4)
realization of the solution system {Zave84). This approach to specification is described, particularly for real-time
systems, in [Zave82).

The features of the language are described in [Zave86]. The language is designed for coping with
complexity and change in the domain of embedded systems, where performance and resource requirements are
critical. It addresses timing and concurrency issues. The developer describes PAISLey as having the following
features: {)both synchronous and asynchronous paralielism free of mutual-exclusion problems, 2)encapsulated
computations, 3)ability to execute incomplete specifications, 4)executable timing constraints, 5)bounded
resource consumption, 6)automated consistency checking, and 7)coherence and simplicity of notation. Support
for modularity, especially abstract data types, is one of the features the developer suggests should be considered
for enhancement of PAISLey.

3-123

PAISLey

PAISLey primarily addresses the activities of problem definition, requirements definition, specification,
and preliminary design. It is intended to support simuiation, prototyping, consistency checking, requirements
definition, and testing. PAISLey’s provisions for rapid prototyping may be used to clarify the behavior of the
system with the software client and encourage incremental addition of new features. With PAISLey’s provisions
for execution of incomplete specifications, the specification or a fragment can be demonstrated to the client.

3.27.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6;

The developer states that the method is well-suited for use in the areas of embedded systems/process
control, time critical/real-time applications, and systems programming. It has been used on less than five small
and medium projects developed in the C language under UNIX, including a real-time transmission controller.

The use of PAISLey to model a proposed system is independent of the ultimate implementation
language. The specification in the PAISLey language may be viewed as an executable design or abstract
program to be translated manually or automatically into the implementation language. Alternately, the PAISLey
specification could be used merely as an adjunct to a traditional requirements specification document, with
design and coding done independently of PAISLey. Automated transformations and code generation are not
currently available. Manual translation was done for an experimental project.

Target Constraints

The method is intended to incorporate timing constraints, operating system constraints, and concurrency
issues. A timing constraint can be attached to any mapping in a PAISLey specification. The evaluation time of
the mapping is viewed as a random variable, for which an upper bound, lower bound, and/or distribution may be
specified. All timing constraints are interpreted in simulated time, so that execution of a specification is
automatically a performance simulation as well.

Modes of Expressioa (Tables 9,10)

The method requires and provides automated support for the use of the PAISLey formal specification
language and mathematical notation. The specification is executed to provide a simulation of the operational
behavior of the system being modeled in the form of textual output.

The PAISLey language is an executable specification language for describing digital systems as a set of
concurrent processes, where each process has a state and goes through a continuing sequence of discrete state
changes. Processes in PAISLey specifications can be representations of objects such as system functions, data,
buffers, and interactive interfaces. PAISLey is compatible with the use of finite-state diagrams, Petri nets, data-
flow diagrams, control-flow diagrams, entity-relationship diagrams, or flow charts.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

The method is based upon the use of rapid prototyping, simulation, and executable specifications, and
encourages the use of dynamic animation, incremental development, data-structure analysis, data-flow analysis,
and control-flow analysis.

3-124

m

-

Other Technical Aspects

Not applicable.

3.27.4 PROJECT CONTROL AND COMMUNICATION

Project Management

PAISLey does not address project management.

Communication Channels

Trained analysts can communicate with people having non-technical backgrounds using simplified
diagrams and narrow views derived informally from the current PAISLey specification. The developer judges
the current PAISLey specification to be difficult for communicating the design outside the development team.

Quality Assurance (Tables 12,14,15)

PAISLey provides support for assessing conformity of the developing software to system specifications
by:

- providing guidelines for test planning at one or more precise points in the software process;
- providing guidelines for generation of tests based on system requirements;

- providing guidelines for prescriptive checking of interfaces;

- incorporating an executable model;

- encouraging data structure, data-flow and control-flow analysis of dependencies;

- using a formal specification language.

The method makes the relationships among data, functionality, performance, and resources explicit.
Validation can incorporate: the use of an informal summary derived from the formal specification, the execution
of the interpreter, or the generation of a prototype. Validation can utilize the specification or an incomplete
fragment. The interpreter can also be used as a performance simulator.

Documentation Formats (Table 16)

PAISLey does not address external documentation. It prescribes a fixed format for requirements
definition, functional specification, behavioral specification, and architectural specification.

3-125

PAISL ey

3.27.5 EASE OF USE

Technology Insertion

Training is available in the form of hands-on demonstrations, overview presentations, classroom
tutorials, user manuals, "hot-line” service, and related publications from third-parties. The developer estimated
that it would take three days for a project manager to leamn the basics of the method, five days for an experienced
developer, and that it would take three months for an experienced developer to achieve the level of expert user.

The minimum qualifications needed by a development team leader include a Bachelor’s degree, three to
five years of development experience, a working knowledge of two programming languages, and experience
with two different software systems. Successful use of the method requires an understanding of concurrent
processes and functional programming.

Automated Facilities

PAISLey cannot be separated from the associated tools without losing the essence of the method. The
PAISLey environment provides semantic and/or syntactic analysis for the formal specification language. The
interpreter provides for simulation or execution. The consistency checker provides data structure analysis. The
parser and cross referencer provide control flow analysis. It utilizes Unix facilities for generating, editing, and
storing specifications.

3.27.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

PAISLey software tools are embedded in the Unix operating system and follow the Unix style for
program interfaces. The method utilizes Unix facilities for generating, editing, and storing specifications.
PAISLey runs on System V and 4.2 BSD versions of the Unix system, and has been executed on Sun,
DEC/VAX, ATT/3B, Amdahl 470, and M68000 processors.

Acquisition Costs

The unit cost to acquire the method and required components is $2,800. Unit cost for technical training
is $3,000, and unit cost for a management overview is $1,500.

One source license covers all usages at a site.

Contact Information

Pamela Zave (201) 582-3080
AT_&T Bell Laboratories

Computer Technology Research Labs

600 Mountain Avenue, Room 3D-426

Murray Hill, NJ 07974 (developer]

3-126

3.27.7 REFERENCES

[(Hom73]

[Zave86]

[Zave84)

{Zave82)

J. J. Homing and B. Randell,"Process Structuring”, ACM Computing Surveys, Vol. 5,
No. 1, March 1973, pp. 5-30.

Pamela Zave and William Schell, "Salient Features of an Executable Specification
Language and Its Environment”, IEEE Transactions on Software Engineering, Vol.
12, No. 2, Feb. 1986, pp. 312-325.

Pamela Zave, "The Operational Versus the Conventional Approach to Software
Development”, Communications of the ACM, Vol. 27, No. 2, Feb. 1984, pp. 104-118.

Pamela Zave, "An Operational Approach to Requirements Specification for
Embedded Systems", IEEE Transactions on Software Engineering, Vol. 8, No. 3, May
1982, pp. 250-269.

3-127

PAMELA 2

3.28 PAMELA 2 -- Parts Assembly Method for Embedded Large Applications

3.28.1 BACKGROUND

Synopsis

This method covers the software requirements phase of development as well as the design and
implementation phases. It provides a graphical notation (called Ada graphs) based on Ada's semantics for
communicating program specifications and design, and incorporates dataflow, process-oriented, and object-
oriented approaches.

History

PAMELA 2 is a second-generation method based on PAMELA. Both methods were developed by
George W. Cherry. PAMELA 2 assimilates several other approaches and methods, including PAISley,
Statecharts, Structured Analysis/Real Time, Structured Design/Real Time, Object-Oriented Development, and
MASCOT 3. The method was first used in 1988 for the development of a deliverable system.

3.28.2 DESCRIPTION

PAMELA 2, Parts Assembly Method for Embedded Large Applications, has three basic views of the
software under development: 1) a users’ view, shown with a specification graph; 2) a bottom-up implementation
view, conveyed with a library graph; and 3) a behavioral view, shown with processing graphs. The method
provides guidelines for developing these views using PAMELA 2’s iconographical representations and text
where appropriate.

The specification graph shows the requirements for the part of the software represented in the graph, as
well as the interfaces which result from connecting that part to other parts of the system. In composing the
library graph, the designer attempts to identify library objects which encapsulate information about the problem
to be solved; the emphasis in this step is to identify reusable components.

The processing graphs are used iteratively to refine the behavior of components and subcomponents.
PAMELA 2 provides icons for representing all the semantics of the Ada language, including control icons and
other icons to show either sequential or concurrent processing. These icons can express the semantics of
synchronization between processes and interprocess communication by means of parameterized (data flow)
calls. There are icons for conditional, priority, and timed calls, icons for conditional and guarded waits, and an
icons for exceptions. Other icons allow representation of data stores or shared storage. The icons also
distinguish between generic packages, super library units, and hardware objects.

3.28.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer rated the method well-suited for all the applications shown in Table 5. The method is
intended for use on projects of all sizes, and has been used for small and medium-sized projects. Ada is the
implementation language most frequently used when coding systems developed with PAMELA 2, which has
been used to develop approximately five delivered systems, within between five and twenty organizations.

3-128

PAMELA 2

Target Constraints

The developer stated that the method prescribes steps for handling several types of requirements of the
target system, including timing and spatial constraints, special features of the target hardware architecture and
operating system, concurrency and fault-tolerance issues, and security of access. By separating hardware-
dependent parts from application-dependent parts, the method assists with portability.

Modes of Expression (Tables 9,10)

PAMELA 2 requires a program design language and a formal specification language. It also requires
finite-state diagrams, petri nets, data-flow diagrams, control-flow diagrams, flowcharts, hierarchy charts, and
Buhr and Booch diagrams. Its own iconographical representations constitute a major form of expression as well.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

A number of techniques are strongly encouraged for clarifying system requirements: rapid prototyping,
dynamic animation, simulation, incremental or evolutionary development, and executable specifications. Code
walk-throughs are a required technique, and several other analysis and review techniques are strongly
encouraged.

Other Technical Aspects

By having the same process used for development as for re-development, the method is seen as assisting
the incorporation ot changes within the requirements. The method has an explicit reuse/reusability first step in
the development phase of each part.

3.28.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

PAMELA 2 prescribes specific procedures for analyzing risk, estimating initial cost, projecting cost of
completion, providing incremental data about expenditures, and tracking project progress, as well as for project
planning, scheduling and/or manpower loading, allocation of personnel to tasks, allocation of development
resources, configuration management, and reliability estimation.

Communication Channels

The developer regarded the standard graphical representations of the method as facilitating
communication within the development team and between the client and the development organization. The
client is involved during the software development process at reviews of the SRS, architectural design, and
detailed design, all of which are based on Ada graphs.

3-129

PAMELA 2

Quality Assurance (Tables 12,14,15)

The method provides a framework for accomplishing several types of testing activities: test planning,
generation of tests based on system requirements, unit/integration testing, field or acceptance testing, generation
of test data. and prescriptive checking of interfaces. The fact that all graphs are consistent by construction was
cited as lzading to early detection of inconsistencies and/or errors. The method also provides specific directions
for recording information relative to technical decision-making during the software development process.

Documentation Formats (Table 16)

The Ada graphs incorporated in the method constitute a form of documentation for the system under
construction. Other documents are required to be produced, whose formats are tailorable within the method.

3.28.5 EASE OF USE

Technology Insertion

The developer estimated that a development team leader would need, at minimum, the following for
successful use of the method: a bachelor’s degree, three to five years of development experience, knowledge of
two programming languages (Ada being one of them), and experience with one software system. Theoretical
constructs which should be understood by an experienced developer in order to successfully use the method are
the semantics of Ada, finite state machines, task idioms, communicating processes, and the object-oriented
paradigm.

Training assistance is available in the form of hands-on demonstrations, overview presentations,
classroom tutorials, on-site consulting by the vendor or independent consultants, a hot-line service, user manuals,
a users’ support group, and periodic technical updates. The developer estimated that one or two days would be
required for a project manager to acquire an understanding of the major features and benefits of the method, and
one week for an experienced developer to leam to use the essentials. One month would be required for such a
developer to achieve the level of expert user.

Automaied Facilities

HyperPAL by Thought**Tools is under development, and is intended to support all the activities of
PAMELA 2.

3.28.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

This information was not provided.

Acquisition Costs

The unit cost to acquire the method and required components is $5,000. Technical training or a
management overview each costs $1,000.

3-130

i ah i aa U am Em

-

N I I I G A o .

PAMELA 2

The licensing policy is customized to the customer.

Contact Information
George W. Cherry 703-437-4450
Thought**Tools, Inc.
P. O. Box 2429
Reston, VA 22090 [Developer]

3.28.7 REFERENCES

"Reference Manual for the PAMELA 2 Specification and Design Language and Method" is available
from Thought**Tools.

[Authors’ note: due to publishing deadlines, PAMELA 2 does not appear in the tables in Chapter 6]

3-131

PDL/81

3.29 PDL/81 -- Program Design Language/81

3.29.1 BACKGROUND
Synopsis

PDL/81 is a method which uses a structured-English program design language to assist in the creation
of both the preliminary and detailed design for a software system. The method emphasizes top-down design and
the use of structured programming constructs. The method provides an automated facility which facilitates the
creation of design documentation.

History

PDL/81 is the latest version of a method developed at Caine, Farber, Gordon, Inc. during the early
1970’s. The method was first used for a deliverable system in 1973.

3.29.2 DESCRIPTION

Program Design Language/81, PDL/81, is a software development method which is primarily
concemed with the design phase. The method also addresses aspects related to documentation and maintenance.
The method is founded upon a control-oriented approach and the use of functional hierarchy/decomposition,
stepwise refinement, process abstraction, and structured programming. The design is developed and presented in
a top-down manner with an emphasis on understandability.

The method stresses development of a complete design before code is written. The complete design
shou!d contain:

- Definitions of all external and internal interfaces;

- Definitions of all error situatiozs;

- Definition of all global data;

- Definition of all control blocks;

- ldentification of all procedures and procedure calis;

- Specification of the processing algorithms of all procedures.

PDL is the program design language which is used to document the design. PDL uses structured
English, providing a formal language structure which allows the designer to communicate ideas to other people.
The language allows construction of a problem solution in a top-down manner. Thus, it is possible to review the
first levels of design, and easily incorporate modifications. In [Cain75] the developer states: "...the basic
readability of a PDL design means that clients, management, and team members can both understand the
proposed solution and gauge its degree of completeness."”

An automated tool, called a processor,is provided by the method. The processor assists in producing the
design in PDL. Input to the processor consists of control information and designs for procedures, called design
segments. The output of the processor is a working design document. The language encourages and supports
design constructs which relate directly to structured programming constructs. However, the designer can use his
discretion as to what input is provided for a design segment.

3-132

PDL/81

3.29.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

Software development areas for which the method is well-suited include embedded systems, process
control, or device control, distributed processing/networks, real-time or time-critical systems, and system
programming.

The developer states that the method is best used for small to medium size projects. More than 100
organizations have used PDL/81 in developing more than 250 delivered projects of all sizes, including compilers,
command and control systems, operating systems, and medical imaging systems.

The implementation languages most frequently used when coding systems developed with PDL/81 have

been Fortran, Ada, C, Jovial, and Assembler. The method assumes that the implementation language provides
structured programming constructs.

Target Constraints

The method does not provide specific directions for addressing particular constraints of the target
system.

Modes of Expression (Tables 9,10)

PDL/81 requires the use of a program design language based upon natural language (structured English)
during all phases of design. The automated processor which supports the method provides syntactic analysis for
the program design language. The method does not use graphics, but rather the user is encouraged to write
meaningful narrative overviews and processing descriptions. The use of a structured natural language to express
the processing descriptions is intended to facilitate the evolution and communication of the design.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Use of control-flow analysis is required by the method. The use of incremental or evolutionary development
techniques are encouraged.

Other Technical Aspects

PDL/81 provides a tailorable format for internal program documentation. To aid in changeability and
traceability, the developer states that the method provides an index that shows which design segments address
each requirement ot the system. Additionally, incorporated into each design segment is a statement of those
requirements that are associated with the segment. The method assists in identifying possible reusable
components due to its emphasis on meaningful natural language.

3-133

PDL/81

3.29.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The method does not directly address issues involving project managemec.t or tracking. It does
prescribe specific directions and procedures for assessing the complexity of the system being developed, as well
as providing automated support.

Communication Channels

PDL facilitates communication among clients, management, and team members. The use of structured
natural language facilitates understanding without the necessity of formal training. The client sees the design
during all development stages and, since programming expertise is not required for understanding, can give
timely feedback.

Quality Assurance (Tables 12,14,15)

The developer states that the ease of reading and understanding the design and the consistency checking
provided by the method assist in the early detection of inconsistencies and/or errors. The use of structured
natural language presents the necessary information in a suitable form for use in design reviews and code walk-
throughs, as well as providing background data when necessary for Change Control Board review.

Documentation Formats (Table 16)

PDL/81 can be utilized in conjunction with customized templates to accommodate an external
documentation standard. It requires, and provides a tailorable document format for the following: requirements
definition, functional specification, design document, internal program documentation, and user manual.

3.29.5 EASE OF USE

Technology Insertion

Training is available in the form of on-site consulting by independent consultants, "hot line” service,
and user manuals. It is estimated that a project manager can gain an understanding of the major features and
benefits of the method in one day. An experienced developer would require two days to leam to use the
essentials of the method and would reach the level of expert user in one month. To successfully use the method,
the background of the development team leader should include two to three years college-level technical
education, one to two years of development expernience, a knowledge of one programming language, and
experience with one different software systsm.

Automated Facilities

PDL/31 provides automated support for specified documentation templates, narrative overviews of
modules, and a program design language based on structured English.

3-134

e o —

TN I e

PDL/81

3.29.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Appropriate configurations on which to host the method include VAX/VMS; Sun, Apollo, VAX, and
most other Unix-based systems; and IBM-PC under DOS and XENIX.

Acquisition Costs

Use is licensed on a per-CPU basis. For the initial license and each multi-user machine the cost would
be $6,000. The cost for an additional single-user CPU is $600, with volume discounts thereafter.

Contact Information

Caine, Farber, & Gordon, Inc. 818-449-3070
1010 E. Union St.
Pasadena, CA 91106 [Developer & provider]

3.29.7 REFERENCES

[Cain75] S. H. Caine and E. K. Gordon, "PDL - A Tool for Software Design", Proceedings of
the 1975 National Computer Conference, 1975, pp. 271-276.
[Cain88] "PDL/81 - An Introduction”, October, 1988. Available from Caine, Farber & Gordon,
Inc.
3-135

PRIDE

3.30 PRIDE - "PRIDE" Family of Products for Information Resource Management (IRM)

3.30.1 BACKGROUND
Synopsis

PRIDE offers a software development method which focuses on the design of information systems and
of corporate databases. Automated tools support the development process, and also facilitate project management
and documentation. Together, the set of products provides a development environment which addresses almost
all aspects of software development.

History

The PRIDE set of products has been developed at M. Bryce & Associates, Inc. The first products were
developed in the early 1970’s, and employed structured system design techniques and the then emerging
database technology. PRIDE was first used for a deliverable system in 1971.

3.30.2 DESCRIPTION

The software development process of PRIDE is called Information Systems Engineering Methodology.
PRIDE-ISEM consists of several distinct phases, proceeding from feasibility to review, which make up a
framework for development. The phases are:

- System Study and Evaluation: an analysis of the problem and a proposal to management for a
course of action;

- System Design: a determination of the required sub-systems;

- Sub-system Design: a specification of the means of implementation;

- Administrative Procedure Changes: the preparation of a clear and detailed description of the
procedures for the client;

- Computer Procedure Design: the definition of specifications for the program steps;

- Program Design: the production of efficient machine code;

- Computer Procedure Test: testing of the procedures;

- System Test: integration of the sub-systems;

- System Operation: the accommodation of possible modifications;

- System Audit: a determination of whether expectations were met.

For development of a corporate database, PRIDE uses Data Base Engineering Methodology. The
method uses six phases which are centered around four models for defining the database. These models are:

- The application logical database model: a view of the enterprise objects required for a specific
application;

- The enterprise logical database model: an integration of the various application logical models;

- The enterprise physical database model and the application physical database model: a
specification for each of the logical models of how data is to be physically stored.

The six phases involve an initial study and evaluation, the design of the four database models, and a
project audit.

" 3-136

_‘ -

PRIDE

The method is founded on a data structure-oriented approach, on what the developer refers to as "object-
4 data model approach”, and on chronological decomposition, which emphasizes the identification of timing
dependencies within the data that affect the production of information from such data. The method is well-suited
for use within the context of several software process paradigms; it regards systems as being built by evolution.
Essential concepts to PRIDE are stepwise refinement, process abstraction, and abstract data-types.

The PRIDE family has been expanded to include EEM, Enterprise Engineering Methodology. This
method implements a business planning stragegy for a corporation within five phases:

- EEM Project Planning, concemning an enterprise’s mission, Business Plan, and influences outside
the enterprise;

- Logical Enterprise Analysis, describing the enterprise and its environment;

- Physical Enterprise Analysis, similar to the above phase and used to perform an Organization
Analysis of resources;

- Develop Enterprise Information Strategy specifying the objectives and projects that will be
followed:

- EEM Evaluation, used to initiate the strategy as well as to audit the EEM project for actual time
and cost versus projected.

The PRIDE products include several integrated tools which support the development process. The
Project Management System (PMS) is used to support various activities associated with project management,
including initiation of the project and planning. The Information Resource Manager (IRM) is used to catalog and
control information resources. Among its features are a "status check” which is designed to ensure that all
components are properly defined and related, and an "impact analysis" which measures the effect of a proposed
change. The Automated Engineering System (ASE) provides automated assistance for design and modification
of the system, expediting the administrative tasks associated with system design. The Computer Aided Planning
(CAP) tool provides automated support for EEM.

3.30.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer stated that the method is well-suited for applications involving embedded systems or
process control, time critical or real-time processing, scientific or engineering processing, distributed processing
or networks, data processing or database applications, and expert systems or artificial intelligence.

Examples of delivered systems developed using the method include inventory control, factory
automation, production control, transportation systems, military systems, health & welfare applications and
pension plans, telephone systems, gas pipeline distribution, customer billing, payroll and employee benefits
systems. The number of delivered systems that have been built using the method is estimated at more than 250,
and the number of organizations which have used the method exceeds 100.

The method is intended for use on projects of all sizes and has been used as such. The implementation
languages most frequently used when coding systems developed with PRIDE are COBOL, PL/1, FORTRAN, C,
Basic, Assembler, and fourth-generation database languages.

3-137

Target Constraints

The developer states that chronological decomposition addresses timing constraints and concurrency
issues. The method textbook provides directions for addressing issues concerning special features of the target
hardware architecture and operating system, as well as security of access issues.

Modes of Expression (Tables 9,10)

The method requires specified documentation templates and encourages narrative overviews of
modules. Automated support is provided for both these textual modes. Required iconographical modes of
representation are control-flow diagrams, flowcharts, and hierarchy charts. The method provides automated
support for all of these representations. Use of matrix tables is also required.

Mapping rules are prescribed for translating from a system flowchart to a sub-system flowchart, and

from a sub-system flowchart to a computer procedure flowchart. Transformation across phases of the software
process is facilitated through the formal deliverables resulting from each phase.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

The method requires incremental or evolutionary development to clarify system requirements.
Required analysis and review techniques include data-structure, data-flow, and control-flow analyses, formal
proof techniques, design reviews, and Facilitated Application Specification Techniques.

Other Technical Aspects

The method assists in reducing the effort to incorporate changes in the requirements through a "change
control”"mechanism provided by the IRM tool. This tool keeps track of changes and assures that they have been
implemented. Also, documentation can be regenerated. The method assists in ensuring consistency between
specification, design or code by means of reviews and an IRM "status check” which maintains consistency.

Assistance in identification of reusable components is found in the IRM’s "logical attribute” search
routine for locating any component.

3.30.4 PROJECT CONTROL AND COMMUNICATION

2roject Management (Table 13)

The developer reports that the method prescribes specific procedures for conducting activities involving
risk assessment and cost estimation of software development, as well as involving planning, scheduling, resource
allocation, skills inventory, and user billing/chargeback.

Communication Channels

The aspects of PRIDE designed to facilitate and coordinate communication among all parties are formal
and informal review points, standard documentation, recommended procedures of project management, and the

3-138

PRIDE

control point provided by IRM. The method involves the client through formal reviews at the end of each phase
and through informal discussions during each phase.

Quality Assurance (Tables 12,14,15)

PRIDE provides a framework for conducting testing activities and configuration management. Early
detection of inconsistencies or errors is accomplished with IRM’s "status check", which notes errors and
omissions.

Specific directions are provided by the method for recording and maintaining records of technical
decision-making.

Documentation Formats (Table 16)

The formats and level of automated support provided by the method for its required documents vary.
See Table 16 for specific information.

3.30.5 EASE OF USE

Technology Insertion

The developer states that successful use of the method by experienced developers requires an
understanding of business and a capability to think about a problem. A development team leader would need
less than two years of college-level technical education, no prior development experience, working knowledge of
one programming language, and experience with one software system in order to use the method successfully.

Training in the method is provided in the form of hands-on demonstrations, overview presentations,
classroom tutorials, on-site consuiting by the vendor, on-line help facility, a "hot line" service, user manuals, and
periodic technical updates. One day would be required for a project manager to understand the major features
and benefits of the method, and five days for an experienced developer to leam to use the method's essentials.
Six months was estimated as the time for an experienced developer to become an expert user of the method.

Automated Facilities

The vendor provides a number of tools which assist in the functions of the method. Refer to the
Description section above and to Tables 9, 10, 13, and 16 for specific information.

3.30.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Appropriate configurations for hosting the tools of the method include IBM MVS, MVS/XA, DEC
VAX/VMS, and UNISYS 1100 EXEC.

3-139

PRIDE

Acquisition Costs

The cost to acquire the method and required components along with included technical training is
$250,000. For other recommended vendor components, the cost is $10,000. A management overview is $1,500.
There is a site license.

Contact Information
M. Bryce & Associates, Inc. 813-786-4567
777 Alderman Road
Palm Harbor, FL. 34683 [Developer]

3.30.7 REFERENCES

The developer provides product descriptions and other literature.

3-140

.

PROMOD

3.31 PROMOD -- the Project Models

3.31.1 BACKGROUND
Synopsis

PROMOD is a software engineering environment which supports a system of selected methods through
a set of integrated tools used for different phases of the software development process. Tools supporting
structured analysis are used for requirements analysis and definition. Tools supporting real-time analysis provide
control-oriented requirements definitions. The method of modular design is supported for the system design
phase. During the program design phase, tools which support the use of a program design language are used.
These tools are intended to produce a consistent and complete Logical Model in Analysis, a consistent and
complete Physical Model in Design, and an Implementation Model that matches the Physical Model in the
Implementation Phase.

History

PROMOD was developed at GEI - Gesellschaft fuer Elektronische Informationsverarbeitung in
Germany. It was first used in the development of a deliverable system in 1980. The set of integrated tools are
based on principles advocated in the following:

- Yourdon/DeMarco’s method of Structured Analysis;

- Hatley/Pirbhai real-time extensions to structured analysis;

- D. L. Pamas’ principles of information hiding and data abstraction;

- Pamas/Booch/Buhr methods of modular design;

- Caine, Farber, Gordon technique for pseudocode program specifications;
- N. Wirth's technique of stepwise refinement for programming.

3.31.2 DESCRIPTION

PROMOD, the Project Model, is an integrated set of automated tools which provides a software
engineering environment that supports all of the technical phases of software development. PROMOD
recognizes that different methods are best suited to different phases of the development cycle, and provides an
environment which is intended to facilitate the transition between the use of different methods. The automated
tool set of PROMOD supports and enforces the correct use of the various methods.

The PROMOD project model specifies the following phases in the software development cycle: 1)
requirements analysis and definition, 2) architectural or system design, 3) program design, 4) implementation, 5)
system test, and 6) operation. PROMOD has chosen to support Structured Analysis for the requirements
analysis and definition phase. For the architectural or system design phase, it supports a method called Modular
Design which is a combination of Structured Design and Information Hiding. Detailed design is accomplished by
stepwise refinement, with several choices provided to the user.

During requirements analysis and definition (RA&D), PROMOD provides:
- A process for producing data-flow diagrams;
- A process for recording these diagrams in a data dictionary;

- A process for producing documents called minispecs;
- A process for recording data structures in detail;

3-141

PROMOD

- The RA&D analyzer for investigating system model interrelations and reporting on inconsistencies
and incompleteness in the logical model.

The first four processes interactively provide recording and syntactical checking of the various objects,
analysis of the objects, and preparation of reports in a wide variety of formats. Isolated nodes and cycles within
data-flows are identified. The RA&D analyzer provides further analysis and cross-reference lists. The output of
the RA&D analyzer is the Logical Model.

Using the definitions of the data-flow diagrams recorded in the data dictionary, minispecs are generated.
These minispecs are a colloquial description of the various system functions, and provide an easy mode of
communication with the client. Use of the system facilitates iteration and modification during the analysis phase.
The real-time analysis facilities for control-oriented requirements definition enable creation of control-flow
diagrams, state transition diagrams, activation tables, and a requirements dictionary.

In the architectural or system design phase, there are several processes supported which assist in
construction and checking of system specifications. These processes include:

- Transformation of the system miodel into a modular structure;

- Definition of the specification of the modules;

- Definition of the specifications of the functions;

- Extension of the information in the data dictionary as data types;
- Checking and editing of system specifications.

Checking and editing is performed by the MD-analyzer which corrects defectively specified imports, identifies
functions which are used but not defined, detects errors in the parameter lists of functions, and indicates the use
of data which belongs to other functions. Additionally, the MD-analyzer edits the system specification document
to provide optical configuration of modules, data, and functions, and to provide representations of module
interrelations, invocation hierarchy of the functions, and cross-references for data and functions.

For the program design phase, the system provides a choice of a function specification process, a
process which uses a program design language, or a process for aiding in the design of real-time systems. Which
process is used will depend upon the dimension and purpose of the software project. Function and data are
specified according to the method of stepwise refinement. The process investigates the constituted structures and
detects errors and inconsistencies. The designer is then able to debug and elaborate program specifications.

Further tools are available to support the implementation phase, assisting in transformation of the
program specifications into code, and providing automatic documentation of the code.
3.31.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer rated the method well-suited for all the applications areas listed in Table 5, with the
exception of a compatible rating for data processing or database and expert systems or artificial intelligence. The
method has been used to develop embedded computer applications for defense, aerospace, and real-time process
control, as well as for an instrumentation system and a VAX-based database and network inquiry/update system
for telephone company information.

The method is intended for use on projects of all sizes and has been used for all such projects. The
developer estimated the number of delivered systems developed with the method at more than 250, in more than

3-142

L----------

—

PROMOD

100 organizations. Languages most frequently used when coding systems developed with the method were
FORTRAN, C, Ada, Pascal, Jovial, Assembler, and COBOL.

Target Constraints

The developer stated that textual requirements in templates are provided for handling timing and spatial
constraints. Specifications templates are provided for handling special features of the target hardware
architecture and operating system, concurrency and fault-tolerance issues, and security of access.

The method assists in porting end-product systems to different target configurations with generation of
source code in Ada, C, and Pascal. The method supports code refinements with code-specific tools.

Modes of Expression (Tables 9,10)

The method provides automated support for a number of textual and iconographical modes of
representation. The use of these techniques is dependent on the analyst and designer. In addition, the developer
reported that several modes were inconsistent with the method, including Wamnier/Orr diagrams, petri-nets,
entity-relationship diagrams, flowcharts, HIPO charts, and Nassi-Shneiderman charts.

PROMOD prescribes detailed mapping rules for translating from one mode of expression to another.
Included are rules for translating from flow diagrams to module hierarchy, from process descriptions to functions
and relationships, from modules to Ada packages, or C and Pascal files, from functions to Ada procedures, and
from data types to parameters. The developer mentioned that there were other translation rules as well. Across
phases of the software process, the method facilitates transformation of the Logical Model to suggested design,
and from the Physical Model to source code.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

PROMOD requires data-structure analysis, data-flow analysis, and control-flow analysis. It strongly
encourages rapid prototyping and incremental or evolutionary development to clarify system requirements.

Other Technical Aspects

The developer reported that PROMOD assists in incorporation of changes in the requirements by
graphical representation of requirements, cross-reference lists for all components, inconsistency and
incompleteness checks, and global access to components and their relationships.

The method assists in identification of possible reusable components with consistent naming
conventions, well-defined visible parts, and protected or hidden implementations.

3.31.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

Specific directions and procedures and prescribed for assessing complexity and for configuration
management. See Table 13 for other activities supported at a more general level.

3-143

PROMOD

Communication Channels

The developer states that there are several aspects designed to facilitate communication within the
development team and between the development team and management. These are automatic, consistent
documentation produced in conjunction with rule checks, standard methods for analysis, design, and code, and
interaction with other tools such as configuration control and project management.

The method facilitates communication between the development organization and the software client
with well-defined requirements in the analysis phase, and transformation of portions of requirements to design
and then to code for "critical path rapid prototyping”. Moreover, there is automatic documentation for
conducting reviews, prepared on demand, as well as an open database structure to automatically include client
data.

Quality Assurance (Tables 12,14,15)

PROMOD provides a framework for test planning and generation of tests based on system
requriements. It assists in the early detection of inconsistencies and errors with incremental checks on small
portions of the total project, and with early visibility of the system structure. The method also provides specific
directions for recording information concerning the technical decision-making during the software development
process.

Documentation Formats (Table 16)

The majority of documents required to be produced by the method are tailorable in format and
automatically generated based on data produced from other steps in the method. For specific documents, see
Table 16.

3.31.5 EASE OF USE

Technology Insertion

The developer estimated that a development team leader, for successful use of PROMOD, would need a
bachelor’s degree, three to five years of development experience, knowledge of two programming languages, and
experience with two different software systems. Theoretical constructs which should be understood by an
experienced developer in order to successfully use the method include structured methods in general, structured
analysis as a requirements tool, modular (object-oriented) design as a specification tool, and pseudocode (PDL)
as a detailed design tool.

The developer has numerous means for training; see Table 18. It was estimated that a project manager
would need two days to acquire an understanding of the major features of the method. An experienced developer
would need five days to learn to use the method’s essentials, and two months 1~ achieve the level of expert user.

3-144

PROMOD

Automated Facilities

PROMOD provides automated support for the modes of representation (Tables 9 and 10), for assessing
complexity (Table 13), and documentation (Table 16).

3.31.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

All VA2 'VMS and PC/MS-DOS systems are appropriate for hosting PROMOD.

Acquisition Costs

There are nine products and five platforms comprising the method. Cost to a low volume user to
acquire the method and required components is $6,000, and $4,000 for a high-volume user. Technical training is
$1500 per day for high-volume users.

The licensing policy is per CPU.

Contact Information

ProMod Incorporated 714-855-3046
23685 Birtcher Drive
El Toro, California 92630 [Provider]

3.31.7 REFERENCES

[Hrus86] P. Hruschka, PROMOD - Motivation and Introduction. Laguna Hills, Califomnia:
Promod, Inc., 1986.

3-145

PROTOB

3.32 PROTOB

3.32.1 BACKGROUND

Synopsis

This method consists of using high level Petri nets, or PROT nets, to provide a conceptual graphical
model for discrete event dynamic systems such as manufacturing lines, production schedulers and controllers,
communication protocols and real-time systems. PROTOB is a visual object-oriented programming language
that is used to specify and simulate the operational behavior of the software. Automatic code generation to
different target languages is a key aspect of the method. PROTOB is available for general use.

History

PROTOB was developed by Giorgio Bruno and Marco Baldassari at Politecnico d: Torino. It is based
on the mathematical theory of Petri nets [Petr81], [Genr81], [Reis86], and was first used with respect to a
deliverable system in 1987.

3.32.2 DESCRIPTION

PROTOB prescribes specific procedures for requirements definition, system specification, design, and
implementation. It is founded upon both an object-oriented and control-oriented approach. The most effective
use of this method is dependent on the operational model of the software process. The developer states that the
design and coding steps traditionally associated with the development process can be skipped. This is because
the system allows executable tasks to be generated from the method’s model according to a given configuration,
each task implementing a portion of the model.

A number of concepts were listed as essential to the method, including information hiding, process
abstraction and abstract data-types, structured programming, genericity and inheritance.

In particular, PROTOB is a method of specification and simulation based upon Petri net formalism.
The method captures the concepts of state and of transition between states based on time and on mutual
interaction. It provides both visual and textual information in a model which can be used for simulation and
automatic code generation to a target language.

The components of the visual model include symbols connected by directed arcs. These symbols
consist of three types: places, transitions, and sub-objects. Places, shown as circles, contain typed data
structures called tokens. Text associated with each token provides name and type information of the data.
Transitions, shown as rectangles, have four textual attributes associated with them:

- Predicate: the condition to be evaluated on the contents of the tokens present in the input places.
Tokens satisfying this predicate enable the transition to "fire", or take place.

- Action: the operations to be performed on selected tokens during firing.

- Delay: a period of time to wait before delivering tokens to output places. The default is
immediate movement of tokens from input to output places upon firing.

- Priority: a non-negative integer specifying the relative importance of the transition regarding the
order of firing when more than one transition is enabled. Default priority is zero.

Sub-objects, represented as squares, provide for object-oriented decomposition of a PROT net.

3-146

PROTOB

Different languages to specify predicates and actions associated with transitions can be used in the
textual part of the model. This textual part, written in a specific programming language, together with the PROT
Net description, can be used to produce the final program for the target environment by means of a program
generator.

3.32.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The method was rated well-suited for applications involving control and concurrency, including
embedded systems or process control, time critical or real-time applications, distributed processing or networks,
and large scale simulation or modeling. Specific types of applications which have been developed and delivered
using the method are production control and scheduling, real-time systems, communication protocols, distributed
systems, and discrete event dynamic systems in general.

The estimated number of delivered systems developed with the method is between 5 and 20, distributed
among the same number of organizations. The developer reported that the method is best used on projects of
medium size. and has been used for medium-sized applications.

A PROT net consists of a graphical part accompanied by a textual part. This textual part depers upon
the target language, which may be a procedural language like Ada, C, and Pascal, a rule-based language like
OPSS, or a database language like DATATRIEVE.

There are mappings between the model's textual predicates on the one hand and actions associated
with transitions and the programming language constructs chosen for the textual specification on the other hand.
Ada. with its task construct, has a different mapping than Pascal. Using the FROT net graphical model, Pasca!
has been used to produce fast discrete event simulators. There is also 2 commonality between the Petri net
family and rule-based languages, both of which have data-driven operations. An examp!le of one rule-based
language usec¢ with PROTOB is OPSS. Pascal has been most frequently used for coding systems developed with
PROTOB.

Target Constraints

PROTOB has steps for handling both timing constraints and concurrency issue+ of the target system.
T:ming constraints can be associated with transitions in PROT nets; they can be simulated during the execution
(simulation) of the model or also emulated by calling the target operating system. The model within the method
can be executed via different tasks or on different processors.

Modes of Expression (Tables 9,10)

Programming languages are required as the textual modes of representation in the method, while Petri
nets are required iconographical modes. The method strongly encourages the use of specified documentation
templates: other forms of textual and iconographical representations are considered inconsistent with the method.

3-147

PROTOB

Techniques for Analysis and Requirements Clarification (Tables 11,12)

PROTOB requires rapid prototyping, dynamic animation, simulation, and executable specifications for
clarifying system behavior. It does not specifically require analysis or review techniques, although data-flow and
control-flow analyses, design reviews, and code walk-throughs are strongly encouraged.

Other Technical Aspects

By running the model, changes can be immediately analyzed, thus assisting in reducing the effort to
incorporate changes to the requirements. Since the system generates the code automatically, any change
performed at the specification level has direct influence on the final program. The specification model is
operational, thus felt to assist in the early detection of inconsistencies and errors.

Each object of the object-oriented model is a reusable building block. In this way the method assists in
identification of possible reusable components.

3.32.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

PROTOB does not address issues associated with project management.

Communication Channels

The developer reported that the object-oriented decomposition of the model was designed to facilitate
communication within the development team. The fact that the specification model can be executed and
animated, giving the client a chance to see the behavior of the model, is designed to enhance communication
between the client and the development organization,

Quality Assurance (Tables 12,14,15)

PROTOB does not provide directions for accomplishing these activities.

Documentation Formats (Table 16)

Both functional and behavioral specifications are required to be produced: the method prescribes a fixed
document format for each, and nrovides automated support based on user responses to computer-directed
prompts.

3.32.5 EASE OF USE

Technology Insertion

Minimum qualifications given by the developer for successful use of the method as a team leader
include a Bachelor’s degree, knowledge of 1 programming language, and software system, but no prior

3-148

-

PROTOB
development experience. Major theoretical concepts recommended for successfully using the method as an
experienced developer were Petri nets, object-oriented programming, and, optionally, compiling techniques.

Presently available training assistance includes hands-on demonstrations and overview presentations,
classroom tutorals, on-site consulting by the vendor, on-line help facilities, and user manuals.

A pro’ . 1anager could learn the major features and benefits of the method in one day. An
experienced deveioper would need seven days to learn the essentials, while expert user level could be attained
in one month.

Automated Facilities

Associated with the method are the following tools: an editor for PROT net objects, used for generating
the gr.phical representation of the model in the form of extended Petri nets and for performing consistency
checks: a PROT net simulator, which uses discrete event simulation techniques to execute the model, providing
animation at both the PROT net ohject level and at the application level; and a report generator, which extracts
decumentation for the PROT net models and the results of simulation runs.

3.32.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

A DEC VAX with VT24] terminals, or a DEC VAXstation would be appropriate for hosting the
method’s automated tools.

Acquisition Costs

Unit cost to acquire the method and required components for a single user is $15,000; for a high-volume
user, $10,000. Technical training costs $4,000, and a management overview is $2,000.

Contact Information

Giorgio Bruno (011) 556-7003
Associate Professor Telefax 39-11-5567099
Dipariimento di Automatica e Informatica

Politecnico di Torino

Corso Duca degli Abruzzi 24

10129 Torino. Italy [Developer]

3-149

3.32.7 REFERENCES

[Brun86a]

[Brun86b]

[Brung6¢]

{Baid88a])

[Bald88b]

PROTOB

G. Bruno and G. Marchetto, "Process-Translatable Petri Nets for the Rapid
Prototyping of Process Control Systems”, IEEE Transactions on Software
Engineering, Vol. SE-12, Feb. 1986, pp. 346-357.

G. Bruno, P. Spiller, and I. Tota, "AISPE: an Advanced Industrial Software
Production Environment”, Proceedings of IEEE Computer Software and Applications
Conference (COMPSAC), Chicago, Oct. 1986, pp. 94-99.

G. Bruno and A. Elia, "Operational Specification of Process Control Systems:
Execution of PROT Nets Using OPS5", Proceedings, 10th World IFIP Congress,
Dublin, Sept. 1986, pp. 35-40.

M. Baldessari and G. Bruno, "An Environment for Object-oriented Conceptual
Programming Based on PROT Nets", in Advances in Petri Nets 1988, Springer-
Verlag, 1988.

M. Baldessari, V. Berti, and G. Bruno, "Object-oriented Conceptual Programming
Based on PROT Nets", Proceedings of the International Conference on Computer
Languages '°8, Miami, FL, Oct. 1988.

PSL/PSA

3.33 PSL/PSA -- Problem Statement Language/Problem Statement Analyzer

3.33.1 BACKGROUND

Synopsis

PSL/PSA is a computer-aided, structured technique for analysis and documentation of requirements and
preparation of functional specifications for information processing systems. Through the Meta Systems toolset it
has been interfaced with multiple analysis techniques and it provides guidelines and automated support for the
development and management activities of the software process, as well as for maintenance and re-engineering.

PSL/PSA is based upon the use of a formal method of specification, the system description language
called PSL, together with the analysis tool PSA. PSA provides the ability to record the system description in a
central repository, analyze the objects and relationships, evaluate and modify the systems definition, and produce
ad-hoc and predefined reports. It allows method-independent systems design and integration of the analysts
work.

History

PSL/PSA was developed by the Information System Design and Optimization System (ISDOS) project
in 1968 at the University of Michigan, directed by Dr. Daniel Teicherow. The work was assisted by an affiliated
effort by Hasan Sayani at the University of Maryland. ISDOS was separated from the University of Michigan in
1983 as a commercial venture and is now Meta-Systems. PSL/PSA is currently provided and supported by Meta
Systems and by multiple national and international distributers, including ASTEC. PSL/PSA was first used on a
deliverable system in 1973.

3.33.2 DESCRIPTION

Problem Statement Language/Problem Statement Analyzer (PSL/PSA) provides an automated approach
to systems requirements definition. The use of PSL/PSA does not depend on a particular model of the software
process and can be customized to a variety of software development methods, such as DeMarco’s Structured
Analysis.

PSL is a non-procedural language intended for representing system requirements; it provides a textual
representation of the logical system design. Founded upon entity-relationship modeling, PSL views a system in
terms of objects and relationships. Objects have properties which have property values. Relationships are the
connections or interrelations between the objects. It defines specific types of objects and relationships needed to
capture the information necessary for functional requirements and specification. It provides representations for
system input/output flow, system structure, data structure, data derivation, system size and volume, system
dynamics, system properties, and project management.

PSA provides the ability to record the description of the system in a data base, modify it incrementally,
perform analyses, and produce reports in a variety of forms. Its capabilities include analyzing the similarity of
input and output, detecting gaps in the information flow or unused data objects, showing the dynamic behavior
of the system, showing the objects, properties, and relationships from various views, and providing project
management reports.

PSL/PSA can be incorporated into an integrated environment which customizes the software
development process with the use of other methods and tools. When coupled with the Meta-Systems toolset,

3-151

PSL/PSA

PSL/PSA supports and provides guidelines for the following activities of the software development process:
requirements definition, system specification, system design, coding, documentation, and re-engineering. It also
addresses the activities associated with project management, quality assurance, and maintenance, such as: risk
analysis and complexity assessment, cost estimation, integration, and test planning and generation.

3.33.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The vendor states that PSL/PSA is well-suited for use in the areas of embedded systems/process control,
real time systems, scientific/engiieering applications, systems programming, data processing/database systems,
and large scale simulation/modeling. It has been used by more than 100 organizations in developing over 250
delivered systems, including real-time embedded systems, business systems, telephone switching systems, and
weapons systems, as well as systems for air traffic control, satellite development, simulation, and image
processing. The most frequently used languages have been Fortran, Ada, and CMS-2. It provides guidelines for
large system development and has been used in developing small, medium, and large systems.

Target Constraints

The vendor states that the method is flexible enough to address target system requirements including
timing constraints, spatial constraints, special features of the hardware architecture and the operating system,
concurrency issues, fault-tolerance, and security of access and that it supports the modeling of machine-
independent processes.

Modes of Expression (Tables 9,10)

PSL/PSA is based upon the use of the formal specification language PSL and provides automated
support for specified documentation templates, narrative overviews of modules, structured English, PDL, and
decision tables, as well as iconographical representation of finite-state diagrams, data-flow diagrams, control-
flow diagrams, flowcharts, HIPO charts, and hierarchy charts. It provides guidelines for mapping the
specification to simulation language and to PDL. The data for each phase is contained in an integrated central
repository, which allows extraction of the desired view for the desired phase of the software process.

Technigues for Analysis and Requirements Clarification (Tables 11,12)

The vendor states thai PS1/PSA is well-suited for use with incremental development and may be used
with behavior simulation and prototyping to clarify system requirements. PSL/PSA supports multiple analysis
and review techniques.

Other Technical Aspects

PSI./PSA advocates strict up-front effort in the design phase in order to reduce coding and
implementadon time. The automated analysis and reporting features are intended to reduce the time spent in
each phace.

3-152

PSL/PSA

Its automatic update capability reflects changes in requirement specifications throughout the database
and it offers an automated ability to analyze the impact of all changes made to the system. Changes are made
through the use of the Diagram Editor in Structured Arthitect, the Language Processor in PSL/PSA, and updates
to Structured Architect - Integrator. PSA provides a date and time stamp capability for tracking modifications
and produces database modification reports.

The re-engineering capabilities facilitate analysis, redesign, or documentation of an existing system, as
well as bridging to new systems. PSA reports assist in identifying possible reusable components and the query
capability allows examination of the compatibility of candidates for reuse. The ability of the central repository to
support an object-oriented design also aids in reuse of portions of a design.

3.33.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The method provides guidelines and automated support for activities involving risk assessment and cost
estimation, project planning and scheduling, and configuration management. PSL/PSA maintains project
information in the database. This involves identification of people involved and their responsibilities and
schedules. Project management information is provided in the form of reports or ad hoc queries.

Communication Channels

Communication within the development team, between management and the development team, and
between the client and the development organization is facilitated through the flexible reporting mechanism,
which presents selected information for each given management level or communications situation. Graphic
reports supplemented by text are designed to facilitate communication with the client. In addition to allowing
the customer to specify the desired documentation content, the method’s reporting system allows the use of
graphic, matrix, list, and textual formats.

Quality Assurance (Tables 12,14,15)

PSL/PSA provides a framework and automated support for test planning and generation. The method
assists in the early detection of inconsistencies and/or errors by allowing users to define model rules and then
preventing users from breaking the model rules. It also provides for the use of ad hoc on-line queries to check
for inconsistencies and errors.

The method has capabilities for tracking modifications and integrating the work of different analysts. It
provides an integrated model which supports multiple phase cross-checking to ensure that consistency is
maintained when changes are made to specifications, design, or code. The Problem Statement Analyzer
concentrates initially on errors of comission, or inconsistencies, while it detects errors of omi-sion at later
checkpoints [Saya85].

The method provides specific directions for recording information concemning any trade-off studies,
rationales, personnel, and changes related to specification/design decisions and maintains an automated record of
options considered. Reports, analyses, and the query language may be used to confirm that the procedures of the
method have been correctly completed.

3-153

PSL/PSA

Documentation Formats (Table 16)

PSL/PSA provides documentation templates which are tailorable and generated automatically based on
data produced from other steps in the development process. These include requirements definition, functional,
behavioral and architectural specifications, interface specifications, system structure charts, internal program
documentation, test plans, and a change log, and other documents as required by Mil-Std 2167A.

3.33.5 EASE OF USE

Technology Insertion

In the vendor’s opinion, the minimum qualifications needed by a development team leader for
successful use of the method include a bachelor’s degree, 1-2 years of development experience, a working
knowledge of one programming language, and previous experience with at least one software system. An
experienced developer should have an understanding of entity- relationship modeling and abstraction to use the
method. A full range of training is available, including classroom and on-iine tutorials, on-site consulting, on-
line help, "hot line" service, and a users’ support group.

It is estimated that a project manager would be able to acquire an understanding of the major features
and benefits of the method in one day, and an experienced developer could learn the essentials of the method in
ten days, while it would take three months for an experienced developer to achieve the level of expert user of the
method.

Automated Facilities

The respondent states that PSL/PSA, coupled with the optional tooiset, provides a framework for
customizing the software development process with the use of other methods and tools and can be incorporated
into an integrated environmeant.

PSL/PSA may be combined with Meta Systems front-end tools, such as Structured Architect, to create
dataflow diagrams, data dictionary entries, and process specifications which can then be translated to PSL.
Structured Architect supports structured analysis, functional decomposition, requirements allocation and
tracking. The work of different analysts is integrated with the Structured Architect - Integrator, which may be
used to automatically generate a PSL/PSA database and provides support io the database administrator.
QuickSpec provides user-friendly input and editing of information in the central repository.

Meta Systems back-end tools extend the capabilities to other development activities. Report
Specification Interface customizes documentation, bridges to other tools, code, and PDL generation. The View

Integration System performs data modeling and database design.

For additional details concemning automated support, refer to Tables 9, 10, 13, 14, 15, and 16.

3.33.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

PSL/PSA can be hosted on IBM mainframes under VM/CMS or MVS/TSO, or on Digital VAX/VMS.

3-154

PSL/PSA

Acquisition Costs
The vendor estimates the unit cost to ac;uire the method and required compounents to be between $3,500

and 55,000. The unit cost for other recommended components supplied by the vendor are between $12,000 and
16,000. The unit cost for technical training or a management overview is $1,500/day.

Contact Information

Meta Systems, Ltd. (313) 663-6027
315 E. Eisenhower, Suite 200
Ann Arbor, Michegan 48108 [Provider]

3.33.7 REFERENCES

[Saya85] Hasan Sayani, "PSL/PSA: New Generation Real-Time Extensions", Oct. 1985, pp.
223-246. (presented at National Conference and Workshop on Methodologies and
Tools for Real-Time Systems, Washington, D.C.,Oct. 28-Nov. 1, 1985).

[Teic77] D. Teichroew and E. A. Hershey, III, "PSL/PSA: A Computer-Aided Technique for

Structured Documentation and Analysis of Information Processing Systems", IEEE
Transactions on Software Engineering, Vol. 3, No. 1, Jan. 1977, pp. 41-48,

3-155

3.34 RM -- Refinement Method

3.34.1 BACKGROUND

Synopsis

This method addresses the activities of design, coding, prototyping, and documentation. It is intended
to provide ways by which the design may be gradually completed following a top-down approach while at the
same time following the principles of object-oriented programming and information hiding. It results in
programs which are structured as a hierarchy of layers. The method is in the public domain and available for
general use.

History

RM is based on ideas found in stepwise refinement and object-oriented design. It was developed by
Vaclav Rajlich who has published several articles on the method. The method was first used with respect to a
deliverable system in 1986. Since this time several organizations have used close derivatives of RM to develop
large systems.

3.342 DESCRIPTION

Refinement Method (RM) specifically addresses system design and implementation activities. It is
founded upon the functional decomposition approach. The developer states that the concepts of stepwise
refinement and module coupling/cohesion are essential to the method, which also is reported to incorporate
object-oriented programming. RM is well-suited for use within the context of the incremental software process
model; however, the most effective use of RM is not dependent upon any one process model. The steps of
design and coding are merged into one step of "development”. RM uses Ada as both program design language

and programming language.

During the development, the program may be thought of as consisting of two parts: the existing part
and the intended part. The development progresses as additions are made to the existing part and deletions made
to the intended part. All undefined entities used in the existing part, but which are not yet defined, constitute the
"backlog interface”. Development is a series of repeating steps to define all entities and thereby remove them
from the backlog interface, at which time the development is finished. The resulting program is structured into a
hierarchy of layers.

The method also specifies how to test an incomplete system through prototyping of missing parts.

3.34.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer considered RM well-suited for applications involving embedded systems or process
control, scientific or engineering processing, systems programming, and large scale simulation or modeling. An
example of a an application developed with the method is VIC/VIFDR, environments oriented towards software
maintenance.

3-156

Less than five delivered systems have been developed using the method. However, several derivative
and very closely related methods have come into use over the last three years, which this estimate does not take
into account. Tlese derivative methods were used in large projects; RM is intended for use in large projects but
has been actually used in medium-sized projects. The number of organizations that have used the method is less
than five, and the most frequently-used implementation languages used to code systems developed with the
method are Ada, C, and Pascal-VS.

Target Constraints

The developer stated that the method -.rescribes steps for handling concurrency issues; specific
information was not provided.

Concerning portability issues, the lc vest layers of software are configuration dependent. Porting means
revision or rewriting of these layers. Hence, the size of the porting effort is always obvious.

Modes of Expression (Tables 9,10)

A number of textual and iconographical modes of representation are compatible with the method, which
encourages use of hierarchy charts. No specific modes are required.

The method prescribes rules for mapping backlog interfaces or data-flow diagrams into the skeletons of
modules, thus assisting in translating from one mode of expression to another. Across phases of the software
process, the method guarantees consistency of specification and design with the code since specification and
design are represented by certain layers of the code. Moreover, skeletons of the code are generated from backlog
interfaces.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Rapid prototyping and incremental or evolutionary development are required for clarifying system
requirements or behavior.

Other Technical Aspects

The method assists in reducing the effort needed to incorporate changes in the requirements by
producing layered software. The changes in the requirements propagate in a top-down direction through the
layers, which reduces both the effort to make changes and the uncertainty of the changes. There are techniques in
the method which limit the propagation of the changes.

Specification, design, and code are overlapped, with certain layers being specification-oriented, and
others being design-oriented. The only dor—-ments separate from the code are backlog interfaces, and the

consistency with the code can be checked automatically.

The method’s layering principle for building software helps in identifying reusable components. The
developer states that a scan of the backlog interfaces gives a good reuse assessment of the layers.

3-157

3.34.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

Guidelines are furnished for assessing complexity, tracking project progress, allocating development
resources, and allocating personnel to tasks.

Communication Channels

Facilitation of communication within the development team is accomplished by the layering of the
resulting program architecture and the backlog interfaces. Prototyping is an integral part of the metnud, which
facilitates commuprication wit: management and with the client, wba is involved with all prototyping phases
throughout the life-cycle.

Quality Assurance (Tables 12,14,15)

Test planning is prescribed at one or more points in the method. Code walk-throughs are also required.
The method provides for continuous prototyping of the missing parts of the software. This allows an early and
continuous detection of inconsistencies.

Documentation Formats (Table 16)

The method provides fixed document formats for system structure chart, design document, and internal
program documentation. These documents are generated based on data produced from other steps in the method.

3.34.5 EASE OF USE

Technology insertion

Minimurn qualifications for a development team leader include a bachelor’s degree, no previons
dev. pment experience, working knowledge of one programming language, and experience on one software
system. These qualifications were given for successful use of the method.

Training is available in the form of hands-on demonstrations, overview presentations, classroom
tutorials, and on-site consulting by the developer. To acquire a basic understanding of the major features of the
method, a project manager would need five days. An experienced developer would require ten days to leamn to
use the method’s essentials, and three months to achieve expert user level.

Automated Facilities

Not applicable.

3-158

3.34.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Not applicable.

Acquisition Costs

A management overview costs $5,000. Technical training for single and low-volume users is $10,000,
and $15,000 for high-volume users. The method is in the public domain.

Contact Information

Vaclav Rajlich 313-577-2477
Department of Computer Science

Wayne State University

Detroit, Michigan 48202 (Developer]

3.347 REFERENCES

[Rajl82a] V. Rajlich, "Stepwise Refinement Revisited”, Journal of Systems and Software,
March 1985, pp. 80-88.

[Raji85b] V. Rajlich, "Paradigms for Design and Implementation in Ada”, Communications of
the ACM, Vol. 28, No. 7, July 1985, pp. 718-727.

[Rajl87] V. Rajlich, "Refinement Methodology for Ada", IEEE Transactions on Software
Engineering, Vol. SE-13, No. 4, April 1987, pp. 472-478.

3-159

3.35 SADT -- Structured Analysis and Design Technique

3.35.1 BACKGROUND
Synopsis

SADT takes a data-flow view for analysis and design using a distinct notational scheme combined with
an activity model. Project organizational requirements are also part of the method. The structured analysis part
of the method uses pictograms to represent the properties of a system. Diagrams of interconnections and
hierarchical arrangements of the figures comprise the system model. The design technique part of the method is
a disciplined approach to system top level design, making use of the structured analysis effort. According to the
chairman of SofTech {Ross85], the method is more effective addressing issues occurring in early and late stages
of the system development process.

History

Hori’s "cell model” theory [Hori72] provided the box notation, which covers a small percentage of the
current method. The method has been evolving since the 1960’s with the first use in the production of a
deliverable system in 1974. It was first called a "system-blueprinting" method for documenting the architecture
of large and complex systems. In 1977 SofTech laid proprietary claim to the design technique. More recently
the SADT method has been interfaced with several other methods or techniques for detailed design and coding,
including PSL/PSA, Yourdon, Jackson Structured Design, Wamier-Orr, HIPO, Nassi-Schneiderman, and Petri
nets.

3.35.2 DESCRIPTION

Structured Analysis and Design Technique (SADT) is a systems oriented method addressing problem
analysis, requirements definition, functional specification, and top-level design. Due to its age, the method has
several extensions and variations. The primary usage of SADT has been as follows:

- Requirements, using models to unders*and present and future operations as well as for specifying
and designing operational systems involving hardware, software, and people;

- Software systems, using models to define user requirements, identify system components and
interfaces, and develop a top-level design;

- Project management, using models to make task assignments, define procedures, and analyze
communications;

- Simulations, using models tc analyze performance and man-machine interactions;

- Test planning and integration.

The model that is used to develop the requirements and top-level design becomes the basis of the documentation.

The overall approach is data-flow oriented and uses functional decomposition, as well as the
programming practices of stepwise refinement, process abstraction, and abstract data types. The hierarchical
structure allows one to change levels of detail when necessary.

The method’s first pant, structured analysis, makes use of box and arrow diagrams to depict system
components. Included in the use of the diagrams are rules to manage complexity. The use of the diagrams is
somewhat similar to the use of mathematical notation, as a representation of some object or system whose

SADT

properties are based upon underlying assumptions. A collection of diagrams is called a model, and may be
suitable for describing systems including or excluding any software subsystems.

The design technique part of the method makes use of the previous analysis part to develop
specifications. One component of this is accomplished by a formal requirements language. SADT primarily
addresses top-level system design. Ross has indicated that SADT is more effective in early and late stages of
design but not as effective in detailed design of software systems. The same paper cites several applications of
SADT which do not specifically involve software.

3.35.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The method emphasizes system development rather than software development. Areas where the
method is well suited include:

- Embedded systems or process control;

- Scientific or engineering applications;

- Expert systems or artificial intelligence;

- Systems programming;

- Large scale simulation or modeling;

- Distributed processing or network applications.

The method is best suited for medium to large projects but it has been used by 51 to 100 organizations
in developing between 100 to 250 projects of all sizes. Specific applications have included telephone switching
systems, corporate accounting systems, and aerospace manufacturing systems. The most frequently used
languages have been Ada, Fortran, C, Jovial, and CMS-II.

Target Constraints

The vendor states that SADT addresses target constraints related to timing, space, concurrency, fauit-
tolerance, security of access, as well as specific features of the hardware architecture and operating system. It
provides a graphical representation of these constraints, but does not contain specific syntax items for each. The
method assists in porting end-product systems to different target configurations through the separation of
functional analysis modeling from specific design models targeted to different configurations, as well as through
the use of "plug-compatible” alternative decompositions for design elements.

Modes of Expression (Tables 9,10)

The aim of the method is to document all salient aspects of a system in a clear and concise way. SADT
uses data and activity models to represent a system. There are two graphic forms, a design tree and a system
model, where the system model is comprised of one or more activity charts. The box and arrow diagrams of
SADT are used in the early and middle periods of design. They show both data-flow and control-flow in the
same diagram. They are supplemented with hierarchical representations, narrative overviews and a formal
specification language. Rules are prescribed for the mapping between the data-flow for the application and the
support system interfaces. These rules involve a special notation for "inter-model ties".

3-161

SADT

Techniques for Analysis and Requirements Clarification (Tables 11,12)

SADT encourages the use of rapid prototyping, incremental development, simulation, dynamic
animation, and executable specifications to clarify system requirements and requires the use of data-flow
analysis, control-flow analysis, and design reviews.

Other Technical Aspects

The method assists in reducing the effort needed to fully incorporate changes in the requirements by
isolating aspects, bounding the context, and providing top-down decomposition levels. Also, the concise
graphics form displays the scope of the requirements.

It assists in ensuring that consistency is maintained among specification, design or code when changes
are made to any of these through the required formal reader/author review cycle and the special notation for
"mechanism” and "inter-model ties".

The vendor states that using "plug-compatible” modularity and "mechanism notation" reduces the effort
required to reuse components. The packaging of reusable elements into sub-models, with rigorous interface
modeling, assists in identifying possible reusable components.

3.35.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

SADT supports risk management and other project management activities, however it does not include
details of how to perform them. Specific directions and procedures for project planning are prescribed, and the
method provides guidelines or a framework for other activities. SADT sets forth the goals for the system, makes
recommendations for allocating people and resources to different activities, and requires specific personnel roles.

Communication Channels

The method provides coordinated communication within the development team as well as between the
relevant sectors of the development organization through the definition of formal review procedures. Design
reviews and peer-review sessions make up part of this process. Top-down decomposition provides
communication at various levels of detail. Graphic diagrams define interfaces and data components more
concisely and rigorously than text.

Communication between management and the technical development team is facilitated through the use
of levels of detail and support structures in graphic form, as well as multiple viewpoints, such as management
and applications, of systems.

Communication between the client and the development organization is facilitated through the use of
levels of top-down detail for requirements analysis models and high level design, graphic chart formats, and
interface definitions to client operational environments. Moreover, there are special project models for
management/client controls that are part of the proposal and project plan.

3-162

2 & N G @G UE G S am =

SADT

Quality Assurance (Tables 12,14,15)

SADT supports quality assurance activities, however it does not include details of how to perform them.
It provides general guidelines for test planning and generation based on system requirements. It automatically
generates material suitable for inclusion in the quality assurance or test plan from the data produced in other
steps in the development process.

In order to ensure and assess conformity to specification, the method provides data-flow analysis,
control-flow analysis and a formal specification language. It assists in ensuring that consistency is maintained
among specification, design or code when changes are made to any of these by employing a special notation for
"mechanism” and "inter-model ties”. Reader/author peer reviews and formal design reviews also support the
same efforts.

The method provides guidelines for configuration management. It gives specific directions for
maintaining a traceable record of technical decision-making that include the specification/design options
considered, trade-offs studied, rationale for any decisions, personnel involved, and other related changes.

Documentation Formats (Table 16)

Use of the method provides information in textual and graphical form suitable for inclusion in
deliverable and internal project documentation. This information is automatically generated during the
development process specified by the method.

3.35.5 EASE OF USE

Technology Insertion

Overview presentations, classroom tutorials and user manuals are available, as well as on-site
consulting by the vendor and independent consultants. Third party publications describing the method are also
available.

Project managers would be expected to take one day to acquire an understanding of the major features
and benefits of the method, while it would take five days for an experienced developer to leam the basics of the
method. It takes about two months to achieve the level of an expert.

To be able to use the method, a development team leader needs less than two years of college-level
technical education, three to five years of development experience, a knowledge of one programming language,
and experience with one different software system, as well as the ability to synthesize and be comfortable at
various levels of detail.

Automated Facilities

The techniques required by SADT are incorperated in automated tools which support activities beyond the
method alone. Tools such as DAFNE, IDEFine and SPECIF are used throughout the method. The graphics
tools support the diagramatic aspects of the method.

3-163

SADT

The following CASE tools support modeling:

Product Vendor Hardware
Excellerator/DAFNE Italsiel IBM PC/AT
Design/IDEF Meta Software Apple

IDEFine-0 “Wizdom Systems IBM PC/AT
COINS Eclectic Solutions IBM PC/AT
SPECIF Thomson/CSF VAX and Apollo
AutolDEFO0 USAF (WPAFB) Cyber
IDEF/Leverage Dacom IBM 43xx and VAX

For more information concemning the activities supported by automated tools, refer to tables 10 and 16.

3.35.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

The hardware/software configuration required is dependent upon the automated tools selected. The
tools run on the hardware specified in the chart included in the discussion of automated facilities above. These
include the IBM PC/AT, Apple, VAX, Apollo, Cyber, and IBM 43xx.

Acquisition Costs

Consulting rates range between $5,000 to $10,000 for single and low-volume users; for more than 15
users, the cost for the course and tools is $15,000. Unit costs for other recommended components supplied by
the method vendor range between $6,000 to $12,000 per user for single and low-volume users, and between
$4,000 to $8,000 per user for high-volume users. Unit cost for technical training is $1,200 per user for a
minimum of six users, and $1,000 per user for more. A management overview costs $1,000.

SofTech has copyrighted the training materials. Licensing of the tools is based upon the policy of the
vendor of the tool(s) selected.

Contact Information
Clarence Feldman 617-890-6900
SofTech Inc.
460 Totten Pond Road
Waltham, MA 02254 [Vendor representative]

Information regarding the various customer support tools and their vendors is available upon request
from SofTech.

3-164

3.35.7 REFERENCES

[Hori72)

[Ross85a}

(Ross85b]

S. Hori, CAM-I Long Range Planning Final Report for 1972, Chicago: Illinois
Institute of Technology Research Institute, 1972.

D. T. Ross, "Applications and Extensions of SADT", IEEE Computer, Vol. 18, No. 4,
April 1985, pp. 25-34.

D. T. Ross, "Douglas Ross Talks About Structured Analysis", IEEE Computer, Vol.
18, No. 7, July 1985, pp. 80-38.

3-165

p——

3.36 SCR -- Software Cost Reduction

3.36.1 BACKGROUND
Synopsis

The SCR method has been chiefly associated with the concepts of information hiding and
modularization by separation of concerns. The requirements document is divided into relatively independent
parts in order to localize changes. Similarly, in system design, likely changes are encapsulated in one module or
a small number of related modules to enhance ease of change.

The method is a product of a research effort in software engineering and is not for sale; however, basic
tenets of the method are described in an extensive bibliography from the Naval Research Laboratory as well as in
professional journals.

History

SCR has been developed over the past decade at the Naval Research Laboratory by a group of people
including David L. Parnas, Paul C. Clements, Kathryn H. Britton, Stuart R. Faulk, and Bruce G. Labaw. The
Naval Research Laboratory developed the procedures and documents of this method in connection with the
redesign of the onboard software for the Navy's A-7E aircraft. Thus, the method is also called the NRL
Software Engineering Methodology.

3.36.2 DESCRIPTION

SCR, Software Cost Reduction, is a method based upon the principles of information hiding and
separation of concems. The first principle is explained in [Clem84]: "Information-hiding [Parn72] is a method
of designing software to minimize the impact (and hence, the cost) of making software changes. The method
involves dividing the software into modules according to likely changes; each module is responsible for
encapsulating or 'hiding’ the effects of a change from the rest of the system. The key is to design the interface of
each module so that ‘t consists only of information about that particular module that is not likely to change. In
that way, when changes that affect a module are required, only the implementation of that module is likely to
require a change. The interface and all other modules that use the interface are not likely to change at all.”

Separation of concerns is the principle whereby the design information is divided into distinct and
relatively independent documents. Modularization by separation of concerns is tied to the concept of
information hiding by requiring that when concems are separated from each other, then the details about them be
encapsulated in different modules, and thereby "hidden" [Hest81].

SCR provides a framework and model documents for most of the activities involved in software
development, with the exception of risk or cost assessment. SCR was considered well-suited for use within the
context of several software process paradigms, including the Waterfall model, Boehm’s spiral model, rapid
prototyping, and the incremental model. Essential to the method are the concepts of stepwise refinement,
information hiding (as above), process abstraction, abstract data-types, and structured programming.

The products of the method’s preliminary design phases are a set of documents which include:

- Requirements specification;
- Module decomposition;

3-166

- Module dependency;
- Process structure;

- Resource allocation;
- Module interface;

- Module design;

- Test plan.

The use of the method at NRL includes specific procedures that have been instituted to extend the
method.
3.36.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The developer rated the method well-suited for use on embedded systems or process control, time-
critical or real-time applications, systems programming, and distributed processing or networks. Delivered
systems in the area of embedded real-time avionics have been developed using the method; more specific
information on numbers of systems developed with SCR or organizations having used the method was not
supplied. The method is intended for use on projects of all sizes and has been used on small- and medium-sized
projects. SCR is language independent.

Target Constraints

As for requirements of the target system, the SCR method does not prescribe specific steps for
addressing such requirements so much as providing a template for documentation and an example to serve as a
model. In particular, all timing requirements are defined in a specific chapter of the requirements document.
The requirements are given in terms of mathematical functions for the system outputs. Functions may be
periodic or demand. A timing constraint is associated with each function in terms of its period or deadline in
real-time. Special features of the target hardware architecture and target operating system are given as part of the
description of system inputs and outputs, since that is the part relevant to the software. Typically, this identifies
all the essential characteristics such as timing, representation, and the instruction sequences for accessing
particular devices.

Regarding concurrency issues, the specification is non-algorithmic by design. It does not specify an
order among actions except where one is explicitly required and hence preserves the maximum concurrency.
Fault tolerance issues are treated like any other system requirements. They must be expressed as constraints on
the system outputs.

In general, the method is target and language independent. It can be tailored to specific features of the
target architecture, operating system, and implementation language. The system is developed as a hierarchy of
abstract machines. The abstract machine at a given level hides the target configuration. By re-developing the
implementation of that abstract machine, e.g., a compiler, the system can be ported to a new configuration.

Modes of Expression (Tables 9,10)

Required textual modes of representation include formal specification languages, mathematical
notation, and structured documentation. Narrative overviews of modules is considered to be inconsistent with
the method. The method strongly encourages the use of finite-state diagrams, functions, and state tables to

3-167

SCR

convey the representation iconographically. Although the modes of expression differ between documents,
mappings by reference are given explicitly for tracing between documents. Across development phases, the
method is seen as facilitating transformation by separating concems. This allows the products of one phase to be
broken into relatively independent parts which may then be assigned to an individual or team. It also helps by
providing templates for the documentation produced for each stage as well as explicit, complete, and formal
specifications to be used by the next phase.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

Both rapid prototyping and incremental or evolutionary development are strongly encouraged as means
for clarifying system requirements. Design reviews are required and formal proof techniques are also strongly
encouraged.

Other Technical Aspects

The method reduces the effort needed for requirements changes through systematic application of the
principle of separation of concerns. First, the requisements document itself is divided into a set of relatively
independent parts and written as formally as possible. Thus, changes to the requirements usually affect a small
number of easily-identified parts of the requirements document. Changes can often be made by changing a few
table entries.

Information hiding is applied in the system design specifically to enhance ease of change. The system
modules encapsulate parts of the design that are likely to change so most changes result in changes to one
module, or a small number of related modules.

The approach used by SCR helps ensure consistency first by not overspecifying the design at any stage.
Thus, the requirements state only what the system must do and say nothing about its design. The module
specifications give only the externally observable behavior and do not specify how the algorithms will be coded.
The result is that most changes, e.g., choosing a different algorithm to implement a module, do not require a
change to other parts of the specification and thus do not affect the consistency.

Where a change to one level of the design affects another, the changes are traced through sections of the
documentation, giving the mappings between documents produced at each phase. Design/code reviews ensure
that changes are correctly incorporated and the corresponding documentation updated.

In terms of assistance in identifying reusable components, the method develops the system as a member
of a family of systems. The "uses” relation among system components is explicitly defined. The system
modules are independent and embody such components as types, i.e., objects, and hence form the basis for reuse.
3.36.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

SCR requires that the activities of project planning, scheduling or manpower loading, allocation of
personnel and development resources, and configuration management be addressed, but does not provide
directions for accomplishing such. Other project management activities are not addressed.

The NRL uses UNIX RCS for configuration management.

3-168

SCR

Communication Channels

One of SCR’s goals is to reduce the amount of communication required among members of the
development team. This idea follows F. Brooks’ assertion [Broo75] that adding personnel to a late software
project will make it later, because each new member of the team must communicate with all the others. A
primary goal of the information hiding/formal specification approach used in SCR is to reduce the
communication required by breaking the software into relatively independent parts. Programmers design and
code entirely from the formal specifications of the module interfaces and need not otherwise communicate with
one another; everything a programmer needs to know or is allowed to know is defined on the module interface.
These and the other system specifications are designed to facilitate communication between developers. In
particular, the system Module Guide gives the overall structure of the system; the formal specification for each
system module defines the required behavior.

The SCR approach is sometimes described as "design through documentation”. The set of documents
produced is designed to record all significant design decisions throughout the life-cycle. As such, one can
determine from the completeness of the various documents how the development stands at a given time, thus
facilitating communication between the development team and management.

Involvement of the software client occurs primarily during the development of the requirements
document, which is designed to incorporate all system requirements in an implementation-independent
specification of the required system. This document serves as the basis for defining what the client wants; it is
what he reviews and approves. After that, he need not be involved in the process except where changes must be
made; the requirements document also specifies which changes will be easy to make.

Thus, the requirements document serves as a vehicle for communication, can be used as the basis for
contracting and testing, and is the arbiter for disputes. The method is consistent with but does not require rapid
prototyping of the user interface.

Quality Assurance (Tables 12,14,15)

The method provides guidelines for test generation, unit/integration testing, generation of test data, and
prescriptive checking of interfaces. Test planning and field or acceptance testing is required but no specific
directions are provided for accomplishing such.

Maintaining a traceable record of technical decision-making during the software development process is
required and the method provides a model document for such.

Documentation Formats (Table 16)

The majority of documents required by the method are tailorable in format, including a module guide.
For specific documents, see Table 16.

3-169

SCR

3.36.5 EASE OF USE

Technology Insertion

The developer provided estimates of minimum qualifications needed by a development team leader for
successful use of the method: a bachelor’s or advanced degree, three to five years of development experience,
knowledge of two or more programming languages, and experience on two or more different software systems.
A master’s level education in Computer Science or related field was considered best, as well as an understanding
of finite state machines, formal languages, formal specifications, and relations and functions.

Means for training an organization in the use of the method include hands-on demonstrations, overview
presentations, classroom tutorials, video tapes, user manuals, related publications from third-parties, periodic
technical updates, model documentation, and technical papers.

Three to five days would be required for a project manager to acquire an understanding of the major
features of SCR, and ten days for an experienced developer to learn to use the method’s essentials. Such a
developer would need three to six months to achieve expert user level.

Automated Facilities

NRL used UNIX with RCS for CM; in general, automated facilities are not applicable.

3.36.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Not applicable.

Acquisition Costs

Not applicable.

Contact Information

U. S. Naval Research Laboratory 202-767-3212
Information Technology Division, Code 5575
Washington, DC 20375 [provider]

3.36.7 REFERENCES

[Clem84) P. C. Clements, R. A. Parker, D. L. Parnas, J. E. Shore, and K. H. Britton, "A
Standard Organization for Specifying Abstract Interfaces", Naval Research
Laboratory, Washington, DC, June 14, 1984,

(Hest81] Hester, D. L. Parnas, and D. F. Utter, "Using Documentation as a Software Design
Medium", Bell System Technical Journal, Vol. 60, No. 8, Oct. 1981.

3-170

SCR

(Pam72] D. Parnas, "On the Criteria to be Used in Decomposing Systems into Modules”,
Communications of the ACM, Vol. 15, Dec. 1972.

(Pam78] D. Pamas, "Designing Software for Ease of Extension and Contraction”, Proceedings
of the 3rd Enternational Conference on Software Engineering, The Computer Society
Press, May 1978, pp. 184-195.

[Pamn85] D. L. Pamnas, P. C. Clements, and D. M. Weiss, "The Modular Structure of Complex
Systems"”, IEEE Transactions on Software Engineering, Vol. SE-11, No. 3, March
1985.

An extensive bibliography on SCR and the A-7E program is available from the NRL.

3171

3.37 SD -- Structured Design

3.37.1 BACKGROUND

Synopsis

Structured Design provides techniques to address the activities of preliminary design and detailed
design. It is used to define the architectural ("structural") design of the system being developed - the individual
program units and their interconnections, by using structure charts and data flow diagrams. It provides
techniques for deriving altemate modular struccures and evaluating alternative decompositions.

History

The term "structured design” was introduced by IBM in [Stev74]. Prior to that, the various concepts
were referred to as modular design, logical design, composite design, or the design of program structure
[Pete81]. Stevens, Myers, and Constantine described the concepts and techniques of structured design, including
structure charts, based on Constantine’s research over the previous ten years [Stev74]. G. Myers provided an
amplification of the underlying theory and examples [Myer78]). Based on DeMarco’s work, the use of data flow
diagrams was combined with structure charts.

Structured design was first used on a deliverable system in the early 1960’s. Its use has been actively
promoted by Yourdon, Inc. (now part of DeVry). SD provides the basis for many other methods. (See also
ESA/ESD, Ward/Mellor, SADT, Stradis.)

3.37.2 DESCRIPTION

The techniques of Structured Design (SD) are used during the transition from user requirements to
architectural design: the description resulting from structured analysis is refined to become the preliminary and
detailed designs of functional modules. Structured design provides techniques to reduce the complexity of
programs by dividing them into hierarchies of called functional modules. Data flow diagrams are used in
conjunction with structure charts.

Structured design as presented by Yourdon and Constantine [Your86], [Your79] consists of:

- Documentation techniques - graphic and descriptive representations, including data flow diagrams
and structure charts;

- Evaluation criteria and beuristics - guidelines for assessing a proposed structure, including the
concepts of "coupling”, "cohesion”, "span of control”, "scope of effect/scope of control” and
“packaging”;

- Design strategies - techniques for viewing the design requirements, including top-down design,
transform-centered design, transaction analysis, and modular design [Pam72];

- Implementation strategies - plans for the sequence of coding and implementation.

Structured design starts with a system specification, generally in the form of data flow diagrams from
structured analysis. From these diagrams, which show the inherent data flows and transformations, the natural
aggregates are identified and structure charts are derived. The structure charts are defined, evaluated, and
redefined iteratively, based on the "coupling” between and the functional "cohesion" within modules. There are
three issues analyzed as coupling: interface complexity, type of connection, and type of communication. There

3-172

"I e S G B G G BN DE BE mm Y mE aE G ge

Sb
are seven categories of cohesion analyzed. Finally, the system specification is ie-examined and the process is
selectively repeated.

While the method is founded upon functional decomposition, the data flow orientation differs from that
of classical functional decomposition, where tree-like hierarchical structures are created based on top-down
design. SD tends to retain the logical shape of the system, useful in identifying and organizing the physical
design.

3.37.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The method is best-suited for use in systems programming and business applications and is appropriate
for other applications. It has been used in over 100 organizations for developing more than 250 delivered
systems, including on-line and batch business applications and process control systems. The most frequently
used languages have been COBOL, FORTRAN, PL/I, APL, Assembler, and Basic.

Target Constraints

The data flow orientation does not provide representation for the passage of time. The respondent
stated that this simplifies the definition and user’s review of transformations, input, and output. Other methods
have built upon Structured Design and have added techniques to model timing concerns and other target
constraints.

Modes of Expression (Tables 9,10)

Structured Design uses the structure chart, HIPO (Hierarchy, plus Input, Process, Output) charts, and
narrative representations. The use of the data flow diagram was added, either provided as input to the structured
design from previous structured analysis, or used within structured design, as a basis for deriving structure charts
or to show additional levels of detail for the program modules being designed.

Alternate notations have been used by proponents of the various forms of structured design. These
amount to different pictographs or icons representing the same objects or processes. For the most part, objects,
structure and behavior are represented iconographically, instead of textually.

Structure charts are used to specify the modular characteristics of the software being designed with
additional notation showing control flow. The IBM notation is consistent with the HIPO (Hierarchy, plus Input,
Process, OQutput) technique. Yourdon and Constantine add notation including representation for macros,
modules containing only data, operating system interface, looping, decisions, and automatic, asynchronous, or
concurrent transfers of control. Their version also distinguishes between normal data and control indicators.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

The respondent stated that the method requires data structure analysis and control flow analysis while
encouraging data flow analysis. Structured design requires that the requirements specification be completed
prior to its use; then it provides a set o« rules to transform specifications into an architectural design.

3-173

Other Technical Aspects

SD is based upon the concepts of stepwise refinement, information hiding, and module
coupling/cohesion. Its intent is to simplify the problem, reduce program complexity, and define interfaces in a
manner that makes it easier to change. Functional decomposition is intended to isolate changes to small,
independent modules. It is stated that the separation of input/output from logic modules reduces the effort
required to port end-product systems to different target configurations. The respondent reported that the effort
necessary to adapt end-product systems to new applications is reduced due to the degree of modularity that
results from the use of this method. The method’s requirement of a single implementation for each function
assists in identifying possible reusable components.

The method’s focus on measures for binding and coupling allows comparison of various alternative

designs. The respondent stated that these criteria can be used to evaluate the designs resulting from the use of
other methods as well.

3.37.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The method provides specific directions and procedures for assessing complexity. The available
evaluation checklists are designed to aid in managing and controlling the project.

Communication Channels

Data flow diagrams provide a representation which more closely resembles natural human values
(Stev82]. The use of data flow diagrams and structure charts provides documentation for further development
and maintenance activities. Definition of interfaces provides for communication between developers working on
the separate modules of the system; developers need to communicate only when the interface changes.
Management can monitor progress on the project by monitoring progress on individual modules.

Quality Assurance (Tables 12,14,15)

Structured Design is intended to reduce the original errors, simplify testing, and ensure the consistency
of specification, design, and code by reducing complexity, defining interfaces, and using self-contained modules.
It provides for data flow and control-flow analysis of dependencies. Formal definition of interfaces between
modules is designed to cause the early detection of inconsistencies and/or errors. Evaluation checklists in
{Stev81] are provided to confirm that the procedures have been correctly completed.

Documentation Formats (Table 16)

Structured Design provides a fixed representation for the architectural specification, the interface
specification, the system structure chart, and the documentation of the design.

3-174

3.37.5 EASE OF USE

Technology Insertion

Training and consulting services are widely available in the form of overview presentations,
classroom tutorials, on-site consuiting by independent consultants, users’ groups such as the Structured Methods
Forum, and many reference books, textbooks, and articles.

The respondent stated that a project manager could learn the basics of the method in two days and a
developer could leam the essentials in five days, while it would take eight months for an experienced developer
to achieve the level of expert user of the method. In order to successfully use the method, a development team
leader would require less than 2 years of college-level technical education, one or two years of development
experience, a working knowledge of one programming language, and experience with two different software
systems.

Automated Facilities

Many of the current CASE tools incorporate structured design and support activities beyond those
addressed by the method alone. The respondent stated that the method can be incorporated into an integrated
environment, and mentioned Excelerator by Intech and CASE2000 by Nastec as tools which support design call
hierarchies.

3.37.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

The hardware/software requirements depend on the CASE tool selected, if any. A typical configuration
would be a PC with 640K, a hard disk, EGA, and a mouse.

Acquisition Costs
Many companies and consuitants provide courses and assistance in implementing the techniques of

structured design with a variety of perspectives and alterations. Many reference books and articles are also
available. Acquisition costs would be dependent upon the consulting services and tools selected.

Contact Information
Wayne Stevens 203-259-2781
11 Myron Street
Fairfield, CT 06430 [Respondent]

3.37.7 REFERENCES

(Myer75] G. J. Myers, Reliable Software through Composite Design. New York:
Petrocelli/Charter, 1975.

3-175

[Stev85]

[Stev82]

[Stev8l1]

[Stev74]

[Your79]

Sb

W. P. Stevens, "Using Data Flow for Application Development”, Byte, June 1985.

W. P. Stevens, "How Data Flow Can Improve Application Development
Productivity", IBM Systems Journal, Vol. 21, No. 2, 1982, pp. 162-178. (Reprint
Order No.G321-5165).

W. P. Stevens, Using Structured Design. New York:John Wiley and Sons, 1981.

W. P. Stevens, G. J. Myers, and L. L. Constantine, "Structured Design”, IBM Systems
Joumnal, Vol. 13, No. 2, May 1974, pp. 115-139.

E. Yourdon and L. Constantine, Structured Design, New Jersey: Prentice Hall, 1979.

3-176

|

SEM

3.38 SEM -- System Engineering Methodology

3.38.1 BACKGROUND

Synopsis

The method is-a collection of techniques for developing "effective, reliable, and useful software-
oriented systems for a wide range of application domains (business, industrial, and military)" [Wall87]. The
following development aspects are addressed:

- Understanding the system requirements through structured analysis modeling methods;
- Developing complete, verifiable specifications;

- Evaluating proposed system behavior through prototyping and simulation;

- Developing architectural-level designs for software;

- Providing needed information to development personnel.

History

The origins of the method are in Structured Analysis and Design Technique (SADT), the Software Cost
Reduction (SCM) project and Systems Analysis of Integrated Networks of Tasks (SAINT). Components of the
method have been in use since 1975; the complete method was first used in 1981. The developers of this method
are Robert Wallace and John Stockenberg.

3.33.2 DESCRIPTION

The Systems Engineering Methodology (SEM) coasists of a number of methods and tools. The parts of
the software process addressed with specific procedures by the method are requirements definition, system
specification, system design and interface definition.

The system requirements are analyzed with modeling methods based upon the U. S. Air Force's
Integrated Computer-Aided Manufacturing (ICAM) Definitional Methods and structured analysis techniques.
Specifications are analyzed by applying the U. S. Naval Research Laboratory’s Software Cost Reduction (SCR)
Methods. SCR methods are also used to develop the architectural design for software. The proposed system is
evaluated through prototyping making use of the U. 8. Air Force’s Systems Analysis of Integrated Networks of
Tasks (SAINT) simulation language.

A technique known as Active Integration of Information provides a way of integrating all of the parts
cited above. It provides a framework for generating, managing, distributing and communicating information.
Guidance is provided on how individual steps are to be carried out, describing required information, information
relationships and what information is needed next.

3.38.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

The method’s developer rated SEM as being well-suited for use with applications involving embedded
systems cr process control, time-critical or real-time processing, distributed processing or networks, expert
systems or artificial intelligence, and large scale simulation or modeling. SEM was used to develop the Trident

3-177

SEM

Defensive Weapons System/Combat Subsystem and the SAM Missile Simulator. The complete method has
been used on less than five delivered systems within the same number of organizations; however, portions of the
method have been much more widely used. The method is intended for use on medium and large projects, asnd
has been used for projects of both sizes. It has been used with most high-level implementation languages as well
as with macro assembler languages.

Target Constraints

Timing and resource constraints are expressed in terms of control flow (behavior) models. Simulation
is used to analyze system timing. Simulation can address multiple processors, channels, devices, and contention;
modeling and simulation are specifically oriented towards concurrency issues. To the extent that simulation and
modeling can deal with additions and deletions of resources and functionality, the method can also address fault-
tolerance issues.

With regard to portability, the method is primarily concerned with front-end system definition. It does
insure that any system description is as independent from implementation as possible.

Modes of Expression (Tables 9,10)

Textual modes of representation required by the method are specified documentation templates,
mathematical notation, and decision tables. Required iconographical modes include data-flow diagrams, control-
flow diagrams, and entity-relationship diagrams. The method provides automated support for all these modes as
well as for other modes of representation which are strongly encouraged or compatible with the method.
Flowcharts, HIPO charts, and Nassi-Shneiderman charts were considered inconsistent with SEM.

The method prescribes mapping rules for translating from data-flow diagrams to control flow diagrams
or petri nets, and from data-flow diagrams and control flow diagrams to template based specification.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

SEM requires rapid prototyping and simulation in order to clarify system requirements or behavior.
Analysis and review techniques include data-flow analysis, control-flow analysis, decision tables, author/reader
cycle, and active reviews. Design reviews are strongly encouraged.

Other Technical Aspects

The developer stated that separation of concerns and the level of granularity insures that only one place
in the requirements needs changing for each proposed system change. The method assists in ensuring
consistency between entities of the development process by providing a common semantic base to all phases so
that traceability is built into the development process. Consequently, there is no ambiguity in tracing from high-
level requirements to specifications and design. The use of separation of concemns and information hiding assists
in developing reusable specification and design components.

3-178

SEM

3.38.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

SEM prescribes specific directions for estimating initial cost and project planning. Guidelines are
provided for accomplishing other project management activities; see Table 13.

Communication Channels

The developer stated that the intuitive nature of SADT/IDEFO, data-flow diagrams, graphical control-
flow diagrams, and incremental review procedures were all designed to facilitate and coordinate communication
within the development team. The method is designed to facilitate communication between the technical
development team and management with its project planning facilities and granularity rules that allow accurate
cost and size estimates and allow progress to be monitored. With regard to client and the development
organization, client reviews are facilitated with user-oriented high-level description techniques (data-flow,
control-flow, information modeling). These techniques can even allow the client to participate in system
definition. Also, the method provides for traceability to the final product.

Quality Assurance (Tables 12,14,15)

SEM provides a framework for conducting a number of testing activities. The method assists in early
detection of inconsistencies by using graphical language to define systems functions and behavior. There are
built-in review procedures and simulation for dynamic feedback as well. In addition, the method provides
specific directions for recording information regarding specification/design options which were considered,
trade-off studies, rationale for any decision, and personnel who were involved in making a decision.

Documentation Formats (Table 16)

The documents required to be produced by the method are fixed-format when they are automatically
generated, and tailorable in format when they are produced from user responses to computer-directed prompts.
See Table 16.

3.38.5 EASE OF USE

Technology Insertion

The developer estimated that a development team leader would need a bachelor’s degree, three to five
years of development experience, knowledge of one programming language, and experience on one software
system in order to successfully use the method.

Training is provided in overview presentations, classroom tutorials, on-site consulting by the vendor or
independent consultants, user manuals, and related publications from third-parties. Two days would be requried
for a project manager to acquire an understanding of the major features and benefits of SEM. Ten days would be

required for an experienced developer to leamn to use the essentials, and two to four months to become an expert
user.

3-179

SEM

Automated Facilities

The developer listed Design/IDEF by Meto Software as supporting most of the activities of the method,
and SAINT by Wright-Patterson AMRL to support simulation. See also Tables 9, 10, and 16.

3.38.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Appropriate host configurations are networked MacIntosh PCs. SUN/UNIX and IBM/PS
implementations are under development.

Acquisition Costs

Cost to acquire the method and required components is $5,000 for a single user, $4,000 for low-volume
users, and $3,000 for high-volume users. Technical training is $1,000 for low-volume users and $750 for high-
volume users. A management overview costs $700 except for high-volume users, in which case the cost is $300.

There is a licensing policy: a workstation license is approximately $2,000, and a site license is
approximately $10,000.

Contact Information
John E. Stockenberg 401-847-8875
30 East St.
Newport, RI 02840 [Provider]

3.38.7 REFERENCES

[Wall87] R. H. Wallace, J. E. Stockenberg, and R. N. Charette, A Unified Methodology for
Developing Systems. Intertext Publications, New York: McGraw-Hill, 1987.

3-180

SSD

3.39 SSD -- Hatley/Pirbhai - Strategies for System Development

3.39.1 BACKGROUND

Synopsis

In the Hatley/Pirbhai method, structured analysis techniques have been tailored to the development of
real-time systems. The method focuses primarily on activities of requirements definition and specification
definition. It extends the self-consistency checking of structured analysis to the system as a total entity, not only
to the software component of the system.

The method is available for general use.

History

The method was developed by Derek Hatley and Imtiaz A. Pirbhai. It is based on the concepts of
structured analysis and the theory of finite-state machines. The information hiding concept of D. Pamas has also
influenced the development of this method. The method was first used with respect to a deliverable system in
1982.

3.39.2 DESCRIPTION

The Hatley/Pirbhai Strategies for System Development, or SSD, focuses on the definition of
requirements and specification for the total system, not only the software component of the system. This goal is
attained by building two models of the system, the system requirements model and the system architecture
model. In the system requirements model, a statement of the problem is formulated which is independent of
technology. Thus, a thorough understanding of the problem can be gained without deciding on a particular
solution. In the systems architecture model, a technology-dependent solution is constructed in order to specify
how the problem is to be solved with available technology. This process of defining system requirements and
system architecture can be repeated at a lower level to model both the hardware components and the software
components of the system.

In building the system requirements model, a data flow diagram (DFD) is used to construct a process
model which provides a decomposition of the system’s functional requirements. In this model, related functions
are grouped together, unrelated functions are separated, and each function is specified non-redundantly. A data
flow diagram is non-procedural and the processes within a DFD are non-hierarchical. In this idealized DFD
model of the system, a process is assumed to operate instantaneously, triggered once sufficient data is available
to do its task.

The next step requires the construction of a control model in order to define control flow through the
system’s functions, and to define finite state behavior processing. The finite state projection provides
information on the processing of discrete signals, and how these signals trigger different modes of behavior for
the system. Data and control are kept separate by the creation of control flow diagrams which parallel the data
flow diagrams. State transition tables, decision tables, and activation tables are also used to further clarify the
requirements.

The requirements dictionary is the principal tool for ensuring a formal and rigorous approach.
Contained in the requirements dictionary is an alphabetical list of data and control flow names and a definition of

each in terms of its components and structure. The dictionary must contain every data flow name and data store
name. Group names must be decomposed into precise components, and ultimately everything must be broken

3-181

SSD

down to primitive physical entities. The dictionary may contain attributes for these primitive entities, including
units, range, Or accuracy.

The system architecture model is built based upon the requirements model. This model addresses the
following issues:

- What are the physical components of the system?

- What tasks are to be performed by each of the physical components?
- How do these physical entities communicate with each other?

- What are the communications among these physical entities?

The steps taken in creating the architecture model are: 1) to enhance the requirements model by using a
specified template; 2) to define those processes concerned with user interface, input/output, maintenance and
self-test; and 3) to allocate the requirements model to architecture modules. During each of these activities, an
evaluation of the allocation is made, and trade-offs are decided.

The system architecture model components include:

- Architecture context diagrams which are used to show the communicatior between the system and
entities in the environment in which the system exists;

- Architecture flow diagrams which map a group of data/control flows and processes from the
requirements mode! into architecture modules;

- Architecture interconnect diagrams which represent channels by which the modules communicate;

- Architecture module specifications which describe the functions of individual modules, and
establish traceability between the requirements model and the architecture model;

- Architecture interconnect specifications which establish the characteristics of the interconnect
channels between modules;

- The architecture dictionary which establishes the allocation of data and control flows from the
requirements model to the architecture model.

The Hatley/Pirbhai method emphasizes the need for a thorough understanding of the requirements of a
system, and for a specification of the system which is traceable to requirements.
3.39.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

SSD is considered suitable for use especially in applications involving embedded systems, process
control, real-time constraints, scientific or systems programming, distributed processing, and large scale
simulation or modeling. Examples of specific types of applications for which delivered systems have been
developed using the method are: avionics systems, process control, instrumentation, communications, test
equipment, computer peripherals, medical systems, and consumer electronics.

It is estimated that between 21 and 100 systems have been developed, with about 51 to 100
organizations, or divisions within large corporations, having used the method. The method is intended for use on
projects of all sizes, and has been used for projects of all sizes.

The implementation languages most frequently used when coding systems developed with this method
are FORTRAN, Jovial, Pascal, Ada, Objective C, C++, and Smalltalk.

3-182

Target Constraints

SSD prescribes steps for handling a number of target system requirements. A timing specification is
part of the method, which tabulates input-to-output timing relationships. The module specifications may contain
information on spatial constraints. Both the module and channel specifications address special features of the
target hardware architecture, and special features of the target operating system can be included as architectural
constraints. Concurrency issues are incorporated inherently in the method. Fault-tolerance issues specifically are
addressed by module and channel redundancy, and security of access considerations could be included in the
functional requirements.

Portability concerns are addressed by the method by specifying the system as configuration
independent, then mapping into any configuration through requirements/architecture transform.

Modes of Expression (Tables 9,10)

Required textual modes of representation include specified documentation templates, narrative
overviews of modules, and decision tables. Required iconographical modes include finite-state diagrams, data-
flow diagrams, and control-flow diagrams.

The method prescribes mapping rules for translating between the requirements model and the
architecture model. This is an essential part of the method. The lowest level architecture can be specified using
a PDL leading directly to code.

Techniques for Analysis and Requirements Clarification (Tables 11,12)

SSD uses incremental or evolutionary development as a means of clarifying system requirements.
Analysis techniques that are required are Gata- structure, data-flow, control-flow, and decision tables.

Other Technical Aspects

The developer reports that the method is non-redundant and captures all relationships. For these reasons
the location and impact of change is made clear, thereby assisting in the effort to incorporate changes in the
requirements. The specification and design are tightly linked through requirements and architecture models,
thereby ensuring that consistency is maintained between the two, as well as with the code. In addition, the
method contains self-consistency checks to assist in early detection of inconsistencies or errors.

3.39.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

The developer stated that SSD can aid in accomplishing activities associated with project management.

3-183

Communication Channels

Specific aspects of the method are designed to facilitate and coordinate communication between all
parties. These are a graphical presentation, a hierarchical approach which allows selection of levels of detail, and
separation of concemns: process, control, data, and architecture.

Quality Assurance (Tables 12,14,15)

SSD does not address quality assurance issues. However, design reviews, code walk-throughs, and
Change Control Board reviews are encouraged. In addition, there are a2 number of tools which have provisions
for maintaining a traceable record of technical decision-making.

Documentation Formats (Table 16)

The documentation required by the method is tailorable in format. The amount of automated support for
generating the documentation varies depending on the characteristics of the different tools supporting the
method.

3.39.5 EASE OF USE

Technology Insertion

The developer estimated that a team leader would need a minimum of 1 to 2 years development
experience and a Bachelor’s degree for successfully using the method. Because the method is not software
dependent, no knowledge of programming languages is necessary, nor is experience with different software
systems needed. However, an experienced developer should understand the theoretical constructs of finite state
machines, data flow analysis, and BNF notation in order to use the method successfully.

Training assistance is available in the form of overview presentations, classroom tutorials, consulting by
vendors and independent consultants, video tapes, and a text written by the developers. Learning time estimates
were one day for a project manager to understand the major features and benefits, 5 days for an experienced
developer to use the essentials, and 2 months for an experienced developer to become an expert user.

Automated Facilities

The developer makes a distinction between the method and the automated support associated with the
method. There are many tools which support the method and which differ in their characteristics. The following
tools and their vendors were listed which support the requirements model of SSD:

Teamwork Cadre Technologies
Casetools Meantor Graphics
Software through Pictures IDE
Power Tools Iconix
Excelerator Index Technology
Autocode Integrated Systems
Designaid Nastec
Promod Promod

3-184

SSD
VS Designer Visual Software
Adagen Mark V Systems

The developer noted that several vendors are considering adding the architecture model to their tools.

3.39.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

Automated tools supporting the method would appropriately be hosted on a VAX Station, a SUN or
Apollo Workstation, or marginally on a PC.

Acquisition Costs

The method is available publically with no licensing policy in effect. Training costs vary by consultant.

Contact Information

Derek J. Hatley 616-241-8832

Smiths Industries

4141 Eastern Ave., SE

Grand Rapids, Michigan 49518-8727 [Developer and provider]
Imtiaz A. Pirbhai 206-324-4137

Systems Methods

2026 Yale Ave., E

Seattle, Washington 98102 {Developer and provider]

3.39.7 REFERENCES

[Hau87] D. J. Hatley and 1. A. Pirbhai, Strategies for Real-Time System Specification. New
York, NY: Dorset House Publishing Co., 1987.

[Hatl85] D. J. Hatley, "A Structured Analysis Method for Real-Time Systems”, presented at
the Fall DECUS U. S. Symposium, December 1985,

3-185

STATEMATE

3.40 STATEMATE

3.40.1 BACKGROUND

Synopsis

This commercially available method is primarily based upon visual representations and languages. The
vendor states that the method is a comprehensive tool for specification, design and analysis of large, complex
systems. Specifications are dealt with by means of visual languages called the Statechart, Activity-chart, and
Module-chart languages. Along with editing, analysis and management support tools, there is a simulation
capability available for testing a design, thereby supporting rapid prototyping of the target system.

History

The method extends the state/event paradigm which involves the use of state-transition diagrams. It
also extends concepts related to data-flow analysis and finite state machines. Two principal developers are Drs.
A. Paueli and D. Harel. The method was first used with respect to a deliverable system in 1983.

3.40.2 DESCRIPTION

STATEMATE is a complete environment for specification, design and analysis of real-time systems.
The development activities addressed with specific directions by the method are requirements
definition/clarification, system specification, software quality assurance, and validation of specification or design
through simulations, executions, dynamic testing and rapid prototyping. The method is well-suited to a variety
of software process paradigms. The vendor considers STATEMATE to be compatible with a number of
approaches to software development and with a number of programming practices. The method supports the
specification and analysis of systems, including both hardware and software.

The vendor uses the term “"reactive” systems when describing suitable applications for the method. This
term refers to " ... systems whose dynamic behavior is governed by complex interactions both among subsystems
and between subsystems and their environments.” Examples of such systems are: real-time computer embedded
systems, interactive software systems, integrated circuits, and control and communication networks.

A conceptual model is used by the method to deal with notions, entities and procedures relevant to
reactive system development. Three visual languages are included in the supporting collection of software tools.
Using icons to represent these visual languages, in an interactive setting, a software developer establishes a
specification of the behavioral, functional and structural aspects of the system.

STATEMATE is said by its developer to be capable of semantic analysis of the description of a system
from the three different viewpoints outlined above. Behavioral specifications are represented with "statecharts”,
a creation of one of the developers, D. Harel. Statecharts extend the concept of finite state machines by using
AND/OR logic to support the decomposition of states, resulting in a visual representation that is said to
overcome the limitations of state-transition diagrams. Statecharts are capable of addressing issues such as:
specifying "behavior hierarchically"; concurrency - both synchronous and asynchronous; and basing the current
system behavior on its past behavior.

In addition to statecharts and the statechart language, there are two others, the activity-chart language
and the module-chart language. The activity-chart language is used to specify the functionality of the system

3-186

STATEMATE

while the module-chart language is used to specify the structure of the system. Documents and reports are
generated throughout the development process.

Analysis and simulation tools are used to check consistency, completeness and the correctness of the
specification from the viewpoint of the client. During interactive execution the user can specify the environment
and then see the dynamic behavior which results on the screen.

3.40.3 TECHNICAL ASPECTS

Applicability and Usage (Tables 4,5,6)

STATEMATE was created to handle applications involving complex, control-oriented real-time
systems. Its first use was on the Lavi mission-adaptive avionics package produced by Israeli Aircraft Industires.
Other types of applications for which delivered systems have been developed with STATEMATE include
software process modeling to improve logistics of documentation support for a large military system,
specification and design of a new version of a military aircraft as well as of a control system, specification and
validation of a communications protocol, and conceptual analysis of large distributed systems. The method was
intended for use on medium and large-sized projects, and has been used on projects of all sizes. An estimated
51-100 organizations have used STATEMATE, and between 5-20 delivered systems have been developed with
the method.

Target Constraints

STATEMATE incorporates timing constraints in the statechart language and addresses these constraints
by means of dynamic testing. Concurrency issues are addressed in the same way. Special features of the target
hardware architecture and the target operating system can be addressed by running the specification in the target
environment via the Prototyper module with its code generation capabilities. In addition, fault-tolerance issues
can be modeled and tested, and security of access can be analyzed using the model.

The method addresses portability issues by allowing the software developer to explore different
architectural configurations using module-charts.

Modes of Expression (Tables 9,10)

The method provides automated support for a variety of textual modes either strongly encouraged by or
compatible with the method. It requires three iconographical modes of representation: 1) Statecharts, an
extension of finite state machines, 2) Activity-charts, which are similar to data-flow diagrams and 3) Module-
charts, which show the physical structure of the system. All three modes are provided with automated support
by the method and associated with the method’s three languages of the same names.

Among the above three modes are mappings for translating from one mode to another. Mapping rules
are prescribed to go from control activities within the activity chart to statecharts, from activities to modules, and
from modules to activity-charts. The vendor considers that the method facilitates the transformation across
phases of the software process by supporting several conceptual levels of development with the same model, as
well as by reports, executable models and their databases, and test suites.

3-187

STATEMATE

Techniques for Analysis and Requirements Clarification (Tables 11,12)

The method strongly encourages a number of techniques to clarify system requirements. Analysis and
review techniques are also encouraged, including interactive or batch simulations, static analysis for consistency
and completeness, and dynamic analysis, e.g., reachability, deadlocks, non-determinism.

Other Technical Aspects

STATEMATE assists in the early detection of inconsistencies and/or errors by allowing a model of the
system to be created, syntactically analyzed, executed, dynamically tested, prototyped, and debugged.
Consistency is maintained at different phases of development through test scenarios and the test results which are
defined and achieved. The method also encourages the identification of units that can be treated as reusable
components.

3.40.4 PROJECT CONTROL AND COMMUNICATION

Project Management (Table 13)

Automated support is provided by the method to assess feasibility of system or application, for
configuration management, and for reliability estimation.

Communication Channels

The vendor states that the clarity and precision of the STATEMATE model facilitate communication
within the development team. Also helpful are test scenarios used during simulation and the prototype code that
can be generated directly from the database.

To facilitate communication between the technical development team and management, the
STATEMATE specification can be executed and prototyped, with proof of concepts shown in an animated
execution or prototyped form. Also, verified pieces of the system and how they fit together into the system as a
whole can be shown. In addition to the above, communication between the development organization and the
client is aided by the Prototyper module, which generates code from the STATEMATE specification, allowing
the specification to be run in the target environment for further evaluation by both parties. This can be done at
any stage of the project. The code can be linked to a soft panel, i.e., graphic representation of the user interface,
allowing users to try out the prototype as if it were the real system.

Quality Assurance (Tables 12,14,15)

The method provides procedures for conducting test planning at one or more points in the software
process, generation of tests, prescriptive checking of interfaces, and dynamic testing of the specification. These

procedures have automated support. The method also provides a specific and automated level of configuration
management.

3-188

)

STATEMATE

Documentation Formats (Table 16)

The format of almost all documents required by STATEMATE is fixed and generated based on data
produced from other steps in the method. However, the user can tailor his reports to include a combination of
text and graphics. A quality assurance/test plan document is not automated and has a tailorable format.

3.40.5 EASE OF USE

Technology Insertion

Minimum qualifications needed by a development team leader in order to successfully use the method
include a bachelor’s degree, no previous development experience, working knowledge of one programming
language, and experience with one software system. State machine knowledge is also helpful.

Training assistance includes hands-on demonstrations, overview presentations, classroom tutorials, on-
site consulting, video tapes, a "hot line" service, user manuals, a users’ support group, related publications from
third parties, and periodic technical updates. One day would be required for a project manager to acquire an
understanding of the major features of the method, and two days for an experienced developer of five or more
years' practice to learn to use the method’s essentials. Three months would be required for such a developer to
become an expert user.

Automated Facilities

The method provides automated support for a number of representation modes, generation of required
documents, testing activities, and project management activities. See Tables 9, 10, 13, 15, and 16.

3.40.6 ACQUISITION FACTORS

Hardware/Software Configuration Required

The following configurations were reported as appropriate for hosting the method:

- VAXStation/MicroVMS 4.7 or higher/UIS 3.2 or higher
- Apollo Series 3000 or 4000/Aegis 9.7/Domain 1X 9.6/GMR
- Sun-3/SunOS 3.4/NeWS 1.1

Acquisition Costs

Cost to acquire the method and required components is $10,000. Technical training is included. The
Analyzer tool is recommended and costs $25,000. Optional tools are the Prototyper at $25,000 and the
Documentor at $15,000. Volume discounts are available and vary with package. There is a licensing policy
which covers the maximum number of simultaneously active users per network. A site license is available.

3-189

STATEMATE
Contact Information
i-Logix Inc. 617-272-8090
22 Third Avenue
Burlington, MA 01803 [provider]

3.40.7 REFERENCES

[(Hare87a]

[Hare87b]

[Hare88]

D. Harel, "Statecharts: A Visual Formalism for Complex Systems", Science of
Computer Programming, 8.3, June 1987, pp. 231-274.

D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman, "On the Formal Semantics of
Statecharts”, Proceedings of the 2nd IEEE Symposium on Logic in Computer
Science, Ithaca, NY, June 22-24, 1987, published by IEEE Press, NY, 1987, pp. 54-
64.

D. Harel et al, "STATEMATE: A Working Environment for the Development of
Complex Reactive Systems"”, Proceedings of the Tenth IEEE Conference on Software
Engineering, Singapore, April 13-15, 1988, published by IEEE Press, NY, 1988, pp.
396-406.

3-190

g

st

3.41 StP -- Software through Pictures
3.41.1 BACKGROUND

This method provides an integrated graphical environment targeted to support the analysis and design
phases of software development. It allows the user to customize the environment, to be able to use a variety of
well-known methods, and to generate comprehensive template-driven documentation automatically. StP
provides complete integration of information through a multiuser data dictionary built on a relational DBMS.

Closely associated with this environment is the User Software Engineering Methodology which is
aimed at the development of interactive information systems. StP is available for general use.

History

This method was developed at Interactive Development Environments (IDE) by A. Wasserman and P.
Pircher. It supports the User Software Engineering Methodology of IDE, development of which was begun in
1975. StP was first used for a deliverable system in 1984. The method also incorporates concepts associated
with the methods of T. DeMarco, E. Yourdon, L. Constantine, C. Gane, T. Sarson, D. Hatley, I. Pirbhai, M.
Jackson, and P. Chen.

3.41.2 DESCRIPTION

Software through Pictures (StP) is an integrated environment which supports a variety of graphical tools
for analysis and design. StP addresses requirements definition, system specification, and system design. It is
founded upon data-flow and controf-oriented approaches, as well as on entity-relationship modeling. Its best use
is not linked to any particular paradigm of the software process. StP allows users to model software systems
using any of the following techniques:

- Data-flow diagrams using either Gane/Sarson or DeMarco/Yourdon symbols;

- Structure charts using the Yourdon/Constantine representation;

- Entity-relationship diagrams of Chen;

- Data structure representations of Jackson;

- Real-time representations using the method of Hatley/Pirbhai;

- User Software Engineering techniques of Wasserman for rapid prototyping of user interfaces.

Additionally, StP provides support for the software development process through the following tools:

- PICture: an object-oriented drawing tcol;

- Troll/USE: a relational database which contains the common data dictionary used by StP, but
which may also be used by the developer as a DBMS;

- Document Preparation System: an auxillary tool that supports the generation of documents from
the StP Data Dictionary to a variety of target output languages and devices;

- A collection of user-callable routines in the IDE tools library and the IDE object management
library, including typesetting support, general utility routines, and multi-user project support
which includes complete diagram locking and version control.

Finally, StP is itself based on an open architecture, and provides the user with all file formats, the

format of the data dictionary, and numerous other features. Thus, the user can extend and customize the
development environment.

3-191

Stp

An associated method developed at IDE, User Software Engineering (USE), focuses on interactive
information systems. The following goals guided its development:

- Functionality: cover the entire process of developing a system with a predefined set of
requirements;

- Reliability: support the creation of systems which do not inconvenience users by system crashes,
loss of data, or lack of availability;

- Usability: assist the developer in assuring, as early as possible, that the resulting system will be
easy to leam and easy to use;

- Evolvability: encourage documentation and system structuring so that the resulting system is
easily modifiable;

- Automated support: provide automated tools that improve both the process of software
development and the resulting system,

- Improved developer productivity: reduce the time required to create a properly functioning
system;

- Resuability: provide a method which is itself reusable for a large class of projects, and provide
design products which are themselves reusable on similar future projects.

To achieve these goals, the USE method follows an evolutionary approach in which a sequence of
prototype systems is developed by following a well-defined set of phases. The four aspects of the analysis phase
involve data modeling, activity modeling, analysis of user characteristics, and analysis of usage characteristics.
During the external design phase, the method, like many other approaches, uses data abstraction and data
modeling. But rather than using a traditional "top-down" approach to refine system functions, USE follows an
"outside in” approach in which transitio