
SRL-001 0-TM AR-005-377

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

SALISBURY

SURVEILLANCE RESEARCH LABORATORY
SOUTH AUSTRALIA

TECHNICAL MEMORANDUM
SRL-0010-TM

ISPECKLE REDUCTION IN SYNTHETIC APERTURE RADAR IMAGES

D.M. McDONALD

'.. ELECEr I
- JUL 2 5 1989

Technical Memoranda are of a tentative nature, representing the views of the
author(s), and do not necessarily carry the authority of the Laboratory.

Approved for Public Release

(1)Commonwealth of A:strali

COPY No. MAY 1988

89 7 25 046



UNCLASSIFIED

AR-005-377
DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

SURVEILLANCE RESEARCH LABORATORY

TECHNICAL MEMORANDUM

SRL-0010-TM

SPECKLE REDUCTION IN SYNTHETIC APERTURE RADAR IMAGES

D.M. McDonald

SUMMARY

This survey reviews noise reduction techniques of

particular relevance to the multiplicative speckle noise
associated with synthetic aperture radar images. Where
appropriate, mention is made of the Generalised Synthetic
Aperture Radar (GSAR) software package developed by
MacDonald Dettwiler and Associates for the processing of
raw SAR data in a standard format into image data.

' / -

DSTO --
ALI32LURY

POSTAL ADDRESS: Director, Surveillance Research Laboratory,
PO Box 1650, Salisbury, South Australia, 5108.

UNCLASSIFIED



SRL-O0 10-TM

TABLE OF CONTENTS

Page

i. INTRODUCTION 1

2. SPECKLE 1

2.1 Introduction I

2-. Soeckle models

3. NOISE REDUCTION TECHNIQUES 5

3.1 Multilooking 5

3.2 Image domain filters 6

3.3 Additive noise reduction 7

3.4 Wiener filtering 8

3.5 Adaptive filters 10

3.5.1 Kansas filter 10
3.5.2 Lee local statistics filter 12
3.5.3 Comparison of adaptive approach-s 14

3.6 Sigma filter 16

3.7 Bayesian techniques A c c ?or 17

3.8 Geometric filter . '. 18

4. SUMMARY 19

REFERENCES By 20

D' 3tri 
bu o]

Ava1il~iy Codes

jAvz3 l Ond/o.
Dist Special

spec(al



- I -SRL-0010-TM

I. INTRODUCTION

Synthetic Aperture Radar (SAR) has been developed in recent years to improve
the along-track resolution of sidelooking airborne radar. Spaceborne
platforms such as Seasat (1978) and the shuttle-borne radars (SIR-A and SIR-B)
have allowed the monitoring of large areas of the earth's surface for remote
sensing and other purposes. Spaceborne SAR has proven to be complementary to
optical and infrared imaging systems such as Landsat; the radar system is
active with oblique illumination across the swath, whereas Landsat is passive
with a constant sun elevation across the image, varying with the season. Thus
only the radar can operate day and night and at any latitude. Radar
wavelengths can penetrate clouds, allowing imaging of normally cloud-covered
regions.

Ease of interpretation of radar and optical images varies with the
application; for example the oblique illumination of SAR enhances faults,
fractures and lineamphts (depending on the look direcricn , wherea; strearq
and details of vegetation tend to show up better in Landsat images. In SAR
ocean studies, internal waves are detectable through their modulation of
surface waves, with the potential benefits of enhancing our understanding of
oceanic processes and extracting bathymetric information.

Because of the coherent nature of the SAR imaging process, detected images
suffer from the presence of multiplicative noise or speckle, analogous to that
observed with lasers. This speckle contamination confuses the interpretation
and classification of SAR images and has stimulated much research into
techniques of speckle reduction. Unlike Landsat multiband images, SAR images
to date have been singleband, although multiband sensors are planned
(eg SIR-C). Classification of radar images together with images recorded at
different times, or with different sensors such as Landsat have been
attempted.

The problems of segmentation and object detection aie closely related to
classification. Some approaches have specifically aimed at identifying
geometrical structures such as edges and corners. The review however will
concentrate on those techniques directed at improving the visual
interpretability of SAR images.

2. SPECKLE

2.1 Introduction

The standard model for the image restoration problem is that the original
intensity distribution f is acted on by a linear system with point spread
function h to produce a blurred image b. The recording process involves a
(possibly non linear) transformation S and introduces additive noise n,
(usually assumed to be white and Gaussian).

Thus the intensity of the observed image g is given by

g = S(f*h) + n'

Many techniques are available for restoring images contaminated by such
additive noise.

The first important characteristic of a radar speckle model, is that the
original intensity distribution f is corrupted by multiplicative noise n
due to the coherent nature of the imaging process.



SRL-0010-TM - -

This corrupted distribution takes the place of f above, and is acted on by
recording system with point spread function h. If there is negligible
additive noise and the system is linear, then

g = (f.n)h.

This formula, with or without the point spread function, is the basis of
most of the specific speckle noise reduction techniques. The point spread
function leads to spatial correlation between adjacent pixels. This is of
particular significance when the final image is oversampled, for example to
match standard map scales.

The second important feature of the radar speckle problem is simply the
magnitude of the variance of the multiplicative noise; a mean of 1 with a
variance equal to the mean squared for a single look intensity image.
Improvements in interpretability can be made by manipulating the look up
table (LUT) on display, (ie the table relating pixel value to displayed
brightness) which changes the effective variance, for example by
implementing a square root function (Matthews et al 1984), or a high pass
filter (Lim and Nawab, 1981). The combination of poor SNR and the
multiplicative nature of the noise leads to particular problems in edge
detection and classification. In the presence of speckle, the required
spatial frequency bandwidth to recognise even a binary object must be
several times the spatial frequency bandwidth of the object itself
(Arsenault and April, 1986).

The terminology of image processing has been strongly influenced by
photographic recording. It is convenient to refer to images as being
either amplitude or intensity (amplitude squared) images. Some care must
be taken in interpreting the literature as to which is being referred in
any context. Note that the GSAR package produces an amplitude image as its
standard product.

2.2 Speckle models

Porcello et al (1976) modelled a typical radar scene as "a collection of
specular scatterers superimposed upon a background of diffuse scattering
surfaces". The diffuse scatterers form the speckle background and the
highly coherent microwave transmitter serves as a source analogous to a
laser in a laser-illuminated optical system.

Goodman (1976) studied the speckle observed in laser systems in some
detail. He viewed speckle in statistical terms as a random-walk
phenomenon. He considered monochromatic, polarised radiation u, viz

u(x,y,z,t) = A(x,y,z) exp(i27vt)

where v is frequency and A(x,y,z) is a complex phasor amplitude

ie A(x,y,z) = IA(x,y,z)Jexp(ie(x,y,z)}

The observable is the irradiance.at (x,y,z), given by

I(x,y,z) = Tn lu(x,y,z;t)12 dt = IA(x,y,z)[2

: -' .~T- Tflll I I
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To derive the probability distribution of the intensity, an analogy was
made with the classical random-walk problem.

The complex amplitude A(x,y,z) is regarded as being made up of
contributions from many elementary scattering areas on the rough surface.
Thus the phasor amplitude can be represented by

N

A(x,y,z) Z a exp (iok)

k=1

The two important assumptions which are now made are:

(1) the amplitude ak and phase 0k of the contributing elementary

phasors are independent of each other and of the amplitude and phuse of
other phasors.

(2) the phases of the elementary contributions are equally likely to
lie anywhere in the interval (-1,1); ie the surface is rough compared
with the wavelength.

These two assumptions allow the adoption of the classical random-walk in
a plane solution. Provided the number of contributions N is large, then
the real and imaginary parts of the complex field at (x,y,z) are
independent zero-mean, identically distributed Gaussian random
variables, ie the speckle can be described as

a(x,y) = aR(xy) + iai(x,y).

where aR and aI each have variance oa

The speckle intensity is then

I = I(x,y) = a'R(xy) + a2 (xY)

with phase

-I aI(xY)
e = tan1 ____

aR (x,y)

The intensity or irradiance I obeys negative exponential statistics,
ie its probability density function is of the form

P(1) = -Texp (-I/I) , I 0

where
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20' (Guenther et al, 1978)
a

The standard deviation of this function is equal to I.

The density function of 8 is flat.

Hence the probability that the irradiance exceeds a given threshold It

is

F(I > I ) exp (-I/It) , t  o

Note that the form of this probability density function (corresponding
to a single look intensity image) explains the multiplicative nature of
speckle noise. In other words, for a uniform scene, the standard
deviation of the intensity equals the mean intensity.

If the amplitude (rather than intensity) of the image is considered,
then the probability density function becomes a Rayleigh distribution.
Small intensity values will be spread out and large values will appear
to be compressed (if the result is scaled). The standard deviation (for
one look) will be reduced by almost a factor of 2 to 0.5227. Converting
from an intensity display to an amplitude display is equivalent to
remapping the look up table (LUT) in the display processor as previously
mentioned. Extensions of this technique will be discussed later.

The contrast ratio is a convenient measure of the effect of speckle on
an image. It is given by

standard deviation
mean value

with a value of 1 for a single look intensity image. It is the basic
aim of speckle reduction techniques to reduce this ratio, for
homogeneous areas.

The approach outlined above considered an array of many scatterers
randomly distributed in a cell with dimensions large compared to a
wavelength. The central limit theorem leads to a Gaussian probability
distribution for the total field arising from the mutual interference
from these independent scatterers. Envelope detection leads to a
Rayleigh-distributed envelope and a negative exponential intensity
distribution. The n th normalised moment of the detected intensity I is
given by (Oliver, 1984)

<In>
I = -- = n
n <I>n

If the number of scatterers is reduced, then there appear additional
terms in the expressions for the moments. For example, Oliver quotes
the second normalised moment of the intensity as being

I <a >

I, = 2(l " N)

•N + i a I I
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where N is the number of scatterers and a the scattering amplitude.

Various models have been proposed for the scattering process. They
incorporate fluctuations in the number of scatterers or the scatterer
cross section. The independent K-distribution, for example, arises from
a negative binomial scatterer density distribution, with independent
scatterers. Oliver proposed a model using a r-lorentzian cross section
fluctuation (including periodicity), in which the fluctuation has
r-distributed statistics and lorentzian spatial-frequency distribution.
This model includes the effects of correlation between scatterers and
the finite illumination size, and reduces in the appropriate limit to
the independent K-distribution model. This work on correlated
K-distribution models for representing speckle is continuing (Oliver,
1985).

Ouchi et al (1987) found that the speckle statistics depend on
backscatter cross section fluctuations when the correlation scale of the
fluctuations is comparable with, or exceeds, the SAR resolution. They
found that in addition to the impulse response function corresponding to
Gaussian speckle, the autocorrelation function of the speckle included
the convolution of the autocorrelation function of the cross-section
fluctuations with this impulse response, referred to as non-Gaussian
speckle.

3. NOISE REDUCTION TECHNIQUES

Noise reduction techniques will be described briefly, together with the
results of practical comparisons. These comparisons tend to be subjective,
when applied to actual images; there are advantages in first testing the
techniques on simulated images. However, in this case the validity of the
underlying models cannot be tested.

3.1 Multilooking

The most commonly used speckle reduction technique is that of multilooking.
The principle behind the technique is that the sum of N identically
distributed, real-valued, uncorrelated random variables has a mean value
which is N times the mean of any one component and a variance which is N
times the variance of one component. If we add N uncorrelated speckle
patterns on an intensity basis, the contrast ratio of the resultant speckle
pattern is reduced by /_.

Uncorrelated speckle patterns can be obtained through time, angle,
frequency or p larisation diversity. In the GSAR processor, azimuth
multilooks are achieved by dividing up the Doppler frequency domain during
azimuth compression, with a user-specified maximum overlap of successive
looks. Because of the one to one relation between along-azimuth position
and Doppler frequency, this is equivalent to dividing up the synthetic
aperture length.

Lee (1986) has compared the effects of using amplitude images in
multilooking with using intensity images and then taking the square root to
obtain amplitude. Lee found a slight advantage, as the number of looks
increases, in the second technique. The GSAR package in fact averages in
amplitude.

As shown by Porcello et al (1976), the summation of N uncorrelated random
variables, each with the identical exponential probability distribution

e__ /co, has the density function

0
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P(0) (o /N) (N-I)!a/N) N-i e xp( \ , 0 )

The ratio of the mean to the standard deviation in this distribution is NA,
as pointed out earlier. On taking the square root, the standard deviation
of the amplitude of this speckle noise becomes (Lee,'1986)

NF' (N)
a r 2 (N+ TT

Note that for a single look, the standard deviation is reduced from I
to 0.5227, merely by taking the square root. This is almost as effective
as using 4 looks in intensity.

There are some limitations with the multilooking techniques. The most
obvious is the degradation in resolution: a synthetic aperture reduced in
length by a factor of M means the azimuth resolution is degraded by the
same factor. Further problems may arise if there are specular reflectors
in the image, or other strongly angle-dependent features. Tomiyasu (1983)
modelled the speckle in a pixel in terms of isotropic scatterers. He also
considered the effect of specular or quasi specular surfaces comparable to
pixel dimensions or larger, where the response is highly angle-dependent.
Tomiyasu (1984) also considered the effect of just a few dominant
scatterers. He found, in this case, some correlation between the spectral
response and the sub-pixel texture. Scivier and Orr (1986) have developed
an adaptive enhancement technique directed at the situation where scene
reflectivity changes during the integration period. Finally, multilooking
must be incorporated in the SAR processor. Most of the techniques to be
described below are applied to the processed image.

3.2 Image domain filters

Li et al (1983) compared multilooking with several types of image domain
filter. In the latter case, single-look, full resolution images are
nrocessed. The images are then convolved with a low pass filter window
which efrectively proauces a weighted average -f several adjacent pixels.
This convolution may be implemented in the frequency domain before final
detection (ie on the Fourier Transform of the complex image pixels).

Li et al compared five filters, designed with the same rectangular
equivalent widths

REW f dx

The filters chosen were

(a) Box filter

W(X)1 ,- S
W(x) , otherwise

(b) Triangle filter

W ( x ) = { i , h e i
0 ,otherwise
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c) Sinc squared filter W(X) (sin rx') 2

(d) Exponential filter W(x) = exp(-21xl)

(e) Lorentzian filter W(x) = ( + T2x)

The test was performed on Seasat scenes and an equivalent number of looks
calculated.

(E(P]) 2

ENL- VAR[P]

where P is the pixel intensity.

improvements were found using this measure, the degree of improvement
depending on the scene. Different filters yielded different impulse
responses of course, but the question of the impact of these on image
interpretability was not addressed.

The main disadvantage of image domain filter techniques lies in the amount
of computation required to process to full resolution and to perform the
filtering. A further limitation lies in the storage requirements for full
resolution images.

Guenther et al (1978) also compared several techniques including
multilooks, spatial averaging and square and square root operations, on
simulated digital speckle images of a test pattern. The effectiveness was
judged by a set of observers on the basis of minimum detectable contrast as
a function of object size. They found no change for the two non-linear
filters, but however a subjective improvement in noise for the squaring
filter. Note that in practice, power law operations for visual
presentation can be implemented by modifying the look up table in the
display device, and are thus highly efficient.

Smith (1978) presented a noise filtering technique which in principle bears
a family relation to the IDF techniques. The algorithm consists in essence
of transforming the image, applying a low pass filter and transforming back
to the image domain. Smith employed a Hadamard-Walsh transform and an
adaptive low pass filter based on Students t-distribution to remove
statistically insignificant transform spectra. The technique was
demonstrated on photographic images.

3.3 Additive noise reduction

A wide range of linear spatially invariant filters have been used in image
processing. However, these have been developed primarily for handling
images possibly distorted by a non-linear but spatially invariant process
and degraded by additive noise (eg Chin and Yeh, 1983). Such filters
include weighted and unweighted block averaging, Gaussian and various
edge-detecting filters. The smoothing filters tend to blur edges, and all
have problems when applied to radar images degraded by multiplicative
noise.

For the simple model in which the observed image comprises an ideal image
corrupted by multiplicative noise (ie the point spread function and any
system non-linearities may be neglected) then homomorphic filtering may be
applied. This technique preprocesses the observed image (in this case by
taking the logarithm) so as to transform non-additive noise into additive
noise. After applying standard noise reduction techniques, the inverse
eo-ration is applied to generate the estimate of the ideal image. However



SRL-00O-Th! - 8 -

there are -robiems when the noise-degraded image is operated on by a point
spread z'.nction. Deconvolution techniques to remove this effect are
ava, ~. ie but their performance degrades for noisy images such as typical
r .., images (Frost et al 1982).

The median filter is particularly effective in removing isolated spot
noise, but has also been applied to images corrupted by multiplicative
noise. Each pixel is replaced by the median pixel in a block of its
neighbours. This non-linear and heuristic filter in practice preserves
edges much better than the linear filters. It has been used as a basis of
comparison for other algorithms.

coiar et al (1984) used the local median and the interquartile distance
instead of the mean and variance on photographic and cther data, for spike
removal and edge preservation.

Pratt et al (1985) developed a pseudomedian filter, a computationally
efficient approximation to the standard median filter.

Various extensions of the Kalman filter have been applied to images by
various authors. These recursive methods deal with additive noise, and
include line-by-line recursive filters as well as extensions to two
dimensions (eg Woods and Ingle, 1981). These models use a semicausal type
of model, in which a pixel value in the original image is a linear
combination of previous pixel values plus an adjustment (input) term. The
observed image consists of this image corrupted by additive noise. (Nahi
an Asseft 1972, Beimond et al 1982, Jain 1977, Chen 1979.) Lee (1981)
applied the Kalman filter to a linearised approximation to the
multiplicative speckle noise case to derive an adaptive local statistics
algorithm, discussed in greater detail later.

A recent publication describes an adaptive block Kalman filter
(Azimi -Sadjadi, 1987) which uses an autoregressive image model with an
observation model that includes multiplicative noise.

3.4 Wiener filtering

Wiener filters have been applied mainly to the additive noise case. They
are based on minimising the mean square error (MMSE filters) between the
original and the restored image and require some knowledge of the noise
(and true signal) characteristics. Pratt (1972) presented a generalised
Wiener filtering technique in which the filter is applied to a transformed
version of the data (for example, using the Fourier, Hadamard or
Karhunen-Loeve transformations). Some work has however been done on image
restoration in the presence of film grain noise.

Walkup and Choens (1974) addressed the problem of additive, signal
modulated noise, ie

r(x,y) = s(x,y) + cf[s(x,y)].n(x,y)

where r(x,y) i., the noisy image, s(x,y) is the ideal image, c some
constant, f is usually a non linear function, and n(x,y) is a zero mean
uncorrelated noise process.

The two dimensional Wiener filter has a spatial frequency domain tLansfer
function of the form
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0 u(uv)

Orr (u'v)

where 0 rr and 0ss are the spectral densities of r(x,y), the observed,

degraded image, and s(x,y) the ideal image and O rs represents their cross

spectral density. For the model above (with zero mean uncorrelated noise),
it turns out that 0 rs ¢ss' and the resulting filter is given by

0 ss(uv)
W(u,v) = + C2  0 S (u,v)*Onn(U v)

0ss(u 'v)+c s

11

where 0sws1 represents the spectral density of s,(x,y) = f(s/x,y)) and 0rin

is the spectral density of the noise process. For white noise and
stationary image statistics, this may be written as

0s(uv)

W(uv) = s(U'v) + c
2 S 2 No

0ss (uv S1N0

where S1 2 is the mean squared value of sl(x,y).

This filter thus has a higher gain at spatial frequencies where the signal
to noise ratio is high than it is where the ratio is low.

Kondo et al (1977) extended the application of the Wiener filter to the
case where the image is degraded by a system point spread function h, ie

l(x,y) = s(x,y)*h(x,y) + f[s(x,y)*h(x,y)J]n(x,y)

= s(x,y)*h(x,y) + s1 (x,y)on(x,y)

Their filter is of the form

ss(u,W(u,v) = ,(~)@nUV
Sss(uv)jH(uv)12 + Is (u'vY- (u'v)

11

where H(u,v) represents the Fourier Transform of h(x,y). The relation
between this filter and that of Walkup and Choens is clear, when h~x,y) is
replaced by a 6 function. Kondo also considered one form of a
multiplicative noise model:

I(x,y) = n(x,y)*[s(x,y)*h(x,y)]

with a corresponding filter

+ss(u,v).H*(u,v)/£

W(uv) =f + _- I (u,(v)uI (uvv)IH(u)vHu js

wsshere in) n n ss

where nl(x,y) = n(x,y)-
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Note that this form of a multiplicative model is different from that
considered in coherent radar studies by, for example Frost et al, viz
I(x,y) = [s(x,y)*n(x,yJ*h(x,y). As will be discussed later, Frost's filter
is based on a Wiener approach.

The Wiener filtering work described above has been directed specifically to
photographic studies, in which the multiplicative noise affects the signal
after degradation by the point spread function.

The abova forms of filter assume that the image statistics are spatially
invariant. This assumption, although justifiable for photographic
processes, is not so valid when applied to SAR data. One extension is to
assume only local spatial invariance, updating the statistics as the filter
scans across the image.

3.5 Adaptive filters

3.5.1 Kansas filter

Frost et al (1981, 1983) considered the equation as discussed previously

I(x,y) = [s(x,y)*n(x,y)]*h(x,y)

where I is the observed image, s the (desired) image reflectivity, n the
multiplicative noise and h the system point spread function. -As with
the Wiener filter approach, the MMSE filter for stationary image data
was calculated by minimising E((r(t) I(t) * m(t)) 2 ]. This approach

leads to the transfer function

S (f*S (f) H*(f) , f A 0

M(f) -
1 I f=O

n

where n E{n(t)} and f is the spatial frequency. Sr(f) and Sn(f) are
the power spectral densities of signal and noise respectively. The
filter in this form strictly applies to a homogeneous area. At this
point, the filter is recognisably of the same family as the (Wiener)
filters derived by Kondo et al and Walkup and Choens.

Frost et al now apply a standard model for the terrain reflectivity,
r(t), regarding it as an autoregressive process with an autocorrelation
R r(T) and two sided power spectral density of the form:

R r ( T) = ar eaII+ r

with

2o 2a
r

Sr(f ) - a2 + 41
2 f 2 + F26(f)
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where the values of the parameters a, c 2 and r2 differ for differentr

terrain categories.

The model for the multiplicative white noise is

R(T) 0 2 6 (T) + -
n n

with

S (f) o 2 + -2  6(f)

n n

Here a 2 and n2 are scene independent, but depend on the sensor, and a

varies only slowly in a given image and can also be considered constant.
Substituting, the impulse response derived is given by

M'(t) = Kiae -
a lt

where a depends on the observed image characteristics (01/1)2.

Frost et al derived a direct proportionality of the form a = K2 (oI/T)
2.

K, and K2 are normalising constants.

This filter form reflects the form of the model chosen for the desired
(ideal) image and noise. It 4s extended to cope with non stationary
statistics by adaptively varying a. A larger value of a implies a
narrower impulse response and less averaging than a smaller value. Thu
in a region containing an edge where the variance a1 is large, a is

also large, less averaging will occur and the edge will be better
preserved.

The filter is made adaptive by updating the value of (a1/1)2 in a moving

window across the image.

Frost et al demonstrated the filter on a Seasat image of the Goldstone
Array. They concluded the filter smoothed noise better in homogeneous
areas and preserved point targets and edges better than the median
filter.

Freitag et al (1983) compared the Kansas filter on agricultural scenes
with the unweighted median filter, for the 5 x 5 and 11 x 11 cases.
Their criteria were edge detection and classification accuracy. There
are detail differences between the filter implementation in the Freitag
paper and that published by Frost et al. However the principle of
narrower filtering where the image is noisy is maintained in order to
preserve edges.

Their conclusions, based on classifying agricultural fields, were that
the adaptive filter performed better for high contrast edges, but that
low contrast edges were blurred by averaging. The size of the selected
window depended upon the resolution of the system and the size of the
homogeneous elements making up the heterogeneous scene.

Panda (1978) developed an adaptive filter for additive noise which uses
a local operator, the 'sample window autocorrelation' to identify
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regions which are noisy and do not contain edges. The local operator
controls an heuristically selected filter of similar operation to the
Kansas filter.

3.5.2 Lee local statistics filter

In Jong-Sen Lee's adaptive approach, the effect of the point spread
function is neglected. The observed image is then expressed as

l(x,y) = s(x,y)en(x,y)

w ere n is the multiplicative noise with a negative exponential
distribution (when displayed as intensity).

The observed pixel is linearised by the first order Taylor expansion
about (I, n), viz

I = ns + s(n-n) + n(s-s)

The filter derived from minimising the mean square error is of the form

= .+ K U ( Ro
sij i3 ij ij ij ij

where

nQ.sj n 3 j

Qij is the estimated variance of the noise-free image, given by

var(I ) + . .2

Qij =j -
13 02 +R . ij

n 1j

Lee's filter is made adaptive through estimating the 'local statistics':
local values of var(I) and I are estimated from the image (eg a window
around the pixel being estimated) and 0 2 is estimated eithern

independently (assuming it to be stationary) or by some appropriate
algorithm from the image. The filter thus amounts to a linear weighted
sum of the local mean and the image itself.

If the linearisation mentioned above is not made, then an extra term

occurs in the denominator in the expression for K..; vizij

n ijQii

K.. = -;2 2 +ij2 n 2. Qij + 
0 2 Q

1j n 13 n ij

In this form, the filter would be identical to that derived by Kuan et

al (1985) for multiplicative noise. The approach of Kuan et al may be
regarded as a generalisation of Lee's work, and can be applied to any
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model of the form I = s+n', where n' is unbiassed and possibly
signal-dependent noise. In the multiplicative case,

n = (n-l)*s

and thus fits their model.

The advantage of Lee's filter is that is does not require a model of the
original signal. However, artifacts can be produced (Lee, 1983b). A
disadvantage lies in the method of estimating the variances. If too
small an area is used to estimate the observed image variance, then it
may happen that the calculated Qij is sometimes negative. This can be
tested and set to zero. In addition, if the noise variance is spatially
variant, its estimation may be time consuming. Ideally it is measured

from the local variance of a flat or almost flat area.

This algorithm does not smooth in areas where the local variances are
large such as near edges. To smooth near edges while preserving
sharpness Lee (1981a) extended the algorithm essentially by redefining
the neighbourhood for determining the local statistics, according to the
local gradient.

If the local variance exceeds a preset threshold, an edge is assumed to
be present within the window. The window is divided into a number of
possibly overlapping subareas and the local means calculated. A
gradient mask is then applied to these means to determine the
orientation. The area used to calculate the local mean and variance
then includes only those subareas on the centre pixel side of the edge.
The increase in computing time is kept within bounds by controlling the
threshold above which the extra processing occurs.

Arsenault and Levesque (1984) combined a homomorphic filter with the
local statistics algorithm (as applied to additive noise).

Kim and Haralick (1985) compared the extended local statistics filter
with weighted median, average and Gaussian filters. The local
statistics algorithm is sensitive to the estimated noise variance, and
Kim and Haralick adopted a procedure to accommodate the observed spatial
variance of the noise of their images. They updated the noise variance
at the start of each row of the image. The technique was to obtain, for
each row, n local variances (one for each of the n pixels in the row),
order them, and average the m smallest. Each local variance is
calculated from a neighbourhood around the centre pixel.

The comparison was on the basis of noise removal, contrast stretching,
edge enhancement and texture preservation. The adaptive filter using
local gradient and local statistics removed noise well without contrast
loss or edge blurring, but tended to blur images in homogeneous regions,
that is its texture preservation was only 'fair'. The weighted median
removed noise but with poorer contrast and edge blurring properties, but
was superior in preserving texture.

The Gaussian filter removed noise without contrast loss, but smoothed
edges. These three filters all performed better, as expected, than the
average filter.

A recent publication describes an adaptive filter, specifically for
unity noise variances, based on writing the formula for multiplicative

noise as
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I(x,y) = s(x,y) + (n(x,y)-l)*s(x,y)

The second term represents an unbiassed signal dependent noise term.

The filter derived is of the form

A -j5. = I.. . i 1 ij (I.- I..)

ij ij = VAR(I ij ij ia

The filter of this form, using the local statistics calculated over a
5x5 block, was compared with other 5x5 filters, including the median,

averaging and Lee's adaptive filter, as well as with multilooking. This

filter was considered superior on the basis of resolution broadening and

the derived equivalent number of looks. The filter has the advantage of

comparative computational simplicity (Nathan and Curlander, 1987).

Extending the derivation for arbitrary noise variance y-e!Is the

extended Lee formula (page 12).

Mastin (1985) applied 5 x 5 filters including the K-nearest neighbour

filter of Davis and Rosenfeld (1978) to a synthetic image. More

recently, Durand et al (19871 applied ten 7 x 7 filters to a SAR image

of cropland; they preferred the extended Lee filter.

Scivier and Orr (1986) adapted Lee's approach to enhance multi-look

images, aimed at the case where scene reflectivity changes during the

integration period, as with large specular targets (Tomiyasu, 1983).

The essence of their technique is to obtain local statistics information
(the local mean and variance) from a window comprising a set of centre

pixels (one per look) and a set of neighbouring pixels in each look.

One look is designated the 'preferred look'. Thus in the equation

S= sij + Kij(Iij - f.)ii (cf p 11)

. is the pixel value in the preferred look, and

Iij (and var(Iij)) are derived from the mn 2 pixels in the nxn window

over m looks.

If the variation between looks can be accounted for by speckle then the

enhanced image approaches the normal multilook image. If the scene

varies significantly between looks, the result approaches the
Ipreferred' look.

This technique was demonstrated on a Seasat ocean image. The results

according to the authors suggested a greater preservation of dynamic

features over the standard multilook method, with a similar degree of

speckle reduction.

3.5.3 Comparison of adaptive approaches

Frost and Lee both considered a multiplicative noise model, and Frost

included the effect of the point spread function as well. Comparing

Frost's approach (neglecting the point spread function) directly with

Lee's, then similarities and differences are apparent.
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Both Frost and Lee developed a filter with stationary characteristics,
and then make the filter adaptive by using local image statistics
derived from a window about the pixel. However, their development of a
stationary filter differs. Frost essentially uses a Wiener filter
approach to derive the equation

i (u ,v)
ss

M(u,v) =(uv)
nn ss

He then invokes models for the noise-free image and multiplicative
noise; the noise free image is modelled by an exponentially decaying
autocorrelation function for the signal (plus an offset to account for
the average grey level) and the noise is modelled as white uncorrelated
noise with non-zero mean. This specific model leads to a particular
form of the filter in which, by manipulation, the observed image
statistics feature rather than those of the noise-free image. This is
an obvious requirement for a practical filter, but the cost lies in the
necessity to assume a specific mathematically tractable image formation
model; using different models may not necessarily lead to such a
convenient final form.

Note that Kondo et al tested their Wiener filter (with a different noise
model) by using a real image to which they added the effects of noise
and the point spread distribution. Thus the parameters in their Wiener

filter equation were known. As would be expected, they found superior
performance using the known autocorrelation function of their original
distribution compared to assuming it to be white uncorrelated noise.
They did not try models such as that used by Frost. Walkup and Choens
similarly used simulated images with known parameters.

Lee made no assumptions about the noise free image characteristics. He
approximated the expression for pixel intensity in terms of an expansion
about the average intensity,

I.. = s..R.. + n..s.. -n..s..13 ij 13 1j 1j ij 13

and applied what can be considered a Kalman filter approach to derive an
estimate of the noise-free pixel value. The input s.. is operated on by

13

a linear filter with transfer function n. . and has added to it a
1j

zero-mean noise term s ij(n ij-nij ) to yield Iij.

The Kalman filter is closely related to the Wiener filter (Sorensen,
1970).

Comparing Lee's approach with Frost's, the final form of the filters
derived are totally different. If Frost's model is valid for a
particular image, then the use made of this prior knowledge (the assumed
autocorrelation function) in principle should lead to 'better' results
than a method that doesn't use prior knowledge. The question becomes
one of the validity of the selected model.

These two adaptive methods share similar characteristics in that the
average and variance in a local area are used, with an estimate, derived
in some other step, of the noise.
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3.6 Sigma filter

This approach is based on the sigma probability of the Gaussian

distribution. The sigma filter selectively averages only those pixels

-.i.hin a given xc range in a given n~ lxCm~ l; window while excluding
IL""

significantly different pixels, with a modification to cope with spot

noise. 1f a 2c range 4s specified, then for the multiplicative noise

case, the pixels used in averaging are those in the range

I.. - 20 1 .. to I.. + 2o 1 ..
ij n ij 13 n ij

where o is the noise standard deviation. The unweighted average of these

pixeis replaces the centre pixel.

For a Gaussian distribution, 95.5%° of random samples are within the 2a

range. The assumption in this method is that pixels in the window within

this range are from the same distribution. Thus, substantial edges will
tend not to be blurred.

Isolated spot noise may not be removed by the filter. One solution is to

specify a threshold; if the total number of pixels within the range is less

than the threshold, it is assumed that the centre pixel is an isolated

spot. The pixel is then replaced by a 4-neighbour average. Alternatively,

a 3x3 window with threshold=l can be used in another filter pass.

Note that it is the product of noise standard deviation and a selectable

parameter that specifies the range. The choice of this parameter is

somewhat subjective; Lee used a 2o range for most of his published
n

examples, with several passes through the data and with windows from 3x3 to

7x7. Note that for specific images, where details of interest are close in

grey level to surrounding pixels, he suggested a small window size with a

reduced range (Lee 1983a, 1986).

Lee has also applied a biased Sigma filter, in which pixels in the upper

intensity range are averaged separately from those in the lower. The

centre pixel is replaced by the closer average. This biased filter

enhances contrast and sharpens ramp edges.

The Sigma filter is a relatively efficient technique. Its effectiveness

compares favourably with straight averaging and median filters, although a

comparison with the local statistics method was inconclusive (Lee 1983a).

Lee (1983b) also compared the performance of the sigma filter with several

other filters for the case of additive noise. These included the gradient

inverse weighting scheme of Wang et al (1981), found to be inferior in

reducing noise variance. This filter computes the absolute differences

between the centre pixel and each of its neighbours in a 3 x 3 cell. The

centre pixel is replaced by the average of its own value and the value

obtained by weighting each neighbour by its inverse absolute difference.

Thus values which differ greatly from the centre pixel are weighted less,
although other weighting schemes satisfying this principle can be devised.

The principle can be adapted to multiplicative noise by modifying the

weighting so that pixels with large relative differences are weighted less.

A scheme analogous to Wang et al's could replace the absolute difference by

a fractional relative difference (less than or equal to one) based on the

ratio of the centre pixel to the other pixels (or its reciprocal).
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Lee also considered an edge preserving filter (Nagao and Matsuyama (1979))
which considers a 3 x 5 neighbourhood around the centre pixel, and creates
nine overlapping subregions, comprising eight directional regions of seven
pixels (including the centre pixel) and one 3 x 3 subregion around the
centre pixel. The centre pixel is replaced by the mean of the subregion
having minimum variance. Lee points out that the sigma-filter average
could be used in place of the mean. However, Lhe Nagao filter suffers from
shape distortion because of its directional subregions, as well as being
more computation-intensive.

3.7 Bayesian techniques

One would expect that prior knowledge about the original image and/or the
noise distribution should lead to a better estimate of the original image
than methods not using such knowledge. Representative models are
available. One significant group of reduction techniques are those classed
as Bayesian.

Bayesian methods have been applied mainly to additive noise images (Hunt
1977), but recently Geman and Geman (1984) have developed a technique
applicable to the multiplicative noise case as well.

Their technique applies to degraded images described by

g = o(H(f))*N

where f is the original, g the observed images. H is the point spread
function, 0 a possibly nonlinear transformation, N an independent noise
field and 0 an invertible operation such as addition or multiplication.

If the above equation is viewed as a stochastic problem, then one must
estimate the restored image given only the recorded image and some
statistical knowledge of the noise. The posterior conditional density is
given by Bayes' Law:

P(f/g) = P(g/f) P(f)

P(g)

The MMSE (minimum mean square error) estimates are the mean of the
posterior density p(f/g), and MAP (maximum a posterior) estimates are the
mode of the distribution. ML (maximum likelihood) estimates correspond to
the case where all original estimates are equally likely.

For an mxm image with L grey levels, the number of possible images is L
which rules out any direct search for the optimum restored image.

These techniques tend to require iterative runs to converge on an optimum
result.

Habibi (1972) used a partial difference equation to realise a
two-dimensional recursive model (a counterpart to the one-dimensional
Kalman filter) yielding the MMSE estimate for additive white Gaussian
noise.
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Burkhardt and Schorb (1982) derived an MAP estimate using the Viterbi
algorithm. Naderi and Sawchuk (1978) developed a Bayesian algorithm based
on a 'noise cheating algorithm' (Zweig et a! 1975), which they showed could
be justified on ML grounds.

The technique of Geman and Geman's MAP method is applicabip to
multiplicative-noise-degraded images. Their noise model is closer to Lee's
than to Frost's, in that they do not consider the effect of the point
spread function.

Geman and Geman adopted a stochastic model for the original image,
representing it as a Markov random field, MRF (equivalent to a Gibbs
distribution). Pixel grey levels and the presence and orientation of edges
are viewed as analogous to states of atoms or molecules in a lattice-like
physical system. The posterior distribution is also an MRF with similar
structure for a range of operations including blurring, non-linear
deformations and additive and multiplicative noise.

Gradual temperature reduction in the physical system to isolate low energy
states ('annealing') corresponds to obtaining the MAP (maximum a
posteriori) estimate of the image given the degraded image.

Geman and Geman developed a 'stochastic relaxation' algorithm, which
generates a sequence of images that converge to the MAP estimate. The
sequence evolves by local changes in pixel grey levels and in the locations
and orientations of boundary elements. The stochastic relaxation allows
random changes that decrease the posterior distribution as well as changes
that increase it. This reduces the problem of local maxima, which can
occur with deterministic iterative-improvement methods.

For a neighbourhood around each pixel, a set of cliques is defined with
associated potentials. These potentials are defined so that the Gibbs
measure is related to the a priori probabilities associated with the
uncorrupted image, the noise process and the sensor characteristics.
Calculating or measuring the clique structures, probabilities and
potentials represent a significant challenge with this approach.

Kuan et al (1987) developed a MAP filter using local statistics (ie a
non-stationary mean, non-stationary variance or NMNV model). Their model
requires the solution of a cubic equation for each pixel in the image.

3.8 Geometric filter

Crimmins (1985) adopted a radically different approach with his so-called
geometric filter. This algorithm considers the gray level profile of an
image line as a geometric shape. It is based on applying a single
iteration of convex hulling algorithm alternately to the image and its
complement. It is essentially a one dimensional algorithm applied in four
different directions in the two-dimensional image: horizontal, vertical
and the two diagonal directions. The effect of the filter is gradually and
iteratively to remove narrow valleys and towers; it tends to preserve
spatial information

One step of the algorithm considers a vertical slice of the image, where
the height represents the pixel value. One line thus produces a two
dimensional graph, in which pixels in the umbra (ie below the image curve)
are set to 1, and the rest to 0. Essentially, in one step of the convex
hull, a pixel value is changed from 0 to 1 only if at least four
neighbouring and contiguous pixels (out of eight neighbours) are 1.
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The algorithm was compared advantageously with multi-looking and median
filtering on synthetic SAR imagery. It is used at ERIM both for image
presentation as well as preconditioning for further computer algorithms
(Crimmins 1986).

4. SUMMARY

Speckle smoothing techniques can be categorised in different ways. They
include:

(a) general methods such as linear filters, primarily applied to additive
noise;

(b) homomorphic techniques, in which a multiplicative degradation can be
converted into an additive one, allowing the application of the general
techniques;

(c) non-linear filters such as the somewhat heuristic median and Sigma
probability filters, based on a window around the pixel of interest;

(d' -ie ;ell-established multi-looking techniques;

(e) image domain filters, in which the image is transformed in some way, a
linear filter applied, followed by transformation back to the image domain;

(f) adaptive techniques based on the image statistics in a window around
the pixel of interest;

(g) Bayesian techniques, based on known or assumed prior knowledge about
the original image and noise statistics; and

(h) the geometric filter.

The standard noise model takes into account multiplicative noise only,
although the refinement of including the point spread function has been
made in the Kansas filter. Prior knowledge in the form of known or assumed
original image and noise statistics has been included in some approaches.
Most of the techniques discussed operate on the processed image; however
multi-looking techniques are incorporated in the GSAR package

A speckle size or texture can be observed on processed images. Some recent
work has considered speckle smoothing, taking advantage of this spatial
correlation (Kuan et al 1987). Such an approach may well tend to be
computation intensive but represents one direction of future work.

The multiplicative nature and magnitude of speckle noise remains a
significant problem both for visual interpretation of images and their
classification.
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Synthetic Aperture Radar (GSAR) software package developed by
MacDonald Dettwiler and Associates for the processing of raw SAR data
in a standard format into image data.
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