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DATE: 1 July 1989

ANNUAL REPORT

CONTRACT: N00014-88-k-0428 R&T CODE: 4412050

PRINCIPAL INVESTIGATOR: C. Steven Sikes

CO-INVESTIGATORS: A.P. Wheeler and Brenda J. Little

CONTRACTOR: The University of South Alabama

rX*TRACT TITLE: Folypeptide Inhibitors of Mineral Scaling and Corrosion

START DATE: 1 July 1988

RESEARCH OBJECTIVES:

The overall purpose of the project is to understand better the

interactions of peptide inhibitors of mineral scaling and corrosion with metal
surfaces, including relationships between mineral deposition and corrosion.
The peptides are based on natural protein inhibitors of mineral formation and
generally are enriched in aspartic acid and phosphoserine. Specifically, the
project involves 1) synthesis of polypeptides, 2) evaluation of their
activities as inhibitors of calcium carbonate and phosphate crystallization,
and 3) evaluation of their activities as inhibitors of corrosion of mild
steel.

PROGRESS (YEAR 1):

Synthesis of Polypeptides.

Automated solid-phase synthesis. A peptide synthesizer (Applied
Biosystems, Model 430A) was used to prepare peptides. A family of
polyaspartate molecules ranging in size from AsP5 to AsP60 was
synthesized by repetitive couplings of t-Boc-L-aspartic acid residues
with B-carboxyl protection by O-benzyl linkage. A C-terminal residue of
0.5 mmole was preloaded on a resin of a polymer of styrene cross-linked
with 1% of divinylbenzene. The C-terminal amino acid was linked to the
resin via a phenylacetamidomethyl (PAM) group. Peptide bond formation
was promoted by use of dicyclohexyl carbodiimide (DCC) and formation of
symmetric anhydrides of the incoming amino acid. At the appropriate
times during a synthesis, a subsample of the peptide-resin was taken to
provide the desired size of the polyaspartate, then the synthesis was
allowed to continue to produce the next larger size, and so forth until
all desired sizes had been synthesized and collected.

The same procedure was followed in synthesizing a family of
aspartate1 5 alaninex molecules ranging from AsplsAla 2 to Asp15Ala1 0 . In
this case, t-Boc-L-alanine residues were used. For peptides containing
serine or glycine residues, t-Boc-L-serine-O-benzyl and t-Boc-L-glycine
were used.



In all cases, coupling efficiency of each residue was checked by
automated sampling of peptide resin for measurement of unreacted free
amine by the ninhydrin method. Coupling efficiencies routinely were
greater than 99% per cycle of synthesis.

Following synthesis, peptide-resin was repeatedly washed with
methanol then dried and weighed. Then peptides were cleaved from the
resin using a modification of the trifluoromethyl sulfonic acid (TFMSA)
procedure, with precautions taken to prevent aspartimide formation. For
100 mg samples, peptide-resins in a scintillation vial were treated for
10 minutes with 150ul of anisole to swell the resin, making it more
accessible for reaction. Then 1.0 ml of neat trifluoroacetic acid (TFA)
was added with magnetic stirring and allowed to react for 10 minutes.

Next, 100 ul of concentrated TFMSA (Aldrich Chemical Co.) were added with
cooling using an ice bath, followed by cleavage of the peptide from the
resin at room temperature for 30 minutes. For cleavage of other amounts
of peptide-resin, the amounts of reagents used were changed
proportionally.

Following cleavage, 20 ml of methyl butyl ether (MBE) (Aldrich) were
added to the vial to insure precipitation of the peptide, which already
was relatively insoluble in the acidic reaction medium due to the acidic
nature of the peptides. After stirring for 1-2 minutes, the entire
slurry was passed through a 4.25 cm glass fiber filter (Fisher G4) using
a filter funnel and vacuum pump at 15 psi. This removed the TFA, TFMSA,
anisole, and any soluble reaction products, leaving the cleaved peptide
and resin on the filter. After washing on the filter with 100 ml of MBE,
the peptide was extracted into a clean, dry flask with 10 ml of Na2CO3
(0.02 M, pH 10.2), using 5 successive rinses of 2 ml, with at least 1
minute extraction on the filter prior to applying the vacuum each time.
Using this procedure, the filtrate containing the solubilized peptides
had pH values >5. The filtrate was then dialyzed twice with stirring
against 2 liters of distilled water for 2 hours using dialysis tubing
(Spectrapor, nominal MW cutoff of 1000 daltons). The dialysate was
frozen and lyophilized, yielding white flakes or powders. The average
yield of the peptides was 40%.

Following isolation, purity of the peptides was checked by high
performance liquid chromatography (Varian 5500 LC) using gel permeation
columns designed for separations of peptides (Toya Soda 2000 SW and 3000
PWXL). Single, sharp peaks at the appropriate MW were obtained. Because
the peptides were isolated partially as sodium salts, the sodium content
was determined by atomic absorption (Perkin Elmer model 360). Sodium

levels typically were less than 5% by weight. Amounts of peptides
reported were corrected for sodium content. Concentrations of peptides
in aqueous stock solution were based on lyophilized dry weight but were
also checked by comparison of UV spectra.

Post-synthesis phosphorylation. Because phosphate linkages to
proteins are not stable during cleavage steps of solid-phase synthesis
and because phosphate is known to be critical to the activity of the
protein inhibitors of mineral formation, we evaluated several methods of
preparation of phosphopeptides. These included direct polymerization of
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phosphoserine by use of DCC, and phosphorylation of polyserine by use of
diphenyl phosphochloridate followed by catalytic hydrogenolysis to remove

phenyl protecting groups. Both of these approaches gave unsatisfactory
results. However, a successful method based on the use of
monochlorophosphoric acid was employed, with production of peptides with
essentially 100% phosphorylation of serine residues.

In this approach, serine resdues attached at the N-terminus of
polyaspartate molecules were phospnorylated manually using the following
procedure and in proportions consistent with the molar amounts of serine
residues. For example, phosphorus oxychloride, POCI 3 , was added as 117-
ml (1.25 moles) to 45 ml (2.5 moles) of water. This solution was stirred

for one hour, allowing formation of monochlorophosphate (ClH2PO3 ). Next.
an amount of peptide to provide 0.25 moles of serine residues was added
with stirring and occasional heating at 600C for two hours. The reaction
was ended by dropwise addition of 18 ml (1 mole) of H20 to degrade any
unreacted monochlorophosphate to orthophosphate. Any polyphosphates that
may havR formed during the reaction were destroyed by addition of 75 ml
of IN HCL and heating in a boiling water bath for at least 20 minutes.
Upon cooling, peptides were crystallized in 95 percent ethanol and methyl
butyl ether at 30C overnight. Crystals were washed repeatedly with
ethanol. The extent of phosphorylation of peptides was monitored
spectrophotometrically upon formation of the phosphomolybdate complex.

Thermal polymerization. Because the measurements of activity of the
peptides as corrosion inhibitors, as well as other procedures, including
pilot-scale studies in some cases, require relatively large amounts of
materials (from I gram on up) and because available solid-phase synthesis
becomes prohibitively expensive at that level, we looked into the
feasibility of bulk thermal polymerization of aspartic-enriched polyamino
acids. This approach to polypeptide synthesis originated in the study of
the possible abiotic origin of proteins.

In a typical synthesis, L-aspartic acid (500 g) was placed in a two-
liter, round-bottom reaction vessel, originally designed as the
evaporator vessel in a rotary evaporator apparatus. The reaction vessel
was partially submerged in cooking oil in a deep-fryer set at 190°C/
(+20C). The reaction vessel was coupled by ground glass fitting to a
condenser vessel, which in turn was fitted to a rotator shaft driven by a
rheostated electric motor. The fittings were sealed with tape and
fastened with hose clamps. A stream of nitrogen was continuously purged
into the condenser vessel to eliminate 02 and the possibility of
charring. The reaction was allowed to continue for up to 24 hours at
which time no further visible evolution of water vapor was observed. The
water is produced as a result of the dehydration reaction of peptide bond
formation and serves as a good indicator of the progress of the reaction.

Polyaspartate molecules of approximately 5000 daltons (determined by
gel permeation) were produced. They were purified by dissolving at pH 6
in water followed by dialysis to remove unreacted aspartic acid,
although the bulk product is also usable without further purification.
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Samples as large as 1 kilogram were prepared essentially at the cost
of the amino acids (e.g., Sigma L-aspartic acid, $25.70/kg). A number of
interesting materials were produced.

Assays to verify the identity of each of the molecules produced by

both solid-phase and thermal methods included amino acid analysis,
peptide sequencing studies, amine measurement by alkalimetric titration

and ninhydrin reaction, carboxyl measurement by alkalimetric titration,

phosphate analysis, and ultraviolet and infrared spectroscopy.

Evaluation of Polypeptides Enriched in Aspartic Acid and Phosphoserine as
Inhioitors of Crystallization.

A number of assays have been developed to measure the ability of the
peptides to inhibit mineral formation. These include methods for assessing
effects on both crystal nucleation and crystal growth. The gpneral results
were that at a molecular size of about 15 residues, polyaspartate was most
effective as an inhibitor of CaCO3 crystal growth. However, the optimum size
for inhibition of CaCO3 crystal nucleation by polyaspartate was about 35
residues. In addition, the presence of an hydrophobic domain of alanine
residues attached at the N-terminus of polyaspartate molecules of 15 residues
enhanced the effectiveness of the molecules as inhibitors of crystal
nucleation relative to control polyaspartates of appropriate sizes. This type
of data is useful in formulating hypotheses about the nature of the crystal
nuclei and the crystal growth sites and in designing effective inhibitors.

Perhaps the most interesting discovery of the past year was the
remarkable positive effect that even a single phosphoserine residue can have
on the activity of a polyaspartate as an inhibitor of crystallization. For
example, as shown in Figure 1, the polyaspartate molecules that had one to
three phosphoserine residues on the end were far more effective inhibitors of
CaCO 3 formation as indicated by the length of time prior to crystallization,
shown by stabilization of pH of the metastable solution at about pH 8.3. Note
also that the most effective molecule measured was HO-(Asp) 0 -(pSer)l-H
followed by HO-(Asp)2 0-(pSer)3 and HO-(Asp)20 -(pSer)2-H. T us, surprisingly,
a single phosphoserine residue at the end o the molecule was the best
arrangement, and adding more phosphoserines diminished the activity of the
molecules.

Similarly, as seen in Figure 2, the polyaspartate molecules having one to
three phosphoserine residues on the end were by far the most effective as
inhibitors of calcium phosphate formation. In these experiments, HO-(Asp)2 0-
(pSer)2 -H was clearly the most effective molecule, followed by HO-(Asp) -

(pSer)1 -H, with HO-(Asp) 0-(pSer) -H having much less activity, althoug6-still
considerably more than simple HO-Asp)20 -H or HO-(Asp)9 5 -H molecules.
However, as shown in Table 1, the serine residues of t e HO-(Asp)2 0 -(pSer) -H
molecules were incompletely phosphorylated due to limitations of the methoa of
phosphorylation. In any event, it is clear that having one or two
phosphoserine residues at the end of a polyanionic peptide greatly enhances
inhibitory activity, and in all cases the presence of phosphoserine improved
the performance of peptides as inhibitors of crystallization. Furthermore,
the polyaspartate-phosphoserine molecules are among the best known inhibitors
of both calcium carbonate and calcium phosphate crystallization. This breadth
of activity is itself unusual.
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Figure 1. Effects of Phosphorylation of Synthetic, Polyanionic Peptides on
Calcium Carbonate Crystallization.

In all cases, the concentration of peptides was 0.05 ug/ml.

In these experiments, a solution supersaturated with respect to CaCO 3 isprepared by separately pipetting 0.3 ml of 1.0 M CaCl 2 dihydrate and 0.6 ml of0.4 M NaHCO 3 into 29.1 ml of artificial seawater (0.5 NaCl, 0.011 M KCI).Inhibitors normally are added after the calcium but before the bicarbonate.
The reaction vessel is a 50 ml, 3-necked, round-bottom flask partiallyimmersed in a thermostated water bath at 200C. The reaction vessel is closedto the atmosphere to minimize exchange of CO2 . The reaction is started byadjusting the pH upward to 8.3 by titration of ul amounts of 1 N NaOH bydigital pipette. The initial concentrations are 10 mM of Ca2+ and 8 mM ofdissolved inorganic carbon (DIC). The reaction is monitored by pH electrodeand recorded by strip chart. After a period of stable pH during which crystalnuclei form, the pH begins to drift downward until the reaction ceases due to
depletion of reactants and the lowering of pH.
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Figure 2. Effects of Phosphorylation of Synthetic, Polyanionic Peptides on

Calcium Phosphate Crystallization.

In all cases, the concentration of the peptides was 30 ug/ml.

A solution supersaturated with respect to calcium phosphate is prepared
by separately pipetting 0.1 ml of 1.32 M CaCl 2 dihydrate and 0.1 ml of 0.90 M

NaH PO4 into 2 2
9 .8 ml of distilled water. This yields initial concentrations

of 1.4 mM Ca2+ and 3.0 mM dissolved inorganic phosphorus (DIP). Inhibitors
normally are added after the calcium but before the phosphate. The reaction
vessel is a 50 ml, round-bottom, 3-necked flask partially immersed in a
thermostated water bath at 200C. The reaction vessel is closed to the
atmosphere. The reaction begins upon mixing the reactants with an initial pH

of 7.4.
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Table 1. Comparison of phosphory]ated and non-phosphorylated serine-
containing peptides as inhibitors of calcium carbonate and phosphate
formation.

Calcium Carbonate Calcium Ptosphate
Assaya Assay

%Ser
as Period to

Peptide PSer Induction Period Apatite
(ug/ml) (minutes) (ug/ml) formation

(minutes)

Control 5.86 + 0 .76c 20.7 + 2.0 9c

PolySer(mw5lOO) 0.05 4.00 + 0.28 10 same as control

PolyPSer 23.0 C.05 113 + 50.6 10 33.5 + 8.74

(AspSerGly) 0 0.10 9.10 + 1.20 10 same as control

(AspPSerGly)10  30.0 0.10 7.50 + 2.10 10 28.0 + 1.70

(AspSer)10  0.05 33.5 + 2.12 10 same as control

(AspPSer)10  29.0 0.05 205 + 14.4 10 31.0 + 2.80

AsP2 0  0.05 87.5 + 19.0 30 59.7 + 6.40

AsP 2 0Ser 0.05 65.0 + 11.1 30 47.3 + 3.05

AsP 2 0PSer 97.6 0.05 583 + 5.80 30 601 + 103

AsP 2 0Ser2  0.05 48.8 + 16.2 30 54.5 + 3.50

AsP 2 0PSer2  99.8 0.05 254 + 39.9 30 > 20 hours

AsP 2 0Ser 3  0.05 31.3 + 11.1 30 53.0 + 0.75

AsP2 0PSer 3  59.0 0.05 326 + 88.0 30 185 + 9.30

a. CaCO 3 pH-drift assay: 10mM Ca2+, 8mM dissolved inorganic carbon,
30mi artificial seawater, 200 C., initial pH = 8.30.

b. CaPO4 pH-drift assay: 4.4mM Ca2+, 3mM dissolved inorganic phosphorus,
30 ml distilled water, 200 C., initial pH = 7.40.

c. Mean values + standard deviations, n = 3 to 70.
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Evaluation of Thermal Polyaspartate as a Corrosion Inhibitor.

A sample of polyaspartate prepared by the thermal polycondensation
ceaction was chosen for the initial measurements of corrosion inhibition.
Because a single experiment of this type may require up to I gram of material,
and we had lo's of grams of thermal polyaspartate, it was sensible to use
this material in these studies. In addition, the results for a generic
polyaspartate can serve as a basis for -omparison to results for other
molecules.

At a dose of 0.1 mg/ml of bulk thermal polyaspartate, which for this
sample was equivalent to about 40 ug/ml of pure thermal polyaspartate, the
corrosion potential of mild steel electrodes was ennobled somewhat (Figure 3).
This was accompa ied by a reduction in corrosion current from about 17 to 5
microamps per cm , which translated to a reduction in corrosion rate from
about 7 to 2 milliinches per year.

Scanning electron microscopy confirmed that the polyaspartate was bound
to the surface of the electrode after brief exposures. Analysis by EDAX
showed some calcium and chlorine associated with the polyaspartate.

The results to date demonstrate that the material is surface-reactive and
appears to inhibit both anodic and cathodic reactions of mild steel surfaces
at doses of polymers that are used in practice for corrosion inhibition.
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Figure 3. The effect of thermal polyaspartate on the corrosion potential of a
mild steel electrode.

The concentration of bulk thermal polyaspartate was 0.1 mg/ml in

artificial seawater. Potentials were measured relative to a saturated calomel
electrode.
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Work Plan (Year 2:

A main objective is to evaluate the phosphopeptides as corrosion
inhibitors. To do this, we will first have to prepare larger amounts of the
materials by thermal polymerization, followed by derivatization. Because
serine residues do not survive thermal synthesis, asparagine residues, which
are thermally stable, will be added to provide a reactive NH2 group as a site
of phosphorylation or phosphonation.

We recently received support from the State of Alabama to purchase a
corrosion monitoring system for the laboratory at South Alabama. With this
instrument, we will be able to screen the corrosion inhibiting activity of
experimental compounds, and then select the most promising for more detailed
mechanistic studies by Dr. Little at the Naval Space Technology Laboratory.

We also plan to synthesize sulfopeptides by methods analogous to those
for preparing phosphopeptides. The literature suggests that sulfate or
sulfonate containing polymers may be very effective inhibitors.

A general goal of the project is to understand more about the
relationships between mineral deposition and corrosion, including microbially-
accelerated corrosion. To begin a study of these relationships, experiments
are planned in which supersaturated, spontaneously mineralizing solutions are
used with and without the presence of the peptides, which inhibit both mineral
deposition and corrosion.

Similarly, experiments are scheduled in which corro~ion-accelerating
microbes will be present in the experimental solution, including calcifying
bacteria in some cases. This will allow us to begin exploring the
relationship between microbially-induced corrosion and mineral deposition.

Inventions (Year 1:

A United States patent application, "Inhibition of mineral deposition by
phosphorylated and related polyanionic peptides" (serial 1107/334,456), by C.
Steven Sikes was filed on April 7, 1989. This application covers the
materials themselves and their use as inhibitors of crystallization. As we
develop the data on corrosion inhibition, we will need to prepare an
application in that field of use.

Publications and Reports (Year 1):

We organized and hosted a symposium, "Surface reactive peptides and
polymers," that was held in April 1989 in Dallas as part of the 197 th

national meeting of the American Chemical Society. Our work was presented
along with 26 other papers, scheduled for publication as an ACS book. The
booklet of abstracts is enclosed.

1. Little, Brenda J. and C. Steven Sikes. 1989. Corrosion inhibition
by thermal polyaspartate. Abstract, ACS 197- annual meeting.
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2. Sikes, C. Steven and M.L. Yeung. 1989. Peptides enriched in
aspartate and phosphoserine as inhibitors of calcium carbonate
and phosphate crystallization. Abstract, ACS 197- annual
meeting.

3. Wheeler, A.P. and K.C. Low. 1989. CaCO 3 crystal-binding pro erties
of polyanionic proteins and peptides. Abstract, ACS 197 h

annual meeting.

4. Sikes, C. Steven and A.P. Wheeler. 1990. Surface reactive peptides
and polymers: from discovery to commercialization. ACS Books,
in preparation.

5. Wheeler, A.P., C.S. Sikes, and K.C. Low. 1988. Absorption of
oyster shell organic matrix synthetic analogs to calcium
carbonate crystals. Abstract, American Zoologist 57, 133A.

Training Activities: The following students and post-doctoral associates have

assisted in the project during year 1.

1. Donachy, Julie E. Ph.D. Research Associate

2. Dickey, Joan D.D.S. Research Associate

3. Yeung, Miranda M.S. Technologist, from Hong Kong

4. Ding, Jane B.S. Surgeon from China working as
a technologist

5. Garris, John B.S. beginning M.S. student

Women or minorities - 4
Non-citizens - 2 (1 from Hong Kong, I from China)

Awards/Fellowships: None.
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