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NUMERICAL SIMULATION OF THE COMPRESSIBLE

ORSZAG-TANG VORTEX

I. INTRODUCTION

The theoretical and numerical study of turbuleaice has concentrated until recently on

incompressible media. The motivation for this concentration of effort is the comparative

simplicity of the incompressible case-the system of governing equations for the incom-

pressible case is of lower order than the compressible system, and an important constraint

(solenoidality) links different components of the velocity. In addition, incompressible fluids

have ideal invariants which facilitate analysis of the states to which turbulent, dissipative

fluids relax (e.g., [1]). Unfortunately many turbulent media, such as nonconducting neu-

tral gases and space plasmas, are compressible, and the relevance of the incompressible

results to their behavior is questionable. Marsch and Mangeney [2], for example, recognized

this uncertainty regarding the treatment of turbulence in the solar wind and interplane-

tary medium, and derived a compressible formulation of magnetohydrodynamics (MHD)

in terms of Elsiiser variables for application to such problems. Our purpose here is to

begin the systematic development and study of numerical data to determine the effects

of compressibility on MHD turbulence. The data also provides a basis for interpreting

theo.retical treatments and devising a more complete theory. In this paper we examine a

set of initial conditions that are defined analytically for both incompressible and compress-

ible media. By comparing the results of numerical simulations of the compressible case

with incompressible simulations, we identify some of the effects which are introduced by

compressibility.

To place the present paper in perspective, we note that at least three other major

categories of compressible turbulent phenomena have been pursued. The most obvious

is the interaction of a sound or shock wave with a turbulent field or vortices (see, for

example, papers by Ting [3], Zang et al.[4], and Ribner [5]). Here the emphasis is on

the amplification of turbulence or the production of sound. Closely related is the direct

production of sound by a turbulent field, which was studied in detail by Lighthill [6 ,

7]. Third is the production of vorticity via compressible effects in an initially irrotational

flow. This can occur, for example, through the baroclinic source term in the equation for
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the evolution of the vorticity, as shown by Picone et al. [8 , 9 , 10]. The vorticity can

subsequently evolve into turbulence by interaction of resonant harmonics [11].

This paper treats a fourth category, the evolution of an unbounded compressible turbu-

lent field. Here the medium may interact with itself through internally generated acoustic

or magnetoacoustic waves. The property of compressibility also leads to alterations in the

morphology and description of the medium exclusive of such waves. Thus our concern is

with the dynamics of "compressible" turbulence itself, and a complete treatment requires

a fully compressible representation of the entire flow field, including the rotational compo-

nent. To achieve a useful description of compressible MHD turbulence, we use numerical

experiments on analogous incompressible and compressible problems. This is different from

the first two research areas mentioned above, in which the standard approach has been to

treat the turbulent portion of the fluid as incompressible and separable from compressible

wave phenomena such as shocks and sound waves. Such a separation of the incompressible

and compressible parts of the flow is consistent with linearization of the governing equa-

tions (e.g., [12]). Our approach, howevei', requires the solution of the full set of nonlinear

governing partial differential equations because we treat the entire fluid as compressible.

An accurate solution of the nonlinear equations governing a compressible turbulent

field includes phenomena associated with acoustic or shock waves, but, in our case, not

as external sources of excitation nor as actions of the turbulent field on external regions.

Thus, the turbulence can produce acoustic and shock waves which interact with each

other and with the turbulent field itself. In addition to altering the turbulent field, these

interactions can generate vorticity through the baroclinic source term in the vorticity

evolution equation 19]. Such effects are thus important to our investigations but are not

the whole story, as confirmed by the differences between incompressible solutions and

homcntropic, polytropic compressible solutions for a steady state vortex in an unbounded

medium [13]. These differences exist even though the velocity field for the steady state

vortex is solenoidal in both cases.

This paper deals with initially average subsonic flows in two-dimensional compressible
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magnetofluids in the average Mach number regime from 0.2-0.6 (The limitation to Mach

numbers of about 0.6 or less is due to the way in which we specify the fluctuating pressure,

as described below). For the magnetofluid there are also compressible alterations to the

magnetic source terms in the vorticity equation, which indicate the possibility of vorticity

production by the interaction of magnetoacoustic waves and MHD shock waves with the

turbulent field. As in the incompressible case, the magnetic field is still constrained to be

solenoidal. Note, however, that the absence of the velocity field solenoidality constraint

also leads to the presence of a compression term in the magnetic induction equation. This

variation in mode coupling between the velocity field and magnetic field implies that the

magnetic field can evolve differently in the compressible medium; for example, magnetic

flux can accumulate in compression regions.

A noteworthy initial approach to the theory of compressible MHD turbulence by Mont-

gomery et al. [14] expresses the fluctuating density as a function of the pressure derived

through the usual incompressible formulation. This assumes that incompressible flow is a

well defined limit of compressible flow and seeks to determine the spectral index of density

fluctuations for "nearly incompressible" MHD turbulence. Shebalin and Montgomery have

investigated this model numerically [15]. As mentioned above, Marsch and Mangeney [2]

have developed a theoretical framework which extends methods used in the incompress-

ible MHD regime. For the hydrodynamic case, Moiseev et al.[16] have used similarity

and renormalization group arguments to estimate the deviations of subsonic compressible

turbulence from the Kolmogorov spectrum in a noncharged system driven by a Gaussian

external force.

Recent computational studies of fully compressible turbulence for noncharged fluids

by Passot and Pouquet [17] and Erlebacher et al.[18] and for MHD by Dahlburg et al.[19]

have used random initial conditions with a range of spatial scales. All of these calculations

used spectral methods for their accuracy and cost-effectiveness in studying turbulent flows.

Earlier studies of compressible MHD turbulence employed finite difference algorithms and

initial conditions consisting of at most a few modes [20, 21, 22].
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None of the above MHD studies directly compared compressible and incompressible

simulations. Erlebacher et al. (1987) have compared compressible and incompressible

time histories of various statistical quantities in hydrodynamic turbulence [18]. Passot and

Pouquet separated the solenoidal and nonsolenoidal components of the velocity and specific

kinetic energy fields in order to accomplish this comparison for a dissipative fluid obeying

the Navier-Stokes equations for a perfect gas. As indicated above, however, solenoidality of

the velocity field is not a sufficient condition for incompressibility of the medium, so that

their method does not rigorously separate compressible and incompressible phenomena.

In this paper, therefore, we take a somewhat different approach, viz., we compare the

evolution of compressible and incompressible magnetofluids starting from the same initial

conditions. We perform simulations at several subsonic initial average Mach numbers to

determine the effects of increasing compressibility. We use the nonrandom, periodic initial

conditions of Orszag and Tang [23]. The initial velocity and magnetic fields each contain

only one mode, although not the same one. The level of compressibility is determined by

the initial mean thermal pressure magnitude. The model contains an incompressible analog

that is well known (e.g., [23], [24], [251, [26], [27] [28]), providing an excellent baseline case

for the study of compressible MHD turbulence. These initial conditions thus permit a

more direct (less statistical) quantitative and structural comparison of turbulent evolution

within compressible and incompressible media and contains most of the significant features

of MHD turbulence, including dissipation of magnetic and kinetic energy, reconnection,

formation of high density jets, selective decay, dynamic alignment, and the emergence

and manifestations of small scale structure (e.g., [29], [30], [31], [32], [33]). A preliminary

version of this work has appeared elsewhere [34].

The paper begins with i, formulation of the problem, followed by a section describing

our numerical methods. Because relatively few numerical treatments of compressible MHD

turbulence have been performed, the optimum numerical method and the appropriate

equations to integrate are issues in themselves. In the course of our discussion, we review

formulations and algorithms that are reasonable candidates for consideration and have
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been employed for similar purposes or physical regimes. Section III presents our numerical

results, including the significant differences between the compressible and incompressible

analogs, for a number of turbulent MHD phenomena. Section IV presents our conclusions

and a description of related work in progress.

II. NUMERICAL SIMULATIONS

A. Formulation

We start with the nonlinear partial differential equations which govern the behavior of

a two-dimensional, compressible, dissipative magnetofluid, written here in a dimensionless

form:

0p
= -V. (pV), (la)

S(pv) BB + -(p + IBI)I T (

[v xB - 1V B] (1c)= V x , x ,

OE V [(E + p)v + (1B121- 2BB).v

2 2
-- V.Tr + -(B. VB - VB B) (ld)

SSr

7-1S,,Pr

V. B = 0, (le)

supplemented by an equation of state,

P = (- - )U (2)
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The notation in Eqs.(1) and (2) is as follows: p is the mass density, v _ (v,,v, ,0) is

the flow velocity, p is the mechanical pressure, I is the unit dyad, B = (B., By, 0) is the

magnetic induction field, U is the internal energy density, E is the total energy density,

given in dimensionless units by

E(x,t) - plv 2 + 1B12 + U, (3)

T = p/p is the dimensionless temperature, r _= [(Ojv i + 9 ivj) - !V. vbij] 6i 6j is the

viscous stress tensor, and - 5/3 is the ratio of specific heats. The thermal conductivity

(K), magnetic resistivity (q), and viscosity (y) are constant and uniform, and we assume

that the Stokes relation holds, so that the bulk viscosity is zero [35]. The important

dimensionless numbers are the viscous Lundquist number S,, -- poVALo/p [36], the resistive

Lundquist number Sr = VALo/r, the Prandtl number Pr = cp/'c, and the Alfv~n number

A = (VA/Vo2) . In these definitions, Pa is a characteristic density, VA is the Alfv~n

speed, L0 is a characteristic length equal to the reciprocal of the minimum wavenumber

km, n = 2r/L (L = system length), cp is the specific heat at constant pressure, and Vo is a

characteristic flow speed. The thermodynamic normalization sets

Eo = po = Bo/8 =pV/2 (4)

The characteristic speed of sound is then C20 = qpo/po. Time (t) is measured in units

of the Alfv6n transit time LO/VA. For the runs reported here, we set S' = Sr =

50, 100, or 200 and Pr = A = 1. All of our numerical simulations assume unit mag-

netic Prandtl number, i.e., p/(poq) = 1, so we subsequently consider only the parameter
S = S" = S'.

The reader should note that formulations of the numerical problem other than Eqs.

(1) are presently being used to study compressible MHD phenomena. Schnack et al. [37] use

only equations (lb), (lc) and (le) with the assumption of constant mass density and zero

mechanical pressure to model the Reversed-Field Pinch for magnetic fusion. This is a zero-

fi approximation to a very low # plasma, where # is the ratio of the mechanical pressure
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to .he magnetic pressure. Miki6 et al.[38] also have used .his approximation to model the

solar corona (but note that they replace the Eqs. (1c) and (le) with a magnetic vector

potential equation). In addition, they assume that the convection term in the equation of

motion is negligible. The applicability of a zero-fl model in these two cases is debatable.

More importantly, mass density fluctuations and gradients in mechanical pressure can play

as great a role in MHD turbulence as they do in nonmagnetized fluids.

More common in treatments of compressible flows is the assumption of a homentropic,

polytropic medium [22], [39] which satisfies the equation

p = Q p, Q = constant (3)

This is often called the "polytropic equation of state." Technically speaking, however, a

polytropic fluid need not have constant entropy, or equivalently, Q need not be constant.

Assuming that the fluid is homentropic, Eq. (5) replaces Eq. (1d) for conservation

of total energy, and the system to be i:tegrated is then Eqs.(la)-(lc) and (le). Note

that constant entropy implies that the dissipative terms are zero. Unfortunately, such sys-

tems of hyperbolic equations will likely develop magnetoacoustic waves and discontinuities

(shocks) in a finite amount of time when the flow is unsteady. The fact that the entropy is

constant and uniform throughout the fluid means that the shock solutions of this reduced

system of equations cannot satisfy the Rankine-Hugoniot jump conditions, except for very

weak shocks [39]. Equation (5) also precludes the generation of vorticity through the baro-

clinic term (!Vp x Vp) in the vorticity evolution equation [9]. Thus the assumption

of a homentropic, polytropic medium cannot account for several important factors in the

formation and evolution of compressible MHD turbulence. Our formulation (Eqs.(1) and

(2)) provides for all of these effects and for strict conservation of mass, momentum, and

energy.

The use of Eq.(5) instead of Eq.(Id) also has important consequences for numerical

modeling. In an ideal fluid, the development of discontinuities will result in unstable nu-

merical solutions if a high order explicit integration scheme is used. The computer model
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will therefore "blow up." The addition of sufficiently large dissipative terms, either phys-

ical or numerical (e.g., a viscous term in the equation of motion), can result in smooth

mathematical and numerical solutions with steep finite gradients instead of shock-like dis-

continuities .'9]. When Eq. (5) is used, such terms are inconsistent with a constant

entropy, as mentioned above. In addition, if this "reduced" system of equations is dissi-

pative, then total energy is not conserved, similar to the case of incompressible flow. The

sAocks would be nonphysical since the Rankine-Hugoniot conditions cannot be satisfied.

The size of the coefficient of viscosity that is necessary to guarantee numerical stability

for an explicit algorithm varies with the situation. A fully implicit or semi-implicit inte-

gration scheme can ensure that finite acoustic or magnetoacoustic waves are filtered out of

the solution [18, 411. This should provide a stable solution, although such models cannot

represent the effects of finite amplitude waves in a turbulent compressible fluid.

13. Initial Conditions

For initial conditions we use the vortex system of Orszag and Tang (1979):

p(x,y,t = 0) = 1, (Ga)

v(x,y,t =0)= -siny x +sinx 6y, (6b)

B(x,y,t = 0) = -siny 6 + sin2x ,, (6c)

w",mc 6, and are unit v,, (tors in the x and y directions respectively. The initial me-

cliamnical pres.sure, p(t = 0), is decomposed into a mean part, (p(t = 0)), and a fluctuating

part, pj(t = 0). We set p1 (t = 0) equal to the appropriate incompressible pressure distri-

htiozn, which is obtained by applying a divergence operator to the iicompressible MILD

equation of motion (Eq. (lb') below) and then inverting the resulting Poisson equation.
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This specification of pf(t = 0) puts a physical lower limit on (p(t =)), i.e., we must select

(p(t = 0)) such that p(x, y, t = 0) = (p(x, y, t = 0)) + pf(x, y, t -- 0) > 0 everywhere in the

system. Figure 1 shows the initial form of the flow field in the form of streamline plots of

the velocity and magnetic field.

Notice that, for a polytropic, homentropic, compressible fluid (Eq.(5)), our initial

conditions of a spatially varying mechanical pressure and a spatially constant mass density

would contradict Eq.(5). However, in our formulation, the temperature varies spatially

with the mechanical pressure, so that the mass density can in fact be ccnstant. Because of

this, any steady state solenoidal velocity field that can exist in an incompressible medium

has a direct analog in a compressible medium. An alternative to our initial conditions

would be to use Eq. (5) to get an approximately consistent mass density field rather than

Eq. (la); however, the mapping onto the initial conditions of the incompressible solution

would then be altered. We have also used a flat initial pressure profile along with Eqs.

(6a)-(6c) and have found that the early behavior (t < 1.0) is somewhat different in that,

e.g., growth of correlation is more rapid. This is caused by the small expansion of the

vortices necessary to set up a pressure gradient in response to the centrifugal forces that

are present. In the calculations of Dahlburg et al.[19], the pressure and mass density were

flat and broadband noise was used to construct the magnetic field. The initial velocity

field resulted from rotating the magnetic field through a fixed angle consistent with the

desired value of the initial correlation C. Dahlburg et al. found that again the evolution of

global integrals was smooth after an initial rapid jump in correlation.

Returning to the definition of initial conditions, the normalization in Eq. (4) gives

the local Mach number M as

M 2
- 2plv12  (7a)

lyP

To obtain a ,haracteristic" Mach number M at time t = 0 for the flows in our calculations,

we substitute p = (p(t = 0)), p = (p(t = 0)), and Jv1 = -(v 2 (t = 0)) into Eq. (7a). We
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then choose initial values of (p) to give Al = 0.2, 0.4, or 0.6. The lower limit on (p),

described earlier, implies an upper limit on the values of Ml that we can obtain, which for

our initial conditions is about 0.6. Figure 1 shows the initial form of the pressure field and

local Mach number, M, for the M = 0.6 case. It can be seen that M varies widely over

the system. Note that, because of the relative magnitudes of the parameters in Eqs. (6),

(,3) decreases as Al increases in our simulations according to

_ p 2pjv 2  (7b)

192  ,M 21B 12

By again substituting average initial values for the various parameters, one obtains char-

acteristic (0) values of 30.0, 7.5, and 3.3, respectively.

C. Numerical Algorithm

In computations of two dimensional MHD systems, it is more economical to replace the

magnetic induction equation (Eq. (1c)) by the simpler magnetic vector potential equation,

a=vxB + 1V 2 a, (ic')
at Sr

where a is the z-component of the magnetic vector potential, and B = V x a6,. The

solenoidality of the magnetic field (Eq. (le)) is then trivially ensured since V • B =

V - V x a6_ = 0. To solve the governing equations (la, 1b, lc', and ld) our code,

CRUNCH2D, implements a Fourier collocation method [42]. The algorithm employs an

isotropic truncation in Fourier space at each time-level [18], i.e., all modes with Iki >

are set equal to zero, where k is the Fourier wavevector and N is the number of (one dimen-

sional) Fourier modes. The modified Euler method, a second-order Runge-Kutta scheme

[431, discretizes time. The time step, At, is limited by a compressible MHD Courant-

Friedrichs-Lewy (CFL) number,

FL sup{ = SU 
+ CSh +  A)At 0.3 , (8)

where Cs = sound speed, and h = 27r/N = Ax = Ay. Our simulations consume approx-

imately 18 ps per time step per grid point on the NRL CRAY X-MP/24. For Lundquist
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numbers of 50, 100, and 200, we use, respectively, 642, 1.82, and 2562 collocation points.

The calculations with 642 collocation points require approximately 0.12 million words of

core memory.

The contrast between the above spectral techniques for modeling compressible flow

and finite difference algorithms, which have been in wider use for compressible MHD flows

[20, 21, 22], deserves some comment. Finite difference algorithms permit implementation

of complex boundary conditions which are presently more difficult or impossible for spec-

tral methods. In addition, finite difference shock-capturing schemes are able to maintain

steeper and narrower shocks than their spectral counterparts. Given that the time-scales

of interest in the modeling of turbulence are much longer than shock transit times and

given that we are presently studying initially average subsonic flows, this difference is less

important than others.

On the other hand, finite difference approximations to first and second derivatives

introduce significant noise into source terms, reducing the accuracy of the solution. Solving

the magnetic induction equation (Eq. (1c)) instead of that for the vector potential (Eq.

(ic')), will ensure that only one derivative is necessary to compute the current density,

at the additional expense required to time-advance two dependent variables instead of

one. A careful formulation of the finite difference equations and the differencing grid

are then necessary to maintain a solenoidal magnetic field [441. The Fourier collocation

technique permits the modeling of a much broader range of spatial scales than do finite

difference techniques of comparable cost. This is a major advantage for studies of both

compressible and incompressible turbulence [42]. Finally, spectral methods have become

the method of choice for general studies of incompressible turbulence in systems with simple

boundary conditions [42], and the ability to use similar algorithms for our compressible

and incompressible calculations reduces the influence of numerical factors in comparing

them.

A final point regards the use of the conservation form of the model Eqs. (1). The

mechanical pressure is then a "derived" quantity, computed as the difference of the total
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energy density and the sum of the kinetic and magnetic energy densities, as indicated by

Eqs. (2) and (3). Now consider as examples (a) low 3 regions in plasmas, in which the

mechanical pressure is, by definition, much smaller than the magnetic pressure, and (b)

local regions near shocks, where the kinetic energy can be much larger than the internal

energy. In explicit schemes, each differential equation in the set, Eqs. (1), is solved

separately from the others, using parameter values from the previous time step. If the

resulting solutions for the field variables are not "synchronized" in phase, errors in the

mechanical pressure can be as large as the mechanical pressure itself. We have seen this

in finite difference calculations, and spectral methods could theoretically have the same

problem. This has driven some modelers to use a pressure equation instead of Eq. (1d)

for conservation of total energy, requiring monitoring of the latter [45]. A "fix" for this

problem in modeling shocks is the use of sufficient physical diffusion near the shocks. At

the Lundquist and Mach numbers used here, the physical diffusion has been sufficient to

ensure well-behaved solutions for the mechanical pressure.

D. Incompressible Calculations

To help identify the turbulent effects which are due to compressibility, we run in-

compressible calculations with a second simulation code. In this limit the mass density

remains constant and uniform, and total energy is not conserved in the presence of finite

dissipation. The form of the incompressible equations solved by this second code is:

- vxw6, - VII + j6, xB + 1-Vv (IW)

coupled with the velocity field solenoidality constraint:

V.v = 0 (la')

and Eq. (1c'). The pressure head, II, is given by p + 0.5 * jv12 . The integration of these

equations is accomplished with a two-dimensional version of the MHDBOX explicit Fourier

collocation algorithm employed by Dahlburg et al.[46] for studying the turbulent decay of
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force-free magnetic fields. The temporal integration is again modified Euler. The algorithm

also employs an isotropic truncation in Fourier space. We use the same initial conditions,

eqs. (6), with appropriate adjustments to account for the different normalization.

III. RESULTS AND DISCUSSION

Our investigation of compressibility in the Orszag-Tang vortex model relies primarily

on time-dependent area integrals, contour diagrams, generalized streamline plots, and

wavenumber spectra. The temporal evolution of area integrals permits a direct comparison

of global compressible effects with their incompressible counterparts and can also show the

effects of dissipation, as parameterized by the Lundquist numbers. The bracket notation

represents a volume average, i.e., an average of some function (f) over the entire grid (G),

f f(x,y,t) dx dy
(f) fxdy(9)

f dx dy

and thus applies to global features of the flow. We use contour plots and generalized

streamline plots to show how compressibility affects the local structures of the flow field

and magnetic field and to reinforce inferences from the global integrals. The streamline

plots indicate direction of a vector function at a given point, but not the magnitude of

the function. Streamline plots are the best way to visualize the form of the compressible

flow field. Since we often compare the form of the velocity field with that of the magnetic

field, we also represent the magnetic field this way, rather than using plots of magnetic

vector potential contours. The wavenumber spectra indicate interactions between, and

the importance of, fluctuations at various scale lengths in the magnetofluid. Since the

spreading out of fluctuations in Fourier space depends on the form of the nonlinearities in

the governing equations, we expect that compressibility will affect the form of the observed

spectra.
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A. Measures of Compressible and Incompressible Phenomena

Some initial observations about the global integrals are necessary. First assume that

the appropriate boundary conditions exist for surface integrals to vanish. Because of the

variations in mass density and the dependence of the thermal pressure on temperature

and mass density, some quantities which are constants of the motion in nondissipative,

incompressible, MHD turbulence are no longer constants of the motion in the corresponding

compressible flows. In two dimensions, these quantities are (v • v + B • B), proportional

to total energy in an incompressible MHD system (Ei), the mean square magnetic vector

potential (a2 ), and the cross helicity, Hc - (v B). Corresponding conserved functions for

compressible media exist for the first two quantities: total energy, given by Eq.(3), and the

material integral (pa2 ) (47]. Figure 2 shows data on (pa 2) and (a2 ) for a typical dissipative

compressible calculation. Notice that (a2) fluctuates about a decreasing monotonic line

given by (pa2). The smooth decrease of the latter is characteristic of quantities that are

constant in an ideal fluid. The reason for the proximity of the two functions is the initial

condition p = 1. In general, the normalized ratio of inviscid constants, (pa 2)/(p), is best

for such comparisons.

For some boundary conditions (e.g., doubly periodic), Horiuchi and Sato (211 have

shown that Hc should be an ideal constant of the motion when the mass density is uniform

and constant (incompressible fluid) or for a homentropic, polytropic fluid. Our assump-

tion of constant -y is equivalent to the assumption that the fluid is polytropic (but not

homentropic). In an ideal compressible fluid, the only sources of dissipation are shock dis-

continuities or finite sound waves, which will steepen into shocks (481. Since the intensity

of such waves is smaller for lower Mach number, the fluid should have a more spatially

uniform entropy as Mach number decreases, and deviations of the pressure from the home-

ntropic, polytropic equation of state, Eq.(5), also should be small. These arguments and

the theoretical arguments of Horiuchi and Sato, when applied to the more general class of

compressible media in our calculations, lead us to expect the following conditions to hold:

(1) The plots of incompressible and compressible values of Hc versus time should become
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more similar as Mach number decreases and;

(2) The spatial variation of the polytropic coefficient, p/pl', should decrease as Mach

number decreases.

The first statement indicates that H, behaves more as an approximate ideal invariant

as Mach number decreases, since we know that it is invariant in the incompressible case.

Unfortunately our results could not rule out the possibility that H. was also invariant at the

higher Mach numbers. The second statement indicates that, as Mach number decreases,

the fluid approaches the homentropic, polytropic case, for which H, should be invariant.

The theory of Horiuchi and Sato implies that, at higher values of M, on the other hand, H,

should no longer be an approximate ideal invariant of the system. Further, the arguments

of Horiuchi and Sato, along with our results, would imply that the reason was related

to the dissipative effects of compressible waves and the accompanying spatial variation of

entropy, even in an ideal compressible fluid [48]. Both conditions (1) and (2) hold for our

calculations. Figure 3 shows that the evolution of cross helicity for a Mach number of

0.2 is nearly identical to that in the incompressible case. The plot for M = 0.6 differs

considerably, indicating that H, no longer behaves as the ideal, incompressible invariant

does. From this plot, of course, we cannot state with certainty that H, is no longer an

approximate ideal invariant of the compressible system when M is 0.4 or greater.

Figure 4 shows contours of the polytropic coefficient for S = 100 and M = 0.2 and 0.6

at early and late times (t = 2 and t = 8). This gives us a picture of the spatially varying

entropy as well. For the M = 0.2 case, the ratio of maximum and minimum values of

the polytropic coefficient is 1.27 at t = 2, and 1.12 at t = 8. For the AlM = 0.6 case,

the ratio of maximum and minimum values of the polytropic coefficient is about 8.90 at

t = 2, and 2.78 at t = 8. The ratio is more nearly one at lower M, and thus the entropy

is more uniform, showing the approach to Eq. (5) with decreasing Mach number. The

decline of this ratio with time for both Mach number cases indicates that the amplitudes

of finite magnetoacoustic waves are decreasing with time as v becomes more aligned with

B and as the mass density becomes more uniform. Apparently the system is approaching
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a quasisteady state which is also approximately homentropic.

B. Dynamic Alignment and Selective Decay

Dynamic alignment is representative of a more general class of turbulent fluid be-

havior known as self-organization. Hasegawa [491 has reviewed the extensive work on the

incompressible MHD case. Only recently have studies of the compressible MHD case taken

place, using finite difference algorithms [20, 21, 22] or spectral techniques [19, 34]. The

measure of correlation often used in incompressible calculations is the ratio of the cross

helicity (He) to incompressible total energy (Ei), given by:

H, 2(v. B) (10)
= - (ivP1) + (fBI2 )

This correlation coefficient relates the dynamic alignment process to selective decay for

the incompressible case (cf. [501, [261, [51]). In the compressible case, the numerator and

denominator which define are no longer rugged invariants, although analogous quanti-

ties may be defined. An alternative measure, which is perhaps more meaningful for the

compressible case, is the alignment factor:

(v. B)
& = (11)(/1vl2) (fBf 2)

This is somewhat closer to the conventional definition of a normalized correlation.

Figure 5 shows and a for the incompressible case and as a function of M with

Lundquist number S = 100. We see that, for both the incompressible and compressible

cases, v and B become more correlated as a function of time and that the growth of

correlation for M = 0.2 is nearly identical to that of the incompressible system. As Af

increases, however, the correlation at any given time up to t = 10 is less. Some variation

from this is seen in the evolution of a. By both measures, though, compressibility retards

the dynamic alignment process in the Orszag-Tang vortex. The variation with S (not

shown) is qualitatively similar to that found for incompressible calculations [51]. As S

increases, the correlation at any given time is less. Finally, note that ce evolves in a more
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erratic manner than c, but that both a and exhibit the same secular trend, viz., an

increase with time.

Past treatments of this phenomenon have attributed the temporal increase in align-

ment in incompressible media to selective decay of the energy, E ((Iv12) + (IBi 2 >/2),

relative to the cross helicity, H, ((v . B)) ([50], [26], [51]). Similar arguments apply to

the compressible case as well. Figure 3 shows, however, that the functional dependence

of selective decay on M is different from the dependence on S. First consider variation

with S for constant M and at a particular time t. Figures 3c and 3d show that both !H,

and Ei increase with increasing S. However, the increase in Ei is greater, thus causing a

reduction in a and C as S increases. This is also the case for incompressible media [26].

Now consider variations in Mach number in Figs. 3a and 3b. As M increases with

constant S, H, decreases. The quantity E, however, varies little with M. Figure 5 shows

that the magnetic and kinetic energy components, taken separately, also vary weakly with

M. Because p is 0(1), and (1v12 ) - (IB12), the denominators of the alignment measures,

Eqs. (10) and (11), will also show little variation with Mach number. Thus the reduction

in alignment with increasing M is primarily due to a corresponding reduction in HC. The

discussion below of morphology of the compressible flow reveals at least one effect which

could cause this. As shown in the next subsection, the velocity field exhibits the emergence

of increased small scale structure and greater structural variation with increasing M while

the magnetic field, in relative terms, does not. This results in more local reductions in

alignment between v and B at a given time, as M increases.

We also observe that the dilatation, V = V v, is generally nonzero in the compressible

fluid and increases in magnitude with M. Since viscous dissipation includes contributions

from a term dependent on the gradient of V, the overall dissipation of the velocity field can

increase with the amplitude of compressible effects. This term is important, for example,

in the damping of acoustic and shock waves. Such dissipation could lead to reductions in

(Iv1 2) and H, with increasing M. For the total kinetic energy to remain approximately

the same as M changes (Fig. 5), the change in the local mass density must compensate
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for the local changes in v.

C. Morphology of the Velocity and Magnetic Fields

The generalized streamline plots and the contour plots presented in this section provide

a detailed visualization of the velocity and magnetic fields as the Orszag-Tang vortex

evolves in a compressible medium. Again the incompressible solution provides a baseline

for interpreting the results for a compressible medium. Figure 6 shows the incompressible

velocity field and the corresponding compressible velocity fields at t = 2 as for M =

0.2, 0.4, and 0.6 with S = 100. Notice that the M = 0.2 compressible solution closely

resembles the incompressible solution in Fig. 6, confirming the impression obtained from

the plots of global averages that low Mach number MHD closely resembles incompressible

MHD. These two cases resemble each other for all the other times plotted (not shown).

Also apparent in the compressible calculations is the shear flow corresponding to two high

density jet structures emanating approximately horizontally from the center of the system,

at which reconnection is occurring. At M = 0.6, the large vortex structures in the middle

of the system differ considerably in shape and smoothness from those present at the lower

Mach numbers and in the incompressible case. We attribute this to differences in the rates

of reconnection occurring at the center and edges of the system for the various calculations

(next section). The reconnection and the velocity shear at the center of the system are

most striking in Fig. 6 at the highest Mach number (M = 0.6). Figure 6 also shows the

magnetic field for the incompressible and M = 0.6 cases at the same time (t = 2). This

field appears slightly less rounded as the Mach number increases, but overall the magnetic

field structure changes much less than the velocity field with increasing Mach number.

Figure 7 compares the incompressible and M = 0.2,0.4, and 0.6 solutions for S = 100

at time t = 4, and provides evidence of splitting of vortices at the higher Mach numbers.

At lower Mach numbers and in the incompressible medium, a large vortex pair resides

in the middle. At M = 0.6, each vortex has apparently split into two separate, smaller

vortices with an X-point in between. The cause of this splitting with increased Mach

number apparently is the accompanying nonlinear increase in the amplitude and steepness
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of fluctuations in the fluid variables, which can cause appreciable sources of vorticity at

smaller scales [9]. If S is held constant while M increases, the effects of viscous dissipation

decrease relative to compressible sources of vorticity.

We digress to consider compressible vorticity generation in greater detail. In a two-

dimensional compressible magnetofluid, the vorticity equation is:

= -v w .v+ V X + B. V! +1 V 2W

(12)

S-V. (vW- )+ 1VP X VP + V2
p 2 p2  + ,

In a two-dimensional incompressible magnetofluid, the vorticity equation simplifies to:

- -v. V +1BVj 1 V 2w (13)

Unlike incompressible MHD, the vorticity quadrupole production term for compressible

flow also depends on the mass density convected into the reconnection region (cf. [52]).

This dependence will tend to enhance the quadrupole over the incompressible result in

regions of rarefaction (we note parenthetically that this term Bj/p also is significant for

dilatation production, i.e., OV/3t oc V x Bj/p). The baroclinic term will generate vor-

ticity in any regions where gradients in the mass density and the pressure are not aligned.

The most prevalent baroclinic source of vorticity is an asymmetric pressure distribution,

such as that which arises at the current sheet produced by reconnection in the center of

the system, leading to larger amplitude vorticity at the top and bottom of the magnetic

islands and vortex bifurcation. Such pressure distributions produce shocks or finite ampli-

tude waves, which interact with each other and with the accompanying nonuniform mass

density distribution to produce or alter local vorticity. The high density jets associated

with the reconnection are also a source of significant velocity shear and vorticity.

In addition to vortex splitting, compressibility appears to generate more small scale

structure than would otherwise be present. Figure 8 shows this by comparing the S = 200
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incompressible and compressible Al = 0.6 solutions at time t = 8. A higher Lundquist

number, by itself, leads to more structure. However, the M = 0.6 cases in Figures 7d

and 8b show considerable increases in small scale structuring over their incompressible

counterparts. Figure 9 shows the velocity field magnitude for M = 0.6 at t = 4. We see

that the regions with the most small scale vortex structure in the streamline plots also

have the lowest velocities. Hence differences in the small scale structure among the various

cases do not dominate the dynamics.

Figure 10 shows the magnetic field at a later time, t = 8, as a function of Mach

number. Relative to the velocity field, the magnetic field again shows the emergence of

much less smaller scale structure as Al increases. Comparison with the velocity field plot

at t = 8 (Fig. 7) illustrates the characteristic feature of dynamic alignment, viz. the

development of a higher degree of alignment between the magnetic field and the velocity

field. Since the velocity field shows more significant alteration in structure at higher Mach

numbers, the alignment with the magnetic field must be relatively less at any given time.

This is a possible explanation for the trend shown by the global integrals in Fig. 5.

Figure 11 shows contours of the dilatation, V, for Al = 0.2 and 0.6 and S = 100

at t = 2. Positive values of P indicate regions of rarefaction, negative values indicate

compression. The magnitude of V is a measure of the level of compression and rarefaction

in the magnetofluid. The dilatation changes markedly as Al increases. The peak positive

and negative values, Dmx and IV ..in i, are roughly equal at Al = 0.2 while IDgrin I is greater

than Dnm,,, by 13% and 55%, respectively, at M = 0.2 and 0.4. In addition, ),,a, increases

by a factor of 5.7 from M = 0.2 to 0.4 and by a factor of 4.3 from Al = 0.4 to 0.6.

Similarly IDgmin increases by respective factors of 6.2 and 6.0. These factors do not give

an unambiguous Mach number dependence for Dmax and !groin, but they do show that the

variation with Al is markedly nonlinear. Din I is usually greater than Dmax for .! = 0.6

at other times t < 10. For the exceptions, the two are approximately equal. The trend of

increases of these parameters with increasing Al holds at all times which we investigated.

The difference between IDmi, I and )rnax can be as high as a factor of 5. In addition, the
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dilatation rate increases for increasing S and fixed M. For the Ml = 0.6 case, as S is

increased from 100 to 200, IDIiax increases by a factor of 2.5 (at t - 2). This results

from the accompanying decrease in dissipation relative to the magnitude of compressible

fluctuations, thus reducing dissipative smoothing of the velocity field.

We briefly comment on compressible calculations with varying Lundquist number 5,

holding the Mach number fixed. The trends observed for incompressible calculations hold

for the compressible calculations, as well. However, for Al = 0.6 and S = 200, the relative

amount of small scale structure is higher than in the corresponding incompressible case.

This is evident in Fig. 8. Our calculations have not covered sufficiently large Lundquist

numbers to determine whether the transition to a fully developed turbulent field occurs

earlier for higher values of M,, but the presence of more small scale structure strongly

indicates this possibility, possibly intermittently in regions of higher local Mach number.

Note that the plots of global integrals indicate that the growth of correlation decreases for

either increasing S or Jl with the other held fixed.

D. Reconnection Phenomena

Figure 12 shows contour plots of the electric current density arid the vorticity at time

t = 2 for variable M and with S = 100. The current sheet in the center corresponds to

the sheared magnetic field occurring there, as in the incompressible Orszag-Tang vortex

system [23]. There is some quantitative variation in the electric current density as the

Mach number increases, but little qualitative variation. This variation primarily reflects a

difference in the "scheduling" of events in the system. In particular, increased compress-

ibility appears to retard the formation of the current sheet centered on the vertical edges

of the periodic box. At later times the central current sheets stretch to the point where

they exhibit a secondary tearing instability (53]. Because of the interaction between the

velocity and magnetic fields at this time, a region of sheared flow coexists with the current

sheet. We see the familiar vortex quadrupoles centered on the current sheet (54], [52]). In

addition, isolated high vorticity regions form elsewhere in the box as M increases, e.g., near

the upper left corner of Figure 12d. The magnetic and kinetic enstrophies, (J2 ) and (w2 ),
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;-e shown in Figures 5e and 5f, respectively, as functions of time for varying M and

.5 100. -I'iese averages show small variation with Mach number and a roughly linear

vaiati,,n ~With Lundquist number (not shown in the figure). As the Mach number increases

Lu inost notable features are a decrease in the peak (j') and the increasing fluctuations

ii(2).

Reistiwe heating in the central region, due to the current sheet, produces a massive

.'t shown in Fig. 13 at t = 2 for variable .1l, S = 100. As Al increases: (1) the peak

, in the jet increases (For the Jl = 0.2 case peak density in the jet is about 0%

Iiovc the initial value, while for the ,I = 0.6 case the peak density is about 110% above

the initiai value); (2) the gradients in the mass density increase; and (3) the jet becomes

iflore clliniated. It is interesting to note that this jet resembles radio wavelength images

of astrothysical jets, although we do not speculate that the cause of such objects is the

nie. Figures 13c and 13d, at a later time (t = 8), show that the jet material has spread

In tlh transverse direction and forms a much less distinct structure. The temperature (no',

shwii) contains evidence of both the central vortex and magnetic structures and of the

lo't.

Also worthy of note is the reconnection occurring across the left and right (periodic)

b,)uiidarics. This reconnection is apparent from the magnetic field line plots in Figs. 6 and

1) am 1l al, froni contour plots of current density and vorticity in Fig. 12, which show the

1,[,e('ice of current and vortex sheets. We do not see evidence of jets at the boundaries,

Sv,,t,it," plots do show the existence of shear flows at the "center" (x = -, y = -)

h"<.'" ( 0. ) and (27r, y)) of the computational box As the Mach number increases in

i !1 ,ii,! 13, the shear at the "edges" becomes weaker relative to that at the "center"

SI ,' 7 !It It t Uiial box.

K. Spectral Distributions

A its,ribed above, compressible flow morphology indicates the presence of more

,:i:,!1 ciW: sriucture as the initial average Mach number is increased. This conclusion also
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is borne out by a study of the volume averaged spectral ,Istributions of various quantitieS.

Two questions emerge naturally: 1) what are the spectral distributions of compressible

quantities, e.g., the mass density, since they have no incompressible analogue, and 2) how

does compressibility affect the spectra of quantities with incompressible analogues (e.g.,

the magnetic energy)? In general, at any given time the spectral distributions show more

excitation in the small spatial scales for all of these quantities accompanied by a sli ght

decrease in the slope of the high-wavenumber regions as Al is raised. This implies that the

usual caveat about increasing the numerical resolution as the Lundquist (Reynolds-like)

number increases also should be extended to the Mach number.

Figure 14 shows spectral plots of the mass density at several different times for the

Al = 0.2 and 0.6 cases. One outstanding feature in these plots is the rapid excitation of the

density at small spatial scales, implying that nonsolenoidal flows are well-developed after

one Alfvdn transit time. Comparison shows that the higher Mach number case ":, for any

given time, in a more highly excited state (the level of excitation is described roughly by

p/p or, AP). Spectra for both Mach numbers shown exhibit a rise in excitation, peaking

at about t = 2, followed by a gradual decay.

The conclusion that increasing compressibility leads to more small scale structure is

straightforward with respect to a quantity such as the mass density - since the mass

density fluctuations are zero by hypothesis in the incompressible case. What about a

quantity, like the magnetic field, which fluctuates in both cases? How will it be affected

by variations in the Mach number? Figure 15 shows spectral plots of the magnetic energy.

Here again we find higher excitation, primarily in the short wavelengths, as the initial

average Mach number is increased. The longer wavelengths are not affected as strongly, as

might have been expected from the field morphology. Hence the slope of the distribution

increases slightly in the high wavenumber range as the Mach number is raised, which

suggests that the theory of Moiseev et a1.416] might be extended to the MHD case.

We next decompose the velocity field into solenoidal and nonsolenoidal parts, and

compare their spectra in Figure 16 at various times for the Al = 0.6 case (cf.[171). To
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obtain the solenoidal part, we compute

Ik x i(k)12

where the tilde denotes a Fourier transformed quantity. The nonsolenoidal part is given

by
Ik i'(k)1

2

Our earlier conclusion that compressible excitations develop quickly is borne out by the

nonsolenoidal spectra. In the Al = 0.6 case, there is almost an equipartition between

the two velocity fields, except at the very longest wavelengths. At the later time the

nonsolenoidal field is more excited at the smaller scales than the solenoidal field. For the

.11 = 0.2 case (not shown), the solenoidal part of the field generally is more excited than

the nonsolenoidal part, especially in the larger scales.

A comparison with the spectral data of Passot and Pouquet (1987) on nonmagnetized

fluids initialized with broadband noise can help us to analyze our result of an approximate

equipartition between the solenoidal and nonsolenoidal components of the velocity field.

We concentrate on the only case which they presented for subsonic flow, Al = 0.028,

although this is far below the range which we investigated. In their simulation, the initial

velocity field was almost entirely solenoidal. For small initial mass density fluctuations

relative to M!2 , Passot and Pouquet found the spectrum to be "quasi-incompressible" at

all times. When pS/p > M 2 at t = 0, the initial, almost entirely incompressible, velocity

field changed in two characteristic times to a state in which the nonsolenoidal component

comprised over 70% of the kinetic energy.

In our case, the initial density fluctuations are zero. In the absence of the magnetic

field, the density would remain constant as the kinetic energy decayed to zero, and the

behavior should be quasi-incompressible, as observed by Passot and Pouquet. The dissi-

pation of the magnetic field, however, provides a source of driving energy which can cause

an appreciable compressible component. The transient character of this energy source
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and the fact that the compressible system is otherwise identical to the incompressible sys-

tem at very early times and quite similar at later times, indicates that an appreciable

incompressible component could be present as well. Under these conditions, approximate

equipartition between the solenoidal and nonsolenoidal components seems reasonable. At

the lower Mach numbers, one might expect a higher relative level of solenoidality than at

the higher Mach numbers.

In Figure 17 we show the normalized cross-helicity, X, defined as:

*(k) B(k)k(k) = 2-
Ii'(k)12 + IB(k)l2 ,

for M = 0.2 and 0.6 and S = 100 at early, middle, and late times. Incompressible numerical

simulations have shown that X(k) tends to bifurcate as time evolves ([50], [26], [51]). Since

X(k) oc Hr(k)/Ej(k), this indicates that one sign of cross helicity dominates at large spatial

scales, while oppositely signed cross helicity dominates at small spatial scales. We note

the development of a bifurcated state (i.e., in which X has different signs at the large and

small scales) at later times for both Mach numbers. For the higher Mach number case,

however, a large central region in the late time plot shows no clear state of correlation.

This is not found in the lower Mach number plot. Recall that the level of correlation is less

for the higher Mach number cases at any given time (Figure 5a). At t = 1, Mach number

variation of X is only evident in the short wavelength regime. This regime is somewhat

more negative for the low M run. However, at t = 6, the spectra exhibit differences at large

and small scales. The tendency toward bifurcation is clear by now, but domination by one

sign of cross helicity is not as pronounced at short wavelengths for M = 0.6. At t = 10,

the spectra of magnetic and velocity fields in very low and very high wavenumber regions

are correlated, but wavenumbers in the middle range are in a mixed state of correlation.

Note that total bifurcation is episodic for both cases, e.g., Figure 17a indicates that the

M = 0.2 case has become bipolar at t = 5, however, at t = 10 there is no sharp break

between region of oppositely signed normalized cross helicity. Numerical simulations out

to larger times are required to see if these systems settle into a completely bifurcated state.
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These simulations do show, however, that the details of normalized cross helicity transfer

are sensitive to the degree of compressibility of the turbulent magnetofluid.

IV. CONCLUSIONS

To determine the effects of compressibility on the phenomenology of MHD turbulence,

we have taken the direct approach of choosing a simple, though nontrivial, test problem

which has a well-known incompressible MHD evolution. Although this choice of initial

conditions might limit the phase space accessible to the compressible system, it does permit

a direct comparison of the evolution of turbulence in the two cases and results in the

identification of specific compressible effects. The present calculations have concentrated

on initially average subsonic flows and have permitted /3 to change inversely with Mach

number. Another approach which we are presently investigating is to maintain 6 at a

constant value and vary the Mach number by varying the initial mass density. The use of

variable mass density permits a wider range of Mach numbers to be considered, including

the supersonic regime.

In this paper we have investigated the dynamic evolution of compressible magnetoflu-

ids as a function of initial average Mach number, in terms of global quantities, flow mor-

phology, and spectra. Perhaps the most theoretically meaningful quantities chosen for

comparison are the global quantities. Comparison of global quantities shows that some

differences in evolution can be described in terms of initial average Mach number. These

results also show that no sudden qualitative changes in behavior occur for the range of ini-

tial average Mach numbers studied, but rather a slow progression. Our calculations thus

indicate that, to some extent, observations of compressible magnetohydrodynamic tur-

bulence can be interpreted in terms of incompressible MHD turbulence theory for Mach

numbers less than about one. The relevance of incompressible MHD turbulence theory to

supersonic systems remains to be tested. Dynamic alignment occurs in compressible as

well as in incompressible media; system evolution and the physics of reconnection are sim-

ilar, excluding variations in the mass density and temperature. The alignment measures
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of v and B decrease at a given time as Mach number increases, so that compressibility

retards or limits the process for the Orszag-Tang vortex. The physics of selective decay

as a function of M is significantly different when compared to the dependence on inverse

dissipation, even though the alignment coefficients decrease with increasing Mach number,

as with increasing Lundquist number. Some variables, such as average kinetic and mag-

netic energies and kinetic and magnetic enstrophies, show little variation over the range

of Mach number we have studied. Note that we have drastically simplified the transport

coefficients by assuming them to be isotropic and temperature independent. A more re-

alistic tree ment of transport might alter our conclusions somewhat. Note also that the

behavior of ideal, incompressible global invariants is not identical in the two media. In the

compressible medium these quantities often fluctuate around the normalized compressible

analogs or behave in a manner that is qualitatively similar to the incompressible results.

Our second means of study is point-to-point local comparison of solutions as a function

of Mach number. While the qualitative observations regarding common variables in the

Orszag-Tang vortex, like the velocity and magnetic field, are similar, the details of the

various phenomena differ in significant ways. Some features of compressible flows have no

analog in incompressible media. This is true, for example, of compressible variations in

mass density. The high density jets produced by magnetic reconnection are one important

feature which the incompressible calculations cannot model or estimate. Another striking

feature in direct solution comparison is the emergence of smaller scale rotational structure

in the velocity field with increasing Mach number. The central large scale vortices appear to

split into vortex pairs at high subsonic Mach numbers. Small scale structure also increases

with higher Lundquist numbers as in incompressible flows but more so at higher M. The

size of the Mach number relative to the Lundquist number should be important in this

phenomenon, since the former is a measure of the magnitude of velocity fluctuations while

the latter is a measure of the degree to which dissipation will reduce such fluctuations. The

source term in the vorticity evolution equation for compressible flow (Eq. (12)) contributes

to changes in the vorticity through pressure and density fluctuations [9), as well as by
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altering the magnetic source term. These changes should translate into smaller scale

structure in the flow field. Spectral plots as a function of M support this conclusion and

hint that compressibility might significantly alter spectral transfer in the inertial range.

None of the above results have depended explicitly upon the feature usually associ-

ated with compressible flows-finite sound waves and shock waves. We saw little direct

evidence of such waves in our calculations. This will be the subject of our next paper on

the supcrsonic regime. Our earlier results [19], combined with those of Passot and Pou-

quet, indicate that novel phenomena occur when compressible initial conditions are used.

However, we point out that, in a region containing shocks and for which (v) = 0, the flows

will be subsonic in the portions bounded by shocks, so that the conclusions that we have

reached here will be important to the case of supersonic flow as well.
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Figure 1. Initial conditions: a. velocity field; b. magnetic field; Initial conditions specific

to the M = 0.6 case: c. thermal pressure field; d. local Mach number. Minimum

and maximum values are 0.73 and 7.9 for thermal pressure arnd 0.0 and 0.97 for local

Mach number.
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Figure 2. Time evolution of the mean square magnetic vector potential ((a2) - solid

line) and its compressible analogue ((pa 2 ) - dashed line), both for the compressible

M = 0.6, S = 100 run.
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I Figure 3. Variation of time evolution of global quantities parameterized by Mach number

(M) and by Lundquist number (S): a. variation of cross helicity with Al (S = 100)

(solid line-incompressible result, dashed line-M = .2, mixed dashed line-M = .4, and

dash-dotted line-M = .6); b. variation of fluctuating energy (magnetic + kinetic) with

M; (figure key same as a); c. variation of cross helicity with S (M = .6) (triangles-

S = 200, circles-S = 100, and squares-S = 50); and d. variation of fluctuating energy

(magnetic + kinetic) with S (figure key same as c).

35



'IO

>

a. b -r\-- T

K 2~~~)O~ ~Kccz ~ 7T~TTT
27ii1-~ N

33. C :6 
-5

C.~ __ _ _ _ _ _

Fiur 4. Conou plt of the poy ccefcetfr .M 02adbjf06a

t~~~ ~ ~ ~ = 2, an .M =02ad b . tf= .S =10frbt ae.Mnm n

and ~ -~Z maiu ausaea 78 n 54 .11,n .3,c 98ad3.,add

2.62 and ,29

36(



,z I /If /I

s I
I51/X

a'4 . - .. 1. 4o *.* .e *0.4 0J 2

N..4

Figure 5. Variation of time evolution of global quantities parameterized by Mach number

(Al'), S =100 for all cases: (solid line-incompressible result, dashed line-Al = .2,

mixed dashed line-M = .4, and dash-dotted line- M = .6); a. correlation coefficient;

b. alignment factor; c. kinetic energy; d. magnetic energy; e. kinetic enstrophy; and

f. magnetic enstrophy.
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Figure 6. Variation of fields with Mach number (M) at t = 2 (S = 100): a. velocity

field (incompressible case); b. velocity field (M = 0.2); c. velocity field (M = 0.4);
d. velocity field (Al = 0.6); e. magnetic field (incompressible case); and f. magnetic

field (Al = 0.6).
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Figure 9. Contour plot of v 2 at t = 4 for M = 0.6 and S = 100. Minimum and maximum

values are 0.0 and 2.58.
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Figure 15. Spectral plots of the magnetic energy: M = 0.2 case at a. t = 2; b. t = 4; c.

t = 6; 4. t = 8. M = 0.6 case at e. t = 2; f. t = 4; g. t = 6; h. t = 8. S = 100 for

all cases. The dashed line has a reference slope of -4/3, corresponding to a k - 5/ °ver3

omnidirectional energy spectrum.
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Figure 16. Spectral plots of the solenoidal and nonsolenoidal kinetic energy density for the

Ml = 0.6 case: solenoidal part at a. t = 2; b. t = 4; c. t = 6; d. t = 8; Nonsolenoidal

part at e. t =2; f. t = 4; g. t = 6; h. t =8. S = 100 for all cases. The dashed line

has a reference slope of -4/3.
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Figure 17. Spectral plots of the normalized cross-helicity: M = 0.2 case at a. t = 1; b.

t = 5; c. t =10; AM= 0.6 case at d. t = 1; e. t = 5; f. t = 10. S= 100 for all cases.

The dashed line has the reference value zero.
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