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EXECUTIVE SUMMARY

This final report documents the results of the research conducted at Advanced Decision

Systems (ADS) under a project entitled, "Discrimination Architecture Engineering Support,"

sponsored by Lincoln Laboratory, Massachusetts Institute of Technology, MA., for the period

from December 1, 1987 to August 31, 1988.

The research relates, in general, to performance evaluation of systems for tracking and

classifying a large number of dense (closely-spaced) objects, and in particular, to tracking-

surveillance and object-discrimination in a multi-layer ballistic missile defense system. The

main purpose of the project is to identify a suitable set of performance measures and to

develop simple analytic models. It is required that such models be capable of taking various

problem parameters, such as

[1. threat parameters, including threat trajectories and local densities,

2. sensor parameters, including sensor resolutions, measurement accuracies, detection

probabilities, and false alarm rates,

3. other parameters, including geometrical relationships (viewing angles, sensor coverage,

etc.), tracking time, number of frames, and sampling intervals

and converting them into a suitable tracking performance measure without performing ex-

tensive Monte-Carlo-type simulations.

It was decided that track purity is the most appropriate tracking performance measure

mainly because it is a good measure for representing the quality of tracking outputs especially

for object discrimination purposes. This measure would be important in many tracking

situations where target classification is only possible after correlating data from different
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time/sensor samples. Track purity (the percentage of correct measurements in a given track)

can be decomposed into a series of performance evaluation of sequential correlation processes

(e.g., track-to-measurement associations). Thus, a major part of the research effort " ee.-

devoted to establishing a simple analytic model for predicting the performance of single-scan

track-to-measurement correlation. We have derived and validated the following scaling law

for predicting the probability, Pc, of a track being associated with the correct measurement:

Pc = e - W,6&2 = e 4 e -

In this formula, the probability is expressed by the object density 3 on the sensor's focal

plane and the average prediction error standard deviation a (the error includes both tracking

(i.e., prediction) error and sensor measurement error) or, equivalently, the object density 3

normalized by the error, or the expected number P of measurements in the one-o" area of the

error eli-se.

In general, this simple expression models the performance of optimal solutions to the

classical assignment problem in a probabilistic sense. The results of fairly extensive Monte-

Carlo simulations showed that this law predicts the performance very well over a reasonably

large range of assignment problems. We should note that this evaluation formula is not meant

to be applied to any specific sensor system and/or tracking algorithms. Rather, it expresses

a probabilistic upper bound on the association performance when only two parameters, i.e.,

object density and track prediction errors, are given. We have subsequently found out that

an appropriate expression when false alarms are present is

Pc = e- ' (8+ 20PA) 2

where I3 FA is the density of false alarms on the sensor's focal plane. This model was also

verified by Monte-Carlo simulations.

With these basic models, a method for estimating average track purity given threat/sensor

pararneters was developed. The method depends on Cram&r-Rao type bounds on the track-

ing accuracies and on dynamical models for predicting the object spatial densities. Again
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the Cram~r-Rao type bounds are used to obtain estimated upper bounds on tracking per-

formance, thereby viewing potentially complicated tracking processes (e.g., track initiation,

continuation, editing, elimination, multiple-hypothesis, etc.) as large black boxes and mak-

ing the resultant expressions independent of any particular tracking algorithm. To verify

the track purity prediction method we have developed, a small-scale simulation of ballistic

object tracking with an orbiting sensor was conducted. More extensive tracking simulations

or examination of performance of various tracking systems are planned for the next phase of

this project.

Issues concerning limited sensor resolutions, i.e., closely spaced objects, were also inves-

tigated. Since our main object is to establish a method for estimating track purity, it is

appropriate to view unresolved measurements as bad measurements (just as incorrectly as-

sociated ones). Thus, we have reduced the issues to a problem of predicting the frequencies

of measurements being merged together, as functions of object densities on focal planes and

sensor resolutions. We have developed a simple expression for the probability of an object

being included into unresolved measurements. This simple expression was also tested by

extensive Monte-Carlo simulations and found to be fairly accurate.
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1. INTRODUCTION

This final technical report documents the results of the research which was conducted

at Advanced Decision Systems (ADS) under a project entitled, "Discrimination Architecture

Engineering Support," sponsored by Lincoln Laboratory, Massachusetts Institute of Technol-

ogy, MA. The task is to develop an analytical model which relates scan-to-scan correlation

performance to threat and sensor parameters. Since the emphasis is to to develop analytical

methods for evaluating sensors' ability in tracking threat objects, the research effort at ADS

is called "Tracking Performance Evaluation."

1.1 Background

ADS' task is a part of Lincoln Laboratory's effort on Discrimination Architecture for the

Sensors Directorate of SDI Office. This effort is concerned with modeling the interaction of

different sensors operating together in various layers of a multi-layer ballistic missile defense

system. A major element of such a system is a passive IR sensor operating in a track-while-

scan mode and covering a large portion of the threat volume.

Such a system encounters various serious problems including:

* a large number of objects to be tracked and discriminated

* non-uniform distribution of object locations and velocities

e low observability - angle-only measurements (no range information)

9 very high local object density compared with sensors' resolution

* nonlinear dynamics (ballistic trajectories) and nonlinear, time-varying observation (or-

biting sensors)

@ relatively long sensor revisit time compared with the time constant of object dynamics

There is a need to estimate the sensors' ability in tracking objects in this difficult

tracking environment. For several reasons, it is desired to perform such estimation without
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conducting simulations using detailed threat/sensor simulators and particular correlation al-

gorithms. One of the reasons is to avoid expensive Monte Carlo runs. Other reasons include

the desire to estimate the upper bound of the performance given basic threat/sensor param-

eters (independent of particular correlation algorithms), and to produce sensor parameter

specifications to meet given tracking performance requirements.

Thus we need a simple analytic model relating scan-to-scan correlation performance as

a function of threat and sensor parameters, which include:

* number of objects to be tracked and discriminated

e local spatial density of objects

* geometric relationship between threats and sensors, such as viewing angles, detection

opportunities, etc.

* sensor resolution, measurement accuracy, detection probability and false alarm rate

a tracking time, number of frames, sensor revisit time, etc.

Since we may want to establish an upper bound on tracking performance, inclusion of op-

erational parameters given to trackers (correlators), such as validation gate size (X 2-Value),

various threshold valu~es, etc., may or may not be desirable.

1.2 Objectives

ADS' task is to develop simple analytic models which relate correlation performance to

key threat/sensor parameters. In particular, it is our goal to develop scaling laws to identify

situations where similar performance can be expected and to permit rapid comparison of

different scenarios to determine which will have better scan-to-scan correlation performance.

In order to achieve this, it is necessary to develop simple measures of scan-to-scan correlation

performance. Analytic models and scaling laws thus obtained must then be validated and,

if necessary, calibrated through a series of small-scale simulations.

Figure 1-1 is a conceptual block diagram showing all the system components, and key

functions and parameters. Our objective is to establish simple analytic models which relate
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all the input parameters, going into system components from above in Figure 1-1, to the

tracking (correlation) performance metrics coming out at the bottom of the figure. One can

view the whole system shown in Figure 1-1 as a system which detects objects and estimatez,

their (six-dimensional) states. From this point of view, it is natural to consider performance

metrics such as

* Percentage of missing objects (or fraction of objects which the system fails to track)

* Number of false (extraneous) tracks

e Tracking accuracy - six-dimensional state estimation errors

which are parallel to the standard set of performance evaluation metrics used for sensors,

i.e., detection probability, false alarm rate and measurement accuracy. Unlike sensor signal

processors which usually operate on a snap-shot (single-scan) basis, trackers or correlators

involve very complicated data processing, and as a result, it is sometimes not straightforward

as to how to define the above three metrics.

In our particular environment, i.e., in ballistic missile defense systems, however, it is

more appropriate to measure the third criterion, i.e., tracking accuracy, as the closeness

of the data-to-data correlation (partitioning of multi-scan detections) results to the real

source of each measurement. This is so because, in the present stage of technology, effective

object discrimination requires time series of measurements distinctively originating from

each object to be discriminated. In other words, discrimination algorithms must rely on the

correlation results of object trackers. In such a situation, mis-association generated by a

tracker (correlator) is naturally a serious problem for a discrimination system, and it is very

important to predict the magnitude of such mis-association. Thus our main objective is to

predict tracking performance in terms of how pure each track is, in other words, how many

mis-associations each track contains.

1.3 Technical Approach

As mentioned before, the primary objective of this research is to quantify the (poten-

tial) ability of tracking and discriminating objects given a set of threat/sensor parameters.
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Therefore, it is desirable to conduct analysis independent of any specific tracking (correlation)

algorithm. One way to accomplish this objective is to analytically evaluate the performance

of the optimal algorithm. A class of general multi-target tracking problems has been formu-

lated and optimal solutions to them have been developed. (See, e.g., [1]). Unfortunately,

performance evaluation based on this general theory of multi-target tracking is extremely

difficult even in Gauss-Poisson cases. This is so because such analysis cannot avoid com-

plicated probabilistic calculation involving non-gaussian (typically X2) random variables. In

fact, almost all the tracking algorithms (including the tracking algorithm specifically de-

signed to solve the tracking problem in ballistic missile defense systems [2]) involve x 2-type

random variables in one way or another, which makes analytic evaluation very difficult.

Nonetheless, there have been a small number of papers and reports on this subject

mainly considering specific algorithms, e.g., [31, [41 and [5]. Primary concerns were on statis-

tics of missing objects and false tracks, and analytic results were obtained from Markov chain

models which approximately describe detection history for each track. Therefore, emphasis

was placed on track initiation performance rather than track continuation, and the possibil-

{ ity of mis-association was not considered. In the context of ballistic missile defense systems,

or at least of in some phases of such systems, failure of track initiation or creation of (perma-

nent) false tracks are not of central importance due to relatively high detection probability

and substantially regular dynamics. Nonetheless, the track initiation itself is quite important

due to the high object density, the limited resolution and the low observability (angle-only

measurements). On the other hand, the track initiation problem may be made somewhat

easier through system architecture concepts such as birth-to-death tracking. On the other

hand, track quality in terms of track purity is of great importance for object discrimination

and targeting purposes, and is thus the performance measure used in this study.

I Since track purity may be expressed as a summation of the correctness of track-to-

measurement correlation at each scan, the most critical analysis is that on the single-scan

correlation performance. Our approach is first to establish a very simple analytic model

which relates the single-scan correlation performance to a few parameters characterizing the

fscan in question, and then to relate that single-scan model to prediction of average track

purity. Figure 1-2 summarizes our technical approach for this research. In order to developIL
!5
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a simple analytic model, we must base the single-scan analysis on a relatively simple math-

ematical model with several simplifying assumptions. However, crucial parameters must be

adequately included. In our approach, the single-scan correlation performance is related to

the measurement prediction accuracy by tracks and object density on the sensor's focal plane

in each scan. These two key parameters can then be related to other parameters defined by

threat/sensor scenarios. In arriving at analytic expressions for correlation performance, it

is inevitable to simplify models by ignoring complicated factors and approximating math-

ematical formulae. In general, in our approach, initially analysis is conducted with many

assumptions (sometimes restrictive), and then, relaxation of assumptions is attempted later

one by one. Each step of analytic results will be verified as much as possible through Monte

Carlo simulations.

The next section, Section 2, describes the single-scan correlation performance analy-

sis which forms the basis of the majority of the results described in this report. The next

(section, Section 3, shows how key parameters used in Section 2 can be derived from a

given threat/sensor scenario; this is followed by the expressions for track purity in Section

[4. Throughout these sections, various kinds of Monte Carlo simulations are used to verify

the analytic expressions. The last section, Section 5, summarizes the results and discusses

directions for future research. Detailed mathematical derivations are presented in the Ap-

penices.
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2. SINGLE-SCAN ANALYSIS

This section describes the single-scan correlation analysis which serves as the basis of the

studies presented in this report. In a sense, this section describes the problem of estimating

track purity in its simplest form. Initially, we will ignore some factors, i.e., missed detections,

resolution limitation (closely spaced objects), false alarms, etc. The effects of those factors

will be considered later in this section or in the subsequent sections. The mathematical model

used in this section is almost identical to that in [6], which analyzes the single-scan-based

sensor-to-sensor correlation problem. The technical report (61, written fourteen years ago is

concerned with the precise calculation of the probability of the most likely correlation being

the correct one and draws its main results through the Fourier (characteristic function)

technique. In this section, by introducing further simplifying assumptions, a very simple

expression of the probability will be obtained as a basic scaling jaw.

2.1 Mathematical Model for Single-Scan Correlation Problem

Suppose that we have been tracking N objects in a number of scans from a sensor

(or sensors) from which N tracks have been formed, and that there is a perfect one-to-one

matching between the set of "real" objects and that of tracks. We assume, for the moment,

there are neither false alarms nor missed detections in the previous scans as well as the scan to

be considered here. Thus we consider a sensor scan consisting of N measurements, yl,..., /N,

with each yi originating from the i-th object.' Assuming an angle-only measurement passive

sensor, each yi is modeled as a two-dimensional random vector,

W = zi + ni (2.1)

for each i e {1,..., N}, where zi is the "true" projection of the position of the i-th object

onto the sensor's focal plane and ni is the additive zero-mean gaussian noise with a 2 x 2

variance matrix R4.

'In an actual scan, it is natural to model the order of measurements as a realisation of a totally random

(i.e., equally probable) permutation of a given object labeling. Here we are using the identity index map
from the set of the objects to the set of measurements for notational convenience. For a correlator, the
identity map is just one of all the equally probable permutations. See Appendix A for a related discussion.
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On the other hand, for each i E {1,...,N}, thc i-th Lrack (tracking the i-th object) is

associated with measurement prediction i which is modeled as

i zi + Mi (2.2)

where mi is a zero-mean gaussian random vector representing the measurement prediction

error of the i-th track, with Qi being its variance matrix. We assume that the random

vectors, i, ...,jN, n, I_1 nN, m,..., mN, are independent from each other.'

In this simplified situation, it is natural to evaluate the performance of the optimal

assignment algorithm. Each assignment is a permutation 7r on the index set {1, ..., N},

i.e., under a permutation 7r, the i-th track is assigned to the 7r(i)-th measurement. Under

an appropriate set of assumptions, it can be shown4 that an optimal track-to-measurement

jassignment is represented by a permutation which maximizes the assignment cost function

N

J(7r) = X(i,7r(i))2  (2.3)

over the set of all the permutations r on the set {1, .., N}, where, for each (i,j),

)
X(i,j) - - YJ- S. (2.4)

with s

i + _Rj (2.5)

which is assumed to be positive definite. Then the probability of the optimal assignment

being the "true" one is the probability of the event in which J(1) < J(r) for all the permu-

tations ir where t is the identity maps representing the "true" assignment.

The problem of determining an optimal 7r to minimize (2.3) is the well-known classical

assignment problem. It is also a well known result that, under a correct assignment (Or =t),

'In an actual situation where ballistic objects are being tracked, each measurement prediction and

its associating error variance matrix Qi are obtained by the nonlinear projection from the object state
distribution for each track on to the sensor's focal plane.

3 See Appendix A for discussions concerning this assumption.
'See Appendix A.
'By 11211A, we mean a semi-norm of z in a Euclidean space defined by a nonnegative definite symmetric

matrix A as 11211A = /V'Y'i. Thus, when I is the identity matrix, lizDi = Ilzil' is the Euclidean norm of z.
2 T is the transpose of a vector or matrix z.

ONamely, &(i) = i for all i E {1,.., NJ
1 9



the assignment cost J(L) is a X2 random variable with degree of freedom equal to N times

the dimension (two) of the measurement space. It can also be shown that, when 7r is not a

true association, J(ir) is a non-centric X2 random variable (See [6].). Although these results

have been known among researchers for at least two decades, there is not much else in the

form of analytical facts that we can point out.

2.2 Estimation of Probability of Correct Association

In [63, it was argued that the events in which three-way or more complex assignment

errors happen in an optimal assignment are very rare so that we should only consider two-

way mis-associations. This argument may be loosely supported by the following observation:

Every permutation can be expressed as a composition of transpositions (two-way switches).

Therefore, unless the probability of having each transposition is significantly high, two or

more simultaneous transpositions involving the same object should 'not happen very often.

It should be very rare particularly when the object density is not significantly high. For the

moment, let us assume that transpositions are the only significant events.

jSingle Transposition: To simplify the discussion, let us consider each transposition

independently, and thus, assume only two objects, i.e., N = 2. The event to consider is

£12 = {J({(1,1),(2,2)}) _ J({(1,2),(2,1)})} (2.6)

of two tracks being correctly associated with measurements. As seen in [6] and in Appendix

B, the calculation of this probability is not easy and evaluation may be possible only through

numerical methods, e.g., Fourier transformation (i.e., by evaluating the characteristic func-

tion of a non-centric X 2 random variable), which will not lead to any analytic expression

useful for our purpose. However, when we assume Q, = Q2 and R, = R 2, and when condi-

tioned by the predictions by tracks, we have a simple probabilistic expression,

SProb(Ex121i,42) =-- 1%9 - ills-, (2.7)

where
7

Sj = S (2.8)

7 erf(.) is the error function defined as erf(z) = -e-(/24
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Figure 2-1: Single-Scan Analysis: Two Objects

for all (i, 3 ) E {1,2} x {1,2}. This assumption, (2.8), may be justified in situations where

object states in a group are very similar and so are the SNR's of each detection. It may not be

a very plausible assumption, however, in special situations, e.g., when two object groups are

crossing or merging on a sensor's focal plane. Even in such situations, with enough number

j of frames being accumulated, this assumption may become eventually a close approximation

of the reality.

Assume further that il - j2 is distributed uniformly on a disk with radius r, or equiv-

alently that j, is at the origin 0 and j. is distributed uniformly on the disk with radius r

(See Figure 2-1.). Define an average prediction error standard deviation er as the geometric

average of the semi-major and the semi-minor of the ellipse defined by ilylIs-I = 1, i.e.8 ,
I

-[det(S)] 11 4  (2.9)

Then, as shown in Appendix B, when the radius r is large enough compared with the square

root of maximum eigenvalue, i.e., the semi-major of the ellipse defined by S, the unconditional

SBy det(A), we mean the determinant of a square matrix A.
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Figure 2-2: Single-Scan Analysis: N Objects

probability of the event E12 can be expressed simply as

Prob.(E,) 1- (2.10)

Multiple Transpositions: Now let us go back to our N-object model. Without loss

of generality, we can place the track we are concerned with, say the first track, at the origin,

i.e., P, = 0. Assume that all the other tracks are uniformly distributed on the disk with

radius r (See Figure 2-2). This assumption should not be too restrictive as far as the radius

r is large enough compared with the average prediction error standard deviation a and the

track we are considering, i.e., ji, is not almost on the edge of the track group's extent.

Furthermore, let us assume (2.8) for all pairs (i,j) of indices for tracks and measurements.

Let E, be the event in which there is no transposition between the first track ji and any of

the remaining tracks. Then, by assuming that any mis-association is caused by one or more

such transpositions involving the first track, the probability of the first track being correctly

associated with the measurement can be simply expressed (following from (2.10)) as2)I-

Prob.(E,) m (Prob.(EI2 ))N - m - - 1 - 7r3p2  (2.11)

12



where 6 is the object density on the focal plane, i.e.,

N-1 NN(2.12)
- 7r

2  7rr
2

assuming N > 1.

It follows from (2.11) that, when the number N of objects is a random integer with a

Poisson distribution, the probability of the track being associated with the correct measure-

ment becomes

Prob.(E,) exp (_7r/82) (2.13)

where the object density 3is now re-defined as

(2.14)

with v being the expectation of the number N of objects, which is now re-defined as a Poisson

random variable.

The expression (2.13) is the most important result in the studies described in this report.

It is a simple scaling law which expresses the probability of correct association as the function

of 1) object density 8 on the focal plane and 2) the average measurement prediction error

standard deviation a. Since (2.13) is a function of f382, we can have a simpler expression

Prob.(E,) ; exp(-7rI) (2.15)

where 0 is the normalized object density defined by

= ' = (2.16)

It should be noted that (2.15) claims that the correlation performance is determined solely

by the normalized object density (defined by (2.16)) on the focal plane.
Monte Carlo Simulation: To verify the scaling law (2.13) or (2.15), a series of Monte

Carlo simulations were performed. Figure 2-3 shows the results. For each run, a hundred

tracks were simulated by generating - uniformly on a disk with an appropriate size,

and then one hundred measurements, (y.) 10, were generated according to eqns. (2.1) and

(2.2). Then the optimal assignment was calculated by Munkres algorithm (7]), and it is

subsequently compared with the true track-to-measurement correspondence. The probability

13
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Figure 2-3: Single-Scan Correlation Performance (1)

)of correct association is defined as the percentage of tracks which were correctly assigned

with measurements and is averaged over 50 samples for each point in Figure 2-3. The

measurement prediction error variance matrix S was chosen to be a diagonal matrix with

the same diagonal elements. The cases with non-diagonal matrices, or in other words, the

j non-zero eccentricity of the ellipse defined by l[ylIs-, = 1, will be discussed later in Section

2.3.

When we derived the scaling law, (2.13), we used a mathematical model which places

the track to be considered at the origin and assumed other tracks are distributed uniformly

around it. When a track is situated at the peripheral of a track group, the track density

which affects the probability of correct association effectively decreases. This kind of "edge"

effect was not considered in (2.13). Since the purpose of the Monte Carlo simulation is to

verify the appropriateness of the simple mathematical expression (2.13), we considered only

the tracks which are within a disk with half the radius of that of the disk over which all the

tracks are unifoimly distributed, thereby eliminating the edge effects. We will discuss issues

concerning uneven object density later in this section.
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Figure 2-3 shows the results with three different object densities, i.e., ( being .1, .25

and .5 objects per unit area (distinguished by three different symbols in the figure), as plots

of the correct association probability versus the average measurement prediction variance j2

(measured by unit area), together with the scaling law (2.13). Figure 2-4 plots the same data

using the normalized object density defined by (2.16) and compares them with the scaling

law (2.15). Figure 2-4 uses the same symboL used in Figure 2-3 for different actual (not

normalized) object densities. In Figures 2-3 and 2-4, the empirical results agree with our an-

alytic results, eqns. (2.13) and (2.15), very well except for regions where we have high object

densities or large measurement prediction errors. In such regions, however, both actual and

predicted correlation performance are very bad, i.e., with probability of correct association

being 50% or less, and hence, it is not reasonable even to try track-to-measurement correla-

jtion at all. Nonetheless, it is interesting to see that the actual optimal assignment performs

much better than the theoretically expected performance. This deviation seems to originate

from the fact that, in our analysis, the mis-association mechanism is modeled simply by

composition of independent transpositions, and complicated multiple-way mis-associations
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and dependence of association errors (ignored in the analysis) cannot be ignored in high

object density or large measurement prediction error cases. Another explanation for this

deviation is simply the increase of "edge" effects which we have discussed before. (See also

Appendix B for related discussions.) Figure 2-5 shows the same plots as those in Figure 2-4

J but the abscissa is taken as the expected number of measurements in the validation gate of

each track. The expected number zi 0 of measurements per track validation gate is calculated

as

LG= 1+ 704/3X/(Sj (2.17)

where X' is the X'-value to determine the validation gate size. In this plot, the value, xG = 3,

J is used.

It may be interesting to see that, in actual simulations, how often multiple switches,

i.e., mis-association not caused by simple transpositions, happen. Table 2-1 shows the av-

erage number of occurrence of various kinds of mis-associations with different normalized

object densities, 6 (using unit 1/7r). As seen in the table, the occurrence of complicated

object switches increases as the object density increases. However, within the range where
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Table 2-1: Mis-Association Statistics

3(1/r)I Two-Way Switches Three-Way Switches Four Ways or More
.02 .7 0 0
.05 1.9 .1 0
.1 3.8 .4 .1
.2 6 1.2 .1
.5 9 2.8 1.4
1 10.1 4.7 4.6
2 7.2 3.6 6.8

the probability of correct association is meaningful, say about 50 %, the two-way switches

dominates more complicated switches. This is consistent with the fact that the scaling law,

(2.13) or (2.15), considering only two-way switches, predicts the assignment performance rel-

atively well (as seen in Figures 2-3 through 2-5). The effects of complicated switches which

are not modeled in our analysis are not clear. The fact that the simple expression, (2.13)

or (2.15), fits well with simulation results indicates overall cancellation of over-estimation of

the performance with under-estimation.

2.3 Effects of Eccentricity of Error Ellipse

In the single-scan analysis in this section, we have assumed the prediction error variance

matrices, S,, for all the track-measurement pairs are identically equal to a matrix S. The

matrix S (which is assumed to be positive definite) defines an ellipse', {Y E %2III!,II-, - 1}.
In the simulations, the results of which are shown in the previous section, 2.2, we have as-

sumed zero eccentricity. In this subsection, we will examine the effects of eccentricity of the

error ellipses and measure such effects by means of Monte Carlo simulations to confirm the

validity of our analytic expression, i.e., (2.13). According to (2.13) together with the defi-

-jnition (2.9) of the average error standard deviation e, the probability of correct association

can be expressed as

Prob.(E,) - exp(-3A)

'R = (_o, oo) = set of real numbers.
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where A is the area of the error ellipse defined by {y E R2IIIYI1_ } In other words, the

probability of correct association can be expressed as

Prob.(Ec) - exp (Expected Number of Objects in Error Ellipse)

Let ul and /2 be the two (strictly positive) eigen-values of the matrix S, and let a -

J max{vrAi, /--2} and b = min{VL ,/-} be the semi-major and the semi-minor of the

ellipse. Then the average prediction error standard deviation Z defined by (2.9) can be

rewritten as

= aV1- e2 (2.18)

and hence, (2.13) becomes

Prob.(Ec) z exp(-7rla2 (1 - e2)) (2.19)

Jwhere e is the eccentricity of the ellipse.

Figure 2-6 shows the probability of correct association where the semi-major a of the

error ellipses and the object density 0 are fixed such that

&= = fOa2 = .05
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when the eccentricity is zero (e = 0) and the eccentricity is varied from 0 to 1. This figure

also shows the results of Monte Carlo simulations. For each Monte Carlo simulation point

shown in the figure, 200 samples are taken for the simulation using 100 objects. As seen

in the figure, the simulation results closely follow the theoretical curve shown by the solid

curve.

2.4 Uneven Local Object Density

In Section 2.2, we have derived simple scaling laws to determine the probability of correct

association as a function of object density and track measurement prediction errors. To do

so, we have assumed objects are distributed uniformly on a given region of the sensor's focal

plane. This uniformity assumption may not validly reflect reality. For example, if objects are

distributed uniformly within a ball in a three-dimensional space, apparently their projections

onto a plane are not distributed uniformly. In general, the two-dimensional projection of

a group of three-dimensional objects is such that object density is in general a decreasing

function of the distance from the center of the image. As will be shown in Section 4, even in

such a case, if the object density is appropriately calculated, the scaling law, (2.13) or (2.15),

still provides us with relatively accurate performance prediction. However, one may want to

question how uneven local object density affects the correlation performance, in particular,

one may want to quantify the difference in correlation performance between inner objects

and outer ones, within the same object group.

A naive way to derive an expression which may handle the dependency on the varying

object density would be

Prob.(E) - exp (-7r,3(p)&2) (2.20)

or
Prob.(E,) -- exp(-r (p)) (2.21)

which are obtained directly from (2.13) and (2.15) (resp.) by simply replacing the costant

object density 3 (normalized density P') by non-constant density, e.g., the density, 0(p) or

43(p), depending on the distance p from the center of the track group. However, there is no
immediate justification to do so. This is so because, although we can model varying object
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density by a non-constant function P or /3, such notion is only valid for a small region where

we cannot ignore the extent of the prediction error ellipse. Nonetheless, when the object

density is a monotonic (decreasing) function of the distance from the center, the effects of

the slope of the object density may be averaged out so that expression (2.20) or (2.21) is in

fact a good approximation for the non-uniform local object density.

In order to illustrate this point, the probability of correct association was calculated

assuming a gaussian density, i.e.,

- 2-'exp (( )(2.22)

J with E > a, where p is the distance from the center of a track group and v is the expected

total number of tracks in the group, rather than assuming a uniform density. Appendix

C shows (2.20) is in fact a good approximate expression in such a case. This analysis is

also supported by a Monte Carlo simulation, the results of which are show in Figure 2-7.

The curve shown in this figure is obtained from (2.20) and (2.22) with z, = 20, E = 2 and

= .2. This theoretical curve is supported by a Monte Carlo simulation whose results are

20



shown in the figure by step functions. The simulation produces 300 samples of a 20-object

scenario according to (2.22) with parameters consistent with the curve. Then all the correct

associations and mis-associations are sorted according to the distance of the track from

the center of the group, and the average probability of correct association is calculated for

each interval of the distance. The figure shows that the simulation results coincide with the

theoretical curve surprisingly well, suggesting that this kind of "gaussian" model may be used

to investigate the unevenness within an object group in terms of correlation performance.

2.5 Effects of False Alarms

In section 2.2, we have derived a very simple but relatively accurate expression for the

probability of correct association by first 1) calculating the probability of transposition (two-

way switch) of objects (assuming only two objects) and then 2) identifying the event of correct

association as the one in which no transposition takes place with 'any of the surrounding

objects. With this approach, it is rather straightforward to take false alarms into account.

Recalling that E, is the event of a track being associated with a correct measurement, let

E4 be the event that there is no transposition between the track in question and any other

surrounding track and Ef! be the event that there is no transposition between the track and

any of the false alarms which surrounds it. Then we have

Prob.(E,) = Prob.(Ed)Prob.(E!) (2.23)

which may be supported by the assumption that tracks (i.e., objects) are independent of

false alarms.

For the sake of simplicity, let us assume that the common prediction error variance

matrix S is an identical matrix with the same diagonal element 2. Then as shown in
.1J Appendix D, we have

Prob.(Eet) ; exp(-7r,3&') = exp(-7r3) 
(2.24)

.] and
Prob.(Ef,) z exp(-27r'3FA&2) 

(2.25)

where fNFA is the density of false alarms. It is interesting to observe that the two expressions

(2.24) and (2.25) are almost identical with the difference of the factor 2, which originates
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from the fact that measurements from other tracks contain their prediction errors while false

alarms are simply assumed to distributed uniformly around the track in question.

j It follows from (2.23), (2.24) and (2.25) that

Prob.(Ee) ; exp(-7r(,6 + 2#FA)&2 ) = exp(-w3(l + 21FA)&) = exp(-r(l -+- 2+YFA)) (2.26)

where -YFA is the ratio of the false alarm density over the object density on the focal plane,

i.e., 6FA/,. Figure 2-8 shows the effects of the false alarms on the probability of correct

association. In this figure, the theoretical curve defined by (2.26) is shown as well as Monte

Carlo simulation results (shown by dots). The normalized object density 3 of .1 is used for

this figure and the ratio of the false alarm density over the object density is chosen as the

independent parameter. For the simulation, 100 targets are generated for each run and each

point is obtained form 50 samples. As seen in this figure, simulation results support the

simple expression (2.26). As observed in Figure 2-3 and Figure 2-4, the theoretical expres-

sions give us slightly pessimistic predictions when the correlation performance is degraded

substantially due to dense false alarms.
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2.6 Summary of Section 2

In this section, we have presented the major results of the studies described in this

report, i.e., the scaling law expressed by (2.13) and (2.15). This analytical expression is

very simple and yet we have shown, by means of extensive Monte Carlo simulations, that

it may provide very accurate prediction for single-scan correlation performance. A crucial

assumption in deriving this expression is that the prediction error variance matrix Si for

each track-measurement pair is (at least almost) identical, which may be valid when we track

a group of objects whose state vectors are close together. Issues concerning the shape of the

error ellipses, the uneven local object density and the false alarms, have been also discussed

in this section. Issues concerning the unresolved measurements (i.e., closely spaced objects)

will be included in Section 4.
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3. TRACK ACCURACY AND OBJECT DENSITY

In Section 2, we have developed a very simple scaling law which predicts the single-scan

correlation performance as a function of object density on the focal plane and the average

prediction error standard deviation. These two variables are time-varying and depend on

threat/sensor scenarios. In this section, we will discuss how to obtain these two variables

from a given set of scenario variables, together with other related issues.

3.1 Cramir-Rao Type Bound

This sub-section discubses how to obtain the average prediction error standard devi-

ation a defined by (2.9). The standard deviation a is determined by the prediction error

variance matrix S which we are assuming (at least approximately) identical for every track-

measurement pair. In Section 2, we have modeled the prediction error 1 y an additive gaussian

random vector as in (2.2). For an actual track, the measurement prediction j and the vari-

ance matrix S are calculated from the six-dimensional state estimate and its error variance

prediction associated with the track. Unless all the past measurement associations are given,

it is impossible to calculate or estimate the state estimation errors. To keep the development

simple, we will first consider a track with perfect past measurement association, which will

give us a form of upper bound on the correlation performance for a given scan. The effects

of the past data mis-associations will be discussed later.

When all the data associations are known, estimation of the six-dimensional state of a

ballistic object becomes a well-defined continuous-time dynamics discrete-time measurement

filtering problem. Due to the non-linearity, there is no analytic way of accurately predicting

the filtering performance. Fortunately, it is possible to calculate a Cramir-Rao type lower

bound on the state estimation errors using a method similar to the one used in [8]. The

technique can be well summarized by the following quotation from the reference [9]:

.. ........ the extended Kalman filter variance propagation equations linearized

about the true unknown trajectory provides the Crami-Rao lower bound to the

estimation error variance matrix."
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In other words, we can solve the Riccati-type differential equation using partial derivatives

about the true trajectory to obtain a lower bound on the state estimation error variance

matrix, from which we can calculate a lower bound on the measurement prediction error

vaiances.

Consider a track which consists of a set of measurements at different times indexed as

{tk} (in general from multiple sensors) and assume that the object being tracked is governed

by the ballistic dynamical equation

d
-z(t)-- f(z(t)) (3.1)
dt

where x(t) is the six-dimensional state consisting of the 3-dimensional position and velocity,

and f is the gradient of the potential due to the earth's gravity. The track contains the

measurement at each time tk as

y k = h(z(tk),ti) + wlk (3.2)

with white gaussian noise sequence {wk}. The function h(., tk) projects the three-dimensional

J object position onto the sensor's focal plane at time th.

For the sake of simplicity, assume that there is no a priori information. Then the lower

bound Ph on the state estimation (filtering) error variance matrix at time tk can be written

as

pIa = y11p(t,)THTR7lHi1P(tk,ti) (3.3)

where F(.,-) is the fundamental solution matrix satisfying

p(ts) = (t,s) L (z(t)) (3.4)

with the boundary condition 'I(s, s) = I where I is the six-dimensional identity matrix. Hk,

in (3.3) is the matrix of the observation partial about the true state at time ti,, i.e.,

.9h ()t=k X k ,,i) (3.5)

and R, is the measurement error variance matrix for the n-th observation. Finally the

measurement prediction error variance matrix for the scan at time tk is calculated as

SA = Hi,P, ,H + Rk (3.6)
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Table 3-1: Choice of State Space for Cramir-Rao Bound Calculation

State Space rf Dynamics Observation
Cartesian Simple Nonlinear Simple Nonlinear

Range, Az, El Complicated Nonlinear Linear
Orbital Elem. Linear Complicated Nonlinear

In the above equations, (3.1) - (3.6), we have assumed that the object state is expressed

in the six-dimensional cartesian coordinates with the origin at the center of the earth. How-

ever, the results (3.6) should remain the same even when we use a different coordinate

system. Table 3-1 shows the possible choices of the coordinate system for the state space.

Appendix E describes the forms of functions, (f, h), in each coordinate system. One of our

objectives is to calculate the performance estimates quickly given a small set of necessary

threat/sensor parameters. The choice of the coordinate system may be related to this re-

quirement. Nonetheless, we did not find any particular difficulty in solving the differential

equations, (3.1) and (3.4), in the standard six-dimensional cartesian coordinate.

As a preliminary investigation, we assume a simple scenario assuming a threat consist-

ing of a group of ballistic objects and a single orbiting sensor. Figure 3-1 illustrates the

jthreat and the sensor trajectories. The two circles in the figure indicate the centroid of the

threat and the sensor position at a given time. The threat trajectory is a minimum-energy

trajectory and the sensor orbit is a low-altitude circular one. This example was constructed

so that the threat is visible from the sensor for most of the threat trajectory. Figure 3-2

shows the results of calculations of the average prediction error standard deviations & as-

suming perfect data association at each scan. This figure shows the average prediction error

standard deviations calculated by (2.9) and normalized by a constant sensor measurement

error standard deviation with three different sampling intervals, 5, 10 and 20 seconds. Each

curve shown in the figure has a peak around time 350 sec. when the distance from the sensor

to the threat group is at a minimum so that the prediction errors are magnified, and exhibits1
a pseudo-stationary behavior just before and after this peak.

As seen in Figure 3-2, when a track has only a few scans of data, the prediction errors

are very big, partially because of the low observability of the angle-only measurements by the
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sensor. This poor prediction performance by tracks will result in very poor correlation results

if a simple correlation algorithm discussed in Section 2 were used; in fact, correlation results

from such an algorithm may be so bad as to become meaningless. Generally, the problem

of generating meaningful tracks under such conditions is referred to as the track initiation

problem. Many techniques have been developed, including the general multi-hypothesis

technique described in [1]. Several techniques were developed specifically for ballistic missile

defense systems (with which we are concerned in this report), i.e., [101, [11] and its refinement.

From the view-point of track purity, tracks in this track initiation phase may be too

poor to be useful for the user we have in mind for this report, i.e., an object discrimination

system. Hence we may consider a track initiation period as a time interval to produce a priori

information to tracks and consider only subsequent intervals for object discrimination, which

is more or less consistent with the underlying assumptions made in our analysis described

in this report.

Under some conditions, however, it is desirable to provide as many data as possible

for object discrimination and even to include the measurements in the initiation phase.

In such a situation, it is reasonable to "re-do" the data-to-data correlation after tracks

accumulate enough measurements to establish "good" state estimates. One simple way of

viewing such a process is to consider track-to-measurement correlation using the smoothing

state estimates rather than the filtering state estimates as indicated by (3.3). A lower bound

on the estimation error variance for the smoothing state estimate can be obtained by simply

replacing the range of summation in (3.3) by a larger interval, e.g., up to a given K as

K
S= Z (tk,)THTR7iHiP(tkti) (3.7)

Correspondingly we may replace Pk in (3.6) by Pk. Figure 3-3 shows an example comparing

the "filtering" predictions with the "smoothed" predictions. However, it is not very clear if

the use of the smoothing estimation error variances in this way can be justifiable (or useful)

or not. For example, it is not clear if we should use the "smoothed" state estimation error

variance to predict performance of such "delayed" correlation since the information in the

measurements are already included in the "smoothed" state estimate.
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3.2 Object Density Estimation

This sub-section discusses the calculation of the other parameter needed for the simple

scaling law, (2.13) or (2.15), i.e., the object density P on the sensor's focal plane. We will seek

J a simple analytic method to calculate this quantity from a given set of threat parameters.

Consider N ballistic objects and let zi(t) be the 6D state of the i-th object at time t.

When all the objects are separated (no interaction among them) and the only force applied

is the earth's gravitational force, all the states zi(t) obey the same differential equation,

i = f(xi). Let us define the centroid by

df 1 N
S zi(t) (3.8)

and the spatial variance by

V(t) def 1 N(~t -- (9=~t D - zi(t) - l(t*l zi(t)- g t))T  (3.9)

N i=I
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Then, if the distance 11xi(t) - i(t)I of each object state from the centroid is small enough,

the centroid and the variance follow the extrapolation equations

d lNd

N__ _ Xt))

IV H i t) (3.10)N C310
Ni=1

= f(2(t))

and

N
dV(t) d 1- E X(t)Xi(t)T - gt)g(t)T

dt dt Ni=1

N ( ( - (t))X,(t)T + X,(t)(-,(t)- j(t))T f (g(t))T

af Of(i(O))MO + VW L (MMT)
~(3.11)

The spatial variance E(t) on a sensor's focal plane at time t can then be approximated

E(t) - X((t),tOV F(2(t),t (3.12)

where h(-, t) is the function which maps a point in the six-dimensional state space to a two-

dimensional angular measurement at time t on the focal plane of a given sensor. The object

density on the focal plane can be calculated as a ratio of the total number of objects over

the area of the elliptic region defined by the variance matrix E(t), using an appropriate X2

value, as

(t) = N (3.13)
lrx 2 det(E(t))

Figure 3-4 shows an example object density on a sensor's focal plane as a function

of time. The scenario used for this calculation is the same as the one used in the last

J section. The initial spatial variance has been more or less randomly chosen. The X2 value

corresponding to the 99%-inclusion probability was used for (3.13). The object density in

the figure is normalized by the sensor's measurement error standard deviation. The dip of

the curve in Figure 3-4 corresponds to the point where the distance between the threat group
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and the sensor is at a minimum. As seen in this figure, unlike the prediction error variance,

in general, there is no apparent "stationary" behavior. The initial condition for (3.12) was

set to be

0 0
U1, 0 0 (3.14)

o)= 0 0. 2  0

0 0 o 2

with a given a',, which we can relate to as the dispersion rate of a threat object group.

Needless to say, the X2 value in (3.13) is sensitive to the calculation of the object density/3

and an appropriate value is yet to be investigated.

3.3 Effects of Mis-Association

Mis-association for a track in a scan may create significant measurement prediction

errors in the subsequent scans. Such errors may be characterized as estimation bias in the

sense that the estimates may be further away from the "true" values than being indicated by

the variance matrices accompanying the estimates. Apparently, the effects of mis-association
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will be propagated from scan to scan. They may be magnified or be corrected in later scans.

For example, a mis-association in one scan produces a bias which makes mis-associations in

the subsequent scans more likely. On the other hand, if the track happens to be associated

with the true measurement in the next scan, the bias may be compensated and the measure-

ment predictions may recover for the subsequent scans. Thus the mechanism in which the

effects of mis-associations are propagated from scan to scan is very complicated, and hence,

very hard to model. Recently it was proposed (131) to extend Markov-chain modeling tech-

niques used for estimating track initiation probability (e.g., in [3], [4], [5]) to model such a

mechanism.

We tried to incorporate this Markov-chain-model technique into our framework, but

no significant results were obtained. Difficulties lies in specifying the necessary transition

probabilities necessary for building the Markov-chain model to describe the propagation of

mis-association effects. From a limited number of simulations using a Markov-chain model,

we tentatively concluded that the effects of mis-associations may not be very significant in

a dense target environment. This may be so because even when a mis-association happens

)the "wrong measurement" must be close enough to be mistaken so that the effects may fall

within the range of sensor measurement errors. On the other hand, if the object density

as well as false alarm density is substantially low, the probability of having mis-association

should be very low. Thus there may be an intermediate range of object density where the

effects of mis-association may significantly affect the tracking performance.

3.4 Parameterization of Threat/Sensor Geometry

In the calculation of the average prediction error standard deviation a and the object

density ,6, we have utilized all the parameters defining the orbits of the threat centroid and

the sensor. In order to have a simple expression, it may be desirable to parameterize the

geometric relationship between the threat and the sensor orbital parameters. In situations

where time constants in threat/sensor dynamics are substantially longer than those in our

environment, we may consider parameters such as range, aspect angle, depression angle,

relative velocity, etc. However, as seen in the previous figures in this section, the geometric

relation may never be stationary. When a particular sensor has a period of blockage, either
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due to the earth field-of-view blockage or the loss of SNR for threats appearing on the earth's

surface, parameterization becomes even more difficult.

At this point, it is not clear at all if we 'nay be able to do any meaningful parameteriza-

tion or not. As indicated in Section 3.1., use of a special coordinate system for threat/sensor

orbital elements may provide some insight on this problem.

I
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4. TRACK PURITY ESTIMATION

In previous sections, we have established a method for predicting the single-scan data

association performance given a set of threat/sensor parameters. In this section, the predic-

tion of track purity based on the single-scan performance predictions will be discussed. We

will also discuss the issues concerning unresolved measurements (CSO's).

4.1 Definition and Prediction of Track Purity

As in Section 3.1, let us consider sensor scans (in general from multiple sensors) indexed

by time tk. Suppose that we are given a set K of scan indices and that we wish to define

the purity of a given track. For example, K is a set of scan indices for several consecutive

scans from one of the sensors used in a tracking system. It is natural to define the purity as
Track Purity = No. of scans with correct measurement assignments (4.1)

Total no. of scans in K

An immediate problem with this definition is the treatment of unresolved (merged) mea-

surements and mis-detections. The problem of limited sensor resolution will be discussed

in the next two sections. On the other hand, it is not quite clear even how to treat failed

detections. If an object is not detected but associated with a measurement, it is clearly a

mis-association. But if it is correctly recognized (as undetected), it is not clear if we should

count it as a "correct association" or not. In this report, by assuming that the detection

probability is high enough, it was decided not to include mis-detections in the discussion of

track purity.

The purpose of this section is to produce a reasonable prediction on the average track

purity given threat/sensor parameters. For this purpose, consider a fictitious binary stochas-

tic process {mk} with discrete index k in the set K. The event, Ink = 1, represents a

track-measurement mis-association, i.e.,

Prob.{krn = 0} = Pc(f 3k,&,k) = exp(-7r3k&') (4.2)

where PC(flk,, &,k) is the (average) probability of a track being correctly associated with a

measurement at the scan k as a function of the object density flk and the average prediction
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error standard variation ak. In fact, the function Pc is the scaling law described by (2.13)

in Section 2.2. The total number of mis-associations in a given set of scans is then simply

M[K] = Z'mk (4.3)
gEK

We may view the track purity defined by (4.1) for each track as a sample of the random

variable', M[K]/#(K), and hence, calculate the average track purity as
1

g K] = #(K) P(flk,&k) (4.4)
#( EK

When m ax{1 - Pc(#A, &k)} is smal enough, we may apply the aw of small numbers (See,

e.g., [14)) and show that we may approximate the distribution of the random variable M[K]

by a Poisson distribution with the mean

v[k] = (1 - Pc(flk'k)) (4.5)
kEK

4.2 Treatment and Prediction of Unresolved Measurements (CSO's)

The first question we must answer concerning unresolved measurements (CSO's) is how

we should count such measurements in calculating the track purity. When we view tracking

as a state estimation problem with multiple objects, we may consider a correlation result as

correct if a track is associated with an unresolved measurement with multiple origins one of

which is the "true" origin of the track. In general, an unresolved measurement contains a

bias when it is considered as a measurement for a given track, thereby somewhat discounting

the "correctness" of the association.

As mentioned before, the primary concern of this report is the track purity seen from

an object discrimination system. When two or more objects create a single detection, it is

generally extremely difficult to separate out the contribution for each separate object from the

merged detection. At least, this is not clear when examining a functional model developed for

simulation purposes ([15]). If indeed it is not possible to extract useful information for object

discrimination from unresolved measurements, then it is appropriate to count the unresolved

measurements as impure measurements which are as bad as mistaken measurements. When

1By #(A), we mean the cardinality, i.e., the number of elements, of a set A.
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Figure 4-1: Probability of Measurement Merging (1)

)we taking this point of view, we should simply discount the track purity by the probability

of the detection (corresponding to a track in question) being unresolved.

1We will base our calculation of the probability of measurements being unresolved on the

functional model described in [15]. Consider two objects represented by two two-dimensional

vectors, y, and Y2. According to [15], the probability of measurements from these two objects

being unresolved can be modeled by a function p, of the distance d = Iyi, - Y211 between

1I the two objects. A good model for p,,, is

f1 if O<d<b/2
p,(d) = else if 6/2 < d < 6 (4.6)

j0 otherwise

I

which is shown in Figure 4-1, where 6 is the sensor resolution. With this model and a set of

1assumptions, we can show (See Appendix F.) that an appropriate expression of track purity

considering unresolved measurements is

u[K] = I E PC(pk,.k) (1 - PM(0)) (4.7)
#(K) kEK 36
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Figure 4-2: Probability of Measurement Merging (2)

where PM(flk) is the probability of a track merged with another track and is expressed as

PM(flk) = 1- (erf ( 2/r,06) - erf (V2rk(4.8)

with 6 being the sensor resolution. (See Appendix F for the derivation.)

IFigure 4-2 shows the measurement merging probability PM as a function of object

density. The curve in the figure is the plot of (4.8) while each point (small filled circle) is

obtained by 500-run Monte Carlo simulations with 100 simulated objects for each run. In

the figure the object density is normalized by the sensor resolution cell area, i.e., 62. As seen

in this figure, the expression (4.8) provides us with an accurate estimate on the probability.

Figure 4-3 shows the probability of correct association using different object density values

and the deterioration of the performance due to the unresolved measurements. In this figure,

)one curve (broken) represents the expression ignoring the CSO's, i.e., (4.4), and the other

(solid) the one considering them, i.e., (4.7). Each point in the figure is the actual correlation

Jperformance obtained by simulations with unresolved measurements. In the simulations, a

functional model described in [15] was used. This functional model takes the deterioration
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of measurement accuracy due to neighboring measurements into account. As seen in this

figure, (4.7) accurately predicts the correlation performance with unresolved measurements.

4.3 Simulation Results

J The test scenario of Figure 3-1, consisting of a threat object group and an orbiting

sensor, was used to compare the analytic prediction of the average track purity with simulated

tracking results. A simple tracking algorithm was used for this purpose. In particular, track

initiation problems were avoided by using relatively "good" a priori information.

The tracking algorithm may be summarized as follows:

1. For each scan, first the object state distributions of all the existing tracks are extrap-

olated to the time of the scan, and then measurement predictions are made for each

)track using the sensor position at the time.

2. Then, for each existing track, an association list consisting with potential measurements

and the track-measurement association X2 values is created.
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3. Munkres algorithm is then used to obtain the optimal assignment in terms of track-

measurement pairs.

4. The tracks which are not assigned to any measurement are then examined. For each

of such tracks, if a measurement is found such that the X2 value is within a given

threshold, the track-measurement pair is added to the assignment list made in the

above step. (This step is to account for tracks which have been resolved in the past

scans but not resolved in the current scan.)

5. The object state distributions of all the tracks included in the assignment list are then

updated by the assigned measurements.

6. All the measurements which are not assigned to any track are then examined. For each

of such measurements, a track for which the X2 value is minimized is then searched.I

If the minimal X2 value is within a given threshold value, then the track is split using

this measurement.

7. The remaining measurements are then examined as potential sources to initiate tracks

together with the a priori object state distribution attributed to the threat group with

a simple thresholding scheme.

8. Then all the tracks are checked and, according to a simple rule, redundant or "bad"

tracks are eliminated.

We have conducted two simulations; one with all the measurements being resolved and

the other one with unresolved measurements, to clarify the effects of CSO's. Unfortunately,

due to time and other resource constraints, only a single sample run for each case was

conducted, and hence, we cannot conclude the validity of our analytic models beyond sample

variations.

The parameters used in the scenario are the same as the ones described in Section

.3.1. Figure 4-4 shows the estimated average track purity calculated according to (4.4) (i.e.,

)without considering unresolved measurements) for three different sampling intervals, 5, 10

and 20 seconds. Figure 4-5 shows the Cramir-Rao type lower bound on the prediction error
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standard deviations (used to calculate .the curves in Figure 4-4). Figure 4-5 also plots the

average prediction error standard deviations calculated from actual tracks in the simulation.

The "lower bounds" in Figure 4-5 are greater than the actual standard deviations. This

is so because the lower bounds were calculated assuming that no a priori information is

available. Thus the differences between the analytic curves and the actual averages (from the

simulation) show the effects of the a priori information we have assumed in the simulation.

Figure 4-6 shows the comparison of the average track purity predicted by our analysis with

the one obtained from the simulation, with three different sampling intervals. Some persistent

difference between the analytic results and simulation results is seen in this figure. As

mentioned before, however, the simulation results are only from one sample run, and hence,

it may not be possible to draw any definite conclusion from these results, except for the fact

that the simulation results are generally close to our analytically predicted curves.

In the simulations (using three different sampling intervals and the results of which

are shown in Figures 4-4 to 4-6), all the measurements are resolved and, assuming a con-

stant SNR, a fixed sensor measurement error variance was assumed. Another simulation
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was conducted with unresolved measurements. The functional model described in [15] was

used for sensor measurement simulation assuming a constant SNR. First, the probability

of measurement merging was calculated as a function of time, using (4.8). The results are

shown in Figure 4-7. A dip of the curve in the figure corresponds to the time when the

) distance between the threat group and the sensor is minimum and so is the object density.

Figure 4-8 shows two average track purity curves as functions of time, which are predicted

from our analysis; one with unresolved measurements and the other assuming all the mea-

surements are resolved. The difference between the two curves is due to the probability of

measurement merging shown in Figure 4-7. Figure 4-9 compares the track purity predicted

(4.7) (considering the unresolved measurements as "impure measurements") with the results

from a simulation run. Although there is some initial disagreement between the two results,

in general, the predicted track purity is very closed to that obtained from the simulation,

ESPECIALLY as the number of scans is accumulated, . When evaluating the simulation

results, all the past measurement assignments of each track at various stage are examined

and the majority of the origins of the past measurements is then used for the "true" origin of "
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this track. The track puritY is calculated as the ratio of the number of measurements from

the "true" origin over the total number of past detections contained in the track.

I

I

I

I 
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5. CONCLUSIONS

A very simple analytic model was developed for predicting the tracking performance

in terms of average track purity, as a function of threat/sensor parameters. This model

is based on a scaling law which describes the single-scan track-to-measurement correlation

performance as a function of the object density on the sensor's focal plane and the average

prediction error standard deviation. Fairly extensive Monte Carlo simulations were con-

ducted to validate the analytic expression of the single-scan correlation performance. It was

found that the Monte Carlo simulations support the predictions by our analysis very well

in a reasonable range. Assuming a very simple tracking algorithm and relatively accurate a

priori information, a limited number of small-scale tracking simulations were also conducted

to verify the ability of our analytic models to predict track purity.

5.1 Achievements

The achievements of our research efforts can be summarized as follows:

1. Simple expressions were developed to assess single-scan track-to-measurement correla-

tion performance and to estimate the performance of a given set of sensors against a

given threat, in terms of average track purity.

2. Fairly extensive Monte-Carlo simulations support the simple analytic model for pre-

dicting single-scan track-to-measurement correlation performance.

3. The effects of eccentricity of the prediction error ellipses were examined to verify the

calculation of correct association probability.

4. Uneven correlation performance due to A non-uniform object density was investigated.

5. The effects of false alarms were investigated. A simple extension to the analytic model

was made to account for such effects. Fairly extensive Monte-Carlo simulations has

shown the validity of this extension.

45



6. Cramr-Rao type lower bounds on state estimation error variance matrices as functions

pof a threat centroid trajectory and a sensor orbit were calculated to predict the track

accuracy through tracking processes.

7. A simple model to describe object density on the sensor's focal plane was derived.

8. The average track purity as a function of time was calculated.

9. The effects of unresolved measurements were analyzed. In particular, a simple ex-

pression for the probability of measurement merging in terms of sensor resolutions

and object densities was developed and incorporated into the calculation of the track

purity.

10. Small-scale Monte-Carlo tracking simulations have demonstrated the validity of apply-

ing the simple analytic model to actual tracking system performance analysis.

5.2 Topics of Future Research

The issues deferred to future research are summarized as follows:

1. Further development of analytic performance models

a. Refine performance models: As far as single-scan models are concerned, simple

analytic models developed in the period covered by this report have been proved

J to be capable of accurately predicting correlation performance. There is, however,

room for refinement in modeling multi-scan performance. In particular, the effects

of mis-associations on the correlation performance in the subsequent scans should

be investigated. The effects of unresolved measurements, mis-detections and false

alarms need to be addressed in greater details.

p b. Develop correlation stochastic models: From the point of view from an object

discrimination system, correlation statistics of track purity (both as a time series

Fand as a sample set at one time) may be as important as the average track pu-

rity. Such correlation statistics may be obtained by analyzing interaction between

correlation performance and prediction accuracy by tracks.
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2. Validation of analytic performance models:

a. Validate by more extensive simulations: Only a small number of test scenarios

were conducted for the study described in this report. More studies extensive

multi-scan (possibly multiple-sensor) simulations must be conducted. Through such

studies key parameters in threat/sensor scenarios should be identified. Performance

analysis should be extended to cover more difficult tracking situations with required

accuracy, such as performance in autonomous track initiation phases.

b. Refine analytic model using simulation results: Through such simulations,

we may find needs for further refinement of analytic models or even for development

of yet other models.

3. System analysis:

a. Develop models to parameterize sensor/threat geometry: Since the number

of parameters which completely describe a given threat/sensor scenario is not small

) and interaction among them is not simple, there is a need to identify key parameters

which dominate the tracking performance.

b. Develop performance trade-off curves: For system design purposes, perfor-

mance trade-off curves may be found very useful. Analytic models developed in

I the current phase or the next phase of research may be used to produce several

trade-off curves useful for sensor system design.

c. Investigate effects of track-initiation: The impact of track initiation perfor-

mance or of hand-over information should be further investigated. In particular,

the effects of hand-over information or the lack of it are very important in designing

the sensor systems for ballistic missile defense.
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A. Single-Scan Correlation Problem

This appendix shows how a correlation problem, in particular, a track-to-measurement
correlation problem, can be formulated as a classical assignment problem. This fact has
been treated as a trivial matter in the past in a majority of the multiple target tracking
literature and seldom justified analytically. However, it might be worthwhile to examine the
underlying assumptions which support this "fact."

As in Section 2.1, given a positive integer N, we assume three systems, Y =(Y),

Y i=1, and Z = (z)i), of random vectors, and a random permutation ir on the set
1,..., NJ, such that

P(Y, k", Z, 7r) = P(YIZ, r)P( Z[])P(7r)P(k') (A. 1)

with P(.) and P(.1.) being the usual shorthand notation for the a probability (unconditional
and conditional) distribution or its density. In other words, we assume a Markov chain,
{Y -+ Z -+ Y}, and that 7r is independent of Y and Z. The transition probabilities are
given as

/N N
) I()i = HI G(z, - ; Qi)dz, (A.2)

2=1 i=1

and
p N N

P l e I dy, (zi) =lr" = Ii G(y,(i) - zi ; R,(i))dyi (A.3)
i--1 i:=l

where (Qi)fl and (Rj)_y=1 are the two N-tuples of non-negative definite symmetric matrices,
and G(.; V) is the probability density function for the zero-mean gaussian random vector with
the variance matrix V.

The problem can then be described as a problem for determining an optimal estimate
of the random permutation 7r given available data, (Y, Y). The maximum likelihood (ML)
estimate, fr, is an estimate which maximizes the likelihood,

P(YYk7r) = P(YIYk,ir)P(Y)

= JP(YZ,7r)P(ZliY)dZP(Y') (A.4)
N1-(i)Nl r G(Y,,(,) - ii; s,.(,))

i=1

with Sij = Qi + Rj. Therefore, given (YY), a maximum likelihood estimate * should
minimize the correlation cost function,

N

J(7r) = Z IIY(s) - YJtII-' (A.5)

assuming that all Si,'s are positive definite. Moreover, if we assume that all the realizations
of the random permutation 7r are equally likely, the maximum likelihood estimate is also a
maximum a posteriori probability (MAP) estimate, since

P(Y, fir) POO= P(Y, Yjir) 1P(rY, )- =p(Yy) P(Y,Y) N! (A.6)
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We should note that this conclusion is totally independent of the a priori distribution,
P(Y). An alternative model can be constructed using

P(Y, Y, Z, ir) = P(YJZ, r)P(YIZ)P(r)P(Z) (A.7)

instead of (A.1), and

P N N
E (z)i,= ) = l- G(,- z,; Qi)dii (A.8)

/=I i=1

instead of (A.2). With this model, we have

P(Y, Iklr) = JP(YIZ,r)P(Y'IZ)P(Z)dZ (A.9)

in place of (A.4). As we see in (A.9), if we can consider P(Z) as constant, e.g., when
Z = (zi)il is i.i.d. with a common uniform distribution with a large enough support, the
maximization of (A.9) is reduced to the minimization of the association function (A.5).

Thus either of these two different models actually support the association cost function
(A.5). The difference between these two models can best described by the following two
assumptions:

[All Y1,.-., JN, n, m,..., N, are independent from each other.

(which is stated in Section 2.1.), and

Ii (.A2] zI, ... , ZN, nl,...,nN, m, ... ,MN, are independent from each other.

By a casual observation, the assumption [A2] might look more "natural" than [Al]. As seen
in the next appendix, Appendix B, however, the first assumption will make further analysis

i) much easier than the second one. However, we should remember that the model described
in Section 2.1 and this appendix was to model a track-to-measurement association process
in a multi-target tracking system. We will see in the following that with such a background
the first assumption appears more appropriate.

Let us consider a more or less idealized situation in a multi-target tracking system. Sup-
pose that we have been tracking N objects perfectly, i.e., that the N targets are independent,
each object i has been uniquely associated with object-wise independent information Ii, and
we have exactly N tracks so that the i-th track is the object state distribution conditioned
by Ii. Let zi be the "true" projection of the i-th object state onto the measurement space
and let us assume that

P(zilI,) = G(zi - ji ; Qi) (A.1O)

which means I

, = E(ziI,) and Q, = V(ziI,) (A.11)

IAssuming the independent permutation 7r, the a posteriori probability of the permutation
becomes

P(Y I % I)

'By E(-.) and V(.j.), we mean the conditional mean and variance operators.
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I
Where I (i)N=- Assuming that the random permutation lr is totally random, in the sense
of either the MAP or the ML, the track-to-measurement association problem becomes an
optimization problem to maximize the likelihood function P(Yr, I). The assumption of
independent measurement errors together with (A.11) leads to

N

P(Y I 7r,I) "G (Yi(i) i ; Si,,(j)) (A.13)

Apparently, the maximization of this quantity is equivalent to the minimization of the cor-
relation association cost function (A.5).

Since j is the conditional expectation, it is orthogonal to the "prediction" error, zi - j,
in the sense,

n ((z,- I h) = 0 (A.14)

We may stretch this fact further to assume that the measurement prediction ji is independent
to the prediction error

7n i- i(A.15)

which should be zero-mean, gaussian with the variance matrix Qj. This observation seems
to support the assumption [Al] more than the other one fA21.
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B. Calculation of Correct Association Probability

This appendix describes detailed derivations of the calculation of the correct association
probability described in Section 2, and in particular, derivations of eqns. (2.7), (2.10) with
(2.9) and the main result of Section 2, i.e., eqn. (2.13).

As in Section 2, we will first consider the cases where N = 2 and the random transpo-
sition (i.e., mis-association). Let us denote the event in which the two tracks are associated
with correct measurements by E12. Then this event can be identified with the folowing

condition:

AJ =f J((1,1),(2,2)}) - J({(1,2),(2,1)})
-Ilyl -ll -+ IlY, - 21.- - IlY, - i2l S-, - IJY2 ,l.-

Y i' 2 2 21 12 (B.1)

I1n, - , Sl Is, 1,) + I1,2 - M2,=(s-I,- S) - I1k' - 2l s (-I)+S;)

+ 2(S(-1 -s'(n(n2 - M2)- m,))(, - 2)
< 0

We may calculate the (conditional) characteristic function, Eb(C) '= £(e3'JC kli2)' of the

random variable AJ as

= (det(27rSn) det(2rS 2)) - 1/ 2  / exp (-Jul - \2 12

f exp (a (1ul 112 s--s) + Il U2ts _1 Sj;) + 2(Sj'u2 -- S+'u,)T(i,- p2))) (B.2)

.exp (_I (IlUill2 I + 112L21112)) du~dU2

which can be expressed in a closed form. Then, using some form of numerical integration,

possibly by an FFT program, we can calculate

Prob.{E12 [1 14 2} = Prob.{AJ < 0jliI2} -zC,/4C)dCdz (B.3)

The results of such a calculation is described in [6]. Although one can make several interesting
observations from results of such numerical analysis, it is not easy to extend the results
beyond the simplified two-object cases or to relate the results to key parameters in track-to-

measurement association problems.
On the other hand, if we assume

S S1 = S22 = S12 = S21 (B.4)

(B.1) becomes

AJ = -2(y, - Y2)Ts-1 9 - j)

= 2(m, - M2 - (n, - n2) - ( , - 1 ))TS(, -1 2) (B.)
= 2(w - 11i - y2Is-,)
< 4
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where w = (MI - M 2 - ni + n 2)TS-(ji - 2). Since we have assumed that mi's and ni's are
independent of pi's, w is gaussian given j and 92 with

E(wIJi, 2) = 0 (B.6)

and

= 211j - 1lls-1 (B.7)

from which eqn. (2.7) follows.
In order to calculate the unconditional probability, Prob.(E 12 ), we need a mathematical

model for (, 2). For this, let us assume that the two random vectors are independent and
have a common distribution which is uniform on a disk with the center at the origin and with
a given radius r. Before considering Prob.(E1 2), let us consider a more restricted problem
of finding a conditional probability Prob.(El 2jil = 0). Since i2 is independent of 1, (even
with the condition j = 0) i2 is uniformly distributed on the disk. Thus it follows from (2.7)
that Prob(E2 I = 0) = (7rr2) - 1 erf ((] ] 42')d 2

(B.8)

= 1- (7r2)-1 erfc (I si) d 2

where erfc( ) = 1 - erf( ). Without loss of generality, we can assume S = Diag.[a2 , b2],
with a > b. If S is not diagonal, we can always diagonalize it by properly rotating
the coordinate without changing the integral. Thus, with a coordinate transformation,

i2 = [p cos 6, p sin 91T, we have

e kfC 11j21s- ) d 2 = J erfc(U(O)p)dOpdp

= fl2v[for erfc(U(P)p)pdp] dO (B.9)

= f"U()-2 I(U()r) dO

where
Sj 11211s-,1 1 ( cos 2  sin 2 8)

u(O) (B.10)

j and
a(z) d erfc() d

I + 1 (2_ 1)erfc(x)- 1 exp - 2 (B.1

1 +0 /+°

Figure B-1 show the function I(-) defined by (B.11). As we see in this figure, this
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function converges to its asymptotic value, 1/4, approximately at 3 (corresponding to the
3-o- point). On the other hand, we have

o" = /2 c dO
j U(o)s 2 da = 2 +b- 2 sin2(G) = 4irab (B.12)

] Since v-2U(O) 1/a for all 0, it follows from eqns. (B.8) through (B.12) that

Prob.(En2 I l - 0) = 1 - -j + O(r - e(1/3)(/ °)2) (B.13)

Now let us consider the unconditional probability: It follows from (2.7) and the i.i.d.-
uniform assumption that

Prob.(E12) = (7rr )-2 J ef (414 ~ dd 2I {2/(B.14)

= wr2)-l 11r W )j
where

W( ) t'.=(irr2)-lf erf 117 1s-1 d7 (B.15)

l-ff 11:,1 -}F2 )
Using the same argument as the one which has lead us to (B.13), we may conclude the
function W(jh) can be well approximated by a constant function, i.e., W(0) which is nothing
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but (B.13), if 11'111 < r or practically j])j < r - 3a. In other words, ezcept for the cases
where , locates on the peripheral of the disk, we can approximate W( ,) = Prob.(Elin2 1)
by W(0). Since the area of the periphery is proportional to r while the whole area of the
disk is proportional to r 2, when averaging over j,1, we can ignore this edge effect. Noting
det(S) = a'b2, we have proved that, for large enough r, we have (2.10) with (2.9).

Now suppose that the number N of objects is a random integer having a Poisson dis-
tribution with mean v and assume that the approximation

Prob.(E, I N = n) - ( - (B.16)

is valid where E, is the event where a track is associated with the correct measurement
(following the reasoning described in Section 2.1). Then, defining E, such that
Prob.(ElN = 0) = Prob.(EoIN = 1) = 1, we have

Prob.(E,) e-"' 1 + --

- ()2 e (B.17)

Sexp - (l.)2) = exp(-ir/pa 2)

which is actually eqn. (2.13). The last step of the above derivation uses the approximationJ based on the assumption & < r. The/3 is the object density defined by (2.14).

.]
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C. Effects of Non-Uniform Local Object Density

In Appendix B, we derived a simple scaling law to determine the probability of correct
association as a function of object density and track measurement prediction errors. To do
so, we have assumed objects are distributed uniformly on a given region of the sensor's focal
plane. This uniformity assumption may not validly reflect reality. For example, if objects are
distributed uniformly within a ball in a three-dimensional space, apparently their projections
onto a (2-dim.) plane will not have uniform density.

In this appendix, we will calculate the probability of correct association for a group of
targets distributed spatially with a gaussian distribution instead of uniform distribution. As
we did in Appendix B, we will first consider the transposition in the two-object model. We
assume that the two-dimensional gaussian vectors, il and i2, are independent but share a
common zero mean gaussian distribution with a variance matrix V. In order to examine
the effect of this "uneven" (or non-uniform) spatial distribution, we would like to calculate
the probability of a given track, say the first track, being correctly associated with a mea-
surement when conditioned by the position of the track, i.e., Prob.(E121il). For the sake
of simplicity, we assume that the spatial variation matrix V is diagonal as V = 21 and
that the average prediction error variance matrix S is (at least apprpximately) diagonal as
S = & 1. With these simplifying assumptions, the conditional probability, Prob.(E121i), is
only a function of Ii )II. Thus the purpose of this appendix is to calculate the conditional
probability, Prob.(E 12111iil = r).

It follows from (2.7) and the above assumptions that

Prob.(E 12 I II l1 = r) = E (erf ( ,i ) i211 r)= jerf (.P f(p)dp (C.1)

where f is the probability density function of Ili, - i2 11 given the condition Ii = r, i.e.,
f() =(P + r) E2 (0.2)

f i(P) = - exp ( 22 )c.

with Io(') being the modified Bessel's function defined by

cc 2nlo(Z) = E (C.3)
vv-O 22(n!)2

It follows from (C.1) that

P(EI2 1!), r) = jerf ( i -exp ((p2 + r2)) o (E)dp

= exp ( 2r,) [ 0o 2 )z ( ( E2 ) E 2 d (C .4)
= exp ( J erf(x) e exp (2)d

=exp 2E EZK,
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2& 2  2n 2& r
where a = -- , Cr, = -2(n!)21 and

K,, ef aC,,j erf (x )Z 2
n+'exp (~ax 2) d. (C.5)

The sequence {K} can be calculated recursively as shown below: First we should note

Sexp(-ax )z"dx 2n (2n - 1)!! (C.6
~o = 2n+1 6(0.6)

Integrating (C.5) by parts and using the above equality, we have

K. 2 2n7 (2n- 1)!!

2na (a + l)n+ 1/2 22 "+1(n!)2

where (2n- 1)!! do(2n - 1)-(2n- 3)-.3.1, and

[ + 21 (C.8)2 VF_2 + 2 &
2

We can calculate the conditional probability (C.4), first by calculating the sequence
{K,} by (C.7) and then by putting the results into (C.4). However, an approximate but

more concise expression is desirable. In order to obtain such an approximate expression, we
will look for appropriate upper and lower bounds on the series F=o K,,. First let us rewrite

(C.7) as

K ---K 1 ±7 r(n + )Kn Kn- +( +2 (C.9)
2na 2n+(, + 1)n+1/2 fr(n + 1)]2I

Then define two sequences, {K'n} and {K"n}, by

K' = PK'_n- + (C.10)

n n
and

K" =PK"n- 1 (C.11)
n

72  72

where p = 2 2(1 + a) and K' 0 = K"o = K 0 . Obviously, we have,

00 00
ZK",, K, < K' (C.12)

n=0 nO n=O

On the other hand, we have F_=0 K",n = K0 eP, and

EK'n = K0eP+(e-l+ (Cp lP)+
n-O p "

- KoeP + c(e - 1)
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Therefore, from (C.12) and (C.13), we have.

g0(e' - 1) : 5 K,, K (K0 + a)(eP - 1) (C.14)
n=I

Then, assuming & < E, or equivalently a < 1, we can make the approximations, a - 0,
K0 ; 1, and hence

00Eog Kn ;- - 1 (C.15)
nt=1

It follows from (C.4) and from this approximation that

P(E12 r) ;z exp - (Ko + exp (_ - 1 -2 f exp 2E2 (C.16)

When the total number, N, of targets is random and has a Poisson distribution with
mean v, the overall correct association probability can be calculated as

00

Prob.(E, I f]I} r) = -Prob.(E., I 11c11 = r,N = n)Prob.{N = n}
n=1

= exp (-v(1 - Prob.(E1 2 j = r))) (C.17)

.,= exp - exp

j = exp(_ r3(r)&2)

where fl(r) is the object density at points with distance r from the object group's center and
1 expressed as

ex r s e sf(r) = j- % exp (jr ) (C. 18)

I
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D. Effects of False Alarms

In this appendix, we will calculate the probability of correct association in the presence
of false alarms. As we did in Section 2.2 and Appendix B, let us consider an object, say
the first object, situated at origin, in the sense that , = 0. Then, suppose that there are
N - 1 other objects and N false alarms, both N and N, being random. We assume that
the two random integers, N and Nf, are independent and have Poisson distributions with

mean, v and vf, respectively. Given N and N1 , the joint system, {{U}fi=, {YFa}N=t} of
other objects, {}, and false alarms, {yfa}j, is assumed to be independent and has an
identical uniform distribution on the disk centered -at the origin with radius r.

As before, let E, be the event in which the first object is associated with the correct
measurement. Then, since the objects and false alarms are independent from each other, we
have

Prob.(E,) = Prob.(Ea)Prob.(E,) (D.1)

where E,± is the event in which there is no transposition among objects involving the first
one, and Eq! is the event in which there is no switch between the true measurement from
the first object and any of the false alarms. Since both events are independent from each
other, the results of Appendix B implies

Prob.(Ea) - exp(-rf3a2 ) (D.2)

v v-1
where 3 - - is the object density. The rest of this appendix describes the second

7rr
2  7rr

2

factor, Prob.(Eq,), in (D.1).
Let P 1 be the probability that, given a false alarm and the correct measurement, the

false alarm is not associated with the first track, i.e., the likelihood of associating the true
measurement is higher than the likelihood of associating the false alarm. Then, under the
condition where there are n false alarms and just one track, the probability that the track
is associated with the correct measurement (i.e., with none of the false alarms) is (Py1 )n.

Therefore, when we take expectation over the distribution of the number of false alarms, we
have

Prob.(Eq,) = e-" n!( (P,1 )" = exp(-v(1 - P 1 )) (D.3)
n=O

We can write the probability P 1 explicitly as

PA Prob.{I1y, - , < [V _ 11-2 I (D.4)

where Y, is the true measurement which should be associated with the track which has the
prediction at y1, y! is a false alarm, and S is the average prediction error variance matrixIsatisfying (B.4). Moreover, for the sake of simplicity, we assume that the average prediction
error vanance matrix S is diagonal as S = 2I at least approximately, with & being the
average prediction error standard deviation. With the assumption yi = 0, we have

P11 = Prob.{yIy 112 < IIYfl 2 = Prob.{llyi 11 < Ily I11} (D.5)
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Let pi = iy,11 and p1 = iiyfI1. It can be easily shown that the probability density functions
of p, and p¢ are

PI(pI) = jexp (D.6)

and

PflP) = 2 - (D.7)

respectively, with the same support, [0,r]. Therefore, it follows from (D.5) that

P 1  = f(Pi,P)E(O,r,,ipi, f< }pl ( p} )Pi(pf )dpidpf

- f j )dri pf(r,)drf D8

1- 2&2 1-expr2

r 2  \r 2&2)

252
r
2

In the last step, an approximation based on R > a has been used.
Now, it follows from (D.3) and (D.8) that

Prob.(E,) = exp 5,2 exp (-23FA2 2) (D.9)

where /FA = v is the false alarm density. Therefore, from (D.1), (D.2), and (D.9), theirr 2

overall correct association probability becomes,

J Prob.(EI) - exp (-7r( + 23FA )&2) (D.10)
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E. Orbital Dynamics and Observation

This appendix describes the dynamics and the observation functions, f and h in Section
3, for different coordinate systems shown in Table 3-1.

In the cartesian coordinate system, eqn. (3.1) is Newton's equation for the two-body
problem with z(t) being the 3D position and velocity at time t. Thus we have

fAX) = f (I = __ (E. 1)

where -y is the earth gravity constant. The observation function h(., t) at time t maps the
vector z(t) - x.(t) into the angular projection, i.e., the azimuth-elevation pair, where z,(t)
is the 3D position of the sensor at the time. The partial derivatives are then calculated as

(X) = L 11 0 (E.2)

and1

(X, t) = X(t) - .(0 11l I I

where {e,9} is the system of ortho-normal vectors which are orthogonal to z(t) - X,(t)
When we choose a coordinate system such that x(t) is the range R(t), the azimuth A(t)

and the elevation E(t), and their rates, R (t), A(t) and E(t), the dynamics represented by f
becomes very complicated. According to [16], we have

k =R( 2 A2 O E)- y sin E rR,(R+ Rsin E) -
R=R(2 +A osE)- R,2 [ sin.

A = -2RA+ 2AE tanE (E.4)

= -2 -- -sin2E- - i Cos -
R 2 RR2 , RTI

where RT = (R 2 + R, + 2RR, sin E) 1/2 is the distance of the object from the earth's center,
R, is the distance between the sensor and the earth's center, and R, is the radius of the earth.
The partial derivatives of f is thus very complicated. On the other hand, the observation
function h becomes a simple projection with partials

Sh 0 1 0 0 0 01(E.5)
( ) 0 0 1 0 0 0

When the six orbital elements are used for the object state variable z(t), the dynamics
become very simple. For example, if we use the mean anomaly, the mean anomaly rate, the

'I is the identity matrix with appropriate dimension, in this case three.
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angular momentum (or the eccentricity), and three parameters to determine the orbital plane
and the perigee direction, all the variables except one (the mean anomaly) are constant, and
the dynamics are simply expressed as that the time derivative of the mean anomaly is the
constant mean anomaly rate. Thus the partials of f are

010000
000000S 0 0 0 0 0 0

) 0 0 0 0 0 (E.6)

000000
000000

The observation function h becomes the composition of the transformation from the or-
bital elements to the cartesian and then from cartesian to the angular measurement. The
partial derivatives can be obtained by post-multiplying the partials of the orbital-element-
to-cartesian transformation from the right of (E.3).

6
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F. Calculation of Probability of Measurement Merging

This appendix describes the derivation of (4.8), i.e., the probability of an object being
unresolved with another object on a given focal plane of a sensor, in Section 4.2. For the
derivation, we will use the following mathematical model:

1. There are N objects on the focal plane where N is a random integer having a Poisson
distribution with mean v.

2. Given the number N of objects, the objects are model by an i.i.d. system, {zi} 1 ,N

with a common distribution which is uniform on the disk centered at the origin and
with radius r.

3. The probability of merging two objects, at y, and Y2, are given by pn(IIYI -Y211), where

P. is a continuously decreasing function such that p, (O) = 1 and pm,(p) = 0 for p> 8
with S being the sensor resolution. In particular, we will adopt a piecewise linear model
described by (4.6) in Section 4.2. (See Figure 4-1.)

4. We assume that v > 1 and r > 6 but the object density

7rr
2

is comparable to 1 with respect to the resolution cell area, 62, i.e.,

g62 = '(8)2

is comparable to 1.

Let EM be the event in which an object, say the first object, z1, is merged with (unre-
solved from) at least one of other objects, z2 , ... , ZN, i.e.,

SEM = 'Nm , (F.I)

where E O"' is the event in which the first object is merged with the i-th object. Unfortu-
nately, it is not easy to calculate the probability, PM, of the event EM mainly because the
E m')'s are not disjoint. In order to overcome this difficulty, we will approximate the event
EM by Eim where i is the index of the nearest neighbor object zz from zi. The validity of

this approximation is tested by Monte Carlo runs, the results of which are shown in Section
4.2. (See Figure 4-2.) With this approximation, we may calculate the probability, PM, of
measurement merging as

PM dE Prob.(EM)
;z: Prob.(EM' ))

- Prob.(E( '; I N > 2)Prob.{N > 2}r p, (p)q (p dp(F.2)

f 
6= o pm(p)q(p)dp
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where q is the probability density function for the distance to the nearest neighbor defined
by

q(p)dp '- Prob.{Jlz;J E dp I N > 2} (F.3)

In the last step of (F.2), we used the fact v > 1.
Thus we will first calculate the distribution of the distance from the first object z, to

its nearest neighbor z. Assuming a large enough radius r of the extent of the objects, we
can let z, = 0. Other objects, z2, ..., ZN, form an i.i.d. system with the uniform distribution
on a disk, and hence, def F p(F4

p(p)dp = Prob.{lizil E dp} = 2 dp (F.4)
r2

for p E [0, r]. Therefore, the distribution of the distance to the nearest neighbor object (from
the first object) can be expressed as

pn(p)dp d=f Prob'{1z-ll E dpI N = = + 1} = 2np(r2 - 1dp (F.5)

for p E [0.r] and for n > 1. Since we are assuming that the number N of object has the
Poisson distribution with mean v, we have

c V(n+l) 2np(r2 _ p)T-1

q(p) = ( 0) rnl

:::~ ~ a(n +)+ 1)!

j2 2) (F.6)
[(1 ) - 11(1-. +)

] = 2rr2

C p exp (_r.p 2)

for p E [0, 8], where C is the appropriate normalizing constant. In the last step in the above
equation, we have used approximations based on assumptions v > 1 and r > 6. Figure F-1
shows the probability density function q(-) for several different values for fl.

It follows from the two-object merging model, p,, defined by (4.6), and (F.2) to (F.6)
that

PM 10p(~qpd

S27r#3 f612 "e-rd + 2 [6 S- pe Pdp1  (F.7)

= ~[erf ( 27rfl) - erf (V27rfl')]
which proves (4.8).

We should note here that the probability of measurement merging (or unresolved mea-
surements), PM, is a function of the object density 3, or the object density normalized by
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Figure F-i: Probability Density Function of Distance to Nearest Object

the sensor resolution, i.e., 352. As expected, we have PM T 1 as '6 T oo and PM j. 0 as
p62 1 0. We have assumed the object density P to be uniform. If the density is not uniform
(as discussed in Appendix C), the calculation of the probability density functions, (F.5) and
(F.6), may become very complicated, and hence, we may not have a concise expression such
as (4.8). However, if the change of the object density is gradual enough relative to the sensor
resolution 6, the probability PM may be accurate when /3 is replaced by the local object
density, and the overall (average) probability may be given by appropriate integration.
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