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Summary

1. Define N to be the number of objects in a scenario. Our interest is in values as high as
10" < N < 10'. We have performed initial theoretical analysis of "gating" (selection
of candidate track-report pairs).

a. A straightforward brute force algorithm should scale as N 2 .

b. A nonhierarchical cluster algorithm used in multihypothesis tracking [1] should
scale at best as N'/ 2 and probably closer to N 2 . The scaling of this algorithm
depends primarily on the track and report data and on the scenario. Obtaining
N 3/ 2 scaling is fortuitous and is not within the control of the programmer.

c. The worst scaling part of the LCPFD near-neighbor algorithms should vary as
N log N.

2. The calculation of scores for pairings of tracks with reports is the most expensive
part of gating for the brute force and cluster algorithms. Near-neighbor algorithms
should reduce the number of score calculations considerably. This part of gating
should increase linearly with N for near-neighbor algorithms, as N 2 for brute force
and between N 3/ 2 and N 2 for the cluster algorithm.

3. The two aspects which these tests will measure are scaling of the cost with N and
accuracy of the result. For accuracy two measures of performance will be used:

a. P, =_ the number of highest-valued pairs actually found divided by the number
of highest-valued pairs which should have been found.

b. 'P2 =P_ P x the sum of scores of pairs actually found divided by the sum of scores
of pairs which should have been found.

4. To measure scaling with N, the normalized cost of each major step in the gating
process for several values of N will be fit to the functions PNO and N(a log N + P),
where a and P are constants to be evaluated, in order to determine the most likely

functional dependence. We will express cost in terms of elapsed central processor time
normalized by the time required for a given algorithm at the smallest value of N.

5. Data set size requirements differ for the measurement of scaling and accuracy. For
scaling, N must vary at least from 100 to 10,000 and perhaps up to 60,000, since the
systems of interest might contain as many as 10" to 10' objects. Data sets covering
the range of values 100 < N < 1, 000 appear to be adequate for measuring accuracy.

v



6. For measuring accuracy of the algorithms and to cover the various situations which
affect scaling of the cluster algorithm, the scenarios should cover a range of cluster
sizes. Clusters should vary from an average size of 1 up to the maximum cluster size to
be expected in a realistic situation. In addition, the data sets must include scenarios
in which reports from each sensor scan interval have approximately the same time
stamps and scenarios in which the opposite is true.
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TESTS OF GATING ALGORITHMS FOR TRACKING OF
MULTIPLE OBJECTS I. THEORY, REQUIREMENTS,

AND PERFORMANCE MEASURES
I. Introduction

The purpose of this paper is to describe measures of performance and data set require-

ments for testing algorithms which identify and select candidate associations of tracks with

sensor data. The act of finding these candidate associations is commonly called "gating"
[21, and we shall use that term. For our purposes, the sensor data come in the form of "re-
ports" on individual objects or on clusters of objects which cannot be resolved separately.
Tracking algorithms treat such clusters as single objects until their constituents can be

resolved.

Given the set of all possible pairings of an individual track with an individual report,
a gating algorithm selects a subset containing the most likely pairings. Each pair selected
must therefore have a probability of association that exceeds or equals some minimum
value or "threshold." In this way, gating reduces the number of candidate pairs that must

be considered in constructing tracks. Ultimately one hopes that this reduction will permit
near-real-time data processing and tracking of the objects being observed.

Our purpose is to test various gating algorithms intended for tracking large numbers
(10' to 10') of moving objects. The algorithms fall under three categories, discussed in
the subsections below.

1i. Brute Force

The "brute force" approach computes a likelihood (probability) or "score" for each
possible pair and selects those pairs with scores that equal or exceed the threshold. This

algorithm should find all such pairs and thus provides a baseline for determining accuracy
of the other algorithms. The cost equation is

Cbf = NTNR(C + C. + Cd) (1.1)

In Eq.(1.1), NT is the number of tracks, NR is the number of reports received during a
given time interval (sensor scan interval), C, is the cost (in central processor unit seconds

(CPU s)) of extrapolating a track state vector and covariance matrix to the time of a
report, C. is the cost of computing a likelihood or score for one track-report pair, and Cd
is the cost of comparing two data, in this case the score for a track-report pair and the
threshold score, in order to select the candidate pairs. Notice that Eq.(1.1) and similar cost

relationships in Eq.(1.3) and Table 1 are schematic rather than exhaustive. Our intent is to
reveal the underlying scaling of the various algorithms and to provide a basis for comparing

the overall costs of corresponding steps in the algorithms.

Manuscript approved March 13, 1989.



In Eq.(1.1), assuming that NT and NR are both proportional to the actual number of

objects N, Cbf scales as N 2 . Given present computer hardware, the brute force approach
is unacceptably expensive when N ;, 10 or 10'. We note that the various per item costs

might be far from equal and expect that

C, > C, > Cd ( and possibly C, > C, > Cd) , (1.2)

since C. requires many more operations than track extrapolation or simple data compari-

son. In some formulations, the score calculation could implicitly include the cost of track

extrapolation.

1.2. Nonhierarchical Cluster Algorithm [1)

This algorithm uses spatial clusters that have been identified primarily for the pur-
pose of reducing the number of different hypotheses which must be followed in a multiple

hypothesis tracking (MHT) algorithm. The approximate cost may be computed from the

steps shown in Table 1. To reduce the scaling from brute force, one first averages the tracks
within a cluster, so that the cluster itself may be treated as a "supertrack." The algorithm

calculates a score for each cluster-report pairing. The extrapolation of the cluster (super-

track) to the time of the report is implicit in the algorithm. The scores are then compared

to the minimum acceptable value or threshold. For each cluster with an acceptable score,

the algorithm then computes a score for each constituent track and again compares the

score to the threshold to find the candidate track-report pairs. In Table 1, C. is the average

cost of computing a cluster averaged "supertrack", Nc is the number of clusters, N is
the number of selected clusters (usually 1 or so), and NTC is the average number of tracks

per cluster. Notice that if each cluster contains one track, Nc = NT and the scaling of the

cost is NTNR as in the brute force approach. However, if some clusters contain more than
one track, then Nc < NT and the scaling might be better than brute force. In fact the

Appendix shows that the optimum case occurs when there are approximately Nc =--

clusters, each containing on average VW tracks, giving a cost of

Cc(min) e2(C,+C+Cd)NRVNT . (1.3)

Thus, this algorithm scales, at best, as approximately N 3 12 and at worst, as N 2 . The

scaling depends primarily on the track and report data and on the scenario. Obtaining
N"/2 scaling is fortuitous and not within the control of the programmer. As indicated at

the beginning of this subsection, clusters are important in the generation and maintenance

of hypotheses. The case of Nc VR7 and NTc - v/-7, while optimum for gating, is
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not optimum for hypothesis generation and maintenance, since the number of potential

hypotheses (or scenes) in a cluster varies as (NTc)! (factorial). In addition, if v/-./ exceeds

the maximum cluster size in a realistic situation, the optimum case for gating with this

algorithm will not occur.

Finally, this "cluster" algorithm should not be confused with other cluster algorithms

that one finds in the computational literature [3, 4]. The latter are hierarchical and scale

as N log N. For this reason, we view the above nonhierarchical cluster algorithm as a

sophisticated brute force algorithm worthy of consideration because of its simplicity and

potential improvement over conventional brute force techniques.

1.3. Near-Neighbor Algorithms [5].

Table 1 shows the costs of steps used in a typical near-neighbor algorithm for gating
when the reports correspond to different observation times within some finite time interval

(scan). The quantities A, and A. are constant coefficients of order 1. The example here
is that of projecting the tracks forward to Mr, different times t. within the time interval,

where M, is a small number (m 5) [6]. For each report, the algorithm identifies the closest

data structure in time and then searches it for all tracks falling within some radius of tL.

position of the report. The search radius depends on the time t R of the report, the time t,.

corresponding to the data structure selected, the track velocities, and the threshold score.

Upon finding a small number (denoted Nn) of candidate tracks, the algorithm computes

scores and makes the final gating decisions. Notice that in theory this algorithm computes

far fewer scores than the duster algorithm, and thus minimizes the most costly calculations.

Setting up the data structures scales as NT log NT, but the costs per operation are very
small relative to C..

In summary, the worst scaling part should be superior in scaling to the brute force

and duster approaches. The near-neighbor approach offers the additional advantage that

the poorest scaling step does not involve a score calculation. These are the features that

have led to massive savings in molecular dynamics calculations and have been the main

selling points for the present application.

1.4. Further Comments

The above discussion indicates the following potential advantages for near-neighbor

algorithms:

(1) The inherent scaling of the near-neighbor algorithms should be superior by a factor

of N/log N relative to brute force and by a factor of at least V/NI/ log N over the cluster

algorithm and perhaps closer to N/log N.

3
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(2) The most expensive calculation, that of gating scores, scales as N 2 for brute force and
between N3 / 2 and N2 for the cluster algorithm. The same step scales only linearly with
N in the current implementation of the near-neighbor algorithms.

(3) In fact, the numboer of score calculations per report remains relatively constant with N

in the case of near-neighbor algorithms but increases as N and at least vY in the other
cases.

The purpose of the present tests are twofold:

(1) To determine the expense of the above algorithms in performing gating. This addresses
directly the validity of the above theoretical analysis and the accompanying conclusions
for systems containing large numbers of objects. In Section II, we consider scaling and
actual cost separately.

(2) To determine the accuracy of the above algorithms in performing gating (see Section
11.2). In other words, what percentage of the candidate pairs with scores above threshold
do the algorithms find? An alternative form of this question is, "For each report, what
percentage of the N. or fewer highest-valued tracks with scores exceeding the threshold
does the algorithm find?" Here N9 is the limit usually set by a gating algorithm on the
number of tracks which may be associated with each report and depends on some con-
straint, such as the required speed or available computer memory. Another approach is to

weight this percentage by the scores of the pairs found, so that missing lower-valued pairs

is less important [7]. As indicated by the form of the second question, the possibility exists
that, for a given report, fewer than N9 tracks have scores exceeding the threshold (Section

11.2).

Two sources of data and algorithms are available for the tests. First, a realistic
Tracker-Correlator (TRC) Code [1] using the above cluster algorithm can provide data
on tracks and reports, and the portion of actual code dealing with the cluster algorithm
could be part of the overall test package. The available TRC can comfortably handle sets
of order 10 to 100 objects and not many more than 1000 objects. For that reason, the
authors plan to conduct tests on the three algorithms using simpler, "simulated" tracks
and reports numbering up to 6.4 x 10', which is more representative of possible scenarios.
The authors plan to write the computer code for all three algorithms The tests will take
place on a SUN workstation.

The next two sections of this paper deal with the data set requirements and the
appropriate measures of performance for the tests. The fourth section identifies other
important parameters and factors in the definition of data sets.
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II. Data Requirements

As indicated above, the tests will address two criteria for selection of a gating algo-

rithm: expense and accuracy. The data set requirements for determining these two features

might be different. We will consider them in turn.

I1.1. Cost Measurement

Cost or expense involves (1) the various costs per operation, denoted C., C,, etc.

in the previous section, and (2) the scaling of the algorithms with the number of objects

N. Consider scaling first. Given reasonable computer programming techniques and within

a computer hardware class, the scaling of the algorithms (or their major steps) with N

should be reasonably independent of the particular machine used and of the quality of

the actual programming. Thus, scaling with N is one aspect which these tests should

determine with reasonable generality.

The actual cost in terms of CPU seconds, however, will also depend on the costs per

operation of the particular computer code on the particular machine and will depend on

the quality of programming. The measurement of CPU time is important when one is

seeking the maximum speed of a given algorithm on a specific machine.

For the present tests, since absolute speed is not the goal of the overall project,

scaling with N should be the most important aspect of cost to measure. To accomplish

this requires performance data for different scenarios, individually containing different

numbers of objects. To account for situations which are more favorable or less favorable
to the cluster algorithm, the scenarios should also cover the range of clustering from an

average size of 1 to Nrmty the maximum number of objects in a cluster for a realistic

situation.

Let N- and N + denote the minimum and maximum values of N covered by the set

of scenarios. What are the smallest acceptable values of these numbers? Given scenarios

with similar distributions of clusters and cluster sizes, the minimum value N-should be

several times the maximum number of objects per cluster. Alternatively, N-should be

several times N., the maximum allowed number of tracks selected by the gating algorithm

for each report. In either case, the gating algorithm should then eliminate a significant

number tracks from consideration for pairing with any report and a trivial result will be

avoided. In the scenarios presently envisioned, the maximum number of objects in a cluster

will be of order 10, as will N,. In that case, we expect that

N- > 100 (2.1)

6



Now consider N+. To determine scaling for applications to systems with large numbers

of objects, say N > 104, N+ should at least be 104, so that extrapolation to the next power

of 10 or so will be as believable as possible. In addition, one would like to use N + > 100N-

to make sure that the scaling functionality is stable over an appreciable range of values for

N. Equation (2.1) then gives us N + > 104.

We can also ask a related question about N+: "For what value will the range (N-,

N + ) be large enough to discriminate the best possible scaling of the nonhierarchical cluster

algorithm from the worst scaling claimed for the near-neighbor algorithms?" Thus we must

distinguish N3V2 from N log N. At this point we cannot estimate the scatter in the data

over the range of scenarios, but we can compute the differences which will arise for various

values of N-and N + .As a measure, we compute the ratio of maximum to minimum costs
for the two scaling functions and divide one by the other:

I(N_, N+ ) = X log N- (2.2)

Fi.ure 1 depicts the meaning of IZ in terms of a graph of cost C versus N. To compare

the two different algorithms, we normalize the respective cost values within the range

(N-, N + ) to the values at N = N- (see Eq.(3.9)). Then C starts out at a value of 1

in both cases. At N = N + , the ratio of normalized costs for the two functions will be

IZ(N-, N+). Thus R(N-, N + ) gives the maximum deviation of the two functions. Now

define IZ(N-, N) to be the ratio of the normalized values of the two functions for any

N. This we obtain by replacing N+by N in Eq.(2.2). As N decreases in value from N + ,

IZ(N-, N) approaches 1, meaning that the differences between the functions become less

easy to discriminate.

Now choose N-= 100, the lowest value indicated in Eq.(2.1). For N - N + - 1000,
we have IZ t 2. Unless the scatter in the data are too large, this should be enough to dis-

tinguish that a scaling difference ezists between the cluster and near-neighbor approaches.

Since the differences decrease with N, the range of N from 100 to 1000 might be marginal

for determining the actual scaling functionality, of the two approaches. At N = N + = 104,

we obtain 7I = 5, and for N - N + = 6 x 104, we obtain 7 = 10. Thus to determine the

actual scaling functionality, scenarios ranging from N = 100 to N - 104 or 6 x 104 seem

to be much better.

11.2 Accuracy Determination

Now consider the question of accuracy, and define the ideal result as follows. For a
given report r, Let NT, be the number of tracks with scores equal to or exceeding the

7
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Figure 1. Log-Log plot of normalized cost Eq.(3.9) versus number of objects N for costs

varying as N 3 / 2 and N log N. Since the scales are logarithmic, the distances marked with
arrows are proportional to the logarithms of the ratio 7?(N-, N) of the two normalized

cost functions for N = 103 and 104, respectively.
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threshold. Remember also that the gating algorithm usually selects no more than No
tracks per report. Then if NT, < N9, the ideal result is to identify all NT, pairings of
tracks with report r. If NT, _ Ng, the ideal result is to identify the N. highest-valued
pairs. The performance of the various algorithms should be measured against the ideal
result for each scenario considered. One might wish to vary the threshold to determine its
effects on the process.

Once again, we desire a set of scenarios covering a range (N-, N+) of values for N,
the number of objects. Equation (2.1) limits N- to a value of 100 or greater to ensure
a nontrivial result. However, for the determination of accuracy, a value of N+ = 6 x 104

is potentially too high. The two most important factors in accuracy appear to be the
degree of clustering inherent in each scenario and the variation of observation times (time
"stamps") of the reports gathered during each sensor scan interval. A scenario with little
spatial clustering of the moving objects (separations exceeding sensor resolution) and in
which new batches of reports have approximately the same time stamps might be better
for near-neighbor algorithms than a scenario having the opposite properties (see Section
IV.2). We expect these factors to have less of an influence on the accuracy of the cluster
algorithm.

Of the two factors, only clustering should affect the value of N+. To cover the range
of possibilities, each scenario should contain clusters with an average size somewhere in
the range from 1 to NTx, the maximum cluster size to be expected in any scenario. To
insure a nontrivial result, many more than one cluster should be present. This leads us
to propose that N + be greater than Nfx by a factor of at least 10. In addition, to
cover a reasonable range of values for N, N+should be greater than N- by a factor a
least 10. Since N- > 100 and NfmT is of order 10, these considerations indicate that
N + > 1000. Thus scenarios covering the range from 100 to 1000 objects should be useful
for determining accuracy of the algorithms.

11.3. Summary of Data Requirements

For measuring expense of the algorithms, the tests should emphasize scaling with the
number of objects N. The data sets should consist of various scenarios covering a range
100 < N < 6 x 10". The data sets currently within the capability of the realistic correlator-
tracker code will not satisfy these requirements at the upper end of the range and could
be marginal for determining scaling.

For measuring accuracy of the algorithms and to cover the situations which affect
the scaling of the cluster algorithm, the scenarios should cover a range in average cluster
size from a value of I up to the maximum size expected in realistic situations. Data sets

9



covering 100 < N < 1000 should be useful and perhaps adequate for measuring accuracy.
In addition, the data sets must include scenarios in which reports from each sensor scan
interval have approximately the same time stamps and scenarios in which the opposite is
true.

III. Measures of Performance

III.1 Accuracy

We now identify measures of performance which seem to be appropriate for these tests.
For accuracy the baseline will be the "ideal result" defined in the previous section. Given
that the classic brute force approach cbmputes a score for each possible pair and compares
the scores to the threshold value, the result of the brute force algorithm for each report will
be identical with the ideal result. Denote by I the set of all track-report pairs constituting
the ideal result for the entire set of reports. Then if Ab is the set of pairs identified by
the brute force algorithm, we have iT - .=A. We must measure the intersection of I with
the sets Ac and A. of pairs actually found by the cluster and near-neighbor algorithms,
respectively. Thus the performance 'P of the near-neighbor algorithm relative to accuracy
is

P = M(A, n1) (3.1)
M(IT)

where M denotes a measure function. A similar equation holds for the cluster algorithm.
Two performance measures have been mentioned previously [7) but not specified in an

equation:

(1) Define M 1 (S) to be the number of elements in a set S. Compute the first performance
measure V, as the percentage of pairs in I which are also contained in the set A of pairs
found by a near-neighbor or cluster algorithm,

M 1Zn (3.2)M*-: - 1(Z)

(2) For a set S, define M 2 (S) as the product of M 1 (S) and the sum of scores in S. This

gives us a second performance measure, equivalent to multiplying P, by the ratio of the
sums of scores for the elements in the sets A n 1" and the ideal set 1,

OP 2 P XS (3.3)
E~pC_.ISP
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In Eq.(3.3), the score or likelihood for the pth pair is Sp. The second measure P2 has the

advantage that the penalty for missing a lower-valued pair in I is less than for missing

a higher-valued pair. Thus the relative importance of the various pairs comes into the

measure of performance.

A variation on the above approach is possible. Denote by 7, the set of track-report

pairs in the ideal result for a given report r:

Tr= {(tr) I t ETand(tr)E "} , (3.4)

where T is the set of all tracks. Thus I,. is the ideal result for a specific report r, and we

have

ZU= ,. . (3.5a)
r

Similar equations hold for the sets Ac. and Anr of tracks identified by the cluster and

near-neighbor gating algorithms for a report r:

AC = UAcr (3.5b)
r

=- UAn (3.5c)
r

We can now compute the above performance measures separately for each report r

and average them over all reports. For report r and the set A,. of tracks identified by the

cluster or near-neighbor gating algorithm, define the performance measures to be

'PrI = M 1 (-Tr n A,) (3.6)

and

Pr,2 - P,. X IpeA,f, r SP (3.7)
EpEZ. SP

Then the overall performance measures corresponding to P, and P2 are the averages

of Pri and P , over all reports:

11



SNit
P ii=1, 2. (3.8)

Experience indicates that the measures averaged over reports l'P and P2 might deviate from

the value 1.0 more than the measures for the total set of reports P1 and P2. However, the

corresponding measures should be quite similar. Note also that Eqs.(3.6) and (3.7) assume

that 7,r 3k 0, the null set.

111.2. Scaling

For scaling we must compute the cost of each step in the gating process, as identified
in Table 1, for each scenario. The set of scenarios will cover a range of values (N-, N+) of
the number of objects N. The most convenient unit of cost to measure is central processor

unit (CPU) seconds. By treating each step of gating separately, we will be abl to isolate

the portions of the gating process with different scaling with N, as indicated by Table 1.
To eliminate programming differences between the various candidate algorithms, we will

normalize the cost to the value at N = N-:
C'(N) = C(N) (3.9)

C(N-)

Thus the lowest value of C' for each of the algorithms will be 1.

Once sufficient cases have been run to obtain costs at five or more values of N in the

range (N-, N+), we will fit the functions log(C') (cluster algorithm) and log(C,) (near-

neighbor algorithm) to the function f(N) = a log(N) + P. The quantity a is the slope
of the curve and measures the power of N with which a step varies. Thus, a should be
2 for the brute force algorithm and fall between 2 and 3/2 for the cluster algorithm. For

those steps which might scale as N log N, we will also fit the function C'N-/N to f(N)

to determine whether the slope is constant and equal to over the range of values
for N. The accuracy of the results will depend critically on the scatter in the data, which
we cannot estimate at present.

IV. Further Considerations

Several additional factors could have measurable effects on the results, and taking
them into account could increase the number of different scenarios necessary for the tests.

Ancillary data from the tests might also be useful to designers of operational systems in
the future. We will briefly discuss these ideas below.

12



IV.1 Types of Sensors

The two main types of sensors to be considered are active (radar) and passive (e.g.,

infrared (IR) or electro-optical (EO)). The radar data are three-dimensional while the pas-

sive data come in the form of bearings (two angles) and are effectively two-dimensional.
The two types of data represent different programming problems for near-neighbor algo-
rithms. We plan to concentrate on radar data at the outset and treat the IR problem in
the second stage of the tests.

IV.2. Temporal Distribution of Data

Two possibilities for scenarios exist [5]. Either the observations by a sensor during a

scan all correspond to approximately the same time (i.e., the scan period is short relative

to the time scale on which the objects change position significantly), or the observations
are distributed over a nonnegligible scan time. The former case is advantageous for near-

neighbor algorithms, since the track file data structure must be set up only once per scan

and the reports all have roughly the same time "stamp" as the tracks, making calculation
of scores easier. The latter case is more difficult because the observation times are different

and candidate tracks must be projected to each of those times to compute the respective

scores. Table 1 presents a near-neighbor method under the assumption of the latter case.

Presumably both situations should be addressed by the tests.

IV.3. Choice of Threshold Score

The threshold score for determining the acceptable track-report pairings will deter-

mine the average number of tracks selected by the gating algorithm per report. This will

also determine the maximum number of hypotheses which could be created. As the thresh-

old score increases, the accuracy of the near-neighbor algorithms should also increase, since
the acceptable tracks must be closer to each report. In this case, we should reach the sit-

uation of having to investigate only the nearest one or two tracks for each report. The

situation in which reports have different observation times should also be easier when the

threshold score is higher.

IV.4. Number of Different Scenarios

The data set for each N should include a number of different scenarios for each value

of the average cluster size and each representative sensor scan interval. In addition the
data sets must cover several different values of N. We see in this the possibility of another

"combinatorial explosion" and will have to determine the minimal number of data sets

necessary during the course of the tests. The basis for this decision will likely be the

scatter observed in the results during the initial testing phase.
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IV.5. Coefficients of Scaling Factors

As indicated previously, the tests should emphasize scaling and not absolute speed.
However, from the type of hardware used for the tests and the actual CPU time expen-
ditures for the gating tests, one can often estimate speed on other systems. Thus, even if
the software is not optimized and even though speed is hardware dependent, elapsed CPU
time can be useful to system designers who wish to employ the algorithms that we have
developed. While we will not present such data as part of the test results, we can use the
data to estimate speed of near-neighbor algorithms on other machines, if so requested.

14



V. Acknowledgements

The a- .hors gratefully acknowledge funding support from the Strategic Defense Initia-
tive Organization through the NRL Information Technology Division Battle Management
Program, which is guided by Mr. M. S. McBurnett. We also greatly appreciate helpful
discussions with Mr. J. H. Gardner and Mr. M. S. McBurnett of NRL, Dr. D. Kierstead of
Daniel H. Wagner, Associates, and Dr. L. Filippelli of Ball Systems Engineering Division.

15



References

1. J. A. Erbacher and B. Belkin, Tracker/Correlator Algorithm Design Document (Ball

Systems Engineering Division, Arlington, Virginia, 1988).

2. S. S. Blackman, Multiple-Target Tracking with Radar Applications (Artech House,
Dedham, Massachusetts, 1986).

3. A. W. Appel, SIAM J. Sci. Stat. Comp. 6(1), 85 (1985).

4. D. H. Porter and J. G. Jernigan, U. Minn. Supercomp. Inst. Report UMSI 86/59
(1986).

5. J. M. Picone, J. P. Boris, M. Zuniga, J. Uhlmann, and S. G. Lambrakos, "Near-
Neighbor Algorithms for Processing Bearing Data," NRL Memo. Rpt., in preparation
(1989).

6. E. Hyman, S. Eidelman, M. Zuniga, and M. Redmon, "Numerical Modeling of Air-
blast, Second Year Annual Report," SAIC Report No. 88/1779, 3 (1988).

7. D. P. Kierstead, Memorandum, D. H. Wagner, Associates, October 14, 1988.

16



Appendix
Optimal Scaling of the Nonhierarchical Cluster Algorithm

This appendix deals in more detail with the costs of the nonhierarchical cluster algo-
rithm and presents an approximate equation for the optimal scaling of cost with N, the
number of objects in the scenario. First, the equations given in Step 4 of Table 1 require
further explanation. The computation of scores for all tracks in the clusters that have been
selected for association with report r incurs the following expense:

C4, = (C' + C.) E NT . (A.1)
{c),

Here C4 . is the cost of step 4 (Table 1) for report r; {c)}, denotes the set of clusters which
have scores that exceed the threshold for association with report r; and NT, is the number
of tracks in cluster c. Section I defines the remaining quantities. We now define the bracket
notation

(f.e)

for an average over a number N. of quantities which are labelled by the set of indices {a},
not necessarily equal to { 1, 2,..., N. }. Averages of different sets will use the same bracket
notation, even though the sets may have different numbers of elements. Further, if the
index set fa} depends on another index i, i.e., {a} = {a}i then the right bracket will have
a subscript i, in other words, ( ),. If the set {a} = {1,2,...,N.}, then we will use the
usual notation for the sum and need not carry the subscript * within the brackets:

1 N.Ms) = M/ N= Ef

The total cost of computing scores and determining which tracks should be associated
with each report in the set of data is then
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NA

ri- {c),.

NR

= (C, + C, + Cd) N,(,.) N.Zc N~r (r)()(A2

r--1

= (C. + Ce + Cd) NR(Nc(,j)(NT.)r)

The last line of Eq.(A.2) shows the average over reports of the product of two quantities: (a)
the number of clusters selected for each report r and (b) the average over those particular
clusters of the number of tracks in a cluster. The superscript ' differentiates the number
of clusters selected for a report from the total number of clusters Nc. To obtain the
relationship shown in Table 1, Step 4, one can assume either that the number of clusters
exceeding the threshold score is approximately the same for each report or the number of
tracks per cluster is approximately the same. Equation (A.2) then becomes

C4 = NR(N')( NTC) , (A.3)

in which we have left the subscript "r" off of the average quantities for convenience. For
presentation of this equation in Table 1, we define (NT.) - NTC and (N,) NC. From
Table 1, we see that the total cost for the duster algorithm is then

C, = NTC, + Nc(C, + C, + Cd)NR + NbNTc(C, + C, + Cd)NR (A.4)

Notice that NTC, NT, and Nc are related through the equation

Tc N (A.5)

TC-Nc

To find an extremum in the cost relative to the number of clusters, one substitutes Eq.(A.5)
into Eq.(A.4), computes the partial derivative of the result with respect to Nc and sets
the result to zero to obtain

I2

NC'NT = NC (A.6)
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An additional partial derivative with respect to Nc is greater than zero when Eq.(A.6)
holds, showing that the cost is minimized by Eq.(A.6). The resulting cost equation is

Cmi = NTC, + 2NR N(A.(C) + C, + Cd)

g, 2NRV?-(Ce + C. + Cd)

To obtain the second line of Eq.(A.7), we have assumed that the cluster averaging (Step 1,
Table 1) costs far less than the score calculation and that NC - 1. Also, for large numbers
of objects the term with the worst scaling should dominate.
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