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AVANT-PROPOS

Richard Bellman, un des mathématiciens les plus féconds et les plus
renommés des Etats Unis, a apporté des contributions majeures aux mathéma-
tiques pures et a de nombreux domaines d'applications : sciences de 1'ingé-
nieur, économie, médecine, énergie, gestion des ressources en eau, physique
mathématique, recherche opérationnelle, sciences de la gestion, psychologie
et sociologie. Une telle variété des domaines abordés et des moyens mis en
oeuvre pour approfondir ces domaines avec une telle pénétration se rencontre
rarement en science.

Tout au long du développement de son oeuvre, i' eut un grand nombre
d'amis, d'éléves et de correspondants portés vers les mémes centres d'interét.
Parmi eux, aprés la disparition du Professeur Bellman, un groupe de scienti-
fiques des Etats Unis s'est efforcé de perpétuer son Ecole. Dans ce but ils
ont proposé d'organiser un Colloque annuel ou bi-annuel : le Bellman Continuum.
Ce Colloque devait étre de nature interdisciplinaire, comme 1'était 1'oeuvre
de Richard Bellman.

Le premier congrés s'est tenu & 1'Université du Michigan, Ann Arbor,
Michigan, en 1985 et Te second a &té accueilli par 1'Institut de Technologie
de Georgie, Atlanta, Georgie, en 1986. Les organisateurs ont pensé que la
France serait un des pays les mieux adaptés & la tenue du troisiéme congrés
pour des raisons de caractére & la fois scientifique et géographique :

Richard Beliman &tait trés populaire en Europe. De plus, un argument important
pour ce choix était le fait que la huitiéme Conférence Internationale Analyse
et Optimisation des Systémes de 1'INRIA devait se tenir & Antibes du 8 au 10
Juin 1988. Cela fournissait 1'occasion idéale de profiter de la présence en

un méme lieu d'un grand nombre de spécialistes venant de tous les points du
monde pour organiser une petite conférence permettant un échange d'idées assez
informel.
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Dans les deux premiers congréds, le programme avait été dicté par la
nature interdisciplinaire du Colloque avec des sujets définis suivant les
interéts des participants. Les thémes unificateurs &taient 1'idéologie scien-
tifique et les techniques mathématiques plutdt que les domaines d'étude
spécifiques. Dans ce troisiéme congrds, pour des raisons scientifiques évi-
dentes, 1'ensemble des sujets abordés a été délibérément restreint, ayant en
vue le fait que ces sujets pourraient changer d'un congrés au suivant. Les
sujets mentionnés ci-dessous, choisis dans des domaines ol la recherche est
trés active et pleine de promesses, ont été sélectionnés :

Modélisation et commande en Economie et en Sciences Sociales.
Commande des systémes dynamiques incertains.

Commande et filtrage nonlinéaire des processus quantiques.
Modélisation et commande des systémes biologiques.

Les Conférenciers d'Ouverture de Sessions sont les Professeurs

R.E. KALMAN, University of Florida, U.S.A., et Technische Hochschule,
Zlirich, Suisse

G. LEITMANN, University of California, Berkeley, U.S.A.

S. MITTER, Massachusetts Institute of Technology, U.S.A.

Initialement, notre intention &tait de réunir un petit nombre de spécia-
listes sur la base d'invitations. Cependant, les réponses 3 notre annonce
préliminaire surpassérent notre estimation la plus optimiste de 1'enthousiasme
des chercheurs dans ces domaines. Par la suite, nous décidames d'éditer les
Actes de ce Colloque sous la forme d'un livre réunissant les conférences sur
invitation et certains des rapports destinés & la présentation de travaux
récents, soumis au Comité d'Organisation. Ce livre sera publié aprés le
congrés par SPRINGER-VERLAG dans la Série “Lecture Notes in Control and
Information Sciences". Les manuscrits contenus dans le présent fascicule sont
les résumés ou les textes intégraux de tous les papiers en notre possession
au moment du congrés. Pour chaque théme, dans toute la mesure du possible,
ils sont présentés dans 1'ordre ol ils se trouvent dans le Programme.
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Ce Colloque n'aurait pu avoir lieu sans le soutien technique et
financier de 1'INRIA & qui nous exprimons notre gratitude. En particulier,
qu'il me soit permis de remercier ici son Président le Professeur Alain
BENSOUSSAN, le Directeur du Centre de Recherche de 1'INRIA-SOPHIA ANTIPOLIS
le Professeur Pierre BERNHARD, et Te Directeur des Relations Internationales
et Industrielles Georges NISSEN. J'adresse personnellement des remerciements
tout particuliers & Thérése BRICHETEAU qui, & la téte du Service des Relations
Exterieures de 1'INRIA, a pris soin si efficacement de la multitude des
problémes d'organisation, et nous a fait profiter de sa grande experience.
Nous sommes trés reconnaissants & Catherine JUNCKER qui a pris en main de
fagon experte 1'organisation du congrés & Sophia et son implentation sur le
site. Je suis redevable envers les Secrétaires Scientifiques de la huitiéme
Conférence Analyse et Optimisation des Systémes de 1'INRIA de leur aide,
notamment envers Frédéric BONNANS pour ses conseils éclairés dans la prépara-
tion du Colloque. Des remerciements tout particuliers sont dis & Gilbert
MALLET qui a édité ces "Preprints". Finalement, et non les moindres, nos
remerciements s'adressent 3 toutes les secrétaires et les techniciens qui
ont contribué au succés du troisiéme Bellman Continuum, aux différentes
étapes et aux différents niveaux de son organisation.

Ce Colloque international a aussi regu le soutien financier de
1'Université Toris 7, 1'un des organisateurs du congrés, de 1'Association
Frangaise pour la Cybernétique Economique et Technique (AFCET), du Centre
National de 1a Recherche Scientifique (CNRS), de 1'European Research Office
United States Army, du Ministére des Affaires Etrangéres, du Ministére de
1'Education Nationale, du Ministére de la Recherche et de 1'Enseignement
Supérieur, de 1'United Nations Educational Scientific and Cultural Crganization
(UNESCO). D'autres subventions ont été attribuées aux participants par divers
organismes mentionnés séparément, auxquels, comme aux organismes dont nous
venons de dresser la liste, nous exprimons notre gratitude.

Austin BLAQUIERE (Pré&sident)




FOREWORD

Richard Bellman, a most prolific and renowned mathematician of the United
States, has made major contributions in pure mathematics and in numerous areas
of applications : engineering, economics, medicine, energy, water resources,
mathematical physics, operations research, management sciences, psychology and
sociology. This breadth of interests and this ability to contribute to so
many fields at such a high level is rare indeed.

Throughout his years in science, he had a large number of scientific
friends, students and followers. Among them, after Professor Bellman has
passed away, a group of scientists of the United States has attempted to
preserve his School. As a mechanism for achieving this goal, they suggested
an annual or oiennial workshop : the Bellman Continuum. This workshop was
envisioned as being interdisciplinary in nature, as the achievement of
Richard Bellman was.

The first meeting was held at the University of Michigan, Ann Arbor,
Michigan, in 1985 and the second was hosted by the Georgia Institute of
Technology, Atlanta, Georgia, in 1986. The organizers thought that France
could be a nice place for the third meeting from both scientific and geogra-
phical points of view : Richard Beliman was very popular in Europe. Also, a
strong motivation for this choice was the fact that the eighth International
Conference Analysis and Optimization of Systems of INRIA was to be held in
Antibes on June 8-10, 1988. It provided an ideal opportunity for taking
advantage of the presence of a large number of specialists from all parts
of the world to organize a small conference where a free exchange of ideas
could take place.




In the two first meetings, the program has been dictated by the inter-
disciplinary nature of the workshop with topics defined by the interest of
the participants. The unifying theme included scientific ideology and
mathematical tools rather than specific fields of study. In this third one,
for evident scientific purposes the subject matter to be treated has been
limited, having in view the fact that the areas defined below could change
from one meeting to the next. The following topics, chosen in areas where
research is very active and promising, in directions opened and explored by
Richard Bellman, have been selected :

Models and Control Policies in Economics and Social Systems.
Control of Uncertain Dynamical Systems.

Control and Nonlinear Filtering of Quantum Mechanical Processes.
Models and Control Policies for Biological Systems.

The Key-note Speakers are

Professor R.E. KALMAN, University of Florida, U.S.A., and Technische
Hochschule, Zurich, Switzerland

Professor G. LEITMANN, University of California, Berkeley, U.S.A.

Professor S. MITTER, Massachusetts Institute of Technology, U.S.A.

Originally, it was thought that a gathering of a small number of
specialists on an invited basis was sufficient for the purpose. However,
the responses to our initial announcement surpassed our most optimistic
estimate of the enthusiasm of workers in these areas. Subsequently, it was
decided that we edit the Proceedings of this workshop as a book containing
all the invited papers and selected contributed papers submitted to the
workshop. This book will be published after the meeting by SPRINGER-VERLAG
in the Series "Lecture Notes in Control and Information Sciences". The
manuscripts contained in the present Preprints are extended summaries or full
text of all papers available from authors at the time of the meeting.
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This workshop could not have taken place without the technical and
financial assistance of INRIA to whom we express our gratitude. In particular
I would like to take this opportunity to thank his President Professor Alain
BENSOUSSAN, the Director of the INRIA-SOPHIA ANTIPOLIS Research Center
Professor Pierre BERNHARD, and the Director of Industrial and International
Relations Georges NISSEN. I personnally address special thanks to Thérése
BRICHETEAU who, at the head of the Service des Relations Extérieures of INRIA,
took care of all the myriad details of organization so efficiently and ably.
We are most grateful to the expert assistance of Catherine JUNCKER who took
care of the organization at Sophia and of the local arrangements. I am
indebted to the Scientific Secretaries of the eighth INRIA Conference
Analysis and Optimization of Systems for their help, in particular to
Frédéric BONNANS for valuable advice in the preparation of the workshop.
Especial thanks go to Gilbert MALLET who edited these Preprints. Last but
not least, our thanks go to all the secretaries and technicists who handled
the many problems at each step and at each level and contributed to the
success of the third Bellman Continuum.

This international workshop was also financially supported by the
Université Paris 7, one of the organizers of the meeting, and by the Association
Frangaise pour la Cybernétigue Economique et Technique (AFCET), the Centre
National de 1a Recherche Scientifique (CNRS), the European Research Office
United States Army, the Ministére des Affaires Etrangéres, the Ministére de
1'Education Nationale, the Ministére de 1a Recherche et de 1'Enseignement
Supérieur, the United Nations Educational Scientific and Cultural Organization
(UNESCO). Additional fellowships to the participants were provided by various
organizations listed separately, to whom, as well as to the above mentioned
organizations, we express our gratitude.

Austin BLAQUIERE (Chafrman)
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CONTROLLING SINGULARLY PERTURRED UNCERTAIN DYNAMICAL SYSTEMS!

G. Leitmann :
College of Engineerin? University of California -
Berkeley, California 94720 USA

INTRODUCTION

The prototype for the class of systems considered in this chapter is depicted in
Figure 1 and consists of a dynamical process P (imperfectly known) controlled by a
(judiciously designed) feedback law (operator F) acting on state data generated by
sensor S and implemented via actuator A,

—={! ACTUATOR A 5{){ UNCERTAIN PROCESS P [———{) SENSOR S

FEEDBACK OPERATOR F i}—

Figure 1. Prototype System

We assume (realistically) that the sensor and actuator are dynami¢c elements of
the feedback loop; furthermore, we adopt the viewpoint that these dynamics are
“fast" relative to those of the process P to be controlled. If this is not the
case, then, at the modelling stage, the sensor and actuator should be explicitly
incorporated as an integral part of the process to be controlled,

We recognize, of course, that in the context of nonlinear systems, the concept
of "fas.ness" is difficult to quantify. Here we use the term loosely to indicate
that the overall system exhibits a “two time scale" structure as described in the
next section,

THE FULL-ORDER SYSTEM
The above prototype typifies a general ciass of singularly perturbed uncertain

systems which can be decomposed, by means of a scalar parameter u, into two coupled

--------------- L X P pupppp g

1gased on research supported by the NSF and AFOSR. This paper deals with a special
case of the problem considered in (8] and [9].




subsystems which henceforth will be referred to as the "slow" subsystem (with state
x(t)) and the “fast" subsystem (with state y(t)). The parameter y, henceforth
referred to as the singular perturbation parameter, can be interpreted as some
measure of the ratio of characteristic times of the fast and slow subsystems.

We mode) this general class of systems by the following coupled pair of dif-
ferential equations.

X(t) = X(t.x(t)oy(E),u(t)),  x(t)eR", u(t)eR" (e

u.y(t) = V(t.x(t)..Y(t),U(t).u). y(t)GRp, \le(on.) (lb)

with measured output

z(t) = Sx(t) + Ty(t), z(t)eRr" (1c)

where X and Y are uncertain functions with the following structure:

X(t,x,y,u) = Ajyx + Ay + Byu + gy (t,x,y,u) (2a)
Y(tx,y,um) = C(t) Ay x + y + Boul *gy(tix,y,uu) o . (2b)
Aij’ Bi’ S and T are known constant real matrices; C is an uncertain measurable

matrix-valued function; 9 and g, are uncertain Caratheodory functions (1.e.
measurable in their first argument. continuous in their other arguments and
integrably bounded on compact sets).

Note that we require that the dimension of the output space coincides with the
dimension of the slow subsystem state space. We refer to system (1)-(2) as the
full-order system (a dynamical system on R""P),

Now suppose that the dynamics of the fast subsystem are neglected, i.e. suppose
that u is set to zero, in which case (1b) reduces to an algebraic constraint on
{la). This procedure yields the reduced-order system (a dynamical system on R™.
Suppose further that a feedhack strategy is designed which guarantees some stability
property P for the uncertain reduced-order system. (One such design is proposed in
§5 and analysed in §6, using the deterministic framework developed in e.g. [1-7]).
Then the essential question to be addressed is that of structural stability of pro-
perty P with respect to singular perturbation, i.e. does property P persist when the
fast dynamics are re-introduced? More usefully, does there exist a calculable
threshold value u* > 0 such that property P -persists for all values of the singular
perturbation parameter in the interval (O.u*)?

Our objective is to answer such questions affirmatively, under additional
hypotheses on the full-order system, The first of these is an assumption which
ensures that a well-defined reduced order system results from setting p = 0 in (1b).

——— e o~
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Assumption Al

(1) Cl(e) = Co + AC(+), where C € RPXP {s known with spectrum alC,) c ¢ (the
open left half complex plane) and aC: R + RP*P is an unknown measurable function
with known bound x (sufficiently small), viz. for all t,1aC(t)r < ke <
1/2|P|'l, where P > 0 (symmetric) solves the Lyapunov equatfon PCO + CIP + 1 =0

(.”) gz("'r"'»o) =0,

THE REDUCED-ORDER SYSTEM

Solving the algebraic equation Y(t,x,y,u,0) = 0 for y (uniquely in view of
Assumption Al) determines the function

(x,u) » H(x,u) & - [Ayyx + Bul . (3)

The reduced-order system associated with (1) is now defined as

x(t) = X (t.x(t),u(t)),  x(t)er" (4a)

with output

2(t) = Sx(t) + TH(x(t),u(t)),  2(t)eRr” (8b)
where

XA (8,x,0) & X(t,xH(x,u),u) = Bx + Bu + G(t,x,u) (52)
and

Tha - Ak, T8 - AL Tt § g (tx,Hix,u)0) (5b)

At this stage, we loasely define our preliminary goal as that of rendering, by
feedback, some acceptably small compact neighborhood of the zero state of (4) glo-
bally attractive. Thus, it is not unreasonable to require the following of the
nominal linear system pair (K,E):

Assumption A2
{1) (A,B) is a stabilizable pair,

(§i) S - TA21 is non-singular,

nxn +

Now, let (Q;yo)en x R (R+ ¢ [0.»)) be a pair of design parameters with

the properties (1)Q ts symmetric and positive definite (i) vyg > 0 if o(E)¢ €™ .

s



These properties, in conjunction with A2, ensure that the Riccati equation
KR & AK + Q- 2y kBB K = O (6)

admits a unique real positive-definite symmetric solution K > 0, Hence, for

example, in the absence of uncertainty (g = 0) and if S =1 and T = 0, the output

feedback law y = - YOETKz renders the zero state of (4) asympstotically stable.

We now impose some additional structure and bounds on the system uncertainty.

Assumption A3

There exist known non-negative real numbers cl, €34 Cq, and unknown Caratheodory
function e: R x R" x R™ + R™ such that:

and, for all (t,x,u) € RxR™xR™ ,
(i) ve(t,x,u}y < €y +Cpaxt + Cyrul

In the familiar terminology, the uncertainty is assumed to be matched and cone-
bounded., The more general case of unmatched and non-conebounded uncertainty is con-
sidered in [8] and [9], albeit at the expense of a considerably more complicated
controller design.

Define A: P + R™" and Ty» Tp C R as follows:

Aly) oy - BB K (7a)
[1, =)i ¢y = 0 1 :

r, ¢ iy (1) v ¢ e HQ ] (7b)

N PR 3) g +

Ty 8 {v: ]S - TA(Y) |2 0;  x(y) < (1 - 2¢aP1)/21PCo1 + 2¢AP1)}  (Tc)
where
Y - 7d
«(v) ¥ y18,8°k[s - TA(v)T 'm0 (7¢)
Then the following additiona) assumption is required.

Assumption A4

rdr nr, %A
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PROBLEM FORMULATION

Suppose a (time-dependent) output feedback control function (t,z) w q(t,z) is
designed which guarantees that the feedback-controlled reduced-order system
(viz. u(t) = - q(t,2(t)) in (4)) possesses some desired stability property P, then
the basic question to be addressed is that of robustness of P with respect to singu-
lar perturbation, where the singularly perturbed system is defined by (1) with
u(t) = - q(t,z(t)); in particular, does there exist a (calculable) constant u* >0
such that the full system (1), under output feedback control u(t) = - q(t,z(t)),
possesses property P for all values pé€ (O,u')?

Here, we take the desired property P to be the existence of a compact set ] C R"

(respectively § ¢ R™P) containing the origin which is a global uniform attractor
for the reduced-order system (respectively, the full-order system) in the following
sense,
Definition 1
A compact set § C RY is a gliobal uniform attractor for the system
wt) = z(t,w(t)), w(t)e Rl ")

if the following properties hold:

(i) Existence and continuation of solutions: For each pair (to,wqe R x RY

there exists a solution w: [to,tl) + RY (absolutely continuous function satis-

fying (*) almost everywhere) with w(to) = w° and every such solution can be

extended into a solution on [to,-);

(ii}  Uniform boundedness of solutions: For each r > 0 there exists R(r) > 0
such that 1w(t)s < R(r) for all t on every solution w: [to,-) + R of (*) with

|w(t°)| < r, where toe R is arbitrary;

(1i1) Uniform stability of J: For each d > 0 there exists D(d) > O such that

w(t)e] + dB for 211 t on every solution w: [t ,=) + R of (*) with

w(to)e{ + D(d)B where ty is arbitrary (note, B denotes the open unit ball in

RY and, for & > 0, J + 4B dendtes the set {o + p: o € J; lo1 < §1);

e s L i
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(iv) Global uniform attractivity of J: For each d > 0 and r > 0 there exists
t{d,r) > 0 such that w(t)el + r8 for all t > ty* t(d,r) on every solution

w: [to,-) + RY of (*) with w(to)ez + dB , where t & R is arbitrary.

In the next section, we construct a feedhack strategy which ensures property P
for the reduced-order system (4).

NONLINEAR QUTPUT FEEDBACK

Choose €1, €5 > 0; these are design parameters and can be chosen arbitrarily
small, Define p: RxR" + R" as

p(t,x) & p (x) + p (x) . (8a)
The function Po is linear and is given by

p.(x) & y Bkx (8b)

0 1

where ylel?+ satisfies
v,€ r. . {8¢)

The function ) is nonlinear and bounded and is given by

=T . N
°1°1(°1 B Kx) if T =20 or B2 0
py(x) & (84)
0 otherwise
where 0, € R* satisfies
GO (1 - c:‘l)c1 . (8e)

and 9,: R™ » R™ is any smooth (c1) function which satisfies

“l(v)l <1, (v..l(v)) > v - ¢y Yver” (8f)

and which has bounded derivative n¢l; i.e., there exists -<’e a* such that
lDol(v)| < %o for all veR™. The proposed output feedback control function

q: RxR" + R™ 15 now defined by

qlt,z) & p(e, [s-TA(Y)]" ) . (9)

Loosely speaking, the linear component (8b) of the control stabilizes (if
nacessary) the nominal linear system and counteracts part of the uncertainty e while

PP, PR _‘LM



nonlinear component (8d) (when active) counteracts the remaining part of e,

As an example of a function 4, satisfying the above requirements, consider the
function

$ 2 VW avE cl]'lv
for which (8f) clearly holds, and moreover, " is C1 with |D¢1(v)| < cl'l for all
v ERm.
A COMPACT ATTRACTOR FOR THE QUTPUT FEEDBACK CONTROLLED REDUCED-ORDER SYSTEM

For the reduced-order system (4), it may be verified that q(t,z(t)) = p(t,x(t)).
Hence, setting u(t) = - g{t,z(t)) in (8a) yields the system

X(t) = F (tx(t)),  x(t) €r (102)
with
Frtax) & Fx - Bp(t,x) + Glt,x, - plt,x). (100)
As shown in [9], system (10) possesses stability property P .
To this end, we define V: R" » R* (a Lyapunov function candidate) by
Vix) & ko (11)
Theorem 1,

There exists a closed ellipsoid

2,09 {x€r": V(x) ¢ rg) ,

where r  is defined in {97, which 1s a global uniform attractor for system (10).

Our next objective is to show that property P fs not destroyed by the re-
introduction of the fast dynamics.

: A COMPACT ATTRACTOR FOR THE OUTPUT FEEDBACK CONTROLLED FULL-ORDER SYSTEM

Define

h(x) 9 H(x, = p(t,x)) = = Alyy)x + Bypy(). (12)

[ U U _.-Amt.w
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OQur final assumption is now made,

Assumption A5
(i) For all (t,x),

19y (£.%,3; ,-Q(1,5x4TY 1)) = 91 (£.X,5,0mQ(E.SK4TY )N € Aay =yl ¥YaYp

where A » 0 is a known constant;
(1) for a1l (t,x,y) and yw > 0,
lgz(t-X,¥.°Q(t-SX*Ty)'u)l < “[‘1|y'h(x)| + ‘2|X| + ‘3]

where K1» Kp» K3 3 0 are known constants,

while Assumptions 1 to 5 might appear somewhat esoteric, it is stressed that the
class of systems which satisfy these hypotheses is far from trivial; for example,
the assumptions hold for a class of uncertain systems with parasitic actuator and
sensor dynamics considered in [10].

Let functions F: RxR"xRP + R" and 6: RxR"xRPxR* + RP be given by

Fltuxy) & Ajx + Ay = Bla(t,Sx+Ty) + gj(taxay,=q(t,SxsTy)) (13)
= F (t,x) + ALLy=h(x)] + B [p(t.x)-q(t,Sx+Ty)]

+ Ql(t,X.Y.-Q(t.5X+TY)) - g](t'x'h(x)"p(tpx))

Glt,x,y.m) Clt)Ayx + y - Byq(t,SxsTy)] + gz(t,X.y--q(t.SX*Ty).u) (14)
= c(t)[y-h(x)] + C(t)thp(t.x)-q(t.SX*Ty)] + gz(t.x.y.-q(t.Sx+Ty).u)-
Then the problem under consideration reduces to that of determining a threshold
value u* > 0 (if such exists) such that the system (two coupled subsystems):
x(t) = F(t,x(t),y(t)) (152)
uy(t) = 6(t,x(t),y(t),u) (15b)

possesses stability property P for all u€ (O,M'). We resolve this question via an
analysis akin to that of [11].

As stated in [8] and shown in [9], the following theorem establishes property P
! for the full order system under output feedback control.

Theorem 2,

There exists a w > 0 such that, for all w€(0,u"), a certain ellipsotd is a
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global uniform attractor for system (15); the value of u' and the definition of the
attracting ellipsoid are given in [8] and [9). Moreover, the reduced order dynami-
cal behavior is recovered as y » 0.2

EXAMPLE: UNCERTAIN SYSTEM WITH ACTUATOR AND SENSOR DYNAMICS

Consider the uncertain system

k(t) = Ax(t) + [B + 2B(t)ly,(t) + d(t,x(t)),  x(t) e R" (16a)
with actuator dynamics

uyy(t) = [Cy + ac (1)1(y (t) - u(t)), y (), u(t) € R" (16b)
and sensor dynamics

Wy, () = [C, + a0, (D)1(y,(t) - x(t)), y,(t) e R" (16¢)

where the known nominal system matrices A, B, Cl. C2 satisfy the following:

H1
(1) (A,B) is a stabilizable pair;
(ii) o(Cl) ce s
(iid) a(Cz) ce¢ -
The uncertain functions aB(-) and d(.,-) are assumed to satisfy
K2
(i) aR(+) = RE(+), where E{:}{unknown) is measurable with 1E(t)s < 8 < 1 ¥t;

(i1) d(-,-) = Bg(-,-), where g(-,-) is a Caratheodory function with
hg(t,x)i < aylixi + a, ¥{t,x) and where ), ay,8 are known

constants.

Let P (symmetric and positive definite) denote the unique solution of

p + P+1=0. (17}

zLoosely speaking, in the sense that the projection of the attracting ellipsoid
onto R" approaches the attracting ellipsoid {roof the reduced order system.

e -




Then the uncertain functions ACI(-) and ACZ(-) are assumed to satisfy

H3

1

tdiag{aC,(t), aCy(t)ht < « < 1/21P1""  ¥t, where x. is a known constant,

The above can be interpreted in the context of system {1)-(2) by making the
following identifications: v

N .
y= eRP, pim+n (18a)
Y2
. 0
All = A, AIZ = [B M 0] ’ A21 = I (18b)
-1 .
Bl = 0, 82 b 0 » S o' Ts= [0 M I] (18C)
C(t) = C+aC(t) , C, = diag({C;, Cy}, aC(t) = diag(al,(t), aCy(t)} (18d)
gy (t,x,y,u) = d(t,x) + BE(t)[I ; Oy (18e)
f 9,30 . (18f)

In view of H1{ii),(1ii) and H3, it is clear that Assumption Al holds for this

‘ system.

r Now,

3
A= Ay = Apphyy = A = A (19a)
B = Bl - AIZBZ T - AIZBZ =B (lgb)

and hence, in view of H1(i), it follows that Assumption A2 holds.

Also,
H(x,u) = = [Ayx + Byu) = [:] (20)
1 i and
] F(tx,u) = gy (t,x,H(t,x),u) = Be(t,x,u) (21a)
where (21b)
i e(t,x,u) = g(t,x) + E(t)u .
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Thus, in view of H2, it is clear that Assumption A3 holds with ¢y = 8.

Proceeding,
=T YBTK
Alr) = Ay - ¥B,8'K = |77 (22a)
S-TAlY) = I, «x(y) = v1B'Ka (22b)
ry = (=8, (12 gpn)(2ip G+ 2¢ 0Pt c v | (22¢)

9, =

Assumption A4 now reduces to the following:

*, 1,7, -1
A4 iy < (1-2¢ APH)(1+2c 1P1)™ 1B K .

Finally, it is readily verified that Assumption A5(ii) holds trivially (since
0) and A5(i) holds with A = gtBi.

A specific example of this subclass of systems is considered in detail in [9].

OTHER METHODS

An approach, differing from the one proposed here, can be found in [12-15]. In

these references, the design procedure requires the sequential construction of
controllers which assure existence of global uniform attractors for (i) an approxi-
mation of the reduced order ("slow”) subsystem, and (i1) the “fast* subsystem under

the

influence of the slow uncertainties, The controller for the full syst-m is then

obtained as the sum of these subsystem controllers,

REFERENCES

[1] S. Gutman and G. Leitmann, "Stabilizing feedback control for dynamical systems
with bounded uncertainty," Proc. IEEE Conference on Decision and Control
(1976).

[2) 6. Leitmann, "Deterministic control of uncertain systems," Astronautica Acta,
7(1980), pp. 1457-1461.

[3] 6. Leitmann, "On the efficacy of nonlinear control in uncertain linear
systems," J. Dynamic Systems Meas. Control, 103(1981), pp. 95-102.

[4] M. Corless and G. Leitmann, "Continuous state feedback guaranteeing uniform
ultimate boundedness for uncertain dynamic systems," IEEE Trans. Autom.
Control, AC-26 (1981), pp. 1139-1144.

[5] 8.R. Barmish and G. Leitmann, "On ultimate boundedness control of uncertain

systems in the absence of matching conditions,” IEEE Trans. Autom. Control,
AC-27 (1982), pp. 153-158.




(63
(7
2
(9]
[1.0]
(]

f12]

[13]

[14]

(15]

14

B.R. Barmish, M. Corless and G. Leitmann, "A new class of stabilizing
controllers for uncertain dynamical systems," SIAM J. Control and Optimiza-
tion, 21 (1983), pp. 246-255.

E.P. Ryan and M. Corless, "Ultimate boundedness and asymptotic stability of a
class of uncertain dynamical systems via continuous and discontinuous feed-
back control," IMA J. Math. Control and Info., 1 (1984), pp. 223-243.

G. Leitmann and E.P. Ryan, "Output feedback control of a class of singularly
perturbed uncertain dynamical systems," Proceed. American Control Conference
(1987), pp. 1590-1594. .

M. Corless, G. Leitmann and E.P. Ryan, "Control of uncertain systems with
neglected dynamics," in 'Variable Structure Control Systems", edited by
A.1.S. Zinober, IEE Publ., London (in preparation).

G. Leitmann, E.P. Ryan and A. Steinberg, "Feedback control of uncertain
systems: robustness with respect to neglected actuator and sensor dynamics,
Int. J. Control, 43 (1986), pp. 1243-1256.

A. Saberi and H.K. Khalil, Quadratic-type Lyapunov functions for singularly
perturbed systems," IEEE Trans. Autom. Contro, AC-29 (1984), pp. 542-550.

F. Garofalo, "Composite control of a singularly perturbed uncertain system
with slow uncertainties," Int. J. Control (to appear).

F. Garofalo and G. Leitmann, "Nonlinear composite control of a nominally
linear singularly perturbed uncertain system,” Proceed. 12th IMACS World
Congress (1988).

F. Garofalo and G. Leitmann, "Nonlinear composite control of a class of
nominally linear singularly perturbed uncertain systems," in "Variable
Structure Control Systems", edited by A.I.S. Zinober, 1EE Publ., London (in
preparation).

F. Garofalo and G. Leitmann, "Composite control of nonlinear, singularly
perturbed uncertain systems," Proceed.'Control 88, Oxford University (1988).

N e

o ——e



I

SOLUTIONS CONTINGENTES DE
L'EQUATION D'HAMILTON-JACOBI-BELLMAN

Halina FRANKOWSKA

CEREMADE, Université de Paris-Dauphine
75775 Paris Cedex 16

Résumé

I1 est connu que toute solution régulidre d'une équation d'Hamilton-Jacobi-Bellman
associée d un probléme de contrdle optimal peut étre utilisée pour la vérification de
1'optimalité d'une trajectoire du systéme, ainsi que pour la construction des
rétroactions optimales.

En général de telles solutions réguliéres n'existent pas et on introduit les
solutions généralisées (solutions de viscosité ou autres).

Dans cet exposé on pose la question suivante : quelles sont qgs conditions
nécessaires et suffisantes pour qu'une fonction V : R x Rn._; RL){ ! °‘{Zvérifie
les propriétés suivantes :

1) V est monotone le long des trajectoires du systime
2) V est constante le long d'au moins une trajectoire (qui est une solution
optimale du probléme).

Les propriétés 1) et 2) sont cruciales pour 1'application des techniques de
vérification.

On démontre aussi que de telles fonctions forment une sous-classe des solutions
de viscosité de 1'équation d'Hamilton-Jacobi~Bellman,

Les propriétés 1) et 2) sont toujours vérifiées par 1a fonction valeur associée
au probléme. Mais cette derniére é&tant souvent discontinue, il est intéressant de
trouver d'autres fonctions qui satisfassent 1) et 2).

La deuxiéme partie de 1'exposé concerne la construction des rétroactions
optimales associées & de telles fonctions.
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On Robust Control of Uncertain Linear Systems in the Absence of Matching Conditions

Harold Stalford
Acrospace and Ocean Engincering
Interdisciplinary Center for Applicd Mathcematics

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ABSTRACT

’

We eslablisﬁ a general robust control result for linear time-invariant uncertain systems using the Lyapunov approach
initiated by Leitmann and Gutman. We show that systems satisfying matching conditions are handled by this result.
We give necessary and sufficient conditions for the existence of a robust sliding mode controller. We show that its ex-
istence implics the existence of a robust linear controller. A counter example is provided to establish that the converse

does not hold. The fecdback controllers treated are functions of the complete state without any dynamic compensation.
1. INTRODUCTION

Thc Lyapunov approach to uncertain systems rcceivéd an initial thrust by Leitmann and Gutman, |1] - [7]. for systems
satisfying matching conditions. They are joined by numerous authors ( e.g. [8] - {33]) in extending the Lyapunov ap-
proach to handle more general systems since it is well suited for addressing structured uncertainty. Our work herein fo-
cuses on applying the Lyapunov approach to systems which have constant uncertainties but do not necessanily satisfy
the matching conditions. It builds on the work of [9], [14], and [20] - (33]. Our main objective is to establish a robust
control resuit based on the Lyapunov approach which generalizes some of the past work on linear uncertain systems
with constant uncertainties. We specifically consider linear and sliding mode controllers and give necessary and sufficient
conditions for their existence. We prove that the existence of a robust stabilizing sliding mode controller implies the
existence of a robust stabilizing linear controller. The converse dops not hold. We provide a counter example showing
the existence of a robust linear controller in the absence of such a sliding modc controllcr. Herein, we use the term sta-

bility to mean that the poles are in the left-half plane, i.c., asymptotic stability or, equivalently, that the characteristic
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polynomial is Hurwitz. We say that a controller is robust if it asymptotically stabilizes the system for all uncertainties.
We treat both the scalar input and the multi-input problems.

We investigate the robust control of linear time-invariant uncertain systems that are not required necessarily to satisfied

matching conditions:

x = Aly)x + By)u, yeTl )]

where A(y) is a nxn uncertain matrix, B(y) is an nxm uncertain matrix with full rank (m < n) and y belongs to a set
of uncertainties I where I' is a simply connected, compact subset of p-dimensional Euclidean space E». We assume that
A(y) and B(y) are continuous with respect to the uncertainty argument y ¢ I' . In this paper we consider only full state
feedback controllers u(x), i.e., those which are functions of the state x only. That is, we do not address dynamic com-

pensation as part of the feedback controller. We require that system (1) satisfy the controllability assumption:
ASSUMPTION 1. Foreachy ¢ I" the pair (4(y), B(y)) is controllable.

The controllability assumption is equivalent to the assumption that closed-loop poles can be arbitrarily placed by a

suitable gain matrix. We state this equivalent assumption:

ASSUMPTION I'. Foreachy ¢ I' and prescribed eigenvalues A(y) = (4,(y), ..., 4,(y)) in which imaginary eigenvalues

occur in complex conjugate pairs there exists a real gain matrix XK(y) such that the closed-loop matrix

AGy) = AQ) - BO) K@) ®)
has the prescribed eigenvalues A(y).

For arbitrarily prescribed eigenvalues A(y), y ¢ T, we can rewrite (1) as

~ .
. -~

—— i = AG)x + B)KO)x + ul @

where K{y) is the corresponding gain matrix and 4 (y) satisfies (2).
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The next assumption makes it possible to define a control law with which to stabilize (1) in the presence of uncertainties

yel.

ASSUMPTION H. For each y ¢ I' there exist an mxn gain matrix X’y). an invertible mxm matrix R(y) and an nxn

symmetric, positive definite matrix Q(y) such that

- ®  4() = Ay} — Bly) K(y) is asymptoticaly stable
(i) F = R-(y) B7(y) P(y) is a constant mxn matrix where P(y) is the

symmetric, positive definite solution of Lyapunov equation

PO AW) + A7) PO) + Q0) = 0 @
We make the following assumption on the mxm matrix R(y) which is defined in Assumption II.

| ASSUMPTION L. Fory ¢ T the matrix ®(y) defined as

‘ RTy) + R

( ;) = —l)'z‘—i (5a)
F is positive definite and has the square root form

* o) = ST0)SE) (56)

where S(y) is invertible. The following upper bound exists and is finite
ho= ma[Is~'oN IS~T0) RToM) ©

In Sections 2-4 and 6 we show how to use the constant matrix F in establishing a robust controller.
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2. MAIN ROBUST CONTROL RESULT

Assumptions [ - III permit the development of a robust control law that is discontinuous in nature. This is established
in the next theorem.

THEOREM 1: If system (1) satisfies Assumptions I - III then the discontinuous controller

- _Fx '
u(x) 2] p(x), Fx#0 Q)

stabilizes (1) for all y ¢ " where p(x) satisfies
plx) = h x;ngat; IK(y) =l (8)

The scalar 4 is given by (6) and the gain matrix K(y) is defined in Assumption II.

PROOF: Fory ¢ I let K(v), R(y), Q(v), P(y) and F be the matrices described in Assﬁmption 11. Define the Lyapunov

function

Vy) = xT Py)x ©)

It has the time derivative

Vo) = —xTQux + 2ABTPOx]T [Kp)x + u) (10)

Using property (ii) of Assumption [1 this derivative becomes

Vo) = —x"Qu)x + 2[Fx)T RT(y) [KGx + ux)] (1)

We show that the control law (7) yields

Vo) s -x"Qx el A (12

Since Q(y) > 0 (i.e., positive definite) it suffices to show that W/(y) is nonpositive:

W) = 2AF)RT)Ky)x + un)] < 0 (13

Consider a control law of the form (7) in which the scalar function p(x) is defined by (8). substitution of (7) into (13)
yields

W(y) = 2W\(y) ~ 2Wy{(y) < 0 (14)

where
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I Wi(y) = [Fx)TR7() Koy (150)
! T oT,.\ Fx
| Wyy) = [Fx]'R (Y)Wp(x). Fxw 0 (155)
| Eq. (15b) can be rewritten as
Wyy) = [Fx]’w)i{;—lp(x) (16)
or, equivalently as,
W) = [SFe)” S 0 an
where ®(y) and S(y) are defined by (5) and (6). Making the vector definition
yy) = S(y) Fx (18)
Eq. (17) becomes
r
¥ )y ]
War) 2] p(x) 19
Eq. (15a) can be rewritten as .
wiy) = yTman (20)
where
) = SHlomI™ RT) Kox @n
Inequality (14) is met provided
Wi(r) s Wiy) 2

In terms of (19) and (20) this inequality is given by

,
T 2 Tr)n)
y'(nAy) s W p(x), Fx # 0 (23)
This inequality is met provided
o) < '—L’F(—’x:—,"- p(x), Fx %0 24)
Taking the norm of (21) yields
Hzl < §S™T0) RTOM WK 29
Multiplying both sides by the norm ||S-'(y)l} gives
ISl Hzo) S p(x) (26)
Observe that
W = IS ISOF < 1S~ ol @n !

e e
P
e 5 e rm
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from which it follows that

-1
S ) 1200, R

W @)

Multiplying both sides by p(x) yields

ox), Fxw 0 (29)

1
ox) < 1™ ON |ll}'(v)ll

IlFxi
The inequalities (26) and (29) yield

o
—p(x), Fx % 0 30
z)l = TE=l plx), Fx A (30
This verifies (24) which establishes (12). By the theory of Lyapunov, the control law (7) stabilizes (1) for each uncer-

tainty y ¢ I,
3. ROBUST CONTROL IN THE PRESENCE OF MATCHING CONDITIONS

Systems which satisfy the matching conditions of linear uncertain systems, [2) - {7], satisfy Assumptions I - 11I. This

result is given by the next theorem.

THEOREM 2: Let system (1) satisfy the following matching conditions: There exist an nxn matrix A and an nxm

matrix B and for each y ¢ I there exist an mxn gain matrix D(y) and an invertible mam matrix [1(y) such that

(2)  Aly) = A4 + BD(y).

(b) By) = BI().

(c) (A. B) is a controllable pair ¢
(d) ®(y) is an mxm positive definite matrix where

n’y) + Nw)

O(y) = 3

(€2}

Then Assumptions I - [1] are met. As a consequence of Theorem 1, there exists a robust stabilizing control law of the

form

- - Ex_
u Kx + i p(x) (32)

such that
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A = A-BK (33)
is asympiotically stable and such that
F = BTP (34)

where P is the symmetric, positive definite solution of the Lyapunov equation

PA+ATP+Q =0 (35
in which Q > 0 is arbitrarily chosen.

PROOF: Conditions (a) - (¢) imply that {4(y), B(y)) is controllable for y ¢ I'. Controllability is invariant under linear
feedback and coordinate transformation on the input, [34]. Thus Assumption 1 is met. Since (A, B) is controllable there

exists a gain matrix X such that 4 of (33) is asymptotically stable. Define the uncertain gain matrix

Koy = 7' (D) + K] (36)

Using conditions (a) and (b) we find 4 (v) of condition (/) of Assumption II reduces to
A(y) = 4 - BK 37

and is, therefore, asymptotically stable for y ¢ I". Select any Q0 > 0. Let P be the solution of (36) and let F be defined
by (34). Fory ¢ I define

Ry) = ) (38)
The matrix F of condition (if) of Assumption 1l and that of (34) are identical. That is, (34) can be rewritten as

F=nTp[Baml s 39)

which, in view of condition (b) and (38), is equivalent to

F=R'0)B"0)P (40)

Thus, condition (ii) of Assumption II is met with

Py) m P “0)

Condition (d) implies Assumption 111 since B(y) is continuous and I" is compact. That is, 4 exists and is finite. Since

all conditions of Theorem 1 are met, the existence of the stabilizing control law (32) follows with

pix) = h r,n‘apllK(r)Xﬂ 42)

where K(y) is defined by (36).
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4. ROBUST CONTROL IN THE ABSENCE OF MATCHING CONDITIONS: SCALAR INPUT
We show that the robust control assumptions presented in {29] for scalar control satisfy the assumptions of Theorem ).

Consider system (1) with scalar control. The input matrix B(y) is a column vactor. The work in [29) assumes that the

system (1) is controllable. Assumption 1. Under this assumption there is a unique coordinate transformation T(y)

z = Ty (43)

of (1) to the following controllable companion form, [34],

i = Afa0)z + Bu(x) (44)
where
=a(y) —ay(y) - —ap(y) —an(y)
1 0 . 0 0
Afda(y)) = 0 . 0 0 (45a)
0 0 . 1 0
Afay)) = T A0 T ') (456)
and
B, = [1,0,0,..,0)7 (46a)
B, = T(y) Biy) (46b)

The vector a(y) = (a(7). ..., @(y)) is the coefficient vector of the apen-loop characteristic polynomial:
a,(s) = detlsl ~ A(y)] (a7

We need the following definition in order to introduce the next assumption of [29}-{31].

DEFINITION 1: The row vector P, = (P,,, Py, .., P,,) is said to be n— 1 stable provide P, > 0 and the polynomial

Ppui™ 4 ppi™t s 4+ P, =0 (48)
is Hurwitz (i.e., all eigenvalues are in lefi-half plane).
ASSUMPTION IV: There exist an uncetain yocCand an n =1 stable row vector P\(y,) such that

Piy) = Py Tr) T™'(0) (49)
isn—|stableforall yeI"
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The concept of a vector being n — | stable is fundamental in the asymptotically stable solution of Lyapunov equation.

This result is presented in the next lemma. Its proof is given in (30].

LEMMA 1. Leta = (q,..,4,). Define 4(a) to be in the controllable companion form (45). Let P be the solution to
the Lyapunov equation

PA@ + AT@P +Q = 0 (50)

where 0 > 0and Q = Q7. Then A(a) is stable if, and only if, P, is n ~ 1 stable where P, is the first row of P.
PROOF: See [30].
The next lemma is a consequence of Lemma 1.
LEMMA 2. Suppose Assumption IV holds. For each y ¢ I” define Q(y) > 0, Q(y) = Q7(y). Then for each y, there is
a unique stable coefficient vector a(y) satisfying Lyapunov equation

PhAG@Y) + AT@GONPO) + Q0) = 0 (51
where P,(y), the first row of P(y), is prescribed under Assumption IV. That is, A(a(y)) is stable for y e I".

The above lemmas are used in the next theorem to establish a stabilizing controller for system (1).

THEOREM 3. If Assumptions | and IV hold then there is a stabilizing controller for system (1) having the form

Fx
{IFxi|

plx), Fx»0 (52)

where F is a constant row vector and p(x) is a nonnegative scalar function of the state x.

PROOF: Since system (1) is controllable for each uncertainty y¢I it can be transformed to the controllable companion
form (44). Assumption [V implies there is a stable coefficient vector a(y) for y ¢ I such that (51) is satisfied. Define
() 1o be the difference between the stable coefficient vector a(y) and the open-loop characteristic polymonial coefficient

vector a(y) of System (1)

ofy) = d(y) = aty) (53)
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Note that the negative of a(y) is contained in the first row of (45). Substitution of (53) into (44) yields

z = A, A0z + B, LamT)x + u(x)] (54)

after making use of (43). We use the symmetric, positive definite solution P(y) of (51) to construct the Lyapunov func-

tion
Viy) = 27PGy)z ' (55)
Taking its derivative gives
V) = —2T o)z + AFx1Toty) Tox + ux)] (36)
where F satisfies
F = Pi(yg)T(vo) (57a)
and as a consequence of Assumption 1V we have
F = P)T(y) (57b)
or, equivalently,
F = BJPO)TO) (570)

where P(y) satisfies (51) and 7(y) satisfies (43). Any admissible control law (x) satisfying

ux) < -ryn‘ats[o(y)T(y)x] , Fx>0 (58a)
ux) 2 marx[a(,v\T(y)x] , Fx< 0 (588)
bi3

stabilizes (1) since for such a control law

Vy)s-2"0nz, yel (59)

The maxima of (58) exist since I" is compact and since the functions o(y) and 7(y) are continuous on I". An admissible

control law satisfying (58) is (52) where

plx) = magllo(y) TQ) x| (60)
re

??d F is given by (57). In the next theorem we establish that a system satisfying Assumption 1V also satisfies Assumption

THEOREM 4: If the system (1) satisfies Assumptions | and IV then Assumptions II and 111 are met.




PROOF: We make the following identifications

A = T7'0) A@O) To) : (6la)
Py) = TT0) Pty) Tt) (618)
om = T e T (61¢)

K(y) = o(y) T(y) (61d)

where T(y) is defined by (43), where P(y), Q(y)andA(&(y)) are defined by (51) and where o(y) is defined by (53). The
matrix 4(a(y)) is asymptotically stable. This follows from Lemma 2 and the fact that eigenvalues are invariant under

coordinate transformation. From (44), (45), (53) and (54) it follows that

AW) = AW) — By KG) (62)

so that condition (i) of Assumption 11l is met. The vector F of (57) satisfies

F=8"()P@) (63)

where P(y) is the solution of the Lyapunov equation

Po Ao + AmPo + Qo) = 0 (64
which shows that condition (ii) of Assumption 1] is met. Here, the scalar R = 1. Thus Assumption II1 is also met.

Theorems 3 and 4 establish that Assumption IV implies Assumption 1I. The converse need not hold. Thus Assumption
IV is a stronger assumption. Assumption IV admits a sliding mode controller (52). From the next theorem we‘ that

it also admits a stabilizing linear controller.

THEOREM & If Assump;ion [ and IV hold then there exists a stabilizing linear control

u=m - cFx (65)
where F is defined as in Theorem 3 and the scalar ¢ satisfies

1 -1 2
¢ > > maglQ™' O mag KON 6)

where Qly), v ¢ T, is defined as in Lemma 2 and where K(y) is given by (61d).

PROOF: See [31].
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The maxima of (66) exist since X(y) is continuous, [ is compact and the matrices Q(y) are chosen in a conmtinuous

manner. Usually Ofy) is set to be the identity I or it is computed from

00 = T Ty) 0T'0) 67

where Q is a prescribed symmetric, positive definite matrix. The next result gives an equivalence between Assumption
IV and a minimum phase condition on the system.

THEOREM & Assumption IV is met if, and only if, there is a row vector F such that

Flsl~AWY " By), yel (68)

is minimum phase with n-1 transmission zeros where [ is the nxn identity matrix. That is, the determinant

[A(v) -l B(r)]
det =0 yel (69)
F 0

is Hurwitz.
PROOF: From (49) of Assumption IV

Py = FT'w), v el (70)
where P,(y) is n-1 stable with polynomial Eq. (48) can be rewritten as

;
s

/ g P;(Y)[s""1 s w0 n
where s = o + jo = i. Multiplying (70) on both sides by [s™ s™3 ... 17 gives

ol s s 11T = 0 2
The open-loop characteristic polynomial a/(s), (47), is given by

o) = 5" + q(s™ 4 o 4 G ()5 + Gy(y) = 0 les))

Since A,(a(y))andB, are in the controller companion form (45) and (46) we have the following identity from linear system
theory, [34]):

[sr=15m=2  ¢)]7

= (74)

(sl - A{aty))] '8, =

Substitution from (45b) and (46b) into (74) gives

|
|

——
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[r=t=2 )T

TO)sl - A0)Y™'BO) = =0 9
Multiplying both sides by F7-(y) yields
. 1 n-1 _n-2 T
FLsl - 4G BG) = FT'mls™'s"2 s 1] -0 (76)

a,(s)

_after making use of (72). The transmission zeros, [35] , of (76) are the n-1 stable eigenvalues of the (n-1) stable Py(y)

row vector of (70). This proves that (68) is minimum phase. From (76) we have

detlsl — A(y)] FUsl —A()T'B(y) = 0 W)
A reciprocal form of (77) is given by, [34],

sl = A(y) B@)
det =0 (78

-F 0

which yields (69). Since P,(y) is n-1 stable it follows that (71) is Hurwitz. Thus (69) is Hurwitz.

Conversely, if there exists an F such that (69) is Hurwitz then the vector P,(y) defined by (70) is n-1 stable and As-

sumption IV is met. From the above theorem we have the corollary.

COROLLARY 1. A necessary and sufficient conditions for the existence of a stabilizing sliding mode controller

-t 79,
u "Fx“p(x). Fx v 0 (79)

of (1) is the existence of a row-vector F such that (69) is Hurwitz for all yel™.

The existence of a stabilizing linear controller

um = Kx (80)

does not imply the existence of a stabilizing sliding mode controlier (79). Before this is illusirated by an example we give
necessary and sufficient conditions for the existence of a linear controller (80).

vl e st R R 4 |




THEOREM 7: A necessary and sufficient condition that there exist a stabilizing linear controller (80) of system (1) is
that there exists a row vector K such that the following determinant is Hurwitz:

[:l - AB) B(v)] '
det =0, yel (81)
-K 1

PROOF: Suppose there is a row vector K such that (80) asymptotically stabilizes (1). The feedback matrix

Aly) = Ay) = BW)K, yeT (82)
is asymptotically stable and the determinant

() = detlsl~A)] = 0 @3

is Hurwitz. Eq. (83) can be written as the following series of identities, [34],

&9 = det{lsl - 4] [I + [s] ~ 40)] Bk} (84a)
&s) = afs) detl + [l = 4T 'BIK] (845)
&(s) = af) [1 + KTsl = Aw)17'B»))] (84<)

where a,(5) is the open-loop characteristic polynomial (47). The reciprocal form of (81) is (84c), [34]. That is, (81) and
(84c) are identities. Therefore, (81) is Hurwitz if, and only if, (83) is Hurwitz. Eq. (84c) can be used to prove Theorem
5. If (76) is Hurwitz then with

. K= cF (85)
Eq. (84c) becomes

as) = a1 + cFlst = 4()1'801)] (86)
which is Hurwitz for sufficiently large c. That is, in view of (71) «(76), Eq. (86) can be rewritten as

() = 5" + t:P,(y)[.t""',.t"'z s l]r+ [a,(:)—s"] 87

in which the last term is an a-1 order polynomial that is dominated by the middle term for large ¢. The first two terms

give a Hurwitz polynomial for sufficiently large c. As a consequence, the existence of a robust stabilizing sliding mode
controller (52) implies the existence of a robust stabilizing linear controller (65). In general, the converse does not hold
as is illustrated by the following example.
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5, EXAMPLE OF ROBUST LINEAR CONTROLLER WITHOUT SLIDING MODE CONTROLLER

Consider the uncertain system

[o -1] y
X = x+[]u.ysr (88)
1 0 1

where I’ = [ =M, M] and where M is a positive scalar greater than |

M2z1 (89)
The determinant of the controllability matrix [B(y), AB(y)] is given by y* + 1 which satisfies the equality

P+ 150 Vye—oo,00) (90)

The system (88) is controllable for all uncertainties y. Thus Assumption I is satisfied. The requirement for the existence

of a stable sliding mode surface

Fx=0 on
depends on (69) being Hurwitz. For our example system (88) Eq. (69) reduces to the first order polynomial

(Fiy + B)A + 6= F))=0 (92)

which is Hurwitz for y ¢ I” provided the coefficients are positive
F,y + Fz > 0, ye r (93d)

yF-F, >0, yel (93b)
Evaluating the first inequality at y = | and the second at y = — 1 give the contradicting inequalities

F,>-F (%94a)

Fz < - F‘ (Nb)

That is, there exists no F = (F,, F,) satisfying (69) for ye{ ~1, 1] which is a subset of I' . Consequently, there is no stable
sliding mode surface (91) on which a robust sliding mode controller (52) can be designed for ye[ -1, 1].

The requirement for the existence of a robust stabilizing linear feedback controller (80) is that (81) is Hurwitz. The
characteristic polynomial of (81) is given by
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Zral+a) =0 9%

where robustness follows from positiveness of the coefficients
a@y) = Ky +yK; >0, yeT (96a)
a(y) = yK3 - K +1>0, yel (96b)

The following gain vector X = (K,, K;) provides a robust linear controller (80)

K,=0 (970)

Kz-

1
e (975)

where ¢ > 0. Substitution of the gain vector (97) into (96) gives

K;>0 yel (98q)

y> ~M+¢), yeTl (98b)

The inequalities (96) are met. Thus (81) is Hurwitz which implies that the linear controller define¢ by (97) robustly
stabilizes (88). Consequently, (88) has a robust stabilizing linear controller but no stabilizing sliding mode controller.

. —

6. ROBUST CONTROL IN THE ABSENCE OF MATCHING CONDITIONS: MULTI-INPUT

» -

The multi-input case parallels that of the scalar case, Section 4. We consider a condition similar to (69) and show that
it Jeads to necessary and sufficient conditions for the existence of a sliding mode controller (7). In this section
B(y),y ¢ T, is an nxm uncertain matrix with full rank (m < n) We consider system (1) for which Assumption 1 holds.
QOur main result for a robust sliding mode controller is given in the next theorem.

. A— i e gy

THEOREM 8. A robust stabilizing sliding mode controller (7) exists for system (1) in which Assumption I holds if,
and only f, the following determinant is Hurwitz:

det[A(r) -3 B

]-0.7¢F 99
F 0

e e s

PROOF: The reciprocal form of (99) is

-

————— e e
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o) det{FLst -AT'B0)] = 0, yeT (100)

where a,(s), defined by (73), is the determinant of [s/ — A(y)] which is the open-loop characteristic polynomial of
A(y). Since Assumption I holds there is a coordinate transformation 7{(y)

z= T (101)
which takes (1) into a controllable companion form, {34],

2z = Afa(y))z + Bpx) (102)

where
Afaly) = TR AW T (103a)
Byly) = T(y) B(y) (1038)

The mxm matrix B,(y) is formed from m columns of the nxn identity matrix. The dependence of 8,(y) on the uncertainty
y follows from the fact that the selection of the m columns may depend on yeI. The nxn matnix A4,(a(y)) is in block
controllable companion form. Such companion forms are described in [32)-(34]. In view of the Transformation (101)

we can rewrite (100) as

det[ [FT'0)] a0 TIN5l ~ 40)T'B0)] =0 (104)
Consider the last two factors
a(s) [To)sl = AT ™' Bw)] (105)
which in z-coordinates is given by
a,(9) [[st - ALar)]™'B,n)] (106)
which is equivalent to
Adi{sl = Agatr)1By) (107

where Adj is the matrix adjoint operation. Consider the definition of an nxn symmetric, positive definite matrix P(y) and
the definition of an mxm symmetric, positive definite matrix R(y) such that

RTBIWPMTy) = F, yeT {108,
That is, P(y) must be such that

RT'BIPY) = FT'(), y e T : (109)

RN SR
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Furthermore, consider the Lyapunov equation

PO)AL3() + AJ@ONP() + Q) = 0, yeT (110)

where Q(y) >0 and Q(y) = Q7(y).y ¢ I". A necessary and sufficient condition that 4,(a(y)) be asymptotically stable and
P(y) be symmetric, positive definite and satisfy the constraint (109) is that the determinant of the following mxm matrix
(111a) be Hurwitz and that the following mxm matrix (111b) be positive definite , [32}:

Bl PAALsI - Af0)]By). v s T (111a)

BI)PWBy) >0, yeT (1118)

From (104), (107), (109) and (111) it follows that (99) is necessary and sufficient in order that for each yeI™ there exist a
symmetric, positive definite P(y) satisfying (109) and a stable 4,(a(y)) such that the Lyapunov equation (110) is satisfied.
The theorem now follows from Theorem 1. Define o(y),y ¢ T )

o) = BJ(y)[44atn) - 444(r)] 112)
By the canonical form of A4, and B, it follows that

ALaG) = Agfaly) - By)e(y) (113)
Define K(y).y ¢ T, as

K(y) = o(y)T(y) (114)

Transforming (113) from z-coordinates to x-coordinates using (101) yields the following asymptotically stable matrix,

Aly) = AQ) - BOK() (115)
Thus condition (i) of Assumption Il is met. Transforming (108) from z-coordinates to X-coordinates using (101) gives

F = R™'(nBT()P () (116)
where P(y) satisfies the Lyapunov equation which is transformed from (110)

PO)A() + AT0)P0) + O)=0, yeT D)
where

Ply) = TT(»)POIT(y) (118a)

20) = TTem T (118%)

<
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Thus condition (ii) of Assumption 1l is met. Consequently all ebnditions of Theorem | are satisfied. The existence of
a robust sliding mode controller (7) now follows.

The existence of a robust stabilizing sliding mode controller implies the existence of a robust linear controller. This result
is given in the next theorem which parallels the scalar result, Theorem 7:

THEOREM 9: The existence of a stabilizing sliding mode controller (7) for system (1) implies the existence of a robust
stabilizing linear controller

u= —Kx (119)

PROOF: A necessary and sufficient condition for the existence of a robust stabilizing linear controller is that the de-

terminant

[:1 - Ay E(r)]
det =0 yel (120
-K In

is Hurwitz where /,, is the mxm identity matrix. Paralleling the developement (81) - (84) the determinant (120) is Hurwitz

if, and only if, the mxm matrix

gl = afs) detlly, + K (sl - AT B0)), yeT (121

is Hurwitz. If a robust stabilizing sliding mode controller (7) exists then there exists an mxn matrix F such that (99) is
Hurwitz. Consequently, (100) is Hurwitz. For an arbitrary mxm matrix C define the gain matrix

K=CF ’ (122)

substitution of (122) into (121) gives

a(s) = afs) detll, + CFLsl - A0)T™" By)), y e (123)

In view of (73) we can rewrite (123) as

s i
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&) = deili%py + CF Adilst — 4] BG) + (@) = )nd yeT (124)

Since the mxm matrix (100) is Hurwitz, it follows that there exists an mxm matrix C with sufficiently “large elements”
such that (124) is Hurwitz, [33]. The last term is dominated by the second term. The control law (119) robustly stabilizes
(1) for a * sufficiently large” C matrix in (122).

7. SUMMARY

A linear time-invariant uncertain system is investigated for robust stabilization. The uncertainties belong to a compact
subset of multi-dimensional Euclidean space. The dynamics and input matrices are continuous functions of uncertainty.
The system is controllable for each uncertainty, Assumption 1. In Assumption II two general conditions are stated which
involve an uncertain Lyapunov equation. The first condition deals with the existence of an uncentain gamn matrix for
stabilizing the svstem. The second deals with the existence of a constant F matrix which has the appearance of a Riccati
gain matrix. F is the product of three uncertain quantities one of which is the uncertain solution P(y) of the Lyapunov
equation. Another is the R(y) matnix which is assumed in Assumption I11 to form a positive definite matrix when added

to its transpose.

A peneral robustness result is established in Theorem 1. It states that a robust stabilizing sliding mode controk. exists
under the genemJ‘Assumptions 1-111. In Theorem 2 we prove that the matching conditions of uncertain systems satisfy

the Assumptions I - 111

Robust control in the absence of matching conditions is examined in Theorems 3, 4 and 5 for scalar control input. F_or
such svstems necessary and sufficient conditions are given for the existence of robust stabilizing sliding mode c.ommllers.
In Theorem 4 we show that systems satisfying such conditions also meet Assumptions [ - III. Theorem § goes one step
further and shows the existence of a robust linear control for such systems. The existence of a robust sliding mode
coutroller is shown to depend on a minimum phase condition, Theorem 6. ln Section 5 we give an example of a simple

system which admits a robust linear controller but no robust sliding mode controller that stabilizes the system.

In Section 6 we investigate robust control in the absence of matching conditions for multi-input systems. In Theorem
8 we show that a certain determinant being Hurwitz is necessary and sufficient for the existence of a sliding mode con-
troller. A similar condition is stated in Theorem 9 for the existence of a robust linear controller.
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SINGULARLY PERTURBED UNCERTAIN SYSTEMS AND
DYNAMIC OUTPUT FEEDBACK CONTROL
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ABSTRACT

A dynamic output feedback strategy is proposed for a class of uncertain systems. Using a
singular perturbation approach, a threshold measure of “fastness” of the feedback dynamics, to ensure
overall system stability, is derived. This threshold is calculable in terms of known bounds on the
system uncertainties but may be conservative in practice. To circumvent this drawback and to allow
for bounded uncertainties with unknown bounds, an adaptive vession of the strategy is then
developed.

1. Introduction

We address the problem of design of dynamic output feedback controls for a class of uncertain nonlinearly
perturbed linear multivariable systems. The approach is similar in concept to that of [1], and fundamentally
stems from the deterministic theory developed in, for example, [2-8] (see also bibliographies therein).

Initially considering a hypothetical output y* for the system, a (generally unrealizable) stabilizing static output
feedback control is established. This static control is then approximated by a realizable compensator (with
parameter # 2 0) which filters the true system output y. Physically, the parameter u is a measure of "fastess”
for the filter dynamics; analytically, # plays the role of a singular perurbation parameter. Using a singular per-
turbation analysis akin to that of [9,10], a threshold measure u#° of "fastness” of the compensator dynamics, to
ensure overall system stability, is then derived. The threshold is explicitly calculable from known system data
but corresponds to a "worst-case” value and consequently may be conservative. To counteract this inherent
conservatism (and to allow for bounded uncertainties with unknown bounds) an adaptive version of the com-
pensator is also developed by an approach which is essentially that of [11] (see also [12-16) and related work
in [17-23)). '

2. The system
We consider uncertain nonlinearly perturbed linear systems of the form
() = Ax(t) + Blu(t) + g(t.x(8).u(t)], x(¢) € R*, u(s) € R™ m
for which the only available state information is provided by the output
y)=Cx(t), y()eRP, mSpsa. (03]
The triple (C,A,B), which defines the nominal linear system, is assumed to satisfy the following.
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Assumption 1:  (A,B) is a controllable pair and rank B = m.

Assumption 2:
There exist known integer 7 2 1 and known matrices Fy ,F,.: - -.F, € R™?, such that

. r
(@fori=12, -, r-1, mCA"'Bc N kerF; ;
Jmivl

moreover, the mattix C, := F{C + F3CA + - - + F,CA"™™! s such that

(i) |CB| #0,and .

(iii) the transmission zeros of the m-input m-output linear system (C,,A,B) lie in £~ (the open left half com-
plex plane).

010 0 100
Example 1:' If A=1001|, B=|0], C= 001 , then the above assumptions hold with
000 1

r=2F =[1 1land F, = [1 0Ol
Finally, we impose some structure on the uncertain function g.

Assumption 3:

g: RxR"xR™ — R"™ is (i) Carathéodory, with (i) [lg(s.x.w)ll S allxl + Aliul] for all (1,x,u), where a
and B are known constants with 8 < 1, and (iii) if r 2 2, then g is uniformly Lipschitz in its final argument
(with known Lipschitz constant 1), i.e. (if r 2 2) there exists known 4, independent of (¢,x), such that, for all
uand v, [g(t.x,u)=g(t,x,v){| S Afju=-v|. ’

The outline of the paper is as follows:

Firstly, the problem of designing a (dynamic) output feedback compensator for system (1,2) is addressed. This
is accomplished by initially considering system (1) with hypothetical output

¥y = Cx(1) 3

where C, is as in Assumption 2. Note that, if r = 1 then y*(r) = F,y(¢) and hence is realizable; however, if
r 2 2 then y’(t) is unavailable 1o the controller, hence the qualifier "hypothetical”. For the system (1.3) so
defined, (ii) and (iii) of Assumption 2 in essence play the role of "relative degree one” and “minimum phase”
condiuons on the hypothetical nominal linear system triple (C,.A.B). Under such conditions, it is known (see,
for example, [11-13]) that the zero state of system (1,3) can be rendered globally uniformly asymptotically
stable by static output feedback; this is reiterated in Theorem 1. However, with the exception of the case
r = 1, such static output feedback is unrealizable in the context of the true system (1,2). Therefore, in §3, a
realizable dynamic compensator is constructed for the cases r 2 2, which filters the actual output y. This filter
can be interpreted as providing a realizable approximation to the static hypothetical output feedback; moreover,
it is shown in Theorem 2 that global uniform asymptotic stability of the zero state of (1,2) is guaranteed pro-
vided that the filter dynamics are sufficiently fast (a calculable threshold measure of fastess is provided).

Secondly, in §4, an adaptive version of the dynamic compensator is developed, which counteracts conservatism
(induced by crude estimates in the analysis) inherent in the non-adaptive filter and which also dispenses with

—————
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the requirement that the uncertainty parameters @, # and 1 in Assumption 3 be known (however, the assump- -
tion that B < 1 remains in force and, moreover, if r 2 2 then g is assumed to depend linearly on x).

3. Stabilizing static output feedback control for hypothetical system
Let T} € R be such that ker T; = im B, then

T,
T= [(cs;"c,] vithimvesse T = (S, : 8]

is a similarity transformation which takes system (1,3) into the form

£(1) = ApX(D) + Apy(), 2(1) € R*™ (42)

F() = An2(s) + AP () + u(s) + J(LE().I(O.u(D) . I(8) € R™ (4b)

&(e.2.9.u) = g(1,5,2+BY,u) (4c)
with output '

y'() = (C,B)9(s) . )]

Note that the eigenvalues of A;; coincide with the transmission zeros of (C, ,A,8); thus, by virtue of Assump-
ton 2(iii), o(Ay)) € €.
Let P; > 0 be the unique positive definite solution of the Lyapunov equation

PiAy + Aﬂpl +/=0 (6)

then we state our first result.

Theorem 1:
Define x° := |Anll + allBll + § (P A2 +A] 1+aliSi ) . then, for each fixed @ > x*(1-8)", the static
output feedback

u(t) = ~R(C,8) 'y* (1) = ~R 5(1) m
renders the zero state of the hypothetical system (1,3) globally uniformly asymptotically stable.

Proof: Let V: (1.9) 1 § (£.P,X) + 3§71, then a straightforward calculstion reveals that, along solutions
(£(-).9()) of (4,5,7) (equivalent o0 (1,3,7)), the following holds almost everywhere

2 V(.9 $ -UE©.I0)

where

sasmid[}]u 5]

Noting the M is positive definite, the result follows. )

1 =(IP Ay +A] K+alS, 1]
~(IP A +A] K+alS, 1) 2(8(1~p)=fAg M-alBl) |

ERe A
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In the context of the true system (1,2), if r = 1, then the static feedback (7) is realizable as
u(e) = =R(C,B)"'Fiy(t) ®

whence:-

Corollary 1:
Let @ be as in Theorem 1. If = 1 then the static output feedback (§) renders the zero state of the true system
(1,2) globally uniformly asymptotically stable.

However, in all other cases (r 2 2), the feedback (7) is unrealizable for the true system (1,2); in its place, we
r : will develop a realizable dynamic compensator in the next section.

3

)

4, Cases r 2 2: Stabilizing dynamic output feedback for the true system (1,2)
In view of Assumption 2(i), we note that

M A

ok

y4(1) = C,x(¢8) = Fyy(t) + Fay(1) + - - - + F,y"~D(p)
which can be interpreted in the frequency domain as
» 7*(s) = (Fy+N(IF()
where
N(s) = sFy + -+ +5™'F,

is physically unrealizable. Our approach is to replace N(s) by a physically realizable transfer matrix (filter) of
* the form H,(s)N(s) with appropriately chosen H,(s). To this end, let d; < r—1 denote the degree of the

{ highest-degree polynomial in the ith row of N(s). Let constants a/ > 0, j=2,- - -.d;, be such that
R
:r,-(.\')as"‘«o-a,;',‘s""l 4.4 ads+l, iml2,m
] is Hurwitz (i.e. with all its roots lying in the open left half complex plane €~). For i =1,2, - - ,m, define
hf(s), parameterized by » > 0, as
1
hé(s) = —— .
re % (us)
which, interpreted as a transfer function, has minimal realization (c7, u~'A;, u™'b;), where
0 1 0 0 1
0 0 1 0
4 Aim | o .o GR""". b = cR". 6w | e R% .
s 0O 0 0 -+ 1 0 0
-] _azi _a;" N _ai' 1 0

We now introduce the transfer matrix
H,(s) := disg(h!'(s))
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which clearly has minimal realization (C*, u~'4°, x~'B°), where
A® = diag (A} ¢ R, B® = ding (b) « R™™ , C" = diag (c]) « R™ , withq := 3d; .
’ - -}

We note, in passing, that (A") c €~ and that C*(A*)"'B° = 1.
Let x° be as in Theorem 1, then, for fixed £ > x*(1~8)"!, the proposed physically realizable compensator
(which filters the actual output y) for system (1.2) is parameterized by 4, and has frequency domain characteri-
zation:
G, () = ~R(C,B)"\[F)+H,(s)N(s)] . ®

For notational convenience we introduce functions ¢, f;, f2, Af; and f3, defined as follows.

@: (9.0 > =R(C,B)"\ [F\CLS,2+87] + C°?]

fHit R - Ank + Apy

f2: (LAF) P ApZ + And - &5 + F(1.2.5.~8%)

Afy: (1.2,5.0) - £F + 0(2.9.0) + F(1.2.9.0(X.9.7)) — 3(+.2.5.~RF)

fr: (9.0 = A°T+ B[ C,By=F,C15,2+By]] .
Then it is readily verified that, in the time domain and under state transformation T, the differential equations
goveming the dynamic output feedback controlled system may now be expressed in the form:

£20) = f(XD.9G) . 2¢) € R*™ (10a)
FQ) = f£(1,3(0.9(0)) + Afa(2.2(),9().2(8)) , F(:) € R™ (10b)
uE(t) = f(X(0).5().2(8) , %) e RY . (10c)

In analysing the stability of this system, we regard u as a singular perturbation parameter. Recalling that
C'(A"Y!B" = ~/, we note that system (4) with control (7) is recovered on setting 4 = O in (10); thus, in the
usual temminology (9,10,24), system (4,7) may be interpreted as the reduced-order system associated with the
singularly perturbed system (10). The ensuing approach is akin to that of (9,10], our objective being to deter-
mine a threshold value u° > O such that, for all x4 € (0,x"), the zero state of system (10) is globally uni-
formly asymptotically stable.
Recalling that 0(A°) < €~, let P* > 0 be the unique symmetric positive definite solution of the Lyapunov
equation

PA°+(AYP +iIm0. an
Define W: R*™™xXR" xR = [0,e) by

WLIL) = § (W(L.9.5), PWL.9.D) (128)

w(t.9.0) 1= 7+ (A")'B°[ C,By-F,C(5,2+8y)])
= (A s . 12v)
We now establish some preliminary lemmas:

e}
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The first is implicit in the proof of Theorem 1.

Lemma 1:
(VVENLEN) + (VP ENLELD) S ~aV(2.5) where aq == [IM I[FP 1+11]7 > 0.

Lemma 2: (V,W(2.9.D).5(2.9.D) S ~BW(%.5,2) where o = IP'It>o0.

Proof: (v w(z.9.0. £3(2.9.0) = (P WEID, 21.5:2))
= (P'w(2.9.), A"w(2.9,9))
=3 WD
s-IPIS'wisn. O

Clearly, the function [f; is bounded above by a calculable scalar multiple of the function V3. In view of
Assumprion 3(ii), ||f; || is also bounded above by a calculable scalar multiple of Vi, By Assumption 3(iii), 7 is
uniformly Lipschitz in its final argument (with knov(n Lipschitz constant 2); hence,

taf(e. 29,00 < A+)IR ¥ + 92,90 for all (4.2,7.2)
and, since 2 7 + @(%,7,2) = —#(C,B)"'C*'w(R,¥.D), it follows that lAf; | is bounded above by a calculable
scalar multiple of W, Therefore, we may conclude:

Lemma 3:

There exist calculable constants 6, ¥;, ¥, and 7o such that, for all (¢,2.7.2),

O (YW@, (1) S GVIENWHEIY,

() (VW(29.D), f(t.29) + ALGAT.D) S WD + Vi@ NWiE7.D) .
Gii) (VYL Af(1.£.9.D) S oV AENHWHEID .

The next theorem demonstrates that system (10) is asymptotically stable for all £ > O sufficiently small.

Theorem 2:

Let «° be as in Theorem 1 and define u° := apfolagw; +no(G+y2)I"! > 0. Then, for each fixed
> x"(1~8)"! and fixed u € (0,u"), the zero state of system (10) is globally uniformly asymptotically
stable.

Proof: Define the positive definite quadratic form (Lyapunov function candidate) % by

MEID = V(L) + [G+w] ' noW(Z.9.0)
then, invoking Lemmas 1, 2 and 3, the following holds almost everywhere along solutions (£(:).5(*).Z(*)) of
Q10): .

VIG5 ] [ Vi) .90 ]>

d
4 MEDIW.H0) S « [W*(z(:).y(o.m» WA, 50, 2()
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-0 (4" Bo=wiXGo+w) 'mo |
Noting that f is positive definite, the result follows. =]

M=

In summary, let I, = (¥, ¢~' A, u~'8) realize (minimally) the component H,(s)N(s) of the proposed com-
pma:br@).dzenﬂuovenﬂemmﬂedsystcmhasﬂamwmshowninﬁgun 1.
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Figure 1

The goveming equations (equivalent to (10)) can be expressed as

2(1) = Ax(1) + BLu(r) + g(t.x(D.u(, x(1) & R* (132)
ui(1) = A2(1) + By(), 2N € R, p<yu’, (13b)
y(t) = Cx(¢) € R? _ (13¢)
u(r) = ~R(C,BY '\ (Fiy() + Fz()) e R™ , £ >« (1-p)" . (13d)

Clearly, the threshold values «* and p° are central 1o this design. Since these values are determined via 2
"worst-case” analysis, it is to be expected that, in practice, the compensator will be conservative. In the next
section, a stabilizing adaptive version of the compensator is developed; however, in the case r 2 2, this is
achieved at the expense of imposing further structure on the uncertain function g.

S. Adaptive compensator

S1Casel: r=1

If Assumption 2 holds with r = 1 then, by Corollary 1, system (1,2) is asymptotically stabilized by the static
output feedback (8) with £ > x°(1-8)"" provided, of course, that F; and C,B are known and that sufficient g
priori information is avilable t0 compute the (conservative) gain threshold «*(1-5)"!. We now consider the
case for which the latier information is unavailable, i.e. we only assume knowledge of F, and C,B and, in
particular, the constants @ and § < 1 in Assumption 3 may be unknown. All other assumptions remain in
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Repiace fixed £ in (8) by variable x(¢) to yield

u(s) = ~x(¢XC,B) Fy(e) (143)
and let x(¢) evolve acconding to the adaptation law

(1) = [I(C,B)'Fiy(nB? . (14b)
then:-
Theorem 3:

For all initial data (£5,x(%).x(%)) € RxR"x[0,%), the adaptively controlled system (1,2,14) exhibits the fol-
lowing properties:

@) 'lxm x (1) exists and is finite;

(i) Hhxg Ix()ll = 0.

Proof: For fixed (but unknown) £ > x"(1-8)"! and under the similarity transformation T, system (1,2,14)
may be expressed as

£(0) = Ap () + ARy (152)
F() = ApX(0) + ApF(e) — RY(1) = [ ()=K1F(1) + Z(2.2(8).5(2),—x()F(1)) (15b)
%(0) = IFOI* . ‘ (15¢)

Let U and V be as in the proof of Theorem 1 and define the positive definite (since § < 1) function
YV (Z,7.5) > V(ZF) + dx-Ry¥=18(x-#) | x-R] .
Then, along solutions (X(+).7(*).x(*)) of (15), the following holds almost everywhere

%mw,y(r).x(:» S =UR().5(0) - BRIF(DN? = (x(D)=R)IF(N? + Br(n)liF(nh?
+ [(x()=-R)=B| x()-R | IF()R?

< =Ux(0),5() . (16)

Since U is positive definite, we conclude that ¢ > (£(¢).(£),x(¢)) is bounded and since ¢ - x(¢) is also
monotonic, assertion (i) of the theorem follows, Furthermore, in view of (16), we have
[ U900 S M2(10,9(t0),¥ (1)) < = and hence, since U and V are positive definite quadratic forms,
L'V(z(:). (1))dz < =; moreover, V(%(-),§(-)) is essentially bounded from sbove. Therefore, we conclude
that V(2(r),5(1)) = 0 as ¢ — o (see Lemma 6.3 of [22]), whence assertion (ii) of the theorem. O

52Casell: r22

Before describing the adaptive strategy in this case, it is remarked that the argument used in establishing
Theorem 3 cannot be carried over directly, Instesd, we will base our approach on that of Mirtensson [11).
For this reason, further conditions are imposed on the uncestain function g. In pasticular, Assumption 3 is now

/




replaced by:

Assumption 3':

There exist a bounded contimious function AA: R —» R™*, a Canathéodory function g,: RxR™ — R™

which is uniformly Lipschitz in its second argument, and a constant § < 1 such that
G) g(t.x.u) = AA(D)X + g,(t,4), forall (t,x,u),

(ii) gu(t.u) < Blix|l, for all (¢,u),

and

(iii) (C.A+BAA(-)) is uniformiy compietely observable in the sense of [25).

Note that, if Assumption 3” holds, then Assumption 3 holds a fortiori with a = m}p BAA(D)] provided that a,

B and the Lipschitz constant for g,(f,”) are known. However, kmowledge of these constants is not required
here.

Example 2: With (C,A,B) defined as in Example 1 of §2, Assumption 3°(i) holds for any bounded continuous
AA: t > (Aay(0),Aa,(1),Aa4(1)).

Now replace fixed # in (13d) by variable x(¢) > 0 and replace fixed u in (13b) by (&x(1)”!, where 5 > 0 is
a constant (design parameter) and let «(¢) evolve according to the adaptation law (other adapiation laws may
be feasible, as discussed in [20])

£(0) = by + §2(0h? .

x(s) u(o ()
= Lm] N OE [z‘(r)] . Y= [z(f)] ,

then the overall adaptively controlled system may be expressed in the form

Writing (as in [11])

i) = AN (1) + BHut () + gttt (), 2T(1) € R™Y, (17a)

ye) = Ctxt(e) « RP*T, (17b)

ut(e) = —x(DKyt() @« R™, (17%)

£(0) = Iyt on?, (17d)
where

At = [A+B:A(‘) g] , B! = [g 7} , Ctim [g ?] . (17¢)
and

(C,BY'F, (C,BY'7 - | gatam)
J [ -83 -88 ] gteut) = [ 0 ] . am
/
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The stability of system (17) will now be investigated. We first require the following lemma (essentially a non-
autonomous version of Mértensson’s lemma (11]).

Lemma 4:
Letxt: R — R™9 satisty
i) = AT @) + BHVG) + N (v

where v: R — R™? is measurable. Then, for each fixed 7 > O there exists a constant ¢ > O such that, for
alle,

I OI? S ¢ | Tyl + vl ds .

Proof: Let ®(-,+) denote the state transition matrix function generated by A+B8AA(-) and define the observabil-
ity Gramian for the pair (C,A+BAA(*)) in the usual manner, that is,

T(,s) = L‘Or(a,.r)CTCO(a.s) do .

Now, for some constants k, and @, we have [lexp Azf]l < ke® and, since AA(-) is bounded (by assumption),
there exists constant k, such that [|[BAA(#)|| € k;. By standard perturbation theory, we conclude that

IO S ke H%X=D gorangs .
Clearly, the state transition matrix function ®'(-,-) generated by A *(*) is given by

&(1.5) 0
w’(r.x)=[ 0 ,J.

whence
l®t(e,5) ) < ¢y(r-s) forall 1.5, (18a)
where
;0 b 1+ kel (18b)
The observability Gramian for the pair (C*,A'()) is given by

Fiss) O
l“"(‘o-‘) = [ 0 (“‘S)'] ’

and, since (C,A+BAA(+)) is uniformly completely observable (by assumption), we may conclude (see [25])
that, for each fixed ¢ 2 0, there exist positive constants ¢, and ¢, such that, for all ¢,

liCh? s (¢, THee-0)0) S o lE1? Ve R™T. 19)
Now define the measurable function v?: ¢ i v(r)+g*(s,v(1)) and note that [v* (1) S (1+8)Iv(e){. Then,
x'(0) = O (tt-n)x'(1-1) + [ @'1.5)BMVN(o) &s
whence
MOR s 210" t-Dxt -2 + 28f] @' (0BT (s) dsp?
S 2z’ -0 + 2051+ p7 BT 12 Iv()l%ds (208)

e s o e s Db e < RAA 4 e .




wherein (18) has been used, and

¢y = cf(1), g im J:cf(.v) ds . (20b)

Also, invoking both (18) and (19),
Bt (=) < ot xP -0 T e-)xt (1-1))

e st S e BEMSERAN

=ci' [ 1y s)~C! [ @"(s.0)B" (o) dor |2 s
< 25 [ [ Iyt %ds + cer+8PIC B IR [)_Rv()i3ds] . @12)
where :
Cg = j:!;c,z(a)dcd: . 21b)
Combining (20) and (21) yields the required result. #]

Theorem 4:
For all initial data (%.x"(f).x(5)) € RXR"*¥x(0,2s), system (17) exhibits the following properties:
@) llim x(t) exists and is finite;
Gi) im xt()) = 0.
f=pan

Proof: Seeking a contradiction to (i), suppose that the monotomically increasing function ¢ i+ x(1) is
unbounded. Then, for some #; € [0,%), x(p+#) = & > k" (1=8)") and (Sx(fo+4))™" = u < #°. Now, an
argument similar to that used in the proof of Theorem 2 can be adopted to establish the existence of a positive
definite quadratic form x* > ¥'(x') and positive constant p such that the following holds on solutions
(1 ()ox(): [1g.00) = R**9%(0, ) of (17):

% Y1) € =p VI (1)) foralmostall ¢ 2 ¢t +¢ .

“Thus x*: [45,) - R™? ultimately tends exponentially to zero; hence, both x* and y* are square integrable

on [4,%), which, in view of (17d), contradicts our supposition that the function x is unbounded. This estab-
lishes assertion (i) of the theorem,
It remains to show that x*(¢) — 0 as ¢ — . Clearly, (i) ensures that y' is square integrable on [z,,e) and,
in view of (17c), that u* is a bounded linear transformation of y'. Thus, we may conclude that u' is also
square integrable. Now, by Lemma 4, we have

O S ¢ f, ('O + Quton?) ds

= cf I ORI s - ¢ [y o aeton® a.

Therefore, fx' ()l = O0ast > e, [




6. Discontinuous feedback

In this final section, some possible generalizations of the proposed compensators are brieflv discussed. In (23]
and for the case r = 1 only, a wider class of uncertain functions g is studied; specifically, Assumpdion 3 (i) is
replaced by the condition

fg(t.x.u)ll < alixll + Blull + ¥§(Cx) for all (t.x.u)

with a and § < 1 as before and where 7 is a constant (assumed known in the non-adaptive case) and § is a
known continuous function. Thus, loosely speaking, in [23] 2 non-cone-bounded component of uncertainty is

. allowed but this is required 1o be bounded by a function of the system output y. In the context of this more

general class of systems, the assertion of Corollary 1 of the presemt paper remains true for fixed
£ > (1-8)"'max {x°,7} if (8) is replaced by the generalized feedback
u(s) € -R [(C,BY' Fiy(1) + £ (NN . (222)
where the set-valued map y v A(y) € R™ in essence models a discontinuous control component and is
given by
(KB Fiyl ™ (C,BY'Fiy}; Fiy #0
NOY = (v: vl s 1} Fiy=0, (220)

and the overall controlled system is consequently interpreted in the generalized sense of a controlled differen-
tial inclusion [26]. Furthermore, the assertions of Theorem 3 of the present paper remain true if (22) is
replaced by the adaptive control

(1) € =x(D[(C,BY Fiy + EG(NNy(1))]
where x(#) evolves according o (14b).
In the cases 7 2 2, preliminary investigations indicate that again a non-cone-bounded component of uncertainty
(although considerably less general than that of the preceding paragraph) can be tolerated in g and counteracted
by augmenting the compensator (13d) (or its adaptive counterpart implicit in (17¢,d)) with an appropriately
chosen set-valued map (again essentially modelling a discontinuous control component). However, the
requisite structural conditions on the non-cone-bounded uncerntainty are, as might be expected, of 2 rather res-
trictive and technical nature (akin to those in [10]) and are not detailed here.
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A NEV APPROACH TO THE MODELLING UNCERTAINTY PROBLEM
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ABSTRACT

Modelling of systems is generally done by frequency response methods or state
variable methods. It is our object to show how frequency domain robustness
results can be extrapolated to their state space counterpart. Using proper-
ties of input-output relations of systems, and different compatible norms, it
will be shown how a corresponding frequency response robustness results can be
applied. The method can be used to solve a certain class of non linear
equations. It can also apply to the control of non linear uncertain
multivariable systems in order to better stability, sensitivity as well as
decentralized control results. It can also apply to assess the state feedback
compensator, the observer and the output feedback compensation with regard to
the -‘obustness problem. ’

Multivariable control theory evolved in the sixties, using the state variable
approacn. This approach together with growing computer technology gave rise
to tremendous research. Interesting results on system stability,
controllability, observability, reachability and detectability were developed.
This was a sharp contrast to the single input-single output frequency response
approach involving polynomial approaches, Nyquist criterium, and root locus
methods.

Hovever, many of the answers given by state space methods lack the suppleness
of multivariable methods as they apply to well defined models with no
modelling uncertainty. Adaptive control is a partial response for the
modelling uncertainty problem as far as parametric uncertainty is concerned.
Clearly, in any state space representation (A, B, C, D), there is no way to
predict the behaviour of eigenvalues whenever the matrix representation is
modified to (A+3A,B,C,D). On the other hand, frequency response methods apply
baetter to the uncertainty problem: in the case of a single input single output
Nyquist diagram for instance, a Nyquist plot could be replaced by some Nyquist
band representing the modelling uncertainty at each frequency.
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Multivariable frequency response methods such as the inverse Nyquist area (1]
multivariable Nyquist criterium [2] and multivariable root locus [3] are
concerned mainly with system stability. However, the input output approach to
systems [4,5,6,7,8] which apply to any normed algebraic representation of
systems fit particularily to the frequency response setting. Such an approach
allows us to handle the problem of modelling uncertainty. It is our purpose
to show how multivariable frequency response uncertainty methods can be
extrapolated to the multivariable state space uncertain models case.

It is our aim to show how these input output robustness results can be
implemented in systems described by their state space form. Given a state
space model with a state feedback compensation, observer output feedback
compensation, we shall derive the best possible bounds on the closed loop
perturbations due to some uncertainty AA in the dynamics of a system.
Conversely, any frequency response robustness result will be shown to hold for
a corresponding state space disturbed model A + 4A and bounds on acceptable
uncertainties AA will be deduced.




ASYMPTOTIC LINEARIZATION OF UNCERTAIN MULTIVARIABLE SYSTEMS BY SLIDING MODES
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A MODEL PROBLEM. We consider control systems with deterministically uncertain dyna

mics described by the differential inclusions

1,uz)

4 e Gl(t.x,i'Y.).h“
o] eso

Y € Gy(t,x,%,y,¥,u ,u,)

Here x,y are scalar state variables and ul,u2 are scalar control variables, con-
strained by
u
) (I'UZ)GU
a given closed subset of R . Motivations for considering system (1) come from robo
tics, since some dynamic equations of kinematic chains appearing in robotics may be
reduced to the form (1). See e.g. [6] for a recent treatment,
The multifunction which describes the unknown system dynamics is given by
4 2
(GI' Gz)' : [0, +00) xR xUZZ} R.
We assume explicit knowledge of some upper and lower bounds of the dynamics involved.
Therefore Carathéodory functions
+ :
gi r g, ,1=1,2
are known such that
- + - +
G = G = .
A CHTE S RS CATCS
The initial state is uncertain but bounded by some known constant.

We consider a given linear time invariant (known) model

(2) w = alﬁ +aw *ayv, 3 = bli + Db,z + b,
with scalar control variables vy ;’v2 , state variables w , z, w(0O) anu 2(0) fixed,
and arbitrarily fixed coefficients a, bi (i =1,...,3).

The problem we consider is to find a state feedback control law (possibly depen

ding on instantaneous values of v, v2, w, w and z,z) under which system (1) is asym

1
totically equivalent to the given linear model (2).

P
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(W,2), we construct (in a sense ex-

More precisely, given &« > 0 and any (vl,v

2
plicitely) a feedback u such that every possible state (x,y) for' (1) corresponding

to it (under any uncertain dynamics g € (Gl' Gz) ') fulfils the model dynamics (2) up
to an exponentially decaying error term dominated by (const.) exp ( -&Xt}, t 3 T;
moreover ]
JX (£) - W(t)] ¢ (const.) exp(-&X t), £ 3T
where
L= (x, X, vy, ¥) = ERENENERIE AR w2, 2) =y, ¥y ¥
and some T independent of X and explicitely estimated by known data.

Such a feedback u (in general discontinuous) is obtained by using variable struc
ture control methods (see f 1] recently extended to non linear control systems by the
authors (see [2] and [3] ), provided a set of explicit inequalities is satisfied

+

by the known bounds g; , 1=1,2, as follows. Let c,, c_ such that &g min(cl,cz) .

1’ "2
Then put e = X - W and

(3) sl(e) = c1 e1 + e2 ’ 52 (e) = cz e3 + e4.

Consider now

plx, y, v) = ¢, (y2 - x2) va y,ta,y ta, v,
q(x, y, v) = <5 (y4 - x4) + b1 Yt b2 ¥yt b3 v,
Then we assume existence of some u £ U fulfilling

- 2 + 2
g, »p+tk ifsl>o: 91\<P-k if sl<0;

(4){
- 2 ) + 2
92>q+k xfsz>o, gzgq-k if s2<o.

These results may be generalized to higher-order control systems of the following
form

roaes un), i=1,...,n,

Ri € Gi (B, X.p R.p aney X0 in, u,

1 1

It is then likely that the number of the required inequalities corresponding to (4)
may be reduced by using results of E7J .

The chattering effects dQue to the discontinuous nature of the asymptotically
linearizing feedback may be reduced by appropriately combining results from [6],
€l , [19 . Moreover sufficient conditions may be obtained assuring that the feedback
u is piecewise continuous (not only measurable).

An important property of the variable structure control systems (1), (3) is ap

proximability (see [2] for the precise definition).
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In essence this means that whenever some error vectors e& depend on disturbances
described by the real parameters € and satisfy .

si(es )—> 0 as § —> 0o, i=1,2,

uniformly on compact intervals of [T, + @), then eé -_ eoin the same sense, where
e° is uniqufly defined and fulfils the sliding condition si(eo) = 0,1 = 1,2, Thus
approximability prevents ambiguous behaviour in the sliding mode. Sufficient condi

tions can be found about the available data in order to fulfil such a property.

A PARTICULAR CASE. Let the uncertain control system be described by a single diffe

rential inclusion of order n with scalar control u, given by

X, = x_, iz = Xyr eens *n-l =%, in € G(t, x, u) , u€ U.

Suppose that the model is given by

n
PR PEE PIE FURIITE AR AR A S ey vy
and let
G = Eé-r gtJ .

Fix real number Cl""'cn-l such that the polynomial (in h)

n-1 n-2

h Yoy h + .. ¥ czh + ,
is Hurwitz. Denote by

e =y -x

the error vector and set

n=-
s{e) = en + z:i c. e,

n n-1
pns = -
Plx, vy, v) =bv s E2 ay v 7 Wiy Xe)”

The asymptotic linear behaviour ( in the sense defined above) obtains provided the
following holds. For any model control-state pair y,v, every t 3 O and every x we
can find u € U such that

q-(t, x, u) » kz + p(x, vy, v) if s8s(y - x) > 0,

g+(t, X, u) § - kz + p(x, y, v) if s8s(y - x) < O,
for some fixed constant k ¥ O.

Arbitrary exponential decay of the error term is obtained by a proper choice of

[ . See [4] ’ [5] for more details, examples and comparisons about this

1, .-.,Cn_l

particular case.
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ABSTRACT

This paper analyzes the performance of output feedback controllers for a class of
uncertain time-varying nonlinear systems in the presence of unmodeled actuator and
sensor dynamics. In particular, on the basis of known nominal model and bounds on
the uncertainties, and initially neglecting actuator and sensor dynamics, high-gain out-
put feedback schemes are determined which force the output to track a given signal.
Then, the effects of actuator and sensor dynamics are investigated on the performance
of the tracking system.

KEY WORDS: Nonlinear systems, Output feedback, Uncertain systems, Singular
perturbations.

1. INTRODUCTION

Recently, major progress has been made in the analysis and design of nonlinear
control systems. Different approaches have been proposed (Utkin, [1], [2], Corless and
Leitmann (17], Hunt et al. (5], Su et al. [8], Glad [22], {23], Bauman and Rugh [19],
DeCarlo et al. {10}, Isidori [15], Walcott and Zak [8], Steinberg and Corless [12]). An
important property of control systems is their robustness, i.e. the ability of the system
to retain certain performance measures in the presence of perturbations. Or in other
words; ‘‘the ability of a control system to function even when the actual system differs
from the model used for designing the controller” (Glad (22]). The system model used
by the designer may differ from the controlled system because of model uncertainties or
neglected high-frequency dynamics. Specifically, when devising a model of the plant,
small time constants corresponding to actuator and/or sensor dynamics are neglected.
Furthermore, it is often impossible to measure directly all the components of the state
or output vectors. In order to restore them additional sensors are used which lead to
motions different from the motions predicted by the plant model.
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The problem of contrélling a system in the presence of unmodeled actuator and
sensor dynamics has me:vad recently the attention of many researchers. In particular
Bondarev et al. (7], and Zak et al. [25] studied the influence of neglected high-frequency
dynamics on the variable structure control systems. Leitmann et al. [9] studied the
robustness with respect to neglected actustor and sensor dynamics of state feedback
controllers for uncertain systems. Glad [23] considered the sensitivity of the system to
variations in gain at the input, corresponding to nonideal behavior of the actuators.
The problem of the robustness of various output feedback control algorithms based on a
reduced-order model with neglected high-frequency dynamics was investigated by
O'Reilly (18] and Vostrikov et al. [24] using singular perturbation techniques.

The purpose of this paper is to analyze the effect of neglected high-frequency
dynamics on various output feedback control designs for nonlinear uncertain systems.
Our approach is inspired by Marino [4], Utkin {2, and Vostrikov et al. [24]. The tools
we use in this paper are the high-gain output feedback and Lie derivatives.

The paper is organized as follows. Section 2 is devoted to the description of the
class of nonlinear systerns we consider along with the problem statement. The next sec-
tion presents some background material and preliminary results. The following sections
discuss different high-gain output feedback control schemes. Then the effects on the
performance of the closed-loop system of unmodeled actuator and sensor dynamics are
investigated. Finally, Section 6 contains concluding remarks.

2. PROBLEM STATEMENT
In this paper we consider a class of dynamical systems governed by the following

equations
X(t) = f(t,x) + G(t,x) [u(t) + &(t.x)]
y(t) = h(x) } (21)
where x€R®, u€R®, y€R®, and £(*) RxR®—R™ is the lumped uncertain element.
We assume that the norm of the uncertain element is bounded by a known bounded
nonnegative function; that is for all (t,x)ERxR"

&t x)ll & o(t.x) ,
where o(*) : RxR®—R,,, and [|+]| is the Euclidean norm i.e., I{x|[ = (i [x; 12)}2.

i=1
Note that the only information assumed about the uncertain vector is its maximum
possibie energy. If the uncertainties £(t,x) enter structurally into the state equations as
in (2.1) then we say that the matching condition is satisfied [17]. -

The function f{*) is a continuous single-valued vector-function and G(+) is a con-
tinuous single-valued matrix function with rank G = m. Furthermore, we require that
f(t,0) = 0 for all t. The output vector function h(*) is continuously differentiable and
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b(0) = 0.

In this paper we analyze two different output feedback control strategies. The first
is the high-gain output feedback stabilization scheme. In the syntheais of this control
law we utilizse a nonlinear transformation which brings the original system into the
“regular form" ([20]) from where the design is performed.

The aim of the second control law is to ensure the tracking property of the output

of some given reference signal.
For both control strategies we will investigate the effects of the unmodeled actuator
and sensor dynamies on the performance of the closed-loop systems.

3. PRELIMINARY RESULTS
LIE DERIVATIVES

Time-Invariant Lie Derivatives
Let f: R*~—R® and g : R®—=IR? be C* vector fields on R®. The Lie bracket is
defined by

where -gf—x- and % are the Jacobian matrices of f and g, respectively. Using an alterna-
tive notation, one can represent the Lie bracket as follows
(f,g] = (ad't,g) .
Also, define ’
(ad*f,g) = [f,(ad*£g)] ,
where, by definition )
(ad%f,g) =g .
Next, consider a C*™ funetion h : IR*—R. Let dh = UTh be the derivative of h

with respect to x, where Vh is the gradient of h with respect to x. Then the Lie deriva-
tive of h with respect to f is defined by

L¢h = L¢(h) = <db,f> = CThef.

The following notation is employed throughout this paper

i, Y




L{h =h
L}h =Lk

L¥h = Le(LF ') ..

The Lie derivative of dh with respect to the vector field { is defined by
_ | aan)" 2
L¢(dh) [ o f] +(dh) -

One may easily verify that these three Lie derivatives obey the following so-called Leib-
nitz formula

Lirgh = <dh,{f,g]> = LgL¢h ~LeLgh.
Furthermore, the following relation is valid
dLsh = L¢(dh) .

Time-Varying Lie Derivatives

Suppose now { and g are C™ time-varying vector fields, i.e. f(+): RxR?—R?,
g(*) : RxIR®—IR". Then the time-varying Lie bracket is defined by

(T'f,g) & (ad'f,g) - %E '
and
(T*f,g) = (T'£,(T*"',g))
where
(teg) &g.

Next consider a C™ function h(s) : RxR®—R. Then the time-varying Lie derivative
of b with respect to f is defined by

Zh = 2b) ALb + 2.
&
We define
ZMhah,
X 2

£Fh & 2(2F'h) = Ly(LF'h) + —

The time-varying Lie derivative of dh with respect to the time-varying vector feld f is




defined by

Zydh =T [gg?-)-]+(dh) % +%(dh).

Note that
dZh = £p(dh) .
One may verify that the above defined time-varying Lie derivatives obey the following
formula
<dh,(f,g)>
= L(rit,gh = Lgleh — LeL¢h — L%‘Lh

=Ly &h — ZLeh .

MARKOV PARAMETERS

The affine Markov parameters are defined as the elements of the matrix resuiting
from the product of the observability and controllability matrices ¢ an affine nonlinear
system described by the following equations

x = f(t,x) + gy (t,x)uy + ... + gm{tyx}up

y = h(x) = By (x) , -, Bp(x)|T , (3.1)

" where ,g;,+8g : RxR*—R® and h : R®~RP are C® vector fields.

The observability matrix of such a system is defined by the following (np)xn
matrix

[ERPPRTEPEIOPIT -1 ZEICE

Ly

y phe = e




L e

1
!

P

dh,
dh,
Zi(dh;)

Om 2‘("&’) . (3.2)

£1~Y(dh,)

.??"(dh,)J
The controllability matrix is defined by t.he following nx(nm) matrix
€= [gmtn (P (gl P (P g)] . G3)
So the elements of the matrix €€ have the form
(£Hdby)) (T1,ga) = <ZH(dby), (Miga)>
= <d&th; , (I,g)>
= Lirt.e) Zib; (3.4)
for i,j = 1,..,0—1, a=1,..m, J=1,..,p, and are referred to as the affine Markov

parameters.

Theorem 3.1: If there exist constants ey, k = 0,1,... such that the Markov parameters
satisfy

Lirt,g) Lihy = e = cinj (3.3)
then
L(r'f.;,)-ﬂbj - L“-?Pjhg = const = ¢, .

Proof: Repeated application of the definitions of Lie derivatives and condition (3.5)
yields the following

Lirip,g,)%ths = <d&ihg , (T1,(F11,g,))>

= Lir-it, g ) L1Lth 3 = LiLrmy e, )Lt
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= Lirif,g) L1 hs ~ Lrciviy

- L(ri-lf.‘.).?}*lh’g .
Continuing in this manner we find that
L(rif"‘).ﬂhg - L‘..?.’if*j hp = const = ¢;; .
a

For further information about Markov parameters for nonlinear time-invariant sys-
tems the reader is referred to [11] and {14].

Consider now a plant modeled by (3.1), where p = m, and the high gain control
law

u =k s(x) (3.8)

where k > 0 is a scalar and the function s(*) : R®—+IR™ is continuously differentiable.
Assume that detSG # 0, where

3s
§=—", and G = [g1,82+18m| -

Then we have

Theorem 3.2 ({2{,21)):
i

(i)  the funections f{t,x), G(t,x)s(x), and f, = { — G(SG)~!Sf satisfy Lipschitz condi-
tions for all x

(i) the system

ds
m (SG)s

is uniformly exponentially stable, that is there exist positive A = 1 and o such
that

lis(x)il < Alls(x(0))lle=t,
then for any positive A, and T there exists a positive kg such that
Hs(x(tH < A

for k > ko and ty +t; <t < T on the solutions of (3.1) with the control
u = ks(x), and l‘lim t, = 0.
-0

”‘_.w



4. THE OUTPUT REGULATION PROBLEM

Consider the nominal system, that is the system without uncertainty as described
by

% = f(t,x) + G(t,x)u}
(4.1)

y = h(x) .

First we define the decoupling indices for the system (4.1). We consider each of the
m output channels separately. So considering the first output channel we form the fol-
lowing row vector which we will call the decoupling vector for channel one

(L‘Ihl’ L‘_\hh“"L‘,,.hl] . (4_2)
If this row vector is not identically equal to zero, then we define the decoupling index of
the first channel to be zero, or d; = 0.

However, if the row vector is identically equal to zero we proceed to form the fol-
lowing decoupling vector

Ly, by, Lg, &by , oy L Lrhy] -

Again we determine if it is identically equal to zero, or not. If it is oot we stop and
define d, = 1. If it is zero we proceed further by forming

(Lg,£fhy, Lg, £fhy , .o, Lg 2Fhy),
and so on.

So the decoupling index of channel 1, is equal to the smallest integer d, for which
the decsupling vector,

[Lg, &1 'hy, Lt:‘??lhl R Lt..'g?‘hl-z ,
is not identically equal to zero.

Similar procedure for the other output channels yields a set of m parameters, d; for
i=12,..m.

The decoupling indices are an indication of what the lowest derivative of each out-
put channel needs to be utilized for an output control to be effective. By taking the
time derivative of the {*! output channel we obtain

Oh;

oy o B £ + o+ )
Yi axx" Ox (f+ 819y + - +Enlm),

hence
¥i =L¢hi + [Lg bi, -, Lg biju.

Thus if |Lg, hi, Lg,b; , .., Lg bij = [0] then u has no effect on the output y;, so we
need to Torm ¥, where




-
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¥; = -5x‘—x = £ih; + [Lg, &by, o, Lg, Zrhiju.

Again if {Lg, &by, L, Zth; , -, Lg,Zrhi] = (0], then u has no effect on the output
and we need to take higher derivatives of y; in a similar fashion as before.

Now that we have obtained the set of decoupling indices, we consider all the out-
put channpels together to form the following matrix

Lo, €9k . Lg £f'hy
Nm | : (4.3)

Ly, Zi™hy - Lg & hg

We wil]l assume that the matrix N is nonsingular and we will further assume that
the Markov parameters of the system (4.1) are constant. Hence by the virtue of
Theorem 3.1 the matrix N is constant.

With the N matrix constant and nonsingular, we proceed to construct a high-gain
output control which will regulate the output to zero.

We will consider two cases. The first case is when all decoupling indices are equal
to zero, and the second case when some, or all, decoupling indices are not equal to zero.

For a rigorous treatment of the decoupling problem for nonlinear time-invariant
systems the reader is referred to 13|, 14, {16}

Case 1: For this case the N matrix will have the following form
L‘i hl e L‘lﬂh‘
. . . Gh
N o= : : = XG =HG, (4.4)
Leba o L bn
where el the Jacobian matrix of h and G = [g},...,8n -

If we eruploy the following diffeomorphic state variable transformation

o

[T P,
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X; = ¢1(t.x)

Xy = &p(t,x)
- 4.5
Xp—m+1 = hl(")r (4:5)
X, = hp(x),
where the ©;'s are chosen such that
Lt;é' =0, j=1,.,m forall i=1,..,0-m, (4.8)

then the system (2.1) in the new coordinates will have the followinz form

Xy 210
= : (4.72)
— gfon—m
Xpem
)—‘n~m-v-1 [thl thh\ Ltmhl
: = I : : (w+8. (4.7b)
B [L(hm Leba o Lebg
xn
We will now employ the high gain cutput feedback control as given by
= -} K°h(x) . (4.8)

where ¢ i3 a small constant and K°® is ap mxm constant matrix. Unader the influence of
this control, the system equations become

- : (4.9a)




=] ¢ |+ L NKenE +Ne. (4.9b)
Ly

Xa

We see that the application of this control decouples the system into the slow and
fast subsystems. The dynamics of ghe slqw subsystem are given by

X, & dy
- zf'bn-m
Xo-m
_ 1 (4.10)
Xp—m+1
y=hx)=| i |=0,
Xy
whereas by invoking the following change in the time variable,
t=¢7, (4.11)
the equations « scribing the dynamics of the fast system are given by
4 I'i.n-m-ﬂ glhl
. : = i |+ NK°h(x) + ¢N¢, (4.12)
dr -
Xp 'Cffhm
and for sufficiently small ¢, the above equations simplify to
d in-m—l i.n—m*l
o = N K°h(x) = N K° S (4.13)
X, Xa
Observing that the part of our transformation in (4.5) is ¥ = Xg—gay + o s % T,
we can rewrite the above equation as
%-"- - NK° . (4.14)

Note that by an appropriate choice of the matrix K° the fast subsystem can be
made uniformly exponentiaily stable. Thus if J is the required uniformly exponentially
stable matrix then,




K° = N1J, (4.15)

and K° can be evaluated since N is assumed to be nonsingular.

By invoking Theorem 3.2 we see that the stability of the fast subsystem will result
in the trajectories of the system (4.7) converging to the A-vicinity of the manifold
y{x) = 0. Thus the output is regulated to zero. Within the A-vicinity of the manifold,
the system will be governed by equation (4.10) which represents the dynamics of the
slow subsystem. From equation (4.10), we notice that we do not have any influence on
the internal stability of the slow subsystem when the output is regulated to zero. We
assume however that the slow subsystem is asymptotically stable. The stability of the
slow subsystem is a structural property of the plant. This subject requires further
research.

Although Theorem 3.2 was stated for nonlinear systems without uncertainties, it
also applies to our particular case. This is because the uncertainties in the system (2.1)
are bounded by a known bounded function.

Case 2: Let us first reorder the output channels so that they are ordered in ascending
values of their decoupling indices. Thus y,; is agsigned to the channel with the smallest
d;, and yn to the one with the largest d;.

We then employ the following diffeomorphic state variable transformation
o, (t,x)
Og(tx)

= | &8y |, (4.18)

where the ©,'s are chosen such that
L‘.é, =0 j=},..,m.

The system {2.1) in the new coordipates will have the following form




— >y

71

%! = f(t.%)
. (4.17)
£2 = f,(t,5) + N(u + €) ,

where X' €R*>™®, X’€R®, and N is given by (4.3). The existence conditions of the
transformation (4.16) can be deduced from the resuits of {5, [20], (28], [27].

Note that

=2 ; .
X; = ygd‘) , i=1,..m,
where ( )U) denotes the j-th derivative of ( ) with respect ta t. The control law will have
the form

kiayn +o 4 kl,d.vly(ld,)
u=l N :

- (4.18)

dm
kp1¥m +- + km.dmvlygn )
In the new coordinates the closed-loop system (4.17), (4.18) is decoupled into the slow
and fast subsystemns. The slow subsystem is governed by the equations

£ =1 (t5)

y=0. (4.19)

_As in the previous case, we have no influence on the stability of the siow subsystem.
" Therefore for the controller to be effective we have to assume that the system (2.1)

without uncertainties is asymptotically stable when restricted to the manifold y = 0
which is equivalent to requirement that the system (4.19) is asymptotically stable.

As with regard to the fast subsystem we utilize a change in the time variable
t = ¢ r to obtain

d
y(ldr"l) kl.lyl + . k[,d,+ly(l )
= ¢(fy + NE) + : : (4.20)
. d
y‘,ﬂ“ 1) Kp1¥m + - + k,,dm,xyﬁn")

If we now choose k;; in such a way that the simplified fast subsystem




—p

d
yid+y kiay +. + kl,d,+1y(1 )

yg,ﬂ) Km,1y, + - + knld_.‘.xyg")

is uniformly exponentially stable then by the virtue of Theorem (3.1) the closed-loop
system is asymptotically stable.

The above output feedback stabilization schemes are quite restrictive. Their
effectiveness depends on the stability of the nominal system (x = { + Gu) when res-
tricted to the manifold y = h(x) =0. In the following section we provide a more
effective control scheme. Before that however, we will analyze the eflect of unmodeled
actuator dynamics on the performance of the closed-loop system with the high-gain out-
put feedbacks.

SYSTEMS WITH FAST UNMODELED MOTIONS

We now investigate the effects of the introduction of uncertain actuator dynamies
on the performance of the system (2.1) with high gain output feedback controllers.

Case 1: We will assume that the actuator dynamics is modeled by the following equa-
tion
Uyt =Lr +Mu, u=Nr+RU, T =cK°, (4.21)

where r€IRY, q 2 m, L is a Hurwitz matrix, p, is a positive constant that reflects the
“fastness”” of the actuator, the matrices L, M. R, and N satisfy the condition

R—=NL"'"M=Iy,andc = -:— is a large constant.

Proposition 4.1: If the matrix L is Hurwitz, (the fast subsystem described by (4.21) is
exponentially stable) then as u, approaches 0, the motion of the slow subsystem is
described by (2.1) with u = ¢ = ¢ K°.

Proof: The fast subsystem is described by (4.21). Replacing u by its value yields
Uyt = Lr + cMK®y . (4.22)
Let 7 = uJ't, hence (4.22) becomes

dr .
ar Lr + MKy . (4.23)

Since L is a Hurwitz matrix, then as 7 approaches infinity we have y = constant and




lim r =~ cL-!MK°y,

Prn OO

hence
u = Nr + cRK°y = [~ NL™'M + R|cK’y = cK°y . (4.24)
The expression for u as per (4.24) can also be found by setting u, = 0. Hence the siow

subsystem is described by (2.1) and (4.24).
a

Case 2; If the actuator dynamics for this case is also described by (4.21) with

d
Kigy, +-. + Kl.dﬁ»ly(l )
u=cN! i ,

Ka,y. + -+ Km,d,,,uyg'")

then using a similar argument as in the previous case we conclude that the slow subsys-
tem is described by (2.1) with u = u.

In conclusion, for a sufficiently fast actuator the proposed control schemes will sta-
bilize the output.

8. THE TRACKING PROBLEM

Our goal now is to design a controller such that the output of the system (2.1) will
track a given reference signal.

A sufficient condition for the output y to track the reference signal 1At) is

L5 — o) = Viy ~ 4} RF(r.r) (5.1)

where V is a Hurwitz macrix. If 1t} = constant, then (5.1) becomes y = V(y — 4.

We require that the closed-loop system (2.1) be asymptotically stable with respect
to the time-varying manifold

Q= {x: b(x(t) = At) = ¥(t) = t) = 0} .
The projection of the overall system oo this manifold is
#(t) = i) = Hx — ift)
= Hf + HG(u + §) — i{t) .
Using equation (3.1) and solving for u, we obtain the following control law
i = (HG)™ [F(y,ut) — BE + i{t)] — €. (5.2)

In order to implement the control law (3.2), we would have to have the exact knowledge
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of the uncertain vector £(t,x). Hence this control strategy is impractical. In what fol-
lows we propose a practical control algorithm which approximates the controller (5.2).

Consider the following control strategy
u = K[V(y - «t)) — (v — L)), (5.3)
where K is the matrix of gain coefficients, K = ¢K°, and c is a scalar large factor. At

the present time, we will assume that ¥ can be measured exactly. Later, we will investi-
gate the case in which ¥ is measured by a sensor.

To analyze the behavior of the system (2.1) with the controi law (5.3) in the pres-
ence of unmodeled actuator and sensor dynamics we will employ the arguments of Vos-
trikov et al. {24] used for systems without uncertainties.

Along the trajectories of the motion of the dynamical system (2.1), ¥ is given by
y = Hi(t,x) + HG(t,x)(u + §(t,x)) . (5.4)

Propcaition 5.1: If det(l + ¢HGK®) # 0, and det(HG) # 0, then
. d
(a) lim —={y — A4 =F(z,uUL)),
C~==00
(b) lim u=(HG)™! [F(y,[t)) — Hf + i{t) — HGE].

Co=e OO

Proof: In what follows we shall utilize the arguments of Vostrikov et al. 24l
We first prove part (a). Recall that
y=Hx,x={+GKF-(y -]+,
thus, we have
y = Hf + HGK(F —y +.0) + HGE,
regrouping the y terms leads to
{1 + HGK)y = Hf + HGK(F + i) + HG{,
Hence, for K = ¢K°, we have
¥ = (I + cHGK®)"Y(Hf + HGS) + (I + cHGK®)™!cHGK®(F + 0} .
Taking limy, the first term approaches zero, while the second term approaches F + .,

Come QO
therefore

imy=F +0.

C=—eoC

We now prove part (b).




We have

u=K[F —(y - )}, y =H +HG(u +§),
therefore
umK[F -H -—HGu + & + .

Regrouping the u terms leads to '

(I +KHGu =K[F — Hf —HGE + i,
hence, for K = ¢K°, we have

u = (I + cK°HG) 'eK® [F — Hf — HGE + i} .

Thus

clin; u = (HG)™![F —Hf — HGE + i .

SYSTEMS WITH FAST UNMODELED MOTIONS

We will now investigate the effects of the neglected actuator dynamics on the per-
formance of the system (2.1) with the control law (5.3).

Suppose that the actuator dynamics is modeled by the following equation
tat =Lr +Mu,u=Nr, U=K(F -y + 1), (5.5)

where r€RY, ¢ 2 m, L is a Hurwitz matrix, 4, is a positive constant that reflects the

. "fastness” of these dynamics, and the matrices L, M, N satisfy the condition

- NL-'M =1
The system described by (2.1), and (5.3) may be studied by the methods of the
theory of differential equations with small parameters in some of the derivatives [24].

For such systems, the overall motion can be decoupled into the fast and siow com-
ponents {21} i24]. The method of decoupling motions is advantageous in systems involv-
ing high-gain feedback and/or singular perturbations. The main idea behind the theory
is to decouple the system into two subsystems of lower dimensionality. The equations
of the slow motions and the convergence conditions for the fast motions are examined in
[21} and [24].

In the following proposition we investigate the effects of the actuator dynamics on
the performance of the system (2.1).
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Proposition 5.2: If the matrix (L — MKHGN) is a Hurwitz matrix, then as c—eoc the

motion of the slow subsystem will be described by (2.1) with u = 4.

Proof: As u,—0, the slow subsystem is described by the following equations
x=f{+Gu+§, u=Ti=KF -y +1).

We now examine the condition for the stability of the fast subsystem.
The fast subsystem is described by equation (5.5). Replacing u by its value vields

Uyt = Lr + MK(F — Hf — HGNr — HG§ + 1) . (5.8)
Let 7 = uJlt, hence equation {5.8) becomes
g{— = (L — MKHGN)r + MK(F — Hf — HGE + ) . (5.7)

where x == constant, t = constant.
If the matrix (L — MKHGN) is Hurwitz, then

lim r = — (L — MKHGN)"!MK(F — Hf — HGS + 1) .

T=e0C
Applying twice the following matrix identity know as the matrix inversion iemma
(A + Aj2dnan)™! =AY — AT AL(AnAT A + A7) TTAnAT .
and the condition — NL™!M = I we obtain
lim N(L — MK°{cHG)N)™!eMK®
C=scC
= lim ¢K°'— Iy + (K° - (cHG)™!)'K"]

Cvmw OC
= —(HG)™!. (5.8)
Hence

lim u= lim Nr=(HG)"}[F —Hf +ii —¢.

Come 3G C=el0

=]

INFLUENCE OF SENSOR DYNAMICS

To implement the control [aw (5.3), the vector ¥ has to be messured by a sensor
(approximate differentiator). Suppose that the approximate differentiator is modeled by
the following equation




tht = Az + Dh(x)
¥ =Pz,

(5.9)

where 2€R?, yER™, Q = m, and 44 is a “ymall” parameter that reflects the "fastness"
of the approximate differentiator, ¥ is the estimate of y, A is a Hurwitz mtnx, and the

matrices P, A, and D satisfy the condition — PA™!D = 1. We shall also use ¥ instead of
¥ in the control law (5.3). Therefore, we have

7 =Pi = u7'P(As + Dh(x)) .
Again, to examine the system (2.1) with the control strategy (5.3) and the approxi-
mate differentiator (5.9), we shall refer to the theory of decoupling motions ([21], /24).
If we denote '

s = Az + Dh(x) = w3, (5.10)
then the method of decoupling motions described in {21] is suitable for the resulting sys-
tem. We now examine the condition for the convergence of the fast motions to the
manifold s = 0.

The projection of the overall system on the manifold s is given by
3 = Az +Dy
= Az + DHx
= Au;'s + DH[f + G(u + §)] .
Replacing u by its value yields
$ = (A — DGHKP)u;'s + DH(f + GKF + GKJ + G¢) . (5.11)

If we now multiply both sides of the above equation by i, and let t = .7, we get

£ - %%-(A—DHGKP)s+u,DH(f+GKF+G£+GKI/),

where x = constant, t = constant. If the matrix [A — DHGKP| is Hurwitz then
lim s = — ;,[A — DHGKP|~! DHf + DHGK(F + /) + DHG{] .
P00

Using twice the matrix inversion lemma and the condition — PA™!D = I; we obtain
lim (A — DHGKP)™!
Cs 0

Tt

[




= lim P~!P(A — D(¢HG)K°P)™!

C=eQ0

= lim P~} - (K° + (cHG)™!)"!K°|PA™!

c=—e00

= + P~1(HGK)™'PA™} .
Hence
rl_x_.n:o s=uPYF +1), (5.12)
€—eo
or u7'Ps = F + [, which gives
§—b=F@E) .
To derive the equation of the slow motions, we let 4, equal to zero. Hence using
equation (5.9) we get
z = — A!'Dh(x),
¥ = P2 = — PA™'Dh(x) .
Using the fact that —~ PA™!D = I, we obtain

[N

=Vy.
Hence the equation of the slow motions is given by
x ={+GKFF ) =y +) + &
={+Glu +¢,

where
u=K({F(y,v) =y + ) =K({F(y,») -y + L}

Remark 5.1: Note that for large but finite values of the K-matrix, the value of the
control signal u remains finite (as shown in Proposition 5.1 part (b)).

INFLUENCE OF NOISE

We now investigate the influence of noise on the behavior of the system (2.1) with
the control law (5.3). Assume that the output vector y is corrupted by the continuously
differentiable noise r(t), thus

).v =y + I'(':) N (5.13)

We now find values for y, 7, and u. We assume that det(I + HGK) # 0.




(b)

(¢)

(i)
(i)

7 =HIf + GKFG) = § +Ut) +€],
using equation (5.13) we get
y=Hf+GKF -y—r+ ) +§].
Solving for y we obtain
7 = (I + HGK)™ [Hf + HGKF — HGK} + HGKL + HGE] .

For the controller u,

u =K(F —§ +0)
=KF -y—rt+10),
substituting y = Hf + HGu + HGE, we get
u = K(F — Hf — HGu - HGS —% + 0},
solving for u yields

u = (I + KHG)"'K(F — Hf — f —HGE + i) .

The derivative of the output vector with noise is
7 = Hf + HGu + HGE ,
using u = K(F — S' + ) we obtain
§ =Hf + HGK(F ~§ + i) + HGE,
solving for §' yields
7 = (1 + HGK)~!(Hf + HGKF + HGE + HGKJ) .

In the limit the equations (5.14), (5.15), and (5.18) become
y=F—~r+y,
u = (HG)™![F — Hf —  — HGE + i/,

(i) § —0=FF.).

(5.14)

(5.15)

(5.16)

In part (i) above we can see that for an actual system, in the limiting case, the noise r(t)
is fully "repeated” in the output. As for the controller u, apart from the “basic” control
law u = (HG)"}(F — Hf — HGS + [), we have an additional component due to the




additive noise.

8. CONCLUDING REMARKS

In this paper, we discussed the robustness of high-gain output feedback control
designs for nonlinear time-varying uncertain models to unmodeled high-frequency
dynamics. Our approach followed on the papers by Vostrikov et al. [24], and Utkin [2].

Two different control strategies were analyzed. The first one was concerned with
the output regulation. To facilitate the synthesis we utilized a difeomorphic state vari-
able transformation of the given model into the regular form. This regular form was
found very useful in the design. However the problem of constructing a transformation
which brings the system into this form requires further investigation.

The aim of the second output feedback control design was to ensure the tr:. kirg
by the output of a given reference signal. The proposed control algorithm involved the
output vector derivative. Following Vostrikov et al. [24], we suggested a sensor estimat-
ing the output derivative. One may argue that using differentiating flters is impracti-
cal. However one has to recognize that the essential information about a given process
has significant spectral components only at low frequencies {13 p. 227]. Hence if we use
an approximate differentiator which is sufficiently fast then the system will hardly feel
the difference between the ideal and approximate differentiators. Thus, this approxi-
mate differentiator acts as an ideal one and its gain levels off or decreases at higher fre-
quencies. In this paper we attempted to prove that the approximate differentiater is a
viable tool in the synthesis of control algorithms.
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CONTROL OF UNCERTAIN DYNAMICAL SYSTEMS :
SIMULTANEOUS STABILIZATION PROBLEMS

Bijoy K. GHOSH
Washington University
Saint-Louis, Missouri 63130, U.S.A.

In the last decade, significant progress have been witnessed in the
design of a robust compensator for a family of mulei input multi output
systems. The main objective is to construct a dynamic compensator which
simultaneously stabilizes a family of plants and satisfies various other
design restrictions. The nocivatigh is to extend various classically well-
known compensator design methods for a single plant to a family of plants.
Such a family of plants may occur as a result of parameter uncertainty or
parameter variation in the plants and the goal is to construct a compensator
which is insensitive to these parametric changes.

To begin with, we consider the “gimultaneous stabilfization problem"
described as follows:

Given a r tuple G ..G: of pxm proper transfer functions, does there

10
exist a compensator i(s) such that the closed loop systems cl[I +

-1

Kcll pooe

» G I1 + xcrl‘1 are internally stable?

This problem arises in reliable system design where GZ""' Gr represent a
plant G1 operating in various modes of failure and K(s) is a non-switching

stabilizing compensator. It also arises in the stability analysis and
design of a plant which can be switched into various operating modes. It
has been shown in {1] that

The integer max{m,p) is the critical number of plants below which the
simultaneous stabilization problem 1is solvable almost slways i.e.
generically (in a suitable topology) by a compensator of McMillan degree 9

where q, 1is the smallest integer satisfying

T
qqp(max(a,p) + 1-1] 2 121n1 -max(m,p) (69
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In the above formula, ny is the McMillan degree of the plant Gi for

{-1,...,r respsctively. In fact, if min(m,p) = 1 than the formula (1) also
computes the minimum order of the generically stabilizing compensator. It
may be remarked that the minimum order compensator problem is a classically

unsolved problem and in {1] the problem is solved for the special case

min{m,p) = 1.

However, beyond saying that the simultaneous stabilization problem is
solvable for certain classes, it is of great interest to parameterize all
those caseas where the problem is indeed solvable., Moreover, for ease of
computation, such a parameterizatioun has to be explicit. This question is

parameterizing the set of r tuples of plants (G;,...,G;) is addressed in

[2] and one of his main results is a considerable conceptual breakthrough,
since to check simultaneous stabilizability using this result one only needs
to know vwhich path ccmponent (Gl""' Gr) lies in; i.e. the problem is

reduced to the problem of analyzing big pieces of the space of r tuples of
systems rather than individual r-tuples. Similar results on simultaneous
stabilization and pole assignment for a parameterized family of plants by a
parameterized family of compensators i{s also obtained by Dr. Ghosh and is
reported in {2]. To my knowledge, use of semialgebraic geometric methods
for the purpose of parameterizing stabilizable or unstabilizable path
components has been done for the first time {n [2].

Considering more than max(m,p) plants for the purpose of simultaneous
stabilizaction (is quite a reasonable objective in robust system design), but
unfortunately in particular in (3] it is shown that, "Pairs of
simultanecusly stabilizable single input single output plants of bounded
McMillan degree may not have simultaneously atabillzing compensators of
apriori{ bounded McMillan degree."

It {s shown by Dr. Ghosh in [3] that there exists & sequence of pairs of
simultaneously stabilizable plants of degree one for which the minimum
degree of the stabilizing compensator is arbitrarily large. A consequence
of the above proposicion {s that a simultaneously stabilizing compensator
cannot be constructed by solving a set of simultaneous equatiois or
inequalities in the coefficients of a parameterized family of compensators
of a given McMillan degree. Stated differently, if r > max(m,p), the




classically known algebraic and semialgebraic geometric methods are
inapplicable since the compensator space is not fin‘te dimensional and in
particular, any numerical computation of the associated compensator needs to
use & more appropriate transcendental method proposed by Dr. Ghosh in [4].
Also {n (4] a new ’partial pole placement’ problem is proposed which arises
from a more practical design requirement to place an arbitrary number of
self conjugate poles in the closed loop while restricting the remaining
poles in the region of stability. The following result is shown:

The problem of simultaneously stabilizing three single input single
ocutput plants chosen generically {s equivalent to the problem of partially
pole placing one single input single ocutput plant by a stable minimum phase
compensator.

Use and application of a stable, minimum phase compensator is introduced in
{4] for the first time. Furthermorea folklore example

s-7 s-2 g-6
s-4.6 25-2.6 4.88-24.6

of a triplet of sipultaneously unstabilizable plants that are stabilizable

in pairs is constructed by Dr. Ghosh [4]. These results to multi{ input
multi output problems are further generalized in (4] to show that

*1f r min(m,p) < m+p, the simultaneous partial pole assignment problem
may be analyzed via interpolation methods and one obtains s semialgebraic
parameterization of the partially pole assignable r-tuples of plants. If r
min(m,p) > msp, the simultaneous partial pole assignment problem is to be
analyzed via transcendental methods introduced in {4]."

The above result, therefore, characterizes the "degree of difficulty® and in
particular asserts the existence of certain cases (say for example me=p, r2l)
when interpolation methods are inapplicable in the simultaneous
stabilization problem.

We have sean so far that transcendental methods are useful when the
degree of the compensators under consideration {s not apriori bounded.
Frequently in system identification and control, it is of interest to study
s fanily of plants for which the McMillan degree is not fixed. In
particular the degree may degenerate to a lower value. Thus rather than

o marma non
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fixing the McMillan degrese of a plant, it is useful to parameterize plants
of McMillan degree s n for some n. We ,therefore, pose the following
question --

"Parameterize the set nn of planta of degree s n (possibly as a
semialgebraic subset of an algebraic set) such that savery p in nn has an
open neighborhood N(p) of p in On such that N(p) 1is simultaneously

stabilizable by a compensator of degree x q for some (."

Note that this question poses robust stabilization as a parameterization
problem. In {5] an explicit parameterization of nn is obtained as a

subset of IRIPZ™I

particular we show that --

for the single input single output systems and in

"Assume m=p=l, then nn is a semialgedbraic, open, connected and dense

subset of IRIPzn*l.“

More surprisingly we show that

"nn is a trivial vector bundle over a circle. In particular nn is

diffeomorphic to S¥ x IRZD.«

The space On has been parameterized for a multi input multi output

plant in [6) as a vector bundle over a Grassmanian, a well known object in
algebraic geometry. We argue that ﬂn and not rat n (the space of

strictly proper single input single output transfer functions of a given

n
degree) or ¥ (the space of pxa transfer functions of degree n) (s a
n,p

more natural space for system identification and control. Various
properties of this space has been reported in [8).
The geometry of nn is useful in the study of a structured family of

plants vherein the degree is apriori bounded. In practice, however, one is
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also interested in the study of a family of plants possibly with some
unmodelled dynamics. For example, under the presence of a high frequency
*parasitics” it i{s unreasonable to assume that the McMillan degree of a
family of plants is bounded by n. In [6] we, therefore, construct the
space 0_ as a direct limit of the spaces @ ecn,c... where 0O_ is a

subspace of IR”. Of course two points in Q_ can model the same dynamical

system and one therefore considers the quotient space ﬁn vhere two points

in 1, are equivalent if they correspond to the same dynamical system.
Various properties of ﬁ_ are being studied. In particular, we show that

in ﬁ. there exists arbitrary small open neighborhood N with the

following property--

There exists s sequence eo, 51,... of plants in N such that the

minimun degree of the stabilizing dynamic compensator for the plants
corresponding to eo, 61.... increases arbitrarily.

This fact in particular implies that

*There exists p € I¥° such that every open neighborhood N of p in
ﬁu cannot be stabilized even by an adaptive controller of arbitrary large

degree q."

Thus we obtain a major limitation of the adaptive controllers that are
currently of interest in system theory, viz. open neighborhoods of points in

ﬁ_ that cannot be robustly stabilizable even by an adaptive controller.

The structure of ﬂ- also enables us to define a hybrid family of plants,

(i.e. & family of plants with structured and unstructured uncertainty). In
particular in (6] we characterize (for the first time in the literature)
hybrid families of plants that can be stabilized simultaneously by an
adaptive controller.
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The proposed hybrid parameterization has many advantages over the
currently existing graph parameterization due to Vidyasagar. In fact the
hybrid parameterization is graded by the degree of the dynamical systems and
each one of the graded space is diffeomorphic to an Euclidean space if the
plant is strictly proper. The Euclidean structure is of particular
importance in system {dentification. Furthermors, the sequence of plants
for example

n
sn(s) - :;;T-i-:z:
n+2

converges to i as n~= in the graph-topology. Thus in graph

parameterization, arbitrary close to a plant of a given degree there exists
plants of arbitrary large degree which is clearly a deficiency from the
point of view of robustness and obtaining an apriori bound on the complexity
of the compensators. Hybrid parameterization does not suffer from these
disadvantages and therefore appears to be a good parameterization for system
identification and adaptive control,
In {7] we study the problem of simultaneous stabilization of a family

F of plants described as follows --

n-1 n-1
F& (g(): g(s) = [ % alsi] /7 13 bis1 + "],
i=0 i=0

aclay, B,), byelvy, §;)  as By
7 E4 61, i=0,..., n-1, deg g(s) = n}

We prove the following rather surprising result

"A necessary and sufficient condition that every plant in F s
simultansously stabilizable by s feedback gain k 1s that eight plants in
F (suitably chosen) is simultaneously stabilizable by a feesdback gain k."

Ve find the above result quite surprising. Indeed it asserts the existence
of a suitable family of uncountably many plants, stabilizability of which
can be asserted via the simultaneous stabilizacion problem of a finite
number of plants. This we consider is & major conceptual breakthrough.

The main idea of the preceding paragraph can be generalized to include
dynamic compensation as well. In fact one can obtain a sufficient condition

ST
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which can be made asymptotically necessary by increasing the computational
complexity of the algorithm. Roughly speaking one therefors concludes the
existence of a computational technique to construct a robust compensator
vwhich can be asymptotically improved by considering increased computational
load. This in my view is a computational breakthrough and in particular
such a sequence of algorithms did not exist in the literature previously.

For the purpose of constructing a compensator with an apriori bounded
McMillan degree it is important to consider to following problem.

"Given a family F of linear dynamical systems that can be stabilized
simultanecusly by a fixed non-switching compensator. Does there exist an
apriori bound on the degree of the compeusstor which simultanecusly
stabilizes F."

In general the above problem is unsolved. However for a 1 parameter
family of plant we have a surprising result: Lat xl(s)/yl(l) and

xz(s)/yz(s) be a pair of proper but not strictly proper plants. Consider a

1 parameter family F of plants described as follows
F = (gy(8): g,(s) = [Ax) + (1-2)x,]/[Ay; + (1-Q)y,]
A € [0, 1], deg g,(s) s n V).
Let a,, ..., a, denote the zeros of XYy = X5¥q in the open left half of
the complex plane. Let
bj - xz/xl(ai) if the multiplicity of 8, as a common zero of Xq. Xy

is < multiplicity of 8 ‘as a common zero of Y1 ¥p

- y2/y1(‘1) othervise.

for 1=1, ..., t. Let s = (8;-1)/(a;+1) and z = (181-1)/(151-1) vhare

the branch cut for the square root is taken to be the non-positive real
axis. Furthermore let k be the largest real number such that

(- 22,0700 - 5805 4

is non-negative definite. The main result is now described as follows
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"The following three statements are equivalent.

1. F {is simultanecusly stabilizable by some dynamic compensator.

2. F 1is simultaneously satabilizable by some dynamic compensator of
degree < 3n-2.

3. k>1

We find that the above result is quite surprising. In fact, where as
the conjecture - "pairs of simultaneoulsy stabilizable plants of bounded
McMillan degree have simultaneously stabilizing compensators of bounded
McMillan degree" - is false, the conjecture that "simultaneously
stabilizable linesr l-parameter family of plants of bounded McMillan degree
have simultaneously stabilizing compensators of bounded McMillan degree" is
indeed true. Of course it {s unknown if similar results would continue to
be true for multiparameter family of plants. It appears however, in view of
the above result, that the problem of stabilizing a discrete r-tuple of
plants (in particular a pair of plants) simultaneously is a much harder
problem to solve compared to simultaneously stabilizing a continuocus family
of plants. This fact indeed appears to be quite contrary to our original
expectation - in fact the problem of simultaneous stabilization of a pair of
plants was originally used with an idea of simplifying the robust
stabilization probiem of a family of plants.

In order to arbitrary tune the closed loop frequencies of a plant, it
is necessary to consider the simultaneoug pole assignment problem. In [6]
we analyze the pole placement problem as an intersection problem and apply
Schubert enumerative calculus to compute (under appropriate cases) the
number of complex dynamic compensators that would place the closed loop
poles of a set of r-plants in a given set of self-conjugate complex numbers.
We compactify the space of compensators and define a set of points known as
‘base locus' and a set of points known as ‘critical points.’ Roughly
speaking, we assert in [6] that a compensator has to avoid the base locus
and the critical points for otherwise the closed loop response of the
control system would either be sensitive or would fail to be robust with
respect to changes in the parameters. An explicit parameterization of these
points also open up some new restrictions {n the compensator design problem
previously unknown i{n system theory.

R
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To summarize, we maintain that the use of semialgebraic geometric,

algebraic geometric and transcendental methods are three distinct
foundational techniques that have bsen applied in robust system design.
Extensions of these methods to parameterization, design, identification
problems, and adaptive control would be useful and are currently being
explored. These techniques are also being extended to nonlinear and time

varying systems.
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ROBUST MODEL TRACKING FOR A CLASS OF SINGULARLY PERTURBED
NONLINEAR SYSTEMS VIA COMPOSITE CONTROL

F. Garofalo and L. Glielmo

Dipartimento di Informatica e Sistemistica
Universita’ degli Studi di Napoli

1, Introduction

Typical problems encountered in the design cf a control system are the
presence of parameter uncertainties and the coexistence of slow and
fast dynamics in the plant to be controlled. When the uncertainties are
described assigning their range of variation and these variations
belongs to appropriate subspaces, the so called deterministic control
of uncertain systems (Leitmann, 1980; Corless-Leitmann, 1981)
represents an useful tool for the design of controllers capable of
guaranteeing certain performance no matter what the realization of the
uncertainties is. The rigorous treatment of systems with two-time scale
behavior can be done utilizing singular perturbation theory (Kokotovic
et al.; 1986). The simultaneous use of these two methods for the
control of uncertain two-time scale systems has recently received some
attention (see Leitmann (this volume) and its references).

In this paper we use a composite control technique in conjunction with
the robust design of controllers for uncertain systems to synthesize a
nonlinear controller which forces a class of two-time scale nonlinear
system to follow a two-time scale linear reference model. The
controllers that are used in the two phases of the design are obtained
via a constructive use of Lyapunov functions (Kalman-Bertram, 1960).
The same Lyapunov functions are successively combined (as suggested by
Saberi-Khalil, 1984) for obcaining the proof of ultimate boundedness of

the model tracking error.
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2. Problem Statement

We consider a two-time scale nonlinear system described by the

following equations

R(E) ~ A (X(E))X(E)+A(X(£))Z(E)+B, (x(£))u(t)+a (X(E));

(2.1la)
pz(t) = AZl(x(c))x(t)+A22(x(t))z(t)+BZ(x(t))u(t)+az(x(C));

(2.1b)
x(to) - X (2.1c)
z(to) - zo; (2.1d)

where x(t)eRn s z(t)eRm represent the state of the system, u(t)eR? is
the control input, al(x(c)) and az(x(t)) are nonlinear vectors, ue(0,=)
is the singular perturbation parameter, and Au('> and BL(-), i=1,2,
j=1,2 are matrices of appropriate dimensions.

The reférence model specifying the state behavior expected from the

controlled plant is described by the linear, time-invariant system

feo) = A R+ 2o i) (2.2a)
shee) - ﬁnQ(c)Jfﬁzzé(:nﬁZG(c); (2.2b)
Q(:o) - QO; (2.2¢)
A A .

2(e) = 2 (2.2¢)

where R(t)eR” and 2(t)eR” is the state -and G(t)eR® is a reference

signal.

The following assumptions define the class of nonlinear plants

considered here.

Assumption 1. There exist full rank matrices B , i=1,2 such that, for
i

all xeR", the following decomposition holds:

o
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r - -
L B‘(x) - B‘ + Biﬁ‘(x), i=1,2,
- a (x) = Bd (x), i=1,2 ,
]
’ where Ex(') (resp. dt(-)) is a matrix (resp. a vector) of appropriate
»
Y dimensions, continuously differentiable with respect to x.
3
3
The relationship between the system (2.1) and the reference model
ad represented by equations (2.2) 1is precised by the following

assumptions.

Assumption 2. For all xeR" the following equalities hold

A -
ij(x)~A‘J - Bictl(x) . i,j=-1,2

B =BC |, i=1,2

1 14

where Cu(x) are continuously differentiable matrices.

i Moreover, the singularly perturbed model is assumed in standard form,

i.e.,

Assumption 3. Matrix azz is full rank.

Defining

3 N (2.3)

A
A A - A A
0 11 12 22 21

we hypothesize that
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Assumption 4. The pairs (ﬁo.il) and (ﬁzz'gz) are controllable.

Assumption 5. The matrices A“(x). Bz(x)’ a‘(x), for i=1,2 and j=1,2,

are norm bounded in R®. In particular we define
k= sup [lc (0.
i3 xER° i)
w = Sup, e, ol

v = sup_ Hdl(x)ﬂ,
xER

Moreover £ < 1, i=1,2.
Finally we make the following

Assumption 6. The input reference signals G(‘) are such that there

exist finite positive constants

ko= swp 8o,
te(t =)
]
k, = suwp |G (o],
fotelt @) f

Q

where G’(t) and Gt(t) represent the slow and the fast time scale
components of G(t) and G(t)eﬁ'(t)-fﬁ!(t). Corresponding to these
signals, there exists a positive constant p such that, for pue(0,u) the
state variables of the reference model are uniformly bounded by known

constants:

ky =  swp  [Reo)],
te[to,w)

ue(0,n)
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ky = sup  |2(o)].
ce(co,a)

pe(0, 1)

Remark 1. Assumption 1 is the so called "matching assumption” and
defines the manner in which the nonlinearities enter the plant. The
equalities in Assumption 1 and 2 are the so called "model matching
conditions" and determine the class of model that can be tracked by the

nonlinear system under consideration.

Remark 2. System (2.1) belongs to the class of singularly perturbed
nonlinear system with slow nonlinearities considered by Chow-Kokotovic
(1981). Note, however, that for design purposes, it is not strictly
necessary to know the nonlinearities affecting the system but only a
nominal linear behavior and an evaluation of the maximum deviation from
this behavior as precised in Assumption 5. The composite control design
for the practical stabilization of a similar class of plants is also

considered by Garofalo (to appear).

The objective of the control is to synthesize a feedback control
function guaranteeing that the plant tracks the model to within a
bounded neighbourhood of the zero state tracking ertor.l

The procedure we propose for the synthesis of the controller is based
on the separate design of controllers guaranteeing tracking of the
slow approximation and of the the boundary layer approximation of the
reference model. On the basis of these control laws the composite
control is constructed which guarantees tracking of the model for

sufficiently small values of the singular perturbation parameter 4.

lA formal definicion can be found in Corless (1987) or in Appendix 1.

T
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3. Slow Time Scale Control

Following Kokotovic et al. (1986) the slow apﬁroximacion of the
behavior of the reference model is obtained considering u=~0 in (2.2b)
and substituting the resulting value for wvariable z in (2.2a),

obtaining
2y =R8% (+828 (v, (3.1)
E [ 3 o s

where
£ 88 .4 A8, (3.2)
Q 1 12 22 2

and the subscript s stands for slow time-scale approximation.

In order to design the controller for tracking the slow component
(3.1) of the reference model, we need an approximation of system (2.1)
in the slow time scale. To this end, we assume that z variable has a
nominal behavior 2 which is exactly the one that 2 variable takes in

the reference model, that is
. A A A
pz () = Anx(:)+Azzzn(c)+ﬁzu(:). (3.3

Correspondingly, the approximate model of slow dynamics neglects the

nominal fast transients, 1.e.,2
xl = An(x')x.+An(x.)zn+Bl(x.)u.+a1(x.) ’ (3.‘0&)
0-A x+A z+84, (3.4b)

21s 22 n 2s

ZSomecimcs, when no confusion is likely to occur, we delete the time

argument of the functions.
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which gives

- A Ay A AlLA A

z - I‘(x.,u') - 'Azz(Azzx- + ﬁzu‘) (3.5a)
and

x = A (x)x +B (x)u-A_(x)A 88 va (x) (3.5b)

s 0 s s 18" s 128722728 178 .
with

A A~1A
Bg(x) = A (x) - A (XDA A, (3.8

Define now the slow time scale tracking error as

R 3.7

§

On the basis of (3.1), (3.2), (3.5) and (3.6) the slow time scale

tracking error dynamics can be written as
6' - F.fs + B1u- + BlEl(x.)u. + Bx[l-ll(x')ﬁ-l(.]e' +
+ B [H (x )% -H_(x )8 +d_(x)) (3.8)
1" 1 s x- 2 xl s 1 s ' :

vhere F ¢ ﬁo-EzK‘, K.ekm is a matrix which makes matrix F,
asymptotically stable with specified eigenvalues (which is always
possible by virtue of Assumption 4), and

124

A=1A
Hx(x-) [Cn(x’)-Cn(x.)AuAu] . (3.%a)

1>

A-1,
H,(x ) (exwu(x.muﬁz] . (3.9b)

From the knowledge of matrices Cu(x) and Cu(x) (given in
Assumption 2), and matrices ﬁzz’ ﬁ and ﬁz' we can compute the

21
following constants

© e v

oo o uu il
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A 3
kE‘ - ::En ||H1(x)+l(‘||. (3.10a)

Ky & swp 1 @R R 08 0l (3.10b)
1 xR
te(t )

40, 1)

Consider now the nonlinear feedback control law

(Ambrosino-Celentano-Garofalo, 1985; Garofalo-Glielmo, to appear)
(6) & B¢ (3.11a)
ps 3 7:1 s7s’ :
where P’ is the solution of the Lyapunov equation
F'P +PF = -Q, Q positive definite, (3.11b)
s 8 s s s t

and

Y 1:1+112“E|"

v, = ,eDh (3.11¢)

T F ' s
I8 6 i + 6,

This feedback control has the tracking capabilities described in the
next theorem.

Theorem 1. Consider the slow approximation (3.4) of system (2.1)
subject to the feedback control law in (3.11). If constants T, i=1,2,
in (3.1lc) are chosen so as to satisfy

1 l-x ' (3.12a)

3Noc.lce that the suprema can always be replaced by upper bounds.
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3
k
el
1= 1'”1 . (3.12b)
then system (3.5b) tracks the slow approximation (3.1) of the reference
model (2.2) to within a spherical neighbourhood of 6'-0 whose radius
can be made arbitrarily small by a suitable selections of constants
v, i=1,2, and/or of constant 6’ in (3.11lc).
Proof. The proof of the theorem can be found in Appendix 2.
4. Fast Time Scale Control
The boundary layer approximation of the reference model (2.2) is given
by (Kokotovic et al., 1986)
sz AA 84
@ - Azzzt + 2 %.1)
where r=t/u, Gz represents the fast component of the reference signal,
and
ABA SAA A ALA AAA
z,=z- F(x.u.) -z + Azz(Az1x+ﬁzua)‘ (46.2)
The fast time scale approximation of system (2.1) is obtained
substituting the slow control expression (3.1lla) in equation (2.1b) and
approximating variable x'(c) by x(t) and Q.(t) by Q(t). So doing we
obtain
: =T
Bz = A (X)X-7 B (X)BPE + A, (0)z + B (x)u+a (X), (4.3)
where u, is the fast component of the control law and § £ x-% !
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Defining

A
zZ =
4

A
u

N
A A-1A

- - +

2 l‘(x.u') z + A (Anx ﬁz .

), (4.4)

the boundary layer model of the system can be written as

& A_(x)z +B B_(x)B'P
3 = Az B (X)u B, R
- — A —
+Bzc1(x)X+Bsz(x)“,+Bzdz(x) ' (4.5)
with
A A-1A .
G1(x) = [Cn(x) ) sz(x)AzzAn]’ (4.6a)
A A-1
G,(x) = '[ez+czz(x)Azzﬁz]' (4.6b)

The fast time scale tracking error can be defined as
, 4.7)

and, on the basis of (4.1) and (4.5), its dynamics can be written as

a¢
¢ ~ - =
Pl thi + Bzu: + BzEz(x)u! + Bz[sz(x) + Kz]§t+
= =T
+ Bz[c1(x) - ‘7I(Ip + Ez(x))BlP.]f

+ Ez[Gl(x)Q + Cu(x)'z\: + cz(x)ﬁ_ - zG( + 4,00,
(4.8)

vhere F, 4 azz’izkz and K€" is a matrix vhich makes matrix F,

asymptotically stable with specified eigenvalues (see Assumption 4).

On the basis of Assumptions 1, 2, 5 and 6, we can evaluate the finite
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constants
A A A A A
kdz = sup_ HGl(x)x + G (X)Z, + G (x)u, - 68, + dz(x)ﬂ,
te[toie)
pe(0,u)
(4.9a)
ke 8 o fe,, 0 + &, (4.9b)
xeR”
A =T
k€ 2 :Zg“ HGl(x)- 1_(1:, + Ez(x))BlP‘", (4.9¢)

In the fast time scale the variables x and £ can be considered
constants, and the fast control law we propose for making the boundary
layer system track the boundary layer reference model has the form

A =1
Pt(ft) - '7szsz:' (4.10a)
where Pz is the solution of the Lyapunov equation

T

FzP! + Pth - -Qt. Qt positive definite, (4.10b)

and

v o~ el & 1ot 18 A+, Ml
1 4 £ gt

§ >0. (4.10¢)

I8%e ¢

AR

We can state the following
Theorem 2. Consider the boundary layer approximation (4.5) of system

(2.1) subject to the feedback control law (4.1U). If constants Ty

i=1,...,3 are chosen so as to satisfy

e — ... M.

R L

T T TR e s
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“ 2 T (4.11a)
1

€@ l-x ' (4.11b)

o 1_"1 ) (4.11c)

then system (4.5) tracks the boundary layer reference model (4.1) to
within a spherical neigbourhood of ;:-0 whose radius can be made
arbitrarily small by a suitable selection of constants Tyt i=l,...,3
and/or constant 6! in (4.10¢).

Proof. The proof can be found in Appendix 2.

5. Guaranteed Performance of the Composite Control

The composite control is obtained as the sum of the slow and the fast

control law with wvariable ;‘t replaced by ¢- [I‘(x u)+l‘(x u)] -0 +

A zﬁne, and E‘ by its approximation £, obtaining

-1A
u -18 Pf - 1thP‘f - 1‘321’! uAnf, (5.1)

vhere ¢ s (z~Q).

For this control law we can establish the following theorem.

Theorem 3. Consider system (2.1) subject to the control law (5.1). The
closed loop system tracks the reference model to within a spherical
neighbourhood of the zero stace tracking errnr, if the following
conditions are satisfied.

1) The constant T, satisfies the inequality:

e e s} Mg o ekt it

L
"R
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k‘; .

T z 1 - x ’ (5.2)
with
ke & sup [HOOR - 08 + 4 (0, (5.3)
1 XER
te[co.o)
pe(0,5)

and the constant 1,2 satisfies the inequality (3.12b);

ii) the constants Yoy j=1,2,3 in the control law (5.1) are
chosen so as to satisfy inequalities (4.11);
iii{) constant Yyqr besides satisfying (4.11lc), satisfies
[(*]

A
min s
Tey < 2[e | supn[[BI(x)ﬂ (5.4)
x€R

iv) the singular perturbation parameter is such that 0<u<u'

where p'is a constant whose value can be a priori computed.

Proof. The proof of Theorem 3 and the expression for the upper bound of
paramerer s are given in Appendix 3.

6. Conclusions

The robust model tracking control presented here is designed using the
approach of deterministic control of uncertain systems, together with
the composite control technique developed for singularly perturbed
systems. This enables the designer to guarantee the model following
within a spherical neighbourhood of the zero error, in the presence of
"slow" nonlinearities. It must be pointed out that this technique does

oo o s A v B A
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not require the knowledge of the form of the nonlinearities, but just
the possible range of their variatioms.

Appendix 1

Some definitions and a useful lemma.
Consider the equation of a model tracking error dynamics in the form

€ =ole,t) , e(e)=e, (Al.1)

where teR, e¢eR®, and ¢:R°xR-R® We say that the system tracks the
reference model to within a spherical neighbourhood of radius R of e=0
(indicated with B(R)) iff the following properties are satisfied:

i) Existence of the solution. Given any (eo.co)ek"xk there exists a
solution e(-):[to,:l)-'k’, t1>co of (Al.l).

i{i) Indefinite extension of solution. Every solution e(~):[t:°,c1)~k’
of (Al.1l) has an extension over [to,-).
i1i) Global uniform boundedness. Given any bound rek’, there exists a
bound d(r)ek’ such that if ¢(~):[t°.t:1)-blp is a solution of (Al.l) with
||¢o||sr. then Je(t)}=d(r) for all tefc,.t).

iv) Locel boundedness wicthin B(R). There exists a spherical
neighbourhood B(Ro) of ¢=0 such that if ¢(-):[c°,t1)-'k’ is a solution
of (Al.1l) with eoeB(Ro) then e(t)eB(R) for all te[co'cx)'

v) Global uniform ultimate boundedness within B(R). Given any bound
teR’ there exists T(r)eR. such that if e(-):[tn,tl)*l’ is a solution of
(A1.1) with Je [sr, then ¢(t)eB(R) for all t2t +T(r).

The listed properties of che solutionm ¢(v):[c°.t1)~l’ can be stated
with the aid of the following lemma (for the proof see
Corless-Leitmann, 1981).

rN—
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Lemma. Given system (Al.l) suppose @(0,t)=0 for all teR. If there
exists a ¢' function L defined on Jelzs and teR, and 1f there exist
class KR functions X, and X, and a class K function X, such that

x,(lehsLee, eysx, el . (AL.2a)
gEL(e,t)+VZL(¢,t) < -x,(lléil)- (Al.2b)

then for all |elzs and teR the system tracks the reference model to
within any spherical neighbourhood B(R) of ¢=0 with §>x;1°x2(8)-

Appendix 2

Proofs of Theorems I and 2.
Consider as Lyapunov function candidate for system (3.8) with the

feedback control (3.11) the following

vee) S elr e . ' (A2.1)

Evaluating the derivative along the solutions of the closed loop system
by virtue of (3.9), (3.10), (3.11), (3.12) and Assumption 5, we have

S .2 ) b S 4
/2)veE) = -(1/2)§ Q€ -7 §PBBPE

° 1u€:Pl§lEI(x-)i:Plél + €:Pa-ilﬂl(xl)xl

Te B A b g b
- €IPIBIH2(xI)uI M f.P.Dldl(X.) + f.P.D‘K'f

5 -(/DEQ,E - 7 IERE IT-x) + IBIR € 1IN x4k 1€ ]

* lizplen' ll’ll(x')a'-ﬂz(x‘) \Al.-O-dl(x.) l

S U Ny

1%k,

P v

-~

‘OO?—-O-—v»'

-

-
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s -(U/2€Q6, (v +le DABRED - 5 )Lk

+ IB2 ¢ n (x )+& JIj¢ |

* ||§:P’f"‘ "Hl(xl)al.ﬂz(xl)al+dl(xl) "

S -(L/2EQE, + Kk, 5, + k. 6 1€,
1 s
s (W -v e 1% v el + v, (a2.2)

where v& 1 (@), v. & 2

A
1 @in 8 2 f 6:' and VS = de 61'

a 1

At this stage the application of the lemma reported in Appendix 1

proves the statement of the Theorem 1.

The proof of Theorem 2 proceeds exactly in the same way. We define as
Lyapunov candidate for system (4.5) subject to the feedback control
(4.10)

4 T
W) SRS, (a2.3)
The derivative along the solutions of the closed loop system,
considering x constant in the fast time scale, can be proved to satisfy
the following inequality

LI A [ A | I (A2.4)

A A A, " A
with w= 2 (Q), w= 25k, and wou! + wilef = 26tkd2+26!k€||£||.

4
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Appendix 3

Proof of Theorem 3.

The proof of the theorem is based on the combined use of two Lyapunov
functions, one for each component of the model reference tracking
error.

For the first component we can write

€ = A (Ox+A (x)z-v B (0BP §-7 8 (X)B RS

A A A
+ 1B (x)B P! > n£+a (x) A Alzz-ﬁlu

- — - =
= (Fg-yBBP -y EE (OB 6B [H (x)4K |¢+
+§1[H1(x)Q-H (x)0+d (01 -3 (x)E”r [;+ﬁ;;ﬁne]

+A, (x)[f+A €]+B G (x)[z P(x @) (A3.1)

The terms within braces are exactly the same as in the slow model
(3.8), taking apart the substitution of Q' and G' with % and {. on the
basis of Assumptions 5 and 6, and recalling (4.10c), it is possible to
find constants a, i=1,3 and a, i~1l,3 such that

l

I -1,8, (OB (4R R

3
w0 [+ R €1-Bc corz-rR.b )

s a f¢l+a, fe+AA tl+a,, (A3.2a)

22 21

; = Fy

el = Ja, 00x+A ()z-7 B (\)BP §-v,B (X)B P ¢
-1 (x)B r A A f+a (x)- A ﬁné‘-ﬁxﬁu

s ajféf+a; lc+R)1A Ell+a;. (A3.2b)

2221
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For the second component of the model tracking error we simply rewrite

equation (4.8) as

W = (F,1, 8,082 1 (HAR 6

+B [C (x)+l< ](;'+A &)

22 21
+ Ez[cz(")"’.(I,"Ez("))E:P.K
+ Ez[c1(x):’é+cu(x)Q‘wz(x)al-ez\’}t«»dzm1. (a3.3)
Consider the function

w0 2172 (€+A a6 P (§+A N (A3.4)

and evaluate the derivative along the solutions of the closed loop
tracking error system (A3.1), (A3.3). One obtains

wE.n) = R AR &+ AR g

A le+AR

SII 22 2

elta;lelvalcsh R, elsa; )

222 21

S A [ ] R T e

1

o)

.(— - a )u§+Azz nfﬂz + a ﬂ{-&-ﬁ;:ﬁnflﬂfﬂ

W
+(a +—)||;+A1;ﬁn£u P —ueﬂ (A3.5)

Consider now the function
V(o) 2172 €' g, (A3.6)

and evaluate the time derivative along the solutions of the closed loop

T T WUSP
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tracking error system (A3.1), (A3.3). In view of (A3.2a), and
conditions (5.2) and (5.3), we have

V(e) = v Jel v fehev s2le Hleh e felva Lo +ATR l+a,)

£ - -2a o IDNeI® + v fef + b lelfc+R R, el + v,

(A3.7)

We can choose as Lyapunov candidate for the closed loop tracking error

system (A3.1), (A3.3) the following

T
L) 8 [ ¢ ] P(c)[ ¢ ] (43.8)
)= A-1A ALA LI :
§+A22A21€ g+A22A21€
where
a [(Leede 0
P(c) S : , Oscsl. (A3.9)
0 cP

In view of (A3.5) and (A3.7) the time derivative of (A3.8) along the

solutions of the closed loop tracking error system satisfies

fee.or [ lel B . lel
N < - -3
I W 3| Be+h 1R el

22721 22721
. [l 3

+ m'(c) A-1A + m, (A3.10)

le+a? R, &l
where
(l-e)(v -2a [P | -1/2(ca +(1l-c)b
M(e) 4 [ 1 Tl w’ 3, (A3.1l1la)
-1/2((:!1'*- (l-c)ba c(;x- 'z)
/

e )

e o
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a w; wz
m(e) = [(l-c)b;c#— c(a;;—)]. (A3.11b)
and
wl
(A3.1lc)

- A 3
m =~ va(l-c) + c“ .

v
1 . .
Provided that °1<7HF:H (which is guaranteed by condition (5.4)), the

upper bound B, of parameter u which guarantees the definite positivity
of matrix M(c) is given by (see Saberi-Kralil, 1984)

(v, ~2a (|p_ ||\w1 33.12)
po=- A3,
» (vl-2cAﬂP.u)a2 +ab

Chosen y. ) min(;,pp). for each 0<p<u' the application of the lemma
contained in Appendix 1 completes the proof of the Theorem.
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Abstract

We define the playability property of a qualitative differential game, and we
characterize it by a regulation map which associates with any playable statea
set of playable controls. We extract among theses playable controls the set
of discriminating and pure controls of one of the players. We characterize
them through an adequate “contingent” Hamilton-Jacobi-Isaacs equation,
and we provide sufficient conditions implying the existence of continuous or
minimal playable, discriminating and pure feedbacks.

Résumé

Nous définissons une propriété de jouabilité de jeux différentiels qualitatifs,
que nous caractérisons i ’aide d’une correspondance de régulation qui as-
socie & tout état jouable un ensemble de contréles jouables. On distingue
parmi ces controles jouables I'ensemble des contréles discriminants et
des contrdles purs d’un des joueurs. Nous caratérisons ces concepts par
une équation d’Hamilton-Jacobi-Isaacs “contingente”, et nous énongons des
conditions suffisantes impliquant ’existence de retroactions jouables, dis-
criminantes et pures.

e C o pme s
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We consider a two-player differential game whose dynamics are described by

a) i) 2() = f(2(e),9(t), u(t)
i) u(t) € U(z(t).y(t)

) i) () = g(z(t),y(t),v(t))
i) ot) € V(z(t),y(t)

The rules of the gameueset-valnedmgpsP:Y«»XandQ:X«»
Y, stating the constraints imposed by one player on the other.
The playability domain of the game K € X x Y is defined by:

K = {(z,y)€XxY | z€ P(y) and ye Q(z) }

(We consider only the time-independent case for the sake of simplicity).
The playability property states that for all initial state (zo,y) € K,
there exists a solution to the differential game which is playable in the sense
that
Ve>0, z(t) € P(y(t)) & y(t) € Q(z(t)

We shall charaterize it by constructing decision rules
(z) V)V) ad Q(zly; ”) & (z! Vs “) ~ W(zv v u)

which involve the contingent derivatives® of the set-valued maps P and Q,
with which we build the regulation map R mapping each (z,y) € X to
the regulation set

R(z,y) = {(w,v)|uv€P(z,y;v) and ve ¥(z,y;u) }

The controls belonging to R(z,y) are called playable.

!We recall that the contingent cone Ti(z) to a subset K at z € K is the closed cone
of elements v satisfying

li.n_laiiu(z +ho,K)/b = 0
The contingent derivative of the set-valued map Q from X to Y at a point (3,y) of its
graph is the closed positively homogenous set-valied map DQ(z,y) from X to Y defined

by
Graph(DQ(z.¥)) = TGraph(qy(s:¥)

or, equivalently, by.
*€DQ(z,9)(v) += Uminf 4 (,‘ QG+ :u') - !) -0

H
i
H
b
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The Playability Theorem states that under technical assumptions, the
playability property holds true if and only if

Y(z,y)€ K, R(z,y) # 0

and that playable selutions to the game are regulated by the regulation
law:

Ve20, u(t) € B((t),y(t)iv(t)) & vlt) € W(z(t),y(t);u(t)
We then introduce the subset

A(z,y;0) == {(ueU(z,y9) | (v, v) € R(z,y) }

of discriminating controls which allow the first player to associate to any
control v € V(z,y) played by the second player at least a control v € U(z,y)
such that the pair (u,v) is playable and the subset

B(z,y) = n A(z,y;v)
vEV (2.9)
of pure controls which allow the first player to find a control u € U(z, y)
such that (u,v) is playable for all v € V'(z,y).
These concepts are particularly relevant for games “against nature® or
“disturbances™ (see [11,12,26,27] and their references).
Before gaing further, it may be useful to relate these concepts to more fa-
miliar ones through an adequate Hamilton-Jacobi-Isaacs’s equation (see([18]).
For that purpose, we characterize the rules P and Q by their indicator
functions Wp and Wq defined respectively by

o = {3 $2558 moten = {2 125

These functions are only lower semicontinuous, but we can still “differ-
entiate” them by taking their contingent epiderivatives®. We set
H(Wp +Wo;z,y;4,v) := Dy(Wp + Wq)(z,y)(/(2,¥:u),9(2, ¥ v))

2The contingent derivative D;W (3) of a extended function W from X to R U {+c0}
at 2 € Dom(W ) is defined by

EpD1W(3) = Tepow)(s,W(s))

or, equivalently, by

DyW(s)(s) = liminf Y_(L";');'ﬂﬂ

Aty v’

1 o i aianlal AN 1
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We shall prove that
~ the game is playable if and only if

i W (z,yiu,0) =
. :;.‘SGV(:,') HWp +Wg;z,y;u,v) = 0

and the regulation map is equal to

R(z’ V) = {(")") € U(z, V) x V(’»V) I
B(Wp +Wq;z,y;4,v) = infuev(sy)v'ev(zy) H(Wp + Wg; z,y; u' ')}

— the first player has a discriminating control if and only if

sy inf H(Wp+Wo;z,yiu,v) = 0
'EV(B.v)“EU(S.U) (Wp QiZ¥i 4, v)

and the feedback map A'is equal to

Alz,yiv) ={veU(z,y) |
H(Wp +Wq;z,y;u,v) = infuev(sy) H(Wp + Wq; z,y;v',v)}
— the first player has a pure control if and only if

inf H(Wp +Wgq;z,¥;4,v) =0
neu(-.v).eﬁg,.) (We +Waiz,yiv. )

and the feedback map B is equal to
B(zl y) ={uveU(z,y) I.“p-el'(-,y) H(Wp + Wqiz,y;u,v)
= infu'eU(s.y) SUPvev(sy) H(Wp + Wqiz,y; v, v)}

We then deal with the main topic of this paper: construct single-valued
playable feedbacks (i, 7)), such that the differential system

{s'(:) F(=(2), 9(8), @(=(), v(t))
ve) = g(=(),v(e), 5(=(t), ¥(t))

has playable solutions for each initial state. By the Playability Theorem,
they must be selections of the regulation map R in the sense that

Y(z,y) € K, (z,y) ~ ((=,v),5(z,y)) € R(z,y)

We shall prove the existence of such continuous single-valued plsyable
feedbacks, as well as more constructive, but discontinuous, playable feed-
backs, such as the feedbacks associating the controls of R(z,y) with mini-
mal norm (the playable slow feedbacks, as in {13,36) ). More generally, we
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shall show the existence of possibly set-valued feedbacks associating with
aay (z,y) € K the set of controls (u,v) € R(z,y) which are solutions to a
(static) optimization problem of the form:

o(z,y:v,v)

(u,v) € R(z,y) | o(z,y;u,9) S u',v'ienl{(m)

or solutions to a noncooperative game of the form:
v(d',v') € R(z,y), a(z,u,v') < 8(z,u,v) < a(z,u',v)

In other words, the players can implement playable solutions to
the differential game by playing for each state (z,y) € K a static
game on the controls of the regulation subset R(z,y).

We also consider the issue of finding discriminating feedbacks, which
are selections of the set-valued map A. We shall provide for instance suffi-
cient conditions implying that for all continuous feedback ¥(z,y) € V(z,y)
played by the second player, the first player can find a feedback (continuous
or of minimal norm) @(z,y) such that the above differential equation has
playable solutions for each initial state.

Finally, we address the question of constructing continuous pure feed-
backs @(z,y) which have the property of yielding playable solutions of the
above differential equation whatever the continuous feedback 4(z,y) played
by the second player®. .

We use for constructing these feedbacks selection theorems (for instance,
Michael’s continuous selection theorem, see [29,30,31]), we need to prove the

$One can also construct “dynamic feedback controls” which are selections (3,¢) of the
contingent derivative of the regulation map .

(5(:, %%, v),8(z,y:, v)) € DR(z, !)(,(3, riv)9(z, 53 v))
With these "dynamic fesdbacks, playsrs irapl t the differential system

(1) J(=(¢), w(t), ¥(2(t), 9(¢))
y'(t) = g(z(t), ¥(¢), W(a(t), o(t))
«'(t)
i)

(), p(e)iw(t), o(2))
é(s(t), p(e)iu(t), o(t))
which yields playable solutions.

In other words, the players can implement playable solutions to the differenitial
game by playing for each state (s,y) € K a static game on “velocities® of the
controls in the dertvative DR(s,y)(/(2,¥: v}, #(2, ; v)) of the regulation subeet.

Minimal selections (b°,¢°) provide heavy trajectories (eee [S]) in the case of control
systems
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lower semicontinuity of the set-valued maps R, A and B. In the case of the
set-valued map B, we need a Lower Semicontinuity Criterion of an infinite
intersection of lower semicontinuous maps. We provide such a theorem at
the end of this paper, which can be useful for other purposes.
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DYNAMIC OPTIMIZATION OF SOME
FORWARD-LOOKING STOCHASTIC MODELS!

Tamer Bagar
Decision and Control Laboratory
Coordinated Science Laboratory and the
Department of Electrical and Computer Engineering
University of lllinois
1101 W. Springfield Avenue
Urbana, Illinois 61801 / USA

Abstract

A dynamic decision model is said to be forward-looking if the evolution of the underlying
system depends explicitly on the expectations the agents form on the future evolution itself.
Such models lead to nonstandard stochastic dynamic optimization problems where one has
to take into account the fact that there is a circular (closed) relationship between future
forecasts and future system behavior. In this paper we study a class of such problems where
there is an additional control input designed to make the system track a given trajectory.
This leads to a game-theoretic formulation in which context we consider both finite and
infinite horizon formulations. It is shown that for the finite horizon problem the unique Nash
equilibrium solution requires (fixed size) memory for both agents because of spillover across
stages, whereas for the infinite horizon version no memory is needed.

1. An Introduction to Forward-Looking Models

We refer to a dynamic stochastic model as forward-looking if one of its inputs involves
future expectations of the system trajectory, using (possibly noisy) measurements on the past
realizations. Such decision models find wide-spread use in economics, where they are more
commonly known as rational ezperiations models. A few representative papers in this area
are the works of Lucas (1975), Sargeat and Wallace (1975), Barro (1976), Taylor (1977),
Shiller (1978), Blanchard (1979), and Blanchard and Kahn (1980). Perhaps the simplest
such mode] that captures the salient features of forward-looking behavior is described by the
scalar difference equation

Ye41 = ol + bug + €441, (1a)

where a and b are constant parameters, {¢;} is a sequence of independent sero-mean random
variables with finite (positive) variance, and v, is the decision variable chosen at time ¢ under
some “expectation” of the future behavior of the system based on information available at
time t. If the forecast of interest is n steps into the future, for example, one poesibility is to
replace v; in (1a) by Etyi4n, the conditional mean of y¢.n based on the information available
at time t. This information, which we denote by 5, could involve a direct measurement of
all the past values of the system trajectory, that is {y¢, yi-1,..-} =: ¢, or involve some noisy
measurement on the state trajectory, n; = s*, where {s;} is a measurement sequence defined

by

t  This work was performed while the author was spending a sabbatical year at INRIA,
Sophia Antipolis, France, and it was also partially supported by the Air Force Office of Sci-
entific Research under Grant No. AFOSR 084-0058, through the University of Nlinois.
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n=yu+é, (%)

with {£;} being another sequence of independent, zero-mean random variables with finite
variance.

A basic question addressed in the htentun over the years has been the existence of
a (unique) stochastic process {3} that satisfies (1a) whenever v¢ = Eyi.n and the time
interval is infinite. The answer to this question is that there is, in general, more than one
such solution even in the class of stationary processes. However, as we have recently argued
in Bagar (1987), a better approach towards policy determination in these forward-looking
models would involve the optimization of an appropriate loss function, by carefully taking
into account the informational dependence as well as the correlation of policies across stages.
One such criterion would be

T

- iy Bt e o

*) tas

where minimization is subject to the dynamic constraint (1a), with v = 4(n¢), and uses
the boundary condition v¢ = 0 for ¢ > T. In the above, [s,T] stands for the time horizon,
which could also be infinite, and p denotes a positive discount factor (0 < p < 1). It has been
shown in Bagar (1987) that the dynamic policy optimization problem admits the solution

= Fyt+1 when i = 1, but for n > 2 the unique solution for the finite-horizon version is
dxﬁuent from Ety¢4n. For n = 2, for example, the best forecast into the future (by two time
steps), under the criterion (2) and using the information {n; = y*}, is given by

v = v (V) = awye + Beve—1, (3a)

for 2 £ t < T, where the sequences {a;} and {§;} are determined recursively off-line. For
the noisy measurement case, {n: = 2*}, the solution is again unique and is given by

= 7 (2*) = atfie + Brve—, (3%)

for 2 < t < T, where the sequences {a¢} and {8;} are the same as in (3a), and §; is a
sequence of estimates generated recursively by a Kalinan filter, under the assumption that
the underlying statistics are Gaussian. An interesting feature of the solution is that for the
infinite-horizon version (that is as T — o) the coefficient sequence {8;} vanishes for all finite
t, and the solution becomes v{ = E;y;..2,thus eliminating the correlation across stages.

In the present paper, we consider a more general formulation than that above, where
now two separate agents, say A and B, have influence on the system trajectory, one of them
(A) again making a two-step ahead forecast of the trajectory, whereas the other one (B)
trying to drive the trajectory as close to a specific target as possible. For such a scenario, the
system equation would be replaced by

Yi+1 = oy + bue + cwe + €241, (4

where vs = ~,(y*) is controlled by agent A and w¢ = u¢(y*) by agent B. Taking the time
horizon as [0, T + 1], the two cost functions to be minimized by A and B, respectively, are

T
Ja(m) = 3 E{ln(s') - wasl'}ol, (5)
t=0




129
and T+l
Ta(ns) = Y Ellvers ~ fesa]” + kwi}oh, (59)
tm0

where {§:,2 < ¢ < T +2)} is the desired trajectory, & is a positive weight on agent B’s control,
P, pp are the corresponding discount factors, v := {Yr, Y71, Y0}, # := {BT+1, 47, .., o},
and vr4; = 0, the last identity reflecting the fact that no forecast is made st time ¢t = T +1.
Furthermore, we assume thai the independent random variables ¢; (1<t<T+2) each have zero
mean and a probability distribution that asaigns positive probability to every measurable open
subset of the real line. One such distribution would be the normal (Gaussian) distributjon
with positive variance.

Since this is a problem with multiple objectives, several equilibrium solution concepts
would be applicable, with the one adopted here being the noncooperative Nash equilibrium
solution. Therefore, we seek a pair (7", 4*), preferably unique, satisfying the pair of inequal-
ities .

Jaly*u*) £ Jalvu*); Ie(v",u") < IB(7".8), (6)

for all admissible oy and u. Other possibilities would have been the Stackelberg solution with
either agent acting as the leader and the Pareto-optimal solution, which, however, we do not
discuss here because of space limitations.

The first question we attack, in section 2, is a “simpler” version of the above, where
agent A’s policy is fixed as v¢ = Eyye42,¢ < T, which is in general a suboptimal policy for
A. We obtain the best policy for B under this additional structural restriction, and derive
the corresponding expression for {u:} (see Theorem 1). Furthermore, we study the limiting
behavior of the two policies, for the infinite-horizon problem. Subsequently, in section 3,
we derive the unrestricted Nash solution and prove its (generic) existence and uniqueness
(see Theorem 2), with details of the derivation provided in the Appendix. We also study
the limiting behavior of the solution as T — oo, and analyze the discrepancies that exist

. between the two stationary solutions of Theorem 1 and Theorem 2. The paper concludes

with a discussion of the “noisy measurement” case and some other possible extensions, in
section 4. Throughout the analysis, we take the reference trajectory (to be tracked) as the
zero trajectory, an assumption that does not bring in much loss of conceptual generality but
leads to considerable simplifications in the resulting expressions.

3. The Optimal Tracking Strategy Under Perfect Myopic Forecast

With v, taken as E.y;,2 (which myopically minimizes each term of (5a)), and {f:}
taken as the zero trajectory, the dynamic policy optimization problem faced by agent B is
the minimization of Fiy **, where

T+1
FI+ = 3" B{yd.y + kwi}ol, (7a)

tmg

the dynamic constraint is

YT+2 = QYT +1 + CWT 41 + €143,

k()
Vi1 = oYt + bEyeqg +owe + €e41, 1 ST, (7é)

and the information constraint is we = ue(y*). Note that this is not s standard linear-
quadratic stochastic control problem because of the presence of the conditional expectations

i A K g
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term in (7b), which could even make the dynamic constraint nonlinear in the past values of
the trajectory. We will show below, however, that the optimal control is still linear, thus
making the corresponding forecast also linear in the available information. The desivation
entails a recursive approach where the structure of v¢ is determined alongside the optimal
control at each step of the iterative minimization.

Before presenting the main result of this section, we first introduce two sequences {p:}
and {1} which ere defined recursively by .

ppalkpesy

pe=1+ °’P¢+1 - ku,” Pre2=1, (80)
ablw;
-1=1- H =1
Vg = o § vry1 =1 (8%)

Next we define a third sequence {g:} in terms of the other two, according to

gt = —capry1/(prer + kd), t<T+1 (8¢)

We are now in a position to state the main result, after invoking a condition which generically
holds. :

Condition 1. The sequence {11} generated by (8b) does not vanish for anyt < T + 1.

Theorem 1. Let Condition 1 be satisfied. Then, the dynamic policy optimization problem
with myopic forecast admits the unique solution

we = fe(ye) = gage, 0<t<T+1, (9a)
with the corresponding forecast policy given by

a+c a+ ¢
v = Egyepa = ( ge+1)( 9t) Yt := heys. (90)
Vg1t

The minimum value of F¥ ** in (6a) is
FJ* = poE(43} + Ao, | (9¢)
where Ao is the last step of the backward recursion

Ar+1 = var(er+a),
Ae—1 = pgA¢ + prvar{e).

Proof. The proof proceeds by recursively showing that the minimum value of FT+! is given,
foreachs <T+1, by

FI*! = (ps - 1)/0B|E{u3} + Ao

The result is trivially true for s = T + 2, where we take Ay43 = 0. Let us therefore assume
its validity, along with (9a) and (9b), up to s + 1, and verify the expression, as well as (9a)
and (9b), for s. The minimization problem faced by agent B at time s is

minlpa P! + Byl + kualy)}, (+)
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which is equivalent to
m.inE{P-+lll2+1 + kw? | v’}

which uses the dynamic constraint
Yor1 = 6Ya + bE Yyi3 + W + €441. (*)

We also have the relationship

Yorz = (6 + ¢gar1)Vas1 + O[(a + €ge+2)(a + €Go1) /VatraVos1 Vo1 + €avas

where we have explicitly used (9a) and (95), with ¢ replaced by s+ 1. (Of course, if s = T +1,
the last relationship would not be needed since the conditional expectation term in (#) would
be missing.) Now, taking the conditional expectation of the last expression with respect to

'y*, substituting this into («), taking the conditional expectation of the resulting expression

again with respect to y*, and solving for the resulting E,y,4; in terms of y, and w, we arrive
at the expression

1
E,ys+1 = —lay, + cw].
Vs
Using this, E,y,+2 can easily be evaluated to be

@ + ¢ga+1 + bhot1

o (ays + cw], (w=)

Eysra =

under which the dynamic constraint becomes equivalent to

1
Vot1 = ;‘[“lh + cw] + €a41.
s

This makes the minimization problem a standard linear-quadratic one, and hence it readily
follows that the minimizing control is uniquely given by (9a) with ¢ = s. Substitution of this
solution into (s) and (x+) finally verifies the asserted form for FT+! and the structure of the
forecast policy as given by (9b). We should note that Condition 1 has explicitly been used in
the proof, to make sure that one can solve uniquely for E,y,.1 and E,y,.2. °

Condition 1, under which the existence and uniqueness of the optimal control (9a) is valid,
holds whenever a and b have opposite signs, regardless of the magnitudes of the parameters of
the problem. The result follows by inspection, since withab < Oand v,y = 1, we have vy > 0
for all t £ T + 1. For ab < 0, however, there may exist isolated values for the parameters
for which the condition does not hold for some ¢. [A more precise statement here would be
that with all but one of the parameters fixed (and ab > 0), there will exist at most a finite
number of different values of that parameter for which Condition 1 is violated. This follows
since for each ¢, v; is a rational function of the quintuplet (a,b,¢,pp,k).] For example, for
the parameter values a = ¢ = k = 1, b = 2, we have vy = 0, which shows that Condition 1
may fail even for a two-stage problem. However, if we perturb the value of b to b = 2.1, and
take pp = 1, then Condition 1 holds for all values of ¢. In fact, running the coupled recursive
equations (8a)-(80) in retrograde time, we find that (for these parameter values) the pair
(2, 1) converges to (0.504147, 1.880060) in 29 stepe, within the accuracy of six decimal places.
Hence, in this case, the infinite-horizon version (even with no discounting) admits a unique
optimal stationary control, given by w; = 4(ys) = ~1.135124 g,. If, in the above, b is instead
taken to be 1, again Condition 1 holds, the pair (1, 1) converges to (0.604146, 1.787692) in 9

s btk

e ——



132

jterations, and the optimal control policy converges to wy = A(ys) = —0.787692 y;. As 2 final

' numerical experimentation, reflecting a different set of parameter values, we consider the case
of a = 2,0 = ~3,0p = 0.8,c = k = 1. For this set, we already know that Conditian 1 holds,
since ab < 0. Studying the convergence of the optimal policy to a stationary control, we find
that the pair (v4,p:) converges to (2.796267,1.521150) in 26 iterations, with the resulting
stationary policy being w: = 4{y:) = —0.325719 ;.

8. The Nash Equilibrium Solution

We now remove the restriction that agent A’s input to the system is a myopic forecast,
and allow him to .determine the “best™ choice for v¢ by minimizing the cost function J,4.
As we have discussed in section 1, this joint optimization problem can best be treated as
s noncooperative game, and hence we study in this section the Nash equilibrium of the
underlying game, as defined by (8).

There are two general approaches to the derivation of Nash equilibria in such dynamic
games. One would be first to guess {or propose) a structure for the solution in terms of
some parameters, and then to validate the equilibrium property of the asserted structure
and to obtain the corresponding values of the parameters so that the resulting policies are
in Nash equilibrium. A second approach would be to obtain the Nash solution recursively
(by employing the definition of stagewise or feedback equilibrium; see, for example, Basar and
Olsder (1982)) by solving static games conditioned on the available (common) information,
at each step of the iteration. Note that this would be applicable only if both agents have
identical information (which is the case here), since otherwise stagewise decomposition would
not be possible. Now, two disadvantages of the first method are that (i) one has to guess the
structure of the solution correctly, and (ii) even if the initial guess is correct there is no way
to show (using this method) that the validated Nash solution is unique. The second method,
on the other hand, is capable of answering the uniqueness question, but it only produces
candidate solutions which subsequently have to be checked for their equilibrium property.
What we will, therefore, choose to do in the sequel is to use an appropriate combination of
‘the two approaches, to generate candidate solutions and verify their existence and uniqueness.
We should note in passing that even though the problem may look, at the outset, as a standard
linear-quadratic one, the presence of the two-step delay in the cost function of agent A makes
the game a nonstandard one, thus eliminating the possibility of direct application of results
available on linear-quadratic feedback Nash games (as, for example, covered in Bagar and
Olsder (1952)).

Before presenting the solution in Theorem 2 below, we first introduce some sequences
which will be needed in the characterization of the equilibrium policies. Towards this end,
let {m:}, {7:}, {ns} be three sequences genersted by

M1 = g _lm [a + cGe + darialy mr = =g, (10a)
Mgy = 7 -lbm. (cBr + bBrie]; T =0, . (108)

where ac, &t, By, Bt are defined, for t < T, by
et G sn o
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_ oK1, + (k11 + k22 c)m—-xL

Gy = k+cikye t<T+1, (118)
(1 —bmy)pansmecBi + b(1 - cBi) <

b= 63 + pane(l — bmy)(1 - bmy — )’ t<T, (12a)

i i Bt nslehios e<T+1, (125)

k+ czku,g '

and

o kg ku,:)
Ke = (hz,t kaae

is a 2 x 2 matrix sequence generated by the discrete time Riccati equation

K = ppA}[Ky41 — Ki31C(C'Ki41C + k) "1C'Kt + 1)A¢ + Q,
Kr1 = [ka®pp/(k + ¢%)|Q,

A= (“:f“‘ "g:), Q= (é g), C= (;) (135)

Finally, let rat, rat, TSty T4 be defined by
CJ(I bme)p,gmmg b}

(13a)

with

14

=P+ pani(l — bmg)(1 — by — fy)’ (14a)
c(bk11e41 + kaa,e4+1)

PGt = ~ F c?klhﬂ_l (146)

= (1~ bme)panem, — be (150)

b2 + pane(1 — bmy)(1 — bm, — 7he)’
N (TR JOTRYSV Y
aes k + Czku A1

The last four expressions are the coefficient terms in (11a)-(12b), indicating the dependence

of ay, &, By and ﬁ¢ on &, o, ﬁ, and S, respectively. A certain relationship between these
coefficient terms in fact determines the existence of a unique Nash equilibrium solution, as
to be elucidated below.

Condition 3. Forallt<T,

ratfat # 1, TALT 3s #1, (18q)
bme % 1, (163)
pans(1 = brag)(1 - bme — ) # - (16¢)

Theorem 2. Let Condition 2 be satisfied. Then, the forward-looking tracking model (4)-(5)
admits a unique Nash equilibriuin solution {v{,ut}, where agent A’s (best forecast) policy
in

ve = 7 (y') = aupr + Bi¥e—r, 21
’““' ‘-0'

(an

(155)

B {0 e ANt W = MR A A
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and agent B’s (best tracking) policy is
we = 5§ (yF) = Eeye + Bivie-1, 1<t<T
= ~[ac/(k + Mlyrs1, t=T+1 (18a)
= oY, t=0 ,

where the sequence {¥;)} is generated by

t == oy + Pive-1, 121 (188)
= agyo, t=0.
Proof. We will first verify the structural consistency of the solution (17)-(18) under the Nash
inequalities (6), and then discuss the existence of the solution. Some details of the derivation,
as well as a proof for the uniqueness of the solution will be given in the Appendix.

Towards verifying the validity of (6), first consider the second inequality, where agent
A’s policy has been fixed as given by (17). Then, agent B faces a stochastic control problem
with cost function Jp (given by (5b) with zero reference trajectory) and state dynamics

Vier1 = (e +ba)pe + BBy + vy + €041 , t<T
= ayr+1 + ewrsy €743 t=T+1,

where the sequence {#;} is generated by (18b) in view of (17). The optimal control at time
T + 1, wp4, can readily be obtained, to be given by the second line in (18a). To obtain
the remaining controls, we introduce a new state vector, z; := (y¢, V1), and reformulate the
problem as one of minimizing Jp under the dynamic constraint

ZTey1 = Asze + Cwy + Degyy D:= (1 0)',

where control w; is allowed to depend on zt, ¢t < T. [Note that even though v*~! is not
available to agent B, #*~! is since it is generated by y*~2.] This is the familiar linear-
quadratic optimal control problem, whose unique solution is

we = —(k + C'K¢+1C)-1C'Kt+l-4tzh (*)

where {K} is generated by (13a). (Note that the terminal constraint on K¢ at t =T + 1
is not Q because we have already substituted for the optimal wr,; and have reduced the
cost function Jp to the one where the leading term is now g3, instead of y3,,.) Now, the
optimal control (#) is clearly linear in y; and ¥;—;, at time ¢, and a little algebra shows that
it can be expressed in the form (18a).

We now focus attention on the first inequality of (6), where agent B’s policy is fixed as
given by (18a). Then the problem faced by agent A is one of optimal forecast, where the
cost function is J4 (given by (54)) and the dynamic constraint is

Vesr = (8 + cBe)ys + cBi¥ey +00¢ + €041, 1StST
= ~[ak/(k + c})|yrs1 + €142, taT 41
= (a + c&o)yo + bvo + €1, t =0,

Because of the form of the cost function, the available linear-quadratic theory cannot be
directly applied to this problem; nevertheless, a one can employ a dynamic programming type

R
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.uzumttoeonmutthoopﬁmdsduﬁoninm;datimc,uintheproofofThaorcm

2.1 of Bagar (1987). It has been shown in the Appendix that the optimal solution is unique
(under some conditions which will be specified later), and the optimal policy at time ¢ is a
function of three variables, y¢, U;—1 and vs;. The precise expression is

ve = y(y*) = Gun + Bwer +Bi®e-1, 1<tST ()
= GoYo, =0,
where

: 1
= BT (1~ bme)Ppane

[pane(l ~ bmy)(eas + (0 + c&e)me) — b(a + c&e)] (o)

= b
TR (1 = bme)?pany

[pane(1 = bme)(eB + cBeme) — b, (o00)

Be= 1
* S P (- bme)ipane

and {m:}, {A:}, {ne} are generated by (10a)-(10¢). In writing down these expressions, we
have aiready assumed the validity of (16a) and (16¢), since otherwise m; and 7, would not
have been well defined. We should note, however, that even in the pure forecast problem
discussed in Bagar (1987), a condition similar to (166) was required for the well-posedness of
the problem,

Now, to complete the derivation, we substitute for a; and 8; in (o) and (ee) from (11a)
and (12a), respectively, and observe that the resulting exprmnon for &; is identical with that
of a;, and also when the resultxng expression for B is added to ﬂg, the outcome is identical
to fB;; in other words,

Gsar , Bi+B=4h

. When the latter is used in (*«) recursively, it follows that {v:} is generated by the same

sequence (of y,'s) as {¥;}, and hence that (++) admits the simpler representation (17).

This then completes the verification of the existence part of the theorem; more precisely,
of the fact that the policies (17)-(18) constitute a Nash equilibrium pair under Condition 2.
Note that (16a) in Condition 2 simply guarantees that there is a unique solution to the two
pairs of coupled equations (11) and (12), for all ¢, and it may also be referred to as the Nash
condition.

As we have indicated earlier, the uniqueness part of the theorem bas been verified sepa-
rately in the Appendix. °

Several observations and remarks would be in order here. Firstly, we note that, as
opposed to the memoryless solution of Theorem 1 (obtained under myopic forecast), the
unique Nash equilibrium solution incorporates memory, for both agents. For agent A, the
“best” forecast policy is a linear function of the most recent measurement and the most recent
decision taken by that agent. [This is true since $;.; in (17) can be repiaced by v, without
affacting the solution.] For agent B, on the other hand, the *best” tracking policy is a linear
function of the most recent measurement and a linsar aggregate of all past measuremaents,
weighted in an ap, te manner. The solution is characterised in terms of four gain
coeflicients (ay, &, B¢, B:), which can be computed recursively. Hence, the solution does not
change structurally over time, which makes it feasible to obtain mmomrg Nash pohciu for
the infinite-horison version, provided that the sequences {af}, {&T}, {87}, (5T} converge
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for all finite ¢ as T'—co, where the superscript T in the sequences denotes the dependence of
each sequence on the terminal time, taken as a parameter. Even though the computation of
the four critical quantities (c.,ag,ﬂg,ﬁ,) may look complicated at the outset, the iterations
are in fact quite straightforward, requiring simple algebraic manipulations at each step. The
order one has to follow in the computation is as follows:

Starting at ¢t=T, first compute the quadruple (ar,&r,Sr, Er) from (11a)-(12b}, using

the given boundary conditions on Kr41, mr, iy and ny. Note that this computation

involves the solution of two pairs of coupled linear equations, at which point we invoke
the Nash condstion (16b) to obtain a unique solution. At this stage also condition (16¢)
is invoked, so that (11a) and (12a) are well defined. The next step would be to obtain
the new values for ke41, me, My, ns at t=T + 1, using the iterations (13a), (10a), (10b)

and (10¢), respectively. At this stage, condition (16a) is invoked so that (10a) and (105)

are well-defined relationships. These new values for K, m, i, n are then used again in

(11a)-(125) to update the values of the gain coeficients, and this procedure is repeated

until the initial stage t = 0 is reached.

We should point out that similar to Condition 1 in Section 2, Condition 2 also generically
holds, in the sense that if all but one of the parameter values are fixed, then there is only a
finite number of values for that parameter for which the condition fails.

Even though it is not our intention to provide here a general convergence analysis for the
infinite-horizon problem (this would in fact be quite a challenging task), it would nevertheless
be instructive to study some properties of the stationary solution, assuming that such a
solution exists and Condition 2 holds for all ¢ of interest. Accordingly, letting

. L d ~w . ~T ", . 3 T - N aT - . T
= a = = = H
Ao, o=, £ o b B Jm B ntes e

it readily follows that n*=0. In view of this, we arrive at the stationary Nash policies

=1*(¥") = a*ye + f v, (19a)
=u*(y") = &y + BT, (196)
where {¥;} is generated by
U =o'y + 70, (19¢)
and the following relationship holds:
~n Y-
°'='¢+:a g 1 bc.B (20)

Now, using these stationary policies in the system equation (4), we arrive at the result that
the equilibrium trajectory {y{'} is generated by

Vo1 = (@ + ba® + ca*)ys + 88*vi_, + f Vg1 + €e41,

where {v{} and {U}} denote the discrete-time stochastic processes generated by {19a) and
(195), respectively, when y = yf, t > 0. Note that, as stochastic processes, they are identical
almost surely, and hence, by also using (20), it can be shown that the equilibrium trajectory
{y}} is generated by the simpler dynamics

Viri =Vt @
=o'y + 8., .
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which admits the ARMA representation
Vi + B0 — a'ioy = @ + e (21)
An important o&emtion that can be made here is that the relationship
Ee iy =viey

holds, that is we have perfect foresight. Said differently, the stationary Nash solution satisfies
the side condition of myopic foresight introduced in section 2, in spite of the fact that the
two solutions (of Theorem 1 and Theorem 2) are structurally different. [Compare (20) (or its
stationary version) with (17)-(18).] This clearly implies that the Nash solution is disadvanta-
geous to agent B (at least in the limit as T—oo), since it does not yield the best (optimum)
solution obtainable under the side condition induced by the equilibrium solution itseif. A
reason for this inefficient behavior on the part of B is that in the analysis of section 3 agent
A is also an active player, whereas in section 2 he was passive. Such features can be observed
even in finite-horizon problems, as the following example demonstrates.

Numerical ezample 1. In our general formulation, let T=0, E[y3] =: 0o, and all other
parameter values be unity. Then, the two solutions given in Theorem 1 and Theorem 2 and
the corresponding values of expected costs and trajectory sequences can be computed to be
as follows:

Theorem 1: 1 6 1
wr = di(n) = gy wo= fio(yo) = —zY0, Yo = zYo, (22q)
;5 5 5.8,
A= 4| B = 2 7 0
= 2 +6a; ja= 1z +e€
n= 71!0 1, V2= 2!!1 2-
Theorem 2:
- 1 wio v _ _3 . 1
wy = pi(n) = -3y wo= uo(yo) = —gvo vo= Y% (¥o) = o (220)
5 5§ 15
Ji==: Jp==+ —o0o,
Aa=g T3t

= %W*‘ﬁ; v3 = %v{’-{-ea-
A number of observations can be made in connection with this example:

1. In both cases above, we obtain perfect foresight ( i.e. vo = Eoys ), but the corresponding
trajectories are different. Even though (as we have seen earlier) the Nash solution does
not generally enjoy perfect foresight for the finite-horizon :ase, here it does, mainly be-
cause the problem involves basically a single stage, thus eliminating the effect of spillover
across consecutive periods.

2. Agent A incurs equal expected costs in both cases, whereas agent B does worse with the
Nash solution. This is, of course, consistent with our earlier comments just preceding this
example, which, even though were made in the context of the infinite-horison problem,
are equally valid here since the Nash solution satisfies the boundary condition (i.e. perfect
foresight) of the myopic solution.
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3. Since i) = u} is a unsversally optimal policy for agent B at stage t=1, whichever
equilibrium solution is adopted (even outside the two considered here) the trajectory
will be given by

_1
¥z =30 + €
¥1 = Yo + vo + wo.

Now, if we let vo = Eoys, and attempt to solve for v from the above e -.ions, we first
obtain (since wo = wo(yo) is known to B for each fixed uo)

1 1 1 1
vo = Eoyz = 3Eov1 = s + v + 3o,

from which vy can be solved uniquely to give
%0 = 7o(¥0) = yo + wo; wo = po(o)- (o)

This shows that the actual choice for vo = 7o{yo) (under perfect foresight) depends
explicitly on B’s policy ug, and the two solutions given above are two different manifes-
tations of this dependence. Both (22a) and (22b) use (o) as a constraint, but while in
(22a) Jp is minimized subject to (o), in (22b) the choices are determined by the Nash
solution of a game played between the two agents at time ¢=0. One could envision other
scenarios between the two agents which would lead to still different choices for uo (and
thereby <o), but in all cases the resulting expected cost to A will be the constant 5/4,
independent of uo and op. °

We now conclude this section with a second example, which is an extended version of
the previous example with an additional stage. It will serve to demonstrate some additior sl
features of the solution given in Theorem 2.

Numerical example 2. In the general formulation, let T'=1, and all parameter values be unity.
Then, the unique Nash equilibrium solution (as presented in Theorem 2) can be computed
to be as follows:

2
wo = pg(yo) = —0.746032y,; (23)

1 3
wy = u3(ys) = —Zyz, wi=piy’)= ~3¥1 — 0.190476y0,

3
n =14 = —g¥1 +0.31746y0, vo = 15(vo) = 0.253968y,.

The corresponding equilibrium trajectory is generated by

y] = 0.5079366y0 + €1
y3 = 0.25y7 + 0.126984y5 + €3
ys =05y +¢

from which it follows that E,y3 = 0.125y} + 0.083492yo # +{(y7,vo0); that is, the solution
does not lead to perfect foresight at time t=1. However, Eoy3 = 0.253968yo = 73(vo); that
is, there is perfect foresight at ¢=0. This latter result is not a feature of this example only,
but holds for the general solution of Theorem 2 (even though it may be rather difficult to
prove algebraically). Through an indirect reasoning that follows the proof of Theorem 2, as
given in the Appendix, one can conclude that Eoy; = 45(v0) is a genuine property of the
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general Nash solution since, at the initial stage, the variable vp minimizes an expression that
is a perfect square in y; (see (A.1)) and there is no spillover effect. °

4. Some Extensions

A first extension of the results presented in section 2 and section 3 would be to the more
general case where the reference trajectory is not zero and the cost function (5b) contains
additional (time-varying) weights on the deviation from the desired trajectory (i.e. the first
term). The reason why we have not included this in our presentation here is because such
an extension does not entail anything conceptually new, while requiring some additional
notation which would have complicated the resulting expressions considerably. The gist of
the results for the nonzero reference trajectory case is that the statements of both Theorem 1
and Theorem 2 remain essentially intact, with the only difference being that now each policy
includes an additive (bias) term which depends linearly on the desired reference trajectory.
The existence conditions in both cases are identical to the earlier ones. For the case when
there is a time-varying weight in the first term of {5b), the results again remain intact,
with only the additive term 1 in (8a) replaced by this new weight and Q in (13a) adjusted
accordingly.

A second extension would be to the class of problems where the agents do not have
direct access to the trajectory {y:}, but rather acquire common noisy measurements {2}, as
defined by (15), where now 7, = z*. Towards studying this extension, let us assume that {c,}
and {§:} are sequences of independent Gaussian zero-mean random variables with variances
var(e:) =: ¢ > 0, var(&) =: ¢ > 0, and that they are independent of yo which is also a
Gaussian zero-mean random variable, with variance g¢. Then, in the formulation of section
2, we interpret the operator E; as the conditional expectation E{-|z!,w*~!}. Note that here
we have replaced 1y = 2* with 7 := (2%, w*™!), without any loss of generality, since w*~! is
measurable with respect to z*~!. Now, letting §: := Eiy:, it is a standard result (see, for
example, Bertsekas (1987) or Kumar and Varaiya (1986]) that jj; is generated by the Kalman
filter equations: .

9T+2 = G0r41 + cwryy + [B742/ (8742 + ST2)rrea,

R R . . . 24a
Ge+1 = afe + bBsysyq + cwe + [6e41/(Oet1 + Gev1)lrewr, t<ST; §-1 =0, (242)
T441 i= 2441 — ¥ — bErypqz — cwy, (24b)

G141 = [a%¢e/(6¢ + ¢ )bt + 0e+1, G0 = 00, {24¢)

where {r.} is a sequence of independent Gaussian random variables, known as the innovation
sequence. In writing down these relationships, we have made explicit use of the fact that
both E.yi+2 and w; are z'-measurable.

Now note that the error sequence {e;}, ¢; := y¢ — fi, is generated by

€1 = Gt + €4t — [G1s1/ (6041 + Se41)iTes1; €0 =0, (&)
and that Ee;q =0 for all n > 1. In view of this last property,
Ewyera = Eqfera + Ererrs = Eefrya,
and hence (24a) can be rewritten as i

IT+2 = afTe1 + cwryy + |O142/ (0142 + ¢rea)lrres,

25
fear = afe + bEifesa + cwe + [Fe41/(Gear + Geer)lreer, t ST foa =0, (29)
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Furthermore, since y; = §: + €, and fi; is orthogonal to ¢, the counterpart of (7a) for the
noisy case would be:

T+1 T+1
FT+ = ;.: E{§2, .+ kwi)ol + ; E{e}, )05, (26)
L 2 2]

where the second summation term does not enter the optimization, since the sequence {e;}
generated by (A) is independent of the control sequence {w;}. Hence, the problem faced by
agent B is the minimization of the first term of (26) subject to the dynamics (25), where
wy = ue(§*), which is compatible with the original information #; = (y*, w*~!) since f; is
generated by (7t~1,ws—1). Then, the problem is identical with the perfect information case
(apart from a change of notation), in view of the fact that {r} is a sero-mean independent
sequence, playing the role of {¢;} in (7b). This shows that the problem (with myopic forecast)
featutes certasnty equivalence, making the statement of Theorem 1 valid also in the noisy case,
with only y; replaced by fit, and (9¢) including an additional positive term due to the second
term of (26). The following theorem summarizes this result.

Theorem 3. Let Condition 1 be satisfed. Then, the dynamic policy optimization problem
with myopic forecast, as formulated in section 2 but with common noisy measurements (1b)
for both agents, admits the unique solution

we=je(m) = o, 0St<T+1, (27a)
with the corresponding forecast policy given by

ve = Eetesz = 8+ cgrsa)(a+ cge) Be» (27)

Vi1t

where {§i:} is generated by (25), and {g:}, {11} are as defined by (8c) and (85), respectively.
<

Hence, for the noisy case, certainty equivalence holds under myopic forecast, and the
statement of Theorem 1 basically remains intact. For Theorem 2, however, there is no direct
counterpart, and derivation of the Nash equilibrium solution is quite a nontrivial task. We
will not pursue this extension here, since presenting the full details of the derivation of the
Nash equilibrium solution would at least doubie the length of the present paper. What we
can say at this point, however, is that (guided by the resuits presented in Bagar (1978b) for a
linear-quadratic nonzero-sum dynamic game with a different type of an information pattern
and a different type of a cost function for one of the agents) the problem will generically
admit a unique Nash equilibrium solution, linear in the available common information. This
solution will not satisfy the certainty equivalence or separation principle of stochastic control,
and thus will have no relationship with the solution presented in Theorem 2. The following
numerical example (which is the “noisy" version of the second example of section 3) should
serve to corroborate this claim and to give some indication as to the intricacies involved in
the derivation of the general solution.

Numerical ezample 8. Consider the second numerical example of section 8, but with noisy
measurement (15) for both agents, and with all parameter values (including the noise vari-
ances) equal to unity. Hence, the cost functions are

Ja = E{(vs - y3)* + (vo ~ v2)*}

28
Jp = E{yd + w3 + 3 + v} + vy} + wi}, (28)
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and the dynamic constraints are

ys=yat+wrt+es

m=nt+tntu+eé (29)

Y1 = Yo + Yo + Wo + €0,
where wy = pa(2?), wy = py(z!), wo = po(20), v1 = M(2*), vo = Y0(20); 20 = yo + &o,
% =y + & and 23 = y2 + &2. The first significant difference between the perfect and
the noisy measurement cases appears in the construction of the best u3, which now depends
explicitly on (i1,40) and (71,70). [Recall that in the perfect measurement case covered by
Theorem 2, there was a universally optimal policy for agent B at the terminal stage of the
game.] With the quadruple (¥1,70; 41, 40) fixed, say at (v, ), the minimization of Jp with
respect to g becomes a standard quadratic optimization problem,

min E{(y2 + w3 + &a)” + wile?, v, u},
whose unique solution is
2 1 2 1 A
wy = ua(z,v,) = —-2-E[yz|z ENNES 292 (30)
Here 2., is generated by the Kalman filter:

. N 8 N !
F29s = raope + 11(2)) + 11 (2") + 1372~ B1vome = M(2") — m1(2Y))

R n 3 N

F1080 = fo + Yo(20) + Ho(20) + ‘5‘(21 - g0 — vo(20) — o(20)) (31)
. 1
§o = 520,

which depends on (v,u) partly directly and partly through fiiyou, := E{y1l2*,v0,00]. To
obtain the pair (7,4, that is in Nash equilibrium with (30), we follow a procedure quite
analogous (in principle) to the one followed in the proof of uniqueness (for Theorem 2) in
the Appendix, geared towards obtaining a (unique) stagewise equilibrium. Accordingly, the
derivation involves the solution of two static games, one at t=1 and the other one at t=0. To
characterize the static game at t=1, we substitute (31) into (28), eliminate the intermediate
variables and take expectation over the statistics of €3, €3 and &3, to arrive at the reduced
conditional (on z!) cost functions: .
T4 = E{=lvy = O(ys +w1) + 29 + 2 (m +m)]?
A 1691 /] 1 2#1 2 01 Sl 4
+vo-n—v- w,]’[z’},

1 5, 5
Jh = E{E[G(m +vy+w) - i - 5(‘71 +m))?
1 . :
+ a%[ﬂ!lx +7 +u1) +8(m + v + W) + (11 + v+ wy)? + wi|zt)
In the above, we have made notational simplifications by suppressing the (o, #o)-dependence

of i and the arguments of (-y1,41). This is clearly a static game in the pair (v;,w)), and its
Nash solution can be obtained for each fixed (v, 1) and (4o, uo), where we take vo = vo(50).

¢ bt A 1
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Differentiating J4 with respect to v; and J} with respect to w1, and setting the resulting
expressions equal to sero after conditioning on z', we find that the Nash condition is satisfied
and there exists a unique solution to the pair of equations, linear in v1, 43, §; and ¥o0. Now
requiring consistency in the solution (as in the proof of uniqueness for Theorem 2 in the
Appendix), we set v, = v (s'), w3 = p1(2?), and solve the resulting pair of linear equations
(in vy and w,) uniquely, to arrive at the policies:

v = 11(2*, 70, o) = —0.523810f; + 1.547619o(0), (320)

wy = p1(s®, 70, o) = —0.285714%), — 0.928571v0(20). . (328)

Note that here 4o is yet to be determined.

To complete the solution, we next formulate the game at ¢=0, by substituting (30) and
(32) into (28), again eliminating the intermediate variables and averaging over the statistics
of the random variables involved, to obtain the reduced conditional (on z;) cost functions:

JS = E{(0.619048f + 1.208790vo — 0.02930440 + 0.648352(vo + wo))?
+ (0.485714vo + 0.205238io — 0.514286wq + 0.190477o + 0.8095240)?|20},

Jg = E{%(0.619048'10 — 1.1941394; + 1.384615y,)?

1
+ 7 (0.619048) — 0.4249099; + 0.615385y;)? + (0.619048~0 — 0.809524§1 + y1)?
+ (0.285714§; + 0.92857170)? + y} + wl|z0},

where both y; and §; depend on (vo,wo), the latter through 2,, as given in (31).

The procedure here is the same as at t=1: First obtain the Nash solution of (J3,J9)
in terms of (yo,40), then require consistency (vo=yo(20),wo=p0(20)) and solve for (vo, wo)
from the resulting equations, which will lead to policies whose argument is z5. At each step
the uniqueness condition is met, and thus the procedure yields the unique Nash equilibrium
policies (at t=0):

vo = 73(20) = +0.248227fo, _ (33a)

wo = ug(20) = ~0.751773%o. (33h)

These policies are finally used in (32) and (31) to complete the characterization of the Nash .
equilibrium policies:

v1 = 41(s!) = —0.523810y7 + 0.384161f5, (340)
w; = p}(2!) = —0.285714)] — 0.230496o, (34b)
wa = pj(2?) = -0.5, (34¢)
‘where
§3 = 0.059102, + 0.073260§} + 0.615385s,
9} = 0.198582f), + 0.62; (35)
fo = 0.52.

An equivalent representation for 7 in (34a) would be

v = 1}(s') = —-0.523810{] + 1.547619vy,
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which shows explicit dependence on vo. Note that the policies (34) are different from their
counterparts in the noise-free case (i.c. (23)), thus corroborating our earlier remark that the
*“noisy version” does not feature certainty equivalence.

The equilibrium trajectory corresponding to the unique Nash solution is generated by

ys=y3 - 0.593 + €3
=y - 0.8095249] + 0.15366400 + €2
Y1 = Yo — 0.5035464jo + €;.

Using these, it is easy to check that, as in the second example of section 3, E1y3 # ~}(z}),
while Eoy3 = 95(20), which shows that the Nash solution could lead to perfect foresight at
the initial stage, even in the noisy case. As we will discuss in a companion paper, this turns
out to be a general property of the Nash solution for the “noisy version” of the problem of
section 3. °

Appendix

In this appendix, we first complete the proof of the existence part of Theorem 2 by
showing that the policy () given there indeed solves agent A's optimization problem. Sub-
sequently, we establish the uniqueness of the Nash solution presented in Theorem 2.

Ezistence. The optimization problem faced by agent A is the minimization of JT, where

T
IT =Y E{(ve — wee2)*}ois",

t=s

under the constraints
yr+2 = [ak/(k +¢*)|yr+1 + €r42

Ye41 = (@ + cqe)ye + cBibior +bve + €41, 1St<T
¥ = (e + c&o)yo + €1;
Ut = awye + PBedr-1, ve = n(y').

We now claim that, for a general ¢,

min JT = min E{pant+1(vers — mepiyess — MerrTee1)? + (v — ve43)?} + 4, (A1)
{1.)7., Yot 1aTe

where {¢;} is a sequence depending only on the variances of the additive stochastic terms ¢,
t £ T + 2. Under the validity of this assertion, the optimal policy at time ¢ is obtained by

minimizing the following quantity with respect to the scalar variable vs,=:v, for each fixed
t+1,
ytth

E{pant41[v — mes1(a + cBe1)yes1 — meg160e418 — Mesrbv — Merra@er 1yt

8 N o (42)
= Mep1Be410:)? + [(@ + cBes1)yes1 + eBear¥e + bu — ve3 |yt 1),

Being quadratic and strictly convex (in v), this optimization problem admits a unique solution
(for each fixed y¢41,%:,v¢), given by

verr = Yes1 (U'1) = Gesrpe + Bearve + Beaa i, (A.3q)

M2 Nl Sk it ol R 2 1



144

for 0 < ¢ < T ~1, and at the initial stage by

vo = Yo(3o0) = &oyo, (A.35)
where
&= s ,lm), ——[pan(1 = bme) e + (a-+ cBe)me) = b + )]
Bi= b +(1- :m:)’um
B = i AT (L = b (B + cBume) ~ b

As we have discussed earlier (in the proof of the existence part of Theorem 2), substitution
for a¢ and g; (from (1la) and (12a), respectively) into the three expressions above, leads to
the equivalences & = a; and §; + 5: = ;. Hence, the optimal solution (A.3) admits the
equivalent representation

ve = agt + Beve—1 + (Bt — B)Be-1, 15t<T

(4.4)
= aoYo ) t=0.

We now turn to verification of the structural form (A4.1). The result trivially holds for
t=T, with mp = ak/(k + 2}, = 0. Let us therefore assume the validity of the assertion

‘for £+1 and prove it for t. Towards this end, we substitute (A.4), with ¢ replaced by t+1,

into (4.2), and arrive (after some rather tedious algebra) at an expression which is a perfect
square in v, yp41 and Uy

E{ny(ve — meyes1 — mety) |yt ). (4.5)

Here my, i and n, are defined in terma of m¢, 1, fi¢+1 and nyyy as in (106) through (10¢). [In
fact, it is not difficult to see that the resulting cost should be a perfect square, because (4.2)
can be made equal to zero by appropriately choosing ve and v,;. With this observation, it
then remains to find the three coeficients n, m; and ;.| Now, since the minimum of (A4.2)
over ve,) is equal to (A.5), we have

min JT,= min E{(ve-1-pps1)? +p4 min JT
(-r-)?..... =1 e La (T3] {( -1 VC-H) pa (‘7')3.-“: '}

= mn}'i.n' E{(ve-1 = ye+1)0ane(ve — magn sy — M%s)?)

+ 0alge + (1 + panes1miyJvar(ecsa)),

which is in the same form as (A.1), with

Q-1 :=palge + (1 + PAm+1m2+1)°¢f(¢e+z)]-

This then completes the proof of optimality of (w+) in the proof of the existence part of
Theorem 2. :

Uniqueness. It is a well-known fact that dynamic games could admit nonunique Nash equilib-
ria, with each such equilibrium leading to a different cost pair which are in general incompara-
ble (see, for example, Bagar and Olsder (1982)). Thus, “uniqueness” is an important question
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to powe, if the proposed equilibrium is to be of value. As we have discussed extensively in
earlier papers (for example, Bagar(1976), Bagar(1977)), the main source of nonuniqueness in
Nash equilibria is the so-called informational nonuniquensss which srises if each agent, in
his one-sided optimization, has the freedom of choosing different representations of the same 3
policy. What we prove in the sequel is that for the game problem covered by Theorem 2 ;
there is no informational nonuniqueness, and the structural form (17)-(18) is the oniy form :
in which & Nash equilibrium can exist. Furtbermore, we show that structural uniqueness is
guaranteed under Condition 2. In the proof, we will not explicitly derive the expressions for
this unique Nash solution, since we have already shown in the first part of the proof that
(17)~(18) exists as a Nash equilibrium.

Towards devising a proof for uniqueness, we first introduce two generic functions quad(-)
and lin(-), where

quad(-) = a quadratic function of its arguments
lin(-) = a linear function of its arguments.
Furthermore, we introduce a class of nested subgames {G,}, parameterized by s, each one
being a replica of the original game but defined on a shorter time interval, [s,T+1],0< s <
v T + 1. More precisely, for the subgame G,, the cost functions are defined by (5a)-(5) with
the lower limits changed to t=s—1, and with the action variables being v7 := (vr, .., %p+1,%,)
for A, and wT*+! := (Wr4y, ..y Wet1,W,) for B, where vy = ue(y?), we = (y*), and a similar
convention as above applying to the policy variables uT+!4T. To be consistent with this
convention, for =0 we extend the limit of the summation to ¢t = —1 in both J4 and Jp,
by adding zero as the incremental cost term at ¢ = —1. Now let (7 := 57,7 := #2 +!) be
a Nash equilibrium solution for the original game (Go), such as the one given in Theorem
2. Then, it is a well-known property of the Nash solution (called the stagewnse equilibrium
property) that for any s, the truncated version of these policies, (¥7,47T+1), constitutes a
Nash equilibrium solution for G,, with the past policies (v, ug™") fixed at (5372, 4571).
We now develop a procedure for studying the uniqueness of the solutions of these indi-
vidual subgames. First consider the case s = T + 1, where G4, is not really a game but
a one-sided optimization problem for agent B, since only B is active at t = T + 1. Then,
clearly the solution is unique, and is given by the second line in (18a). Note that this solution
is both informationally and structurally unique (regardless of the past policy choices), the
former being due to our assumption in section 1 on the structure of the probability distribu-
tion of the additive system noise. Hence, in the study of the second game in the sequence,
G, we can take ur,; as in (18a), without any loss of generality. Accordingly, substituting
this pr41, 88y s, into both J4 and Jp, eliminating the intermediate variables using the
evolution equation (4) and averaging over the statistics of the random variables by employing
their independence property, we arrive at the structural forms

costo(Gr) = quad(yr,vr, wr,v7-1)
cost3(Gr) = quad(yr, vr, wr) + quad(wi_),

which are the costs incurred to A and B, respectively, conditioned on the information available

at time T, i.e. nr=yT. Since the first cost shows explicit dependence on vr_;, we fix

Vg = ‘11'-1(1!"’1), and solve for the Nash equilibrium of the resulting static game. Because
; of the quadratic structure of the cost functions, the Nash solution, if it exists, will be linear
! in the pair (yr,vr-,); furthermore it will be (structurally) unique under conditions not
depending on yr and vr_;, and Condition 2 precisely serves this purpose. Hence, tha static
game defined by (A4.6) admits a unique Nash solution, for each fixed 7p—;, given by

up = ﬁr(yr) = Iln(yr,vf-l) . (A.7e)

(4.6)
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wr = jir(y7) = lin(yr, vr-1), (A.78)
where vr_; = ¥r—_1(yT~?). The linear functions here are precisely the ones given in (17)
and (18), with vy_; in the latter case replaced by Ur-;. The solution is also unique rep-
reseniationwise aince, because of our nonsingular statistics assumption on the probability
distributions of the random variables involved, yr cannot be expressed in terms of the past
values of the trajectory almost surely (which would have been possible in & purely determin-
istic problcm) We now note that the complete (unique) solution to subgame Gr is (4.7)
along with 4% ., which was the unique solution (for agent B) to subgame Gr,.y.’

The next game in the sequence, Gr.1, involves the the action variables (vp,vr_,) for
agent A and (wr41,wr,wr-) for agent B. Since every Nash equilibrium is necessarily a
stagewise equilibrium and since the unique (linear) Nash solution of Gy does not depend
structurally on vy_; and wr_,, it follows that every Nash equilibrium for Gy, should
match with that of G for policies uri1, yr and vr. Hence, the equilibrium solution of
G-, will be nonunique only if the last components of the policy sequences, (vr—1,ur-1),
are nonunique at equilibrium. Towards a study of this, we substitute the solution of G7 into
Ja and Jp, with vy_; in (A.7b) replaced by a general function of yT—1, say ¥r_,(y7"!),
since B does not have direct access to vr.;. [It is important to note at this point that if
B had direct access to vr_,, the solution would have been informationally nonunique, for
reasons discussed extensively in Bagar (1978a) for a different class of such games.] Now, after
eliminating the intermediate variables and averaging over the stochastic variables, we arrive
at the following reduced costs for Go..;, conditioned on the common information available at
time T—1, r.e. yT—1:

cost 4(Gr—1) = quad(yr—1,v7-1,Wr—1,97-3,97-1(y7 1))
costg(Gr-1) = qu&d(vr-:.vr-;,wr-..,d;,-_x(yi'-l)).

Here, in addition to the unknown (but fixed) function tr.;, we also have vr_3 = vr_3(y7~?)
fixed by an arbitrary choice of yr_3. Under an appropriate condition which is independent of
tr—1 and yr-3 (which is also guaranteed by Condition 2), this static game admits a unique
equilibrium for each fixed ¢¥r—_, and vr_3:

vr-1 = Jr-1(yr-1,97-2,¥7-1(y7-1)) = lin(yr-1,vr-2,¥7-1(¥7-1)) (A8a) .

wr-1 = Ar-1(yr-1,97-3,¥7-1(yr-1)) = lin(yr-1,vr-2, ¥r-1(yr-1)), (4.88)

where vr_3=v7_3(yT~3). Next, we impose consistency in the solution for each fixed yr_3,
which requires that §r_; = ¢r_,. Using this side condition in (A.8a), we arrive at

vr-1 = lin(yr—1,v7-3,vr-1)
which, being linra~ admits the unique solution (for each fixed yT-! and vr_3)
vr-1 = Jr-1(yr-1,vr-2) = lin(yr-1,vr-3), (A-9a)

under a nonsingularity condition which is met under Condition 2. Letting ¢¥r—; = Jr_; in
(A.8%), we finally obtain for wr—_; (for each fixed yr_3):

wr-1 = fr-1(yr-1,97-3) = lin{yr-1,v7-32) (A.9%)

This then complates the verification of the uniqueness of the solution of Gr_,, for each fixed
7r-3. Note that the complete solution to Gr-, is given by u},,, (A.7) and (A.9), with




147

vr.1 in (A 7b) replaud by the expression in (4.9a). Here we could also have expressed
(A Ta) in terms of y7, instead of (yr,vr-1), by ‘substituting for vp—, from (4.9a), but this
is not necessary since agent A does have access to his past decision value, and enmriching
his information set by also including past decistion vt.luu does not lead to informational
nonuniqueness.

The important observation here is that, for each fixed ~r—2, the solution of subgame

Gr-1 (to be denoted (—7r.'1r-x.ur+x,nr.ur-1) ) is structurally unique, with each strategy
being linear in its arguments. More procmly we have 7 linear in (yr,vr-1), Fr-1 linear
in (yr~1,97-2), 41 linear in yro1, fir linesr in (yr,yr—1,77-2(y"~?)) and fir_, linear
in (yr-1,7r-2(yT"2)). Furthermore, the solution is inf| unique because of the
nonsingular statistics of the additive noise in the dynamics (4). Then, in the construction
of the Nash solution for subgame Gr_3, we first substitute for (Yr,¥r—1;8T+1, 87, 67~1)
from the unique solution of Gp-, with 4r_3 replaced by a general function ¥r_3, as in the
construction of the solution for Gr_1. Repeating the same procedure as in Gy, we can
obtain a linear stagewise Nash solution for Gy..3 for each fixed yr.3, whose uniqueness is
again guaranteed by Condition 2. Following this procedure in retrograde time, we find that
for each s, the subgame G, admits a unique stagewise equilibrium (for each fixed 4,_;), linear
in the available information as well as in ~,—;. Since 4., is trivially zero, the process halts
at s=0, leading to the conclusion that the game Go admits a unique stagewise equilibrium,
linear in the common information available to the agents. This then establishes uniqueness
of the Nash solution of the original problem (which is identical with Go), since every Nash
equilibrium is a stagewise equilibrium and we have already proven that the game admits at
least one Nash equilibrium.

We conclude this Appendix by pointing to the fact that the above procedure would have
been an alternative method for the construction of the Nash solution given in Theorem 2, but
alone it would not be sufficient, since a stagewise equilibrium need not be a Nash equilibrium.
° .
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COLLUSIVE EQUILIBRIA IN STOCHASTIC SEQUENTIAL
GAMES WITH LIMIT OF AVERAGE PAYOFFS
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Abstract This paper deals with the construction of cooperative equilibria for stochastic dynamic
games, where the players cannot observe the actions of their opponents. For a particular class of
dynamic games with payoffs defined as the limit of average gains one establishes the existence of
perfect equibria which are also Pareto-optimal.

1. Introduction

The aim of this paper is to explore the possibility to construct cooperative equilibria in stochastic

sequential games of infinite duration with payoffs defined as lmit of averages. A stochastic sequential

game is a discrete-time dynamic game that involves an element of uncertainty represented by a random
noise affecting the state transitions. Sequential games include as a parti.cular case the class of so-called
repeated games, which arise when a static game (e.g. a matrix game or a Cournot duopoly game) is
played repeatedly over an infinite number of periods.

One of the most interesting features of dynamic game theory is that it allows the study of cooperative
or collusive behavior among the agents engaged in the control of a dynamic system, even in the absence

- of any external mechanism which makes cooperative agreements binding. Recall that the presence of

such a "cheating preventing” device is a precondition of cooperation in static games (Luce and Raiffa
1957). Cooperative solutions of dynamic games, on the other hand, can be supported by "cheating-
proof” equilibrium strategies, which imply that a player react with a punitive action to any breach
of cooperation by his partners. This fact has been first established for deterministic repeated games
(see Aumann 1959, Friedman 1977, Rubinstein 1979, 1980, and Radner 1980), and later studied in
the more general context of deterministic sequential and differential games in Tolwinski 1982, 1986,
Haurie and Tolwinski 1984, 1985, and Tolwinski et al. 1986. The collusive equilibria of dynamic
games considered in these works have been obtained under the assumption that a player making his
decision at a given instant of time has complete information about his partners’ action history. The
importance of this assumption stems from the fact that it ensures that each player has the ability to
detect any breach of cooperation by other players, and then to react to it in an appropriate manner,
The question addressed in the present paper is whether the above assumption can be relaxed, i.e., can
a cooperative equilibrium be constructed for a dynamic game, where the players have only incomplete
information about other players actions?
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The issue of existence of cooperative equilibria in repeated games when the information held by each
player about his opponents actions is distorted by random noise has been addressed by Radner 1981 or
Rubinstein and Yaari 1983 for the case of average payoff criteria, and Radner 1985 , Porter 1983, Green
and Porter 1984 and Fudenberg and Maskin 1986, among others for the case of discounted payoffs.
Radner considered the problem of monitoring cooperative agreements in the context of a repeated
principal-agent game, and obtained cooperative epsilon equilibria under the assumption that the
players maximize their average payoffs over a finite but arbitrarily large number of periods. Radner’s
approach has been closely related to the idea of sequential tests of power one (Robbins and Siegmund
1974); it takes advantage of the fact that only the changes of policy that are maintained for relatively
long periods of time can have any noticeable impact on long-term average payoffs. The changes of this
type, on the other hand, can be detected by means of statistical tests. Radner’s approach involves
a so-called triggering mechanisms: a strategy is then a combination of a cooperative policy, a threat
(or punitive) policy, and a switching rule which triggers punitive retaliations. The repeated game
structure is not essential for the obtention of such cooperative equilibria as it will be shown in the rest
of this paper which establishes a result similar to Radner’s in the realm of sequential stochastic games.
However an infinite horizon setting is essential for such equilibria to exist, since as shown by Basar 1977
a stochastic sequential game played over a finite time horizon, contrarily to deterministic sequential
games typically admits as equilibria only those which correspond to the strictly noncooperative mode
of play (viz. the feedback Nash equilibria obtained through the dynamic programming approach).
What makes the situation different for infinite horizon stochastic sequential games is the fact that
there is always enough time for a player to retaliate if cheating has been detected. When the strategy
evaluation criteria defining the players payoffs are the limits of the average transition rewards, then
only the long term effects of strategic choices really matter. This fact also facilitates the construction
of efficient cooperative equilibria. .

The paper is organized as follows. In Section 2 the definition of the stochastic sequential game is
introduced. In Section 3 the definitions of admissible strategy pair, perfect equilibrium, and efficient
strategy pair are given. Section 4 is concerned with the extemsion of Radmer’s approach for the
construction of efficient collusive equilibria, to the class of stochastic sequential games.

2. The stochastic sequential game format

We consider a two-person nonzero-sum discrete-time dynamic stochastic game, also referred to as a
stochastic sequential game and defined as follows:

Let a dynamic system be described by the state equation
a(t+1) = fla(1), wi(t), wa(t), w(t), t=0,1,2,... ity

where z(1) € R” is the state vector, u;(t) € R™' is the control variable of Player i, i = 1,2, and
{w(t) : t= 0,1,2,...} is a purely random sequence of independent identically distributed random
variables, with values in IR?; n, m,, m,, p are given integers. The function f: R" xIR™ xR™* xR" —
R" is given and known by the two players. We assume that each player is able to directly observe the

.
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state vector 2(t), but can observe neither his opponent’s actions nor the realizations of the random
variable w(t). As a consequence, Player { selects his control u;(t) from a given subset U; of R™, on
the basis of the information represented by the random sequence

v(t) = {z(0), 2(1),...,2(¢ - 1),2(t)}, t=0,1,2,... (2)
In other words, a strategy of Player i is defined as a sequence of mappings
Y%={1 :1=0,12,...}, i=12 (3)

where v;; 4ssociates an element of U; with every »(t). The collection of all strategies of Player i is
called Player i's strategy space and it is denoted by I';.

One can view the controlled stochastic system (1) as a family of discrete-time stochastic processes
with values in R”, defined over a measure space (2,L). The information structure (2) corresponds
to an increasing family of o-flelds £ = {Z, : t =0,1,2,...}. A strategy v; of Playeri is a I,-adapted
stochastic process with value in U;. Associated with any admissible strategy pair v = {(1;,7), 2
probability measure P, is defined over (2, L).

For obvious reasons, a strategy requiring a player to recall the whole sequence (1) for every ¢, would
be of little practical value. Therefore, we consider among the admissible strategies I'; the class of the
so-called Eztended Markovian (EM) strategies. Under the EM strategies Player i chooses his control
u;(t) on the basis of an extended state vector x (1) = (z(t), yi(t)), where y;(2) is an auxiliary state
variable with values in a given set ¥; and which summarizes the information available to player i
concerning the history of the game up to time ¢. Wecall Z = R" x Y, x Y; the set of all possible
values for the extended state variable. The evolution over time of the auxiliary state variable y(t) is
described by an auxiliary state equation of the form

y.'(O) = y?v
¥t +1) = gif2(1), ua (1), ua (), w(t), yi(t)], t=0,1,2,... (4)

where g; : IR® x R™ x IR™* x R x ¥; — Y; is a given function, and y{ is a given initial value.

A stationary EM strategy 7, in I is such that for every ¢, 7, is a function of the extended state alone,
i.e., 7y does not explicitly depend on ¢. In such a case, the symbol v; will be used to denote ¥, i.e.,
Player i’s decision rule at stage ¢, as well as his strategy, i.e., the whale infinite sequence of those rules
Also one should notice that an EM strategy implies a specific information stru.iure associated with
the auxiliary state equation («).

Remark 1. The choice of the auxiliary variable y;(t) aad state equation (4) is part of the design ot
a strategy by Player i. In some strategy designs the auxiliary state varisble y;(t) can be used as an
indicator of the mood of piay. yi(t) = 1 indicates that a cooperative mood of play prevails whereas
w(t) = 0 indicates that a noncooperative mood of piay is adopted. In section 4 cooperative equilibria
will be obtained in this class of EM strategies.

Remark 2. The so-called stationary feedback strategies for which the extended state variable at any
time t reduces to 3(t) = z(t) constitute a particular subciass of EM strategies. This class of strategies
bas been the object of most of the attention devoted to the theory of stochastic sequential games
(Sobel 1971, Whitt 1980).
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3 Strategy evaluation criteria (payoff functionals) and equilibria

LetA; : Uy x U3 x R" — IR represent the transition reward function of Player:, i = 1,2. We
say that the strategy v is admissible if the following payoff functionals are well defined for any initial
extended state 2(0)

T-1
Ji{=(0); 71 = lim (1/T)E, {E Mz (8), w (), u,(m} )
=9

In the above formula, z, ,u;, u;2 are stochastic processes associated with the strategy pair v and the
expectation is taken with respect to the probability measure induced by the strategy pair v, where

v=(mm) ={n=(men) : £=0,1,2,..} )

The expression (6) defines the so-called limit of average criteria for strategy evaluation in this infinite
horizon stochastic sequential game.

Remark 3. The use of a limit of average criterion implies that the player is only concerned by the
lasting effects of his strategic choices. More precisely any effect which appears in a finite number ot
transitions will become negligible.

Remark 4. With the limit of average criterion it often happens that the payoffs associated with a
stationary feedback strategies do not depend on the initial state. This ergodicity property will be
exploited in the construction of cooperative equilibria.

Definition 1. An EM strategy pair v* = (7;,7;) , associated with the extended state z(t) and the
auxiliary state equation (4), is a (perfect) equilibrium if it is admissible and at any initial extended
state 2(0) € R" the follow,1g holds

Ji{2(0)77] 2 Nif2(0); 1, %) (M
for all v, € Ty such that (4,,7;) is admissible and
J2[2(0); 1°) 2 Ja[2(0); 77, 2] (8)

for all ¥, € 'y such that (4],7;) is admissible.

Definition 2. An EM strategy pair v° = (4],73;) is efficient if it is admissible and at any initial
extended state z(0) € IR" the following holds for any 4 3dmissible

Jil2(0); 7] 2 Jil=(0)iy°] i = L2 Jil#(0)i) = Jil2(0)ir7) i = 1,2 9

[P

— A




Yy

AR - L BN L e M oy and g . vrvv-?vmvw«ﬁ-v _—

153

4. Efficient Cooperative Equilibria

In this section we extend to a sequential game format the approach initially proposed by Radner
1981 in the realm of repeated games, for the construction of efficient perfect equilibria. The following
assumptions are assumed to hold:

(Al) The game has a stationary feedback equilibrium u = (4, u2) generating payoffs whose values
are independent of the initial state of the system, i.e.,

Ji(zos ) = V;” = const. foreveryzy € R", i=12 (10)
In addition, there exists an efficient stationary feedback strategy n = (7, 7:) such that
Ji(zo;1) = V€ = const. foreveryz, € R", i=1,2 (11)

and
VE > VNfori=1,2. (12)

(A2) There exist numbers M, and M, such that
'hl'lzv 7)!(:)]'5 Ml (1+ "2”), i= 1v2 (13)

Il flz, n(z), w1 € Ma(14 N w ) (14)

foreveryz € X.

(A3) The components of the random vector w have finite expected values and variances.

The random variables defined below will serve as statistics for monitoring adherence to cooperative
policies n during the play. Let

z,(1) = flz(t - 1), n(z(t - 1)), w(t - 1)] (15)

and
e(t) = E {hilz,(t), n(zo(t)Iz(t - 1))}, i=1,2. (16)

Consider the stochastic processes

W5 (1) = hy[z(), m(z(2)), u2(t))] - ea(t)

and
¥2(2) = ha[2(2), u1(1))y m(z(4))] - ea(t), (17)
and define
Si(t) = Z' ¥i(s), t=12,..., i=1,2 (18)
am0

We shall denote by ‘i;(t) and 5(t) the values of ¥:(t) and S5i(¢) respectively, corresponding to the
case when u,(t) = n;(2(t)) for all t and j # i.
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Remark 5. The random variable z,(t) defined in (15) is the state that would result from the use of
the strategy pair n at period t ~ 1 and at state z(t ~ 1) (recall that 7 is a feedback strategy pair).
The conditional expected value e;(), given the observed state z(t — 1) defined in (16) can thus be
computed by Player i at each period t. The stochastic process ¥,(t) defined in (17) is thus based
on a comparison between the conditional expected transition reward when the cooperative feedback
strategy pair prevails and the actual realization of this reward. This will provide the information basis
permitting Player i to detect cheating by his opponent provided that he can observe his own traasition
rewards.

Lemma 1. Under (A2) and (A3), 5i(t)/t converges to zero almost surely.

Proof: This result is a direct consequence of the generalized Strong Law of Large Numbers (Feller
1971, page 243, Theorem 3), provided that E{¥,(¢)*} can be shown to be bounded for all t € {1,2,...}

To see that the latter is true, observe that
E{#(1)’} = E{hilza (1), m(zo ()P} = es(t)® (19)
In view of (A2) one has

[ Aslz(t), m(z()] ] < My(1+ [f2(0) [I]
M1+ || fl=(t - 1), n(z(t - 1)), w(t - 1)} [}

A

i

. . (20)
S M1+ M(1+ fw(t=-1)))
= M(1+ [ w(t~ 1) ]
where M is a constant depending on M, and M,. Hence,
le(®) 1= E{h:} | < M1+ E{l| w(t~1) |} (21)
and
E{h]} < M1+ 2E{l w(t-1) I} + E{ w(t- 1) *}) (22)

Therefore, (A3) implies that the variances of ¥,(t) are bounded for all t. »

We now proceed to the construction of an efficient cooperative equilibrium defined by an EM strategy
pair. Let {b:i(2)}, i = 1,2 be two sequences of positive numbers such that b;(t) tends to infinity,
and 5(t)/t converges to zero when t approaches infinity. We define the auxiliary state variables,
(1), 1= 1,2, with value in ¥; = {0,1)} and the following dynamics

¥i(0) =1

TOERS if i(t=1) = 1 and S;i(1)/t 2 =b4;(2)/t (23)

0 otherwise
we define an EM strategy pair, v = (13, 73), as follows

(a0, w(@), va() = { MY Bu(0 =1 forj= 1.2 (20

Remark 8. The dynamics for the information variable y;(t) given by Eq. (23) does not seem at first
sight to be of the general form described in Eq. (4). However it would be easy and straightforward to
obtain the form given in (4) by noticing that the variables S;(t) satisfy the following state equation

S((t + 1) = S‘(t) + Wi(t) NE DA A

- abii
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Remark 7. The strategy ¥: is such that Player i begins the play in a cooperative (Pareto efficient)
mood of play; however if some "cheating” is detected at period ¢t through the mechanism defined by
(17), (18) and (23), then Player i switches to a purely noncooperstive mood of play (feedback Nash
equilibrium) and maintains it forever.

Proposition 1. There exists a sequence {&(t)} such that the strategy pair v defined by (24)-(25)
constitutes a perfect equilibrium, and the payoffs generated by  coincide with V?, i.e., the equilibrium
v is also efficient.

Proof: If y,(t) or ya(2) is zero, then both players use policies (s, u2), which constitute an equilibrium
by (A1). Now, consider the cases when y; (1) = y»(f) = 1. Since the policies (7, 7,) are Pareto-optimal,
any deviation from 7; which leads to an increase in the payoff of player ¢, must at the same time cause
a decrease in the payoff of the other player. Suppose that Player 1 has unilaterally changed 5, for a
policy ¢, which generates a sequence of one step payoffs which satisfy:

E¢unay {Ar[2(t) w1 (D)), u2(1)} = Eq {24 (1), m(24(2))s ma(Za ()]} + 6:(1) RS

If the above change of policy is to have any effect on the overall payoff of player 1, one must have

T-1
Jlim (1T) 32 6:(1) 2 6 > 0 (26)

t=0

for some number §;, because otherwise

i

T=1
Aim (1/T)E {2 hifzq(2), v(zq(t))]}

t=20

T-1
TU_H;(I/T) E¢, 05y {2 hy[=z(2), "x(f)'uz(t)]}
' = T-1
+ Tlin;(l/T) 3 &)

T-1

SVE+ lim (UT) L & S VS (2)
=0
In the case when (26) holds, Player 2 will receive a payoff of the form
E(¢ynn{ha(z(2), w1 (8), ua(t)]} = Eq{ha[z4(2), n(za(t)]} + &2(2) (28)
where
T-1
Jim (1/T) Y &) <$8H <0 (29)
t=0
for some number §;. Hence, in view of Lemma 1,
Jlim S(1)/t € lim 5()/t+6 <8 aa (30)

Since by(¢)/t approaches zero when ¢ tends to infinity, (30) implies that y3(t) will eventually become
zero almost surely. In other words, any deviation from m which could lead to an increase in Player
1's payoff will almost surely be detected by Player 2, who will then switch to u;. The best response
of Player 1 in such case will be to switch to g1, and his payoff resulting from this turn of events will

w‘.—w‘"' —>—v -~
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be V;¥. To complete the proof, it suffices to show that, provided that the sequences {b:(t)}, i = 1,2
be conveniently defined, if Player 1 stays with ny. then he will receive V,€, which by assumption is
greater than V{V. :

By Lemma 1 we know that for every integer m, there exists a number T}, such that
P{S:i(t)/t 2 -1/m, for t2 T,}=1, i=12 (31)
Hence, if we define the sequences {b;(t)} i = 1,2 in such a way that they satisfy
bi(t)=00 for 1St<T, b(t)=t/m for Tm St<Tmes, m=12,... (32)

then Si(t)/t 2 —bi(t)/t almost surely for all ¢ and ¢ = 1,2. Therefore, assuming that Player 2 uses
72, if Player 1 does not deviate from m, then y;(t) and ya(t) will almost surely remain equal to one
for all ¢, which means that Player 1's expected payoff corresponding to the use of strategies (24)-(25)
will be equal to V€.

Since the same argument as the one given above applies to the analysis of consequences of deviations
from 7; by Player 2, we have shown that the strategy pair given by the expression (25) with b,’s
satisfying (32) is in fact a perfect equilibrium and that it generates Pareto-optimal payoffs. Thus, the
proof has been completed. ¢

5. Conclusion

We have shown that a class of sequéntial games with limit of averages payoffs admit efficient collusive
equilibria in the class of extended markovian strategies. This result completes and extends Radner’s
theory.
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1. Intredyction

Economic Agents operating in uncertain, stochastic environments can face a
tradeoff between current period expected reward and accumulation of information of
uncertain value, For example, a firm producing to meet uncertain demand might
produce at the expected current reward maximizing output, based on his current
beliefs about the form of the demand curve, or it might choose to experiment by
varying outpuc, thus taking short term losses in order to sharpen beliefs about the
form of the demand curve. A parametric representation of the agent’s problem is
made by considering the utility function wu(x,y) and the conditional density
£(y|x,8). Here the random variable y is what the agent is trying to control
(e.g., current period profits) and x is the control variable. The parameters ¢
of the conditional density of y given x are unknown, but the agent has opinions
about # pgiven by a distribution u. The agent attempts to minimize the present
discounted value of the stream of expected losses, E):&tu(xt.yt), where the expec-
tation is taken with respect to current beliefs. The problem is complicated by the
fact that beliefs are updated from period to period using Bayes Rule; consequently
current period actions can be expected to influence future period beliefs. This
introduces stochastic dynamics into the model.

This paper considers the problem in the case in which the density f£(y|x.#) is
a location family. 1In this case the model can be written y = g(x,8) + ¢, where ¢
is an i.i.d. random variable whose distribution may involve unknown parameters.
When g(x,8) = x'B the problea is one of controlling a linear regression process
with unknown parameters over an infinite horizon. Many approximate control rules
for this problem have been proposed, for sxample sequential least-squares estimation
combined with one-period optimization conditioning on the current estimates. The
analogous policy for the nonlinear model is clear., In practice several policies can
work “well,” though it is possible to compose examples in which the policy men-
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tioned, for example, is easily improved. From an economic modelling point of view,
however, we are Iinterested in the goptimal policy, and in the conssquences for
convargence of beliefs and policies of following the optimal policy. Will it be
optimal for an agent to learn the parameters (and thus converge to “rational
expectations”)?

This paper gives general conditions under which the sequence of beliefs
converges to a limit and the sequence of optimal policles converges to a limit.
Under further conditions the limit policy is the optimal one-period policy for limit
beliefs. Conditions under which the limit belief is point mass at true parameter
values, corresponding to consistent parameter estimates are more stringent and are
still under investigation.

Least-squares control rules in the linear regression model have been widely
discussed and studied analytically by Taylor (1974) and Jordan (1985) and experi-
mentally by Anderson and Taylor (1976). Improvements using a Bayesian approsch were
suggested by Zellner (1971) and studied by Harkema (1975). The optimal policy in
the linear regression case has been studied by Kiefer and Nyarko (1987), who obtain
results on convergence of beliefs and policies. convergence in a different class of
models has been studied by Easley and Kiefer (1986). Results on optimal learning
while controlling a stochastic process are collected along with an example in Kiefer
(1988).

2.  TIhe Decizion Problem: Uncertaincy. Policies apd Rewards

In this section we sketch the general framework we wish to study.

let Q' be a complete and separable metric space, let T be its Borel field,
and (@', F ,P') a probability space. Define the stochastic process “:). on
@, F,P). The ¢ ¢ 4% assumed to be independent and identically distributed,
with the common marginal distribution P(‘t“) depending on some parameter, £ in

Rh, which is unknown to the agent. We assume that the sat of probability measures,

ip¢-lér, "is continuous in the parameter £ (in the weak topology of measures); and
that for any £, [ ¢ p(de]€) = 0. Let X, the action gpace, be a compact subset
of Rk. Define & « R® x Rh to be the parameter space. I1f the "true parameter”

is # = (B,€) ¢ ©, and the agent chooses an sction x_ ¢ X at date t, then the
agent observes Yer vhere,

Yo = B(X..B) + ¢ (2.1)

and ¢ 1s chosen according to p(-|¢). The function g 4is assumed measurabls;

WY
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further restrictions are introduced implicitly through assumptions on the updating
equation (2.2) and the reward function (2.3).
One example is the simple linear regression model with unknown slops and

intercept and with the L independent draws from tho normal distribution with

mean zero and variance a? In that example 0O' is R°, F 1is the collection of
Borel sets on R*, and P’ is the infinite product of independent univariate
normal distributions with means zero and common variance 02. The parameter § is
the variance of ¢, az. The action space X 1is a closed interval in Rl. The
parameter S ¢ Rz consists of the slope and intercept of the regression. The
space © is R2 x Ri.

Let 7 be the Borel field of ©, and let P(8) be the set of all probabilicy
measures on (6, g ). Endow P(6) with its weak topology, and note that P(8) |is
then a complete and separable metric space (see e.g., Parthasarathy (1967, Ch. II,
Theorems 6.2 and 6.5)). Llet Ho € P(8) be the prior probability on the parameter
space, with finite first moment.

The agent is assumed to use Bayes rules to update the prior probability at each
date after any observation of (xt. yt). For example, in the initial period, date
1, the prior distribution is updated after the agent chooses an action xq. and
observes the value of ¥y The updated prior, i.e., the posterior, is then

By = T(xy, ¥, Bg), vhere r:% x & x P(9) » P(8) represents the Bayes rule

‘operator. If the prior, By has a density function, then the posterior may be
easily computed. In general, the Bayes rule operator may be defined by appealing to
the existence of certain conditional probabilities, although some care is needed
(see Diaconis and Freedman (1986)). Under some conditions the operator I is
continuous in its arguments, and we assume this throughout. ‘Any (x:, yt) process
will therefore result in a posterior process, ("t)' vwheres for all t=1,2,...,

Be = DX, Yoo Be ) (2.2)
- n-1 - 1 .
Let lln = P(0) x I [(XxR x P(8)). A partial hiatory, hn' at date n iz

i=1
any element h = By, (Xy, ¥yu My)oeeo(Xy g0 Fp 108 4)) & ] h, 1is said to be
adaissible if (2.2) holds for all t =1,2,..., n-l. Let H_ be the subset of H
consisting of all admissible partial histories at date n. A policy {s a sequence
' ('t):-l' vhers for each t 21, the policy function = :H - % specifies the
date t action x, = x:(ht). as a Borel function of the partial history, hc in
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H, at that date. A policy function is gtationary 1f 'c(he) - 3("c) for each ¢,

vhare the function g(-) maps P(8) into X.
Define (n' 3 s P) - (e' 5 ’ “o) x (n'v 5’ ’ P'). Aﬂy p011¢y, ®, then

5ox;orntu a sequence of random variables ((xt(u), yt(w). ut(w)):_l on (@, JF.P

as described above, using (2.1) and (2.2). See Kisfer and Nyarko (1987) for

technical details,
For any n = 1,2,..., let 5n be the sub-field of F , generated by the
random variables (hn' X u). Notice that L is 3:: -measurable but Ya and B
L]
are not 311 - measurable. Next define 3_ -V n-Og n"

let u:X x Rl - Rl be the utility function, so u(xc, yt) is the utility to

the agent when action X, is chosen at date t and the observation Ve is made.

The reward function r:X x P(8) = R1, 1is defined by

v(x o 1) = Sofputx., yOP(de |€)p, _;(d0) (2.3)

The inner integration marginalizes with respect to ¢, given the parameter £, the
outer integration is with respect to parameters. Assume that the reward function is
uniformly bounded, continuously, and concave in x for given u. Note that this
assumption restricts g(+,+), U(s,+) and p(+|+).

let 6§ in {0,1) be the discount factor. Any policy =x generates a sum of
expected discounted rewards equal to

Y (ug) = zls“‘lrcx:(w). .1 ())P(d) (2.4)
L

vhere the (xt, “t) processes are those obtained using the policy =x. A policy x*
is said to be an optimsl policy 1if for all policies =« and all priors B in

in P(8), V *([40) 2V (yo). Even though the optimal policy, x* (when {t exists)
~

may not be unique, the value function V(po) -V *(po) is always well-defined.
x

3. Existence of s Stationary Optimal Policy

Straightforward dynamic programming arguments can be used to show that sutionf
ary optimal policies exist and the value function is continuous.

Theorem 3.1: A stationary optimal policy g:P(8) = X exists. The valus
function, V, 1is continuous on P(8), and the following functiocnal equation
holds:

S L AR St b S |



T.-rvv-vﬁw— VW e e A -~ '-\(-\va hamadintndy ¥ SRR AN — ———

{ ' 163

FEFRVRE I SR TR T ]

V(p) = max (£(x, p) + §[V(a)p(dc]€)u(an) 3.1

vhers B ~T(X, y, #) and y = g(x, 8) + ¢, and vhere the integral is taken over

Rlxe.

Proof: let S = (£:P(8) = R | £ is continuous and bounded).

Define T:S = S by

Tw(p) = max (r(x.n) + 6JV(u)p(dc|é)u(ds)) 3.2)
xeX

One can easily show that for wecS, TweS; and that T 1s a contraction mapping.
Hence there exists a veS such that veTv. Replacing w with v in (3.2) then
results in (3.1); and since veS, v is continuous. Finally, it is immediate that
the solution to the maximization exercise in (3.2) (replacing w with v) results
in a stationary optimal policy function (see Blackwell (1965) or Maitra (1968) for
the details of the above arguments).

4. Convergence of the Process (pt).

In this section we prove that the posterior process converges for P-a.e © in
1, to a well-defined probability measurs (with the convergence taking place in a
weak topology).

Note that for any Borel subset, D, of the parameter space ©, if we suppress
the w's and let, for some fixed w, ”:(D) represent the mass that measure uc(w)
assigns to the set D, then

B (D) = zumml.?t] (4.1)
Define a msasure s on © by setting, for each Borel set D in 8,
Ba(D) = E(l, 01 3] - (6.2)

The measure u_ 1is the limiting posterior distribution and is indeed a well-defined
probability mesasurs.
Theoram 4.1. The posterior process 'lpt) converges, . for P-a.e. « in Q,
in the weak topology, to the probability measurs 4 .
Sumaary of Proof: Use (4.1) above to show that for any Borel set D in @,

“:(D) is a Martingale measure, establish that the sequence of probability
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measures, pt(w), for fixed w, is tight using the assumption that the first
moment of pu_ is finite, then apply Prohorov’s Theorea (e.g., Billingsley

(1968, Theorem 6.1)) to deduce that #, 1is s probability measure.

Note that this result on convergence of beliefs is quite different from the
standard consistency result looked for in econometrics. The Martingale Convergence
Theorem allows us to establish convergence, but the limit measurs #, 1is a random

variable, in the sense that it depends on the particular sequence of shocks real-
ized. In a standard estimation problem, the limit result is that beliefs converge
and the limit belief is independent of sample paths, and the limit belief is correct
in the sense that B, assigns point mass to the true parameter value. Standard

results do not hold here because along any sample path for which beliefs conmverge,
the sequence of actions (xt) may also be converging. But if actions converge too

rapidly, they may not generate enough information to identify all the unknown
parameters. One can construct examples in related problems in which this phenomenon
occurs (see e.g., Kiefer (1988)).

5. Qpuimizagion and Limit Beliefs an¢ Actions

In Theorem 4.1, convergence of beliefs was established for an arbitrary (xt)

sequence (i.e., without taking into account the underlying maximization problem).

In this section we ask what action (or actions) x corresponds to the limiting
beliefs 4 .

Theorem 5.1 establishes that the limit action is the action which maximizes
single period reward for limit belfefs.

Theorem 5.1: The limit action x = lim x exists, is unique for given u)

e

and wmaximizes the one-period reward, r(x,p.). for limit beliefs By

Broof of Theorem 5.1: Recall from Theoresm 4.1 that lim By = By exists for

[y
all sample paths. The sequence {x.) and (p:) satisfies for each €
(simultaneously, a.e.) the functional equation

Vipy) = r(x..p8,) + va(r(xc.yt,ut))p(dtl()pt(dl). ¢5.1)

Taking limits along any convergent subsequence gives
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V(s = x(x,p,) + §JV(T(x,y,4,))P(de|€)p,(d0)

vhere x 4is a limit point of the (x.} sequence. (In taking the limits one uses

the fact that V is bounded and the integral in (5.1) is E[V(s )|5 1 to appl
/17 e ¥

Chung (1974, Theorem 9.4.8).) Howaver, from convergsnce of beliefs (X,y) ylslds
no information so l‘(i,y,p‘) - B and (5.1) becomes V(p.) - r(i,u") + V().

Now we show that X solves the problem

max r(x,y.) - (5.2)
xeX

' Suppose on the contrary that there is an ReX  such that r(:'},y ) > r(x,s ). Then

by the functional equation
A A A
Vip,) 2 r(X.p,) + 6JV(D(X.Y.8,))P(8c]0)p (d6). (5.3

But by Blackwell’'s Theorem (see e.g., Kihlstrom (1984, Lemma 1, p. 18)), since the

experiment “"observe (Q,Q)' is trivially sufficient for the experiment "make no

observations,” we obtain,

JV@x,y,8))p(de|8)p_(d0) > V(s ) (5.4)

Hence, from (5.3) and (5.4) V(u ) > r(x,p ) + 6V(s ), which is a contradiction.
So x solves problem (5.2); that is, x maximizes the one-period reward r(x,s)
for limit beliefs, u . Since r(-.p,) 1is strictly concave in x, x “must be

unique.

6. Conclusion
We have considered the decision problem facing an agent controlling a nonlinear

regression process when parameters in the mean function and in the error distribu-
tion are uninown. The agent faces a tradeoff betwsen accumulating information by
varying the values of the regressors and accumulating one-period reward by following
the one-period expected reward maximizing policy. We show that the problea can be
brought into the dynuﬁc programming framework and that the value function satisfies
the usual functional equation. The sequance of beliefs about the unknown parameters
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is shown to converge almost surely.

Further, the optimal action process converges
to the one-period optimal action under limit beliefs. :
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INFORMATION AND DECISION IN OPTIMAL INVENTORY PROCESSES

Toshio Odanaka
Tokyo Metropolitan Institute of Technology
6-6, Asahigaoka, Hino-city, Tokyo, 191, Japan

ABSTRACT

According to developments in management information systems, more investigation is

required to adapt the fundamental features that American management information sys-
tems have to the Japanese technical climate. One important problem is to decide the
kind and the accuracy of management information systems. If complete information is
desired regarding a system in each stage of control, some time and cost will be en-
tailed. Otherwise, if incomplete information make a decision quickly, we must put

up with using a probability that control a non-optimum system. We have not the com-
plete accuracy for the information and the decision both. This is analogous to Hei-
senberg's uncertainty principle. In this paper, we discuss the relation between the

information and the decision in optimal inventory processes in this viewpoint.

INTRODUCTION

According to management information system development, more investigation is re-
quired before adapting the funlamental features of the American management informa-
tion system to the Japanese technical climate. One important problem is to decide
the types and the accuracy of such a management information system. I complete in-
formation is desired regarding a system in each stage of control, some time and cost
will be entailed. Otherwise, if incomplete information is used to make a decision
quickly, we must put up with using a probability that will control a non-optimum
system. We do not have complete accuracy for both the information that is available
and decisions that are made. This is analogous to Heisenberg's uncertainty princi-
ple. This paper discusses the relation between information and decision in an opti-
mal inventory process from this viewpoint.

Additionally, we introduce the general principle of balance. We thus possess two
weapons namely the principle of optimality in dynamic programming and the principle
of balance in a management information system. In the third section, this principle
of a balance will be applied to the development of the relation between information
and decision in optimal inventory processes. Then, problems regarding quantity ap-
proximation, time approximation, demand approximation, the criterion approximation
and system structure approximation are summarized. The fourth section discusses the
stability of the optimal inventory equation and presents a design for an optimal in-
ventory system.

Finally, we point out that one source of imprecision stems from both randomness and

fuzziness, and conclude with a discussion of sume areas for further research.
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Principle of Balance

The stochastic properties of quantum mechanics are based on the uncertainty princi-
ple. A balance relation is pointed out wherein it is theoretically impossible to
measure with the same accuracy at the same time for a pair of quantities, called a
conjugate quantity.

The phenomenon that is analogous to this principle in physics exists in many fields.
Let us generally call this the principle of balance and discuss the relationship be-
tween this principle and several phencmena.

For example, the approximating of linear prediction theory due to Wiener leads to
the problem of minimizing the quadratic form

M

N
E= ] (a - [ A )2
kZO O «3k-2

over the real quantities A where the quantities a,_ are given real numbers. E

2’ k
is the prediction error. The prediction error decrease and the structure complex
increase when M 1is increased. It is an important practical question of decide how

large to make M that balance the prediction error and the structure complex.

(1) Principle of Optimality in Dynamic Programming [1]

The principle of optimality in dynamic programming indicates that the optimal policy
should harmonize the balance between costs involved in deciding present and future
values on a new state reduced by its decision, because dynamic programming involves
wmulti-stage decision processes. The information for the future is necessary in to
make a decision in the present. The principle of optimality is an exact mathemati-
cal expression for this idea.

Let us assume Rth wmulti-stage decis on processes. We shall be concerned with cri-
teria possessing a structure which , 'Tmits us to focus our attention solely upon the
past and present history of the process in a search for values of policies. Then,
to construct the optimal policy of the Rth stage, whatever the initial state and
initial decision are, the remaining (R - 1)th decisions must constitute an optimal
policy with regard to the state resulting from the decision on the first stage. We
must determine the first decision in order to determine the balance between gain in

the first stage and gains in remaining (R - 1) stages.

(2) Principle of Balance in Information and Decision

If complete knowledge of the system is deemed necessary at any stage, then an appre-
ciable time is usually required to accumulate this data. During this time, the sys-
tem 18 oncontrolled. That is to say that time is one of the most valuable resources

we have; it is unique in the fact that it cannot be reversed or replaced. It takes
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time to make decisions and then to implewment those decisions. If, however, we make
a decision quickly, using incomplete information about the system, there is a non-
negligible probability that a non-optimal action will be taken. We cannot have com~
plete accuracy in both information and control. This is the uncertainty principle

in a management information system.

Information and Decision in Optimal Inventory Processes

This section discusses some applications of principle of balance in regard to infor-
mation and decision in multi~stage stochastic inventory control processes. Multi-
stage stochastic inventory control processes will be introduced in Section 4. At
first, if we observe the exact inventory quantities, then we have the right decision
and the optimum expected cost, but we must accordingly allow for the cost of more
observation. This sort of approximation relates to the quantity aspects. Secondly,
instead of keeping records and placing orders ;t each period, it may be better to
observe and order at intervals of a few periods, even when this delay necessitates
paying a penalty charge for getting items quickly. This type of approximation re-
lates to the component of time. Also, there are some approximation problems in re-
gard to determining demand information, optimum criterion and inventory system struc-

ture, etc.

(1) Approximation of Observation [7], [8]

A pajor problem in modern management is that of keeping records. However, sometimes,

at a certain point, the cost of keeping records is greater than the gain that is ob-

tained by using these records. These factors provide the motivation for a study of

the approximation of observation of inventory quantity. It is necessary to decide

on the degree of observation approximation that harmonizes with the observation cost

and the gain obtained by using approximate information. We have obtained the follow-

ing results, using both analytic and computational studies. {7, 8]

1) Optimal choices between degree of observation M and degree of policy N depend
on the unit costs for this inventory process.

2) Inventory processes are as sensitive to M as to N .

3) Inventory processes are as sensitive to the backlogging problem as to the lost
sales probler, etc.

We can determine the degree of approximation that balances the cost of observation

and the total expected cost, if the approximate observation quantity is used.

(2) Approximation in Time (9], (10]

In introducing the basic optimal inventory equation, explicit use was made of the

S e 4
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assumption that observations and orders are made at each period. However, this as-
samption may be questionable. Instead of keeping records in every period, it may be
better to count the number of items when the supply is low, and even to pay a penalty
charge for getting items quickly when the supply is very low. The problem that we
want to study is that of determining the time to examine the number of items remain-
ing in stock. '

The results of analytic and computational studies are given in [10]. As we might
have expected, the shortage and the total expected cost increase with increasing var-
1ability of time interval in decision. Thus, we can determine the time of observa-
tion and control that balances the cost of observation and the expected cost, which

are obtained by using an approximate time.

(3) Approximation of Demand Informatiom [11])

The first step away from completely deterministic demands and a step of considerable

import, is the classical theory of probability with its introduction of random vari-

ables. We want to indicate the existence of high levels of uncertainty. We can con~

sider the following three cases.

1) Stochastic problem; the case when the stochastic feature is knowm.

2) Adaptive problem; the case where the demand distribution contains unknown sto-
chastic parameters.

3) Game theoretic problem; the case when the stochastic feature is unknown.

In {11], we have compared the solutions for cases when the probability density func-

tions of demand are assumed to be exactly known, adaptively known and game theoreti-~

cally known. The total expected cost increases as the completeness of information

decreases.

(4) Approximation in Criterion [12]

The problem of establishing the inventory system effectiveness criterion is a very
fundamentsal one.

Let us discuss the following problems of a multi-stage nature, namely average cost
per period and probability criterion.

1) Multi-stage problem

We often say that we are planning for the next year, and that we wish to minimize the
sulti-gtage expected costs or maximize the multi-stage expected profits. It is clear
that managers need not plan for next year only and that, in fact, they must consider
many years in advance. In this case, the optimal policy in one period does not al-
ways mean the optimal policy in multi-stage periods. However, under some assumption,

the former coincides with the latter.
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2) Average cost per period

In the stationary approach, we select a particular (s, S) policy, calculate the
long-run costs based on this policy, and then select the policy variables so as to
winimize long~run cost. Let the minimum cost be denoted by k . In the dynamic pro-
gramming approach, the technique depends on the minimum cost function Cn(x) . If
the interest rate is zero, then, as period n becomes infinite, Cn(x) will tend
toward infinity. It seems plausible that there will be some comnection between

la [C (x))/n and k. .
oo

3) Probability criterion [12]

Let us discuss the criterion which minimizes the probability that the inventory over
all stages exceeds a fixed level. The profits in the probability criterion are as
follow. At first, this is simple, because we do not require an estimation of the
cost functions. Secondly, we have the same policy characterized by the principle of

constant stock level as the criterion of cost functioms.

(5) System Structure Approximation [12]

Consider an inventory system that has many benefits. Under individual inventory con-
trol, each location puts in their orders separately and is concerned only with its
own welfare. Under its centralized inveantory control procedure, by contrast, quan-
tity orders are made simultaneously for all locations in the network. There are im-
mediate advantages and disadvantages to comtrolling such an inventory system central-
ly.

Since information about the entire supply network is recorded at a central location,
decisions can be made effectively and expediently in emergencies, but the resulting
decisions are more complex. An important question is the determination of how many

benefits that are optimal in order to achieve centralized control.

Inventory System Design

Hést of the authors who have written on the subject of inventory control have made

the assumptions either that we have obtained or that we shall have information used

to make the necessary decision. In this section, on the contrary, let us determine

the kind and accuracy of the information, on the assumption that we know how to de-

cide when to have some information. (3]

There are two types of costs with regard to information. One is the observation

cost, which is entailed in obtaining information. The other is the error cost, ow-

ing to the approximation of information. Our aim is to minimize the sum of these f
costs. A model of our inventory control process is the multi-stage stochastic in-

ventory problem. Let L(y) be given by:
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Where L(y) represents the sum of the expected inventory cost Lgh(y-5)¢(€)dz and
the expected penalty cost j;b(z-y)¢(£)d€ in each period, and ¢(f) 1s the demand
probavility density in each period, given that, at the beginning of a period, the sum
of the initial inventory on hand and the stock to be received in a period is y . We
define the functional fn(x) as the total expected discounted cost over n periods,
where x 1is the inventory on hand at the beginning of the first period. We have ob-
served that fn(x) can be written for all x in the following functional equation.

£,(0) = min [c(y=-x)+L{y)+a[gf ) (x=E)6(£)dE] )
y2x

In (2) c(y) 1is the ordering cost and o« denotes the discount factor (D < a < 1}.
At first, we shall review the stability of the inventory process which is fundamental
to design issues. In the following, we introduce the inventory processes design and

the inventory policies control problems.

DISCUSSION

We have shown that the enviromment for approximation of observations and policies
affects our inventory processes.

Much of the decision making in the real world takes place in an eauviroument in which
the goals, the constraints and the consequences of possible actions are not known
precisely. To deal quantitatively with imprecision, the traditional approach is to
employ the concepts and techniques of probability theory and, more particularly, the
tools provided by decision’theory, control theory and information theory. This is
now questionable especially in view of the developments in the field of fuzzy sets
theory [41, [5]. ~

There is a differentiation between randomness and fuzziness, with the latter being

a major source of imprecision in many decision processes. By fuzziness, we mean a
type of impression which is associated with fuzzy sets, that is, classes in which
there is n6 sharp transition from membership to nonmembership. There are many facets
of the theory of decision making in a fuzzy enviromment which require more thorough

investigation. This is also the case with inventory systems.
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CLASSIFICATION METHOD USING MULTICRITERION OPTIMISATION :
APPLICATION TO THE STOCK EXCHANGE.

by LITWAK R.G ; LAURENTR ; POVY L ; HUREL D ;
Centre d’Automatique de Lille
USTL.Flandre.Artois
59655 Villeneuve d’ascq cedex -FRANCE

ABSTRACT :

This paper propound a preference model and a decision model for an economic system. With the
multicriterion optimisation, we develop a method permitting the choice of stock portfolio in stock
exchange. In the first part, we compare two fuzzy numbers, representative of the value of two
actions according to a criterion, and we introduce the threshold notion. In the second part, we
compare two classing result from two criterions ; a new classing will be deduct of this comparison.
This one give the composition of a portfolio.

1 INTRODUCTION

The stock exchange is too complex economic system to build an elaborate model. Nevertheless,
with a simple model, we can have a better understanding of the system ; and so deduct a best
adapted command.

There is two types of models :

- Economic model : with several parameters as social, political, financial events.

- Technical model : based on the quotations, these models give the value of the Beta coefficient, the
index ....

The first one, too much subjective, must be used with a lot of precautions. The second one contains
a part of the information wich circulates in the market. The estimations given by the technical
models are often biaised ; since they are obtained by the study of the past. It is important to utilize
a method which integrate this error.
These different models give a set of criterions which allow to valuate the stock exchange.
Let C={C,C,...C,} the criterion set.

A={AA,..A,} the possible set of stocks on the system

To integrate the error of estimation, we consider an uncertainty domain containing the value. So all
the values become fuzzy numbers




I COMPARISON OF TWO FUZZY NUMBER

In this part, we develop a preference model allowing the comparison of two fuzzy numbers. In our
application, each criterion is applied on each stock. So a criterion matrix C(a) C; can be created.
With the notion of fuzzy numbers, the criterions become :

[C;(a,),(l,‘(aj)] ; where [C,C*] represent the limits of a uncertainty interval. The domain of
fuzzy number, representative of the criterion, integrate the error of estimation. We must add to this
error, the possibility of a future event unforeseeable by the past. For that reason, we introduce a
threshold notion : S.. A stock (aj) will be better than an other stock (a,), for a criterion (C), if the
value of the criterion applied to the stock (aj) is better than the value obtained with the second
stock (a,) ; and if the difference is higher than the threshold S;.

IfC(a) > Ca) +S, => ais prefered to a, for C,

In this case, a perturbation P, due to an unforeseeable event, will not change the choice, if his
amplitude is not higher than the threshold S..

if P<S, wehave:

Ci(a,j) >C(a) +P=>ais always prefered to a,

for the criterion C,.

We see immediately than if :

Ci(ai) <C(a) +S;

Cla) <Ca) + 5,
Then, a, is not prefered to a, and a, is not prefered to a.. To describe this possibility, we introduce
the indifference’s relation ; which is noted : I .
In order, to compare two stocks a; and a,, by using the criterion C;, we have consequently three
choice relations :
- Preference (P)
- Indifference 149)
- No preference (NP)

We define the different relations as following :
1 G+ (aj)-Ci+ (ap) > S

1
1 Ci-(a3j)-Ci-(ap) > S; => 3Py
Counsidering :

M= ((Ci+(aj) + Ci-(aj))-(Ci+(ak) + C(a))/2

B 4
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We can use a function of M, noted : F. This function (f) depends on several parameters (uncertainty
domain, threshold, ...).

121 S, <= F <=§ 2> a]I a,
122 F >§ => 4P o
123 F <§ => ajNP a,
Cop % %0 s s oy Wy
F
i [ F I £ f

T F E

44 424 422 423 S a

Representation of the different cases

2 C+(2)-C+(a) < s,
The obtained results are the same than the precedent, if we change j and k.
3 5, <=C+(a)C+(a) <= §
3 5,<= F <= § => ajl a,
F > S, => 3 P a
F < S, => aNP a

The method consist in comparing the n actions two by two, for the criterion C,. A preference matrix
Pc(j,k) (n*n dimension) can be built. To use this matrix, we must code the preference relations.
We take the following coding :

if a P a => Pe(3.k) =1

ifa I a => Pe(3x) =0

ifa NP a  => Pc(3,k) =-1
Every criterion will have a matrix n*n which display the comparison between the stocks.
For one criterion, two stocks are compared owing to the rows of the matrix Pc;. The row j shows the
preference for the stock j with regard to the others. The value of the preference for this stock is
given by the sum of the row.
Let us build the vector :

Veomy(k) = Pejk)

Vsomy(k) represent a performance measure of the stock a,. We would terminate this study, if the
found classification was the same for all criterion C; : this is improbable. So we introduce a method
which compare two contradictory classing, This method will give the value of all the stocks for the
criterions set and then a classing.
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Il COMPARISON BETWEEN TWO CRITERIONS

In this part, we develop a decision model allowing the comparison of two criterions. This method
consist in setting the criterions in a hierarchical order, beginning by the most important for the
investor, and ending by the less one. With two classing, related to two criterions, we build a new
classing. We take the two most important criterions, then the second and third, and so on. To be
able to define a global classing with two contradictory primary classing, we introduce the criterion
preference coefficient, written CL,.
Let a; and 2, be two stocks, C; and C;,; be two criterions with C; prefered to C; ;. The stocks, a;
and a, have each one a value for each criterion : Vsomi(a]-),Vsomi +1(al-) for the stock a; and
Vsom;(ay ), Vsom, . ;(a;) for the stock a,. More exactly, we normelize the vectors Vsomi(aj) by doing
the following tranformation :
Vsom,(a)) = (Vsom,(3)-Vsom, min)/(Vsom, max-Vsom, min)
With Vsom, min and Vsom, max, the minimum and the maximum value of the vector Vsomi(a.J), for
the criterion C..
In order, to establish the new classing, we make the difference between the two values of the two
stocks for a criterion :
D, = Vsom,(a)-Vsom,(a,)
if D>0 => aj P ak
if D,,,<0 => ak P aj
This two criterions do not permit us to choose between the stocks y and a,. A solution consist in
saying that the second criterion is less important than the first one. Then we multiply the second
(D,,,) by the criterion preference coefficient (CP,) ; with CP, less than CP; ;. The new preference
relation becomes :

D, =>D,, " CP;

So we have the following reiations :

1) Obvious relations :
D,>0andD,,, >=0 => a P a
D, <0andD,,, <=0 => a]NP a
D, =0andD,,, =0 = al a
D,=0andD,,, >0 => a
D, =0andD,_, <0 => a, NP a,




P st ar i - isdi o |

181

2) Solutions depending of CP,; :
D,>0andD, ,<0or D,<0andD,,, >0

D, + D,,,*CP; > 0 =>
D, +D,,,*CP; < 0 =>
D,+D,,*CP; =0 =>

3 Pa,
yNPa,
% Ia,

By comparing n stocks with themselves, we obtiin a preference matrix P; (n*n). And then, we

calculate the sum vector VS;(k) ; it gives so a new classing which use the two criterions C, and C,

iel”

With the criterion C,,, and G, ,, we obtain the sum vector VS; (k). The result of VS; and VS;,
will be compared with C,, , and will give VS; _ ,(k) ; and so on, until VS (k). At least,the sum vector

will give us the definitive classing for the criterions set.

Exemple :
let A={A1,A2A3)}
C={C1,C2}
5;=0
C., &, 3, &y 3 A,y
et
C, (aj) CaCa)d
» d-
0-1-1 2
Pc, = (101 => Vsom, = (2
110 0
011 2
Pc, = (-1 00 => Vsom, = (-1
<100 -1
let CL,=0
0-11 0
P, = (1 01 => Vs, = 2
-1-10 -2
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IV CONCLUSION

The use of this method, on the stocks of the stock exchange of Paris, has a real increase of the portfolio
prifit with regard to the method of simple investing. Qur work, at the present time, is oriented to the
amelioration of these models ; with the function F, as also on the determination of the different
thresholds.
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Logarithmic Transformations with Applications in Probability and Stochastic Control

Wendell H. Fleming

Division of Applied Mathematics, Brown University, Providence,
Rhode Island 02912.

Abstract

We are conccrned with a class of problems described in a somewhat imprecisc
way as follows. Consider a linear operator of the form L + V(x), where L is the
generator of some Markov process x, and the “potential” V(x) is some real-valucd
function on the state space of X, We are intcrested in probabilistic represcntations
for solutions u(t,X) of thc evolution equation

%)) = Lu+ VXu t>0

with initial data at t = 0. Thc Feynman-Kac formula gives a well-known stochastic
represcntation for u(tx). We scck a different  probabilistic rcpresentation  for
I =-log v, if u(t,x) is a positive solution to (1). In this represcntation the opcrator

L is replaced by another gencrator Ly (perhaps time dependent), chosen to solve a

certain stochastic control problem. The dynamic programming cquation for this
stochastic contrgl problem is

@ g-[- = H(®) - V(x), where
H() = -cJie D).

Another way to view the change of gencrator from L to it is by change of
probability measure through conditioning.

Next suppose that the state space of x, is cuclidean R", that

L=L,u-=u,1¢="-¢logu and
H(I) = -elL (e D).

Undcr various assumptions it turns out that I¢ - 0ase-0,

lim ¢H, (" 11) = Hp(x]
o € o(xIx)

where I, is the gradient, and that I(tx) is a viscosity solution of the first-ordcr
partial diffcrential cquation

g = Hyx1y).
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When x, is a nondegenerate diffusion on R", then L is a second order elliptic
partial differential operator. In this case, the logarithmic transmation provides an
analytical approach to large deviations questions of Ventsel-Freidlin type, and for
more precise results in the form of asymptotic series expansions of I¢ in powers of
¢. The logarithmic transformation technique is also of use to study certain
asymptotic problems in which u(tx) obeys a nonlinear parabolic partial differential
equation.
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MACROSCOPIC PROPERTIES
OF
DISCRETE DIFFUSIONS
by

*

E. Benoit*, B. Cant:ltalper‘gher‘*‘E ,C. Lobry*

The mathematical Wiener process, and more generally mathematical
diffusion processes, are mathemastical idealizations of physical processes like Brownian
motion for instance . The starting point in the definition of the Wiener process is the
definition of the random walk : -

Epegt = 5t + Zp/at
RW.(dt) te{ 0,dt,2dt,. . pdt,. ndt=1)
& =0

where Z; is s sequence of independent random veriables teking velues x1 with equal

probebilities . This is certsinly a simple mathematical object but not a good ideslization

because it contains a parameter dt and , & ar/ar7, there is no universal way to fix it .

As it is well known, the usual way to deal with this difficulty is to consider
the whole femilly R.W.(dt) (dt > 0) and, because we want to idealize physical random motions
in which the elementary step is very smeall compare to the scale where the phenomenum is
observed, we take the limit when dt » 0 . This limit is a mathematical object known as the
Wiener process. Mathematically spesking the Wiener process is a probebility messure on
the infinite dimensional vector space : RIO . 11 Bacause of the great cardinality of this space
8 probility measure is no longer 8 simple object and its definition requires the knowledge of
most of the technicalities of measure theory . The only way to avoid all those technicalities Is
to work only on probability spaces of finite cardinality . This is the case of the random walk
R.W.(dt) which is defined on the space (-1 . +1) " _ But we lose universalitu of the wiener
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process . How cen we recover it ?

Define the Wiener Walk (W.W) &s RW.(dt) for dt infinitesimal and
look for its macroscopic properties .

The real number dt considered here is infinitesimal in the formel sense
of Non Standard Anslysis ( NS.A.) . A macroscopic observation of the process is an
observation which is not able to distinguish differences at the microscopic level : For instance
if the position of the process at time t is x we consider that our mesurement is not able to
give the exact value of x but merely any value which is infinitely close to x ; any such a value
is idealized by the shadow of x, which is the standard resi number infinitesimally close to
x . Thus the property :

“The shadow aof £y is positive”

is & sentence which makes sense in the lenguage of N.S.A. (but not in the conventional
language ant thus is called external )} and expresses a property of W.W. which mekes no
referen'ce to dt . It does not depend on dt provided it is infinitesimal . By this way we recover
universality of the ideatizstion .

This mathematical model in which the law of the process is defined at the
microscopic level (dt) and is observed st & mecroscopic one fits very well with the Brownian
motion in which we actually observe at 8 very large scale ( say 10~6m for position and 10~2
sec for time ) the consequences of sbout 1021~1022 kicks per second by the molecuies of a
gez on the Brownien particle .

In this apbroaeh al) the technicalities assoclated to measure theory are
suppressed and replaced by those which are associated to the use of the richer languege of
NS.A. Where is the benefit ? The benefit is in the fact that we need very few elements of
NS.A. , without comparison with what we need from mesure theory . This was recognised by
E. NELSON [1] . In this book, smong other things, he sstablishes in less than 80 peges (
including the necessary rudiments of NS.A. ) the external equivalents of el) the essentisl
properties and ceracterisations of the Wiener process . In our paper [2] we have extended the
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epproach of NELSON to the more general processes :

Bragt = Bt D(Eg.)at+s(8y) Zp/at

t€{0,dt,2dt,.. pdt,..ndt =1}
=0

In this lecture we shall explain :
1) what means ~almast sure” on a finite set with uniferm probability .

2) what mesns “(nearly)continuous” for 8 discrete mepping from
{ 0, dt, 2dt,...,pdt,...ndt = 1} to R and why it is a mecroscopic concept .

3) How one can prove the following :

Theorem : Consider the process defined by :

Eragr = Bt D(Eg.t)dt+s(8y) Zev/at

t €{ 0, dt, 2dt,... pdt,..ndt = 1}
=0

where dt is en infinitesimel, 2, is & sequence of independant random varisbles tsking values

in 21 with equal probebilities and the mappings b(.,.) end s(.) ere standerd continuously
differentisble, bounded with their derivative . Then “simost every” trsjectory is “(nesriy)
continuous” .

P, ;L . .
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ABSTRACT

The concept of local controllability is investigated for non-relativistic quantum
systems. Sufficient conditions will be sought such that the solution of the
controlled Schrodinger equation can be guided, over a short time interval, to any
chosen point in a suitably prescribed neighborhood of the solution in the absence of
control. Evolution equations which are linear in the controls but nonlinear in the
quantum state ¢ are considered. Our formulation and analysis will (for the mast

part) run parallel to those of Hermes.

I. INTRODUCTION

In recent years, there has been a growing interest in the system theoretic
problems of filtering and control of quantum mechanical systems. Several note-
worthy efforts exists: (i) Tarn, Huang and Clark [1l] and van der Schaft [2] have
explored the formal basis for the modelling of quantum mechanical control systems.
(ii) Clark, Tarn and their associates [3-6] have obtained results on quantum
nondemolition filtering problem. (iii) Belavkin [7] has investigated the
measurement and control problem in quantum dynamical systems. (iv) Pierce, Dahleh
and Rabitz [8] have studied the optimal control problem of quantum mechanical
systems. (v) Butkovskiy and collaborators have discussed the control of quantum
objects in broad terms and have set forth general conditions for controllability of
pure quantum states [9-11].

To the authors’ knowledge very little has been published in the way of
mathematically definitive results on the controllability of quantum systems. In [12]
the authors are able to establish a series of globa) controllability conditions for .
the Schrodinger equation which is linear in state and linear in the external
controls by extending the geometric approach as implemented by Sussmann and
Jurdjevic [13,14], Krener [15]}, Brockett (16], Kunita (17] and others.
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In the present contribution, we shall consider evolution equations which are
linear in controls but nonlinear in the quantum state; in this case the work of
Hermes [18] is extended to obtain conditions for local controllability along an

unguided reference solution.

II. PROBLEM FORMULATION WITH NONLINEAR GENERATORS

In adapting Hermes' work [18) to our ends, it is convenient to think in terms
of the x representation {19]. Thus the state vector £eH will be represented by

the wave function £(x) € LZ(R“), where x€R" stands (ordinarily) for the set of

spatial coordinate variables associated with the quantum system. (More generally,
x may stand for any complete set of compatible variables [19] built from the
position and momentum variables. Spin and other internal degrees of freedom can be
incorporated by essentially trivial modifications.) Now, let us define a class of
operators H in H which are supposed to be skew-Hermitian (norm preserving) and

time independent and to have, in the x representation, the mode of action
(HE) (x) = BE[, = él £, 1 (K, (O (B O, Q)

Here, p, q are some integers, the HA u (A= 1,...,p; p=1,...,q) are closed,

skew-Hermitian linear operators acting in H, and the mappings fx " Cl- c1 are

real analytic. (By the last requirement we mean that fA H(w) is a real analytic

{ function of its argument w, this argument in itself being generally complex, w €

Cl. Also, in expression (1), fA “(w)fx, “,(w’) is to be interpreted as the usual

product of complex functions.) Throughout the current section, the generators

HO""'Hr entering the "controlled Schrodinger equation” will be assumed to be of

this more general form. Thus, while HO""’Ht are still taken skew-Hermitian, they
need not be linear--although the linear case is certainly included.

We shall furcher assume that a unique local solution exists for the initial
value problem

d X
3 Y - [Ho + ‘21 u,(:)ﬂ,]wc. Yeao = $EH (2)

posed by the Schrodinger equation so generalized, the admissible controls u, now

) being real, analytic, bounded functions of t. To establish that this is a viable
- ’ assumption, we note that it is automatically fulfilled within the framework of [12]
provided ¢ belongs to the analytic domain Dw; moreover, in Ref. 20 it has been

i shown. to be valid for a certain relevant class of partial differential equations.
g On the other hand the formulation of general conditions on HO + Eu!HI for the

O G
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existence of a unique local solution of (2) awaits further mathematical
developments. .

Our next task is to specify the Lie bracket appropriate to the (generally)
infinite-dimensional, (generally) nonlinear control problem (2), wherein the
Hk' k=0,...,r are of type (1). First, we appeal to the chain rule to define a sort

of derivative operator, DH, correspouding to an operator H of that type:

((DHE) (x))§ (x) = AEI p§1 £, (G, 1Oy (B 6 (x0)

S£) L O GNE (O G, (B OGO H, O, 3

where ¢ € H and f'(w) is the derivative of f(w) with respect to its argument.
The Lie bracket of two operators H, K of the indicated class is then specified by

([H.K}€)(x) = [H,RI€1, = ((DHE) () 1(KRE) (x) - ((DRE) (%)) (HE) (%), (&)

to apply V £ € H and V x. Again we shall employ the notation ad K = [H,K],
-4

ad;+1
product is obviously consistent with that of (12], for, if H and K are linear,
[H,K] = HK - KH as in [12]}.

Remark 1. The above definitions and specifications are tenable even if H anc

HA u of (1) are pot skew-Hermitian (or even if skew-Hermiticity is not a meaningful

K = (H.ad’K], v = 1, 2,...; also, adJK = K. The prescription (4) for the Lie

concept). As is well known, skew-Hermitiéity of the generators of time displacement
is an indispensible requirement in conventional quantum theory, where it is
necessary for the probability interpretation of wt. On the other hand, there are

circumstances in which one may be led to drop this requirement, namely, (i) in

approximate treatments of the Schrodinger equation designed to yield simple pictures
of complicated phenomena involving many degrees of freedom, and (i{i) in radical
revisions of conventional quantum theory aimed at a more fundamental description of
the microscopic world. The optical model of nuclear reactions, (21] wherein a
complex potential is introduced to simulate the effects of inelastic processes, is a
good example of circumstance (i), while the hadronic theory proposed by Santilli
[22]) suffices to illustrate possibilicy (ii). Obviously, in the latter contexc new
interpretations as well as a new formal apparatus (see, e.g., Ref. 23) musc
accompany the enlarged mathematical framework.

Remark 2. The mersage of this comment is similar to that of Remark 1, except
that the subject is nonlinearity of the generators Hyo oo H_ racher than

violation of their skew-Hermiticity. Conventional quantum mechanics is necessarily
a linear theory, in that the superposition principle is an essential propercty.
Specifically, linearity of the operators HO, AP Hr is required to maintain this

property. But again one might agree, either (i) in the framework of approximation
methods, or (ii) in fundamental extensions of quantum theory, to sacrifice
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linear..y. The Hartree-Fock approximation [19,21] of atomic and nuclear physics
furnishes a prominent example of a nonlinear approximation to the conventional
quantum description. On the other side of the coin, nonlinear quantum theories at
the first-principles level have been considered by a number of authors; for example,
Wigner [24] has suggested that a resolution of the mysteries associated with
"collapse of the wave packet™ might be sought in terus of such a theory. [25]

111. GENERALIZED DECOMPOSITION THEOREM

- T
Congider the system (2), wherein it is assumed that ¢ ¢ D - (\ dom H
k=0

null set. Let Vc(é) e D denote the solution (evaluated at time t) of the

associated reference problem

S =Hyn, . mp = (5)

kﬂ

This problem corresponds to free evolution of the quantum system, the external

controls being turned off; accordingly n, = Vt(é) will be referred to as the

homogeneous reference selution. Treating ¢, rewritten ¢, as an arbitrary element

of the allowed domain D, we obtain a mapping ¢ - Vc(;). which in general defines a

nonlinear operator. (We note that in the special case that the generator H is

0
linear, V:(C). which traces an integral curve of the vector field HO' serves to
define a linear evolution operator Vc. However, in the nonlinear setting of the

present analysis, we are strictly not allowed to divorce operator from operand,
since an operator of class (!) generally depends on the point of H at which it

acts.) The differential of the mapping ¢ - vt(g), to be denoted th(g), is also
(generally) a nonlinear operator. One may loosely interpret DVC(C), as the
derivative of the object Vt(f), a state vector, with respect to its argument, which

is again a state vector. By DVc(g)lx we will mean the differential of the (wave

function) ~ (wave function) map ¢ (x) - flx - Vc(f)lx.
Definition 1. A complex-valued function g: t = g(t) = g,(t) ~ igy(t) is said

to be gomplex analytic in the variable t, where ¢t ¢ Rl, if the functions 3 and

g, are real analytic in «c.

Theorem 1. (Generalized Decomposition Theorem (cf. Refs. 18,26)). Let | be
an arbitrary element of the common domain D of the operators Ho, e Hr' and
suppose that (i) che maps ¢ =~ Vt(f)]x and t - DVc(()]x are complex analytic in ¢

for all x and (il) che differential Dvc(;) converges in the strong operator

topology to the ideatity operator id, as ¢ - 0%. Then, a sufficient condition for
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Vc(wc(¢)) to provide a solution of the gontrolled dynamical problem (2), is that
Wt(é) satisfy

@ :y r
g: T W [ad; L “2“1]5c' §o=¢ <D (6)
v=0 ’ 0 £=-1
If DVt(c) is one-to-one, the state condition is also necessary.
Proof. A necessary and sufficient condition for Vc(wc(¢)) to be a solution
r

of (2), given that V(¥ (4)) = Wy(4) = ¢, is HV (W (8)) + 221 ugH V(W (4))

OO 7

-4 - & d.
gt VeMe®) = T VO loy (g) * D8 g
Since by definition Vt(g) must satisfy the differential equation avt(g)/a: -
HOVt(c), where ¢ may be regarded as an independent variable so far as the time
derivative is concerned, the initial terms in the first and last members of (7)
cancel. Thus condition (7) may be distilled to
d r
DV () g7 W (8) = [121 “z‘t)ﬂz]vc(“c(¢)’ . (8)

The crucial step is to prove that, V ¢ and V x,

3 v T r
() § - [ad; ) u,(t)az]:\x - [ ) u,(c)HI] VO, (9)
v=0 0 =1 £=]
Once property (9) is established, the theorem is in hand; for if Ut(é) satisfies
(6), it will then follow from the su“ficiency of (8) that vt(wc(¢)) solves problem

(2).
In order to establish (9), we examine the quantity

@ v
gy(tiHy) [ = DV (£) Zo T [ad; Hl]flx - HV () (10)
v : 0
With ¢ an element of the allowed domain, the maps t = Vc(§)|x and t - Hivt(g'))x
are complex analytic by our hypotheses, as is the map ¢t - DVc(§)|x. Consequently,

the right-hand side of (10) is complex analytic in ¢, for all ¢ and for all x.
Therefore it is legitimate to evaluate s!(t;Hl)lx be means of its Taylor expansion

in ¢,
To begin with, we know SI(O:HI)Ix - 0, because DVt(C) - id in the strong

operator topology as ¢t - 0+, and Vo(g) = . Next, consider that

L - - -
S0V, (6) = DEL V() = DL[HGV(£)] = D [Ho(V (£))]
= (DHg(V,(§))) 1DV (£))

4
(The differentials in the first line are all with respect to ¢, as is indicated
explicitly in places where confusion might arise. The differential DC(HO(Vt(())] is
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computed as the product of the differential of the mapping Vt(;) - HO(V:(;)) and

the differential of the initial mapping ¢ - Vt(g).) In similar vein,

L(mv ()] = 10, (v, (6))] = DRY(V (B, ()
Using these last two relations, we may obtain (with the dot indicating time
derivative)

«© 1 4
Bp(EiHp) = DV (E)DVL(O) T ‘—f}-tadgoﬂ,lc

L=
e (8 el 4
- DVL(6) T ladg THyJe - 5T [HpV (9))
. y=0 0
v oLeny v
= DHy(V (EN[DV (§) T “—p4~ [ady Hyl¢ - HV (§)]
v=0 0
+ IDHO(Vc(f))HIVt(f) - DHI(Vt(f))HOVt(f)]
«© 14
. (-7 v+l
- DV () T (ady H
‘ 2 T %, el
! = DHy(V_(£))g,(tiHy) - Sz(t‘adﬂoﬂz) . (11)
\ But we know, from previous argument or its extension, that 52(t;H2)|x and
gl(t;adHoHE)lx tend to zero as t = 0+; it follows that gl(o;uz)|x =0 for all ¢
4
and for all x.
The pattern s now set for an inductive construction of successive time
derivatives of g(t;H,). In particular, based on the above rasults we may form
2 Y
. . d g (- . ; .
gy(tiHy) = 4% [DHO(th ‘)gi(t.Hz)] + DHO(Vc(())gz(t.HI)
b o - ad?
' - DHO(Vt(c))gz(c.adHoHZ) + gl(t,aduoﬂl) )

and it fellows that gz(t;Hl)lx - 0ast-o0" Continuing the process indefinitely.
we arrive at the result that at t = O all the time derivatives of gz(t;Hl)lx

vanish, to arbitrarily high order. Thus g,(t;H,)|, is identically 0, V¢, Vx, i.e.,

« . v v _
th<r>V§o Lo ady Hylly = HyVe(Oly

2 =1, ..., r. The desired property (9) ensues upon multiplying this equality by

ul(c) and summing over Z£.

Corollary 1. Same as Theorem 1, excepr that “"complex analytic™ is everywhere
to be repldced by "real analytic". (See Ref. 18)
Proof. Direct observation.
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IV. LOCAL CONTROLIABILITY ALONG A REFERENCE HOMOGENEOUS SOLUTION
DRefinicion 2. The system (2) is said to be locally controllable alopg the
solutcion 7, = Vt(é) of the control-free problem (S5) on the manifold M c H if, for

small t > 0, there exists a set of uz(t). £ =1, ..., r, such that the solution

*c of (2) can be controlled to a peighborhood of 7. on M. The precise meaning of
the last phrase is that *: can be steered into any direction of the tangent space
TM" of M at the point n, = Vt(é) e M, V¢ M,
t .
We may now formulate the central result of this section.
Theorem 2. Assume that the homogeneous solution of system (2), i.e., the
solution 1. = Vt(é) of the uncontrolled system (5), satisfies the hypotheses (i)

and (ii) of Theorem 1 for { (and specifically ¢) on a finite-dimensional
submanifold M, MCDCUH, dim M - m. Assume further that there exist integers

vy (with 2 =1, ..., r and jz -1, ..., kl <o, and 0 < v
3,

21 < VIZ < ...

< v )
Ikz
Vljz
such that the set ([adH Hz]é) spans the tangent space IH" of M at .- Vt(é)
0 t

for all ¢ ¢ M. It follows that system (2) is locally controllsble along L on M.
(Cf. Theorem 2, Ref. 18.)

Proof. If the functions u‘!J {t), where 2 = 1, ..., r and jz =1, ..., kl'
2

qualify as admissible controls (resal, analytic, bounded functions of t), then so do
the finite linear combinations

k
a, 2
u, (1) 7 a

u (), 2=1, ..., ¢,
j2-1 zjg zjz
wherein the real coefficients ag, ..., Ay ., are chosen (for convenience) to obey
£
;2
la | =1 , =1, ..., ¢ .
i1 M

Let us abbreviate the set (alj ) simply as a. By generalized decomposition in the
2
multi-input, complex case of the preceding subsection (i.e., by virtue of Theorem 1,
a

the solution of problem (2), with the ult as controls, is given by

¥g = V.(W3(8)). The solution €7 = Wa(é) of the boundary value problem (6),
21
restaced for the controls u,”, evidently obeys the integral equation

r a,” © v
a c 2 (-3} v
VE(8) = 4+ 121 fo u, (t) ygo L ds [‘dHOHI]":(‘)

WL

< b

A LA
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Thus
5 VR 1 aug = DV VRN g v 1,
2, 4,
v (e LY v
- 1 (15 ugy o0 S2 aslov, ) [agy w,]4 . 12
you 2 0
where a= 0 means gll of the atj are zero. By assumption, we can find & set of
2
integral (or zero) powers ST where 2«1, ..., r, j,=1, ..., k,,
3, 2 £
0< vy < ¥p < ... < vlkl', and Voax = mnx(uzjz) < @, such that the set
Vi Vlkz
([adH Hz]é, . [adH HI] ¢, £ =1, ..., r) spans THn . Then, since (also by
0 0 t .

assumption) DVt(¢) -+ id strongly as t -~ 0+, there must exist a time tl > 0 such that

the set

Vi1 “a,
{DVC(¢)[3dH0 H£]¢. e DVc(é)[adHO Hl]é}
spans THﬂ , over the time interval 0 <t g -
t

Ve now proceed to make a judicious choice of the original functions uIJ (t)
2

involved in (12). One can realize admissible controls sz (t) obeying the
2

conditions

t v 0 for v m v, 0<v £v +1
1~ - ’ 2 =7 = "max '
lo uljz(s) -‘—j—f— ds = (13)

where £ =1, ..., r, JI -1, ..., kz. and the Clj are real constants. The
2

connection between the G!j and the u will be specified shortly. The power v
2

lj‘
being integral, inversion of relations (13) is in effect ju-t a classical finite-
moments problem. (Note that in the upper range v > Y pax + 1, we have

t v v + 3
15 £:8) 4o - max
fo uljz(s) S ds =0 [tl ] ,

since Ialj | is by assumption bounded. This implies that the higher moments not
£

specified by (13) will be negligible.)
With t 4in the interval [0,:1]. we now carry out the change of variable

s = clh/t in the integral on the left of (13):
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v

t v t
-~ - 1 -
Ioluljl(’) L8y - [.:1]v+ I Ugy BB/ LR g

Hence

0, for v m vljz' 0<v g Voax * 1,

t= L )+l
fouzjz(tlh/t) o dbh = [t1] C‘Jz , for v = Vg,

2

v + 3
max
O[t ] , for v > Voax ¥ 1.

Setting “lj (s) = Ezj (tls/t) in (12), we arrive finally at the result
2 £
Yoy, v1 Y3 v +2
- L. £ 2 max ] )
vt o= e (5 o [ oo [
oy

where, for t < tl' the last term cﬁn be neglected, tl being small. Consequently the

set (BVC(W:(¢))/aalj2, =1, ..., r, j2 -1, ..., kl) spans TH": for t 1in the

interval [0,t1], where t:1 has been chosen above. This means that we have been

able to choose the controls so that, for small t > 0, the state defined by system
(2) can be steered into any direction of the tangent space on M at the point N, =

Vt(¢). Then by definition the system is locally controllable along the reference
solution Vt(é), for all ¢ ¢ M.
Remark 3. Theorems 1 and 2 remain true as stated if the Hk' k=0, ..., r, are

not skew-Hermitian.

Example 1. The theorems of the present paper are aimed at an infinite-
dimensional space of quantum states. However, the results obtained herein are still
valid (with trivial alterations) for a finite-dimensional state space. As pointed
out in Remark 3, from a mathematical standpoint we may also dispense with the

assumption that the generators HO' ey Hr are skew-Hermitian.
For example, consider a nonlinear control system on R®, m < », defined by
e x(8) = AX(E)) + W(DBX(E) , x(0) = x4 » (1)
where A and B are real analytic vector fields corresponding to nonlinear
operators of the sort introduced in Section II. Then, as argued in Ref. 18, a
sufficient condition for local controllability along the homogeneous (u -0)
solution of (14) is rnnk([nd:B]xo, v =0,1,2,...,#) «=m. This is precisely the

condition which would enter the finite-state-space version of Theorem 2. Problem
(14) does not strictly refer to a quantum-mechanical system; its study is,
nevertheless, illuminating.

While surely of high interest, the identification and analysis of "non-trivial"

e . e - -
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examples of the utility of Theorem 2, meaning examples concerned with novel quantum
control systems characterized by nonlinear generators, exceeds the scope of the
present work.

V. SIMMARY AND OUTLOOK

It has been our aim to augment the foundation for the concept of
controllability of quantum-mechanical systems (12]). In the generalized, nonlinear
formulation of the quantum control problem, we were able to determine conditions for
the property of local controllability along a homogeneous (i.e., control-free)
solution, without having to refer to the existence of an analytic domain which was
assumed in the gléhgl analysis of [12]. (Our treatment of this case amounts to an
extension of Hermes' work [18]) to a multi-input, complex-state problem.) From the
results obtained herein on the controllability of the solution of nonlinear
Schrodinger equations, one may regain, upon appropriate specialization or
adaptation, certain well-known systems-theoretic results in finite-dimensional state
space (see, in particular, Refs. 13-18).

Clearly, only a modest beginning has been made toward achieving the larger goal
of a comprehensive theory of quantum control. The following problems, among others,
awvait concerted effort:

(1) Adaptation of the notionc of observability, identification, realization,
and feedback to the gquantum context [27].

(ii) Study of a controlled version of the Schrodinger equation for the time
evolution of the density operator, [19) so as to extend control theory to the realm
of quantum statistical mechanics.

It is evident that powerful mathematical techniques must be invoked to carry
through this program; moreover, one must confront the profound conceptual obstacles

intrinsic to the quantum measurement process [25,28,29].
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FROM TWO STOCHASTIC OPTIMAL CONTROL PROBLEMS
TO THE SCHRODINGER EQUATION

K. Kime
Department of Chemistry, Princeton University
Princeton, NJ 08544 (USA)

A. Blaquiere
Universite Paris 7, Laboratoire d’'Automatique Theorique
Paxris (FRANCE)

1. Introduction

In recent years, interest has developed in the connections between stochastic
control theory, dynamic programming and quantum mechanies [1-4, 7, 12, 13] and (related)
variational approaches (9, 11, 14, 15] to Nelson's stochastic mechanics [10]. In this
paper, we will start by considering two stochastic optimal control problems, one
"forward" in time, one "backward" in time. We show that, if there are solutions to the
extended Hamilton-Jacobi equations associated with the control problems, then there is a
solution of a Schrgdinger equation and conversely, if there is a sufficiently
well-behaved solution to a Schrodinger equation, there are solutions to a pair of
extended H-J equations. We note the connection between the H-J equations and the main
dynamical equations of Nelson's stochastic mechanics. The H-J equations are equivalent
to a pair of inhomogeneous "backward" and "forward" heat equations via a well-known
exponential transformation. One may thus pass from these to a Schrodinger equation (and
back).

2. Definitions and Notations

We assume a given underlying probability space (Q1,F,P). E” denotes n-dimensional
Euclidean space, (tg,ty) an interval in E'. S denotes (tg.ty) x En; S = [to,ty]) x En.
Definitions of stochastic process, Brownian motion will be taken from [6] as will other
elements of our framework which will be noted below.

A solution of a stochastic differential equations
d§ = b(t,£(t))dt + o(t,£(t))dw 2.1

with initial data £(s) = y is to be interpreted as in [6] as a solution of the integral

equation
t t

£(t) = £(8) + J b(r,£(xr))dr + I o(r,&(r))dw(r) 2.2)

Here, w is standard Brownian motion of dimension n. With the vector notation
€=(£1,...€3), b=(by...b,), we have

n
dég = bi(t,E(t))dt + ¥ ogp(t,E(t))dwy if-1,...n
£=1
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The notation c;’z(S) denotes the class of functions ¥ in C"z(S) (meaning Cl in ¢,

c®in x) which satisfy |v(t,x)| s D(1+|x|k) for some constants D,k, when (t,x) e 5.

3. Two Stochastic Optimal Control Problems

We consider first a "forward"” stochastic optimal control problem, Problem 1, in 3.1,
then the symmetric "backward" problem, Problem 2, in 3.2. ‘The controls v and Vv will take

. n
values in E.

3.1 Problem 1

Consider the stochastic differential equation
df§ = v(t,£(t))dt + odw (3.1.1

. ce s n . . : .
with initial data £(s) = x ¢ E, at time s ¢ (tg,t;). Here, w is a standard n-dimensional

Brownian motion, and
aij - ./EB 5ij
where § is the Kronecker delta, and D is a positive constant. We assume that v belongs

to a class of admissible control functions defined as follows:

Definition 3.1.A {6]. A feedback control law v (the term feedback refers to the fact
that the control is a function of the state §(t)) is admissible if v is a Borel

measurable function from S into En, such that

(a) For each (s,x), ty s s s t;, there exists a Brownian motion w such that (3.1.1)

with initial data £(s) = x has a solution £, unique in probability law
(b)  For each k > 0, Egy|6(t)|* is bounded for s s t = t,, and

4
Egx I Jvie,e¢e)) % dt <
S

(the bound may depend on (s,x)). The subscript sx refers to the fact that
£(s) = x.

Either of the following conditions are sufficient for the admissibility of v:
(i)  For some comstant My, |v(t,y)| s M, (1+]y|) for all (t,y) ¢ S. Moreover, for any
bounded Borel set B c E" and tg < t' < ty, there exists a constant K, such that, for all
%,y ¢ Band tg s t 5 ¢,

vie,xy - vt} s K [x-y]

(Ky may depend on B,t’'; and both M;, K, msy depend on v).
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(ii) v satisfies a Lipschitz condition om 5. Further, if (i) or (ii) holds, the
Brownian motion w can be specified in advance, which is the cass in Problem 1.
Now, for (t.x) ¢ S and v ¢ En. let

L(t,x,v) = % m? + Q(t,x) (3.1.2)

vhere Q is continuous on §, and let W - Ry (R, denoting non—negative real numbers)

be continuous and assume

lace,x)] s o+ [xh¥ (3.1.3)
Us(x) s C(t + |x|)k

for some constants C,k.

Ve define a cost function

ol
J(s,x,v) = Egy { I Y L(e.e(e),v(t,£(E)) dt + w,(e(c,)} )
S

The conditions on Q and W, ensure that J is finite.
Now let the optimal control problem be as follows: Find an admissible feedback
control v*, among all admissible feedback controls, which minimizes J(s,x,v). The

following Verification Theorem gives sufficient conditions for the existence of a
minimizing v*.

Theorem 3.1.B [6]. Let W(s,x) be a solution of the dynamic prograsming equation

_?E mi ¥ aw_ 1 2
0 =355+ %i%n [ Dav + i§1yi il Rl Q(s,x)] (3.1.4)
(s,x) ¢ 8 .
with boundary data
Wity ,x) = W (x), x ¢ E, (3.1.5)

guch that W {s in C;'Z(S) and continuous on S. Then,

(a) W(s,x) s J(s,x,v) for any admissible feedback control v and any initial data
(s,x) ¢ S.
(b) 1f v* is an admissible feedback control such that

2 w1
Dav + 1Z‘vf(s,x) a; +3 m(v*(s,%))2 + Q(s,x)

n
- ®min [ Davw + ¥ o 1 ., ( )] (3.1.4)
veER G e I ™ Qs,x

for all (s,x) ¢ S, then W(s,x) = J(s,x,v*) for all (s,x) ¢ S.

™o IS S T T
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Now let us assume that there exists a W satisfying the hypotheses of tha
Verification Theorem, and an optimal control v*. Then, since the controls take values
in E®, which is open

mv* = - grad W for all (s,x) € § . (3.1.6)
and

v 1 2

35 = - DaW 4+ 5 (grad M° - Q (3.1.7)

for all (s,x) ¢ S. Equation (3.1.7) is analogous to the Hamilton-Jacobi equation of

classical mechanics; we shall refer to it as an extended Hamilton-Jacobi equation.

3.2 Problem 2

Now let us introduce another type of admissibility for a feedback control function
as follows:

Definition 3.2.A A feedback control law ¥ is backward admissible if ¥ is such that

V(r,x) = - G(to+c,~r,x) for all (r,x) ¢ S, and

v is an admissible feedback control law.
Ve consider the stochastic differencial'equation

dn = F(r,n(r)) dr + f2D a5 (3.2.1)
where ¥ is a backward admissible feadback control law, and

V(r) = w(tg+ty-7).

We say that n is a solution to (3.2.1) with terminal data n(o) = ¥y ¢ En. with

tg S 7 <o sty, {f n satisfies the integral equation

n(r) = (o) - IaV(:,q(r)) dr - IOJEB aW(r). 3.2.2)
T

T

By making the change of variable

T ety + 2ty -¢,
g =Ty +Ct -8,
l-%#t‘-f
(3.2.2) becomes
'
n(tg+ty-t) = a(Ly+ty-8) - { T(tg+ty -2, altg+ty-2)) (-d2)

- | /D @ (gorty-) . (3.2.3)
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Define n(ct) = n(tg+ty-t). Now (3.2.3) becomes

€, R t
7(E) = n(s) + I v (L.0(0) a2 + f R OR @.2.9
s [ §
and we have
n(s) = y @22
We now define
a R L TN 2 L, .- G (n
J(s.y.V) - ES)’ J. [E (V(I"'(l))] + Q(l"’(l))]dl * “0("(c'))
8
- Egy { [7[; Feraen)? + e lar + F Wto))}
0
w J(o0,y.,¥) (3.2.6)

Here Q is the same as in Problem 1, ﬁu: En : R4y is continuous and
Uy (y) s €L + [yDK, (C,k as in (3.1.3)). Thus, QL,7(2)) = Q(to+ty -2, n(to+ty-1)).
' We now consider, as in Problem 1, the problem of minimizing (3.2.6). For given
terminal data y ¢ E" at time o ¢ (tg.ty], we shall say that ¥, is backward optimal if

v, is backward admissible, and

I (0.3.9 27 (a,y,9)

for all backward admissible ¥,

In view of (3.2.4) - (3.2.6), we have the following version of the Verification
Theorem:
Theorem 3.2.B  Let G be a solution of the dynamic brogtimning equation

0 - ¥, win

-~ n .
- L S
s * vegn [ vaw +121u1 #y1 +zml . s.y] 3.2.7)

(s,y) ¢S .

with W(ty.y) = Wg(y), ¥ ¢ E?, such that ¥ is in C;'Z(S) and continuous on 5. Then:

(a) W(s,y) 523 (:.y,%) for any admissible feedback control v and any initial dats

(s,y) ¢ S.
(b) 1f v* 1s an adnissible feedback control such that -
i
. a n - - " a %
é Davw + 12‘ vi (s,y) %gz + % n(v*(.'y))z + Q(s.y) = *
i n N . (3.2.8)
atn @ L MR Yy T

; vee® [ oa¥ + 3 v ggp + 7 2 + Qs)]
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for all (s.y) ¢ S, then W(s,y) = J(s.y.v*) for all (s,y) ¢ S; v* is optimal
Now suppose there exists a function W satisfying these hypotheses,

. and an optimal control v*. Define

W(o,y) = U(tg+ty-a,y) , tp < 0 S &

a

= . av av
. Then W(tp,y) = W(tyy) and 30~ " 3s

We define
T, (0.y) = ¥, (te+ty-s5,y) » = v* (s,¥).

Now we have

au = L. w1 2
0= - 55+ Do - 121 (Ty1(0.9)) oo + 3 (T (e.7))" + Qlo.y) (3.2.9)

and, as in Problem 1,

mv, = grad W (3.2.10)

aw = 1 =2 PN

30 DaW ~ 7 (grad W)  + Q on S. 3.0
We have let

G*(s,y) - - T (totty-sy) . ¥ € ",
From (3.2.6) we have

J(o,y.9,) = J(s,y.9%). (3.2.12)

If the Verification Theorem 3.2.B is satisfied, then ¥* is optimal: that is

3(s.y.0) 2 J(s.y,7%). 3.2.15
From (3.2.6) and (3.2.11), (3.2.12) implies

Je.y.9 27 (0,y.9,). (3.2.14)

for all backward sdmissible ¥.
‘ Therefore, 1f v* is an optimal control in the sense of Theorem 3.2.A, then 9, is a
‘ backward optimal control for Problem 2, and the ccnvevsc {s zlso true.
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['% Extended Hamilton-Jacobi Equations, the SchrSdingcr Equation
and Inhomogeneous Backward and Forward Heat Equations.

4.1 Extended Hamiltcn-Jacobi Equations and the Schrsdinger Equation

We have seen, that if there exist W, W, v*, ¥* gatisfying the conditions

of the Verification Theorems, then W is a solution of the equation

g—g (e,x) - %; (grad G(t,x))’ + DaG(t,x) + Q(t,x) = 0O

(t,x) ¢ S
with

G(ty.x) = Wy (x),

and W is a solution of the equation

g—i (t.x) + —;; (grad &(t,x))? - DaG(r,x) - Q(t,x) = O
(t,x) ¢S

with

E(to \X) - Eo(x).

(4.1

(4.1.

(6.1.

We now show that, when there are solutions G, G of (4.1.1), (4.1.3), then there are

solutions of a Schrodinger equation. From now on D shall denote #/2m.

Gs6

Proceeding as in [4], with c* - 3

, HY = E%E , we have

'Q:

(G*-H*) - ;—m (grad(C*-H*))? + Da(G*-H*) + Q = 0

QD
"

(C*+H*) + % (grad(C*+H*))2 + Da(G*+H*) - Q = O

3

Adding and subctracting (4.1.5), (4.1.6) gives

an*

1 2 1 2
3t * 25 (erad Y + = (grad c*)

-pag* - Q=0

ac*

T % grad H* grad G* - DaH* = 0

(6.1,

(6.1.

(6.1.

Equations (4.1.7), (4.1.8) are equations (19), (20), of {4}, except for the potential

Q which was taken to be zero in [4].
At this stage, we make the following observation: if we define

deiweh? - wac* - q

(6.1,

Y]

2)

.3)

4)

.3)

6)

7

8)

9)
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then (4.1.7) becomes
*
S+ 33 (erad HH? — Lo (grad 67 + Dac* + 3 = 0 (4.1.10)
(4.1.8) is unchanged:
*
g%+gtad H* grad G* - DaH* = 0 (4.1.8)

If we now multiply (4.1.10) by i, and subtract (4.1.8), we obtain

a_ * ook _ * 1 * x , 1 N
3t (=G"+iH”) = — DaH™ + o grad H" grad G~ + 2m (grad G™)

- 2—; (grad H*)? - iDac* - i Q

or
g—t- (-G*+iH*) = iDa(-G*+iH*) + ;Tn (grad(-c*+iH*))? -id (4.1.11)

Straightforward differentiation gives us

Proposition 4.1.A. If G, G are solutions to (4.1.1), (4.1.3), then

ok
¥ = exp[%] 4.1 123
.z a solutl.n to
. 2 *y 2 % B
in 8¢ -h 7G hAG
e e S et
Conversely, suppose we start with the SchrSdinger equation
inoap o n -
I = 5— oY - Py (t,x) ¢S {&.1.7

at m

with given potential P. Assume there is a solution ¢ of (4.1.14), ¥ » 0, all (t.x), wit:

¥ = exp [L;i_bi] (4.1,

and suppose that M and N are c¢' 2 functions on S. Running the above arguments backwards,

we see

'r—

1.l 2 _ 1 2, - 4116
3 * I (grad N) % fgrad M) DaM - P = O (4.1,

a + = grad N grad M - DaN = 0 (6.1.27)

at

gl P

~ PR : A A i 3N .
The passage {rom 7o« i lu) o cthe pair 5 fq ., divnd o L b, C i1 was weed Dy Louls
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de Broglie for introducing his “theorie du guidage" (see [5]; equations (4.1.16),

(6.1.17) are the so-called equations (J) and (C) of Louis de Broglie). Together with
this pair of equations he defined the quantum potencial % by

Qp = Dart - &= (grad m)? (6.1.18)

The purpose of the definition (4.1.18) was to reduce equation (4.1.16) to the form

aN 1 2
3t t o (Brad M) +Q - P =0 (4.1.19)

which is the Hamilton-Jacobi equation of classical mechanics for the motion of a mass-
point in the potential P - Qp- As the reader may anticipate, if we next
introduce the "modified potential® Q by

N 2

Q=P - 20 =P - 20aM + iﬁ!ﬂ%-!l_ ) (4.1.20)
then

a .. 1 2 ~ .

FTOH + = (grad (W+i))? - Do) - Q = 0 (4.1.21)

%E(H—N) - %; (grad (M-N))? + Da(M-N) + Q = 0 (4.1.22)

Thus we have

Proposition 4.1.B. If

¥ = exp [;EELE]

is a solution as above to

2 " N
2 _ A
3~ am - P¥ (4.2.12)

then (M-N) is a solution of

G _1 2 -
3t " on (Brad 6)° + DaG + Q= 0 , (4.1.23)

and (N+M) {s a solution of

a

%% + %E (grad 6)? - paG -Q=0 . (4.1.24)

Equations (4.1.23, (4.1.24) are the equations (4.1.1), (4.1.3) with Q replaced by Q,
vhich is given by (4.1.20) (note that Q is specified once P is given, and

L e I

.
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Remark 4.1.C
Nelson's Equations
If we take gradients of equations (4.1.8), (4.1.10) and define

-vG* ov*

um == yo=
»
we obtain

. 2 2 0
v _ -# AU + grad u¢ grad v¢ _WQ
it  2m 2 2. ®
du A
3t " 7m Av - 9(v-u)

(4.1.25)

(4.1.26)

Nelson derived these equations, which are the main dynamical equations in his theory

theory, via different methods (Q/m representing the force field acting on a microscopic

microscopic particle undergoing a Brownian motion). He found, with

u - LA VR

. m

velos

m

that

¥ = exp(R+iS)
satisfied

R L
in 3t 3 oYy + QY

and the converse.
Doing this involved recognizing that (4.1.10), (4.1.8) (equivalently (4.1.17),
(4.1.16) or C and J of Louis de Broglie) are the imaginary anu real part of the

Schrodinger equation (modulo the factor of $) which we used in going from (4.1.10),

(4.1.8) to Prop. 4.1.A.

4.2 Inhomogeneous "backward and forward® heat equations

Now, if we make the exponential transformation
#(t,x) = exp(-G(¢,x)/A)
in equation (A.}.l), we have
g—t - -Dag + %ﬁ
with
#(ty ,x) = exp [—C Sfﬁifl}
similarly, if

#(t,x) = exp [ :ESE;El]

"

(6.2.1)

(6.2.2)]
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i
is put in (4.1.3), ve have ;
5 =
$-nos e 2 (4.2.4)

with

$(ty,x) = exp [—5 Lt‘fﬂ]

Thus from Proposition (4.1.B) and the above transformation we have the following
Fact 1. If ¢ given by

oo (229

is a solution to (4.1.14) then
) ¢ = exp ('Sﬁiﬁl ] is a solution of

& _ . Q¢ :
3t Da¢ + F (4.2.5)

1) ¢ = exp ['ﬁﬂiﬁl ] is a solution of

a

aé -
2 -+ Dog - %‘; (4.2.6)

iii) The square of the modulus of ;(c,x) is given by
e |17 = exp(-24/R) = 6(t,x) F(E,x) = $*(t,x)

iv)  ¢* is a solution of the Fokker-Planck equation

o’ - . ig‘ 3 (vy(e04") + Dog? “.2.7
where
vi(t,x) = Tlc’l.)?c_) iﬁ%—{“—) {=1,..n. (4.2.8)
: (t.,x) ¢ S.

Conversely, suppose there exist solutions ;. ¢ of the equations

a: 7 R =
5 32-0 -5 # In (.t x EN (4.2.9)
i

3 R

3¢~ Da¥ + 55 ¥ In (t.ty) x E” : (4.2.10)

for given R satisfying conditions

#(t. ) = & (6.2.11)
ey, ) =9y : (6.2.12)
, -
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where §y and 4, are non-negative, continucus, a 4 bounded functions on E*. (We rafer to
[8] for existence theory.) It may be seen, {8], that

#(z.x) >0, and ¢(t,x) >0 in S

provided that neither ¢, nor ¢, vanishes identiéslly. Now, defining W, ¥ by

3 - exp ['%] (4.2.13)

3 - exp [‘%} (6.2.14)
ve see that ¥ is a solution of

G 1 2

3t - 7o (8rad 6)° + DaG + R = 0 (4.2.15)
with

G(ty,x) = -A log ¢, (4.2.16)
and ¥ is a solution of

%G .1 =2

3c * 5, (erad 6)° - DAG - R = 0 (4.2.17)
with

G(ty,x) = -# log ¢, (6.2.16)

Thus, from Proposition 4.1.A and the above arguments, we have

Fact II. 1If ;, 3 are solutions to the Cauchy problems (4.2.9), (4.2.11) and (4.2.10),
(4.2.12), then

g eyl ——
3 - exp [ - (F+D) +1gw-w2] - exp [-w ;w']

2h
where
2 I.v 2 r
satisfies

- 2
2 - = -
a - ‘v (Wa+idy /2 l - naluslil - | ¥ (6.2.19)
in 5% - —-—2. Ay + [ [ = ] [-2—ﬂ ] ]

et et R e bt s - S

>
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Sote:
a) the solution ¥ of the Schrodinger equation (4.2.19) depends, like W and ¥, on
the initial and terminal data of the Cauchy problems.
b) - _ - '
B0l - exp [ﬂ_c_,%.;_wgm] = #(r,x) $te,x)
: . - $*(e.x) . (4.2.20)
Fact I is obtained in the proof of Theorem 4.3 of [15]); Fact II is more or less implicit
in Theorem 4.4 and Corollary 4.4.1 of [15], however, the arguments here give Fact II
more directly.
Example Homogeneous "backward and forward” heat equations, n=1
The solution of
8 - Do on [tg,ty] vhere 0 <ty < € < T, (4.2.21)
- 1 -x2 ]
- 4.2.22
W = sy o [41)(1"-:,) ¢ )
is known to be
1 $Lr,x) L [_*z] tg St 4.2.23)
WX ﬁﬁ exp AD(T-0) 0 st (4.2,
Similarly, the solution of
; i, o
! i at D37 (4.2.24)
X -
Y %o (x) = === exp [i] (4.2.25)
Jane, 4Dty
]
is known to be
: i (t x)‘- 1 exp [ﬁ (4.2.26)
$olt, ﬁ bel - .
Then
#(t,x) = ~2aD log $(t,x)
m _x2
= 3 ¢ * ®Dlog(T-c) + mDlog4nD (6.2.27)
9
- = a x2
W(t,x) - 3 ¢ + aDlogt + mDlogaD (4.2.28)
Now, ¢
b % Wl ax?( 1 1 aD -
& (t,x) = STz(t,x) - —It.[ﬁ + t] + —ilog(t(T t)) + mDlogénD
* s/
1 P v ]
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T*(r,x) = S!%!l(t_x) - l - f-— + 22 (logt — log(T-t))
-t 2
Sk nx = ol
W) = ea c)] Sl TYe )

T* mx) T2t * _ m{T-2t)
wiex) - 3 [t(T—c)] Avl(c,x) -0
Thus, by Prop. 4.2.8B, . .
mxz[ 1 l] mD. ]
¥ = exp [ % \T-c * + —5log(t(T-t)) + mDloginD
A
mx‘ [ T-2¢t
v L [t:(r =) 1°8[ ]] (4.2.29)
satisfies
w2, =2 Y LU I (4.2.30)
ac 2m 4 t(T-t) T E(T-t) . 2.
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CONTINUOUS PROGRAMMING AND NONLINEAR
FILTERING OF QUANTUM CONTROLLED PROCESSES.

3 et e A B el

V.P. BELAVKIN
Moscow Institute of Electronic Mashinebuilding
B. Vusovski 3/12, Moscow 109028

A quantum continuous Bellman equation is derived for the solution of the pro-
blem of optimal control of a quantum stochastic process with nondemolition measure-
ments. The solution of this equation u®(t,ut,p) together with the solution of the
corresponding nonlinear filtering problem p = n(t) defines the optimal control

strategy d%(t,zb,q(r)) = u°(t,ut,ﬁ(t)).

Let us consider a quantum controlled process over the algebra &= B(E) described
by the family of normal representations i(t) : & +» BtOC(Ut) where 3t=8® B(F%) ,
Ft = A (.Cz([O,t:[) is the Fock space.

Let Ut < x U(t') be a Yausdorf space of controlling processes
t'<t
t+s

ut = {u(e")|e* €10,t[} such that Utin = U for all t,s € R+ , where

U':'_ < »  U(t+r) and Ut = U: , U= U: . We consider a quantum controlled pro-
Ogt<s

cess i(t,uft) = i(t)(ut) over the algebra & = B(E) with respect to Bt= &o B(FY ,

Ft is the Fock space over £2([0,t[) described by the Hudson-Parthasarathy dynamical

equation (1) for P(t,ul) = i(t,ut,p)
dP-y(u,P) ® Idt = 2ReB(P) ® dA + A(P) @ dN, PO) =p€&,

where A = A(t,ut), B = B(t,ut), v(u(t)) = Y(t,ut,u(t)) are defined in standard way
by operator-valued functions V(t), X(t) Ut - A(t,ut) = i(t,ut, 8) with unitary
V(t,ut) and self-adjoint H(t,ut,u(t)). We shall suppose that the controls utEUt
are defined by strategies ut-dt(zt,qt) = {dt(t"T)lT € [0,s[} where 2% = (ut,qt) ,
q, = q:. qt = q; ’ q: =~{q(t+t) |t € [0,s[} are the results of nondemolition mea-

(e, eesl described by a commutative pro-

surements on the interval [t,t+s[, q: € R
cess Q(t) satisfying the equation respecting to dY = XeIdt+Veda, di = x*xe1dt +

+ 2ReX*VeodA + IedN ;
dQ - g(u(t)) ® Idt = 2Re(be® I)dY + (fe 1)dn , Q(0) = x1
with b(t,ut), £(t,ut), glt,ub,ut)) € A(t,ut)’ .

Let us consider the optimal control problem with the operator-valued risk

Re(u) € At(") - 3;0 A(tn,ut") , satisfying the equation
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£y
R, (u) -j
[+

s(t,uf,u(t))det + R, (u) ,
t 1

where S(t,ut,u(t)) €A(t,ut) for all t€R, . The optimal control strategy d?: is de-
fined as a solution of the extremal problem

(p®w, Re(u®.dy(2%,q.))) = inf ,

vhere p is an initial state on & and w is the vacuum state on B(F),F = F* ., This
solution can be found by the quantum dynamic programming method as the solution of

the following Bellman continuous inverse~time equation. .
THEOREM. Let r(t,zt,dt) €& be the averaged risk operator uniquely defined by
i(t,u,x(t,2%,d,)) = E (R, (u®,d,(2,q,))]

where £, is the conditional expectation with respect to Bt = 80 B(Ft) corresponding

to the vacuum state w, on B(F,) and
T(t,25,dy) = x eit,ub,r(t,25,d)) = (n(t,28),r(c,25,4,)

be the posterior risk, corresponding to the strategy d,, where X, is the condition-
al expectation on B, with respect to the commutative algebra C. generated by

q® = {a(t")|t'<e} . Then inf (M(t,z%),r(tyd)) = r(t,ub,n(c,2%)) where the
de
functional p = r(t,ut,p) satisfies the following Bellman equation :

-3T() = inf {(p,8(w))+ (por(),8) +5(|b]| +£( poa,6)2)1(p)}
u € U(t)

vhere 3, = 3/3t, &= 6/6p , x € & : i(t,ut,x) = X(r,ub),
pev(u) = ilo,h(u) ]+—; ([x0,x* 1+ [x,0x*]) ,
pea = 2Reb(x ~(p,x))p + f(xpx* - (p,:_t"x)o),

and 8(u), h(u) € & are defined by '
i(e,u%,8(u)) = s(e,ut,0),

i(e,u%,h(u)) = H2(t,ut,u) -

and N(t,zt) is an posterior state on & satisfying the nonlinear filtering equation
it~ fey(u)dt = Meadd/(|b]2 + £2 (f,x*x)) , #(0) = p,

vhere dQ = 2RebdY + £d7f, d¥ = dY -(f,x)de, dff = 4T - (®,x)de .

In particular, for the Brownian observation (f =0) :
-atr(o) - isf {Cp,8(u))+ (Cpor(u),8) + 2(Re8(x ~(p,x))p,6)2)r(p) } ‘

—-_3- e ———p - At anadtebely Vg
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where 6 = b/|b| and for the Poissonian observation (b=0) &

-3,1(p) = igf((n.s(u)) + ((pov(u),8) +%(p-xDX*/(o.x"x).6)2)t(o) }

The 'linear dynamical programming for Gaussian p and canonical x was consi-

H
- ; dered in (2), and the general formulation of quantum dynamical programming for the
3 partially observable controlled quéntum objects in operational approach was given
i in (3)
i
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AUTOMATIQUE ET REGULATION BIOLOGIQUE

Danie! CLAUDE

Laboratoire des Signaux et Systtmes,
CN.R.S.- ESE,,
Plateau du Moulon, 91190 Gif-sur-Yvette, France.

Résumé : A la mémoire de Richard Bellman, nous présentons les contrles bipolaires en biologie. De par
ses seules applications thérapeutiques aux domaines des tumeurs cérébrales et de la cancérologie, cette
méthodologie, liant I'automatique a la régulation biologique, aurait certainement cu ses faveurs. Nous en
montrons toute la richesse en ouvrant d'autres perspectives qui justifient pleinement le lien entre les
mathématiques et 1a médecine qui intéressait tant Richard Bellman.

Abstract : In memory of Richard Bellman, we present bipolar controls in biology. From its therapeutic
applications in the field of cerebral tumors and cancerology alone, Richard Bellman would have certainly
been in favour of this methodology which links control theory to biological regulation. We show all its
richness in opening other prospects that entirely justify the link between mathematics and medicine which
interested him so much.

1. INTRODUCTION

Depuis maintenant plusieurs décennies, de nombreux chercheurs ont pensé a créer un lien entre les
mathématiques et la médecine ( cf. les livres récents de Winfree { 26 ] et de Swan [ 25 1), en particulier par
les essais de modélisation de certains phénomenes biologiques et par exemple, en cancérologie , par la
recherche de procédures médicamenteuses (chimiothérapie) ou par 1a mise en place de protocoles
d'émission de particules actives spécifiques (radiothérapie). Nls souhaitaient ainsi réunir la théorie
mathématique et 1a pratique médicale. L'automatique, appliquée A certaines régulations biologiques, répond
i cette exigence et A cette espérance.

En biologie, de nombreuses régulations font appel  plusieurs agents aux actions couplées. Il en est ainsi de
la régulation de Thydratation cellulaire ou du contrble de 1a mitose dans lesquels interviennent les corticoides
d'une part et la vasopressine d'autre part, de méme que !l'insuline et le glucagon régulent I'activité
glycémique. La faillite dans certaines pathologies des thérapeutiques consistant A administrer une seule
hormone trouve son explication dans le fait que 'on a négligé les réactions de I'autre hormone qui intervient
A cause d'un jeu subtil de feedbacks croisés. En outre, la biologie est un domaine fortement non linéaire od

' le principe de superposition des actions n'a pas cours.

a b o
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Ainsi, toute action thérapeutique mesurable doit passer par une modélisation non linéaire multivariable,
suffisamment riche pour prendre en compte les aspects prépondérants des phénomenes étudiés, et assez
simple pour envisager d’'une manitre raisonnable les possibilités de commande de ces systimes et en
déduire les actions thérapeutiques. A cause des couplages, les solutions proposées, par leur caractire
faussement paradoxal, peuvent surprendre, déranger, voir provoquer des hostilités. Pourtant, les résultats
cliniques sont 12, authentifiés par les radiographies et les scanners, et on doit espérer que les deux exemples
que nous allons traiter, permettent de convaincre de la nécessité de développer rapidement le champ
d'action des thérapcutiques bipolaires dont Bernard-Weil est & lorigine.

II LE SYSTEME SURRENO-POSTHYPOPHYSAIRE ET LA VASOPRESSINO-
CORTICOTHERAPIE

Dans le cadre de V'application de 'automatique aux traitements chimiothérapiques en cancérologie,
Sundareshan et Fundakowski [ 24 ], s'interrogent sur le caractére dual de I'objet de ces thérapeutiques et
souhaitent trouver des agents qui soient capables de détruire les cellules malignes tout en préservant les
cellules saines. En fait, an sein de l'organisme existe un important syst®me qui assure la régulation du
développement cellulaire tant au point de vue de 1a mitose que de I'hydratation de la cellule, c'est le sysitme
hormonal surréno-posthypophysaire.

Le syst?me surréno-posthypophysaire, formé par les cortico-surrénales d'une part et par la neuro-
posthypophyse d'autre part, intervient ainsi au premier chef dans les manifestations cliniques observées
chez le malade neuro-chirurgical. Ce systéme est responsable de manifestations aussi diverses que certains
oedimes du cervean, certains collapsus cérébraux aggravant les suites d'intervention pour hématome sous-
dural, et intervient dans 'évolution des tumeurs cérébrales malignes.

La reconnaissance du couplage entre ces deux glandes date des années 30 ( c£.[ 23 ] ), et ce systime, aux
actions ago-antagonistes ( ¢f.[ 4, 6, 7] ), assure des régulations majeures. Ainsi, la cortisone, secrétée par
les cortico-surrénales, est un merveilleux agent, non seulement contre I'hyperhydratation cellulaire mais
aussi comme produit anti:mitotique, comme cela 8 été démontré in vitro aussi bien dans le cas de tumeurs
cérébrales malignes en culture que dans celui de toute sutre lignée cancéreuse en culture de tissu, Quant a la
vasopressine, secrétée par la neuro-posthypophyse, elle est responsable de iz réabsorption de I'eau par le
tube rénal et est un facteur de croissance tout & fait important. Ce premier facteur de croissance
polypetidique a été découvert en 1968 par Bernard-Weil, Dalage, Olivier et Piette [ 9 ] et leur résultat a €
confirmé ultéricurement par les auteurs américains, Rozengurt et all. [ 20 ], en 1979, et Monaco
etall. [ 18 ] en 1982, Nous renvoyons & Pawlikowski [ 19 ] pour avoir un rappel récent des actions
mitogéniques des neuropeptides. Le déséquilibre entre les corticoldes et 1a vasopressine, avec un exces de
vasopressine favorisant le développement tumoral, a été de nouveau mesuré récemment en cancérologie
digestive (cf. [ 11]), mais il a €6 constaté dans bien d'autres cas. De plus, & cause du couplage entre ces
deux hormones, certains oeddmes cérébraux résistent A la cortisone et les tumeurs cancéreuses ne sont
vraiment influencées par les corticoides que pour un court laps de temps et avec des doses trés élevées de
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ces hormones. Pire encore, l'organisme malade se piace dans une position " dhoméostasie pathologique”
( cf. Bernard-Weil [ 4 ]) et ce déséquilibre régulé bénéficie de sauvegardes biologiques puissantes qui
tendent 2 le maintenir en I'état comme $'il s'agissait du fonctionnement physiologique " normal®.

C'est ainsi qu'est préservé le déséquilibre vasopressine-corticoides chez le malade cancéreux,
'administration de corticofdes ayant pour effet d'augmenter le taux de vasopressine pourtant déji
anormalement €levé (cf. [3]).

La solution consiste donc 2 envisager I'administration simultanée de vasopressine et de corticoides
( cf.[ 5] ), un mod2le multivariable non linéaire venant conforter les intuitions premitres du médecin

(cf[4,6,7]).
Ce mod2le, représenté par un systéme différentiel non linéaire 2 deux entrées, ¢, et e,, et deux sorties, z, et

2y, peut s'écrire sous la forme suivante (cf. [15]):

. 3

H=3 [k(uplec (veq)i]+e,
i=l

. 3 . o .

v -E [k (utp)i+c(viq)i]l +e,

=1l

(2.1)

z, =m Log{( H+Y )/m]

avec H = x+X ; ¥ = y+Y, ol x et y désignent respectivement les actions des corticoides et de la
vasopressine endogénes et X et Y les actions des hormones exogénes ( thérapeutique).

1 s'agit d'un développement en séric dans lequel apparaissent des expressions antagonistes u = R-¥ et des
expressions agonistes v=m Log [( H+Y )/m ] +6(t), avec 6(t) = A + B sin( ot ) + C cos( ot ), ol les
constantes A, B, C et @ ( @ = 2/ 24 dans un rythme circadien ) déterminent le synchroniseur 8( 1) i€ aux
rythmes biologiques. L'introduction de la puissance cubique se justife par les conditions de stabilité du
systéme (cf. [ 4 ]); p( t) représente un possible stimulus osmotique ; q( t) cmd A un éventuel
stimulus volémique ( hémorragie par exemple) ou un stress ; les paramétres, k;, ¢j, k, ¢ (i =1.2,3) sont

constants ; le paramétre m est pris en général constant ( m = 0,8 ) mais peut aussi étre considéré comme
variable dans le temps. Lorsque q a des valeurs positives, par forte augmentation de la volémie par
exemple, et telles que x et y deviendraient négatifs, on prévoit la possibilité de faire quitter & m la valeur 0,8
pendant le transitoire nécessaire.

Le systtme est écrit dans un systtme d'unité commune (u.c. ) pour lequel :

0,4 u.c. = 77 ng/ml de cortisol (F ) = 1,1 pU/ml de vasopressine ( VP ),

valeurs qui correspondent A la moyenne des valeurs expérimentales des rythmes circadiens de ces

M‘"' h i atainady- 7 ondi i A A S
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hormones. .

Les valeurs x, y, X, Y peuvent &tre assimilées 2 des concentrations hormonales et sont ainsi sujettes A des
contraintes de positivité. Dans le cas physiologique (X = 0, Y = 0 ; p = 0, q = 0 ), 'équilibration est
simulée avec un champ paramétrique de ( 2.1 ) donnant un cycle-limite tel que le coupie ( u,v ) admette
l'origine ( 0, 0 ) comme point critique. L'équilibration ( X = 0, Y = 0 ) devient pathologique si unc
modification du champ ( 2.1 ) permet 3 un nouveau cycle-limite d'apparaitre.

Les paramdtres k;, ¢, k;, ¢; (i = 1, 2, 3 ) pour le systime siroulant Ia pathologie, et K;, ¢, £;, ¢; pour le

systéme simulant le cycle physiologique, sont identifiés 2 partir des données cliniques et physiologiques, 2
l'aide de 1a méthode d'intégration _numéxique de Davidon-Fletcher-Powell avec contraintes (¢f.[1]).Le
critére & minimiser J (k, ¢;, k, ¢, T) est donné par :

I Ckpcpk, e T)=Y [ (%-x)% + (§;-%) ' (22)
J

olt xety désignent des valeurs expérimentales et x et y les solutions "endogénes” du systéme ( 2.1 ) dans
lequelonapris X =0,Y =0, p=0etq=0.Laquantité T correspond  trois cycles, soit ici, 2 72 heures.

Dans le cas d'une homéostatie pathologique, la "simulation thérapeutique” consiste 3 déterminer les
hormones exogénes X et Y de fagon & ramener le systéme dans une position dhoméostasie physiologique.
Une premidre méthode ( cf. [ 6, 7] ) consiste & écrire les entrées ¢, et ¢, dans une forme semblable A celle

des hormones endogénes, soit :

3
e, =2, (ke (udplacy,; (v#q)]+A (X-0a)+A (X -0 R +0(X-0, P

i=]

(23)
3 . . ] . v .
&=, [Kyy (04p)+ €y (v4q)l]+A(Y-0y) +20(Y-a P42y (Y- )

i=]

avec Ay, Ay, Ay Ayu Ay, Ay, @, @; des parametres constants ayant pour rdle d'éviter la dérive du cycle-

limite de dimension 4 que suivent les quatre états du systéme. On identifie alors les paramdtres de (2.3 ) 4
l'aide de la méthode de Davidon-Fletcher-Powell.

Remarque 1: La tentation de prendre pour les entrées e, et e, la différence entre les équations de I'état
physiologique et de I'état pathologique conduit 4 un conwrdle qui peut ne pas satisfaire les conditions de
positivité des variables x, y, X, Y, ni assurer I'existence d'un cycle-limite (cf. {6]).

Une seconde méthode, basée en premier ( cf. [ 15 1) sur le découplage et la linéarisation des systtmes non
linéaires ( cf. [ 12, 13, 14 ] et les bibliographies afférentes ), consiste en fait A inverser le systtme (2.1)
(cf.[16,17)).
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A partir du systéme ( 2.1 ).onconsidérealmslestglaﬁonsmivames:
He12(z +mel(Z/m))

Y=12(-z +me(Z/m))

(24)
X=H-x
Y=Y-y
x ety étant soluﬁonsdwéquaﬁons différentielles :
. 3 . .
x=) [k(z;+p)+c,(z,+ 8+q)]
i=1
(25)

3
y=Y [ki(z,+p)i+c(z+0+q)]
jm]

11 s'agit donc de permettre aux sorties z, et z, du systtme ( 2.1 ) de passer de la position pathologique,
donnée par les équations différendelles :

3 . .
\irl=_2‘; [(k-K)Cy, +pl+(c-¢)(+q)]

3 . - . .
V=Y [+ (y +p)i+(c+g)(veq)i]).e-¥a/m) (2.6)

i=l
avecv=y,+A +Bsin(wt)+Ccos(wt)et w=2x/24,

A l'équilibre physiologique décrit par les équations différentielles obtenues A partir des données
expérimentales :

3 . .
v,-; [(Ei'ii)q,;"'(éi‘éi)vl]

3 L. .
G=(X [(E+E) @ +(G+G)V]) . e(-P2/m) (27)
im]

avecv=@,+A +Bsin(ax)+Ccos(wt)et 0=2x/24.
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On écrit z, et 2, sous 1a forme :

z ad +
(28)
=8+,

Le souhait du thérapeute est alars de trouver des fonctions 3, et 8, qui perrhettent en premier de définir un
transitoire amenant les courbes pathologiques initiales, représentées par x et y, vers les courbes
physiologiques que doivent suivre les variables # et ¥, somme des actions des hormones endogenes et
exogénes. En second, aprés la période transitoire ( deux 2 trois jours ), le thérapeute souhaite 2 la fois, voir
s'installer un régime permanent aussi proche que possible du rythme circadien physiologique pour les
variables H et ¥, et mettre en place, pour de nombreuses raisons faciles A deviner, une action thérapeutique
périodique de période égale ici 2 24 heures.

Cependant, 'analyse immédiate des équations ( 2.5 ) montre qu'avec les coefficients du pathologique, it n'y
a aucune raison pour que l'introduction dans ces équations des rythmes physiologiques entraine
'apparition d'un cycle-limite. Bien au contraire, comme le confirment les simulations numériques, on
assiste 2 une dérive affine du cycle. La démonstration de ce phénom@ne étant évidente.

Ainsi, la seule possibilité, en régime permanent, est de déformer aussi peu que possible le rythme
physiologique pour assurer la périodicité de la thérapeutique représentée par X et Y, les fonctions 5, et 3,
étant alors elles aussi périodiques. On est conduit ainsi & réaliser une optimisation sous les contraintes
x20,y20,X20,Y20. Enfin, il faut s'assurer que le cycle-limite obtenu est stable et que le systéme
est en plus structurellement swable.

I est 2 noter que le principe de I'utilisation de I'optimisation est judicieux au regard de la notion de rythme
physiologique moyen qui est utilisée et aussi vis 2 vis des incertitudes qu'améne l'utilisation d'un mod2le.
Ainsi les fonctions 8, et 8, doivent permettre de satisfaire les conditions de positivité des variables x, y,
X, Y, et, aprés un transitoire, doivent assurer I'existence d'un régime permanent cyclique et basé sur le
rythme circadien. II s'agit alors de trouver une classe de fonctions suffisamment riche pour pouvoir contenir
les solutions cherchées. On peut envisager une recherche hybride en séparant la partie transitoire du régime
permanent.On peut alors considérer 1a classe de fonctions & quatre paramatres, dense dans I'ensemble des
fonctions continues sur tout intervalle compact, et définie par :

to=fp bd cos(et)ds +c  avec d>0 (29)
0 1 +d? - cos (bt)

Cette classe de fonctions est utilisée par Boshernitzan [ 2 ) dans la recherche des équations différentielles
universelles (cf.(2,22]).
Cette seconde méthode est en cours d'étude.
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Remarque 2 : On pourrait s'inquiéter de I'impossibilit€ de trouver un contrble thérapeutique capable de
réablir les rythmes physiologiques, mais on ne doit pas oublier que dans la réalité les paraméwres qui
dérermihent lo comperietent du systdme sont variables ét si ils sont passés de 1a position physiologique i 1a
nmmnpoﬂmlog:qne.led:erapeum,thmlesmdcmm postule qu'un maintien forcé d'un rythme
mhedury&mpbymbpque,peﬁmtmp&iﬂdemﬁmw.mamm&wmm
I'homéostasie physiologique. -

II. LE COUPLAGE INSULINE-GLUCAGON ET LE DIABETE.

L'activité glycémique peut étre considérée comme la résultante des actions antagonistes du glucagon
hyperglycémiant et de I'insiline hypoglycémiante, ces deux hormones agissant d'une fagon couplée. Ce
systéme présente, par rapport du systéme surréno-posthypophysaire, une particularité remarquable au plan
anatomique. Dans le cas de la réponse glycémique, la nature a installé le mécanisme de commande de 1a
régulation dans un méme endroit - les flots de Langerhans - au sein du pancréas. On trouve dans ces amas
cellulaires 1a fabrication simultanée de l'insuline et du glucagon sous l'action coordonnée de la
somatostatine. Devant les résultats cliniques obtenus A I'aide de la vasopressino-corticothérapie, il semblait,
au regard des enjeux en diabétologie, interessant de proposer une modélisation du systdme insuline-
glucagon sous l'angle de la vision bipolaire des systtmes ago-antagonistes définis par Bernard- Wi

La modélisation proposée prend la forme d'un systtme différentiel non linéaire, 3 trois entrées
€1, €, & et trois sorties 21, 2y, 23 ainsi défini (cf.[8]):

3
BeF [G(R-Vaedec(ReV-m)il+e
T iml
() 3 N .
VX [G(R-Yre)itc(H+V-m)i)+e
i=]

X=e,

Yae, (3.1)
Gmg (Gy-G)+ g (g3 [th(g (B -V +Y-X+gg)) +th(ge(X-Y+g5))-2th(g85)) +¢3]
z=H-v

Zel+¥-m

=G
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| { endogines et X et Y les actions des hormones exogines ( thérapeutique ).
i } Gy = 0,78, désigne le taux de base physiologique de la réponse glycémique G(t)etm=2,1.

Le syst2me est écrit dans un systtme d'onité commune pour lequel une unité commune vérifie :
10 pU/ml d'insuline = 100 pg/ml de glucagon.
_ Dans e cas de I'étude du test de tolérance au glucose, l'entrée ¢, = p( t ), qui est liée A 1a prise orale de

100 g de glucose, est représentée par la fonction :

P(t)=(p,/(p,-P3))+100.ps [ exp(- p,t) -exp(-pyt) ] ’ (32)

Comme pour le mod2le du systéme surréno-pothypophysaire, les paramétres des équations ( 3.1 ) et (3.2)
ont été identifiés, A I'aide de la méthode d'optimisation non linéaire de Davidon-Fletcher-Powell, & partir des
courbes expérimentales. Les parametres définissant la fonction p( t ) ont été ajustés une seule fois car les
cmdiﬁomd'&sapdophmﬁnﬂedﬁglmmmmimhﬂmméespuksmomﬁwhmahsqmm
autres processus du métabolisme glucidique. Par contre, bien entendu, les paramétres de I'équation ( 3.1 )
sont & identifier dans le cas physiologique et dans le cas pathologique.

La recherche du contrSle ( thérapeutique ) visant A corriger les anomalies de 1a réponse glycémique chez le
diabétique a é1€ obtenue dans un premier temps (cf. [ 8]) en prenant les entrées ¢, et e, sous la forme :

3
°1"'Z [k, (B-Y+pltc ,(H+ ¥V -m)]

iml

3 (33)
! | &= [k (H-¥ep)ivc, (R ¥ m)]

=l

Elles permettent de mettre en place un contrdle asymptotique tendant 2 ramener la position limite
pathologique 2 la valeur physiologique moyenne de la glycémie ( 1 g/1 ), le déséquilibre initial glucagon-
insuline avant la charge en glucose, comme I'équilibre physiologique, étant des points critiques stables du
On peut aussi opérer comme pour le systtme surréno-posthypophysaire et considérer les relations :

BR=12(z,+2,+m)

¥=12(-2,+7y+m)

- ' (34)

‘ X=8~x

Y=¥-y =

x et y étant solutions des équations différentielles :

B L SR SN,
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3
i-zl,[h(zwp)“ci(zz)‘] '
(35)
- 3 Al n L] .
y=2 [k(z+pl+g(z)]
im}

' 1 s'agit ici de permettre aux sorties z), z; et z3 du systdme ( 3.1 ) de passer de la position pathologique :

2,(0):2,(0);G(0) (3.6)
A I'équilibre physiologique " asymptotique” :
72y=0;2=0;G=1 (3.D

L'équilibre physiologique devant bien entendu &tre atteint avant l'ingestion suivante, soit dans un délai
d'environ 5 heures. ..

Pour déterminer la “thérapeutique” - X, Y - 3 appliquer au systéme "pathologique” ( 3.1 ) on peut alors, par
exemple, utiliser de nouveau la classe de fonctions A quatre paramdtres donnée par la relation ( 2.9 ) et
effectuer une optimisation, sous les contraintes x 20, y 20, X 2 0, Y 2 0, en minimisant I'écart entre les
trois sorties z,, Z, €t z; du systéme "pathologique” contrdlé ( 3.1 ) et les trois sorties @,, @, ct @3 du
systtme “physiologique” ( 3.1 ) soumis aux entrées e, =0, ¢, = Oete, =p(t).

Ceci fera 'objet d'une prochaine étude, mais les simulations effectuées avec les entrées ¢ et e, sous la
forme (3.3) (cf. [ 8 } ) montrent déji qu'une meillenre approche de la courbe glycémique est obtenue avec
l'intervention simultanée des deux actions X et Y (insuline et glucagon ) plutdt qu'avec I'insuline seule.

IV. CONCLUSION

Nous avons présenté et illustré par deux exemples une nouvelle méthode de recherche Liant étroitement
V'antomatique et la biologie. Cette voie dont Bernard-Weil est l'initi , ouvre un champ d'investigation
immense en permettant, 1 - un procédé de modélisation original qui s'apparente aux "dynamical metaphors™
de Rosen [ 21 ], de prenare en compte 1'aspect ago-antagoniste qui intervient dans un grand nombre de
régulations biologiques. Cette modélisation, A méme de simuler aussi bien le pathologique que ie
physiologique, propose des contréles bipolaires aux incidences thérapeutiques parfois surprenantes. Il n'est
pas guestion que I'sutomaticien rentre dans les précisions médicales dont il n'a pas la compérence, mais il
peut quand méme indiquer, comme le montre déjk un certain nombre de publications médicales ( cf. { 5,
10, 11 ] ), que la pratique des thérapeutiques bipolaires ésead pas A pas son champ Capplication. I n'est
pas douseux que dans un avenir que I'on doit rendre aussi proche que possible, ces thérapeutiques
conduisent & supprimer I'état de souffrance d'un grand nombre d'¢tres humains.
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COMPUTER MODELS APPLIED TO
CANCER RESEARCH

Werner Diichting
Department of Electrical Engineering
University of Siegen
Holderlinstr. 3, D-5900 Siegen, West Germany

ABSTRACT: The aim of this contribution is to illustrate the
impact of computer simulation in the field of biology and medi-
cine. This paper shows how systems analysis, control theory and
computer science can stimulate new approaches to interpret can-
cer, to predict tumor growth and to optimize tumor treatment.

Starting with a review of the current biological knowledge about
the origin of cancer a computer model is constructed
- tc simulate the time behaviour of disturbed cell growth control

circuits

- to predict spatial tumor growth (2-D, 3-D) and

- to simulate different kinds of cancer treatment (surgery, ra-
diation- and chemotherapy).

In the 1long run the aim of our work is to optimize treatment
strategies and schedules in vitro and in vivo by computer simula-
tion prior to clinical therapy.

1. BIOLOGICAL BACKGROUND OF THE CANCER PROBLEM

Cancer is a multistep process with the stages of initiation,
promotion and progression. Characteristic features of malignant
tumors (1) are uncontrolled proliferation, invasion in adjacent
normal tissue, metastases induced to other tissues via lymphatic
channels and the ability to evade immune surveillance. Though
cancer treatment is concentrated on a prevention of metastases
(2) the central question in the background of research is: Which
is the initiating event that is responsible for a stepwise trans-
formation of a normal cell into a tumor cell? Recent investiga-
tions in the field of molecular biclogy have focussed on dominant
cellular genes called "proto-oncogenes® which can be activated by
tumor viruses, gene amplification, gene translocation and genetic
mutation. In spite of this progress (3) the main question how
genes and the growth of normal and malignant cells are regulated
still remains open.
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Most of the normal tissues in thie hody cencain some cells that
can renew themselves (neurons, liver cells, kidney cells) if a
fissue is injured. The division of a cell into two new ones
involves four stages: Gl —e S —e G2 —e M (G1 is a gap after
stimulation; S is the phase of DNA replication; G2 is a second
gap period and M is the stage of mitosis). When the replacement
has been completed the repair process stops. Furthermore, at
particular stages of the cell cyClé the Cells may be blocked by
drugs or agents, or they may move out of the cell cycle into a
resting phase known as GO (4).

In contrast to the normal cell a tumor cell is theoretically able
to divide indefinitely. In addition a different morphology, lar-
ger nucleus, abnormal number of chromosomes and the formation of
new capillaries (tumor angiogenesis) which is associated with a
more rapidly growing tumor (5) can be noticed.

For studying the process of carcinogenesis tumors are induced ¢to
animals or to cell cultures (in vitro). Cell cultures are not
only used to sfudy the division of tumor cells, but also to
determine the effec: of chemotherapeutic drugs. During the last
years a large progress has been maaé in experiments gaining hard
data about normal and abnormal cell-growth control processes for

instance of cell-cycle phase durations.

. 2. MODELING APPROACHES

Starting from basic biological test results a 1large body of
mathematically oriented work applying mathematics to the field of
biology and medicine has been published (6-10). Unfortunately
these models which consist of complicated formulae, are in most
cases not completely understood by clinicians. In this dilemma
the combined application of methods of systems analyéis, control
theory, automata theory, computer sciences and heuristics is a
good 1link between the diverging areas of medicine and mathema-
tics.
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Our own approach developing closed-loop control circuits for
tumor growth started in 1968 (11). At that time the subject of
consideration was focussed on stability conditions and on the
" interpretation of cancer as an unstable closed-loop control cir-
cuit. Step by step the dynamic behaviour of cell renewal control
loops (Fig. 1) was investigated. Blockoriented simulation lan-
guages have been used for simulating the macromodels. As a vtesult
the number of cells as a function of time has been plotted (12).

Then oncologists advised us to consider not only the time but
also the spatial behaviour of tumor growth. 1In a first approach
we developed models at a cellular level which described the 2-D
behaviour of a normal cell inoculated into a nutrient medium {in
a Petri dish). Next we extended this approach and tried +c simu-
late tumor growth in the tissue Qf a tobacco 1leaf (13).

D1 D2 D3 R
STEM CELL PROLIFERATION N ;&Tcuggmg L C ¥ |
OL.§ T
Lo
CONYROLLER 2 CONTROLLER 3 p—————, }
. E2 Ei }
CONTROLLER 1 e j

R: Required tissue oxygen (desired number of erythrocytes)
C: Number of red blood cells (erythrocytes)

E2: Production of the erythropoietin hormone

D1, D2, D3: Disturbance

Fig. 1: Multi-loop control circuit of erythropoiesis
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Fig. 2: Simulation of tumor formation in the tissue of a tobacco
leaf
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s PELSCD
Fig. 3: Simulation of the formation of a tumor spheroid. The ini-
tial configuration consisted of a single <tumor cell
placed in the center of the nutrient medium
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After getting the results shown in Figure 2 we improved these
models by introducing distinguished cell cycle phases (G1, S, G2,
M, GO, N). Thus, we were able to simulate the 3-D growth of a
single dividing tumor cell (14) inoculated into the center of the
cell space of a nutrient medium at the beginning of the simula-
tion run (Fig. 3). '

The introduction of distinguished cell-cycle phases was necessary
because chemotherapeutic agents and rays effect only a’ very
particular phase of the cell cycle that means they act phase -
specifically. .

After simulating in vitro tumor growth the attempt was made to
substitute the nutrient medium by static blood vessels (15).
However, very soon it was clear that a more realistic structure
of capillaries was desirable for simulating in vivo tumor growth.

3. DESIGN STRATEGIES OF A HEURISTIC MODEL

The modeling of complex cell growth requires a considerable
simplification. Some of the oversimplifying assumptions are

- constant volume of a cubic cell

- constant phase duration and constant cell loss

- only horizontal and vertical communication between neighboring
cells

- a limited tissue volume by computer facilities

- side effects, immunologic reactions, heterogenity, drug resis-
tance and the formation of metastases are neglected.

If you want to construct a model of high order, it is necessary
to design a modular concept. In this case it means to design
modular structured subsystems.
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You need cont-ol models (Fig. 4) which describe the cell
division of normal and tumor cells at a cellular level
including experimentally gained data e.g. of cell-'cycle
phase durations.

Heuristic cell-production and interaction rules are re-
quired describing the cell-to-cell communication. For in-
stance one rule of the catalogue may say:

All tumor cells residing at a distance larger than 100 um
from the capillaries after the next division step will
enter the resting phase GO.

Cell movement is described by transport equations (diffu-
sion~, Poisson-equation), that means we have to introduce
into the model gradients for pressure and metabolic com-
pounds.

To represent 2-D and 3-D simulation results computer-
graphics software packages are necessary.
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Fig. 4: Simplified cytokinetic model describing the division of a

normal cell
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The large body of statements, rules and equations has been trans-
formed into algorithms. In addition algorithms considering tumor
treatment (surgery, radiation- and chemotherapy) have been deve-

" loped in subprograms written in FORTRAN IV. To start the simula-

tion program packages the following input data have to be fed
into the computer (VAX 730):

- notations abocut the character of a cell (normal, malignant)

- cell-cycle phase durations

- cell-loss rates

- initial configuration of normal tissue and of tumor cells

- distinguished data about the kind of the planned tumor treatl: -
ment.

4. SELECTED SIMULATION RESULTS
Numerous simulation runs have been performed by Dichting and
Vogelsaenger (15-17) simulating tumor growth and different kinds

of treatment. Some special results will be demonstrated now.

4.1 Growth of capillaries

The simulation of 1in-vivo tumor growth requires a realistic
structure of capillaries. Therefore Vogelsaenger (16) investi-
gated the question: Is the formation of capillaries a stochastic
or a regulated process? In (16) the assumption is made that each
cell of an organ in evolution has a special request for oxygen
and glucose. Therefore, parallel to the formation of tissue
capillaries are built with a specific structure corresponding to
the required oxygen and glucose. That means from the viewpoint of
control theory the request for oxygen suprly is regulated to a
constant level by building a special structure of capillaries. A
comparison between Figure 5 and Figure 6 shows that for the
cortex of a rat the simulation result is highly similar to the
experimental result received by BAr (18).
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VENTRICULUS

Fig. 5: Capillary network in the cortex (simulation result)

4.2 Spread of tumor cells in the cortex

Now the assumption is made that a single tumor cell is arbitrari-
ly placed in the tissue of the cortex at T=1 unit of time. If
this tumor cell resides close to a capillary it will divide and
move in accordance with the cell production rules (Fig. 7).
Further tumor growth is possible only because tumor cells produce
a substance which is called tumor-angiogenesis factor (TAF). This
factor stimulates nearby blood vessels to send out new capilla-
ries (Fig. 8) which grow towards the tumor, penetrate it and lead
to further rapid tumor growth. Recently great efforts have been
made to attack cancer by trying to find a protein which inhibits
the production of the tumor-angiogenesis factor.
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Fig. 6: Vascularization of the cortex (18)

4.3 Chemotherapeutic treatment in vitro

As pointed out in section 1, the cytotoxic effect of chemothera-
peutic drugs is tested in cell cultures. These are very good in-
vitro systems which can be simulated by a computer model. Figure
9(a) shows. a tumor spheroid at T=200 units of time which has
grown up from a single tumor cell inoculated into the center of
the cell space at T=1 unit of time.

;
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Fig. 8: Formation of new capillaries at T=120 units of time
(tumor-angiogenesis effect)
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At T=201 units of time it is assumed that all proliferating tumor
cells (i.e. the outside rim) have been killed by a cytotoxic drug
(Fig. 9(b)). Now the remaining resting tumor cells (GO-phase) in

- the neighborhood of the nutrient medium are being recruited into

the cell cycle again, and after a short time of remission the
tumor spheroid continues to grow (Fig. 9(c)-(d)). Therefore, a
second therapeutic attack or a combined approach is recommended.
The task which has been solved in (15) is to determine the opti-
mum time at which the drug has to be applied for a second (and
more) time(sz).

S. FUTURE PROSPECTS

From the voluminous catalogue of unsolved problems in the area of
cancer research I think there are three promising avenues of
future work in the modeling field:

- Optimization of distinguished methods and schedules of cancer
treatment. .

- Generation of a more realistic initial configuration cf a tumor
by combining CT-pictures (Computer Tomography) with predictive
models describing tumor growth and last not least

- Consideration of facts which had to be neglected so far (forma-
tion of metastases, immunologic reactions, drug resistance,
heterogenity, side effects).
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BIOLOGICAL SYSTEM RESPONSE PREDICTION BY APPLICATION OF STRUCTURE-
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ABSTRACT

The structure-activity models are primarily oriented towards the
evaluation of molecular similarity. The approach and the model of
structure-activity relations presented in this report is based on the
similarity parameters developed by use of probability functionms. The
molecular structures are encoded as sequences of numbers representing
counts of paths of different lengths. The similarity index between
two compounds is calculated as the difference between the gains of
information derived +through the comparison of +the corresponding
molecular path sequences. The similarity index is used as a basic
information for modelling the property prediction model. The corre-
spondences between the ranks representing orderings according to the
similarity index value are then searched and expressed as correlation
indices. The correlation matrix represents the source of data for
clusterisation of the compounds. Optimal classification is obtained
after several testings with different threshold values. The classifi-
cation of a compound with unknown biological activity intoc one of the
obtained clusters of compounds with known biological responses repre-

" sents the source of data for prediction procedure. The method is

illustrated on a group of benzamidines.
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1. Introduction

The biological response prediction models are often based on cluster
analysis methods. Cluster analysis is a multivariate technique that
identifies groups or clusters of related objects in a multidimensional
space [1,2). The classification is aimed towards the search of
pattern points which correspond to natural and useful groups of
chemical compounds. The location of pattern point within a cluster is
used for semi-quantitative determination of biological activity [3] or

‘other physicochemical property. This is an usual procedure for

property prediction of non-available or not yet synthetized compounds.

The last decade brought in the chemical literature many different
classifying algorithms. As a rule the results after the application
of different algorithms to the same data set differ. Consequently,
the choice of the classification algorithm must be done very carefully
accord;ng to the nature of the studied problem. In general, all
methods for identifying clusters in a multidimensional space contain
some heuristic and arbitrary elements. Quantitative evaluation of the
accuracy of the classification method and the prediction power is
possible only in the case where the chemical data are abundant.

Basic assumption used in development of structure-activity models 1is
the expectation that molecules with similar structural features will
exhibit similar physicochemical properties and biological or pharmaco-
logical activities [4]. Structural similarity or dissimilarity of
drugs finds application in quantitative structure-activity relations-
hip (QSAR) studies and in drug design [5). The definition of the
similarity within the nodéls is based on mathematical terms, which
describe the chemical structure of the drug. The most difficult
problem in modelling is the derivation of mathematical expressions for
chemical structure encoding. The mathematical terms used in the model
are expected to contain a lot of information and to have general
applicability to different chemical systems under a variety of
conditions.

The model presented in this report makes use of -the mathematical
property of the molecular graphs. The classification approach is
based on the comparison of all possible molecule rankings (represented
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as strings) generated according to the aimilarity of a particular
molecule from the initial set. The results of string comparison are
expressed as corrslation coefficientz and used for group generation.

- The properties associated with a group are used as source data for

prediction of an unknown biclogical response.

2. The developed model
2.1. Definition of the molecular similarity measure

An important problem in modelling structure-activity relations (SAR)
is the definiton of the molecular similarity. The similarity itself
is a mathematical relation with transitive, reflectional and equiva-
lence properties, but the molecular similarity derived from the
mathematical properties of the molecules does not always reflects in
the same manner these mathematical relations in the real chemical
world. 1In the real word there are other elements besides the chemical
structure that govern the molecular behaviour.

The selection of appropriate molecular deacriptors in SAR is of a
great importance. In the chemical literaturs it is commonly accepted
that major factors that govern <the chemical events and biological
acﬁivity are the molecular shape and the molecular structure [6]. In
our model the molecular descriptors are derived from the molecular
graph, not from the molecular physico-chemical properties (7]. We
decided to use as mathematical descriptors a set of structural
parameters already found useful in the study of structure-activity
relationships. The molecular model used is the structural formula in
which the hydrogen atoms are supressed according to the widely
accepted practice [8]. The hydrogen atoms are less essential for the
chemical behaviour and their presence can be always deduced if
required. The characterization of the chemical structure is done by
enumeration of the self-avoiding walks or paths with different length
in the hydrogen depressed graph. The use of path codes in the
discussion of similarity versus property or activity has shown that
shorter paths, in particular the paths of lengths two and three,
reflect the physicochemical properties of the compound [9] while paths
of -longer length, which encdde the presence of structural details at
larger .oparntiong reflect the molecular shape and are of interest for
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study of the biolecgical activity [10]. Derivation and computation of
self-avoiding paths may be found elsewhesre ([11,12].

The approach and the model of structure-activity relations presented
in this report is based on the similarity parametres developed by use
of probability functions. The sequence of path numbers for a compound
AL may be viewed as a distribution of a particular property of the
molecular graph ([13]. The domination of the size effect which may
obscure the analysis when molecules of different sirze are considered,
may be avoided by normalization of +the path sequences. The path
sequences are normalized by dividing the entries in every sequence
represented as a vector xi (xi = [xij], 3=1,2,..,m; m is the number of
the longest path) by the number o atoms in the structure. We denote
the normalized vector as xe.

Following Jeffrey [14] the similarity between two chemical structures
Ai and Ak belonging to a studied data set can be defined as [15]):

n
I(Ai/A) = 2 (pts-pki)logz (Pij/pay) ()
i

where pij is the probability that a randomly selected element of the
sequence Ai  will be found in <the j-th group of eclements, pxj is
defined analogously.

In the case of strings of path numbers characterizing a molecule, the
probability that a randomly selected path is in the group of paths
with length j will be:

L]
Py = x!:/(Zn:) - ()
is1

As pis is calculated from the slements which reflect the molecular
features of Al the quantity I(Ai/Ax) measures quantitatively the
degree of similarity six between the molecules A1 and Ax. The
similarity matrix 6 for a particular set of compounds is obtained by
calculating the similarity indices six for every pair (Ai,Ax) 4in the
data set.
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The similarity index in the developed model 1is used as a basic
information for property prediction. The studied compounds are
ordered according to the aimilarity index value between the compound
Ai and all others componds in the data set. The ranking is obtained
with ordering of the structures by ascending values of the similarity
indices [15]. After generation of all rankings in the data set a nxn
matrix 1is obtained. The relationship between the compounds may be
expressed quantitatively by use of different string comparison met-
hods: trace, alignment and listing [16]. The calculated quantities
give an information about <the similarity between two compounds
“derived” from the similarity relationships of both compounds to all
elements present in the data set. In that way all individual
structural characteristics present in the data set are fully conside-
red.

The correspondence between two particular sequences is calculated by
counting the number of identities in traces generated for these
sequences [15]. A trace between two sequences consists of lines
connecting the elements from both sequences. An element can have no
more than one line and the lines must not cross each other. If the
elements connected "y a line are the same then the pair represents an
‘identity, if they are different, the pair constitutes a substitution.
The result of the comparison between the elements of the sequences A
and B is expressed as the quantity W(A,B). W(A,B) represents the
number of different identities found in all traces generated by
comparison of two ranks and diminished by one ([15]:

n
W(A,B) = E (ei -1) (3)

i=1

where n is the ﬁunber of the sequence elements; ci is the number of
identities in the trace i on the right of element i. Detailed
description of the method of calculation of W(A,B) is given in (15].
The correlation coefficient r for two compounds A1 and a; is computed
according to the expression [13):

riy = [2W(Ai ,A5)/n(n-1)) (4)
where n is the number of the string elements.

The correlation coefficient rij is 1 if the orderings of the sequence
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elements compared are identical and approaches zero if they are
completely different. The correlation coefficients rijy for all
possible rankings in the data base form the correlation matrix R. An
element of R gives a quantitative eatimation of the similarity between
the compounds Ai and Aj. Two similar compounds i.e., A1, Aj will
generate always a similar ordering of the rest of the data set
elements and they will have veri high ri15. If the contrary is true,
then the value of rij will be low.

2.2. The compound clustering

The developed clustering algorithm makes use of the correlation matrix
R. The first step of the procedure is the search for the most
correlated compounds within the matrix R. The searched compounds
represent the kernels of the future clusters. Each kernel in the very
beginning contains only two compounds with <the highest found rij.
Other kernel elements are added according to the first threshold value
defirad on the base of the first chosen value of riyj. The kernel
elements are represented in Fig.l with the sign @ (note that this sign
represents two compounds, the compound i and J). The second step
completes the clustering procedure. Another threshold value |is
defined for classification of the rest of the data set components. An
element k 1is added to a particular kernel if the value of r for this
element i.e., rkn is bigger or equal to the second threshold value.
If two or more kernels satisfy this condition then the element is
added to the kernel with the highest mean value of rkn. The second
threshold value is lower than the threshold value for kernel generati-
on. The prescribed values r in both steps may be changed during the
clustering procedure according to the nature of the classified data.
Sometimes, the first threshold value happens to be too high. This
results in a small number of clusters. In this case the threshold
value is decreased. On the other side, the criteria for this
threshold value has to be high enough because if it is low the
similarity criteria can be lost. Optimal classification of the
compounds 1is obtained after several testings with different threshold
values of the correlation index.
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2.3. Property prediction

The membership information for a compound with unknown bioclogical
activity in a cluster with known biological responses is used for
property prediction. The developed procedure for biological response
prediction assumes that the values of the biological responses of all
compounds in the cluster contribute to the value of biological

response of the unknown compound. The contribution of a particular

compound in the cluster is taken to be proportional to the degree of
similarity of <that compound to the unknown one. The property
predicition procedure is as follows:

let compound x be classified into a group having n compounds. The
average of the correlation coefficients of the group ra (ra is

calculated as the sum of rij of the cluster divided by n) and the )

average of the biological responses for the group BRa (BRa is
calculated as the sum of BRj, j=1,....,n divided by n) are used for
prediction of the unknown value of BR by the application of the
following eguation:

n .
BRpredicteda (x) = BRa +Z ((BRi -BRa ) (1+rxi -ra))/n (5)

isl ]
For a large data base calculation of <the similarity index, the
correlation coefficient as well as the property prediction requires a
computer aid. A computer program has been developed in programming

language Pascal and implemented on Vax 11/750. The procedure and the

model is represented in Fig.2.

3. Applicatons

A group of compounds which consists of 73 benzamidines derivatives
with dopamine receptor affinity has been taken as a basic data set.
The experimental values of logP for these compounds have been taken
from the work of Hansch and coworkers [17]. The obtained clustering
consists of 11 groups, 12 compounds are not classified because of low
values of their correlation coefficients. The correlation matrix is
displayed in Fig.1 where eleven groups of highely correlated compounds
may be recognized. The values of logP presented on the left side of
the figure are grouped very well too. The predicted values for
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selected compounds are shown in Table I. The thresholds values have
been obtained after several attempts. Finally, as the optimal <the
kernel threshold value has been taken to be 0.94 and the cluster
threshold value 0.8.

4. Discussion and conclusion

The method presented in this report shows that string comparison
tehniques may be applied in chemical classification of compounds with
similar biological activities. The developed method and models may bhe
considered as an evidence how certain mathematical tehniques may be
applied for derivation of the relationship between bioclogical system
response and structure of chemical compound i.e., the potential drug.
The molecular path counts are found as suitable non-empirical parame-
ters for description of the molecular structure. The same approach
may be applied to other applications with other molecular descriptors
and sequence comparison having different contents. Obtained predicti-
ons of biological responses are optimistic and suggest further
development of the method.
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Clusterization of 73 benzamidine derivatives
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Table 1. Predicted values of logP for benza-idine'derivatives

Comp.No. { Measured BR | Calculated BR | Prediction error |
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CYCLIC CONTROL IN ECOSYSTEMS
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The theory of feedback control as a pos: ible stabilizing mechanism has already been introduced into
ecosystem analysis. One problem in the theory is the identification of the informational links by which
such controls operate. Cyclic controls, for example, zero-mean sine functions added to certain exchange
flows in the system, might also contribute to system stability. Their advantage is that they operate without
need for information from the rest of the system. The theory of ecosystem cyclic control is presented and
applied to data from an oyster reef ecosystem.

I. INTRODUCTION

To address the problem of ecosystem stability and performance, the previous control studies
utilized solely classical control principles, feedback and feedforward (Olsen, 1961; Lowes and Blackwell,
1975; Mulholland and Sims, 1976; Vincent, et.al., 1977; Goh, 1979; Hannon, 1985b,c, 1986; DeAngelis,
1986). If knowledge of the current output is used to modify the inputs to control the system, we have a
feedback control situation (Wonham, 1984). Feedforward control uses current knowledge of the
disturbance (rather than output) as the basis for a comrective action (Takahashi, et. al., 1970). The major
problem with these kinds of controls, however, lies in explaining how the requisite information flows
occur,

An alternative approach to ecosystem stability is found in the concept of cyclic (or vibrational)
control (Meerkov, 1980; Beliman, et.al.,1986). Basically, cyclic controls are periodic variations (zero-
mean) in the flows between components in an ecosystem or between the ecosystem and the surrounding
environment. If the amplitudes and frequencies of these variations are within the appropriate range, the
ecosystem, unstable without such variations, could under certain conditions be stabilized by their
introduction without any information flows.

Oscillations~induced stabilization of ecosystems has been investigated by a number of researchers.
Armstrong and McGehee (1976) developed a theory for the coexistence of a variety of species using a
smaller number of resources. Their technique involved a the sequential staging of the species in a periodic
manner, sharing the resource through time. Kemp and Mitsch (1979) used an empirical model to
demonstrate the stable coexistence of three plankton species on the same resource if one of the resource
inputs (wave energy) was regularly pulsing. They speculated that only a special range of frequencies and

Sopported in art by the Illinois Department of Energy and Natural Resources

[EPIUSIPPNE




266

pulse amplitudes would produce the needed stability. The pulsing resource appeared to force a sharing
between the three species, disadvantaging the species which was the most prolific under steady conditions.
Levins (1979) established the sufficient conditions-of coéxistence by requiring that the resource or the
species functions contain externally induced time-varying elements that enter the equations nonlinearly.
Nonlinear dynamics in Levins' treatment was essential since it resulted in terms with even powers of zero
mean oscillatory functions. The averages of such terms gave rise to the "average” nonzero inputs which
acted as effective new resources and under certain conditions ensured stable oscillatory regimes of the

. system.

The goal of the present paper is to assess cyclic (vibrational) control theory as a tool in ecosystem
analysis and management. We show that an unstable linear system can be made asymptotically stable by

zero mean parametric excitations as well, and hence, nonlinearities are not necessary for oscillatory

stabilization. We also utilize nonzero averages of even powers of zero mean oscillatory functions to obtain
stabilizing corrections. However, we average not the original system with oscillations, but some other
specially constructed system, the average of which reveals the dynamics of the original cycling system.
For the purpose of illustration, we have chosen a modeling technique known as flow analysis (Hannon,
1973, 1985a; Barber, et. al., 1979) from a variety of ecosystem modeling approaches, each valid for
centain system classes. First, we briefly review the flow analysis technique and present the theory of linear
cyclic control of ecosystems. Then, we apply cyclic control to an oyster reef ecosystem where it acts in
only one of the component flows. The extension of the theory to nonlinear systems can be done on the
basis of the work of Bellman, et. al., 1986. The theory indicates the range of the amplitude/frequency
atios in which stabilizing cycles should be sought and asserts the gxistence of stabilizing cyc'es in this
range. The actual stabilizing amplitudes and frequencies are determinec via trial and error solutions of the
differential equations.

II. FLOW ACCOUNTING

In the analysis of complex dynamic systems, it is necessary to develop .oonsistent definitions and
categorize all the identifiable flows. We start with the diagram shown in Figure 1. For more details on the
ecological accounting system, see Hannon (1973), Finn (1976), Levine (1977, 1980), Hannon (1979),
Patten, et. al., (1976), Herendeen (1981), Ulanowicz (1984) and Hannon (1985a).

In Figure 1, n x n matrix P is called the production-consumption marrix!. This matrix represents
n processes which consume and produce n commodities. By process, we mean an aggregation of similar
consumers—producers which is viewed as a single ecosystern component. By commodities, we mean the
substances produced and consumed by the components of the ecosystem. The elements of the ith column
represent the breakdown of the main part of the consumption of the ith process. The elements of the ith
row describe the breakdown of the main part of the production by the same process. Therefore, each

clement of P is the amount of commodity i (row number) which is used by process j (column number) in
the given time period. For example, P; could be the daily amount of algal biomass (commodity i)

~consumed by a particular class of herbivores (process j). This is a multicommodity system since

commodities listed along any of the rows are noncommensurable with commodities in any other row.
Therefore, the row sums may be calculated since they are all the same commodity and, we assume,
possess the same nutritional qualities for all consumers (The exception to this rule is the nonbasal heat of
respiration which by definition has zero value to any component in the ecosystem). But, in general, the
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column sums cannot be formed because a common measure of a value of each element along the columns
may not exist. Commodities of different qualities, even though measured in the same units (e.g..gms-
carbon) cannot be meaningfully added together. The inputs to omnivores and detritivores, for example,
are of different qualities, both chemically and in nutritional meaning, to the consumer.

The diagonal elements in P are the self-use terms which are for example, own-waste consumption
by rabbits and the consumption of decomposers by decomposers and cannibalism.

The full output vector q' is the sum of the vector of the nonbasal heat w given off by cach of the

components and the total output vector q.

The system in Figure i is shown without joint products, that is, each process (column) is assumed
to produce a commodity of only one type. The joint product case is dxscusscd in Hannon, 1985a and
Costanza and Hannon, 1986.

The relationship to the external environment of the measurable quantities in the ecosystem modeled
in Figure 1 is summarized in Table 1. The features of each quantity in this table are identified by the letters
in the corresponding boxes. The table shows two vectors: r and 2. The net output vector r is composed
of three types of flows: exports (A & D), imports (D & E) and the heat of basal metabolism (B). By
imports we mean those quantities which can be produced by the ecosystem but eater the system from the
external environment. Exports are those quantities which can be produced by the ecosystem but which are
not necessarily produced by it, and which leave the ecosystem for the external environment. The letter D
in the import and export columns indicates those measured quantities which are passing through the
ecosystem in the given time period, therefore, the quantity A - E is the net export. The system
perturbed by the externally induced change of the net export. The heat of basal metabolism (basal
respiration) is that given off by the organism at rest. We take the heat of basal metabolism (B) as a
surrogate for the commodity flows which are used in rebuilding the stocks metabolized during the given
period. By stocks we mean the accumulated output quantities in each of the components in the system.

Net Output
N

p.. the amount of i
U used by j o P + =|ql| +|wl|= q.

Figure 1. Steady State Ecosystem Flow Accounting Diagram

lMatm:el are upper case symbols and vectors are lowerense both are in bold type. The elements of either
are in plain type with the appropriate subscripting. A dot over a symbol indicates the time derivative.
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Table 1. Description of the Quantities which Form the Net Output and
Ndoproduced Input.
The stocks are, for example, the amount of biomass of algae which has accumulated in the producer {sun
capturing) component of an aquatic ecosystem. The vector e stands for those input commodities that the
ecosystem is incapable of producing (e.g., sunlight) but that are necessary for ecosystem functioning.
III. FLOW ANALYSIS
Next we combine the flow definitions above with the possibility of a growth in the stock of
process j during the given time period At. These flows are graphically shown in Figure 2 for the i

.individual process.

The consumption flows py;, production flows py and the storage flow As;/At are internal to the
ecosystem boundary, while the net output flows r;, the nonbasal respiration flow w; and the nonproduced
input flow ¢; cross the ecosystem boundary. The nonbasal respiration flow (e. g., the energy used in
chasing prey, avoiding predators, food-searching and reproduction) is of such low quality that it cannot be
utilized further by the ecosystem, and it is therefore considered a waste. The r; consists of the net export
of the process (export minus import) and the stock replacement (basal respiration). The net input vector e
is assumed to cause no restriction to the level of q; and is dropped from further consideration at the current
stage of the mode! development.

The total outflow q; is defined for the steady state ecosystem as -

n 3
Q',-éap,x"‘rj + W . m ! ‘
To take into account a growth in stock, Asj, over the time period At when the system is not in the steady ’ ’
state, definiton (1) is augmented as
. |
q‘ Zp AR 'A_t_ . @ |
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Figure 2. The Definition of the Input and Output Flows of a Typical Process (j) .

Three important simplifying assumptions are now made for the ecosystem shown in Figure 2 with
qj defined in (2).

i) a commodity weighting or importance factor is assigned to each of the commodities produced in
the system. The weight for each commodity is independent of which component consumes this
commodity. A weight of zero is given to the nonbasal heat of respiration, and therefore, the vector w
disappears from the formulation. The element q; can be then be formed by the simple addition of all the
elements along the jth row of matrix P, the rate of the j‘h stock growth and the jth element of vector r. For
a more complete discussion of the commodity weighting issue, see Hannon, 1985a.

ii) the inputs to process j, p;; form a constant ratio with the output of process j, q;. Thus, p;y/q; =
g;; = constant. The constants g;; are determined from the data on the ecosystem at its steady state and
they are assurned to remain constant for the dynamic form of our model presented below. These constants
represent the internal behavior of the jth process. The 8ij incorporate the consumption flows into the

model by locking them into a constant relationship with the output of the receiving process. Thus, the
problem of summing the consumption flows (see Figure 2) is avoided.

iii) the stock (sp of any process (j) stays in constant proportion to the total output (q)) of this
‘ process. That is: b; = s;/q; = constant..form.ing a diagonal matrix B = diag{b,.....bpn). This
; assumpton allows us to obtain a balance equation using definition (2) since now

§ q=s/b; . 3)
i
i If the results of assumptions i) and ii) are combined with (2) and (3), and if At becomes
H infinitesimal, we have
S n S
g - k &
e=de gty g

where %- ds,/dt.
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Equation (4) is the dynamic description of the stock for process j. However, most experimental
ecosystem data is presented as flows. Therefore, we change (4) into a dynamic description of the flows
for process j. Substituting (3) and its time derivative into (4) yields

. n . .
b9 =928 q 5 V) 1sjsn,
or in matix form .
. G=Aq-BT, ALB(-G)- ®

This time invariant ordinary differential equation (5) is in the "standard” form for the flow analysis
approach.

IV. STABILITY ANALYSIS

The stability properties of the behavior of q when the system is subjected to a step change in r
depend entirely on the matrix A in (5). If the real parts of all the eigenvalues of A were negative, the
system would respond in a stable manner (Luenberger, 1979, p 158). However, in (5) the sum of the
eigenvalues of matrix A is always positive. Therefore, the system will always respond to "sufficiently
rich” changes in r in an unstable manner.

From an ecological viewpoint, a positive r represents an output of the ecosystem (for
example, the amount of fish caught in the annual season). From the control theory viewpceint however,
this output represents an input to the system or a conatrol action. For example, the amount of fish caught
directly affects the rate of (re)production of fish and many other quantities produced in the ecosystem,
which in turn, also affect the fishing success. If the system (5) is to accurately represent the functioning of
an ecosystem, the equations must be judiciously modified to include stabilizing or controlling flows.
Equations (5) can be made to respond stably by modifying r to include a feedforward or a feedback
control. Let us, however, demonstrate the use of cyclic control for ecosystem stabilization through the
addition of a cyclic flow to one of the elements in the matrix G.

In the flow accounting framework, cyclic control alone cannot guarantee stability of the system.
However, only a very simple form of constant feedback is required to make cyclic control effective. Such
feedback can be easy to maintain since it need not ensure stability but only "condition” the system for
cyclic control. On the other hand, for a broad class of the so~called decentralized systems, no constant or
time-varying feedback exists that can stabilize the system (Anderson and Moore, 1981). In these cases,
the addition of cyclic control can result in the desired stabilizing effect.

Since equation (5) is still always unstable, several changes must be made to r to demonstrate the
cyclic control. First, r must be broken into two parts: a vector of net outputs which are independent of the

output q, and another vector which contains the feedback and cyclic control and depends on q. The first
vector contains the "set point” vector for the system, re the vector of net outputs which in the absence of

cyclic control determines the unstable steady state level q A of the total output. The introduction of cyclic
control converts the unstable steady state q into asymptotically stable T-periodic operating regitme, qs(t).

where T is the period of a cyclic control. A feedback control is needed to convert the trace of the matrix in
equation (5) to a negative value (Meerkov, 1980). Assume that this is an internal control that changes the
net output from the system in linear proportion to the production flows, a "flow" control (Hannon, 1986).
For simplicity, let the linear proportionality be represented by a diagonal matwix of constants, Q. In this
case, vector r in equation (5) is given by:
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where 1. = Qq 0 )
Equation (5) then becomes:

j=Bl- G-Q)q +Blr.- r)
Ng+B'r_-r), N&BU-G-Q. @

The constant vector B'l(r c—rs) will be dropped because it is independent of q and therefore does not

affect the stability analysis.

Matrix Q must have only one non-zero element with sufficiently large absolute value to cause a
sign change in the race of N. Therefore, we further assume that matrix Q makes the trace of matrix N
negative, but does not guarantee system stability, i. e., we simulate the circumstances where the feedback
controls (like Q) are not adequate to make all of the eigenvalues fall in the left-half plane. This situation
can arise if the information gathering processes of the system are somehow limited, resulting in lack of
controllability and/or observability (Luenberger, 1979), but are sufficient to condition the system for cyclic
control.

Let us again augment the vector r = Qq - D(t)q, where D(1) is a periodic, zero mean matrix. The
periodic input D(1), is weighted by the state vector of the system q, and therefore D(1) appears in the
system equation in the form of paramewic perwrbations or cyclic control. In this case equation (6)
becomes

§ = IN + BD(9lq . ™

Because equation (7) 1s time-varying, eigenvalues can no longer describe its stability. It is
possible, however, to associate stability properties of the oscillatory system (7) with a certain constant
matrix that describes its average behavior. The stabilizing action of cyclic controls consists in converting
the remaining right-half plane eigenvalues of system (6) into "left-half plane on-the-average” ones. In this
case, stabilization is achievable without the need for additional information flows, provided that the
amplitudes and frequencies of the cyclic controls are within a critical range. .

Assume, for simplicity, that the ijth element of the cyclic control matrix D(t) is given by d;(0 =
ci,cos(mijt), where c;; is the amplitude and w;; is the frequency of the oscillation.
In order to describe the average behavior of system (7), we introduce the parameter € as
gl max(1/ ;)
)
and define

JAY A

so that the ijth element of D(t) can be rewriten as d.() = (o, j/t’.)t:os(Bijt/t:).
With this notation, the cyclic control matrix D(t) takes the form

e ey

-
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- Lpy.t
and system (7) becomes
§=[N++BD(L)la ®

Thus, if the aij's and Bij's are assumed constant, the amplitudes cij and the frequencies wij of the
zero-mean cyclic terms dij(t) are parameterized by a positive €. It has been proven (Bellman, Bentsman
and Meerkov, 1985) that there exists an €, = constant > 0, such that for any € satisfying the inequality 0 <

e<e, ,the stability properties of system (8) are defined by the eigenvalues of 2 constant matrix

T
. 1 -1
M = Ilm?fQ(ﬁ N dt , )
Tooo
0
where @(1) is the state transition matrix of

g—g: B'D'(‘C)q T
where t = V€.

Specifically, for sufficiently small g, system (8) is asymptotically stable if all the eigenvalues of M have
negative real parts. As seen from this result, the elements of matrix M are defined in terms of the elements
of matrices N, B'l. "amplitude/frequency” ratios aij, and "frequency/frequency” ratios Bu'
Consequently, M provides a link between e Bij and stability of (7): If a, and Bij are found which place
all the eigenvalues of M in the left-half plane, then there exists an € such that oscillations with amplitudes
ul;/e and frequencies BU/e guarantee asymptotic stability of system (7). The matrix

M' £ M-N
can be thought of as a "correction” of N induced by oscillations.

In the context of ecological systems, cyclic control is easy to apply. Indeed, ecological systems are
usually described by sparse matrices and therefore the cyclic contiol matrix D(t) might often sausfy
condition Dz(t) =0 independently of the magnitudes and frequencies of the oscillations. In this case,
since B is a diagonal matrix, all non-zero elements of matrix M' are given as

,YZ
m‘ij -—2l-Lnji s YU é -l_ -g-i-L, an
bii B ij

where n denotes the jith element of the matrix N. Therefore, the only elements of D(t) that will affect the

eigenvalues of M are those off-diagonal ciements that have a corresponding non-zero symmetric ele—znt in
N.

The first step in the search for amplitudes and frequencies of the stabilizing oscillations is to find
m'ij's that move all the eigenvalues of N+M’ to the lefi-half plane. A straightforward way to accomplish

this is to try only one of the appropriate elements at a time, and let g, increase from 0 to a sufficiently
large number. When the appropniate set of elements m'u.. and, hence, g; have been identified, we must
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Table 2. Oyster reef Input-Output flow matrix (P), along with vectors for net export + stock
replacement respiration (r), total output excluding waste heat (q), waste heat (w),
and total output including waste heat (q*).

P

(2 3 @) (5 6) r g w q'

Oysters 1 0 1579 0 0 0 051 17.80 34.10 7.365 41.47
Detritus 2 0 {] 8.17 727 0.64 0 6.19 22.27 0 22.27
Microbiota 3 0 0 0 1211210 2.875 5.295 2.875 8.17
Meiofauna 4 0 424 0 0 0660 175 6.65 1.75 5.4
Deposit Feeders § 0 191 0 0 0 017 0.215 2.295 0.215 2.51
Predators 6 0 033 ¢ 0 0 O 02 053 0.15 0.68
Net Input e 4147 0 ¢ 0 0 ¢

Control Q 1.52 228 .94 1.26 2.09 1.38

return to equation (8), placing (aijle)cos(Bu/s) at these locations in D(t). Then, by changing € and
repeatedly solving equation (8) for stabilizing pairs of (a,B), the areas of stabilizing amplitudes and
frequencies can be found. The search for stabilizing oscillations becomes complicated when the stabilizin g
matrices that satisfy Dz(t) =0 do not exist (see for example, Wu, 1975).

Cyclic control could naturally arise in an ecosystem as i) an oscillation of the flows between
various components or ii) a part of the net output, a cyclical export (import) from (to) a particular
component, the interpretation used in this paper.

What follows is a simple example of ecos; tem stabilization by a cyclic control.

V. APPLICATION TO THE OYSTER REEF ECOSYSTEM

In this section, we apply the theory presented above 1o the oyster reef ecosystem (Dame and
Patten, 1981). This compact but complex system is shown at steady state ( i.e., for constant flows) in
Figure 3.

The data from Figure 3 have been arranged in the proposed accounting framework (Figure 1) in
Table 2. In this arrangement, estimates of the basal metabolism or structy -al-rebuilding respiration are
included in the net output.

From the data in Table 2, we constructed G for use in the N matrix. With the feedback control
elements of diagonal matrix Q, shown in Table 2, the trace of N is negative and its eigenvalues are:
0.0726 £0.0371i, -0.1753, -.0089, -0.0994 and -0.0028. Because the complex pair has positive real
parts, the system is unstable. Let us demonstrate that a cyclic control can be found to stabilize the system
at the given steady state.
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PHYTOPLANKTON
& SUSPENDED
ORGANIC MATTER 10.44** ..

41.47 - 0.05
14.72* 1 6 0.30*

. : OYSTER PREDATORS
(2000) (69.2)
15.79

6.16 2 5 0-33°
DEPOSITED DEPOSIT >
(RESUSPENSION) DETRITUS FEEDERS
(1000) [ (16.27)

MEIOFAUNA 3.58*

(24.12)

3
5.78 MICROBIOTA
' (2.4)

* RESPIRATION ** MORTALITY FLOWS LEAVING THE SYSTEM

Figure 3. The Oyster Reef Ecosystem. Flow units are kcal/m -day.2 Stock unit: keal/m?.

Let m's.s be the only non-zero element of matrix M', indicating a cyclic net input to deposit
feeders and a cycle in the flow 5-3. Then by experiment, for m's 3> 0.0346, all the eigenvalues of matrix
N + M’ are in the left-half plane. Choosing B, 3= 1.0, from equation 11 we obtain

Nk
@, = b,, -27“’-5-3 = 1.7298,
35
where bs,s= 7.0893 and n, ’ss-l.1632. Thus, according to the theory of Section IV, oscillations of the
form dm(x) = a, JmSin(o)t). x> 1.73, should stabilize the system for sufficiently large @. The
asymptotic nature of the theory implies however, that condition o, >1.73 should be partially observed

for smaller w as well. It is precisely this insight that motivates the numerical search for the actual

parameters of stabilizing cycles at low frequencies. In Figure 4, we demonstrate that condition, o,

>1.73, is partially observed for w/2x > 0.08. The amplitudes are qu5 J(‘)/bs 5 The cross-hatched region
in Figure 4 corresponds to the actual stabilizing amplitudes and frequencies of the cycles d, J‘(t).
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Figure 4. Cyclic Control in the Oyster Reef Ecosystem. The Range of the Parameters of the
Stabilizing Oscillations of the Net Input to0 the Deposit Feeders 5 and of the Connection
- to the Microbiota 3.

While our choice of Q was largely arbitrary, we find the data in Figure 4 interesting. They show,
for example, that a cyclic net input to the Deposit Feeders (which in turn allows them to cycle their feeding
on the microbiota) can stabilize this ecosystem (given the above Q). With a cycle frequency of once in
seven days, the stabilizing amplitude would range from about 1.1 to 1.7 kcals/mz-day, encompassing the
average value of the flow from 3 10 5 of 1.2 kcals/m"—day (see Figure 3). It seems possible that such a
cyclic flow could occur. No data on the variation of flows in this oyster reef ecosystem were given
(Dame, 1976, 1979; Dame and Patten, 1981). From Figure 4, we also see that smaller stabilizing
amplitudes are associated with lower frequencies. This application to the oyster reef system is expected to
convey a biological possibility of ecosystem stabilization by already existing or intentionally introduced
oscillations.

VI. CONCI.USION

The material presented above demonstrates that cyclic control is a biologically feasible stabilizing
mechanism that could either develop in the course of evolution or be introduced by an ecosystem manager.

The important point about cyclic control is that stabilization can be provided without any
information exchange. Therefore, the components that can establish a balanced cyclic exchange of
materials or energy with the extemnal environment and/or with other components might bring stability to the
whole system without the cost of building and maintaining additonal information links. Thus, since cycles _
! often occur in ecosystems naturally or can be introduced intentionally, cyclic control theory constitutes a ’
: viable tool for the ecosystem analysis and management. :
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SELF CONTROLLED GROWTH POLICY

FOR A FOOD CHAIN SYSTEM

George Bojadziev
Department of Mathematics and Statistics
Simon Praser University
Burnaby, B.C. V5A 186
Canada

Abstract. A behavioural policy of controlled growth for a food chain
model of length 2n is considered. The highest trophic level popunla-
tion controls its own growth in order to restrain the growth of the o-
ther 2n-1 populations in the system so as to avoid undesirable out-~

comes.

1. INTRODUCTION

The present research concerning control policies for biological systems
in population dyna.:’cs mainly deals with human control added to models
of interacting populations. Various pest management programs provide
typical examples of this kind of extermal control {1,2]. However in re-
ality there are also situations in which one or more populations partic-
ipatirg in the system are the controllers. Such systems change behav~
iour abruptly in response to changes of the size of the interacting pop-
ulations, climatic conditions, diseases, etc. We call this type of con-
trol intermal. The classical models in population dynamics usually do
not reflect either the external nor the internal control. The control-~
ling populations can apply the internal control to their own members
(self control) or to all or some of the other participating popuvulations in
the model. 1In this paper the attention is focused on the concept of
self control.

Generalizing a previous paper (Bojadziev and Skowronski {3])) here we
study a food chain system of size 2n involving a controlling factor
u(t) which adjusts the number of the highest trophic level population
80 that a reasonable size of all populations is maintained. Making use
of a methodology developed by Leitmann and Skowronski [4) (see also
Blaquiere, Gerard, and Leitmann [5}) for dvnamical systems, we derive
conditions under which the designed control policy results in avoidance

of a prescribed region in R2n so that undesirable outcomes are avoided.

T

2. THE FOOD CHAIN MODEL

Consider the food chain model with control
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N P 3

x'(t) = £{x(t), ult)) (1)

where t € R, is the time variable, x(t) = (xl""'x2n)T is the popu-
lation vector, u(t) is the control, and the components of the vector

function f(x,u) = (fl,...,on)T are given by {
£, (X,u) = x,(a,- El x,) i
e s U T
8 g
- 2k-1 2k {
f.. (x,u) = x -a + Xoy_q = — X
2k 7! 2k ( 2k Yok 2k-1 Yox 2k+1) 4
(2)
8 8
= 2k 2k+1
£ (x u) =X - + — - X
2k+1 7 2k+1 ( 2k+1 Yox+l 2k Yok+1 2k+2 ) ’

8
= - - 2n-1 2
fopxew) = xZn( ®n * -7;;_ x2n-1) +ouxy, o

k=l,...,n-1, fi(i,u) = fi(§,0), i=1,...,2n-1 .

For u=0 the model (1) reduces to the uncontrolled food chain model

X' (t) = E(x(t),0) . : 3)

In (1) xi,i=l,...,2n, is the size of the i-th population: ey (growth ‘
rate coefficient), Bi (interaction coefficient), and Yy {trophic weight X
factor) are positive constants; Yj/Yi expresses the gain-loss ratio )

when population i interacts with population j. The control u(f) € U[to,t] =

{u(t): u(t) € U and u(t) measurable on [to,t]), 0=t <t<e UCR

is a compact set to be specified later in accordance to a growth restric-

tion poligy.

The biological meaning of the control term uxgn in the last expression
(2) which takes part in (1) is that for u > 0 the population with size
Xon {the highest trophic level population in the food chain) is enhanced
by increasing the population density (increasing returns) and for u < 0
it dampers its own growth (diminishing returns). The 2n-th population
can be considered as a consumer or predator of a higher level in terms
of organization and brain capability in comparison to the other 2n-1
populations or resouvrces. The self controlled growth of the consumer
(predator) will affect the growth of all populations in the food chain
system.

Each choice of control, say u(ty,) = ¢ € U on some time interval start-
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ing at t = t,s generates a solution or response k(t] = k(i(to), Cor t)
of the system (1) with initial state i(to) € Rin vhich geometrically

is represented by an orbit £  in the phase space R%?, 1f ¢ =0

(no control, hence (1) reduces to (3)) the response k(x(to), 0, t) of
(3) can exhibit large variation and may endanger the existence of an
acceptable size of some populations. In order to avoid such undesirable
outcomes, the consumer population with size Xy, may opt to self con-
trol its own growth which will affect the growth of the other populations
in the food chain. This can be accomplished by selecting a suitable
control value u(t,) = ¢, € U at a point i(tl) € Rin (switching
point) on some time inverval starting at t = tl’ tl > to' The control
value u(tl) =c will generate a response k(i(tl), . t) along a

new orbit 21, 20 n 21 = x(tl).

Using a Liapunov function for the uncontrolled model (3) we define for
the response of (1) an avoidance region A, a security zone S which
safequards the response of entering A, and design a control policy for
avoidance.

3. THE LIAPUNOV FUNCTION

The coordinates of the nontrivial equilibrium E°(x%), %0 = (xg,...,xg )T
2n n
€ R, of (1) are

R A5 O = l2n'2n
’ - s ’

2 78 =1 = "By

0 ®kY2x * 82kxgk+l
X0, 4 = . k=1,...,m=2 , (4)

k-1 B2x-1 '

0 = Sop+1Vok+1 * szxgk
Xops2 = 3 R k=1,...,n=-1 .

2k+1
0 2n

We require that E~ € Int R+ , the interior of the closed positive cone,

so that E° has biological meaning. Since xgn-l > 0, it follows from

(4) that xgk-l >0, k=-1,...,n-1. Also from (4) we-see that xg > 0.
However, in order to secure that xgk > 0, k=2,...,n~1, we assume that

0
Xok > %2k+1 Y2k+1/B2k°

The model (3) has the Volterra function (Huang and Morowitz ([6])

- 2n ol *; Xy
Vix) = .2171“1(‘3 - n -5 - 1%, (5)
im=

s » ot
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continuous on Int Rin

following properties.

, which is actually a Liapunov function with the

(i) The minimum of V(X) is attained at the equilibrium EO(EO) given
by (4); minv(x%) = o;

(ii) V(x) is monotone increasing about Eo (has the nesting property):
- 2n
iy HE - 7 Hfox,0 =0, (6)
i=1 i

where fi are given by (2). From here follows that the equilibrium
(%) is stable.
The model (3) has a first integral

V(x) = h, h = ¢const > 0 , (7

which represents a family of level surfaces Vh in R2n+1. The orthog-

onal projection of Vh onto R2n generates 2n dimensional hypersur-
faces Hh in R2n which are closed, do not intersect, contain inside
the equilibrium Eo, and accommodate orbits of (1). Further, if hl < hz,

is inside the hypersurface Hh .
1 2

the hypersurface Hh

4. AVOIDANCE CONTROL

Here, marking use of a Liapunov design technique (4}, we introduce def-
initions and prove a theorem concerning the food chain model (1l).

Definition 1 (Avoidance set A). Given ¢ = (el""'EZn)T € Int Rin

and the Liapunov function V(x) by (5),

2n

Ap{x € R™: V(X) 2 V(E) = h]), (8)

where €5 (aveidance parameters), i=1,...,2n, are small as desired for
a particular study. The boundary of A is

2n

3A = H Q{ieR:V(I)nhe}. (9)

h
€

Definition 2 (Security zone S). Given § = (61,...,62n)T € Int Rzn,

§; > ¢e;, and V(x) by (5),

s 4 (X ¢ R®®

t V(x) = V(§) = hel - A, (10)
Gi,i-l,...,Zn, are security parameters. The boundary of S is given by

25 = H. 8 (X € R®%: V(X) = ) . (11)
6 =

From the nesting property of V(X) it follows that h; < h_, hence in

e et ol ———

-
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i R
nin the hypersurface (9) encloses the hypersurface (11). {
4
Definition 3 The set A defined by (8) is avoidable if there is a set
§ defined by (10) and a control u € U such that for all ES(tS) € s,
the response k(f’(ts),u(ts),t) of (1) cannot enter A, i.e.
K(x®(tg), ult ), ) NA=¢V ¢t . {(12).
Now we establish sufficient conditions for the avoidance of A.
Theorem The food chain model (1) is controllable for avoidance of A
if there is a control u(t) € U and a Liapunov function V(x) defined
by (5) so that
v (%) 22“ 2 £ (K,u) s 0, (13)
= x. i
t s i
i=1
where fi(i,u) are given by (2).
Proof. Assume that A is not avoidable, i.e. (12) is violated. Hence
for some Es(ts) € 5, the response k(is(ts), u(t ) ,t) enters A, t > t.
Then there is a t >t  for which ia(ta) = k(is(ts),u(ts),ta) € A,
From the nesting property of V(x) it follows that V(is(ts)) < V(Ea(ta)), i
meaning that the function V(x) is increasing. This contradicts (13)
which states that V(x) is non~-increasing along every response of (1).
5. THE CONTROL POLICY (’

To design a policy for avoidance the region A by the response of (i)
we use the theorem in the previous section. Substituting fi'i,u) from
(2) into (13) with (5) gives

X _ o

= 2n
av(x) _ W, oz av_ 2
Tt (L a B0 g, 50

According to (6) the summation term above is zero; the second term gives

of 1 1 2
an"zn(xT T Ko )“xzn =0
2n

which can be written as

(—é—--—l—)uso ) (14)

x
Xon 2n

The inequality (14) establishes a relationship between the control u ! |
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and the controlling population Xon- It requires that

us0y Xon > xg R

n
0 (15)
uz0yVv Xon < Xgp o
According to (15) we specify that
u(t) € U = [~-r,r] € R, r=const. (1l6)

On the'basis of (15) we formulate the following behavioural policy.

dvoidance control policy: If the response kit] = k(x(t_),u(t,),t) of
the food chain model (1) with initial state i(to) and fixed control
u(to) € U, U specified by (16), enters the security zone S given by
(10), in order to prevent kl[t] of entering into A defined by (8), a
new control value u(ts) should be selected from U at a switching

point §(ts) € S with corresponding response k(i(ts),u(ts),t), ts > to‘

on > xo
n 2n

0 . s
Xon < Xopv it should be positive.

If x . the new control value u(ts) should be negative and if

Note 1. The control u=0 satisfies (15) but then the response will be

accommodated on a hypersurface Hh enclosed in the security zone S,
s
Hh < Hh < Hh , which may not be satisfactory since large population
M s €
fluctuations occur.

Note 2. The particular situation Xon = Xon at i(ts) € S satisfies

(14), hence any value u ¢ U can be selected temporarily until the re-

sponse moves to a neighbouring point in S for which X * x0 Then

n 2n°
the avoidance control policy can be applied.
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QUASILINEARIZATION IN BIOLOGICAL SYSTEMS MODELING

E. S. Lee* and K. M. Wang®**

The estimation of parameters in differential equations is a basic problem in
biological systems modeling. However, these parameters cannot be estimated easily
vhen the equations are too complicated and cannot be solved in closed fora.
Although Dr. Bellman bas proposed to use quasilinearization to solve this probles,
more numerical experiments are needed to show the effectiveness of this approach.
In this paper, quasilinearization is used to estimate the parameters in various
biological models. It is shown that this approach is quite effective and converges
very fast in most situations. Thus, the quadratic convergence property is
preserved.

QUASILINEARIZATION AND THE NONLINEAR ESTIMATION OF PARAMETERS

The algorithm of quasilinearization in estimation is well documented [1-3], only
the essential equations will be discussed in the following. Consider a system
represented by the following system of nonlinear differential equations

dx

at " f(x, a, t) (1)
where x and f are M-dimensional vectors with components Xpe Xgo eoer By and tl' f2'
ceer tH' respectively and a represents the L dimensional unknown parameters. Let us
assume that the L parameters cannot be measured directly and only ll of the M
variables can be measured. These measured values are

xj“"’(t.) =5, se12,..8 se12.m (2)
with t. - tt.' YThe problem is to estimate the parameters al(t). 4=1,2,...,1 and

the initial conditions .
xi(o) =cy i=31,2,....% (3)

from the given or measured data, Equation (2). It should be empbasized that the

(3

neasured values b. do contain noise. Let us estadblish the vector equation

da
il (4

*  Corresponding author, E. S. Lee, Dept. of Ind. Engg., Kansas State Upiversity,
Manhattan, K8 66506

*s Dept. of Ind. Engg., Tsinghua University, Taiwan, China i
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The problem can be stated as find the values of the vectors ¢ and a so that the
least square expression
Je oI [x;e) - b 32 (5)
j=1 gep I 8 '
is minimized subject to the constraints of Equations (1) and (4). This is a
multipoint boundary value problen with minimization. It can be solved by the use of

quasilinearization . Bquations (1) and (4) can be combined to obtain
R LAY (6)

where y and g are M + L dimensional vectors. Equation (6) can be linearized by
the use of Taylor Series with second and higher order terms omitted. The resulting
vector squation is

2!'2-( t) + Iy ( -y m
at - I'¥y V) Wygay = %

where Y is assumed known and is obtained from the previous iteration and Yk+1 is
the upknown function. The expression J(yk) is the Jacobian matrix. Because of the

fast convergence rate, Equation (7) with unknown initial comditions can be solved
Quickly by the use of the superposition principle. In general, less than ten
iterations are needed to obttain a very high accuracy.

TEE ARTIZICIAL KIDNEY SYSTEN

Consider the following simple model of the artificial kidney system (4, 10].
dc

1

V1 3t " 6 K(C1 - Cz) (8)
dC2

Vz i K(C1 - C2) - Ck C2 - CdC2 9

where G = urea (or creatinine) production rate

= mass transfer parameter
X clearance rate of patient kidney

(] [ I
[}

q " dialyzer cloafanco
g = urea concentration in intracellular cell
a ® urea concentration in extracellular cell

volume of intracellular cell

< < (2] (2]
[
| ]

~

= yolums ot extracellular cell
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In actual experimental situations, the constants or parameters camnot be :
measured, only c2 can be measured at the various values of t. Our problem is to ;

estimate k and c1(0) for Equations (8) and (9) from the experimental data

¢, e = ¢, £21,2,...a (10)
Notice that the initial condition of cz(t-O) can be seasured, but ci(t-O) nust be
estimated. Thus, an equation like Bquation (4) can be estadblished for the parameter

k.

This problea 1i'solvod by quasilinearization with the following experimental
data (4]

¢, !* (¢, =1) = 2.0%,
{exp) .
¢, '*) (¢, =2) = 1.818

{exp) = =
C2 (t' 3) 1.614

and the values of

G = 0.031, Cd

Cz(t-O) = 2.538, ty =3

= 3.6, ¢, =0, at = 0.01,

H

Your different oxporinenis were carried out with four different sets of initial
approximations. The convergence rates are summarized in Table 1. Notice that five
digits accuracy are obtained in 6 to 10 iterations. The Runge-Kutta inteyration
technique was used.

GLUCOSE AND K G

Consider the following simple one compartment model of glucose and insulin in
plasma (5, 6]

g{- -LEeIGHT, ' (11)
g-% -IG-IEeI (12)

whers G = plasma glucose concentration
R = plasma IRI concentration
11 = paraseters or constants.

The problem is to estimate 11. I,. I‘. I‘, B(t=0) and G(t=0) from sxperimental data

for B and G at various values of t. Again, equations like equation (4) can be
established for the four parameters.

The four paraseter values and the two initial conditioms are estimated Dy
quasilinearization. The numerical values used are
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= -1,5%6, I5 = 6,94, t, = 180 minutes

L

at = 0.2,
The experimental data used are listed in Table 2. Several different sets of initial
approximations are used. One of the typical results are listed in Table 3. The
initial approximations are obtained by integrating the equations with the values for
the Zeroth iteration as the initial conditions. The Runge-Kutta technique is again
used. Notice that even with the very extresme initially assumed initial conditions
of zero, only nine iterations are needed to obtain a five digits accuracy.

CARDIOVASCULAR INDICATOR DILUTION MODELING

Consider the following four cell cardiovascular indicator dilution model [7, 8].

4C

1
ae " B BC

dC2
i Bl(C1 - CZ)
dCJ
T BI(CZ - CJ) (13)
dc‘
T By (G- cy
where 31 = F/y, '2 = r'/v, with

P = volumetric flow rate
rs = recycle volumetric flow rate

V = yolume of the well-mixed cells
The boundary conditions for Equation (13) are

¥
C1(t'0) 5" 33, Cz(t-O) =0
Ca(t-O) =0 C‘(t-O) =0 (14)

where M is the mass of the injection and the Ci'l are the concentrations of the

corresponding cells.
In actual experiments, only the C's can be measured, the parameters '1 and !2

cannot be measured directly and must be estimated indirectly from experimemtal data.

The values of '1' '2 and I3 are estimated by quasilinearization with the

oumerical data listed in Table 4. ‘The Runge-Kutta numerical integration forsula
with at = 0.2 is used. Various different initial approxisations for 81, l2 and 33

were used. The convergence rate is again very fast. Three typical coavergence
results are listed in Table 5 for three different sets of initial approximations.

e i s PR it - - s Y
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METHOTREXATE PHARMACOKINETICS NODELING

Consider the following pharmacokinetic model used to predict the detailed
distribution and excretion of methotrexate in mammalian species over a wide range of
doses [9]. The material balance equations representing the various anatomical
coapartaents are ’

4ac C (o Cu .
. B b X H_
Plasza: 'p at = QL .L + Ql R! + Qh Rl (QL + Qx + QH) C’ (15)
ac, Cy :
Kuscle: Y r i Qu (Cp - i;) (16) i
ac C Cx
Kidney: Vx i Qx (Cp i;) - kK i; ($%))]
4ac C [ [
. L. - - b 6 _ L
Liver: VL it (QL QG) (Cp RL) + QG (RG RL) r (18)
dCG CG 4 kG Ci
Gut Tissue: V, =7 = Q. (C_-==) +1/4 T | +b¢C.) (19)
G dt 6 p R ist X*¢ i
4c 4 dc,
Gut Lumen: —of =1/4 I -3 (20 -
3 ; dt
i=1
v 4ac k C
At U - e 1
1 3t " T3 kr VGL ¢ 1/4(KG T c1 + > Cl) (21)
\) 4c. K C.
or T - - 6___oi
ry i kr VGL (Ci-l Ci) 1/4(KG e ci +5b Ci) (22)
i=2,3,4
vhere the value of r in Equation (18) can be represented by
K, (C,/R.}
L "1 'L
r ® —Sewioad (23)
K+C /R T

which is the secretion rate of methotrexate out of the liver cells into the bile
ducts. Using the three compartments sodel, we have '
dr
-t ey
T r T 2 (24)
. : dr
i -2 -
AR TR B
T Eil sz -T
at 2 3
where C is the drug concentration in the various anatomical compartments, r is the
drug transport rate in the bile, V is the volume of the various compartments, b is

the rate constant for nonsaturable gut absorption, Q is the plasma flow rate, R is

(25)

(26)
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' the tissue plasma equilibrium ratio for linear dinding and ‘k is kidney clearance

and is equal to 1.1 af/min for rat. The other numerical values used for rat are:

vp =9 at Q = S at/nin
Vu = 100 af QL = 6.5 nt/min
Vk = 1.9 s QG = 5,3 al/nin
VL = 8.3 at lu = 0.15

VG = 11 ot lk = 3.0

vGL = 11 nd IL = 3.0

Qu = 3 af/min

The body weight for rat is 200 g. Notice that three compartments were assumed for
bile secretion and 4 compartments were assumed for gut lumen. Some of the
parameters such as RG’ kG and KG are not measurable. These parameters for

methotrexate in rat will be estimated by quasilinearization using experimental data
obtained by Bischoff et al. [9]. These experimental data as a function of time for
the drug concentrations in the various compartments are listed in Table 6 and are
obtained from the figures of reference {2j.

It should be emphasized that the parameters Rq, kc and KG capnot be estimated

easily. This is because that the systems of differential equations cannot be solved
in closed form. thus, quasilinearization forms an ideal and powerful approach.

In addition to the 13 differential equations represented by Equations (15) -
(26), 3 additional differential equations in the form of Bquation (4) can be
foraulated for the 3 unknovn parameters. Thus, there are a total of 16 differential
equations. The initial conditions for the 13 differential equations are all equal
to zero except Cp(t) which is

Cp(t) = 1200/9 (27)

The 16 ditferent equations can be linearized by using Equation (7). The unknown
parameters can then be obtained by using Equation (5) and superpositoin principle.
The homogeneous and particular solutions cau be obtained by numerically integrating
the linearized equations. In the present work, the modified Adam-Moulton
integration scheze is used with step size as

at = 0.01 minute for 0 < t £ 30

at = 0.1 minute for 30 € t £ 240,
The convergence rates for the three parameters are listed in Table 7. Notice the
fast convergence rates. Only 5 iterations are needed to obtain 4 digits accuracy.
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DISCUSSION

Since the results of the previous iteration for all t must be stored in the

computer, the storage requirement can be quite large. For example, the
pharsacokinetic model needs (30/0.01 + 210/0.1 + 1) 16 = 81616 storage spaces. In
order to reduce this storage requirement, we can store only the initial conditions
of the previous iteration. The complete profile for all t of the previous iteration
can be obtained by integrating the equations when we calculate the current
iterations. The storage requiresents can thus be reduced tremendously. Por the
pharmacokinetic probles, the storage requirement is reduced from 81616 to 16.

(1]

(2}

(3]

{4

(sl

(3]

7

(8]

9

(10]

————
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1 Convergence Rates of the Artificial Kidmey Model

Table
Iteration I 91(0) ? K i Cl(O) , K ’ CI(O) , K , CI(O) ! K
0 | 2,538 | 5. ! 2.538 {12, ! 2.538 | 19.2 | 2.538 | 25.
1l ! 2.9513 | 6.1718 | 2.7879 | 5.2057 | 3.169% 1-35.947 { 2.4352 | 18.639
2 { 2.767% | 7.5204 | 2.8314 | 7.4735 | 2.9149 i- 4.7906! 3.1274 |{-34.37
k) ! 2.7997 | 7.5318 ) 2.8023 | 7.4970 | 2.9895 | 6.9627! 2.7892 |- 7.5045
4 1 2.8000 1 7.5279 | 2.7994 | 7.5351 | 2.7776 | 7.%923 | 2.6165 | 5.6438
L3 1 2.7999 | 7.5288 | 2.8000 { 7.5272 | 2.7991 | 7.5369 | 2.8398 | 7.8420
6 12,7999 | 7.5286 | 2.7999 | 7.5289 | 2.8000 | 7.5270 | 2.8016 ! 7.5273
7 1 2.7999 1 7.5286 | 2.7999 | 7.5285 | 2.7999 | 7.5290 | 3.7999 | 7.5292
8 | | | 2.7999 | 7.5286 | 2.7999 | 7.5285 | 2.7999 t 7.5285
9 ! § ] 2.7999 1 7.5286 | 2.7999 | 7.5386 ! 2.7999 | 7.5286
—10 | 1 | 1 | 2.7999 | 7.5286 | 2.7999 | 7.5286

Table 2 Experimental Data for Glucose and Insulin Kinetics Model

!(exv)(t’)

G(cxp)(t')

%

0 177 581
30 155 182
60 40 95
90 26 . 87

120 20 97
150 24 106
180 28 110

Table 3 Convergence Rates of Glucose and Iasulin Kinetics Model

Iteration ;1 I2 I‘ I6 2(0) G(0)
0 0. 0. 0. 0. 177. 581.
1 0.051076 0.025872 0.048153 0.22224 181.31 576.58
2 0.038405 0.017182 0.020605 0.052089 177.16 580.37
3 0.045445 0.021543 0.028009 0.043957 177.56 580.06
4 0.046151 0.022149 0.028790 0.043174 177.27 580.35
5 0.046411 0.022281 0.028581 0.043500 177.24 580.38
6 0.046408 0.022286 0.028565 0,043510 177.23 580,39
7 0.046423  0.022293 0.02855%5 0.043523 177.23 580,39
8 0.046421 0.022292 0.028555 0.043523
9 0.046422 0.022293 0.028555 0.043524
10 0.046422 0.022293 0.028555 0.043524

el i e
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Table ¢ Experimental Data for Cardiovascular Model

t. cl('a) cz(t') CJ('l) q‘(tl)
0.0 0.9997 0.0 0.0 0.0
2.0 0.2289 0.3314 0.2609 0.1387
4.0 0.1327 0.1887 0.2391 0.2366
6.0 0.1141 0.1347 0.1682 0.2009
8.0 0.0909 0.1066 0.1269 0.1528
10.0 0.0702 0.0834 0.0988 0.1175
12.0 0.0543 0.0646 0.0768 0.0912
14.0 0.0421 0.0501 0.0595 *0,0707
16.0 0.0327 0.0388 0.0462 0.0549
18.0 0.0253 0.0301 0.0358 0.0425
20.0 0.0196 0.0234 0.0278 0.0329
Table 5 Convergence Rate of Cardiovascular Model
Iter- B1 B2 B3 | Bl B2 B3 | Bl B2 B3
ation } H
0 0.1 0.01 0.1 ! 0.6 0.2 0.8 1 2. 1.5 3
1 0.4379 0.0725 0.4969 | 0.7663 0.3755 0.9903 | 1.7167 1.2619 1.0049
2 0.4896 0.1772 0.8993 | 0.7966 0.3970 0.9992 ! 0.6846 0.2886 0.9983
3 0.6522 0.2679 0.9658 | 0.8013 0.4015 0.9996 | 0.8014 0.4021 0.9992
4 0.7616 0.3635 0.9952 | 0.8017 0.4018 0.9997 | 0.8017 0.4018 0.9997
S 0.7974 0.3979 0.9993 | 0.8017 0.4018 0.9997 | 0.8017 0.4018 0.9997
6 0.8014 0.4015 0.9997 | !
7 0.8017 0.4018 0.9997 | |
8 0.8017 0.4018 0.9997 | {

Table 6 Experimental Data

for Pharmacokinetics Modeling

t, Cplty) Cylty) Cx(t.) C,(t,) Coy(ty!
{win)

15 . 1.5 20. 20.9 23.98

30 4.0 0.75 10.8 11.5 47.00

60 1.5 0.25 4.0 4.97 §9.00

90 1.14 0.16 2.8 3.60 45.50
120 0.80 0.13 2.2 2.80 36.00
180 0.45 0.072 1.1 1.45 18.25
240 0.27 0,043 0,67 _0.86 8.90

Table 7 Convergence Rates of Pharmacokinetics Model

Iteration

X

G G G

0 1. 20. 200.
! 1 1.108 22.64 237.2
2 1.112 21.61 224.6
3 1.112 21.97 229.3
4 1.112 21.85 227.7
5 1.112 21.89 228.)
3 1.112 21.89 228.3

7/
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A THREE-MIRROR PROBLEM ON DYNAMIC PROGRAMMING
Seiichi Iwamoto
Department of Fronomic Engineering

Faculty of Economics
Kyushu University 27, Fukuoka 812, Japan

1. INTRODUCTION

The essence of dynamic programming states that a simultaneous
optimization of real-valued two-variable functions is assured by the
two-stage optimization under both separability and monotonicity hs,

16]. We call these two properties the recusiveness with monotoni-

city — dynamic programming structure [8, 11]. This struc-

ture yields what we call dynamic programmable function [11].

In this paper we focus our attention on both dynamic program-
ming structure and quasililearization for a class of objective fun-
ctions. Given a differentiable strictly increasing convex function ;

f : R1 1

R1XR1 —_— R‘, which is strictly increasing in h for x ¢ R'. Thus,

, we approximate f(x) by its linear approximation f(x;h)

— R

f(x) is a quasilinearization of f{x;h). The N-times composition of *

f(xn;-) generates a dynamic programmable function F(x;h) : RNXR1 _—

-+ r'. Similarly, inverse function f"(y), reverse function f_, (x;k) h
which is the inverse function of f(x:;h) with respect to h for fixed
x, and conjugate function f*(y) also generate dynamic programmable
functions F-1(y;k), F_,(x;k), and F’(y;h) : Rp! —s R’, respect-
tively. Thus, the function f yields four — main, inverse, reverse,
and conjugate —— optimization problems on RN. These problems are

i solved through dynamic programming approach. Some relations between

them a2re established. Finally we illustrate two interesting examples )

from Bellman [1].

cee e ampsem e
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2. PROBLBMS

First of all let us consider the following famous problem [1,
p. 102; 8, p.101; 10, p.18]:

X X, *X

X, +...0*
Max e 1(1-— x1) + e 172 1 N

(1 - x2)+ ceet € (1 - xN)
Kqte.o+xy

+ e xh

s.t., —=» < xn < @ 1$nsN

where h is a real constant. We remark that the N-times iteration of

f(x;h) = eX(1 = x + h)

yields the objective function

f(x1;f(x2;...:f(xN;h)...)3

x X, ¢ X x
=e (1 - X)) + e 1[e 2(1 - x,) + e 2[_...+ exN-1

xle M1 - xy) * e M. ]

(See also [11, p.278; 12, p.28%]).

Second we consider the following maximization problem:

Max (1—2x12)exp(x12) + 2x1(1—2x22)exp(x12+x22) + 4x1x2
x(1—2x32)exp(x12+x220x32) + 8x1x2x3(1—2x32)
Xexp(x12+x22+x32)h

s.t. x,20, xzzo, x320

where h 2 0. The three-times iteration of

d g -

~—
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£(x;h) = (1 — 2x2 + 2xh)exp(x2)

generates

£(x,:£(x,:£(x550)))
= (1—2x12)exp(x12) + 2x1exp(x12)[(%—szz)exp(xzz) + 2x2exp(x22)x
U1—2x32)exp(x32) + 2x3exp(x32)hﬂ].

These two functions are called recursive functions on RN(resp.

Ri) with strict increasingness ({10, 11]). A function F : RM%R! —

1 N

— R is called dyramic programmable function on R 1if it is expressed

as follows
F(x1,x2,...,xN;h)

= f1(x1:f2(x1,x2;...;EN(x1,x2,...,xN;h)...))

. phonl 1 Loy, wl 1 _
where fn' R'xR' -— R and fn(x1,x2,...,xn, ): R —» R is non
decreasing for 1 s n £ N, (x1,x2,...,xn) ¢ R®. Therefore, any re-
cursive function with strict increasingness is a dynamic programmable
function. 1In the following we are mainly concerned with a class of

recusive functions on X(C.RN) with strict increasingness.

3. MAIN RESJULT

First, we prepare the following fundamental lemma. Let X and
Y be two nonempty sets. For each x € X let Y(x} be a nonempty
subset of Y. That is, Y(:) : X —» ZY is a point-to-set-valued
mapping, where 2Y .denotes the set of all nonempty subsets of Y.

Let

G (Y) = {(x,¥)| y € Y(x), x € X} < Xx¥

[PURSTN
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be the graph of the mapping Y¥(:). 1In the following it will be clear
from the context whether a notation Y is considered the set or the
mapping.

1 1

LEMMA 1 (Maximax Theorem [11; p.268]) Let £ : XxR' —s R' be

a function such that £(x;°) : R — R1
A Y

X. Let g : Gr(Y) e R1 be a function. If Max f(x; Max g(x,y)})

is nondecreasing for x ¢

xXeX yeY (x)
exists, then Max f(x; g(x,y)) exists and both are equal:
(x,y)eGr(Y)
Max f(x; Max g(x,y)) = Max f(x; glx,y)).
xeX yeEY (X) (x,y)EGr(Y)

REMARK This equality remains valid even if the operator Max
is replaced by the operator min under the same condition as stated

above. Furthermore, as a special case we have

Max f£(x; Max g(y)) = Max £f(x; gly)).
L 19 &4 -w<y<do -co<x,y<m
In general we have for ?
any differentiable convex convex §

function £ : R1 — R1

£(h) = Max £(x:h) (1)

- X <D

where .

f(x;h) = F(x) + £ (x)h
) kgt
Fi(x) = £(x) - xf°(x).

Thus, f£(x;h) 4is the linear approximation of f(z) at h:
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fi(x;h) = £(x) + (h - X)€" (x). (3)

The expression (1) is called a quasilineariszation of f(z) ([1; p.135

; 13; 14)).
Furthermore, from Lemma 1, we obtain under £7(x) 2 0, -» < x

< ®
£(f(h)) = Max f(x,; Max f(xz; h))
_=Cy, <® =X, <o
1 2 .
(4)
= Max £(x,: £(x,;h)).

_w<x1 'x2<m

that is

£(£(h)) = Max  [F(x,) + £7(x,) (Max  [F(x,) + £ (x,)h])]
-u<x1<w ] -¢<x2<w

(5)

= Max F(x,) + £7(x,)F(x,) + £°(x,)£"(x,)h].
—Q<X1IX2<D( 1 1 2 1 2 ]

DEFINITION Let f : R' — R' be a differentiable increas-

ing (resp. strictly increasing) convex function. Then we define F

N 1 1

: R'xR" —>» R by

F(x:h) = f(x1; f(xZ; S f(xN:h)...))

= F(x1) + f‘(x1)F(x2) L R f‘(x1)£‘(x2)...£‘(xn_1)

XFxyg) + £7(x,) £ (x,) .. £ (xy)h ()

where f(x;h) and F(x) are defined in (2), and x = (x1,x2,...,

xy). The function F : R¥xr' — R! is the reocursive function with

inereasingness (resp. strict inoreasingness) generated by f or simply
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dynamie programmable function generated by f,

In the following, it will be clear from the context a function
f (resp. F) is considered £(x) or £f(x;h) (resp. F(x) or

F(x:;h)).

REMARK The equalities (1) and (4) lar (5)) remain valid
if we replace 'Max'.and ’'convex' with 'min' and 'concave', respec-
tively. Similarly, a differentiable increasing (resp. strictly

increasing) concave function g : R1 — R1 generates the recurgive

funection G : RNXR1 -_ R1 with inereasingness (resp. strict

increagingness), which is also called dynamic programmable function

generated by g:
Gly:k) = gly,i glyyi --.i glyyik)...))
= Gly,) + 9‘(Y1)G(y2) e 29Ty gy el gy o)
xGlyy) *+ 97 (y )97 ly,) g™y )k (7
where
y = (y1,y2,...,yN),
gly:k) = gly) + (k — y)g~(y)
(8)

= G{y) + g”(y)k,

Gly) = gly) - yg~(ly!.

Therefore we have the following main result:
THEOREM 1. (i) Let £: R' ~— R' be a differentiable increas-

ing convex function. Then for h ¢ R’
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N
£ (h) = Ma F(x;h)
xerY (9

* - *
and x; = £ (), x; = £52m), ..., xy_, = £(h), xy = h attains
the maximum, here and in the following £7(h) is the n-times com-
position of £(x):.

f(x) = £(E(...E(x)...)).

{(1ii) Let g : R1 — R1 be a differentiable increasing con-

cave function. Then for k ¢ R1

. .
g (k) = min_ G(y:k) 10
yeRN ’ (10)

and 91 = gN—1 (k)l §2 = gn_z(k)r cseyg 9N—1 = g(k)l i;N =k attains

the minimum.

4. INVERSION, REVERSION AND CONJUGATION
1 to a continuous

strictly increasing function f. We remark that £ : R1 -—-»'R1 is

First we consider the inverse function £~

an onto differentiable strictly increasing convex function iff f'1

: R1 — 81 is the onto differentiable strictly increasing concave

function. Then we havé

COROLLARY (i) Let £ : R' ~» R' be an onto differentiable

strictly increasing convex function. Then for k. ¢ R1

-N -1
£ (k) = mine F " (y;k) 11)
yeR (

“N+1 - -1
and 9, = £ M), 9, = 200, L, F, = £, Ty =k ate-
ains the minimum, where “F"(y:k) is the dynamic programmable fun-
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1

ction generated by £ ' and £ %(y) is the n-time composition of

f-1:

£y = £ L )

1 1

(ii) Let g : R’ —— R be an onto differentiable strictly

increasing concave function. Then for h € R1

-N -1
g " (h) = Max, G (x:h) .
xeR (12)

* ~N+1 * -N+ * -1 *
and X, =g (h), Xy =g 2(h), ceer Xy_q =9 (h), Xy * h att-

ains the maximum, where G'T(x;h) is the dynamic programmable fun-

ction generated by g ..

Here we remark that

Flaysk) = Flayy) + £ Hy,) + oo v £y 0 £ "y,

-1. 1

e £y D ) ¢ £y T ) BT Gy K
(13)
where
Fly) = £ y) - vy "= (y) , (14)
and £ ' 1is the derivative of the inverse function £ '|. Similarly,

6 V(x;h) 1s defined and omitted.

Second we consider the reversion of the linear approximation

| fix;h) of £(x)

not the reversion of f£f(x) itself as

follows. For any onto differentiable strictly increasing convex

function £ : R1 — R1, its linear approximation £ : R‘xR1 ——*'R1

|
|
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defined by (2) or (3) is continuous strictly increasing and linear

in h for x ¢ R‘. Therefore, £(x;-) : R1 —_— R1 is invertible for

x € R'. Its inverse function f_1(x;-) : R' —s R’ becomes

k) = k
£_,(x:k) = F_,(x) + T

(15)
where

I 3]
Foqglx) = x = =5y (16)

We call f_. = £_,(x;k)

1

the reverse function of
f = £(x;h). As we noted

in (1), we have

a//’
£(h) = Max £ (x;:h)

- X <o

a1 3 2

= Max  (F(x) + £°(x)h] | (17

-l <R

= Max [£(x) + (h - x)£°(x)]
-y <o

and x* = h attains the maximum. This fact is equivalently trans-

formed to

£ k) = min £ (x:k)

- X<

smin  (F_ (x) + ggy) (18)

Er 2372 ]
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k ~- f(x!]
= min [x +
- K< x

and x = £ '(k) attains the minimum (see Fig.2). This fact ref-
lects also the main idear of Newton method from a viewpoint of opti-

mization. Therefore, we have the following reversed form cof (9):

1 1

THEOREM 2. (i) Let f : RN — R be an onto differentiable

strictly increasing convex function. Then for k ¢ R!

£ ¥x) = min

F_,(x;k) (19
xeRN !
2 ~-N s o e~N+i _ =2 2 - =
and Xy = £ (k). X, = £ (K), .oy Xy-1 = £ % (k). Xy = £ (k)
attains the minimum, where F_, : R¥xR! —» R! is the N-times com-
position of f_,(x;k): ‘
F_;(xik) = £q(xs £ (xy5 ceei £y (xgiklooa)). (20)

1 1

(ii) Let g : R — R be an onto differentiable strictly

increasing concave function. Then for h ¢ R1

g™N(h) = max, G_, lysh) (21)
yeR

T(n)

is the N-times com-

* - * - * - * -
and Y =9 N(h)l Yo = 9 N*1(h)n ceer Yoy = 9 Z(h): Yy = 9

attains the maximum, where G_, : fxr! — &'

position of g_,(y;!):

6TUyih) = gy tyyi 9y yyr weei 9o (RgiR) i) (22)

Here we remark that
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RTERVAER Y ST

bt tanis Mk o

(xik) = F_o (%) + pEe2 o1
F X; = X + 77 ¥ aee + T > >
-1 -1 f (x,i £7(x,)f (xz)...f (xg_4)

X ,
+ = > > : (23)
£7(x, )57 (%) .. .2 (xy)

where F_,(x) 1is defined in (16). Similarly, G_;(y:h) 1is de-
fined from G_1(yn), g‘(yn) and h. We call F_l(x;k), G_1(y;h)
the dynamic programmable function generated by reverse function
f_l(z;k), g_l(y;h)), respectively.

We have the following relation between F-1(y;k) and F_1
(x:;h):

THEOREM 3. (i) Let £ : R' —> R! be an onto differentiable

strictly increasing convex function. Then we have by the monotone

transformation y = £(x)
£y = £ (k). (24)
Furthemore, the monotone transfomation Yo ® f(xn) 1 SnsN yields

F- yik) = F_, (xik). (25)

(11) Let g : R' — &!

Se an onto differentiable strictly
increasing concave function. Then we have by the monotone trans-

formation x = g(y)
9-1(x:h) = g_,{y:h). (26)

Furthermore, the monotone transformation x, = g(yn) 1 §nsN

yields
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6" xin) = 6 (ysh). @n

Proof. It is straightforward.

Finally we consider conjugations * and ~. For any convex

«
function f : R1 —_ R1, we define its conjugate function £ R1

f*(y) = Sup (xy - £(x)]. (28)

- <o

On the other hand, for any concave function g : R1 — R! , we

~ 1 1

denote its conjugate function § : R —> R by

§(x) = inf {yzx - gt} . (29)
-W<y<®

If both operations * and ~ are well defined, they are dual

in the following sense:

=) (y) = -f*(-y) y ¢ R'.

1

LEMMA 2. Let £ : R -——~R1 be a twice differentiable strictly

increasing strictly convex function. Then we have for £ (-®) < y
< £7 ()

(1) £*(y) = xy ~ £(x)

(ii) £*°(y) = x and in particular £*“(y) > 0 for £°(0)<y<f~ (=)

and

(144) f*"(y) = T 0

where x satisfies uniquely f£'x) = y. Therefore, f* : (£-(0),

Bs e

g o
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£ (o)) — R1 is strictly increasing strictly convex. Thus we

have the following result for f*:

1 1

THEOREM 4. Let f : R' —» R' be a twice differentiable

strictly increasing strictly convex function. Then we have for

- *n .
£°(0) < £ "(h) < £°(») 0 s n $§ N-1

*N . *
£f "(h) = : F (y:h) : (30)

Max
f‘(0)<yn<’f‘(°°) 1snsN
* * N-1 * * N-z * * *
and y) = £V, y) 2D, L,y ),y =
attains the maximum, where F*(y;h) is the dynamic programmable
function generated by f' and f"n is the n-time composition of

*
£ .
Similarly, for concave function g, we have the following:

LEMMA 3. Let g : R! — R1 be a twice differentiable st-

rictly increasing strictly concave function. Then we have for

(1) 9(x) = yx - gly)

(11) §°(x) = y and in particular g~ (x) > 0 for g~ (=)<x<g~”(0)

and

(111) §"(x) = 5.-1@— <o

where y satisfies uniquely g(y) = x. Therefore, § : (g”(»),g"(0))

1

—> R is strictly increasing strictly concave.

THEOREM 5. Let g : R' —» R' be a twice differentiable
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strictly increasing strictly concave function. Then we have for

g-(=) < g™(k) <g"(0) 0 Sn s N-1

M) s min Sx;ik) (31)
g‘(=)<xn<g‘(0) 1snsN

and §1 = gN-1(k), 22 = gN-z(k), cees iN-1 = g(k), iN = k attains
the minimum, where S(x;k) 1is the dynamic programmable function

generated by g and §n is the n-times composition of 6.

Here we remark that

* * » * * - *
Filysh) = Fly) + £ “(y)F (yy) + coo + £ "y, E “(y,)...

* * *_ *_ *_
XE (yg.{)F lyg) *+ £ "y, £ “(y,)...f “(ygh
(32)

where

* * *
F (y) = £ (y) —yf “(y)
. (33)
a2 -~ f(x).

Here x satisfies uniquely f°(x) = y. Similar expressions for
€(x;k) and &(x) are omitted.
5. EXAMPLES

In this section we illustrate explicit form of £(x;h), F(x;h)

' P"(y:k). £_,x:k), F_1(x;k). F'(y;k) and others for a given f(x).

5.1 f(x) = e : (-0, ) — (0, ®)

In this case we have the following expressions. First we

have from (2), (6)

L
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£(x;h) = (1 -~ x + h)e* -0 < X,h ¢ @

X

X4 +X X, +o..%X
F(x;h) = e 1772 1 N-1

”1—M)+e (1—x,) + ... v e

x1+... *XN

X{]1 -~ xN) + e xh -® < xn,h < ®,

Second, for inversion, we have from (13),(14)

gly) 2 £(y) = logy : (0, ®) — (=@, =) (34)

gly:k) = 5-1(y:k) = ~1 + logy + % 0 <y,k <
Gly:k) = F-1(y;k) = -1 + logy, + (y1)-1(—1 + logy,)

¢ (T eeYyoy) T+ Logyy) + (yy-eeyg) Tk
Yo > 0, k» 0
where k » 0 means that k 1is sufficiently large that log...logk
l(N-times log operation) becomes well defined. That is, in this case,

e

x > e° ((N-1)'s8 e).

Third, for reversion, we have from (15),(16),(20)

£ (xik) = x ~ 1 + 7%k ~= <x <=, k>0
- =X ™eea™
F_qj(x:k) = x, =1 + e 1(x2 “ o+ vre ) *n 1(xN_1-‘I)
et PRI
ee N

- <xn <w, k » 0.
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Moreover, the reversion of g = g(y) defined in (34) becomes
g_,(x;h) = y(1 - logy) +yh y >0, ==<h<w
G_1(x:h) = y1(1 - logy1) + y1y2(1 - 1ogy2) AETRIL I FRRS g
x(1 - 1ogyN) + y1...yNh Y, 0, =w < h < =,
Fourth, for conjugation, we have from (28), (29}, (32), (33)
£(y) = (=1 + logyly : (0, ®) —— (-1,

f*’(y) = logy > 0 on (1, =)

*
£ "(y) =1y >0
f*(y:k) = -y + kxlogy y>1, k> 1
*
F (y:k) = Yy - yzlogy1 - e = ynlogy1...logyn_1

+ k><1oqy1...logyN Yo > 1, k> e2

g(x) = 1 + logx : (0, @} —> (=, =)

§(x;h) = logx + x™'h 0 <xh<w»
G(x;h) = logx, + (x1)'1loqx2 ‘o, (x1...xN_1)-1long
¢ (Rgeoamy) 'h x, >0, h»0

where h » 0 in this case means that

= 1+dt

‘-109'1"‘

h > (N's a).
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Finally, for reversion of §(Y;k), we have

6_1(x;k) = -xlogx + xk X >0, -~®»<k<w

G_1(x;k) = -x1logx1 - x1leogx2 - e —~ x1...xulong

+ x1...xNk X, > 0, == < k < =,

5.2 f(x) =x>: [0, ® —s P, =

In this case we have the following result. First, we get

£(x;h) = -x° + 2xh x,h 2 0
) 2 2 _ _ N-1 2
F(x;h) = X 2x1x2 ‘o 2 XqeeoXye_ 1%y
+ 2N x_ 20, hzo0
1+ oXygh n %0 .

In particular Theorem 1 for case N = 1 implies

Max [th - xz] = n? -® < h < =,

-l X<®

This is one of the simplest quasilinearization [1; p,134].

Second, the inversion becomes

gly) 2 £ () = /F : (0, @) —> (0, =)
gly;k) = £
Glyik) = F~'(yik)

. ] 1 1 v
Fly )V + ?(yzly.,)‘” $ et RON/Y )

k_ -
+ 2N(y1...yN) Yo 0, k > 0.

L e B i o
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Therefore, Corollary (ii) for case N = 1 reduces

min [l/i + —l—J = vk k >0

x>0

(see also [1; p.134]).

Third, for reversion, we have

_ 1 k
£, (k) = 3(x + 5) x,k > 0

[
|

®
+

F_, (x;k)

1 1 1
3%y * ;7(x2/x1’ o + ;ﬁ(xN/x1...xN_1)

+ ——(x1...xN)-1 x, >0, k> 0.

Finally, the conjugation yields

£ y) = g% : [0, = — [0, )

1,2

*
£ (yik) = - Iy? o+ Jyk vk 20

* 1.2 1 2
F (y:;k) = - W TV Yy T e T

. §§y1...yNk y, 20, k20
§(x) = = 4= : (0, ® —> (-= , 0)

- _1 h
g(x) = K + ;2' x:h > 0.

Therefore we get
;(x) = min 8(x;h) .

Pex<o

However 4f N 2 2 , then it does not hold that
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) = min  &(x:h) h >0,
0<xn<°°

because of g(h) < 0.
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EXISTENCE AND COMPUTATION OF SOLUTIONS FOR THE TWO
DIMENSIONAL MOMENT PROBLEM

Gyorgy Sonnevend‘
Inst. fiir Angewandte Mathematik, ‘ f
Universitét Wlrzburg
D-8700 wiirzburg, Am Hubiand

Introduction

In this paper we deal with some problems of the theory of two
dimensional.polynomial moment problems. More precizely we give

necessary and sufficient conditions for the existence of a solution,
i.e. of a nonnegative mass distribution supported within a fixed, a
priori given subset S of RZ, which has a fianite set of moments with
prescribed values.We study the problem of characterizing all minimal
support solutions, i.e. those solutions which have a minimal number of
atoms.

The connections between the restricted (or finite), classical,
polynomial (onedimensional) moment problem (as a special case of the
moment proolems of Nevanlinna-Pick type) and various other problems in
the theory of orthogonal polynomials, rational Pade approximation
(interpolation of Stieltjes functions),restriction of self adjoint
operators to Krylow-subspaces, construction of quadrature formulae,
minimal partial realizations of causal linear input-output maps, are
well known. Similar applications for the considered two dimensional
generalization motivate our study. The method we use for the solution
of these problems is operator theoretic and is based on solving an
"extension problem" for pairs of commuting, self adjoint operators.The
characterization obtained for the minimal support solutions,i.e. for
the analogons of the Gaussian quadrature formulae is different from
the previous approaches, which (as far as we know) used two dimensional
orthogonal polynomials (searching for their common zeros) and poly-
nomial ideal theory, see [11] for an extensive set of historical and
current references. lle were inspired by the operator theoretic treat-
ment of moment problems as developped in (12], see algo the method of
the paper[16]. . :

* on leave from Dept. of Numer.Anal.,Eitvis University
H. 1088,Budapest, Muzeum k.6-8,Fle'p.
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Since the minimal support solutions are, in general non unigue
in the higher dimensional case (in contrast to the onedimensional case)
moreover their set (thus the problem of { 'nding at least one element of
it) is not convex am for other reasons like the complexity and stab-
ility ( with respect to errors in the prescribed moments)we propose
and study here an other,particular (nonminimal) solution , i.e. wmass
distribution, the so called analytical centre of the feasible set (of
solutions)., Several positive features and applications of this solu-
tion concept,like stable computability with a relatively small nugber
of arithmetical operations and the feasibility of high degree homo-
topy methods for computing bounds for any further,not specified
"moment” (i.e. integrals with respect to the underlying measure)are
studied in the last section.

2. Preliminaries

Suppose that S < R" is a cloged set and y is a nonnegative ({Radan)
measure supported within S. In the general, finite or restriced
moment problem we shall study liere the data are the N values reals

2.1) ¢, = | K. = . ¢ 3=1,...,0
(2.1) j é KJ(s) p (ds) wj(y) =1 b

of fixed, linear (continuous) functionals ‘pj' given by continuous on §
functions Kj' j=1,...,N on § and one asks for tha conditions of the
existence and a characerization of all solutions p which have minimal

support belonging to S:

(2.2} M - min, Cj = I Kj(sk) M+ P ¢ o, skE S, k=1,...,M.

In the case when § c Rz, i.e. n=2, and for § = (x,y) the functions

K1""'KN have the form
(2.3) xiyd, (1,9) €1, 111 =N

2

where I is a finite subset of z+

( the set of nonnegative entires)of

cardinality N, the above problem - the so called restricled polynomial
morent problem - is a natural generalization of the Gaussian guad-
rature problem. Of course, one can expect a reasonably simple and
constructive answer to this problem only if I and S have a simple
form, e.c. S is a quadrangle

(24) s = [a1,b1] x [az.b2 ]
and -~ for some fixed, positive L -

/
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(2.5) I =((4,3)1t + j sL, 1,3 2 0).
~ We give now an equivalent formulation of the problem(2.2)-(2.3)

which is crucial for our approach.
Proposition 1. The problem (2.2)=-(2.3)- with data setlc(I),Slis
equivalent to the existence and characterization of quadruples

H,A,B,e , where H is a Hiloert space (whose dimension should be mini-
mized), A and B are self adjoint cummuting operators on H and e is a
nonzero vector in H such that '

(2.5) ¢ = <AiBje,e >, for all (i,j) € 1.

ij
Proof. If there is a solution of problem (2.2)-(2.3) then we define
the Hilbert space

(2.6) H: = L,(S,du), e: =1onSs

and the operators
(2.7) A f(x,y):=x f(x,y) B fix,y): =y £(x,y)
which are self adjoint and commuting. The conditions in (2.2)can be
expressed as those in (2.5).

Conversely, suppose that (2.5) holds and let A,B have tRe eigen-
vectors (they are common and form a basis of H by the communtativity
and self adjointness of A,B) v1,..., vMand eigenvalues x.l,..,xM resp.
Yqre+e+t¥y ,where M is the dimension of H

(2.8) AY, =X, ¥, B‘«l’k-yk'ilk‘k=1,...,M.

Then

(2.9) ¢, = g i yj {(i,j) € 1 , where : mc ¥ e>2 k=1 M
T C1y TiZy Tk Tk Pt ’ Kt k&> K=l .

This completes the proof and shows that once we constructed the
quadruple <H,A,B,e> then the quadrature formula (2.9)can be obtained
by a low complexity stable numerical method i.e.soclviagg an eigenvalue
problem.

Not assuming H to be finite dimensional we had to invcke the
general spectral decomposition theorem, see e.g. [ 121 ,by which a
representing measure is obtained from the associated projector measure

du( A) = a(<E()e,e>)
Proposition 2. If problem (2.1),(2.3) has a solution then the problem
(2.2),(2.3) also has a solution,moreover for the minimal value M we
have the inequality

(2.10) min M s |I|
which is exact in the sense, that there exist (multiple connected)

domains S such that for the constant weight function u'(x,7)z 1 on §

and the set I as in (2.5), for arbitrary L we have equality in (2.10)
= The first part is known as Chakaloff's theorem see [6] and is basea
on the simple fact that if
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R .
c= Iye,c€r v, 20,i=1,...,R
jup + 4
then there exist a similar representation in which there are at most

k nonzero constants Yy For a proof of the second part see §4,ch.2in
(11]. Before going further let us indicate here the connection of the
above problem with the minirmal,partial relization problem for a class
ot two dimensional shift invariant, linear input-ocutput maps

(211 ¥en =k2i?lzj Tr-1,1-3 Y13

by state-space models of the form
{2.12) yk,1 = <h'xk,l>

1,141 = Fi¥, 141 P Fo¥ier,1 ~ FaFo¥,0 * 9% 1

where F1,F2 are commuting,symetric matrices in M and h,g € RM,see [3].

The transfer functions assiciated to such maps

crodu(x,y) i3
T(w,2) =)J—T—i—-_——=f ¥ r, w2z
(1-wx) (1-2y) i=0 =0 ij
are generalizations of the one variable Stieltjss functions and should
play the same rouie in analyzing "passive" input-output maps. Note that
the realizability conditions have the form of complete, infinite moment
conditions, if g = h,

Fi,j = <h,F§ Fg g>» , i,j 2 O,

It is known that the minimal partial realization problem underlies most

of the basic engineering problems of system analysis, see e.g. [2],
even if for a Suitable,more exact and stable numerical solution of
these problems other linear information functionals are better suited,
see [14] and below.Connections to(rational)approximation (interpolation)
problems for Stieltjes functions are extensively studied, see e.g.[7],

[101,0141,[16].

3.Exact conditions of existence and minimality

Ve shall restrict our interest to so called "regular"index sets I,
which = by definition- have the following property.

(3.1) 4£ (4,3J) € 1, then (k,1) € I, for all k s &, 1 s 3

In order to characterize the minimal solutions (H,A,B,e) we have to
characterize first the sets with consits of a maximal number of
linearly independent vectors among(5.2) Aibje, i,j zo0.

Lemma 1 In the linear space H spanned by the vectors (3.2) (if it is
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finite dimensional) there always exist a basis consisting of ele-

ments of a regular subset. L < zf .

Proof. Let n, be the maximum of the values n such that e,Be,..,BQ§1

are linearly independent. Suppose inductively that nk,k 2 1 is the
largest value of n such that Bn-1Ak-1b is linearly independent on
tne vectors alsle, with i s k-2,5 s n, and i=k-]jsn-2.Since the
sequence of the nk,k-1,...satisfies n,2 n,...2 Skz 1, E nksdxm H
the above procedure ends in at most dim H steps and yieldsa regular
set L. .

Definition. If L is a regular set, the (generalized)Hankel-matrix asso-

ciated to it is defined by
L iy, 0 (,,30° Cigbiy 3,49,
where we order the rows and colums of HL(indexed by elements of L)

according to the lexigographic order in zi. Further we denote~for

a regular set L

L*: = {(k,1)] 3 (i,j) €L with 1 2k-i 20, 1 2 1-j 2 O}
Ly:={(k,1) 13(i,3) €L,k $ i+1,1=j},L={(k,1} 3 (i,3)eL k=1i,15j+1}

'=((k,1)lk=i1+i2,l=j1+j2,(11,j1)€L,(12,j2)€L)

Theorem 1. The necessary and sufficient condition . for the existence =
given the moment data c(I) - of a nonnegative representing measure
supported in at most M points of S is that there exists a regular
set L of cardinality m and an extension of the data from c(I) to
c((L*)2), i.e. an assigument of values to the unspecified moments
in c((1¥*)2) such that the matrix H * is positive semidefinite and

(3.3)rank H o= rank H * <M. :

Moreover the m1n1ma1 value of M for which the above two conditions
can be satisfied equals the minimal number of knots in the corres-
ponding cubature formula,

Proof. In order to understand the role of the matrices HL and HL‘ note
that these are theGram matrices associated to the set of vectors

w(w) = (atple |(1,9) € L}
| W(L*) = (A¥B%v|v € W(L), Osrs 1, 03583 1).
; The necessity of the conditions (3.3) follows now from Proposition 1 and
Lemma 1 since Gram matrixes should be positive semidefinite and their
rank equal the dimension of the space spanned by the underlying vectors.
To prove the sufficiency of the conditions we have to construct a guad-
ruple (H,A,B,e) , such that dim H = rank Hy, and (2.5) holds. Now we
define H as the Hilbert space spanned by vectors V4 indexed by the
element (i,j) €L* , whose scalar products are specified by

L e e N T
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P4 Vi,j' k,l> = ci+k,j+l

Since rank HL = rank Kt , the operators A,B defined by

Avi’j =Vi+1'j Bvi,j = Vi'j+1' (i.9)€E L
are hereby defined on the whole space H, moreover they are well

defined: if
Vr:s - (i:?)eL uitj Vi:j' l.e. T aij<viij' k:l>=Lvrrs' krl>
for all (k,1) € L* , then

= .V . : . i
Vre1,s (i_.g)eL 94,5 Vi+1,3 and Vi g4 ='(i},:j)ozx. * 1,3V, 34

hold. Indeed multiplying the latter relations by Vk’r(k,l)e L, the
relations obtained are colsequences of the previous ones because H is
a submatrix of HL1 and HL2 and these are submatrixes of HL*.

These operators A and B are clearly symmetric (i.e. self adjoint)
since for all (i,j),(k,l)€ L

< Avl 3’ Tk, 12 = Ci-f~1+k,j+l =<V J'Avk 1>
and they commute, since

<ABV; SV 1> =c = (BAV; 5,V 1>,

i+k+1,j+1+1
By this the theorem is proved.
The difficulty with this extension problem is partly apparent from the
following fact:the restriction of the original say infinite dimensional
operators A and B to a Krylow-like subspace W(L) are symmetric but

they may not commute, (in general, they do not commute).~ It is not
clear what further connections (if any) exist between the set 1 (and
the values c(I)) on one side and the possible sets L on the other side,
is it true that L can be chosen as a subset of I?

These sharp differences between one and higher dimensional polynomial
moment problemshave been observed e.g. in [13],where it is first shown
that in the twodimensional trigonometric,finite moment problem the non-
negativity of the associated, generalized Toeplitz matrix (the precize
analogon of our Hankel matrix) is not sufficicient for the solvability.
The theory of normal extensions of operators,see the appendix written

by Szbkefalvi Nagy in [12] is clearly related to our problem since the
operator A + iB = T should be normal, for A,B to be symmetric and -
commuting and vice versa. The conditions = in terms of c(I) - for the )
condition:spectrum T € S can be easily written down in the case (2.4):

the following matrixes should be nonnegative definite .

(3.4) HL1 - a Hl ’ b1 L- L1 ‘ HLZ - GZHL, bZHL - HLz.
If S is the disjoint union of two quadrangles Q1 and 02 than we have to
require that there exist a decomposition of each of the moments (fixad

T
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or assigned) such that

e,y =) @y +e i@ W e an?
and (3.4) holds for the respectively decomposed matrixes.As an example
of a simple application of Theorem 1 we metion the following fact:
fir six data (co'o;c1’°;v.. ;co,z) if the coresponding.3 x 3 matfix
is nonsingular the minimal measures should have 3 atoms and they con-
stitute a one parameter family.

A_new pumerical approach to solve the existence problem

It is very difficult to handle the constraint(3.3) numerically, the
set of solutions of the minimal extension problem is not convex.
Observing that the finite dimensional analgon of the solutiaon set to a
moment problem (2.1) has the form of a polyhedron ( in the sequel we
often use abbreviations for N tuples (°1""’CN) = cN)

(4. k =k &NeN) = (pick =y 1,008, p € KT )

we see that searching for the extremal points "vertices" of K.
It is known that the parameters of a Gaussian gquadrature are very ill
conditioned functions of the moments ( note that(2.1) is something like
an integral equation of the first order whose right hand side is known
only at some points) - and this has its patallel in the fact that the
vertices of a polyhedron H(kN, cN) are nonsmooth functions of the data
N N

cN» or (k,c).

We propose now using an Other,specific solution,the"analytic centre"”
of the solution set, in order to solve the existence ( and some related

estimation) problems, in a numericaly more feasible manner.
The analytic centre p (K} -p(k“,cu) of the polyhedron(4.1) is defined
as the unique point which solves the following optimization problem

mx{ig1109 puldkgopdm €y 3=, N, py 2 Oix1, .. m)

If the polyhedron is represented in its own space (of dimension m-N,in
general), i.e. KX+~ P = P(am,bm)

P(a™,B") = (xIb,-<a,,x) 2 0, i=1,...,m/x € N

by the map y, = b,~<a,,x) ,i=1,...,m, then p=x (a™,b™ the point,
which solves the problem (assuming int P + @)
m
max{ 1 (b -<a,,x))Ix € P(a", 5™},

i=1
One can prove that the map (am,bm) - i(am,bm) is affine invariant

and there exists a two sided ellipsoidal approximation for P around X:

X+ E cPcx +mE, E={ zICAz,2> 5 1)




324

where the symetric matrix E = E(am,bm)is easily obtained from i(am,bm)
see [14]1,[15]. The fact that x(a™, ™ =»F(kN,cN) is an analytic, very
smooth function of the data allows to solve the feasibility and linear
optimization problems by a homotopy approach,see (15],which we gene-
ralize now as follows.

The analytic entre of tine set (2.1) is defined (if its exists) as
the solution of the problgm

(4.2) sup<£ log p'(s)ds| é K'j(s),;'(g)ds = cys j=1,...,N}.

It is easy to prove that the set of values cN for which (4.2) has a
solution is convex and dense in the set of all feasible cN, if S is

a domain, i.e. closure (int S) = S. For the trigonometric moment pro-
blem this solution was studied already about 1920, see {10],[143].
Lemma 1. The solution of the problem (4.2) - if it exists - has the
following form

Ys) = (3 a, Ky(s)T]
¥ 2y 33
]—
for suitable aN € RN, which in fact is then the unique solution of the
equation
: 3F(a) _ N “13s = =
(4.3) --—a—a—-J K.(s) ( T a.K.(s)) dS—Cj,]—1,...,N

such that I ajxj(s) is positive on S, here

4.4 = K.
( ) F(a) sf log (= aJKJ(s))ds

Proposition Thﬁ‘moment problem (2.1) has a solution if and only if the
homotopy path a(A) can be continued from i= 1 till A= O, where aN(x)
O < A s 1 is defined as the solution of (4.3) where cN is replaced by

N N
(1 -0c +Acg

Yoo f M) (7 K. (s)) as

N o j=1 J 3 :
andj§1aj Kj is an arbitrarily fixed polynom which is positive on S.
The proof is a simple application of the implicite function theorem.
For brevity we can only rafer ©[9],[15] for the application of this
method for the estimation of (computation of exact upper and lower

bounds in terms of the moments ¢ for !
1(c") s [ K (s) u(ds) s u(ch

It can be expected that for smooth analytic kernel'functions
KO,K?....,KN this approach is superior to those using discretizations
of the measure (of the set S) and algorithms based on the simplex
method (note that the latter methods use- as a tool - extremal solu-
tions, only piecewise smooth homotopies)jconcerning numerical test
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results on this approach-using homotopies along analytic centers- to
solve linear programming problems, see(9].

The special solution of (4.2) in the case of the (real)trigono -
metric moment problem -~ where Kj(s) = exp(i(j=-1)s), s €[-O,0land yu a
measure or[~l,N1](which is symetrical to zero)-,which is a special
case of the Nevanlinna-Pick moment problem, is the so called
"maximum entropy" solution. These analytical centers, more precizely
the coefficients of the trigonometric polynomiall 3'(ei®)I"! are ratio-
nal functions of cN which can be computed rather quickly:in O(Nz)
arithmetical operations. This and other observations, see[15]lead to
the idea that for the extrapolation of the function aN(A)rational
(multipoint Pade) approximation - with Newton type corrector step to
solve (4.3) - will furnish a rather efficient path following method.
In fact, in'a problem closely related to (4.2), the use of a special,
rational extrapolation method can be justified rigorously using a
generalizaiton of the well knwon fact (see e.g.[7]) that the multi-
point Pade approximants (i.e.interpolants) to a Stieltjes function
are again Stieltjes functions, see[15].

In order to solve - over some domain § - the closely related uniform
approximation problems
;ﬁnllKo(s) 1§1pixille(S)
we propose following the homotopy path BN(}) determined by
sup (log(x-s) + [(log (K, (8)=~ g B,K, (8)-¢)+ log (e=K (s)+
(c,PN) S i=1

N
151 BiKi(S)))ds .
Of course, the sucess of these methods depends (among others) on the

availability of fast and accurate methods for approximating the above
integrals as well as those in (4.3).
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THEORY AND APPLICATIONS

Roberto Gonzdlez and Edmundo Rofman

Facultad de Ciencias Exactas ¢ Ingenieria, Av. Pellegrini 250, (2000) Rosario, Argentina.
INRIA, Domaine de Voluceau, BP 105, Rocquencourt, 78153 Le Chesnay Cedex, France.

ABSTRACT

The aim of this paper is to propose an approximation procedure to compute the value
function V and the optimal policy @ related to the stochastic problem (P) of controlling
diffusion processes. This procedure can be easily extended to problems for which stopping
time and impulse controls are also considered.

O - INTRODUCTION

As we did in [8] for deterministic problems we will employ here as basic tool of
analysis the characterization of V as the maximum element of a suitable set W of functions w.
While in [8] the definition of l¢ requires for w to be subsolution of the first order Hamilton-
Jacobi-Bellman equation, ie. :

aw’((x . fixu) + fxu) - cow(x) » 0, YVu € U, ©.n

here, in the stochastic case, we deal instead of (1) with

Luw + ) » 0 0.2)
where L is a second order differential operator.

In what follows (P) will be solved using the characterization mentioned above. To
introduce the discretized problems (Ph) we need to define properly the functions wh belonging
to Wh, In fact : the existence of maximum solution Vh for each problem (Ph) and the

convergence of VR 1o V are shown using a Discrete Maximum Principle (DMP) that wh must
verify (cfr. [3]). To insure this property we use particular schemes to discretize the first and
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second derivatives of w. Furthermore this choice enable us to compute VR using an algorithm
of relaxation type that increases the values of wh in the vertices of the triangulation employed.

Comments on applications are inciuded in the final chapter.
1 - THE PROBLEM (P)
Let us consider :
a) The complete probabilistic space
QP F Fuo) ;
b) The state process y(.), modelled by the diffusion
dy() = fly(®), u)dt + o(y(v), u®) dw(®
yo) = x,t > 0,y e QC Rn
with
Q : open boundet set
w(t) : Wiener process F(t)-measurable
u(t) : control process progressively measurable in a compact set U < Rm
oS an X n matx

f and o bounded continuous on Q x U.

c) The cost functional
T
J(xu()) = E { J Uy(s).u(s)) e-= ds}

with

T : fist exit tme of Q of the system trajectory
a>0
¢ : bounded continuous function on Q x U.

(L.1)

(1.2)

(1.3)




Let us introduce the definition of the optimal cost

V(x) = inf_ J(x,u()), (1.4)
uelU ) .
Vix) being solution (cfr. [5],(2]) of the Hamilton-Jacobi-Bellman equation

mktl] {LwV + W(u} = 0in Q

ue
(1.5)

V=0mndQ
whe:etl’ndiﬁ'acntialopemorbisgivmby:

U 5 2_ 5 16

u) = r,s)ila.s(xwm+r51 o) 55 - @ (1.6)
with

n
&s‘izzl"u%i&&s=k~ %))

As it was said in the Introduction we will compute V iaking advantage of its
characterization as maximum element of a suitable set, i.e. (cfr. [6), [8], [15])) solving the
following auxiliar problem (having V as solution) :

(P : Find the maximum element w of the set

W=iweW @/ Luw+t>0nDQVueUQC RY (1.8)
being

wEwe wx) ¢ wx), Vx € Q S 9)
the natral partial order in 1.

(Questions concerning existence and unicity of the solution of (P) can be seen in [4], (IS]).

e RN

o i s AT

——————




2 - THE DISCRETIZED PROBLEM (Ph)

2.1. Preliminary comments

We will compute V as the limit of the solutions of a sequence of approximate
problems (Ph).

P To simplify the presentation we will suppose that Q is polyhedric. We consider in Q a
t triangulation Qb (union of simplices), " being (i = 1,2, .., Ny) the vertioes of Q%

13 1
Then we define Wh by functions wh verifying properties related to (1.8), (1.6). The
main difficulty of this approach is to ensure the existence of a maximum element W9 in lob.

Following what we did in [8] for the deterministic case we introduce in Wh the nawral

partial order

i WI; < wg o w{'(x?) < w;‘(x?), VJS!' verex of Qh @1

\ Wemide:ﬁmcﬁonswh:a’-oR,whconﬁnuousinahudm%-whx—conswninmc
interior of each simplex of Qb ie., wh are linear finite clements. So, to define wh it will be
] enough to precise the inequality (“discretization” of L(uw + ¢ > 0) to be verifyied at cach
vertex x:' of Qh. Taking (8] into account if suffices (o propose a suitable discretization of

n
) uu)w.r'sy;tg%ummmmwmunﬁmofw.

2.2. Definition of Lhu) wh :

1 Let us consider S(x}) (see Fig. 2), all the simplices having x| as veriex.

| From (1.7) the matrix A = (a) has no negative eigenvalues A, and orthogonal
eigenvectors. So
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A = UDU @
; wih UU = I ‘ g,
: D (diagonal) / Dpp = 2 > 0. '
; Fla. B
: If we consider, with center in x? a new coordinates system (we denotes G the
transformation matrix G(x?) :
n=G.t @3)
and we define
wi = wil' + 04 W@ - WG 4 e 2.4
: we obtain
h o 2w n h. 9%
Luw = ) = ) , @2.5)
o1 B0 VEa 7 L, WA ERT
! | with bpq(xl, 1) = (GAG)p

| So, afier the choice G = U’ we have, because

| by = %p 8n 29 |
the following diagonal form of L :
L . BRNER
Lw = 3 » B) Q2.7 oo
p-lm “;r

P 3




Now. we define naturally the approximated oeprator Lh :

o = 3 agoflucTpn on @8
p=1 8np

where (a;%)h 11 - ;lz (&h(Ci;)“ -2 W‘(xih)., . W(C;p).\) with
P i

Cl'p = x;h -Kep (Ci.p)“ = 00, ..., -hi, ., 0)
Ci;) = th + b ?ip (Cl;))ﬂ = (00, ., hjy o 0)

oM = 00, . 0, .., 0)

Cip giving the direction of the mp-axis and h; such that Gy Cp © S,

2.3. Definition_of wh

n .
Coming back to (1.6), 21 fr(x,u) 33_, will be discretized as it was done in (8], ie.,
r=

we will consider V in the direction f (see Fig. 2) :

wh - el
f.vwxb-Tr-—h—l——. 11 @9

5 - %
So, from (2.8) and (2.9) we can define
Wh = (wh: Q) R/ Nuw + 2u) 3 0,

(2.10)
Vuelﬁ,V)riheQ‘,wh<0mw'} |

where UM is a finite discretization of U and




o

-

. _ :
Db + 1o, B = > AT NWHGE - 15 Tip) - 2 whdh :

1
P=1lh

-

@1
) - wagdh
+ W"(’n:l + h?i;,)) *W’lﬂﬁhﬂ - aw(’t;h) + Hu, x;‘)-
1

Finally we can consider the discretized problem (P)® : Find the maximum element wh
of the set Ih with respect to the partial order (2.1), ie. find Wh(x) such that WA(KD) > WK,

'\7’:(1;I e Qt Yw'e W

3 - SOME REMARKS ABOUT wh(x)

As iy, Gy b are convex combinations of the vetices of S(xP), using the linearity

of wh we have :

WHCL) + WHG) = T HW) 120 I g2 )

jek jek
h .
Iisetofmhxmchdmx;'esogh) .

WeD = I FW %0, 5 g1 G2)

jG- jek

Afier (2.11), (3.1) and (32), we can rewrite LAWK + Ko, XY > O s :

o




o

n
W"(Jg-h) < Hih (x? ) [-12- X ?«p(:qh,u) ] w"(:gh)
hi p=1 jeqzliaei

. (3.3
¥
. '—'ﬁﬁ—r Z 9% “)’(75-‘5 + U, )
l% = "1 I je 3 )

i) |

n - Nl
with B?(x?,u) = [pzlg?ﬁ lp(’sh.u) + -I—;F——E—I- +al >0
= i (|

Taking into account that all the factors that multiply wh(ﬁp) in the second member of

(3.3) are non-negative we can easily prove (see (8]) :
OREM 1

There exists an unique wP(x), maximum element of Wb, ic. (P?) has an unique
solution.

Furthermore the operator L" verifies the following Discrete Maximum Principle
(DMP) :
(DMP) : If C is a subset of vertices of Qb satisfying LNw) wh(x) > 0,

Vx?EQ'.VueU",ﬂuemssl',0<l‘<lsuchm: (3.4

who) < T (yax (Wi v 01
Xi ¢ C

We can use this DMP 10 establish two important properties of wh.
The first one is that wh is characterized by the fact that (3.3) becomes an equality for
aﬂx{’cQ‘hmuelﬁmepm-\w instead of wh. This characterization allows us

to compute WP using iterative algorithms of the same type than those pesented in [8). The
value of u giving the equality will be used 1o define the optimal contol Oy

L S

—~w




mmmmumd?nm%m

THEOREM 2
The solutions wh(x) of the approximate problems (P!) converge uniformly to V(x),
solution of (P), ie. :

MH—TO'V(X) -l =0 VYxeQ (3.5)

where I is the maximum of the diameters of the simplex of Qh. (see [8]).
The proof is achieved in two steps. We will briefly give herc the main ideas.

In the first part we show

lim wh > V. C. 3.6)
: For that we regularize the clements of (1.8) by means of a convolution with a function
i of C (R?) having a parameter p >0.Mﬁuw:mwpcmbemxhnatebyfumtions
i; ‘ w,,awimmispmpmy:dwlirwﬁ:ﬁwdamtwp,a,mkingthemvalu&sofww,inthe
\ verex of the triangulation Q& belongs to Wb, So,
‘ wh w:‘a )]
If we consider in (3.7) the lower limits for |l — O, then the limits for (p,x) — (0,0), we
‘ obtain
j w5 ow 3.8 ’
IPEO ©8 :
1 , Finally, a3 w is an arbitrary clement of I, (3.6) is proved.
The second part is devoted to show .
im W'V . 3.9 f .
P k-0 | R
N T .4 . L
b } “"’_’-’ﬂii‘:_\ﬁ"‘m“—-‘ s TS T
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Wecuniderawqmofauxﬂinpmblm?nforwﬁchmeeonmhunmukein
(1.8) a finite number of values and the number of switchs within that set of values is, at most,
n If V, is the solution of Pp we can show

V‘ ,-. ; vll > Vﬂol > V' . wTELEeeTs e
(3.109)

Em Vp = V.

N=s00

Onﬂleoﬁlu‘handwemiderﬁwdiscreﬁzedpmbkmi’::fcrwhichwcpmve

. —h
lhnhfo Wy = Vi @a.11)

w:: > wh*l > . > wh Vo (3.12)

So, mhmo wh < V, ; then, using (3.10) we obtain (3.9). Finally (3.6) and (3.9)

give (35)

4 - Cl APPLICATI

The idea of solving optimal control problems computing the maximum element of a
suitable set of subsolutions of the Hamilton-Jacobi-Bellman equation.has been recently
applied to several problems. Remaining in the deterministic approach we have study in {9] the
optimization of an electricity production system which commprise three hydraulic plants (two of
pumped type) and seven thermic plants (one nuclear, two of coal, tow of fuel, one gas
powered and one external). The numerical data have been provided by EDF (Electricity of
France) : they describe a forecast of the French system for a week of the year 2000, Other
application can be seen in [12] where several serial production/inventory systems are

irmized
Conceming the stochastic approach we can mention :

a)[ll]devowdwhwdmimmofﬁemmmndmﬁ]cmﬁahg
petturhations in the demeand ;
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b) {7] in which the algorithm proposed in. [10] for L(u) = A is used to obtain the optimal
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control of a bidimensional diffusion ;.

c)[l]mwhnhﬂzmmwsdumofmopumalcomcumpmblemforadmnpedmdom

 linear " oscilator is studied.

First applications of the procedure just proposed in §2 and §3, as well as a comparison

of these results with those obtained by other clasic methods {13], [14] and [17], will be
presented in a special session of the next IEEE-CDC, Austin, 7-9 Dec, 1988
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The purpose of an electric power pool is to reduce the cost of generating
electricity by transferring elecric power between the power plants that are
controlled by individual decision makers. During high local demand a system
can transfer energy from the network into the system and thus achieve cost
savings. At the same time other systems produce electricity into the network
such that power balance in the network is met The benefits of receiving
energy in one period are then compensated by an energy transfer into the
network in some other period. As a whole, the the pooi cai thus achieve cost
savings.

The lem of equitable ing of the bencfits of cooperation during the
planm%r:bhoﬁmn is a bargaining problem in

formulate the energy bargaining model in the dynamic framework and propose
a new way of dividing the cost savings within the power pool. The energy
exchange contract is determined on the basis of the Nash bargaining scheme.
Inompreviousmxdieswehavepxmnwdahierachical%ﬁmwhtosolve
Nash bargaining problems in the dynamic framework. is approach i
extremely convenient in this application.

the dynamic framework. We shall




SPECULATIONS ON POSSIBLE DIRECTIONS AND APPLICATIONS
FOR THE DECOMPOSITION METHOD

G. Adomian
Department of Mathematics
The University of Georgia

Athens, Georgia 30602

The decomposition method has now solved very accurately a
rather wide class of nonlinear differential and partial
differential equations [1]) showing some significant advantages
over other methods. Once a problem is modeled with a specific
equation (linear, nonlinear, deterministic, stochastic, ordinary
or partial differential equation) with physically correct given
conditions, the method solves the equation without
linearizations, perturbations, closure approximations, white
noise agssumptions, or discretization. Certainly, much remains to
be done on the theoretical foundation and the precise
limitations. Rather than a drawback, this is a fascinating
challenge for further work which is beginning to be borne out by
the increasing work in this field particularly in Torino by
Professor N. Bellomo (2] and his co-workers [2] as well as by
many others. The range of problems solved and the rather
remarkable accuracy obtained - the fact that nonlinear systems
with stochastic parameters can be solved and the fact that the
work has applied effectively to parabolic, elliptic, and
hyperbolic eguations - certainly suggest this is a useful and
very computational method for frontier applications. Proof of
convergence and convergence rate, error estimates, and perhaps
better generation of Adomian’s A, polynomials are fertile areas
for further study and dissertations. Many other research topics
are in the area of applications; some are discused in [3).

Let us point out some speculations on some interesting
possible future applications pointing out that some of these
applications require the development of a correct mathematical

(i 1230 am 200" -
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et

model before decomposition can possibly solve them. It is not
useful to apply the method to many existing models since they
have already been linearized and otherwise simplified for
mathematical tractability. Thus it is up to the expert in

" physics, engineering, biology, economics, agriculture, etc., to

model the problems retaining the nonlinearities, stochasticity,
delays, etc., since the physically correct solution can be very
different from that ~btained from the simplified models. Also
since the technique does not require discretization, it is
evident that substantially less computing time may be involved in
a difficult problem such as Navier-Stokes equations (4].

Nevertheless, some possible applications which represent an
exciting challenge are areas such as nonlinear and possibly
stochastic and multidimensional optiomal control theory,
hypersonic flow, quantum theory and gravitation, generalization
of the Kalman filter, and problems of large space structures such
as vibration, heating, etc., [3].

Before going into these areas, let’s look briefly at some
illustrative decomposition examples chosen for clarifying
procedure rather than for difficulty.

Consider an ordinary differential equation
d2u/dx? - 40xu = 2, u(-1) = u(l) = 0. Let L = d2/dx2 and
write (1]
Lu = 2 + 40xu
-1 Ll §
u = c1 + czx + L (2) + L " (40xu)
[
Let ug = cy + cx + L™1(2) = ¢y + cpx + x2 and let u =3 u,.
n=0
The components of u are given by

Un+y = L™le0xuy

for n 2 0 thus

uy = L"40xug = (20/3)cyx3 + (10/3)cyx? + 2x5
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Similarly
6 7 8
u, = (80/9)c, X + (200/63)c,x’ + (10/7)x
n-1
We continue to some n-term approximation ep = >, u; which
i=0
@®

approaches u = 2: U, as n + @ {[1]. If ve write o¢; as an
n=0
approximation,

+
03-u°+u1 u

2 3 4
+ + +
- c1 c2x + X (20/3)c1x (10/3)02x

+ 2% + (80/9)c1x6 + (200/63)c2x7 + (10/7)%°

Imposing the boundary conditions at -i,1, we write
¢3(1) - 03(-1) = 0 from which we get

149/9 473/63 c ~31/7
29/9 -53/63 c -3/7

from which ¢;, c; are evaluated. Substituting e, onto the
left side of the differential equation, we should get the right
side, or 2, if the approximation is sufficient. We note that the
12-term approximation yields 2.000000 or seven-digit accuracy.

on R} with Ly = 2%2/2x2, Ly = 22/0y2, L, = 22/222 we
write

[Lx + LY + Lz]“ = £(x,y,z) + k(x,y,2)u

Solve for each linear operator in turn. Operate on each of the
three equations with the appropriate inverse and write




-1 -1 -1 '
u= ox + Lx £ - Lx ku Lx (LY + Lz)u

-1 -1 -1
- f - ku - L L +L)u
u 'y + Ly Ly » ( 2 x)
-1 -1 -1
u= °z + Lz f - Lz ku Lz (Lx + Ly)u

where o 'y’ ”z are the homogeneous solutions. Adding and

dividing by 3.

+
u-uo Ku

with

1 1

-l - -
uo = (1/3)(0x + oy + oz + (Lx + Ly + Lz ) £)

o §

-1 -1 -1
K= (1/3){L + Ly + L, )k + L, (Ly + Lz))

-1 -1
S LML, L) L@+ L)
L)
assuming u = 2, u
n=0

um_l-l(un

80 all components are determined. The inverse operators are

double integrations leading to two constants of integration to

be determined by forcing u, to satisfy the given condition.
Suppose k = k(u) so the sgquation becomes nonlinear. The

®
nonlinear term is expanded as 3, A, where the A, are
n=Q {
Adomian polynomials ([1,3] generated for the nonlinear term and
the procedure is as befors except that the uy,; will involve an
Ap term. Since each A, depends only on ug,uUz,:...up, the
solution can be obtained essentially as easily as in the linear
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Rather than further discussion of the methodology on which :
thers is now a considerable published literature in the U.S. and §
Europe, let us speculate on some applications which appear to be :
possible in the very near future although they require the

“modelling expertise of theorists concerned primarily with each of
those areas.

Some of these, in the authors opinion, are

1) optimal control for nonlinear and, stochastic, and even
multidimensional systems, '

2) hypersonic flow, turbulence, single-stage-to-orbit flight
sssential for shuttles which can be used for the
construction of space stations,

i 3) quantum theory and gravitation, and

§ 4) generalizations of Kalman filtering.

: Because of page and time limitations we discuss only the
first two heras.

1) Suppose we consider a nonlinear, possibly stochastic or even
i multidimensional systems which we want to control in some optimal
way. For a linear control system with a quadratic performance
index, of course an analytical solution can be made. Consider
the state equations

e e m——— =

xX(t) = t(xl,...,x H ul,...,u.:t)

; n
; is, a set of n nonlinear differential equations with x(t)
b : representing a state vector with n components £1¢¢0.,fn, and

x(tg) a given initial vector. Define, for example (5] a
performance functional J(x,u,t) given by

o t;
I =olx(t,), t,]+ Ito F(x,u,t) at

vhere ¢ and F are scalar functions with necessary smoothness
properties. let p = [pl,...,pn]T be a vector of Lagrangs
multipliers and form an augmented functional

\
i
§
{

{ ‘ ' = elx(t,), ¢, ] + I:: (P(x,u,t) + p° (£-x)] 4t

whigan T
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Integration by. parts leads to

t, -
J' = - [pTx] |':1 + j:: (R + p'r x] dt
. . (\ RPN

with H defined as

H(x,u,t) = F(x,u,t) + prf

if u is detined on tg S t < t; , we vary u and find the
variation 3J’ corresponding to 3u, leading to the n  adjoint
equations, )

. aH

pi--a—x—j:

80 we have a system of 2n nonlinear differential equations with
two-point boundary conditions. Although this approach has been
discussed by R.E. Bellman and many others perhaps most recently
in [5], analytical solution has usually not been possible except
by numerical methods. We now have a promising and

potentially valuable alternative since such systems of pnonlinear
differential equations have been solved (even for the stochastic
and/or multidimensional cases) in a analytic approximation by the
deconmposition method [1-3].

Another possibility is through solution by decomposition of
the matrix Riccati equation which appears in invariant imbedding
and neutron transport theory as well as modern control theory.
Consider

R/ (x) = B(x) + D(x)R(x) + R(x)D(x) + R(x)B(X)R(x)
R(0) = 0

vhere B, D, R are continucus n X n non-negative matrices.
Suppressing the argument x , we have

R’ = B + DR + RD + RBR

B

e g g




.

e mn = B e

If L= d/&x

IR = B + HR + NR

vhere IR =R’ , HR = DR + RD , and NR represents a nonlinear
operator on R . Since R(0) = 0 , ‘operation with L-1 on both
sides yielas .

1

R=1"28+1%5r + 1" 0m .

let R and NR be written in terms of Adomian‘s A,

®
polynomials. For R this is equivalent to writing R =2, Rp .
n=0
. .
For NR we write )] A, . Identify Rg = L™1B then
n=0

=
]
t‘l
)
m
Lo
+
l.".
L

-l -3
+
R =L HR_ +L A_,

for n21. The A, for NR are given by (1]

R Bko

RBRI+RI'BR° ' i
RBR1+R°BR2+R23R° -
83334-!3!304-1!13224-8252

l-" O’
o o

P
N

[ ]
v

>
[}

3 0

1
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D et

A‘ﬂlzst-l-RoBR"#R‘BRo

+RIBR:,+R3BRI

R =118

-1 -1
L HR°+L ROBRO

L]
[ ]

o
L]

-1 -1
L HR1+L (ROBRI-!-RI

Finally since HR = DR + RD
R =118

-1
R =1 (DR,

-1 -1
- + +
R L (DR1 Rl D) L (Ro BR

n-1

An n-tera approximant is e, = 3, R, which approaches

i=0

[ ]
R=3 R, as n~o. Thus given B, D, a specific R can be

im0
calculated to a desired approximation.
demonstrated in (6).

B Ro)

-1 -1
- +
R L HR2+L ‘RIBRI+ROBR2 R

1

ZBRO)

-1 ’
+
+ Ry D) + LT(R; B R}

+ Rl BRO)

=1 -1
R, + L (DR2+RZD)+L {R1381+R°BR2+R25R°)

Accuracy has been
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'c Flaw" '!hc prcunt mppmch to hypor'cn:lc
pr : is muta:ianal !1u.i.d dynanics (CFD), and
intensive work is being done to develop appropriste CFD computer
progrims for thc hmrwnic case, with contlnui.nq rapid

u)-intl in Muuputerl, t’hi.s uphuls is cortainly
Whtc. Yet, lnueh.t mthodolm now appears promising -
which is quite dizfor-nt and ‘oc_-s to have a high potential for
important adnnt&gu as vell as a p:obably high adaptability to
Wml '!h.tl is the dooonpo-ition method.

It yields a rapidly converging series solution in analytic
form. It r.quiru no linearization, porturﬁation, closure
approxintim, or assumption of ¢p¢c1a1 nathmtically tractable
stochastic processas such as duta-corrnlatod processes.

Probably nost i.nportant is the fact that discretization into
grids is unnecessary. Hence, computation should be enourmously
less, and the difficulty of different time scales in turbulence
is avoided. '

In the typol of tluid flow which interest us, velocity, :
density, and pressure are stochastic, not constants. Present i
treatment of Navier-Stokes equations solves a simplistic ;
{ modsl, not real behavior. Turbulence is a strongly nonlinear,
ltrpngly Qtochntic phenomencn and cannot be understood by
linearized portnrbtt:l.vc treatments. The theories of physics are
perturbative thooriu and the theories of mathematics are for
linear cperators (oehor than scme ad hoc methods for special
nonlinear equations). What is needed is a way of solving one or
more nonlingar stochastic operatof equations whether algebraic,
diff.-tenthl, dahy-d:ltt.rontial, partial-differential, or
mun of .uoh equations. The computational accuracy of a
mporcupum is dependent on the -aphhucation ‘of the
| sathematical methods programmed into it. ‘!'ypieal calculations
] consider millions of discrete time intervals mad small encugh so
tznj-ctoriu betveen them can be taken as lcw-ordcr polynu&ln,
0.9., qﬁad'uucl. It .tochuticity is involved, then Monte Carlo
methods are used which inserts randoiness but not ‘the properly - Posan
correlated randomness which is pronnt in tho physical prcblu. '
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In genaralized hydrodynuics, the form of Navier-Stokes
equations is Xkept, but tiu and distance scales are introduced so
one can go beyond continuun approxmtion ‘and take account of
molecular structure. now.vnr. application to a real situation
becomes simply a test of the validity of the linear
approximations, as po;ntod out in the literature. r].uctuat:lons
are , as usual, assumed "small,® and delayed effects, dus to the
fact that responses cannot be instantanecus, are ignored.

When one studies airflow about aircraft surfaces,
computations are made tens of millions of points, and it is felt _
that increasing the volume of computation to the limit in an ;
ultimate extrapolation, supercomputers will yield complete :
accuracy. Not only does this ignore stochasticity, it ignores
the sensitivity of nonlinear stochastic systems to very slight
changes in the model - in fact, to changes essentially
undeterminable by measurement.

To solve an aircraft problem on contemplated next-generation :
computers, a 3-dimensional mesh is generated which discretizes )
the system of nonlinear partial differential egquations into a B
million, a hundred million, or perhaps a billion coupled 5
difference equations in as many unknowns. One begins to see then i
the tremendous data handling problem, the nécessity -for improved
algorithms, and the need for still greater computational speed.
¥We may also have many unknowns at each point, and, as we have
pointed out, the system nonlinearities and random fluctuations
need to be taken into consideration. Since usually solutions are
1 iterative - first solving an approximation to the original system
of differential equations and then improving the solution by
repeated substitution of each new solution - parallel processing
{ | is complicated by the difficulty of partitioni.ng the work so each

- processor can work independently. 'rhis is being pursued by many
h\qcu.toul ideas necessitated by the btuto !mo mathod of
ducrotim.tcn. .
In all such problems we need to bo -hlc to solve coupled
i systams of nonlinear (and generally stochastic as well) partial
: differential equations with complex bounduy conditions and
o poutblo delayed effects. These systems are linsarized and
3 o discretized (and the stochastic aspects either ignored or
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improperly dealt with) so-the varisus numerical approximation
methods can be used. This requires faster and faster
superoouputers to do these computations in a reascnable time.

' Unfortunately the firther developments in supercomputers can :
quite possibly give wrong ansvers bscause even a single '
one-dimensional nonlinear differantial egquation without

. stochasticity in coefticients; inputs, and boundary conditions -

let alone vector partial differentia) equations in spacs and time

- with nonlinear and/or stechastic parameters - are not solved

exactly. Real systems are nonlinear and stochastic. When you
throw out these "complications,” you have a different problem!
When you linearize and use parturbative methods, you solve a
mathematized problem, not the physical problem. The model
equations, even before the linearization, discretization, etc.
are already wrong because the stochastic behavior is generally
not incorporated or is incorporated incorrectly as an
afterthought.

our approach to hypersonics, using decomposition, will be
based on previocus work on Navier-Stokes {3,4] which showed an
analytic solution can be carried ocut. For hypersonic casas,
additional effects are present changing the model equations but
the approach is similar. Discussion of a rather global

" mathematical methodelogy, let alone the huge subject .of

hypersonics and turbulence is, of course, not addressable here.
We can only call attention now to the possibility of some
prorising alternatives to the present approachaes [3].
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- Fuzzy arithmetic in qualitative reasoning

Didier DUBOIS and Henri PRADE
Laboratoire Langages et Systémes Informatiques

Université Paul Sabatier, 118 route de Narbonne
31062 TOULOUSE Cédex (FRANCE)

The paper provides a preliminary exploration of the application of fuzzy arithmetic and
fuzzy approximate reasoning techniques to qualitative reasoning problems considered in Artificial
Intelligence. More specifically, this investigation is done along three lines : constraint propagation with
ill-known values, handling of orders of magnitude in terms of fuzzy intervals or by means of fuzzy
relations.

1 - Introduction

Reasoning about the behavior of systems in a qualitative way is interesting in two kinds of
circumstances : i) when the system under consideration is complex and the data available about it are
pervaded with imprecision or even vagueness ; ii) when it is sufficient to have a qualitative view of the
system and of its behavior, and this qualitative view is not only easier to get than a more precise one
from a computational point of view, but also easier to understand. From the beginning of the eighties
there have been a growing interest about qualitative reasoning in Artificial Intelligence ; see (Bobrow,
1984 ; Dormoy, 1987) for an introduction. The intended purpose of this research is mainly to provide
understandable explanations of the behavior of complex systems from their qualitative description. The
modeling is done in terms of variables which are potentiaily real-valued, but the analysis and the
description of the system behavior is made only in terms of three vatues usually, namely "-", "0" and
"+", corresponding to whether the variables are negative, zero or positive. Independently, works
motivated by research in qualitative economics, have been developed about qualitative controllability
and observability of linear dynamical systems where real-valued variables are approximated in terms of
the same three values ; see Travé and Kaszkurewicz (1986) for instancs.

From the end of the seventies, fuzzy set and possibility theory (Zadeh, 1978 ; Dubois and
Mlms).wbnmducdonwidMymdvmdbymemohﬂnuofomdmm
mmmwymwmm.w.wnmmmamm
various directions ; puﬂcnhly.fhuyuimmeﬁc(buboiundPndo.lm lm)mlﬂumuom
ﬂmmhmﬂymwhkhmwmﬂmam;yh
WMWMM 1mmmmmmmnymmmum
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now there have been no serious attempt to use fuzzy techniques in qualitative reasoning problems in
Artficial Intelligence --if we except some hints (Raiman, 1985) and preliminary works (d' Ambrosio,
1987)-- although it would be desirable in some cases to have a finer and less sharp description of the
values of the variables than the one provided by "-", “0" or “+*. Particularly, the sign of the difference
between two positive quantities cannot be determined without any information about their respective
order of magnitude.

This paper investigates what may be the use of fuzzy arithmetic and fuzzy set-based
approximate reasoning techniques in qualitative reasoning problems. First, a general approach for
refining interval values attached to variables by exploiting constraints which must be satisfied by these
variables, is extended to fuzzy set values. Then, a fuzzy interval-based approach is proposed for
handling orders of magnitude in arithmetic operations and a valid approximation technique is used in
order to insure a closure property of the operations restricted to the considered fuzzy values. The
interest of fuzzy intervals for interfacing symbolic information and numerical data, is emphasized.
Then another way of dealing with orders of magnitude based on approximate equality relations is
inmtiﬁated. The concluding remarks point out some other contributions of fuzzy logic to qualitative
control and to qualitative descriptions of systems behavior.

2 - Constraint propagation with fuzzy. values
2.1 - General discussion

Let X}, ..., X; denote single-valued real variables. Let A; be a subset of the real line
which is known to restrict the possible values of Xj, and let R be a relation which must be satisfied by

" the X;'s and which acts as a constraint on (X, ..., Xp). Then, the refinement of the possible ranges of

the variables X;'s taking into account R, leads to update the possible range of each variable X; into a
new subset A‘j in the following way
Afj=(x;e Ajl3xje Aj,j=1,n,jmiand (x], ..., X{, ... Xp) € R} 1)

More generally in case of several constraints represented by relations Ry, k = 1,1, we can iterate this
refinement procedure on each variable taking successively each relation into account over and over until
no more changes occur in the updated ranges. This is known in Artificial Intelligence as the Waltz
algorithm ; see Davis (1987) for a detail study of this procedure both from an implementation and an
application point of view. Let us consider a simple example. Letn = 3, A| = [0,2], A2 = [1,3] and
A3 = [0,2] and the constraint X; + X3 = X3. Then we get A’} = [0,1], A’2 = [1,2] and A3 = [1,2).
Observe that any triple of values in the Cartesian product A"} x A’z X A3 is not necessarily feasible,
e.g. 3x3¢€ A’y suchthatx) + x3 =x3 withx) = 1 and xy = 2,

The definition (1) expresses that A°j is obtained as the intersection of A; with the result of
mmﬁm«mmnmkﬁmmmmqu'sm@m«n be readily

. extended 10 the case where the A;'s are fuzzy sets and/or R represents a fuzzy constraint ; ie.

Vi, Vai, MA"{(xj) = minfpA (x), Supyy  THOHR(KL, - X min A (o)}
juln; i j=1,0; jui
where i denotes the membership functions (whose range are {0,1]) of the corresponding fuzzy sets

of} ; »e. . R
e O R .
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andtelaﬁon.WhenRismadinnytehﬂmsuchdlatxiisafmcﬁonfofdleothervuiablesz.A‘iis
a fuzzy set which can be obtained by applying f, in the sense of fuzzy set and possibility theory, to the
Aj's g=»i), ie.

Vxi, HA%j(xD) = minua(xi), sup min  pA;xj) 3)

fxj j=l., jti) mxj  jmln; je

WhenmeAj'smﬁxuymavﬂsmdfismnkwimemhvaﬁabkomuw
in terms of arithmetic operations, the A°j's are fuzzy intervals which can be easily computed using
results of fuzzy arithmetic ; see Dubois and Prade (1985, 1987). This extends the fact that, for
instance, in the above example the A°j's can be obtained as the result of operations on intervals ;
namely A’} = A) (A3 6 A2), A"2 = A2 "n(A3 © Ay), A’3= A3 (A1 © A3), where the circled
symbols are used for denoting the extension of arithmetic operations to intervals. Indeed fuzzy
arithmetic generalizes interval arithmetic. Note that the refinement is obtained in (2) in one step, in the
sense that refined A’j's cannot enable us to obtain a more restrictive A°j. This can be easily checked ;
indeed, taking n = 2 for notational convenience, we have

min(uA  (x1), it;p min(RR(x1.X2), KA 5(x2))
= sup min(uA ; (x1), RR(X1,X2), Sup min(RA; (x1), RR(X1XD) kA, (X2)
x2 X1

= u.A‘l(xl) since obviously min(iA | (x1), HR(x].x2)) < sup min(uAl(Xl). HR(X1,x2))
X1

In fact, (2) can be viewed as a particular case of the general approach to approximate reasoning initiated
in Beliman and Zadeh (1977) and developed in Zadeh (1979), namely, all the pieces of information are
conjunctively combined and then the result is projected on the domain of the variable(s) in which we
are interested. Indeed (2) can be equivalently rewritten
Vi Vxi BAj(x) = supx;  mIn(UR(X], o Xn) HAQ (XD, s BAGKD: s BAGR) (@)
=ln; j=i

In case of several relations Ry the combination/projection method leads to the following
updating scheme where the Ry's are replaced by their cylindrical extensions when they do not involve
all the variables

Vi, vx;, HA‘{(x)=  supy; minr(minga) s BR(X1s ...s Xp), mMiNju] n uAj(xj)) ()]
j=la; i
< minga] r [min(ua(x}), Supx; min(URy(x1,...,Xp), min HA;xN] - (6)
jmln; i j=ln; jui

Tue inequality (6) expresses that if we take into account each Ry separately in the refinement process,
we are not sure, even if we iterate the procedure as in the Waltz algorithm, of obtaining the most
accurate refinement for each variable range. However, what is got by (6) is obviously valid and more
€asy 1o compute in general.

Note that in case of binary relations, the Waltz procedure (i.e. the separate processing of
theRk's)yieldsthemonaccmmuhgivenby(S),mvided_tbenisnmmonerehﬂoan
bummypaﬁofvuiabm(xi.xj)undmatdmhnocycleinlbenon-oﬁeuedm‘vhounods
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correspond to the variables and edges to the binary relations. Indeed, for instance with n = 3 and two
relations, we have
HA‘ (x1)= min(HA  (X]), SUPxp x3 MIN(HR(X1X2), HR(X2:X3), KA (X2): HA3(X3))

= min(i A ¢ (x1).Supx, min(uR(X1,X2),min(kA,(X2),supPx 3 MIn(UR (X2:X3)A3(x3))) (7)

22 - Fuzzy equalities and inequalities

In this subsection, we consider particular fuzzy relations which are of interest in practice
for qualitative reasoning. Approximate equalities or strong inequalities {e.g. 'much greater than") are
examples of binary fuzzy relations which can be easily handled using fuzzy arithmetic techniques.
Indeed an approximate equality can be modelled by a fuzzy relation E of the form pp(x,y) =

ix - yi), for instance
KL=y, for lifk-yi<3

“x -yl
Vx'Vy,pE(x'y)amax(O, min(l,.s_:s._k__y_))s {Oif‘x-YI28+€ ®)
€ S+e-x-yl .
—————_ otherwise
€

where 3 and € are respectively positive and strictly positive parameters which modulate the
approximate equality. Then the approximate equality of variables X and Y (in the sense of E) will be
written under the form of the equality

X-Y=L &)
with the following intended meaning : the possible values of the difference X - Y are restricted by the
fuzzy set L. Here L is a fuzzy interval centered in 0, i.e. L =-L since pp (d) =y (-d) orif we prefer
RE(X,Y) = pE(y.x). Similarly a strong inequality can be modelled by a relation I of the form

Y) = X- ,forinstance
RI(xy) = HK(X - ¥) lifx2y+A+p

Vx, V. p(xy) = max(@, min(l, Y72 3y = {oifxsy+n (10)
4 X-y-4 )
+————— otherwise
P

where A 2 0 and p > 0. The constraint X is much greater than Y' (in the sense of I) can then be
written
X-Y=K 11)
where K is a fuzzy interval such that K = [K,+oe) (With B{K +ee)(t) = sup UK(S)), i.e. K identifies
. . sSt

itself as the set of values equal or greater than a value restricted by K.

If we know for instance that "X is approximately equal to X' (i.e. X - X2 = L) and that
X7 is much greater than X3’ (i.e. X3 - X3 = K), we can deduce that
X;-X3=LeK
where @ denotes the addition extended to fuzzy intervals! (see Dubois and Prade (1980, 1987)). It can

1. Let ©dencce the extension of an arithmetic operation ~ 1o fuzzy sets of the real line. Ois deliaxd by
uggL(u).wmm).uL(o).mwo-mugmm ~ is the addition snd K and L are trapezoids
umgt s)

by the abacisess of the endpoints of their parallel asides, it can be proved that (k;, k2, k3, ke) @ (p. 13, 13,
W= Gy +11. k2 + b, k3 + 1. kg + I) (k; or I may be equal 10 <o OF 4w).
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be proved that it means that it is certain that X1 2 X3 + A (3 + €) and that the value of the difference
X1 - X3 belongs to L @ K at the degree 1 as soon as Xy 2 X3 +A +p - 3. See Figure 1. Then
depending on the respective values of the parameters, X is still greater than X3 (but may be not as
much 15 X5 with respect to X3) (if L > § + €), or we are only sure that X is not much smaller than
X3 (if A + p < 3). Moreover, if we know that X3 = A3, we shall get

Xj=A'1=AjeL ek
This is a particular case of (7) where R=E, R" =, Ap = (-00,400) = A).

2.3 - Linear constraints

Another worth-considering particular case of the general problem presented in 2.1 is the
one of linear systems of constraints. For sake of simplicity, we only briefly discuss linear systems
with two variables and two constraints of the form

21X} +b1X2=A3
X1 + Xy = A4
" where A3 and A4 are fuzzy sets of real numbers, and the other coefficients are real numbers. Note that
each of these constraints implicitly defines a fuzzy relation which restricts the possible values of the
pair (X1,X3). Provided that a)bs - agb) # 0, we can deduce, using (3), that
brA3 @bjAg a2A3 ©ajAq
X1=A| 2 Xy=AmF—————— (12)
a1b2 - azb) a2by -a1b2

with A1 = Ay = (-ee,+e0) ; see the footnote 1 for the definition of the extended difference @ and of the
product of a fuzzy quantity by a scalar. If the constraints are changed into a;Xj + b1 Xy =X3
and 22X + bpXy = X4, with X3 = A3 and X4 = A4, the ranges of possible values of X3 and X4 are
respectively updated into A“3 = A3 {ajA"] @ bjA") and into A'g = A4 a2A’] @AY,

More generally, the coefficients in linear sysiems may be ill-known. Then direct extensions

of (12) can still be used where the a;'s and bj's are replaced by fuzzy quantities and where we use the

‘ product and the quotient defined in fuzzy arithmetics. However in that case we get ranges which are

[ still valid but may be larger than the actual ranges. This is due to the interactivity constraint which

} requires that the values of a; or bj should be the same at the numerators and the denominators in (12),

i even if the coefficients are ill-known, and which is forgotten in & straightforward calculation. This

| interactivity constraint should be taken into account for obtaining the actual ranges. See Dubois (1987)
| for a general discussion of fuzzy linear programming.
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3 - Fuzzy intervals and orders of magnitude

Standard qualitative reasoning distinguishes between values which are strictly negative (-),
zero (0) or strictly positive (+), and is based on the exploitation of the following tables for the addition
and the product

e”0|+-" @+-?|0
oflol+«]-1: +]-12]o
+H+]l+121? -l-1+]1?]0
==t 1-1? ?H?21?1?10
TH?1?2(71? 0fiojojojo

Tables1

where ? denotes the completely unknown value corresponding to the range (-ee,+<c). However, if we
know for instance that X1=+; X3=+; X1+X2=X3
we can only deduce X7 = ? (while if X = 0, we get X7 = +). Another simple example of the
undesirably limited representation power of the above calculus is the following
ifX]=+ and Xo=+ then X3=X) +X3 =+

then the fact that X3 > X1 and X3 > X3 is forgotten. These kinds of ambiguities could be removed, if
a more precise knowledge about the orders of magnitude, which is often available, could be modelied.
Indeed we have in the general case for the first above example

X1=A)]; X2=A2; X3=A3; X1+X3=X3
from which we deduce X3 = A2 = A3 (A3 9 AY).

This kind of thing still can be done in an approximate way when the Aj’s are required to
belong to a prescribed set of labels, such as, for instance : negative large (NL), negative medium
(NM), negative small (NS), zero (0), positive small (PS), positive medium (PM), positive large (PL),
unknown (?). These labels can be represented by fuzzy intervals such as the ones pictured in Figure 2.
They form a (fuzzy) partition of the real line in some sense.

The condition requested to build a meaningful qualitative calculus are twofold :

Cl. The advantage of qualitative reasoning is linked to the existence of symbolic calculation tables
such as the ones above. Such tables should be kept when absolute orders of magnitude are
introduced. :

C2. The calculus, even qualitative, should remain consistent with the real line and the operations of
the real line of which it is an approximation.

Standard qualitative reasoning trivially meets these requirements. However going beyond the four
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symbols -, 0, +, 7 may look challenging. Indeed the closure property of the table seems to be
incompatible with condition C2. For instance let § be the totally ardered set of symbols (NL, NM,
NS, 0, PS, PM, PL} ; PS ePS-PMlodksmsohableuﬁxstsigh%ButPSisoftheforﬁ]o,a]md

PS @ PS = ]0,2a) = PM = [a,b]. Moreover lim nPS = ?. Hence results obtained from the addition
N—boe

table built from § such that PS @ PS = PM is inconsistent with the addition on the reals.

It does not mean that qualitative reasoning based on absolute orders of magnitude is a
utopia. Interpreting orders of magnitude as intervals or fuzzy intervals apparently forbids the closure
property of calculation tables. But the closure property can be preserved on subsets of 8 containing
adjacent elements, instead of § itself, provided that we look for the best approximation (in the sense of
inclusion) of s; @ sj by means of unions of adjacent si's, i.c. s; @ UEa {sk}). Note that the

keK
introduction of the symbol ? in the usual qualitative tables meets the same purpose, that is
+@- ¢ (-,0,+} = 7. What is proposed is just a generalization of the way the symbol ? appears.

The example of Figure 2 leads to consider the following term set T = (NL, NM, NS, 0,
PS, PM, PL, [NL,NM], [NM,NS], [NS,PS]..., [NL,PM], [NM,PL], 7} where [sisj] = {sg!
siSsp Ssj) forsje 8-(0},51-5 8-{0},si<sj. Of course + = [PS,PL] and - = [NL,NS). Note that

if & has n elements distinct from O then ITI = (n +(n - 1) +... + 1)+1=2%ll+ 1 elements. Here

I%] = 22, for instance. This size is not so large for contemporary computers.

@ |8 [PM | PL.[PM-[PM*| +
PR | + [PM*]PL | + [PM*| +
PM [PM*|pM*| PL [PM*[PM*{PM+
PLIPL |PL L PLIPL |PL|
PM°| + (pM*|PL | + [PM*Y +
PM*iPM*+ PMH PL [PM*[PM*|PM*
+ |+ femtloL ]| o ot o

Table2 : PM- = [PS,PM] ; PM* = [PM,PL]

In Table 2 is part of the addition table (for strictly positive symbols), without any
assumption regarding the model of PS, PM, PL. (except that they are adjacent). Note that this Table
corresponds to an associative operation, when restricted to positive values. However, it is no longer
possible to preserve associativity on the whole table. This is due to the approximation procedure since
associative operations remain associative when extended to intervals or fuzzy intervals. For instance
with NL = -P1, (NL @ PM) @ PS = -@P$ = [NL,PS), while NL #(PM @ PS) = NL @ PM* = 2,
However this lack of associativity does not prevent to use this approach, since the ranges which are
obained will be always valid even if they may be too large with respect to the available knowledge.
Moreover, we may try to perform operations in a way where no information is lost.

h
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The addition law can be improved (with regard to the precision of its results by subsequent
requirements for instance PS @ PS = PM-, which forces PS = 0,a], PM = [a,b] with 2a < b. Note that
it is not necessary o use fuzzy intervals. Adjacent intervals can do the job. However there will be
discontinuity problems wheén the (real) values of variables cross the boundaries of the intervals
modeling the symbol. Only fuzzy intervals can cope with these problems.

4 - Fuzzy relations and orders of magnitude

Orders of magnitude can be expressed in an absolute way in terms of labels such as
"small”, "medium" or "large” which can be represented by fuzzy intervals, as said in section 3. They
can also be handled in a relative way by means of relations. This is the topic of the present section.
Raiman (1985, 1986) has proposed a formal system for order of magnitude reasoning with three
binary operators : Ne (for 'negligible in relation to’), Vo (for ‘close to'), and Co (for ‘comparable to0").
Inference rules, which can be justified from a Non-Standard Analysis point of view, describe how
these operators work together. See Bourgine and Raiman(1986) for an application in macroeconomics.
In the following, we discuss the modeling of these operators in terms of fuzzy relations.

The idea of closeness seems to be naturally captured by an approximate equality relation.
Raiman (1986) relates the ideas of closeness and of negligibility in the following way : 'x is close to y'
is equivalent to '(x - y) is negligible in relation to y'. In other words, 'x is negligible in relation to y' if
and only if 'x +y is close to y'. If we use an approximate equality of the form Ug(x,y) = 1 (Ix - 1) (as
in 2.2) for modelling 'close to', the above equivalence would lead to a definition of 'negligible’ which
would not be relative (since i(x +y) - yl = Ix! does not depend on y), but absolute. It can be avoided by
defining the fuzzy relation 'Vo' in terms of a quotient, i.e.

VoY) = () (13)
y

where the characteristic function p)p is such that ppg(1) = 1 and BM® = MM(i)- Thus we have
t

Hyo(x.y) = tyo(y,x) and M is a fuzzy interval which restricts values which are around 1 and which is
equal to its "inverse”, i.c. M = %1 (however we have not M2 = 1 1), Then it leads to define the extent to
which x is negligible in relation to y, by

um(w)-m(%ﬂ) (14)

The combination/projection method, used in 2.1, enabies us to perform the composition of
Vo or of Ne with itself, or of Vo with Ne. The following results are easy to establish 2

Z.Waming:mmmdddmedcndmmuymmnymmmmmhmwmﬂmdyif
M is either positive (i.e. pM(x) > 0 = x 2 0) or negative (i.e. kM(x) > 0 = x < 0). Here in practice M is positive,
but not (M-1).




sup min(Eyo(x.y), HVo(y.z))-um(i:-)Zuvo(x.z) 15
y

s;:g dﬁn(uNe(x.ix ENe(y:2) = u[m-xxm.l)l ® u(ff-z-) SUNe(x2) (16)

l;lp min(uyo(x.y) ENe(y:2)) = HIM(M-1) @ n(-?—z—) 2 PNe(x.2) an

sup min(lyo(x + ¥, 2), WNe(y X)) = uMM(;-) 2 pyo(x.2) ' (18)
y

They cormrespond to the following inference rules proposed by Raiman (1936) (for sake of brevity, here
we only discuss a part of the 30 rules used in the formal system)

@ xVoy)a(yVoz) = (xVoz) ; (i) (xNey)a(yNez) - (xNe 2)

(iii) x Voy)A(yNez) = (xNez) ; (v)((x+y)Voz)A(yNex) = (xVoz)
The fuzzy relation approach shows that several of these rules are only "qualitatively valid". Indeed in
(15), the fact that MM is a fuzzy set which contains M mirrors the intuitively satisfying lack of
transitivity of the fuzzy relation Vo, strictly speaking. By contrast, as shown by (16), the relation Ne is
trangitive. The repeated use of the formal rules (i), (iii) or (iv) without control can lead to dubious
conchxsionsinawaysinﬁlaruosoritessuchas:hebddmpandox(i.e..addinganhairbabddman _
leaves him bald, but if we repeat the addition...). The results of the composition of fuzzy relations,
such as (15)-(18), are easy to compute in terms of simple fuzzy arithmetic operations on M. The
fuzzy relation calculus enables us to reason about closeness and negligibility in a rigorous way without
limitations on the chaining by means of control techniques.

N.B. 1 Inference rules expressing the compnﬁbiiity of the relations with respect to arithmetic
operations, such as (x Vo y) A (z Net) = xz Ne yt can be also discussed in our framework. Indeed it
can be proved that

supx,y,z,t min(tyo(x.y): KNe(z.1) = HM(M-1) @ 1](

)ZuNe(mV) 19

"Again we see dut the rule is only "qualitatively valid”, i.e. xz may be slightly less negligible wnh

respect to yt than z in relation to t. Altematively, we could compute what is the possibility that u is not
negligible (in the sense of Ne) with respect to v, from (19).

N.B.2 Note that we have only an approximate equality between UNe(X.y) and fiNe(-X,y) using (14);
a perfect equality could be recovered by modifying (14) inwuNe(x.y)-nM(y;x )

N.B. 3 Raiman (1986) makes use of a third relstion Co which is sach thatif x Vo y, thenx Co y
and expresses that two values have the same sign and the same order of magnitude. We may imagine to
define Co in relstion 0 Vo and Ne in different ways, for instance by expressing that xCo y iff
¥z, x Né z @ y Ng z, following Raiman (1986). Another way would be to state that x Co y iff
not[(x Ne y) A (y Ne x)] in the sense of some fuzzy negation 1 be chosen in relation with ) in

order to have max(a{stpm(1 + v)], nlpg(l + .l..)]) 2 pm(u), Yu (in order w guarantee 1UCo 2 Hyo)-
u .
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5 - Concluding remarks

Other tools, not presented here, which have been also developed in fuzzy set or possibility
theory, may turn to be useful in qualitative reasoning. Qualitative descriptions of the dependency
between variables of the form "the more (or the less) X is A} and... and Xy, is Ay, the more (or the
less) Y is B", where Ay, ..., Ay and B are gradual properties, can be conveniently represented (by
means of a special kind of fuzzy relation) and dealt with in the framework of fuzzy logic, as recently
shown in Dubois and Prade (1988). Such gradual rules naturally provide a qualitative description of
the behavior of systems. For instance, with n = 2, A] = 'large’, A7 = 'small’, B = 'large’ and the

. hedges "the more... the more", we express that "if X increases and X3 decreases then Y increases”

(the nature gfmemmgmssmofmedecmsingnessmbemodulmd through a proper choice of
KA KA, and UB).

Besides, a methodology for the control of complex dynamical systems by means of fuzzy
expert rules which provide a qualitative description in terms of fuzzy sets of the relation between action
variables and observable state variables, was settled more than ten years ago (Mamdani and Assilian,
1975) ; see Sugeno (1985) for an overview of existing applications. Peopie in Artificial Intelligence
have also considered the problem of qualitative control recently (e.g. Clocksin et Morgan, 1986).

The intended purpose of this short communication is to point out that fuzzy set and
possibility theory can offer valuable tools for qualitative reasoning problems. In particular
“commonsense” arithmetic reasoning (e.g. Simmons, 1986) can be easily handled using fuzzy
intervals and fuzzy comparison relations. This framework is especially useful for interfacing numerical
data and symbolic information.
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