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AVANT-PRO POS

Richard Bellman, un des mathdmaticiens les plus f~conds et les plus

renormmds des Etats Unis, a apport6 des contributions majeures aux math~ma-
tiques pures et a de nombreux domaines d'applications :sciences de l'ing -

nieur, dconomie; m~decine, 6nergie, gestion des ressources en eau, physique

mathC-matique, recherche op~rationnelle, sciences de la gestion, psychologie

et sociologie. Une telle varift6 des domaines abord~ss et des mayens mis en

oeuvre pour approfondir ces domaines avec une telle p~nftration se rencontre

rarement en science.

Tout au long du d~veloppement de son oeuvre, 1' eut un grand nombre

d'amis, d'dldaves et de cor'respondants portLs v'ers les mdmes centres d'interdt.

Parmi eux, apr~s la disparition du Professeur Bellman, un groupe de scienti-

fiques des Etats Unis s'est efforc§ de perp~tuer son Ecole. Dans ce but uls

ont proposE d'organiser un Colloque annuel ou bi-annuel :le Bellman Continuum.

Cc Colloque devait Wte de nature interdisciplinaire, conne l'~tait l'oeuvre

de Richard Bellman.

Le premier congr~s s'est tenu A l'UniversitO du Michigan, Ann Arbor,

Michigan, en 1985 et le second a 6t6 accueilli par l'Institut de Technologie

de Georgie, Atlanta, Georgie, en 1986. Les organisateurs ont pens6 que la

France serait un des pays les mieux adapt~s a la tenue du troisi~me congr ?s

pour des raisons de caract~re A la fois scientifique et g~ographique:

Richard Bellman Lstait tr~s populaire en Europe. De plus, un argument important

pour ce choix dtait le fait que la huitidme Conference Internationale Analyse

et Optimisation des Syst~mes de l'INRIA devait se tenir a Antibes du 8 au 10
Juin 1988. Cel8 fournissait Voccasion id~sale de profiter de la presence en

un m~me lieu d'un grand nombre de sp~scialistes venant de tous les points du

monde pour organiser une petite confesrence permettant un fchange d'id~es assez

informel.



Dans les deux premiers congrds, le progranmme avalt LW dict6 par la

nature interdisciplinaire du Cal loque avec des sujets d~finis suivant les
interfts des participants. Les themes unificateurs 66taient l'id~ologie scien-

tifique et les techniques math(Nmatiques plut~t que les doinaines d'6tude

sp~scifiques. Dans ce troisifme congr~s, pour des raisons scientifiques evi-

dentes, l'ensemble des sujets abordds a Ws ddlib~sr~ment restreint, ayant en

vue le fait que ces sujets pourraient changer d'un congr~s au suivant. Les

sujets mentionnds ci-dessous, choisis dans des domalnes aD la recherche est

tr~s active et pleine de promesses, ont 61: s~lectionn~s

Moddlisation et coinmande en Economie et en Sciences Sociales.

Connande des syst~mes dynanilques incertains.

Camnande et filtrage nonlin~aire des processus quantiques.

Moddlisation et conunande des syst~mes biologiques.

Les Conf~renciers d'Ouverture de Sessions sont les Professeurs

R.E. KALMAN, University of Florida, U.S.A., et Technische Hochschule,

ZUrich, Suisse

G. LEITMANN, University of California, Berkeley, U.S.A.

S. MITTER, Massachusetts Institute of Technology, U.S.A.

Initialement, notre intention 6tait de r~unir un petit nombre de sp~cia-

listes sur la base d'invitations. Cependant, les r~ponses A notre annonce

prdliminaire surpass~rent notre estimation la plus optimiste de Venthousiasme

des chercheurs dans ces domaines. Par la suite, nous d~cidAmes d'Oditer les

Actes de ce Colloque sous la forme d'un livre r~unissant les confisrences sur

invitation et certains des rapports destin~s A la presentation de travaux

r~cents, sounlis au CoinitL6 d'Organisation. Ce livre sera publi6 apr~s le

congres par SPRINGER-VERLAG dans la S66rie "Lecture Notes in Control and

Information Sciences". Les manuscrits contenus dans le present fascicule sont

les r~sum~s ou les textes int~graux de tous les papiers en notre possession

au moment du congr~s. Pour chaque theme, dans toute la mesure du possible,

ils sont pr~sent~s dans Vordre aD ils se trouvent dans le Programme.



Ce Colloque n'aurait Pu avoir lieu sans le soutien technique et

financier de l'INRIA a qui nous exprimons notre gratitude. En particulier,

qu'il me soit permis de remercier ici son President le Professeur Alain

BENSOUSSAN, le Directeur du Centre de Recherche de l'INRIA-SOPHIA ANTIPOLIS

le Professeur Pierre BERNHARD, et le Directeur des Relations Internationales

et Industrielles Georges NISSEN. J'adresse personnellement des remercientents

tout particuliers a Th~r~se BRICHETEAU qui, A la tate du Service des Relations
Exterieures de VINRIA, a pris soin si efficacement de la multitude des

probl1smes d'organisation, et nous a fait profiter de sa grande experience.

Nous soniies tr~s reconnaissants A Catherine JUNCKER qui a pris en main de
fagon experte l'organisation du congr~s a Sophia et son implentation sur le

site. Je suis redevable envers les Secr~taires Scientifiques de la huitifte

Conference Analyse et Optimisation des Systftes de l'INRIA de leur aide,
notanunent envers Fr~d~ric BONNANS pour ses conseils dclair~s dans la pr(!para-

tion du Colloque. Des remerciements tout particuliers sont dOs A Gilbert

MALLET qul a Lsdit6 ces "Preprints". Finalement, et non les moindres, nos

remerciements s'adressent A toutes les secr~taires et les techniciens qui

ont contribu6 au succL's du troisi~me Bellman Continuum, aux diff~rentes

@tapes et aux diff~rents niveaux de son organisation.

Ce Colloque international a aussi regu le soutien financier de

i'UnivErsit6 '&;is 7, P'un dcs organisateurs du congrL's, de 1'A~sociation

Frangaise pour la Cybern~tique Economique et Technique (AFCET), du Centre

National de la Recherche Scientifique (CNRS), de l'European Research Office

United States Army, du Minist~re des Affaires Etrang~res, du Minist~re de

VEducation Nationale, du Minist~re de la Recherche et de l'Enseignement

Sup~rieur, de l'United Nations Educational Scientific ar'd Cuiltural Organization

(UNESCO). D'autres subventions ont W attribu~ses aux participants par divers

organismes mentionn~s s~par~ment, auxquels, canine aux organismes dont nous
venons de dresser la liste, nous exprimons notre gratitude.

Austin BLAQUIERE (President)



FOREWORD

Richard Bellman, a most prolific and renowned mathematician of the United

States, has made major contributions in pure mathematics and in numerous areas

of applications : engineering, economics, medicine, energy, water resources,

mathematical physics, operations research, management sciences, psychology and

sociology. This breadth of interests and this ability to contribute to so

many fields at such a high level is rare indeed.

Throughout his years in science, he had a large number of scientific

friends, students and followers. Among them, after Professor Bellman has

passed away, a group of scientists of the United States has attempted to

preserve his School. As a mechanism for achieving this goal, they suggested

an annual or biennial workshop : the Bellman Continuum. This workshop was

envisioned as being interdisciplinary in nature, as the achievement of

Richard Bellman was.

The first meeting was held at the University of Michigan, Ann Arbor,

Michigan, in 1985 and the second was hosted by the Georgia Institute of

Technology, Atlanta, Georgia, in 1986. The organizers thought that France

could be a nice place for the third meeting from both scientific and geogra-

phical points of view: Richard Bellman was very popular in Europe. Also, a

strong motivation for this choice was the fact that the eighth International

Conference Analysis and Optimization of Systems of INRIA was to be held in

Antibes on June 8-10, 1988. It provided an ideal opportunity for taking

advantage of the presence of a large number of specialists from all parts

of the world to organize a small conference where a free exchange of ideas

could take place.

)
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In the two first meetings, the program has been dictated by the inter-
disciplinary nature of the workshop with topics defined by the interest of L
the participants. The unifying theme included scientific ideology and

mathematical tools rather than specific fields of study. In this third one,
for evident scientific purposes the subject matter to be treated has been
limited, having in view the fact that the areas defined below could change
from one meeting to the next. The following topics, chosen in areas where
research is very active and promising, in directions opened and explored by
Richard Bellman, have been selected

Models and Control Policies in Economics and Social Systems.

Control of Uncertain Dynamical Systems.

Control and Nonlinear Filtering of Quantum Mechanical Processes.

Models and Control Policies for Biological Systems.

The Key-note Speakers are

Professor R.E. KALMAN, University of Florida, U.S.A., and Technische

Hochschule, Zurich, Switzerland
Professor G. LEIThANN, University of California, Berkeley, U.S.A.

Professor S. HITTER, Massachusetts Institute of Technology, U.S.A.

Originally, it was thought that a gathering of a small number of

specialists on an invited basis was sufficient for the purpose. However,
the responses to our initial announcement surpassed our most optimistic

estimate of the enthusiasm of workers in these areas. Subsequently, it was
decided that we edit the Proceedings of this workshop as a book containing

all the invited papers and selected contributed papers submitted to the
workshop. This book will be published after the meeting by SPRINGER-VERLAG
in the Series "Lecture Notes in Control and Information Sciences". The
manuscripts contained in the present Preprints are extended summaries or full
text of all papers available from authors at the time of the meeting.



This workshop could not have taken place without the technical and

financial assistance of INRIA to whom we express our gratitude. In particular

I would like to take this opportunity to thank his President Professor Alain

BENSOUSSAN, the Director of the INRIA-SOPHIA ANTIPOLIS Research Center

Professor Pierre BERNHARD, and the Director of Industrial and International

Relations Georges NISSEN. I personnally address special thanks to Th6rdse

BRICHETEAU who, at the head of the Service des Relations Extorieures of INRIA,

took care of all the myriad details of organization so efficiently and ably.

We are most grateful to the expert assistance of Catherine JUNCKER who took

care of the organization at Sophia and of the local arrangements. I am

indebted to the Scientific Secretaries of the eighth INRIA Conference

Analysis and Optimization of Systems for their help, in particular to

Frdric BONNANS for valuable advice in the preparation of the workshop.

Especial thanks go to Gilbert MALLET who edited these Preprints. Last but

not least, our thanks go to all the secretaries and technicists who handled

the many problems at each step and at each level and contributed to the

success of the third Bellman Continuum.

This international workshop was also financially supported by the

Universit6 Paris 7, one of the organizers of the meeting, and by the Association

Fran~aise pour la Cybern~tiqje Economique et Technique (AFCET), the Centre

National de la Recherche Scientifique (CNRS), the European Research Office

United States Army, the Minist6re des Affaires Etrang~res, the Ministare de

l'Education Nationale, the Minist~re de la Recherche et de 1Enseignement

Sup~rieur, the United Nations Educational Scientific and Cultural Organization

(UNESCO). Additional fellowships to the participants were provided by various

organizations listed separately, to whom, as well as to the above mentioned

organizations, we express our gratitude.

Austin BLAQUIERE (Chairman)
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CONTROLLING SINGULARLY PERTURBED UNCERTAIN DYNAMICAL SYSTEMS1

G. Leitmann
College of Engineering, University of California

Berkeley, California 94720 USA

INTRODUCTION

The prototype for the class of systems considered in this chapter is depicted in

Figure 1 and consists of a dynamical process P (imperfectly known) controlled by a

(judiciously designed) feedback law (operator F) acting on state data generated by

sensor S and implemented via actuator A.

FEEDBACK OPERATOR FL

Figure 1. Prototype System

We assume (realistically) that the sensor and actuator are dynamic elements of

the feedback loop; furthermore, we adopt the viewpoint that these dynamics are

"fast" relative to those of the process P to be controlled. If this is not the

case, then, at the modelling stage, the sensor and actuator should be explicitly

incorporated as an integral part of the process to he controlled.

We recognize, of course, that in the context of nonlinear systems, the concept

of "fas-ness" is difficult to quantify. Here we use the term loosely to indicate

that the overall system exhibits a "two time scale" structure as described in the

next section.

THE FULL-ORDER SYSTEM

The above prototype typifies a general class of singularly perturbed uncertain

systems which can be decomposed, by means of a scalar parameter p, into two coupled

lBased on research supported by the NSF and AFOSR. This paper deals with a special

case of the problem considered in (8] and (9].

- . w - .,.m. ... . . ,_ ra m . ., b m,, ll



4

subsystems which henceforth will be referred to as the "slow" subsystem (with state

x(t)) and the "fast" subsystem (with state y(t)). The parameter 1, henceforth

referred to as the singular perturbation parameter, can be interpreted as some

measure of the ratio of characteristic times of the fast and slow subsystems.

We model this general class of systems by the following coupled pair of dif-

ferential equations.

(t) - X(tx(t),y(f),u(t)), x(t) R n , u(t)e Rm  (1a)

IA (t) -Y(t,x(t),y(t),u(t),u), y(t)r Rp ,  0 e (0,- (1b)

with measured output

z(t) = Sx(t) + Ty(t), z(t)ERn (Ic)

where X and Y are uncertain functions with the following structure:

X(t,x,yu) = A11x + A12Y + Blu + g1(t,x,yu) (2a)

Y(t,x,y,u,u) = C(t)[A 21x + y + B2 u] +g 2 (t,x,y,uI) (2b)

Aij, Bi , S and T are known constant real matrices; C is an uncertain measurable

matrix-valued function; g, and g2 are uncertain Caratheodory functions (i.e.

measurable in their first argument. continuous in their other arguments and

integrably bounded on compact sets).

Note that we require that the dimension of the output space coincides with the

dimension of the slow subsystem state space. We refer to system (1)-(2) as the

full-order system (a dynamical system on Rn+P).

Now suppose that the dynamics of the fast subsystem are neglected, i.e. suppose

that u is set to zero, in which case (Ib) reduces to an algebraic constraint on

(1a). This procedure yields the reduced-order system (a dynamical system on Rn).

Suppose further that a feedback strategy is designed which guarantees some stability

property P for the uncertain reduced-order system. (One such design is proposed in

§5 and analysed in §6, using the deterministic framework developed in e.g. rl-7]).

Then the essential question to be addressed is that of structural stability of pro-

perty P with respect to singular perturbation, i.e. does property P persist when the

fast dynamics are re-introduced? More usefully, does there exist a calculable

threshold value u ) 0 such that property P-persists for all values of the singular

perturbation parameter in the interval (O,u*)?

Our objective is to answer such questions affirmatively, under additional

hypotheses on the full-order system. The first of these is an assumption which

ensures that a well-defined reduced order system results from setting u • 0 in (ib).

• • . .. . . . .... ... . ..



5

Assumption Al

(i) C(.) = C0 + AC(.), where C0 e RPxp is known with spectru a(Co) C C" (the

open left half complex plane) and AC: R * RPxP is an unknown measurable function

with known bound Kc (sufficiently small), viz. for all t,IAC(t)l 4 Kc 
<

1/2iPu
i , where P > 0 (symmetric) solves the Lyapunov equation PC0 + Cop T I 0;

(ii) g2 (.,.,.,.,O) = 0.

THE REDUCED-ORDER SYSTEM

Solving the algebraic equation Y(t,x,y,u,O) = 0 for y (uniquely in view of

Assumption Al) determines the function

(xu) o H(x,u) 4 - [A21x + B2u3 . (3)

The reduced-order system associated with (1) is now defined as

;(t) - Xr(tx(t),u(t)), x(t)eRn (4a)

with output

z(t) - Sx(t) + TH(x(t),u(t)), Z(t)GRn (4b)

where

X r(t,xu) 4 X(t,x,H(x,u),u) = Xx + gu + T(t,x,u) (5a)

and

-All A12A21, - A B RIAj12 R 2) (t,xu) t,xH(x,u),u). (5b)

At this stage, we loosely define our preliminary goal as that of rendering, by

feedback, some acceptably small compact neighborhood of the zero state of (4) glo-

bally attractive. Thus, it is not unreasonable to require the following of the

nominal linear system pair (AB):

Assumption A2

() (Or ) is a stabilizable pair,

(Ii) S - TA21 is non-singular.

Now, let (Q,,yO)Epnxn x R+ (R+  CO.-)) be a pair of design parameters with

the properties (i)Q Is symmetric and positive definite (ii) yo > 0 if a()' t
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These properties, in conjunction with A2, ensure that the Riccati equation

KW, AK 4. - 2YOBBTK - 0 (6)

admits a unique real positive-definite symmetric solution K > 0. Hence, for

example, in the absence of uncertainty (V a 0) and if S - I and T = 0, the output

feedback law u = - yBTKz renders the zero state of (4) asympstotically stable.

We now impose some additional structure and hounds on the system uncertainty.

Assumption A3

There exist known non-negative real numbers c1 , c2, c3 , and unknown Caratheodory

function e: R x Rn x Rm + Rm such that:

Ci)- Be;

and, for all (t,x,u) G RxR nxRm

(ii) *e(t,xu)I c c1 + c2 1x1 + c3 lum

In the familiar terminology, the uncertainty is assumed to be matched and cone-

bounded. The more general case of unmatched and non-conebounded uncertainty is con-

sidered in [8] and [9], albeit at the expense of a considerably more complicated

controller design.

Define A: P + Rnxn and '1 , r2 C R as follows:

A(y) A2 1 - 'B 2 B TK (7a)

(E 'i"); C2 > 0

1I(y, "n); c2 >0 -- 1-cYE 0  ~I.i)(b

r2 {: S - TA(y) 0 0; K(y) < (1 - 21clPI)/?lPCoi + 2KCIP)) (7c)

where

K(Y) yIB2 BTKCS - TA(y)
1 TII (7d)

Then the following additional assumption is required.

Assumption A4

r I r2 0 .
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PROBLEM FORMULATION

Suppose a (time-dependent) output feedback control function (t,z) W q(t,z) is

designed which guarantees that the feedback-controlled reduced-order system

(viz. u(t) - - q(t,z(t)) in (4)) possesses some desired stability property P , then

the basic question to be addressed is that of robustness of P with respect to singu-

lar perturbation, where the singularly perturbed system is defined by (1) with

u(t) - - q(tz(t)); in particular, does there exist a (calculable) constant U* > 0

such that the full system (1), under output feedback control u(t) - - q(t,z(t)),

possesses property P for all values U 6(0.u*)?

Here, we take the desired property P to be the existence of a compact set I C Rn

(respectively I C Rn+p) containing the origin which is a global uniform attractor

for the reduced-order system (respectively, the full-order system) in the following

sense.

Definition 1

A compact set I c Rq is a global uniform attractor for the system

v(t) = (t,w(t)), w(t) E Rq  (*)

if the following properties hold:

(i) Existence and continuation of solutions: For each pair (to,w R x Rq

there exists a solution w: [t0 ,tl) + R
q (absolutely continuous function satis-

fying (*) almost everywhere) with w(to) 0 w° and every such solution can be

extended into a solution on [to'.);

(ii) Uniform boundedness of solutions: For each r > 0 there exists R(r) > 0

such that *w(t)i < R(r) for all t on every solution w: to,-) 0 Rq of (*) with

Iw(t 0 )1 < r, where t0 R is arbitrary;

(iii) Uniform stability of 1: For each d > 0 there exists D(d) 0 0 such that

w(t)EI + dB for all t on every solution w: to,-) 0 Rq of (*) with

W(to)G + D(d)5 where to is arbitrary (note, 8 denotes the open unit ball in

R4 and, for 6 > 0, + 65 denates the set to + p: ae =; iI 6);

/
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(iv) Global uniform attractlvity of 1: For each d > 0 and r > 0 there exists

?(d,r) > 0 such that w(t)eI + rB for all t > to + r(d,r) on every solution

w: (to,-) + Rq of (*) with w(to)de + d B , where toe R is arbitrary.

In the next section, we construct a feedback strategy which ensures property P

for the reduced-order system (4).

NONLINEAR OUTPUT FEEDBACK

Choose e I £2 > 0; these are design parameters and can be chosen arbitrarily

small. Define p: PxRn Rm as

p(t,x) 4 PO(X) + pl(x) . (8a)

The function p0 is linear and is given by

PO (x) I -aTKx (8b)

where y1 eR
+ satisfies

y1e r . (8c)

The function p, is nonlinear and bounded and is given by

pl~ i~(pi -K0) if T a 0 or B2 ' 0

p1(x) 4 (8d)

otherwise

where PIeR
+ satisfies

1 ) (1 - c3 )c1  
(8e)

and ,: Rm . Rm is any smooth (CI ) function which satisfies

1#1(V)m 4 1 , .v ,*(v)) )v myr - l YVrERm (8f)

and which has bounded derivative Ilj; i.e., there exists Re+ such that

I(4l(v)l ' C for all veRm. The proposed output feedback control function

q: RxR n * Rm is now defined by

q(t,z) A p(t, [S-TA(y 1)11z) . (9)

Loosely speaking, the linear component (8b) of the control stabilizes (if

necessary) the nominal linear system and counteracts part of the uncertainty e while

/
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nonlinear component (8d) (when active) counteracts the remaining part of e.

As an example of a function #1, satisfying the above requirements, consider the

function

v * iVI + e 'V

for which (8f) clearly holds, and moreover, is C1 with *D¢1 (v)i 4 e for all

v CRm.

A COMPACT ATTRACTOR FOR THE OUTPUT FEEDBACK CONTROLLED REDUCED-ORDER SYSTEM

For the reduced-order system (4), it may be verified that q(t,z(t)) = p(t,x(t)).

Hence, setting u(t) - - q(t,z(t)) in (4a) yields the system

x(t) - Fr(tx(t)), x(t) r Rn (10a)

with

F r(tx) i Ix - 9p(tx) + g(t,x, - p(tx)). (lOb)

As shown in [9], system (10) possesses stability property P

To this end, we define V: Rn . R (a Lyapunov function candidate) by

V(x) 4 <x.Kx) .(11)

Theorem 1.

There exists a closed ellipsoid

Ir 0 J {xe Rn: V(x) 16 r 2 }

00

where r0 is defined in [9], which is a global uniform attractor for system (10).

Our next objective is to show that property P is not destroyed by the re-

introduction of the fast dynamics.

A COMPACT ATTRACTOR FOR THE OUTPUT FEEDBACK CONTROLLED FULL-ORDER SYSTEM

Define

h(x) H(x, - p(t,x)) - - A(y1)x + B2Pl(x). (12)



Our final assumption is now made.

Assumption A5

(1) For all (t,x),

1g1(t'x~yj,-q(tSx+Ty,)) - g1(t,XIY2 -q( t.Sx+TY2))I Xlyl-Y2 1 V~' '3'2

where A). 0 is a known constant;

(i1) for all (t.y) and u ;o 0

.g,(t,x,y,-q(t.Sx+Ty),P)I UC uIc1ly-h(x)t + K2 1XI + K31

where K1, K2, K 3 )-0 are known constants.

While Assumptions 1 to 5 might appear somewhat esoteric, it is stressed that the

class of systems which satisfy these hypotheses is far from trivial; for example.

the assumptions hold for a class of uncertain systems with parasitic actuator and

sensor dynamics considered in [101.

Let functions F: RxR nxRP + Rn and G: RxRnxR~xR+ * RP be given by

F(t,x,y) 4 A 11x + A 12y - Blq(tSx+Ty) + g1(t,x,y,-q(t,Sx+Ty)) (13)

x F r (t~x) + A 12 Ey-h(x)] + B 1[p(t,x)-q(t,Sx+Ty)]

+ g,(t,x,y,-q(t,Sx+Ty)) - g,(t,x.h(x),-p(t,x))

G(t~x.y,p) 4 C(t)[A 21 x + y- R 2q(t,Sx+Ty)] + g2(t,x y--q(t,SY. Ty),jj) (14)

*C(t)[y-h(x)] + C(t) 2 [p(t,x)-q(t.Sx+T')] + g2(t~x y,-q(t,Sx+Ty),u).

Then the problem under consideration reduces to that of determining a threshold

value )j > 0 (if such exists) such that the system (two coupled subsystems):

(t) - F(t,x(t),y(t)) (15a)

* t G(t,x(t),y(t),u) 
(15b)

possesses stability property P for all lUE(O,.U). We resolve this question via an

analysis akin to that of [11].

As stated in [8) and shown in [9], the following theorem establishes propertyP

* for the full order system under output feedback control.

Theorem 2.

There exists a u*>0 Such that, for all ve(O,u*), a certain ellipsoid is a
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global uniform attractor for system (15); the value of u and the definition of the

attracting ellipsoid are given in [8] and [9]. Moreover, the reduced order dynami-

cal behavior is recovered as 1u . 0.2

EXAMPLE: UNCERTAIN SYSTEM WITH ACTUATOR AND SENSOR DYNAMICS

Consider the uncertain system

n
x(t) = Ax(t) + [B + AB(t)ly(t) + d(t,x(t)), x(t) e R (16a)

with actuator dynamics

uil(t) = [CI + AC1 (t)](Yl(t) - u(t)), y1 (t), u(t) e Rm (16b)

and sensor dynamics

v 2(t) = [C2 + aC2 (t)](y 2 (t) - x(t)), y2 (t) E Rn (16c)

where the known nominal system matrices A, B, C1 , C2 satisfy the following:

HI

(i) (A,B) is a stabilizable pair;

(ii) (CI ) C

(iii) 0(C2 ) c C-.

The uncertain functions B(.) and d(.,.) are assumed to satisfy

H2

(i) aB(.) . RE(.), where E(.)(unknown) is measurable with IE(t)i -c < I Vt;

(ii) d(,) = Bq(.,-), where g(-,-) is a Caratheodory function with

I1g(tx) 4 olxII + a2  V(t,x) and where a,, a2
'B are known

constants.

Let P (symmetric and positive definite) denote the unique solution of

P [:' 021 + [ 0T1 P + I " 0. (17)

Loosely speaking, in the sense that the projection of the attracting ellipsoid

onto Rn approaches the attracting ellipsoid r 0of the reduced order system.!0
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Then the uncertain functions &C(.) and AC2 (.) are assumed to satisfy

H3

idiag{aC 1 (t), aC2 (t)}I C'C < 1/20Cl' Vt, where oc is a known constant.

The above can be interpreted in the context of system (1)-(2) by making the

following identifications:

y * [ R
P , p m + n (18a)

A 1 ii=A, A 12 - [S 0] 1 A 21  (18b)

Bi . 0, 82 .[0 , S - 0, T [0 (18c

C(t) - Co+AC(t) , Co a diag{C1 , C2}, AC(t) - diag(aC1 (t), AC2 (t)} (18d)

g1 (t,x,yu) = d(t,x) + BE(t)[I : Oly (18e)

92 - 0 . (18f)

In view of Hl(ii),(iii) and H3, it is clear that Assumption Al holds for this

system.

Now,

A - A11 - A12A21 - A11 - A (19a)

R B1 - A12B2 - - A1282 - B (19b)

and hence, in view of 'I(i), it follows that Assumption A2 holds.

Also,

H(x,u) A- EA2 1x + 82 u -[u] (20)

and

V(t,x,u) = g1 (t,x,H(t,x),u) * Be(t,x,u) (Zia)

where (21b)

e(tx,u) g(t,x) + E(t)u

L , -

• il I m li m m E Nmmml I iim
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Thus, in view of H2, it is clear that Assumption A3 holds with c3
Proceeding,

A(y) - A21  YB28K .1 (22a) 

TS - TA(y) 1 I, K(y) - y1B KI (22b)

1 , (.. (1-2KcPI)(21P C01 + 2c lPI)'I1BTKIC) C R (22c)

Assumption A4 now reduces to the following:

A4 y < (1-21c clPl)I2 P) 8K

Finally, it is readily verified that .ssumption A5(ii) holds trivially (since

g2  0 0) and A5(i) holds with X - $B1.

A specific example of this subclass of systems is considered in detail in [9].

OTHER METHODS

An approach, differing from the one proposed here, can be found in [12-15). In

these references, the design procedure requires the sequential construction of

controllers which assure existence of global uniform attractors for (I) an approxi-

mation of the reduced order ("slow") subsystem, and (ii) the "fast" subsystem under

the influence of the slow uncertainties. The controller for the full syst.i is then

obtained as the sum of these subsystem controllers.
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SOLUTIONS CONTINGENTES DE

L' EQUATION D'HAMILTON-JACOBI-BELLMAN

Halina FRANKOWSKA
CEREMADE, Universitd de Paris-Dauphine

75775 Paris Cedex 16

RMsum6

Il est connu que toute solution r~guli~re d'une 6quation d'Hamilton-Jacobi-Bellman

associde d un problfte de contr6le optimal peut btre utilisLse pour la verification de
l'optimalit6 d'une trajectoire du syst~me, ainsi que pour la construction des
r~troactions optimales.

En g~n~ral de telles solutions r~gulires n'existent pas et on introduit les

solutions g~n~ralis~es (solutions de viscosit6 ou autres).

Dans cet expos6 on pose la question suivante quelles sont des conditions

n~cessaires et suffisantes pour qu'une fonction V R x R n _) R U + 3ivlfie

les propri~t~s suivantes:

1) V est monotone le long des trajectoires du systfte
2) V est constante le long d'au momns une trajectoire (qui est une solution

optimale du probl~me).

Les proprilstes 1) et 2) sont cruclales pour l'application des techniques de
verifi cation.

On dhmontre aussi que de telles fonctions forment une sous-classe des solutions
de viscosite de 1 'quation d'Haniilton-Jacobi-Bellman.

Les propridtfis 1) et 2) sont toujours v~rifiles par la fonction valeur assoclde

au problime. Nais cette dernidre Astant souvent discontinue, 11 est int~sressant de
trouver d'autres fonctions qul satisfassent 1) et 2).

La deuxilme partle de 1'exposo concerne ]a construction des r~troactions

opti males associets A de telles fonctions.
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ABSTRACT

We establish a general robust control result for linear time-invariant uncertain systems using the Lyapunov approach

initiated by Leitmann and Gutman. We show that systems satisfying matching conditions are handled by this result.

We give necessary and sufficient conditions for the existence of a robust sliding mode controller. We show that its ex-

istence implies the existence of a robust linear controller. A counter example is provided to establish that the converse

does not hold. The feedback controllers treated are functions of the complete state without any dynamic compensation.

1. INTRODUCTION

The Lyapunov approach to uncertain systems received an initial thrust by Leitmann and Gutman, IlI - I7]. for systems

satisfying matching conditions. They are joined by numerous authors ( e.g. [8 - 1331) in extending the Lyapunov ap-

proach to handle more general systems since it is well suited for addressing structured uncertainty. Our work herein fo-

cuses on applying the Lyapunov approach to systems which have constant uncertainties but do not necessarily satisfy

the matching conditions. It builds on the work of [91, 1141, and 1201 - 1331. Our main objective is to establish a robust

control result based on the Lyapunov approach which generalizes some of the past work on linear uncertain systems

with constant uncertainties. We specifically consider linear and sliding mode controllers and give necessary and sufficient

conditions for their existence. We prove that the existence of a robust stabilizing sliding mode controller implies the

existence of a robust stabilizing linear controller. The converse does not hold. We provide a counter example showing

the existence of a robust linear controller in the absence of such a sliding mode controller. Herein, we use the term sta-

bility to mean that the poles are in the left-half plane, i.e., asymptotic stability or, equivalently, that the characteristic

A
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polynomial is Huwitz. We say that a controller is robust if it asymptotically stabilizes the yse for all uncertainties.

We treat both the scalar input and the multi-input problems.

We investigate the robust control of linear time-invariant uncertain systems that are not required necessarily to satisfied

matching conditions:

i A(& + L(y)u, Y g r

where A(y) is a nxn uncertain matrix, B(y) is an nxm uncertain matrix with Ml rank (m <. n) and y belongs to a set

of uncertainties r where r is a simply connected, compact subset of p-dimensional Euclidean space E'. We assume that

A(y) and B(y) are continuous with respect to the uncertainty argument y c r. In this paper we consider only full state

feedback controllers u(x), i.e., those which are functions of the state x only. That is, we do not address dynamic com-

pensation as part of the feedback controller. We require that system (1) satisfy the controllability assumption:

ASSUMPTION 1. For each y t r the pair (A(y), B(y)) is controllable.

The controllability assumption is equivalent to the assumption that closed-loop poles can be arbitrarily placed by a

suitable gain matrix. We state this equivalent assumption:

ASSUMPTION i'. For each v c r and prescribed eigenvalues A(y) .- (,(y) . (y)) in which imaginary eigenvalues

occur in complex conjugate pairs there exists a real gain matrix K(y) such that the closed-loop matrix

A(y) - A(y) - B(y) K(Y) (2)

has the prescribed eigenvalues A(y).

For arbitrarily prescribed eigenvalues A(y), y c r, we can rewrite (1) as

- Z. V ()x + B(y)CK(y)x + uI (3)

where K(y) is the corresponding gain matrix and 4(y) satisfies (2).
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The next assumption makes it possible to define a control law with which to stabilize (1) in the presence of uncertainties

£ F.

ASSUMPTION H. For each y g r there exist an m.n gain matrix K(y). a.n invertible mxm matrix R(y) and an nxn

symmetric, positive definite matrix Q(y) such that

( ), fy) - A(y) - B(y) K(y) is asymptoticahy stable

(it) F = R-(y) B7(y) P(y) is a constant mxn matrix where P(y) is the

symmetric, positive definite solution of Lyapunov equation

P(y) (y) + ;F(y)P(y) + Q(Y) = 0 (4)

We make the following assumption on the mxm matrix R(y) which is defined in Assumption II.

ASSUMPTION III. For y t F the matrix 0(y) defined as

(y)= RT(y) + R(V)
2

is positive definite and has the square root form

0(y) - sr )S(y) (Sb)

where S(y) is invertible. The following upper bound exists and is finite

A - m [jS-'y)I Vs-T(y) R"()I] (6)

In Sections 2-4 and 6 we show how to use the constant matrix F in establishing a robust controller.
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2. MAIN ROBUST CONTROL RESULT

Assumptions I - III permit the development of a robust control law that is discontinuous in nature. This is established

in the neja theorem.

THEOREM 1: If system (1) satisfies Assumptions 1 -III then the discontinuous controller

zx) =- -- Fxp(x), Fx * 0 (7)
IIFxI

stabilizes (I) for al y g where p(x) satisfies

p(x) = h maJIiK(y)xlI (8)

The scalar his given by (6) and the gain matrix K(y) is defined in Assumption 11.

PROOF: For y z r let K(y), R(y), Q(y), P(y) and F be the matrices described in Assumption II. Define the Lyapunov

function

V(y) = Xr P(Y)X (9)

It has the time derivative

V(y) - -xrQ(y)x + 2[BT(y)P(y)x3 r [K(y)x + u (10)

Using property (it) of Assumption 11 this derivative becomes

V(Y) -xrQ(y)x + 2[Fx] r RT(y) [K(y)x + u(x)] (11)

We show that the control law (7) yields

(y) < -xQ(y)x, c r (12)

Since Q(Y) > 0 (i.e., positive definite) it suffices to show that W(y) is nonpositive:

W(y) - 2[Fx)TRT(y)[K(y)x + u(x)] < 0 (13)

Consider a control law of the form (7) in which the scalar function p(x) is defined by (8). substitution of (7) into (13)

yields

W(y) - 2WI(y)- 2W2(y) < 0 (14)

where

K -- y ° III
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W(y) [ [FxlrRr(y)K(y)x (15a)

W2 (y) = [Fx)r Rr(yx p(x), Fx - 0 (1Sb)

Eq. (I 5b) can be rewritten as

W2(y) = [FxJO(Y) - p(x) (6)

or, equivalently as,

W2 (y) = [S(Y)Fxl r S(y)Fx (17)-- p(x) 0I
IFxII

where 0 (y) and S(y) are defined by (5) and (6). Making the vector definition

y(y) - S(y) Fx (18)

Eq. (17) becomes

y (Y) y(Y)
W2i(y) = IF.1l p(x) (19)

Eq. (I5a) can be rewritten as

W, (y) - y7(Y)Z(Y) (20)

where

Z(Y) - S(y)[0(y) - ' Rr(y)K(y)x (21)

Inequality (14) is met provided

WI(Y) <5 W,(y)()

In terms of (19) and (20) this inequality is given by

Yr(Y)z(Y) < yr(y)y(Y) p(x), Fx # 0 (23)

This inequality is met provided

Ilz(v,)II < b p(x), Fx vi 0 (24)
ILFxU

Taking the norm of (21) yields

Iz(y)U us-() Rr(y)l IK(y)xU (25)

Multiplying both sides by the norm US-I(O)i gives

Ii-'(Y)II IH,()II :5 p(x) (26)

Observe that

IIF"I IIS-'(y)S(y)FxI j RS-(y) Iy)i (27)

/
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fron which it follows that

uS' t lo)l Imo()[ Fx 0 (28)
IlFxI

Multiplying both sides by p(x) yields

p(x) :9U- Y~ Y1 p(x), Fx 0 0 (29)

The inequalities (26) and (29) yield

I1z(y)II :5 ~VY)H pxFx 0 0 (30)

This verifies (24) which establishes (12). By the theory of Lyapunov, the control law (7) stabilizes (1) for each uncer-

taty y~~r

3. ROBUST CONTROL IN THE PRESENCE OF MATCIIING CONDITIONS

Systems which satisfy the matching conditions of linear uncertain systems, 121 - [71, satisfy' Assumptions I II11. This

result is given by the next theorem.

THEOREM 2: Let system (1) satisfy the following maiching conditions: There exist an nxn matrix A and an nxmn

matrix B and for each y & r there exist an mxn gain matrix D(y) and an invertible main matrix 171(y) such that

(a) A(y) = A. + BD(y).

(b) B(y) - Bfloy).

(c) (A. B) is a controllable pair

(d) 0(y) is an main positive definite matrix where

(() - 1l(-') + fl(y) (31)
2

Then Assumptions I - IIl ame met. As a consequence of Theorem I, there exists a robust stabilizing control law of the

form

u Kx -K + FX Ax) (32)

such that
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- A-BK (33)

is asymptotically stable and such that

F BT P (34)

where P is the symmetric, positive definite solution of the Lyapunov equation

P7-+ 7rP+ ? - 0 (35)

in which Q > 0 is arbitrarily chosen.

PROOF: Conditions (a) - (c) imply that (A(y), B(y)) is controllable for y * r. Controllability is invauiant under linear

feedback and coordinate transformation on the input, 134]. Thus Assumption I is met. Since (A, B) is controllable there

exists a gain matrix K such that " of (33) is asymptotically stable. Define the uncertain gain matrix

K(y) - r-'( ,) [D(y) + KJ (36)

Using conditions (a) and (b) we find A(y) of condition (t) of Assumption 11 reduces to

A(y) - A - BK (37)

and is, therefore, asy mptotically stable for y t r. Select any Q > 0. Let P be the solution of (36) and let F be defined

by (34). For y t r define

R(y) fir (Y) (38)

The matrix F of condition (it) of Assumption II and that of (34) are identical. That is, (34) can be rewritten as

F - f-r(Y) [B 1 ()]rP (39)

which, in view of condition (b) and (38), is equivalent to

F - R-'(y)Br(y)P (40)

Thus, condition (ii) of Assumption 11 is met with

P(Y) M P (41)

Condition (d) implies Assumption III since B(y) is continuous and r is compact. That is, h exists and is finite. Since

all conditions of Theorem I are met, the existence of the stabilizing control law (32) follows with

p(x) = I, m, IIK(y)xU (42)

where K(y) is defined by (36).

/
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4. ROBUST CONTROL N THE ABSENCE OF MATCHING CONDMONS: SCALAR INPUT

We show that the robust control assumptions presented in (291 for scalar control satisfy the assumptions of Theorem I.

Consider system (I) with scalar control. The input matrix B(y) is a column vector. The work in 1291 assumes that the

system (I) is controllable. Assumption I. Under this assumption there is a unique coordinate transformation T(y)

z - T1y)x (43)

of (1) to the following controllable companion form, 1341,

- A,(a(y))z + fu(x) (44)

where

1 0 ... 0 0
A(a(y)) (45a)

0 1 0 0

0 0 .. 1 0

A2(a(y)) = T(y) A(y) 7- 1 (y) (45b)

and

B, - [ 1,0,0__ 0 ' (46)

B, = T(y) B(y) (46b)

The vector a(y) = (a, (y). a.(V)) is the coefficient vector of the open-loop characteristic polynomial:

%,(s) - det[.I - A(y)] (47)

We need the following definition in order to introduce the next assumption of [291-(3 11.

DEFINITION 1: The row vector P, - (PI. P12 1. PI.) is said to be n - I stable provide P, > 0 and the polynomial

P* AM-t + P 2 in-, + ... + PI" - 0 (48)

is Hurwitz (i.e., all eigenvalues are in left-half plane).

ASSUMPTION IV: There exist an uncetain Ye c r and an n - I stable row vector P,(y.) such that

PI(y) - P(y0o) T(y 0) 7-(y) (49)

is n - I stable for all Y t r
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The concept of a vector being n - I stable is fundamental in the asymptotically stable solution of Lyapunov equation.

This result is presented in the next lemma. Its proof is given in 1301.

LEMMA I. Let a - (a.  a.). Define A(a) to be in the controllable companion form (45). Let P be the solution to

the Lyapunov equation

PA(a) + ATa)P + Q - 0 (50)

where Q > 0 andQ = Ql. Then A(a) is stable if, and only if, P, is n - I stable where P, is the frst row of P.

PROOF: See [301.

The next lemma is a consequence of Lemma I.

LEM.MA 2. Suppose Assumption IV holds. For each y c r define Q(y) > 0, Q(y) = QT(y). Then for each y, there is

a unique stable coefficient vector (1) satisfying Lyapunov equation

P(y)A(,(y)) + A T (a(y))P(Y) + Q(y) = 0 (51)

where P(y), the first row of P(y), is prescribed under Assumption IV. That is, A(a(y)) is stable for y t r.

The above lemmas are used in the next theorem to establish a stabilizing controller for system (1).

THEOREM 3. If Assumptions I and IV hold then there is a stabilizing controller for system (1) having the form

U Fx

u - il p(x), Fx*0 (52)

where F is a constant row vector and p(x) is a nonnegative scalar function of the state x.

PROOF: Since system (1) is controllable for each uncertainty yer it can be transformed to the controllable companion

form (44). Assumption IV implies there is a stable coefficient vector a(y) for y a r such that (51) is satisfied. Define

a(y) to be the difference between the stable coefficient vector a(y) and the open-loop characteristic polymonial coefficient

vector a(y) of System (I)

a(y) - ( () - a(y) (53)



26

Note that the negative of a(y) is contained in the first row of (45). Substitution of (53) into (44) yields

z - A, (^(y))z + B, ru&)T(y)x + i x)] (54)

after making use of (43). We use the symmetric, positive definite solution P(y) of (51) to construct the Lyapunov func-

tion

V(y) - ZrP(y)z (55)

Taking its derivative gives

V(y) = -zrQ(y)z + 2[Fx]r[U(y) T(y)x + u(x)3 (56)

where F satisfies

F = Pj(yo)T(yo) (57a)

and as a consequence of Assumption IV we have

F Pl(y)T(y) (57b)

or, equivalently,

F - BTP( )T(y) (57c)

where P(y) satisfies (51) and T(y) satisfies (43). Any admissible control law u(x) satisfying

u(x)< -ma (-(y)T(y)x] , Fx > 0 (5a)

g~x) > maA[C(vT7(V)x] , Fx < 0 (38b)

stabilizes (1) since for such a control law

oy)5 -zrQ(Y), Y r (59)

The maxima of (58) exist since r is compact and since the functions e(y) and T(y) are continuous on r. An admissible

control law satisfying (58) is (52) where

p(x) - ma lily) T(y) xl (60)

and F is given by (57). In the next theorem we establish that a system satisfying Assumption IV also satisfies Assumption
II.

THEOREM~ 4: If the system (I) satisfies Assumptions 1 and IV then Assumptions II and Ill are met.

.... " - ...... ... . . . . . . li s i i lml nmill-I
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PROOF: We make the following identifications

T(y) - T(y) P(y) T(1y) (61b)

Q(y) - Tr(y)Q9&) 71y) (61c)

K(y) - a(y') T(y) (61d)

where T(y) is defined by (43), where P6y, Q(y)and.(a(y)) are defined by (51) and where ou(y) is defined by (53). The

matri A(a(y)) is asymptotically stable. This follows from Lemma 2 and the fact that eigenvalues are invariant under

coordinate transformation. From (44), (45), (53) and (54) it follows that

;Tky = A(y) - B(y) K(y) (62)

so that condition (i; of Assumption IIl is met. The vector F of (57) satisfies

F-RB(y) (y) (63)

where T6,) is the solution of the Lyapunov equation

(Y)A(Y) + ;*T(,)p(No + a(y) -0 (64)

which shows that condition (ii) of Assumption 11 is met. Here, the scalar R - 1. Thus Assumption III is also met.

Theor ems 3 and 4 establish that Assumption IV implies Assumption 11. The converse need not hold. Thus Assumption

IV is a stronger assumption. Assumption IV admiits a sliding mode controller (52). From the next theorem weft that

it also admnits a stabilizing linear controller.

THEOREM 5: If Assumption I and IV hold then there exuists a stabilizing linear control

um- - cFx (65)

whene F is defined as in Theorem 3 and the scalar c satisfies

C I Im" 1Q-'()l MaUR(y)112  (66)

whereQ(y), y cr, isdefined asin Lemma 2and where K(y) is gven by (61d).

PROOF- See 13 11.
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The maxim of (66) exist since K(y) is continuous, r is compact and the matrices Q)are chosen in a continuous

manner. Usually Q(I) is set to be the identity I or it is computed from

Q~y)- T~) Q 1(~)(67)

where Q is a prescribed symmetric, positive definite matrix. The next result gives an equivalence between Assumption

IV and a minimum phase condition on the system.

THEORLM 6: Assumption IV is met if, and only if, there is a row vector F such that

Frs - A(y)]F1 B(y), y z 1" (68)

is minimum phase with n- I transmission zeros where I is the nxn identity matrix. That is, the determinant

detf 0, Y r (69)

is Hurwitz.

PROOF: From (49) of Assumption IV

P1(y) - FT'(y), Y c r (70)

wherte P,(y) is n- I stable with polynomial Eq. (48) can be rewritten as

PI(y)r 5 M-J- £ fT W 0 (71)

where s a + jw- A. Multiplying (70) on both sides by Er'-1 s' I. £1) gives

,I-()1.PI- . .. SI~ l~ - 0 (72)

The open-loop characteristic polynomial a,(s), (47), is given by

a.,(s) - J" + ai(Y)s"- + .. + 4.(yi+ a,()-0 (73)

Since A,(a~y))andB, are in the controller companion form (45) and (46) we have the following identity from linear system

theory. 134):

su - A,(a(y)) 'B, - A-S- S Or (74)

Substitution from (45b) and (46b) into (74) gives
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T(y)rsI - A(y)-'B(y) - '" (75)a,(s) ,

Multiplying both sides by FT-(y) yields

F[st - A(y)]-B(y) - FJr()[s"'s"-.""s = 0 (76)a,(s)

.after making use of (72). The transmission zeros. 135) , of (76) me the n-I stable eigenvaluea of the (n-1) stable P(y)

row vector of (70). This proves that (68) is minimum phase. From (76) we have

detsl- A(y)) F[sI-A(y)]-'B(,) - 0 (77)

A reciprocal form of (77) is given by, (34],

det -0 (78)

which yields (69). Since P,(y) is n-I stable it follows that (71) is Hurwitz. Thus (69) is Hurwitz.

Conversely, if them exists an F such that (69) is Hurwitz then the vector P,(y) defined by (70) is n-I stable and As-

sumption IV is met. From the above theorem we have the corollary.

COROLLARY 1. A necessary and sufficient conditions for the existence of a stabilizing sliding mode controller

u- -.- P(x), Fx 0 (79)

of(1) is the existence of a row-vector F such that (69) is Hurwitz for all yer.

The existence of a stabilizing linear controller

u- Kx (80)

does not imply the existence of a stabilizing sliding mode controller (79). Before this is illustrated by an example we give

necessamy and sufficient conditions for the existence of a linear controller (80).

. . .. .. . . . I I I II I
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THEOREM 7: A necessary and sufficient condition that there exist a stabilizing linear controller (80) of system (1) is

that there exists a row vector K such that the following determinant is Hurwitz:

dt[sIA() 0,1 . r (81)

PROOF: Suppose there is a row vector K such that (80) asymptotically stabilizes (1). The feedback matrix

A,(y) - A(y) - B(y)K, y t r (82)

is asymptotically stable and the determinant

4(s) - det[sI - Ae(y) ] = 0 (83)

is Hurwitz. Eq. (83) can be written as the following series of identities, [34],

4(s) - det[,rI-A(y)) [I + [sI-A(y)J-'B(y)K]} (94a)

a,(3) a(s) det[I + [s! - A(v1F-'B(y)R] (84b)

4(s) = ay,(s) [I + K[sI - A(V)]-'B(y)] (84c)

where a,(s) is the open-loop characteristic polynomial (47). The reciprocal form of (81) is (84c), [34. That is, (81) and

(84c) are identities. Therefore, (81) is Hurwitz if, and only if, (83) is Hurwitz. Eq. (84c) can be used to prove Theorem

5. If (76) is Hurwitz then with

K-cF (85)

Eq. (84c) becomes

4(.) a,(s)(I + cF(sI - 4(v)-'B(y)] (86)

which is Hurwitz for sufficiently large c. That is, in view of(71) -(76), Eq. (86) can be rewritten as

; - ,S + CP1(Y)(sI,...£ + [1,1) -r+ (87)

in which the last term is an n-I order polynomial that is dominated by the middle term for lag c. The first two turns

gve a Hurwitz polynomial for sufficiently large c. As a consequence, the existence of a robust stabilizing siding mode

controller (52) implies the existence of a robust stabilizing linear controller (65). In general, the converse does not hold

as is illustrated by the following example.

|" ' i/
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S. EXAMPLE OF ROBUST LNELAR CONTROLLER WITHOUT SLIDING MODE CONTROLLER

Consider the uncertain system

i - [0 X + [Vu, ycr (88)
1 0 1

where r - [ -M, M3 and where M is a positive scalar greater than I

M 1 1 (89)

The determinant of the controllability matrix [B(y), AB(y)] is given by y2 + I which satisfies the equality

y + I>0 Vyt(-00,cc) (90)

The system (88) is controllable for all uncertainties y. Thus Assumption I is satisfied. The requirement for the existence

of a stable sliding mode surface

Fx - 0 (91)

depends on (69) being Hurwitz. For our example system (88) Eq. (69) reduces to the first order polynomial

(Fly + F2)A + (yF2 -F) - 0 (92)

which is Hurwitz for y c r provided the coefficients are positive

Fly + F2 > 0, y t r (93a)

yF2 -F, > 0, y e f (93b)

Evaluating the first inequality at y - I and the second at y - - I give the contradicting inequalities

F2 > - F (94a)

F2 < -F 1  (94b)

That is, there exists no F (, F2 ) satisfying (69) for yt[ -1, 13 which is a subset ofr. Consequently, there is no stable

sliding mode surface (91) on which a robust sliding mode controller (52) can be designed for y,[ -1, 13.

The requirement for the existence of a robust stabilizing linear feedbck controller (S0) is that (S1) is Hurwitz. The

chrleristic polynomial of (S) is iven by

, - . . . . .. .. ... . .. . . ',"'" ." '-
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12 -I- al(y)l + a2(y) . 0 (95)

where robustness follows from poutiveness of the coefficients

a,(y) - K2 + K I >o, Ygr (96a)

2(y) - yK2 - K + 1>0, Yer" (96b)

The following gain vector K - (K, K2) provides a robust linear controller (80)

K, -0 (97a)

+ (97b)

where g > 0. Substitution of the gain vector (97) into (96) gives

K2 >0, y cr (98a)

y > -(M+ C), Y t r (98b)

The inequalities (96) are met. Thus (81) is Hurwitz which implies that the linear controller defined by (97) robustly

stabilizes (88). Consequently, (88) has a robust stabiizing linear controller but no stabilizing sliding mode controller.

6. ROBUST CONTROL IN THE ABSENCE OF MATCHING CONDmON& MULTI-INPLT

The multi-input case parallels that of the scalar case, Section 4. We consider a condition similar to (69) and show that

it leads to necessary and sufficient conditions for the existence of a sliding mode controller (7). In this section

B(y), - & F, is an nxm uncertain matrix with full rank (ms n) We consider system (1) for which Assumption I holds.

Our main result for a robust sliding mode controller is given in the next theorem.

THEOREM . A robust stabilizing sliding mode controller (7) exists for system (1) in which Assumption I holds if,

aid only it, the following determinant is Hurwitz:

rtA(y) - jI B(y)] o
[F -0, y (99)

PROOF: The twiprocal form of (99) is
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a,(S) de F.s -A(y)-'B(y)] - 0, r s r (100)

where a,(s), defined by (73), is the determinant of s! - A(y)) which is the open-loop, characteristic polynomial of

A(y). Since Assumption I holds there is a coordinate transformation 71(y)

z - T(yx (101)

which takes (I) into a controllable companion form, 1341,

1 - Aa(y))z + BAx) (102)

where

A2(a(y)) - T(y) A(y) 7-'(y) (103a)

B(y) - T(y) B(y) (103b)

The mxm matrix B,(y) is formed from m columns of the nxn identity matrix. The dependence of B,(y) on the uncertainty

y follows from the fact that the selection of the m columns may depend on yer. The nan matrix A,(a(y)) is in block

controllable companion form. Such companion forms are described in 1321-1341. In view of the Transformation (101)

we can rewrite (100) as

det[[F--(y)] a,(,) T(y)CI - A()J-'B(Y)] -0 (104)

Consider the last two factors

a,(S) [T(y)[sl - A(y)]-'BOy)] (105)

which in z-coordinates is given by

,(5) (E(s - A,(a(y))]-'B,(y)] (106)

which is equivalem to

AdjAst - A,(a(y))'B:(y) (107)

where Adj is the matrix adjoint operation. Consider the definition of an nxn symmetric, positive definite matrix P(y) and

the definition of an manm symmetric, positive definite matrix R(y) such that

R'(y)ar(y)P(y)7(y) - F, y , Ir (108j

That is, P(r) must be such that

K-1(y)B, (y)ety) - FT='(), , . r (109)

/ 7
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Furthermore, consider the Lyapunov equation

P(y)A 5(A(y)) + A2 (n(y))P(y) + Q(Y) - 0, y a r (110)

where Q(y) > 0 and Q(y) - QT(y), y g r. A necessary and sufficient condition that A.(a(y)) be asymptotically stable and

P(Y) be symmetric, positive definite and satisfy the constraint (109) is that the determinant of the following mxm matrix

(I I la) be Hurwitz and that the following mim matrix (I I lb) be positive definite, 1321:

B[(y)P(y)AdjtsI-A,(y))B,(y), , s r (I Ila)

Bf()P(y)Bz(y) > o, Y & r (IlIlb)

From (104), (107), (109) and (I 11) it follows that (99) is necessary and sufficient in order that for each yr there exist a

symmetric, positive definite P(y) satisfying (109) and a stable A,(a(y)) such that the Lyapunov equation (110) is satisfied.

The theorem now follows from Theorem 1. Define a(y), y & r

C() = B,(y)[A,((y)) - A,((y))] (112)

By the canonical form of A, and B, it follows that

A((y)) Az(a(y)) -Bz(y)a(y) (113)

Defie K(y), y r, as

K(y) = a(y)T(y) (114)

Transforming (113) from z-coordinates to x-coordinates using (101) yields the following asymptotically stable matrix.

4(y) - A(y) - B(y)K(y) (115)

Thus condition (i) of Assumption II is met. Transforming (108) from z-coordinates to x-coordinates using (101) gives

F - R-'(y)Br(y)F(y) (116)

where P(y) satisfies the Lyapunov equation which is transformed from (110)

P(Y)A'() + 7r(Y)P(y) + Q(,)=0, Y , r (117)

where

P(Y) -T(Y)P(V)T(Y) (lI Ia)

Q(v) - Tr(,)Q(y)T(Y) (I lSb)

/1
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Thus condition (ii) of Assumption 11 is met. Consequently all conditions of Theorem I are satisfied. The existence of

a robust sliding mode controlier (7) now follows.

The existence of a robust stabilizing sliding mode controller implies the existence of a robust linear controller. This result

is given in the next theorem which parallels the scalar result, Theorem 7:

THEOREM 9:. The existence of a stabilizing sliding mode controller (7) for system (I) implies the existence of a robust

stabilizing linear controller

u - -Kx (119)

PROOF: A necessary and sufficient condition for the eTistence of a robust stabilizing linear controller is that the de-

terminant

det[ -M 0, v . r (120)

is Hurwitz where 4. is the mxm identity matrix. Paralleling the developement (81) - (84) the determinant (120) is Hurwitz

if, and only if. the mxm matrix

a(Y) - ar(s) detEl, + K s! - A(y)] - ' B(y)], Y c r (121)

is Hurwitz. If a robust stabilizing sliding mode controller (7) exists then there exists an mxn matrix F such that (99) is

Hurwitz. Consequently, (100) is Hurwitz. For an arbitrary minxm matrix C define the gain matrix

K - CF (122)

substitution of (122) into (121) gives

a(s) = a(s) det[lm + CF D!i - A(y)]' B(y)], r, r (123)

In view of (73) we can rewrite (123) as

• . .
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&L() - dx ., + C F AdjfrI - A(y)] B(y) + (a,(s) An2) 4,], 1, r (124)

Since the mxm matrix (100) is Hurwitz, it follows that there exists an mxm matrix C with sufficiently large elements'

such that (124) is Hurwitz, 1331. The last term is dominated by the second term. The control law (119) robustly stabilizes

(1) for a* sufficiently large' C matrix in (122).

7. SUMMARY

A linear time-invariant uncertain system is investigated for robust stabilization. The uncertainties belong to a compact

subset of multi-dimensional Euclidean space. The dynamics and input matrices are continuous functions of uncertainty.

The system is controllable for each uncertainty, Assumption 1. In Assumption 11 two general conditions are stated which

involve an uncertain Lyapunov equation. The first condition deals with the existence of an uncertain gain matrix for

stabilizing the system. The second deals with the existence of a constant F matrix which has the appearance of a Riccati

gain matrix. F is the product ot three uncertain quantities one of which is the uncertain solution P(y) of the Lyapunov

equation. Another is the R(y) matrix which is assumed in Assumption III to form a positive definite matrix when added

to its transpose.

A general robustness result is established in Theorem 1. It states that a robust stabilizing sliding mode controL. exists

under the general Assumptions I - Ill. In Theorem 2 we prove that the matching conditions of uncertain systems satisfy

the Assumptions I - Ill.

Robust control in the absence of matching conditions is examined in Theorems 3, 4 and 5 for scalar control input. For

such rvstems necessary and sufficient conditions are given for the existence of robust stabilizing sliding mode controllers.

In Theorem 4 we show that systems satisfying such conditions also meet Assumptions I - I1. Theorem 5 goes one step

further and shows the existence of a robust linear control for such systems. The existence of a robust sliding mode

controller is shown to depend on a minimum phase condition, Theorem 6. In Section 5 we give an example of a simple

system which admits a robust linear controller but no robust sliding mode controller that stabilizes the system.

In Section 6 we investigate robust control in the absence of matching conditions for multi-input systems. In Theorem

8 we show that a certain determinant being Hurwitz is necessary and sufficient for the existence of a sliding mode con-

troller. A similar condition is stated in Theorem 9 for the existence of a robust linear controller.

/miu n l nn mn Pmm
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ABSTRACT

A dynamic output feedback strategy is proposed for a class of uncertain systems. Using a
singular perturbation approach, a threshold measure of "fastess" of the feedback dynamics, to ensure
overall system stability, is derived. This threshold is calculable in terms of known bounds on the
system uncertaities but may be conservative in practice. To circumvent this drawback and to allow
for bounded uncertainties with unknown bounds, an adaptive version of the strategy is then
developed.

I. Introduction

We address the problem of design of dynamic output feedback controls for a class of uncertain nonlinearly
perturbed linear multivariable systems. The approach is similar in concept to that of [1], and fundamentally
stems from the delenninistic theory developed in, for example, [2-8] (see also bibliographies therein).

Initially considering a hypothetical output ys for the system, a (generally unrealizable) stabilizing static output
feedback control is established. This static control is then approximated by a realizable compensator (with
parameter 2! 0) which filters the true system output y. Physically, the parameter p is a measure of "fastness"
for the filter dynamics; analytically, i plays the role of a singular perturbation parameter. Using a singular per-
turbation analysis akin to that of [9,101, a threshold measure u* of "fastness" of the compensator dynamics, to
ensure overall system stability, is then derived. The threshold is explicitly calculable from known system data
but corresponds to a "worst-case" value and consequently may be conservative. To counteract this inherent
conservatism (and to allow for bounded uncertainties with unknown bounds) an adaptive version of the com-
pensator is also developed by an approach which is essentially that of [11] (see also [12-16] and related work
in [17-23]).

2. The system

We consider uncertain nonlinearly perturbed linear systems of the form

i(t) = Ax(t) + B[u(t) + g(tx(t),u(t))], x(t) c R', u(t) e R' (1)

for which the only available state information is provided by the output

y(t)-CX(), y(t) R', M p S . (2)

The triple (C,A,B), which defines the nominal linear system, is assumed to satisfy the following.

,k

/
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AMsumpon 1: (AB) is a controllable pair and rank B = m.

Assumpdon 2:

T7ere exist known integer r > I and known matrices F ,F2," •.F, e JR" ×P , such that

(i) fori= 1.2,.-,r-l. imCA'-'Bc r1 kerFj;
j-i+ 1

moreover, the matrix C, := FIC + F2CA + • -• + FrCA -1 is such that

(ii) I CBI I+ 0 , and

(iii) the transmission zeros of the m-input m-output linear system (C,,A,B) lie in C- (the open left half com-

plex plane).

[0101 [01 , o l

Example 1: If A = 0 0 , 0 , C= 0 0  1 thethe he above assumptions hold with

00o0
r = 2,F, = 1 1 ]andF2=[1 0].

Finally, we impose some structure on the uncertain function g.

Assumption 3:

g: RxJR xR m - R" is (i) Caratheodory, with (Ii) flg(t,x,u)jj S alIxII + 81jull for all (t,x,u), where a

and 86 are known constants with 6 < 1, and (iii) if r ? 2. then g is uniformly Lipschitz in its final argument

(with known Lipschitz constant I). i.e. (if r lt 2) there exists known I. independent of (rx), such that, for all

u and v. Hg(r,x,u)-g(r,xv)ll < Allu-vil.

The outline of the paper is as follows:

Fustly, the problem of designing a (dynamic) output feedback compensator for system (1.2) is addressed. This

is accomplished by initially considering system (1) with hypothetical output

yO() - Cx(t) (3)

where C, is as in Assumption 2. Note that, if r - I then y*(r) = Fly(t) and hence is realizable; however, if

r Z 2 then ys(t) is unavailable to the controller, hence the qualifier "hypothetical". For the system (1.3) so

defined, (ii) and (iii) of Assumption 2 in essence play the role of "relative degree one" and "minimum phase"

conditions on the hypothetical nominal linear system triple (C,.,A,B). Under such conditions, it is known (see,

for example, [11-131) that the zero state of system (1,3) can be rendered globally uniformly asymptotically

stable by static output feedback this is reiterated in Theorem I. However, with the exception of the case

r 1 1, such static output feedback is unrealizable in the context of the true syste (02). Therefore. in §3, a

realizable dynamic compensator is constructed for the caes r 2, which filters the actual output y. This filter

can be interpreted as providing a realizable approximation to the static hypothetical output feedback; moreover,

it is shown in Theorem 2 that global uniform asymptotic stability of the zero state of (1,2) is guaranteed pro-

vided that the filter dynamics are sufficiently fast (a calculable hreshold measure of fatness is provided).

Secondly, in §4, an adaptive version of the dynamic compensator is developed, which couneracts conservatismI (induced by crude estimates in the analysis) inheren in the non-adaptive filter and which also dispenses with
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f trquirement that the uncertainty paametes a. 0 and A in Assmmi on 3 be brown (bowev. the assump-
doant hat < I rems in for ad, moreover, If r 2 ta Is as m mto deped early on x).

3. Stabilizing static output feedback control Ibr hypothetical system

LetT - P (-")- be schthat kerT, - imB. then

T= (= TC, with invee T' IS: B]

is a similarity transfonnation which takes system (1,3) into the form

k(t) - All(t) + AI2Y(t) , X(t) e R - -  
(4a)

=(t) - A2 11.(t) + A22Y(t) + u(t) + 7((t),(t),(t)) , 7(t) e Rm (4b)

'(t.ZY,u) := g(t,SZ+B?,ru) (4c)

with output

At) - (CB)7(t) (5)

Note that the eigenvalues of All coincide with the transmission zeros of (C,.A,B); thus, by virtue of Assump-

lion 2(iii), o(AII) c C-.

Let P, > 0 be the unique positive definite solution of the Lyspuwv equation

PIAt. +ATIIt - (6)

then we state our fist result.

Theorem 1:

Define K* :- IA221 + a1IBI + I [UPIA 12+Ar +aUSj ,i then, for each fixed k > (1-P)- . the static
output feedback

U(t) - -R(CB)-y#(t) a -f P(t) 
(7)

renders the zero state of the hypothetical system (1,3) globally uniformly asymptotical y stable.

Proof; Let V: (2.7) 1.. 1 (X, Pl) + iiyi 2, tea straigt d, c ym that. along solutions
(r(.),7(.)) of (4,.5,7) (equivalent to (1.3,7)), the fowing holds almost everywhere

_.V(.t(s),7(s)) s -tU(X(s),(Q)
di

where

U( (,5) : I [ , MI :I=[ -([PAn+,Aj +aISIjl 2[(I-P)-IA=N-aIB]"

Noting the M is positive definite, the rmt followL 0

n . -
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In t context of t tue system (1.2), ift r 1. then the static ftedbck, (7) is realizable 41

whemc:-

Coroilwy 1:

Let Rbe ainm eom 1. If r- I then the staticotput edbac8 (enes thero stteof thtue ye

(1.2) globally uniformly asymptotically stable.

However, in all other cases (r a 2), the feedback (7) is unrealizable for the true systemi (1,2); in its place, we

will develop a realizable dynamic compensator in the next section.

4. Cases r a 2: Stabilizing dynamic output feedback for the true system (1,2)

In view of Assumption 2(1), we note that

yt)= Cx(t) = FlyQt) + F2 (t) + + F~-)t

Which can he interpreed in the frequency domain as

5i*s) - (F1+N()j(s),

where

N(s) = 0 2 + + s'F,

is physically unrealizable. Our approach is to replace N(s) by a physically realizable transfer matrix (filter) of

the form H,(s)N(s) with appropriately chosen Hpjs). To this end, let d, :S r-l denote the degree of the

highest-degree polynomial in the ith tow of N(s). Let constants a)' > 0, j-2,- -,di, be such that

Xi(s) -S d + a s dI+ - + als+ 1, i-l1.2.-- ,m

is Hurwitz (i.e. withalitsroots lying in the open left half com~plex phr3CU). For il-.12. -- .m definle

hf(s). parameterized by a > 0. as

he(s)

which, interpreted as a tranfer function, has minimal realizatioin (cT 1 "-'A, pC'b, where

0 1 0 ... 0 0'

0 0 1 ... 1
0 0 0 .. 1 00

-l -al -a 10

We now introduce the trartsfer matrix

HMjs) :dlhg(Ar(5))



A * a di~g(AJ ) q'X, 5* -diag (bf) * S' .Cs- diag (cf) a Rn". with q I~dj

Weno i pssng tata(*)c:C-an tatC*(ArB* - 1.

qp: (X,5) - ACY- [C.FIC SIZ+B+ Y].

Then it is readily verified that, in the time domain and under st ate ranT f ifrnia qain

governing the dynamic output feedback controlled system may now be expressed in the form:

Atr) = Af1 (Al) G )), Z((1 E

A(t) - f2(t2(O).AM) + Af 2 (t.Z(t),7(t)f:) . At) 6 Rn (10b)

In analysing the stability of this systm, we regard it as a singular perturbation parameter. Recalling that
C*(A* f'5 - -1, we note that system (4) with control (7) is recovered on setting = :0 in (10); thus, in the
usual terminology [9,10,241, system (4.7) may he interpreted as the reduced-order system associated with the
singularly perturbed system (10). The ensuing approach is akin to that of (9.10]. our objective being to deter-
mine a threshold value u* > 0 such tha. for all # E (,p), the wro state of system (10) is globally uni-
forolly asymptotcally stable.

Recalling that &(A*) c C, Iet P * > 0 be the unique symmetric positive definite solution of the Lyapunov
equation

P*A + (A jP' + 1 0. (I1

Define W: R'xR'xR# -4 (0.-) by

W(Z..!~:- &(w(,7,l. P~f,5f))(12a)

where

w(X,.V.f) :a f + (A*)'B* [ C,57-FCS1 1+BSI

- (r1 3 x,,). (12b)

We now estabish som2e prelifinary lemmnas;
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T1b fm i implicit in the proof of Theorem 1.

LMM 1:

(VV(r, y)jl(.Ty)) + (VYV(Zy),f2(tIjY)) !5 -aoV(,7y) where a0 :- [M- 1 1[IP I+113-1 > 0.

Lemma 2: (V:w(X,!f 3(X,y,!)) S-poW(X,7y) where A IP" -' > 0.

• ~ ~~~Prow.. AMw r ,.)/ 0 ,YXr) = - wry j f3(.',yz r))

=(P'w(Z,., A'w(I,7,E)

=- Ilw(,.7,,r2II

S -1P"-'W(Z',E1). 3

Clearly, the function jf' I is bounded above by a calculable scalar multiple of the function V1. In view of

Assumpton 3(ii), 912 0 is also bounded above by a calculable scalar multiple of Vi. By Assumption 3(iii). I is

uniformly IUpschitz in its final argument (with known Lipschft costnt ,t); hence.

IIf2(t,,Y,)II < (+Z)IR 7 + ,(1.9.3II for all (t..Y- )

and, since RP Y + V( ,y,2) = -P(CB)-C'w(L .. I). it follows that 111121 is bounded above by a calculable

scalar multiple of WI. Therefore, we may conclude:

Lemma 3:

Ther exist calcuable constants o. v,, v2 and '1o such that, for all (r..f).
(1) (v~w(x,y,2) ,/(Z,Sr)) S ooVI(X,y)WI(XJ,f),4. Ci) (V7W(',7,E', f2 (t,2 ,)) + e/A(t,'Y,)) S' 1 W(7+,Y,,

iii) (VYV(X,y), f2:,9,y,?)) S ,roV(Xy)WI(r.yf).

The next theorem demonstrates that system (10) is asymptotically stable for an u > 0 sufficienly smalL

Theorem 2:

Let jr be as in Theorem I and define #* :=..ao#f aojr+'7o(q+P)r' > 0. Then, for each fixed

I? > K'(-#)-' and fixed u e (0,u*), the zero state of systm (10) is globally uniformly asymptotically

stable.

Proof: Define ft positive definite quadratic form (Lyqnov fuwction candidate) W by

IK(IyM :- v(MY) + [0+IrT' noW(I-y-1)

the, Invoking Lemmas 1. 2 and 3. the following holds almost everywhere along jolutions ('(.).!(i) of

(10):

/

d. [W .MSM .' .m - ,

-....,w,..- ..... .=.==,.,=,. ,,==.=am = i=,..=,m=MOMi I "I I i
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where

K - q80 p-U,P--rX6 0+W2ry', 0

Noting that M is positive definite, the result follows. 0

In summary, let ),- (Y, u-'A, a-B) realZe (Minimally) t Component H,(S)N(s) Of the Proposed COM-
penisator (9), then the overall controlled system has the structue shown in Figure 1.

Figure I

The governing equations (equivalent to (10)) can be expressed as

I -) Ax(t) + B~u(t) + gQt.x(:),aiQ))]. XQt) a ARN (13a)

Ai(t) aAz(t) + 'BY(t). Z(t) a R 4 . pa < a,(13b)

yQt) - CX(t) e RP (13c)

u(t) - -i(CB)'EFjy(t) + Yz(t)] a R' , Re > ir(i-.a)' (13d)

Clearly, the threshold values x * and is" are central to this design. Since these values are determined via a
"worn-case" analysis. it is to be expected that, in practice. the compensator will be conservative. In the next

section. a stabilizing adaptive version of the compensator is developed; however, in the case r ? 2, this is
achieved at the expense of imposing further sacntur on the uncertain function g.

S. ~ "pty Csnpamstor

5.) Case : sW)

If Asaumption 2 holds with, r I thert, by Corelar 1. syssem (1.2) is asymptotically stabilizid by the static
outpu feedback (s) with # > r(1-Pr, provided, of course, that Ft and CB am known and thag Siffident a
priori information is avilabl to compute the (contservative) gain threshold r(1-PrI. we now conider the
case fot wich the latter information is unavailable, i.e. we only tasume knowledge of F, and CA3 a" in
pudtctilar. the constants a ad pcI in Asanpton 3 may be anown. All other timptiona rin~aa in

/ ,1mL
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Replac fixed e in (8) by variable r(t) to yield

u(t) - -jr(tXCBr1Fjy(t) (14a)

and let rQ) evolve acordling to die adaptation law

k -t II(CB-',Fly(9)12 
.(14b)

then-

Theorem 3:

For all initial data (to,x(t0),r(&,)) r. Rtx mxIO,-..) the adaptively controlle system (1,2,14) exhibits the fol-

lowing Properties:

(i) Urn xt) exists and is finite;

CI - Q.- I =0

Proof: For fixed (but unknown) e > uW~~ anmuder the similarity transformnation T. system (1.2.14)

tli) =XTr At.-*t +(,5 A1Yt (15a)j~rR)I

()=A1(t 2Yt -(X:y() - RIIfy() + (15b)IY~)2  r()IYtR

Line U and postbe einite, wrofoe m concludfie thate posixtve deiited ndsince 1 n t) sals

7bonoong setion (I of 1) thee fo~llowing henaloste. in vew o 1) ehv

SUXr.()d~~(,(~,Q) -adhne ince U is Va positive defntwcocuehatisbndd an ic w qarat)ic hamso

Deftm , du ouon o the dpi e u theorI ii em tI rmadth atm ine vrie ose (1n) eaven

For this reaom n dte conditions an imposed on the uncertain fuinction g. In panicular. Assumpton 31is now
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replaced by:

As.mmption 3':
Thee exist a bounded continuous function AA: R -4 R"v , a Caralhodory function 8.: RxR -R '

which is uniformly Lpschitz in its second argument, and a coMtMt p< I such that

() g(t.x.,u) - AA( x + &,(tu), for all (tz.u).

(i) &I(t.u) : 'IHuH. for all (t.u),

and
Cii) (C.A+BAA(-)) is uniformly completely observable in the sense of [25].

Note that. if Assumption 3' holds, then Assumption 3 holds afordori with a = sup IU&A(t)l provided that a.

, and the Lipschitz constant for g, (t.-) are known. However, imowledge of these constants is not required

here.

Exmple 2: With (C.A.B) defined as in Example I of §2, Assumption 3'(i) holds for any bounded continuous
AA: t i-+ (Ala1(t),Aa2(t),Aa(t)).

Now replace fixed ? in (13d) by variable r(t) > 0 and replace fixed p in (13b) by (&(0)- , where 6 > 0 is

a constant (design parameter) and let r(t) evolve accoyding to the adaptation law (other adaptation laws may

be feasible, as discussed in (20])

,i(t)= ly(t)112 + Iz(t)ql2

Writing (as in [11])

xtr i [z(t) J , U ( ) = [i(s)j ' y"(t) =  zQ(t) J

then the overall adaptively controled system may be expressed in the form

t(t)= At(t)xt(t) + Bt[ut(t) ( .t() eR4+* (17a)

yt(t) M C (t V. ) I (17b)

Ut(t) - -jr(t)Ktyt(t) a R q . (17c)

k(t) - Iyt(t)1 , (17d)

where

/, [:°  .

•At(t) A:=()0 B 1 t: C0 1e

and ,r :0(1fK* : L -) " J' t~t~ = (")0
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The stability of system (17) will now be investigated. W4 fi require the following lemma (essemially a non-

aumonmnous version of Mie -asson's lemma (11]).

Lxem 4:

Let xt: R .-. R+ q satisfy

-(t) = At(t)zt(t) + Bt[v(t) + gt(tyv(t))

where v: R -+ Rm is measurable. Then, for each fixed r> 0 them exists a constant c> 0 such that, for

all t.

Ix c J".[Py(s)ll2 + Iv(t)O2] s.

Proof. Let (-,.) denote the state transition matrix function generated by A+BAA(.) and define the observabil-

ity Gramian for the pair (C,A+BAA(.)) in the usual manner, that is,

r(t,s) := r(,s)CCO(o,s) do

Now, for some constants k1 and , we have Ilexp AtIl < kle and, since AA(.) is bounded (by assumption),

there exists constant k2 such that IBAA(t) < k2. By standard perturbation theory, we conclude that

11(:,s)1 S k.e-42X'- ' ) for all ts .

Clearly, the state transition matrix function 0 t(-,.) generated by A t(.) is given by

whence

JI0 t(t,s)HI < c(t-s) for all ts, (18a)

where

CI : O P 1 + kje ( k'I . (18b)

The observability Gramian for the pair (C ,AI(.)) is given by

[r): .s)(t-s)I j
and, since (CA+B&4(.)) is uniformly completely observable (by assumption), we may conclude (see [25])
that, for each fixed r > 0, them exist positive constants c2 and c3 such that, for all t,

c2 11CfI2 : (C'. t(t,t:-)C) : C3I112 V, C Y jR'*+. (19)

Now define the measurable function vt: t 1-+ v(t)+gt(t,v(t)) and note that 1vt(t)1 S (l+P)lv(t)J. Then.

xt(t) - *t(t.t-r)xt(t-r) + J:*rt(t,s)Btvt(s) ds

whence

Ixt(t)I2 5 2j0t(:,t-r)xt(t-,r) 2 + 21,[ ' t(r,s)Btvt(s) d1g2

S 2c4fl (t-e)Nl + 2cs(1+p) Hat ,i2  ,,l 2)H , (20a)

/ i
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whemin (18) has been used, and

c4 : T), : = C(S) di (2ob)

Alm LvoEM boa (18) and (19),

= ci'lj' yt(s)-CtJ *%t(su)Btvt(a) d, j 2 d8

SlJlyt(S)ll2dS + c6(+)2lCtI2lBtlI2f' v(s)il 2d], (21a)

where

C j = ro Cl(a)dgr d. (21b)

Combining (20) and (21) yields the required result. 0

Theorem 4:

For all initial data (to,xt(to),r(to)) e RxRm'qx(O,-), system (17) exhibits the following properties:
(i) lir x(t) exists and is finite;

(ii) im WWt() 0.

Proof' Seeking a conradiction to (i), suppose that the monotonically increasing function t i r(t) is
unbounded. Then. for some tj P [0.-), r(ro+t) = k > '(l-p)- and (8k( t +)) - ju < jL'. Now, an
argument similar to that used in the proof of Theorem 2 can be adopted to establish the existence of a positive
definite quadratic form x t -+ at(xt) and positive constant p such that the following holds on solutions
(xt('),x(')): (to,-) 4 IRM'x(O,-) of (17):

V'/t(xt(t)) < -p Vt(xt()) for almost all t z to +tr
dt

Thus xt: [to,-) -* Rn ultimately tends exponentially to zero; hence, both xt ad yt are square integrable
on to.-), which, in view of (17d), conradicts our supposition that the function r is unbounded. This estab-
tUses assertion (i) of the theorem.

It remains to show that xt(t) -+ 0 as t Clearly, (i) esures that yt is squaw integrable on [to,-) and,
in view of (17c), that iut is a bounded linear transformation of yl. Thus, we may conclde that ut is also
square integrable. Now, by Lemma 4, we have

IZt(t)I2 S c '(flyI(s)H + Iut(s)U] dS

= cf,(yt(S)I2+lut()I2j d - C 'lj, yt(a)2+Ut(S)j2 ] dS

Therefore, Ixt(t) . 0 asgt-m. r

/ i I I |
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6. Dcontinuous fhedback

In ti final sectim. some possible generaliations of the proposld compensators ae briefly discussed. In [23]
and for the cam = I only, a wider class of uncertain itmctim S is studied; specifically. Asumption 3 (ii) is

replaced by the condition

S(tz,.u) < axIl + P#ju + yC(Cx) for all (tax.u)

with a and P < I as before and where y is a constant (asumed known in the non-adaptive case) and ? is a

known cortinuous function. Thus, loosely speaking. in [23] a non-cons-bounded component of uncertainty is

allowed but this is required to be bounded by a function of the system output y. In the context of this more

general class of systems, the assertion of Corollary I of the present paper remains true for fixed

> (I-P) 1 max (ir* ,7 if (8) is replaced by the generalized feedback

u(t) e -? [(C,.B)-'Fjy(t) + ?(y(t))Ny(t))] , (22a)

where the set-valued map y -+ M(y) c R' in essence models a discontinuous control component and is

given by

II(CB)-Fxy-'(CB)-Fny; FY + 0
N(Y) L {v: IlvN S 1); Fly =0 (22b)

and the overall controlled system is consequently interpreted in the generalized sense of a controlled differen-

tial inclusion [26]. Furthennore, the assertions of Theorem 3 of the present paper remain true if (22) is

replaced by the adaptive control

u(t) a -r()RCB)-'Fy + ?(y(t) y(t)

where r(t) evolves according to (14b).

In the cases r Z 2, preliminary investigations indicate that again a non-cone-bounded component of uncertainty

(although considerably less general than that of the preceding paragraph) can be tolerated in g and counteracted

by augmenting the compensator (13d) (or its adaptive counterpart implicit in (17cd)) with an appropriately

chosen set-valued map (again essentially modelling a discontimous control component). However, the

requisite structural conditio s on the non-cone-bounded uncertainty are, as might be expected, of a rather res-

trictive and technical nature (akin to those in [10]) and am tot detailed here.
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ABSTRACT

Modelling of systems is generally done by frequency response methods or state
variable methods. It is our object to show how frequency domain robustness
results can be extrapolated to their state space counterpart. Using proper-
ties of input-output relations of systems, and different compatible norms, it
will be shown how a corresponding frequency response robustness results can be
applied. The method can be used to solve a certain class of non linear
equations. It can also apply to the control of non linear uncertain
multivariable systems in order to better stability, sensitivity as well as
decentralized control results. It can also apply to assess the state feedback
compensator, the observer and the output feedback compensation with regard to
the "robustness problem.

Multivariable control theory evolved in the sixties, using the state variable
approach. This approach together with growing computer technology gave rise
to tremendous research. Interesting results on system stability,
controllability, observability, reachability and detectability were developed.
This was a sharp contrast to the single input-single output frequency response
approach involving polynomial approaches, Nyquist criterium, and root locus
methods.

However, many of the answers given by state space methods lack the suppleness
of multivariable methods as they apply to well defined models with no
modelling uncertainty. Adaptive control is a partial response for the
modelling uncertainty problem as far as parametric uncertainty is concerned.
Clearly, in any state space representation (A, B, C, D), there is no way to
predict the behaviour of eigenvalues whenever the matrix representation is
modified to (A+ A,B,C,D). On the other hand, frequency response methods apply
better to the uncertainty problem: in the case of a single input single output
Nyquist diagram for instance, a Nyquist plot could be replaced by some Nyquist
band representing the modelling uncertainty at each frequency.

L.?
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Multivariable frequency response methods such as the inverse Nyquist area []
multivariable Nyquist criterium [2] and multivariabl6 root locus [3] are
concerned mainly with system stability. However, the input output approach to
systems [4.5,6,7.8] which apply to any normed algebraic representation of
systems fit particularily to the frequency response setting. Such an approach
allows us to handle the problem of modelling uncertainty. It is our purpose
to show how multivariable frequency response uncertainty methods can be
extrapolated to the multivariable state space uncertain models case.

It is our aim to show how these input output robustness results can be
implemented in systems described by their state space form. Given a state
space model with a state feedback compensation, observer output feedback
compensation, we shall derive the best possible bounds on the closed loop
perturbations due to some uncertainty A in the dynamics of a system.
Conversely, any frequency response robustness result will be shown to hold for
a corresponding state space disturbed model A + &.A and bounds on acceptable
uncertainties &A will be deduced.
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ASYMPTOTIC LINEARIZATION OF UNCERTAIN MULTIVARIABLE SYSTEMS BY SLIDING MODES

G. Bartolini
Dipartimento di Informatica, Sistemistica e Telematica

Via Opera Pia Ila - Genova (Italy)

T. Zolezzi
Dipartimento di Matematica

Via L.B.Alberti 4 - 16132 GENOVA (Italy)

A MODEL PROBLEM. We consider control systems with deterministically uncertain dyna

mics described by the differential inclusions
It I G I(ttxfkf,YU 1,U 2)

(I C G G2(t~xky,§,u I u 2)  t

Here x,y are scalar state variables and uIu 2 are scalar control variables, con-

strained by

(uIu2)E U

a given closed subset of R . Motivations for considering system (1) come from robo

tics, since some dynamic equations of kinematic chains appearing in robotics may be

reduced to the form (1). See e.g. (6] for a recent treatment.

The multifunction which describes the unknown system dynamics is given by

4 2
(G1, G2) : [O, + OO) xR X U R.

We assume explicit knowledge of some upper and lower bounds of the dynamics involved.

Therefore Carathbodory functions
+ -

gi , gi , i = 1,2

are known such that

1 g 1  , 2  = [g 2 ' g2

The initial state is uncertain but bounded by some known constant.

We consider a given linear time invariant (known) model

(2) 0 = aI; + a 2w + a3 v , 2 bI + b2 z + b3v2

with scalar control variables vI (v 2 , state variables w , z, w(O) anu z(O) fixed,

and arbitrarily fixed coefficients ai, bi (i = 1,...,3).

The problem we consider is to find a state feedback control law (possibly depen

ding on instantaneous values of vl, v2 , w, w and z,!) under which system (1) is asym

totically equivalent to the given linear model (2).

I
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more precisely, given C< > 0 and any (vV 2 ,w,z), we construct (in a sense ex-

plicitely) a feedback u such that every possible state (x,y) for' (1) corresponding

to it (under any uncertain dynamics g E (G1 , G2 )') fulfils the model dynamics (2) up

to an exponentially decaying error term dominated by (const.) exp ( -c(t), t T;

moreover

IX (t) - V(t)J .< (const.) exp (- Of t), t T

where

X - (x, i, y, () x , x 2 , x 3 , x4 ), W - (w, w,, , ) = (y1,y2, y3 ' Y4),

and some T independent of X and explicitely estimated by known data.

Such a feedback u (in general discontinuous) is obtained by using variable struc

ture control methods (see L] recently extended to non linear control systems by the

authors (see E2] and [3] ), provided a set of explicit inequalities is satisfied
• +

by the known bounds g , i - 1,2 , as follows. Let c1
, c2 such that G(,< min(c,c 2 )

1 2.

Then put e = X - W and

(3) s (e) = c1 e + e 2 f s 2 (e) = c 2 e 3 + e4 '

Consider now

p(x, y, v) , c I (Y2 - x 2) + a 1 Y2 + a 2 yl + a3 v 1
q(x, y, v) , c2 (y4 - x 4) + b Y4 b2 Y3 + b3 v 2 "

Then we assume existence of some u 16 U fulfilling
k2 + k2

g p + k if s > 0; g 4 p - if s < 0;
(4) 1 1 12

g q + k if s > 0; g q -k 2  if s < 0.

These results may be generalized to higher-order control systems of the following

form

2i i n' u1 Un

It is then likely that the number of the required inequalities corresponding to (4)

may be reduced by using results of [7J .

The chattering effects due to the discontinuous nature of the asymptotically

linearizing feedback may be reduced by appropriately combining results from C8,

C9J , (il . Moreover sufficient conditions may be obtained assuring that the feedback

u is piecewise continuous (not only measurable).

An important property of the variable structure control systems (1), (3) is ap

£i proximability (see C23 for the precise definition).
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In essence this means that whenever some error vectors e, depend on disturbances

described by the real parameters E and satisfy

i(ee ---- 0 as 0 - 0, 1 - 1,2,

uniformly on compact intervals of [T, + C), then e ---- eoin the same sense, where

e is uniquely defined and fulfils the sliding condition s (e ) , 0,i - 1,2. Thus

approximability prevents ambiguous behaviour in the sliding mode. Sufficient condi

tions can be found about the available data in order to fulfil such a property.

A PARTICULAR CASE. Let the uncertain control system be described by a single diffe

rential inclusion of order n with scalar control u, given by

=I . x2 , i2 x 3, ... , x n_ , n  G(t, x, u) , u u.

Suppose that the model is given by n

Y 2 '2 = Y3  .. Y = Yn' Y = y + by

and let
G= g, gJ

Fix real number c ,...,c n- such that the polynomial (in h)

hn-i hn-

h +c n h + ... + c2h + c

is Hurwitz. Denote by

e -y - x

the error vector and set

s (e) = e + c en i-i i

n n-1
p(X, y, v) - bv + =+ a cYly+M - x .

i.1 i i.1 i+1 i+1

The asymptotic linear behaviour ( in the sense defined above) obtains provided the

following holds. For any model control-state pair y,v, every t ) 0 and every x we

can find u E U such that

g (t, x, u) ;.k2 + p(x, y, v) if s(y - x) > 0,
+ 2

g (t, x, u) 4 - k + p(x, y, v) if s(y - x) < 0,

for some fixed constant k 0 0.

Arbitrary exponential decay of the error term is obtained by a proper choice of

c, ... cni . See [4, [5] for more details, examples and comparisons about this
prIular a

particular case.
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SYSTEMS IN THE PRESENCE OF

UNMODELED ACTUATOR AND SENSOR DYNAMICS
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ABSTRACT

This paper analyzes the performance of output feedback controllers for a class of
uncertain time-varying nonlinear systems in the presence of unmodeled actuator and
sensor dynamics. In particular, on the basis of known nominal model and bounds on
the uncertainties, and initially neglecting actuator and sensor dynamics, high-gain out-
put feedback schemes are determined which force the output to track a given signal.
Then, the effects of actuator and sensor dynamics are investigated on the performance
of the tracking system.

KEY WORDS: Nonlinear systems, Output feedback, Uncertain systems, Singular
perturbations.

1. INTRODUCTION

Recently, major progress has been made in the analysis and design of nonlinear
control systems. Different approaches have been proposed (Utkin, [1], [2], Corless and
Leitmann [171, Hunt et al. [51, Su et al. [61, Glad [221, [231, Bauman and Rugh [191,
DeCarlo et al. [10], Isidori [151, Walcott and Zak [8], Steinberg and Corless [12]). An
important property of control systems is their robustness, i.e. the ability of the system
to retain certain performance measures in the presence of perturbations. Or in other
words; "the ability of a control system to function even when the actual system differs
from the model used for designing the controller" (Glad 122]). The system model used
by the designer may differ from the controlled system because of model uncertainties or
neglected high-frequency dynamics. Specifically, when devising a model of the plant,
small time constants corresponding to actuator and/or sensor dynamics are neglected.
Furthermore, it is often impossible to measure directly all the components of the state
or output vectors. In order to restore them additional sensors are used which lead to
motions different from the motions predicted by the plant model.
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The problem of controUlng a system in the presence of unmodeled actuator and
sensor dynamics has received recently the attention of many researchers. In particular
Bondarev et al. [71, and Zak et al. [251 studied the influence of neglected high-frequency
dynamics on the variable structure control systems. Leitmann et al. [9 studied the
robustness with respect to neglected actuator and sensor dynamics of state feedback
controllers for uncertain systems. Glad [23] considered the sensitivity of the system to
variations in gain at the input, corresponding to nonideal behavior of the actuators.
The problem of the robustness of various output feedback control algorithms based on a
reduced-order model with neglected high-frequency dynamics was investigated by
O'Reilly [181 and Vostrikov et al. [241 using singular perturbation techniques.

The purpose of this paper is to analyze the effect of neglected high-frequency
dynamics on various output feedback control designs for nonlinear uncertain systems.
Our approach is inspired by Marino [4], Utkin [2], and Vostrikov et al. [241. The tools
we use in this paper are the high-gain output feedback and Lie derivatives.

The paper is organized as follows. Section 2 is devoted to the description of the
class of nonlinear systems we consider along with the problem statement. The next sec-
tion presents some background material and preliminary results. The following sections
discuss different high-gain output feedback control schemes. Then the effects on the
performance of the closed-loop system of unmodeled actuator and sensor dynamics are
investigated. Finally, Section 6 contains concluding remarks.

2. PROBLEM STATEMENT

In this paper we consider a class of dynamical systems governed by the following
equations

i(t) - f(t,x) + G(t,x) [u(t) + .(tx)j
y(t) - h(x), (2.1)

where xE]R", uER , yERm, and (.) :xlR5 ---R m is the lumped uncertain element.
We assume that the norm of the uncertain element is bounded by a known bounded

nonnegative function; that is for all (t,x)ERx

(j (t'x)jj -< p(t,x)

where p(.) : mlOR-R., and fI*II is the Euclidean norm i.e., j(xIi - (j [xi [2)1/2.
i-i

Note that the only information assumed about the uncertain vector is its maximum
possible energy. If the uncertainties f(t,x) enter structurally Into the state equations as
in (2.1) then we say that the matching condition is satialed [17]..

The function f(.) is a continuous single-valued vector-function and G(.) is a con-
tinuous single-valued matrix function with rank G - m. Furthermore, we require that
f(t,0) - 0 for all t. The output vector function h(.) is continuously differentiable and

/ '



61

h(O) -0.
In this paper we analyze two different output feedback control strategies. The first

is the high-gain output feedback stabilization scheme. In the synthesis of this control
law we utilize a nonlinear transformation which brings the original system into the
"regular form" ([201) from where the design is performed.

The aim of the second control law is to ensure the tracking property of the output
of some given reference signal.

For both control strategies we will investigate the effects of the unmodeled actuator
and sensor dynamics on the performance of the closed-loop systems.

3. PREM~UNARY RESULTS

LIE DERIVATIVES

TIme-Invariant Lie Derivatives

Let f: IR' -R' and g- 1R -R' be C' vector fields on IRI . The Lie bracket is
defined by

where -2L and - are the Jacobian matrices of f and g, respectively. Using an alterna-
o&c cIc

tive notation, one can represent the Lie bracket as follows

Ikf,gj - (adt fg)

Also, define

(adkf,g) -[r,(ad'-lfg)l

where, by definition

(adof,g) - g.

Next, consider a C' function h : R'--'B. Let dh - VTh be the derivative of h
with respect to x, where 17h is the gradient of h with respect to x. Then the Lie deriva-
tive of h with respect to f is defined by

Lfh - Ld~h) - <dh,f> - VTh-f.

The following notation is employed throughout this paper
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L?h - h

Ljh - Lfh

LI'h f L(L-h).

The Lie derivative of dh with respect to the vector field f is deqned by

Lf (dh) - hTf +(h

One may easily verify that these three Lie derivatives obey the following so-called Leib-
nitz formula

Llf,gih - <dh,[fg> -LgLfh -LfLgh.

Furthermore, the following relation is valid

dLf h - Lf (dh).

Time-Varying Lie Derivatives

Suppose now f and g are C' time-varying vector fields, i.e. f(-) - Rx]R' R',
g(-) : ]RxlR'-R. Then the time-varying Lie bracket is defined by

(r, f, g) (ad'f, g) - a
Olt

and

where

(r'f'g) a g.

Next consider a C' function h(-) : lRx]R'-R. Then the time-varying Lie derivative
of h with respect to f is defined by

Zfh -Yf(h) !!Lfh + a
at

We define

X4h A h ,

21 h j Z k2 I h) - Lf (2f-h) +

The time-varying Lie derivative of dh with respect to the time-varying vector field f is
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defined by

fZdh fT  + (d) + (,:)

Note that

d2fh - t(dh).

One may verify that the above defined time-varying Lie derivatives obey the following
formula

< dl, (r, f,g) >
-- L(rlf,C)h - LgLfh - LfL~h - LAh

at

SLgifh - ZfLgh.

MARKOV PARAMETERS

The affne Markov parameters are defined as the elements of the matrix resulting
from the product of the observability and controllability matrices cP an affine nonlinear
system described by the following equations

x - f(t,x) + g 1(t,x)ul + ... + gm(t,x)uM

y - h(x) -!h 1(x) , ... , hp(X)IT J (3.1)

where f, gi, ... , g,- 1RAdnR -IR' and h : IR' -- R p are C' vector fields.

The observability matrix of such a system is defined by the following (np)xn
matrix
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dhi

dhp

2Z(dh1 )

(mZdh,) (3.2)

F-'1 (dhl)

The controllability matrix is defined by the following ax(nm) matrix

(3.3)

So the elements of the matrix "~ have the form

(21 (dh3)) (V f,g.) - <2(dh,), (rf,g.)>

- <d2hj , Pg)

- L(rfg c. Zih (3.4)

for i~j ) ,.,-,a=1..m, 3Mt 1....,p, and are referred to as the affine Markov
parameters.

Theorem 3.1: If there exist Constants ek, k - 0.1,... such that the Markov parameters
satisfy

L(rf~g.) 2fhg - ck - ci.. 1  (3.5)

then

L~r~~g.-?j3 - 1621*ji -coalst - ci+1

Proof: Repeated application of the definitions of Lie derivativres and condition (3.3)
yields the following

Lf~- L.2rhJ )2 ffhp
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"L(r '-f.s.)2 1 h9 - -fti+j-

Continuing in this manner we find that

- L&_r. fhe - const cij

For further information about Markov parameters for nonlinear time-invariant sys-
tems the reader is referred to [il] and [14).

Consider now a plant modeled by (3.1), where p - m, and the high gain control
law

u - k s(x) (3.6)
where k > 0 is a scalar and the function s(-) :R--R is continuously differentiable.
Assume that detSG # 0, where

S-- , and G =g9,g2-. 1

Then we have

Theorem 3.2 (!21, 21):

If
(i) the functions f(t,x), G(t,x)s(x), and fo = f - G(SG) - Sf satisfy Lipschitz condi-

tions for all x

(ii) the system

ds - (SG)s

dt

is uniformly exponentially stable, that is there exist positive A - 1 and c such
that

I1s(x)JI < Alls(x(O))lle - *t ,

then for any positive A, and T there exists a positive ko such that
IIs(x(t))II < a

for k > k0 and to + tj < t < T on the solutions of (3.1) with the control
u -ks(x), and lir t1 -0.

k go
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4. TEE OUTPUT REGULATION PROBLEM

Consider the nominal system, that is the system without uncertainty as described
by

x - f(t,x) + G(t,x)uI

y - J (4.1)

First we define the decoupling indices for the system (4.1). We consider each of the
m output channels separately. So considering the first output channel we form the fol-
lkwing row vector which we will call the decoupling vector for channel one

[Lg,h,, Lg~h,, ... ,gLg.hl] • (4.2)

If this row vector is not identically equal to zero, then we define the decoupling index of
the first channel to be zero, or d, - 0.

However, if the row vector is identically equal to zero we proceed to form the fol-
lowing decoupling vector

JLCZ,-fh,, Lg=,h, .. Lg .- fhlj

Again we determine if it is identically equal to zero, or not. If it is not we stop and
define d, = 1. If it is zero we proceed further by forming

2L14hi, L g, L 2h1

and so on.

So the decoupling index of channel 1, is equal to the smallest integer d1 for which
the decoupling vector,

d''

is not identically equal to zero.

Similar procedure for the other output channels yields a set of m parameters, di for
- 1,2,...m.

The decoupling indices are an indication of what the lowest derivative of each out-

put channel needs to be utilized for an output control to be effective. By taking the
time derivative of the ik output channel we obtain

i h. f + .

hence

i Lrhi + [Lg,hi , ... , L.hi u.

Thus if L5, hi, L52h, Lg0hi - [01 then u has no effect on the output yi, so we

need to'form Yj where
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yi -i 2hi + [Lt 1 1, 2i L.2f hi u.

Again if [L 1  hj, L52Zh 1 , ... , L-fhi] - [0], then u has no effect on the output

and we need to take higher derivatives of yi in a similar fashion as before.

Now that we have obtained the set of decoupling indices, we consider all the out-

put channels together to form the following matrix

N - : (4.3)

We will assume that the matrix N is nonsingular and we will further assume that

the Markov parameters of the system (4.1) are constant. Hence by the virtue of

Theorem 3.1 the matrix N is constant.

With the N matrix constant and nonsingular, we proceed to construct a high-gain

output control which will regulate the output to zero.

We will consider two cases. The first case is when all decoupling indices are equal

to zero, and the second case when some, or all, decoupling indices are not equal to zero.

For a rigorous treatment of the decoupling problem for nonlinear time-invariant
systems the reader is referred to [31, :141, rlB!.

Case 1: For this case the N matrix will have the following form

rL9Zh, ... L9g,,,i1 8

N'I = -- =HG (4.4)
h, ... L ,,h OJ

8h
where --- is the Jacobian matrix of h and G -

If we employ the following diffeomorphic state variable transformation

II
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01 (t, X)

2- 6 2(t,x)

= h,(x) (4.5)

i = hm(x),

where the o:'s are chosen such that

L5 1 - 0, j =- 1,...,m for all i = 1,...,n-m, (4.6)

then the system (2.1) in the new coordinates will have the followiL; form

(4.7a)

Xn..rni h1 1 [L1 1h, ... L9.,h1

L= I + : (u + . (4.7b)

- L bfhrn I [LCh, . Lchn I

We will now employ the high gain output feedback control as given by

u K'h(x) (4.8)

where E is a small constant and K' is an mxm constant matrix. Under the influence of

this control, the system equations become

{i_ -- (4.9a'i

" ' "==- ='" ''"' .. ammsli ,., i n i"~-r
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X-m+I L hI
• + -NK h(x) + N . (4.9b)

Lthm 
f

We see that the application of this control decouples the system into the slow and

fast subsystems. The dynamics of the slq'w subsystem are given by

X 1m [f (PIm

1 (4.10)

y h x n I +1 0,

whereas by invoking the following change in the time variable,

L - f7 , (4.11)

the equations c scribing the dynamics of the fast system are given by

d-- + N K (x) + EN , (4.12)

and for sufficiently small e, the above equations simplify to

dI

dr N K'(x) -NK PCI. (4.13)

Observing that the part of our transformation in (4.5) is y - [i5-.- ... ,

we can rewrite the above equation as

dv
- N K~y• (4.14)

Note that by an appropriate choice of the matrix IK the fast subsystem can be

made uniformly exponentially stable. Thus if J is the required uniformly exponentially

stable matrix then,
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- N-1 J, (4.15)

and K' can be evaluated since N is assumed to be nonsingular.
By invoking Theorem 3.2 we see that the stability of the fast subsystem will result

in the trajectories of the system (4.7) converging to the A-vicinity of the manifold
y(x) - 0. Thus the output is regulated to zero. Within the A-vicinity of the manifold,

the system will be governed by equation (4.10) which represents the dynamics of the
slow subsystem. From equation (4.10), we notice that we do not have any influence on

the internal stability of the slow subsystem when the output is regulated to zero. We

assume however that the slow subsystem is asymptotically stable. The stability of the
slow subsystem is a structural property of the plant. This subject requires further

research.

Although Theorem 3.2 was stated for nonlinear systems without uncertainties, it
also applies to our particular case. This is because the uncertainties in the system (2.1)
are bounded by a known bounded function.

Case 21 Let us first reorder the output channels so that they are ordered in ascending
values of their decoupling indices. Thus y, is assigned to the channel with the smallest

di, and y. to the one with the largest di .

We then employ the following diffeomorphic state variable transformation

61(t,x)

D2 (t, x)

hm(x)

- d,-I

2f" h

Sd'hm

where the c,'s are chosen such that

Lg, =,0 j -1,-.,m

The system (2.1) in the new coordinates will have the following form
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+ N( 
(4.17)

where C- i - ,  .IR, and N is given by (4.3). The existence conditions of the
transformation (4.16) can be deduced from the results of [5], [201, [26], [27].

Note that
-' -yad ) i- 1, ...,Im I

where ()() denotes the j-th derivative of ( ) with respect to t. The control law will have
the form

(d,)
k1 y, + + kid,,IYI

(d.) (4.18)k (d,,, md)/

km~jym + .. + kmd ~

In the new coordinates the closed-loop system (4.17), (4.18) is decoupled into the slow

and fast subsystems. The slow subsystem is governed by the equations

y ,. (4.19)

As in the previous case, we have no influence on the stability of the slow subsystem.
Therefore for the controller to be effective we have to assume that the system (2.1)
without uncertainties is asymptotically stable when restricted to the manifold y - 0
which is equivalent to requirement that the system (4.19) is asymptotically stable.

As with regard to the fast subsystem we utilize.a change in the time variable
t = e to obtain

y(d11) k,ly 1 + + (diy'

i ( I } (f2 + Nf) + (d . (4.20)S .(d')

Ly m k + -+ km.d, 1 ym

If we now choose kij in such a way that the simplified fast subsystem



72

1. (dj)

y'd141) kj, 1y1 + + kj,dI+yd)

, _+I) km~lyk +,.. + km, . y-)

is uniformly exponentially stable then by the virtue of Theorem (3.1) the closed-loop
system is asymptotically stable.

The above output feedback stabilization schemes are quite restrictive. Their

effectiveness depends on the stability of the nominal systein (i - f + Gu) when res-

tricted to the manifold y - h(x) - 0. In the followinc section we provide a more
effective control scheme. Before that however, we will analyze the effect of unmodeled

actuator dynamics on the performance of the closed-loop systrm with the high-gain out-
put feedbacks.

SYSTEMS WITH FAST UNMODELED MOTIONS

We now investigate the effects of the introduction of uncertain actuator dynamics

on the performance of the system (2.1) with high gain output feedback controllers.

Case 1: We will assume that the actuator dynamics is modeled by the following equa-

tion

k = Lr+ME, u=-Nr+RE', U- cK'y, (4.21)

where rER q, q m, L is a Hurwitz matrix, A. is a positive constant that reflects the

"fastness" of the actuator, the matrices L, M. R, and N satisfy the condition

R - .L-1M = I,, and c-- is a large constant.

Proposition 4.1: If the matrix L is Hurwitz, (the fast subsystem descr'bed by (4.21) is

exponentially stable) then as I. approaches 0, the motion of the slow subsystem is
described by (2.1) with u - =- c K~y.

Proof- The fast subsystem is described by (4.21). Replacing U by its value yields

Ai - Lr + cMK y• (4.22)

Let r - jIt, hence (4.22) becomes

dr
-Lr +cMfCy. (4.23)

Since L is a Hurwitz matrix, then as r approaches infinity we have y - constant and
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lim r - cL'MKy,

hence

u Nr + c y - NL-IM + RicIey Ky. (4.24)

The expression for u as per (4.24) can also be found by setting A - 0. Hence the slow

subsystem is described by (2.1) and (4.24).
0

Case 2: If the actuator dynamics for this ease is also described by (4.21) with

(dy ) 1
= cN' !'

K,. 7 . + + (,d. J

then using a similar argument as in the previous case we conclude that the slow subsys-

tem is described by (2.1) with u u.

In conclusion, for a sufficiently fast actuator the proposed control schemes will sta-
bilize the output.

5. THE TRACKING PROBLEM

Our goal now is to design a controller such that the output of the system (2.1) will

track a given reference signal.

A sufficient condition for the output y to track the reference signal $(t) is

d. y - t)j =V:y - (t)- aF(y, t)) (5.1)
dt

where V is a Hurwitz inatrix. If Lt) = constant, then (5.1) becomes y - V'y -

We require that the closed-loop system (2.1) be asymptotically stable with respect

to the time-varying manifold

fl -{x: h(x(t)) - tt) -y(t) -$t) -0}.

The projection of the overall system on this manifold is

(t) - i(t) --Hi - L t)

- Hf + HG(u + ) - i(t).

Using equation (5.1) and solving for u, we obtain the following control law

- (HG)-' [F(y, <t)) - Hf + i(t)] - . (5.2)

In order to implement the control law (5.2), we would have to have the exact knowledge
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of the uncertain vector (t,x). Hence this control strategy is impractical. In what fol-
lows we propose a practical control algorithm which approximates the controller (5.2).

Consider the following control strategy

u - KV(y - L-t)) - (i - 1(t)), (5.3)

where K is the matrix of gain coefficients, K - WK0 , and c is a scalar large factor. At

the present time, we will assume that j can be measured exactly. Later, we will investi-

gate the case in which j is measured by a sensor.

To analyse the behavior of the system (2.1) with the control law (5.3) in the pres-
ence of unmodeled actuator and sensor dynamics we will employ the arguments of Vos-
trikov et al. [241 used for systems without uncertainties.

Along the trajectories of the motion of the dynamical system (2.1), is given by

, Hf(t,x) + HG(t,x)(u + (t,x)) . (5.4)

Propc.ition 5.1: If det(I + cHGK ° ) # 0, and det(HG) # 0, then

(a) clim - ly - $ft)I = F(y, (t)),
(b) lir u = (HG)- 1 [F(y,L$t)) - Hf - - kt) - HG [.

€C-0

Proof: In what follows we shall utilize the arguments of Vostrikov et al. 241.

We first prove part (a). Recall that

- Hi, i - f - G(K[F - (' - ,)J + ),
thus, we have

, -Hf + HGK(F.- + --Li) - HG ,

regrouping the Y* terms leads to

(I + HGK)y - Hf + HGK(F +-) + HG ,

Hence, for K - cK*, we have

j - (I + cHGK)- 1 (Hf + HGf) + (I + cHGK*)-'cHGKO(F + LA.

Taking lir , the first term approaches zero, while the second term approaches F + V.

therefore

lim ' - F + b.

We now prove part (b).
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We have

u - K F -(j -Hf + HG(u + ),
therefore

u -K[F - Hf - HG(u + 0) + sj

Regrouping the u terms leads to

(I + KHG)u - K[F - Hf - HG + i,

hence, for K - cK*, we have

u - (I + cKHG)-'cK [F - Hf - HG + ~j.
Thus

lir u - (HG)-' [F - Hf - HG + L'j•

SYSTEMS WITH FAST UNMODELED MOTIONS
We will now investigate the effects of the neglected actuator dynamics on the per-

formance of the system (2.1) with the control law (5.3).

Suppose that the actuator dynamics is modeled by the following equation

ALF - Lr + MU, u -- Nr, U -K(F - + ,) , (5.5)

where rE]R q , q m, L is a Hurwitz matrix, p. is a positive constant that reflects the
"fastness" of these dynamics, and the matrices L, M, N satisfy the condition

- NL-NM - I.

The system described by (2.1), and (5.5) may be studied by the methods of the

theory of differential equations with small parameters in some of the derivatives [241.

For such systems, the overall motion can be decoupled into the fast and slow com-
ponents [211 '24[. The method of decoupling motions is advantageous in systems involv-

ing high-gain feedback and/or singular perturbations. The main idea behind the theory

is to decouple the system into two subsystems of lower dimensionality. The equations

of the slow motions and the convergence conditions for the fast motions are examined in

[211 and 1241.

In the following proposition we investigate the effects of the actuator dynamics on

the performance of the system (2.1).
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Proposition 5.2: If the matrix (L - MFCHGN) is a Hurwitz matrix, then as c-c the

motion of the slow subsystem will be described by (2.1) with u - a.

Proof: As g -- O, the slow subsystem is described by the following equations

~i-f+G(u+0, u -i-K(F.-j + i).

We now examine the condition for the stability of the fast subsystem.

The fast subsystem is described by equation (5.5). Replacing u" by its value yields

i - Lr + M (F - H" - HGNr - HG + i). (5.6)

Let r - u.'1t, hence equation (5.5) becomes

dr

where x - constant, t - constant.

If the matrix (L - MKlHGN) is Hurwitz, then

lim r =-(L - MHGN)-'MK(F -H - HG + l,).

Applying twice the following matrix identity know as the matrix inversion em.a

(All + A 1 2 A 22 A 2 )-' - A-l' - A-'A 1 2 (AtAf-'A1 2 + 2.2j') A--'

and the condition - NL-1M - I. we obtain

lim N(L -vWK(cHG)N)- cMX0

=lim cK*- I,, (1° - (cHG)-')-'K°l
C-=

= - (HG)-'. (5.)

Hence

lim u= lir Nr =(HG) - 'F - Hf + -.

INFLUENCE OF SENSOR DYNA.NUCS

To implement the control law (5.3), the vector ' has to be measured by a sensor

(approximate differentiator). Suppose that the approximate differentiator is modeled by

the following equation
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,i - As + Dh(x)(

j-Pz, I

where zEjq, kEIR , q I m, and p, is a "small" parameter that reflects the "fastness"
of the approximate differentiator, j is the estimate of y, A is a Hurwitz matrix, and the

matrices P, A, and D satisfy the condition - PA-D - L We shall also use instead of
in the control law (5.3). Therefore, we have

P i -,u;"P(Az + Dh(x)).

Again, to examine the system (2.1) with the control strategy (5.3) and the approxi-
mate differentiator (5.9), we shall refer to the theory of decoupling motions ([211, [24j).

If we denote

s - Az + Dh(x)-- i, (5.10)

then the method of decoupling motions described in (21] is suitable for the resulting sys-
tem. We now examine the condition for the convergence of the fast motions to the

manifold s - 0.

The projection of the overall system on the manifold s is given by

-Ai +D,

-Ai +DHi

- Au4's + DH[f + G(u + )].

Replacing u by its value yields

s (A - DGHI<P)A;s + DH(f + GKF + GKi' + Ge). (5.11)

If we now multiply both sides of the above equation by p, and let t - .,, we get

ds ds
- , - (A - DHGKP)s + ADH(f + GIGF + G + GK),

where x = constant, t = constant. If the matrix [A - DHGXP] is Hurwitz then

Jr s - - A,1A - DHGKPJ- 1 [DH" + DHGK(F + i) + DHGC[.
r-0

Using twice the matrix inversion lemma and the condition - PA-D -, I we obtain

lim (A - DHGKP) - l
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- lir P-P(A - D(eHG)KOP) -

- lir P- [I - (IV + (cHG)-)-KO IPA - '

- + P- 1 (HGK)-PA-1 .

Hence

1rn s - ,P-(F + 1), (5.12)
r cc

or j.Ps - F + L,, which gives

To derive the equation of the slow motions, we let p, equal to zero. Hence using

equation (5.9) we get
z -, - A-'Dh(k) ,

j - Pz = - PA-Dh(x).

Using the fact that - PA-'D - I, we obtain

=y.

Hence the equation of the slow motions is given by

= f + Gru + ]
where

u = K(F(j, u) - y + I) - K(F(y,u) - y + 1).

Remark 5.1: Note that for large but fSnite values of the K-matrix, the value of the
control signal u remains finite (as shown in Proposition 5.1 part (b)).

INFLUENCE OF NOISE

We now investigate the influence of noise on the behavior of the system (2.1) with

the control law (5.3). Assume that the output vector y is corrupted by the continuously

differentiable noise r(t), thus

- y + r(t), (5.13)

We now find values for &a, , and u. We assume that det(I + HGK) # 0.

-.
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(a) Recall

using equation (5.13) we get

j- H[( + G(K(F - + -i- ) + C11

Solving for ywe obtain

j (I + HGK)' [Hf + HGIF - HGKi +~ HGKI' + HG.CI.(.4

(b) For the controller u,

- K(F - y- i + L),

substituting ~'=Hf + HGu + HG , we get

u - K(F - Hf - HGu - HG - i + L,),

solving for u yields

u -(I + KHG)'K(F -Hf - i-HGI' + i').(13

(c) The derivative of the output vector with noise is

y f + HGu + HG ,

using u - K(F - + ')we obtain

R -f + HGK(F-+ -L4) + HG ,

solving for yields

=(1 + HGK)-'(HI + HGKF + HG~c + HGKi-').(16

In the limit the equations (5.14), (5.15), and (5.16) become

(i) - F - + i,

In part (i) above we can see that for an actual system, in the li miting case, the noise r(I)
is fully "repeated" in the output. As for the controller u. apart from the "basic' control
law u - (HG)-'(F - Hf - HG% + ii), we have an additional component due to the
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additive noise.

6. CONCLUDING REMARKS

In this paper, we discussed the robustness of high-gain output feedback control
designs for nonlinear time-varying uncertain models to unmodeled high-frequency
dynamics. Our approach followed on the papers by Vostrikov et al. 124], and Utkin [2].

Two different control strategies were analyzed. The first one was concerned with
the output regulation. To facilitate the synthesis we utilized a diffeomorphic state vari-
able transformation of the given model into the regular form. This regular form was
found very useful in the design. However the problem of constructing a transformation
which brings the system into this form requires further investigation.

The aim of the second output feedback control design was to ensure the tr: 'g
by the output of a given reference signal. The p-oposed control algorithm involved the
output vector derivative. Following Vostrikov et al. [24!, we suggested a sensor estimat-
ing the output derivative. Oije may argue that using differentiating filters is impracti-
cal. However one has to recognize that the essential information about a given process
has significant spectral components only at low frequencies [13 p. 227[. Hence if we use
an approximate differentiator which is sufficiently fast then the system will hardly feel
the difference between the ideal and approximate differentiators. Thus, this approxi-
mate differentiator acts as an ideal one and its gain levels off or decreases at higher fre-
quencies. In this paper we attempted to prove that the approximate differentiator is a
viable tool in the synthesis of control algorithms.
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CONTROL OF UNCERTAIN DYNAMICAL SYSTEMS
SIMULTANEOUS STABILIZATION PROBLEMS

Bijoy K. GHOSH

Washington University

Saint-Louis, Missouri 63130, U.S.A.

In the last decade, significant progress have been witnessed in the

c4esign of a robust compensator for a family of multi input multi output

systems. The main objective is to construct a dynamic compensator which

simultaneously stabilizes a family of plants and satisfies various other
design restrictions. The motivation is to extend various classically well-

known compensator design methods for a single plant to a family of plants.

Such a family of plants may occur as a result of parameter uncertainty or

parameter variation in the plants and the goal is to construct a compensator

which is insensitive to these parametric changes.

To begin with, we consider the "simultaneous stabilization problem"

described as follows:

Given a r tuple G1.... 0r of pxm proper transfer functions, does there

exist a compensator .(s) such that the closed loop systems Gl(r +

KG1 ]......, Gr[I + KGr]l are internally stable?

This problem arises in reliable system design where G2... , Gr represent a

plant G1 operating in various modes of failure and K(s) is a non-switching

stabilizing compensator. It also arises in the stability analysis and

design of a plant which can be switched into various operating modes. It

has been shown in 11] that

The integer max(mp) is the critical number of plants below which the

simultaneous stabilization problem is solvable almost always i.e.

generically (in a suitable topology) by a compensator of Nc~illan degree q.

where qo is the smallest integer satisfying

r
qotmaz(mrp) + 1-4 X ni -max(m.p) (1)i qo~ ra ~re p )  l-r] l ll

4I

I
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In the above formula, n. is the HcMillan degree of the plant Gi for

-.. r respectively. In fact, if min(m,p) - 1 than the formula (1) also

computes the minimum order of the generically stabilizing compensator. It

may be remarked that the minimum order compensator problem is a classically

unsolved problem and in (1] the problem is solved for the special case

min(m,p) - 1.

However, beyond saying that the simultaneous stabilization problem is

solvable for certain classes, it is of great interest to parameterize all

those cases where the problem is indeed solvable. Moreover, for ease of

computation, such a parameterization has to be explicit. This question is

parameterizing the set of r tuples of plants (G1 ,.,Gr) is addressed in

[2] and one of his main results is a considerable conceptual breakthrough,

since to check simultaneous stabilizability using this result one only needs

to know which path conponent (G1 ..... Gr) lies in; i.e. the problem is

reduced to the problem of analyzing big pieces of the space of r tuples of

systems rather than individual r-tuples. Similar results on simultaneous

stabilization and pole assignment for a parameterized family of plants by a

parameterized family of compensators is also obtained by Dr. Chosh and is

reported in [2]. To my knowledge, use of semialgebraic geometric methods

for the purpose of parameterizing stabilizable or unstabilizable path

components has been done for the first time in [2].

Considering more than max(m,p) plants for the purpose of simultaneous

stabilization (is quite a reasonable objective in robust system design), but

unfortunately in particular in [3] it is shown that, "Pairs of

simultaneously stabilizable single input single output plants of bounded

McMillan degree may not have simultaneously stabilizing compensators of

apriori bounded McMillan degree."

It is shown by Dr. Ghosh in 13] that there exists a sequence of pairs of

simultaneously stabilizable plants of degree one for which the minimum

degree of the stabilizing compensator is arbitrarily large. A consequence

of the above proposition is that a simultaneously stabilizing compensator

cannot be constructed by solving a set of simultaneous equatiot.s or

inequalities in the coefficients of a parameterized family of compensators

of a given McMillan degree. Stated differently, if r > max(m,p), the

/
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classically known algebraic and semialgebraic geometric methods are

inapplicable since the compensator space is not finfte dimensional and in

particular, any numerical computation of the associated compensator needs to

use a more appropriate transcendental method proposed by Dr. Chosh in (4].

Also in (4] a new 'partial pole placement' problem is proposed which arises

from a more practical design requirement to place an arbitrary number of

self conjugate poles in the closed loop while restricting the remaining

poles in the region of stability. The following result is shown:

The problem of simultaneously stabilizing three single input single

output plants chosen generically is equivalent to the problem of partially

pole placing one single input single output plant by a stable minimum phase

compensator.

Use and application of a stable, minimum phase compensator is introduced in

[4] for the first time. Furthermorea folklore example

s-7 s-2 s-6
s-4.6 2s-2.6 4.8s-24.6

of a triplet of simultaneously unstabilizable plants that are stabilizable

in pairs is constructed by Dr. Ghosh [4]. These results to multi input

multi output problems are further generalized in (4] to show that

"If r min(m,p) s m+p, the simultaneous partial pole assignment problem

may be analyzed via interpolation methods and one obtains a semialgebraic

parameterization of the partially pole assignable r-tuples of plants. If r

min(m,p) > m+p, the simultaneous partial pole assignment problem is to be

analyzed via transcendental methods introduced in [4]."

The above result, therefore, characterizes the "degree of difficulty" and in

particular asserts the existence of certain cases (say for example M-p, rx3)

when interpolation methods are inapplicable in the simultaneous

stabilization problem.

We have seen so far that transcendental methods are useful when the

degree of the compensators under consideration is not &priori bounded.

Frequently in system identification and control, it is of interest to study

a family of plants for which the McMillan degree is not fixed. In

particular the degree may degenerate to a lower value. Thus rather than
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fixing the McMillan degree of a plant, it is useful to parameterize plants

of McMillan degree : n for some n. We therefore. pose the following

question --

"Parameterize the set 0n of plants of degree S n (possibly as a

semialgebraic subset of an algebraic set) such that every p in 'In has an

open neighborhood N(p) of p in 'n  such that N(p) is simultaneously

stabilizable by a compensator of degree S q for some q."

Note that this question poses robust stabilization as a paraneterization

problem. In (51 an explicit parameterization of On  is obtained as a

subset of IRIP 2n+l for the single input single output systems and in

particular we show that --

"Assume m-p-1, then %n  is a semialgebraic, open, connected and dense

subset of ZRP2n+l.

More surprisingly we show that

"% is a trivial vector bundle over a circle. In particular Qn is

diffeomorphic to S1 x II2n..

The space an has been parameterized for a multi input multi output

plant in [6] as a vector bundle over a Grassmanian. a well known object in

algebraic geometry. We argue that n n and not rat n (the space of

strictly proper single input single output transfer functions of a given

n
degree) or X (the space of pxm transfer functions of degree n) is a

m,p

more natural space for system identification and control. Various

properties of this space has been reported in [8].

The geometry of nn is useful in the study of a structured family of

plants wherein the degree is apriori bounded. In practice, however, one is

I,
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also interested in the study of a family of plants possibly with some

unmodelled dynamics. For example, under the presence of a high frequency

"parasitics" it is unreasonable to asume that the McMillan degree of a

family of plants is bounded by n. In (6) we, therefore, construct the

space % as a direct limit of the spaces 1)1 C 12 C ... where 0. is a

subspace of IR7. Of course two points in 0. can model the same dynamical

system and one therefore considers the quotient space fi, where two points

in 0 are equivalent if they correspond to the same dynamical system.

Various properties of % are being studied. In particular, we show that

in 5. there exists arbitrary small open neighborhood N with the

following property--

There exists a sequence 0, fl.... of plants in N such that the

minimum degree of the stabilizing dynamic compensator for the plants

corresponding to 0 .... increases arbitrarily.

This fact in particular implies that

"There exists p 4E I such that every open neighborhood N of p in

cannot be stabilized even by an adaptive controller of arbitrary large

degree q."

Thus we obtain a major limitation of the adaptive controllers that are

currently of interest in system theory, viz. open neighborhoods of points in

that cannot be robustly stabilizable even by an adaptive controller.

The structure of 1 also enables us to define a hybrid family of plants,

(i.e. a family of plants with structured and unstructured uncertainty). In

particular in (6) we characterize (for the first time in the literature)

hybrid families of plants that can be stabilized simultaneously by an

adaptive controller.
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The proposed hybrid parameterization has many advantages over the

currently existing graph parameterization due to Vidyasagar. In fact the

hybrid parameterization is graded by the degree of the dynamical systems and

each one of the graded space is diffeomorphic to an Euclidean space if the

plant is strictly proper. The Euclidean structure is of particular

importance in system identification. Furthermore, the sequence of plants

for example

n
n'(S) 8n+l +

n+2

converges to I as n- in the graph-topology. Thus in graph

parameterization, arbitrary close to a plant of a given degree there exists

plants of arbitrary large degree which is clearly a deficiency from the

point of view of robustness and obtaining an apriori bound on the complexity

of the compensators. Hybrid parameterization does not suffer from these

disadvantages and therefore appears to be a good parameterization for system

identification and adaptive control,

In [7] we study the problem of simultaneous stabilization of a family

F of plants described as follows -

n-1 n-1

F a (g(s): g(s) - [ 1 aisi] / n I bisi + an

i-a i-

7i :i , i-a ...., n-l, deg g(s) - n)

We prove the following rather surprising result

"A necessary and sufficient condition that every plant in F is

simultaneously stabilizable by a feedback gain k is that eight plants in

F (suitably chosen) is simultaneously stabilisable by a feedback gain k."

We find the above result quite surprising. Indeed it asserts the existence

of a suitable family of uncountably many plants, stabilizabilLty of which

can be asserted via the simultaneous stabilization problem of a finite

number of plants. This we consider is a major conceptual breakthrough.

The main idea of the preceding paragraph can be generalized to include

dynamic compensation as well. In fact one can obtain a sufficient condition

/
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which can be made asymptotically necessary by increasing the computational

complexity of the algorithm. Roughly speaking one therefore concludes the

existence of a computational technique to construct a robust compensator

which can be asymptotically improved by considering increased computational

load. This in my view is a computational breakthrough and in particular

such a sequence of algorithms did not exist in the literature previously.

For the purpose of constructing a compensator with an &priori bounded
HcHillan degree it is important to consider to following problem.

"Given a family F of linear dynamical systems that can be stabilized

simultaneously by a fixed non-switching compensator. Does there exist an

apriori bound on the degree of the compensator which simultaneously

stabilizes F."

In general the above problem is unsolved. However for a i parameter

family of plant we have a surprising result. Let x1 (s)/yi(s) and

x2 (s)/y 2 (s) be a pair of proper but not strictly proper plants. Consider a

1 parameter family F of plants described as follows

F - (gj(s): ga(s) - [1x 1 + (l-A)x2 ]/[Xy1 + (1-A)y2]

A E (0, 11, deg gX(s) Sn n V A).

Let al ..... at denote the zeros of xly2 - x2y1  in the open left half of

the complex plane. Let

b - x 2 /x 1 (a i ) if the multiplicity of a as a common zero of x 2

is :S multiplicity of a i as a common zero of yl' Y2

- y2/yl(ai) otherwise.

for i-1 .. . t, Let s - (a -l)/(aL+l) and zI - (1i)/(.L-1) where

the branch cut for the square root is taken to be the non-positive real

axis. Furthermore let k be the largest real number such that

(1 - k2 ziz/ - t. J-1

is non-negative definite. The main result is now described an follows

I
/}
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"The following three statements are equivalent.

1. F is simultaneously stabilizable by some dynamic compensator.

2. F is simultaneously stabilizable by some dynamic compensator of

degree s 3n-2.
3. k > 1

We find that the above result is quite surprising. In fact, where as

the conjecture - "pairs of simultaneoulsy stabilizable plants of bounded

McMillan degree have simultaneously stabilizing compensators of bounded

McMillan degree" - is false, the conjecture that "simultaneously

stabilizable linear 1-parameter family of plants of bounded McMillan degree

have simultaneously stabilizing compensators of bounded McMillan degree" is

indeed true. Of course it is unknown if similar results would continue to

be true for multiparameter family of plants. It appears however, in view of

the above result, that the problem of stabilizing a discrete r-tuple of

plants (in particular a pair of plants) simultaneously is a much harder

problem to solve compared to simultaneously stabilizing a continuous family

of plants. This fact indeed appears to be quite contrary to our original

expectation - in fact the problem of simultaneous stabilization of a pair of

plants was originally used with an idea of simplifying the robust

stabilization problem of a family of plants.

In order to arbitrary tune the closed loop frequencies of a plant, it

is necessary to consider the simultaneous pole assignment problem. In [6]

we analyze the pole placement problem as an intersection problem and apply

Schubert enumerative calculus to compute (under appropriate cases) the

number of complex dynamic compensators that would place the closed loop

poles of a set of r-plants in a given set of self-conjugate complex numbers.

We compactify the space of compensators and define a set of points known as

'base locus' and a set of points known as 'critical points.' Roughly

speaking, we assert in [6] that a compensator has to avoid the base locus

and the critical points for otherwise the closed loop response of the

control system would either be sensitive or would fail to be robust with

respect to changes in the parameters. An explicit parameterization of these

points also open up some new restrictions in the compensator design problem

previously unknown in system theory.



91

To susarize, we maintain that the use of semialgebraic geometric,

algebraic geometric and transcendental methods are three distinct

foundational techniques that have been applied in robust system design.

Extensions of these methods to parameterization, design, identification

problems, and adaptive control would be useful and are currently being

explored. These techniques are also being extended to nonlinear and time
varying systems.
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ROBUST MODEL TRACKING FOR A CLASS OF SINGULARLY PERTURBED

NONLINEAR SYSTEMS VIA COMPOSITE CONTROL

F. Garofalo and L. Glielmo

Dipartimento di Informatica e Sistemistica
Universita' degli Studi di Napoli

1, Introduction

Typical problems encountered in the design cf a control system are the

presence of parameter uncertainties and the coexistence of slow and

fast dynamics in the plant to be controlled. When the uncertainties are

described assigning their range of variation and these variations

belongs to appropriate subspaces, the so called deterministic control

of uncertain systems (Leitmann, 1980; Corless-Leitmann, 1981)

represents an useful tool for the design of controllers capable of

guaranteeing certain performance no matter what the realization of the

uncertainties is. The rigorous treatment of systems with two-time scale

behavior can be done utilizing singular perturbation theory (Kokotovic

et al.; 1986). The simultaneous use of these two methods for the

control of uncertain two-time scale systems has recently received some

attention (see Leitmann (this volume) and its references).

In this paper we use a composite control technique in conjunction with

the robust design of controllers for uncertain systems to synthesize a

nonlinear controller which forces a class of two-time scale nonlinear

system to follow a two-time scale linear reference model. The

controllers that are used in the two phases of the design are obtained

via a constructive use of Lyapunov functions (Kalman-Bertram, 1960).

The same Lyapunov functions are successively combined (as suggested by

Saberi-Khalil, 1984) for obcaining the proof of ultimate boundedness of

the model tracking error.
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2. Problem Statement

We consider a two-time scale nonlinear system described by the

following equations

X(t) - A (x(t))x(t)+A 12(x(t))z(t)+B (x(t))u(t)+a (x(t));

(2.la)

Uz(t) - A z(x(t))X(t)+A22 (x(t))z(t)+B (x(t))u(t)+a Z(x(t));

(2.1b)

x(to) - x; (2.1c)

z(t 0 ) - z; (2.1d)

where x(t)Ee. , z(t)eR represent the state of the system, u(t)eR is

the control input, a1(x(t)) and a2 (x(t)) are nonlinear vectors, pE(O,-)

is the singular perturbation parameter, and A (.) and B (.), i-1,2,

j-1,2 are matrices of appropriate dimensions.

The reference model specifying the state behavior expected from the

controlled plant is described by the linear, time-invariant system

x(t) - A x(t)+A1z(t)+g (t); (2.2a)

A A A Apz(t) - 21 x(t)+z(t)+9 C(t); (2.2b)

A Ax(t 0) - 0; (2.2c)

A AZ(t ) - z (2.2d)

A n A tEm A pAwhere x(t)oR n and z(c)eR is the state *and u(t)ERP is a reference

signal.

The following assumptions define the class of nonlinear plants

considered here.

Assumption 1. There exist full rank matrices B , i-1,2 such that, for

all xER5 , the following decomposition holds:
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Bi(x) -i + BE (x), 1-1,2,

a(x) - B di(x), 1-1,2

where E (.) (resp. d,(.)) is a matrix (resp. a vector) of appropriate
dimensions, continuously differentiable with respect to x.

The relationship between the system (2.1) and the reference model

represented by equations (2.2) is precised by the following

assumptions.

Assumption 2. For all xrRn the following equalities hold

A (x)- - BC ij(x) , i,j - 1,2

B -BC ,-1,2

where C (x) are continuously differentiable matrices.
.J

Moreover, the singularly perturbed model is assumed in standard form,

i.e.,

Assumption 3. Matrix is full rank.22

Defining

A -A A A A(2.3)0 11 12 22 21

we hypothesize that
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r

Assumption 4. The pairs (0,B) and (1 2,2 ) are controllable.

Assumption 5. The matrices A j(x), B i(x), a (x), for i-1,2 and j-l,2,

are norm bounded in R. In particular we define

h i supj1C (x)II.
XER

a- sup IIE,(x)I,
xGe

- sup l(d. (x) 1
xGR

Moreover r, < I il,2.

Finally we make the following

Assumption 6. The input reference signals u(-) are such that there

exist finite positive constants

k - sup lU (t)II.
St( [ t ,®)

k - sup 1t1A ,
( teltO, )

A Awhere u,(t) and u (t) represent the slow and the fast time scale
A A t)A A

components of u(t) and u(c)-u(t)+uf(t). Corresponding to these

signals, there exists a positive constant g such that, for pe(0,s) the

state variables of the reference model are uniformly bounded by known

constants:

kA- sup xjj(t)jI,
x te[t ,**)

JAG (0, 0)
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kA- sup Iz(t)1I.z tE(to , ')

PE(O.M)

Remark 1. Assumption 1 is the so called "matching assumption" and

defines the manner in which the nonlinearities enter the plant. The

equalities in Assumption 1 and 2 are the so called "model matching

conditions" and determine the class of model that can be tracked by the

nonlinear system under consideration.

Remark 2. System (2.1) belongs to the class of singularly perturbed

nonlinear system with slow nonlinearities considered by Chow-Kokotovic

(1981). Note, however, that for design purposes, it is not strictly

necessary to know the nonlinearities affecting the system but only a

nominal linear behavior and an evaluation of the maximum deviation from

this behavior as precised in Assumption 5. The composite control design

for the practical stabilization of a similar class of plants is also

considered by Garofalo (to appear).

The objective of the control is to synthesize a feedback control

function guaranteeing that the plant tracks the model to within a
1

bounded neighbourhood of the zero state tracking error.

The procedure we propose for the synthesis of the controller is based

on the separate design of controllers guaranteeing tracking of the

slow approximation and of the the boundary layer approximation of the

reference model. On the basis of these control laws the composite

control is constructed which guarantees tracking of the model for

sufficiently small values of the singular perturbation parameter p.

A formal definition can be found in Corless (;987) or in Appendix 1.

I
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3. Slow Time Scale Control

Following Kokotovic et al. (1986) the slow approximation of the

behavior of the reference model is obtained considering p-0 in (2.2b)

and substituting the resulting value for variable z in (2.2a),

obtaining

A A A A.x (t) - Ax (t)+ou (t), (3.1)

where

- ~ (3.2)
a 1 12 22 2

and the subscript s stands for slow time-scale approximation.

In order to design the controller for tracking the slow component

(3.1) of the reference model, we need an approximation of system (2.1)

in the slow time scale. To this end, we assume that z variable has a
Anominal behavior z which is exactly the one that z variable takes in

the reference model, that is

.z (t) - A x(t)+ z(t)+Bu(t). (3.3)
ii 21 22 2

Correspondingly, the approximate model of slow dynamics neglects the

nominal fast transients, i.e.,
2

x -A (x)x+A (x)z+B (x)u+a(x), (3.4a)
11 a a 12 1 n 1 a a 1 a

0- x+ z+ , (3.4,b)
21 a 22 n 2 U

2Somecimes, when no confusion Is likely to occur, we delete the time

argument of the functions.
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which gives

- A A A-1z r(x.,u) - 21 x + (3.5a)

and

-(x )x +B. (x )u -A (X - U + a (x) (3.5b)
S 0 a a 1 a 12 . 22 2 s I

with
A-IA

A (x ) A (x ) - A (x )A (3.6)
0 S 11 12 . 22 21

Define now the slow time scale tracking error as

SA-x (3.7)

On the basis of (3.1), (3.2), (3.5) and (3.6) the slow time scale

tracking error dynamics can be written as

E -F( + Bu U E I(x )u. + BIHI(x)+K ]f, +

- A A+ B (H (x )x -H (x )u +d (x). (3.8)
1 ) 2 . 1 .)

where F K , K Eam m  is a matrix which makes matrix F
S 0 s. S

asymptotically stable with specified eigenvalues (which is always

possible by virtue of Assumption 4), and

H(x.) - [C (xS) -C (x) , I- (3.9a)
1 s 11 a 12 a2221I

H (x,,)  +C[ +¢:(X. )-' I. (3.9b)

From the knowledge of matrices C (x) and C 1(x) (given in

A AAssumption 2), and matrices 2 21 and 2 we can compute the

following constants
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k sup 11H1(x)+K,. (3. oa)
3

xeB.

kd  sup IIH (x)-H2(x),+dI(X) 1. (3.10b)
1 xER

tue(t ,)

Consider now the nonlinear feedback control law

(Ambrosino-Celentano-Garofalo, 1985; Garofalo-Glielmo, to appear)

-- p E , (3.11a)

where P is the solution of the Lyapunov equation

FTP + P F - -Q , Q positive definite, (3.11b)
5 5 5 s

and

'75 - - -(RIL1) i , >0. (3.n1c)

!IB'P.QJ +6.

This feedback control has the tracking capabilities described in the

next theorem.

Theorem 1. Consider the slow approximation (3.4) of system (2.1)

subject to the feedback control law in (3.11). If constants y, i-l,2,

in (3.11c) are chosen so as to satisfy

kd

2t .- - (3.12a)

I

3NoCIce that the suprema can always be replaced by upper bounds.
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(3.12b).2 1 -PC

then system (3.5b) tracks the slow approximation (3.1) of the reference

model (2.2) to within a spherical neighbourhood of f.-o whose radius

can be made arbitrarily small by a suitable selections of constants

7, i-,2, and/or of constant 6 in (3.11c).

Proof. The proof of the theorem can be found in Appendix 2.

4. Fast Time Scale Control

The boundary layer approximation of the reference model (2.2) is given

by (Kokotovic et al., 1986)

A
fz A A A

di 22 f 2 (4.1

A
where r-t/A, Uf represents the fast component of the reference signal,

and

A -1 A A
-f z - ;(x ,u )-z + 22 ).21x (4.2)

The fast time scale approximation of system (2.1) is obtained

substituting the slow control expression (3.11a) in equation (2.1b) and
A A

approximating variable x (t) by x(t) and x (t) by x(t). So doing we

obtain

pi - A (x)x--.B (x)EiP + A (x)z + B (x)u +a (x), (4.3)
21 52 1. 22 2 f 2

AA
where u is the fast component of the control law and ( - x-.

f

9£|
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Defining

Z. 2 - r(x,u ) - z + +A X+), aZ • Z •(' - ~
f A2 A2 2 u (4.4)

the boundary layer model of the system can be written as

dz
-f - A (xz +B Wxu --YB (X)VrPf
dr" 22 f 2 f s2 1s

A-+B C (x)x+BG (x)u.+B d (x), (4.5)21 22 s 22

with

G Ix W [C 21(X) - C (x)A 2 A 21 (4.6a)

G(x) -[+C (x) - ]. (4.6b)
2 2 22 22 2

The fast time scale tracking error can be defined as

f Af-zf (4.7)

and, on the basis of (4.1) and (4.5), its dynamics can be written as

dC f
d- Ff f + B u +B 2E2(x)u + B2[C 2(x) + Kff+

+ B [G (x) -y (I + E (x))VP,]f
2 1 mP 2 1.

A A A +dx)
+ G[G (xlx + CW(x)z + 2G -(x) Au d W 1 ,

2 1 22 f x 2fu

(4.8)

where F 2 -B K and K ERP = is a matrix which makes matrix Ff 22 Z i f f

asymptotically stable with specified eigenvalues (see Assumption 4).

On the basis of Assumptions 1, 2, 5 and 6, we can evaluate the finite

I
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constants

k "'x' +A A ,A - AA dx"kd sup JI ~) 2(x) z f+ G 2 x/u Cuf + ,x
2 xeR

tet o ,.')

Pe (0, As)
(4.9a)

k Sup JC22(x) + Kf"',(4.9b)
xeR

kgA sup JG (x)- y (I +E (x))iP 1, (4.9c)
xeR

In the fast time scale the variables x and can be considered

constants, and the fast control law we propose for making the boundary

layer system track the boundary layer reference model has the form

pf( ) - -YP 1 (4.10&)
f f ff

where P is the solution of the Lyapunov equation

F7P + P F - -Q Q positive definite, (4.10b)

f f £0 f I

and

7-7 -fB 17 r YIf , 6f>0. (4.10c)

We can state the following

Theorem 2. Consider the boundary layer approximation (4.5) of system

(2.1) subject to the feedback control law (4.10). If constants ny

i-l....3 are chosen so as to satisfy
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Yf k (4. lla)

k
,y Lt (4. i16)

'Y Z (4. 11c)
Ic

then system (4.5) tracks the boundary layer reference model (4.1) to

within a spherical neigbourhood of .-0 whose radius can be made

arbitrarily small by a suitable selection of constants i-i .. 3

and/or constant 6 in (4.10c).
f

Proof. The proof can be found in Appendix 2.

5. Guaranteed Performance of the Composite Control

The composite control is obtained as the sum of the slow and the fast^A AA

control law with variable replaced by g-[r(x,u)+r(xu)]- x +

A 22 , and f by its approximation 4, obtaining

-T -T A-lAU.- .7B!P4 -Y VPr - YB P A A 4,a6 t 2 t fa 2 2221(5)

where r z

For this control law we can establish the following theorem.

Theorem 3. Consider system (2,1) subject to the control law (5.1). The

closed loop system tracks the reference model to within a spherical

neighbourhood of the zero state tracking errnr, If the following

conditions are satisfied.

i) The constant 1,, satisfies the inequality:
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k'

d

", (5.2)
1

with

d Sup. 11H x)x - (x) + d (x)I, (5.3)
1 xeR

te[t o ,a)

and the constant -y 2 satisfies the inequality (3.12b);

ii) the constants yf1, J-1,2,3 in the control law (5.1) are

chosen so as to satisfy inequalities (4.11);

iii) constant 71W besides satisfying (4.llc), satisfies

0 20P.11 sup 11B (x)(54

iv) the singular perturbation parameter is such that O<p<A*

where p is a constant whose value can be a priori computed.

Proof. The proof of Theorem 3 and the expression for the upper bound of

paramerer p are given in Appendix 3.

6. Conclusions

The robust model tracking control presented here is designed using the

approach of deterministic control of uncertain systems, together with

the composite control technique developed for singularly perturbed

systems. This enables the designer to guarantee the model following

ithin a spherical neighbourhood of the zero error, in the presence of

*slow' nonlinearities. It must be pointed out that this technique does

I ';' , .
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not require the knowledge of the form of the nonlinearities, but just

the possible range of their variations.

Appendix 1

Some definitions and a useful lemma.

Consider the equation of a model tracking error dynamics in the form

f - W(f,t) , e(to0)-€ (Al)

where te, eeRp, and (p:RPxR-Rp We say that the system tracks the

reference model to within a spherical neighbourhood of radius R of 4-0

(indicated with B(R)) iff the following properties are satisfied:

i) Existence of the solution. Given any (e0,t0)ERxR there exists a

solution e(-):[t ,t )-RP, t >t of (Al.l).

ii) Indefinite extension of solution. Every solution e(.):[t 0 ,t1 )-RP

of (Al.l) has an extension over (t, ).

iii) Global uniform boundedness. Given any bound reR+, there exists a

bound d(r)ER such that if e(.):[t0,t1 )-RPR is a solution of (Al.l) with

lit0lisr. then I4(t)H-Sd(r) for all re(to t1).

iv) Locel boundedness within B(R). There exists a spherical

neighbourhood B(R0 ) of e-O such that if c(-):[t atI )-e is a solution

of (Al.l) with e0W(R) then e(t)e3(R) for all te~to,tl).

v) Global uniform ultimate boundedness within B(R). Given any bound

re. there exists T(r)eR+ such that if t(.):ft0,t1 )-RP is a solution of

(Al.l) with It0sr, then e(t)eB(R) for all tt0+T(r).

The listed properties of the solution (.):t t 1 )-R9 can be stated

with the aid of the following lemma (for the proof see

Corless-Leitmann, 1981).

/
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Lemma. Given system (Al.1) suppose V(O,t)-O for all trl. If there

exists a C1 function L defined on jId#js and teR, and if there exist

class fI functions X and X and a class K function X such that

x1 d(gDSL) "t):Sx=,ll). (Al.2a)

aT
rt et)+VL(e,t:) :5 *,X 3 I) (Al.2b)

then for all Iejs and tea the system tracks the reference model to

within any spherical neighbourhood B(R) of c-0 with R>X1 oX 2(a).

Appendix 2

Proofs of Theorem I and 2.

Consider as Lyapunov function candidate for system (3.8) with the

feedback control (3.11) the following

V() C-  C . (A2.1)

Evaluating the derivative along the solutions of the closed loop system

by virtue of (3.9), (3.10), (3.11), (3.12) and Assumption 5, we have

(1/2)V(Q - -(1/2 )jT Q f T~ P BB P

I S( + C.ia

T - C/2)CQ*TP. 1 2 .(-x + IP ,IIH,(x.)K ,IICfI
a-1. A A+ IP.aJH(x)x-H(x,) u (x)1

L
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5 *(1/2) Q -(Y +'kI)~~ 6 )(-OcT 21a s2qs s 5 5

+ IJTP.f.fJ (.x.)+K I.11

+ IITP f I(Ax, H,- (x.) u+d.(x, I1

-(l/2)TQf, + k d 1 + kE f 1f1

s (1/2)(-v I11C.11,+ v 2 l )1i + V31 (A2.2)

where v- A(Q), v 2k 6, and v 2 k 6.
1 2~ f 3 da 1

At this stage the application of the lemma reported in Appendix 1

proves the statement of the Theorem 1.

The proof of Theorem 2 proceeds exactly in the same way. We define as

Lyapunov candidate for system (4.5) subject to the feedback control

(4.10)

-( CzPz£ (A2.3)
I ff f

The derivative along the solutions of the closed loop system,

considering x constant in the fast time scale, can be proved to satisfy

the following inequality

S Il - il 2 + w, 2 1' fl + w3  (A2.4)

with W A (Q), w A28k and w w + wIlI - 26,k +26 k ll.
1 & f f 3 3 d32 3
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Appendix 3

Proof of Theorem 3.

The proof of the theorem is based on the combined use of two Lyapunov

functions, one for each component of the model reference tracking

error.

For the first component we can write

- A (x)x+A (x)z--t B (xlB P C-- B (x)BP11 12 1 1 S f 1 2 f

A AA A JA+ -YBx) A wipk'A C+a (X)-A x- z-
f 1 2 f 22 21 1 11 12 1

-(F -7 BTP C-- B. E (x)VP C+B (H (x)+K%] +
I I1 I I 1 1

A_ A -T A-IA
+B [H (x) X-H (x) u+d (x)])- B (x)B Vp +A A CIa1 I f1 2£ f 2

A-XA A ^A A+A 12(x) [ +A jA 2 +BIc. (x)t[z -r (x. u)] (A3.1)

The terms within braces are exactly the same as in the slow model
A A A A(3.8), taking apart the substitution of x and u with x and u. On the

basis of Assumptions 5 and 6, and recalling (4 .10c), it is possible to

find constants a , i-1,3 and a., i-1,3 such that

ii -T A-IA
-(x)BP [,+A A C]

f 1 2 f 22 21

A-A A A
+A (x) )+IA A l-B C (x) (z-r(x,u)f

12 22 21 1 12

CI+2 k 1 CIQ o (A3.2a)

ld - IA (x)x+A (x)z--y B (x)VP C--i B (x)P "11 12 a1 1 1 1 2 9

-y B (x)B rfA 22A 21C+aI(x)-k 11 1 z I

,If It+ AIA(I+a. (A3.2b)A;I
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For the second component of the model tracking error we simply rewrite

equation (4.8) as

2 2 2 f 22 21+ Zac22(x)+Kf1 (r+kMA21e

+ B [G (x)-i, (I +E (x)IP. ]
2 1 p 2

+ B[G W x+==xZ z+G (X)u .eu +d (x) ]. (A3.3)

2 1 22 f 2 2 2f 2

Consider the function

W(,)-1/2 (CZA2  OP (C4A22A2 ) (A3.4)

and evaluate the derivative along the solutions of the closed loop

tracking error system (A3.1), (A3.3). One obtains

A-IA T A-IA A-
- (+AC ) P A A 1 + (C'A-1i )P~

£222 1 22 21 1 22 2221 3

+ 1A -A
-A22 221 Z2 1 22 21 3

A' 2221 p

Consider now the function

V(f) - 1/2 f P ,. (A3.6)

and evaluate the time derivative along the solutions of the closed loop

/
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tracking error system (A3.1), (A3.3). In view of (A3.2a), and

conditions (5.2) and (5.3), we have

V(k) - -v1 1vnlli.v++2HPl.jfj[. 4 C,14.2.+A ,+a,22 ]

2- -(v .1-2a I Ollll + b,,fo + b jflIlk+Vi C1 + v.
15 1 222212 3

(A3.7)

We can choose as Lyapunov candidate for the closed loop tracking error

system (A3.1), (A3.3) the following

-U0 Pc)+' , (A3 .8)

22 2122 21

where

-().c0 . Osccl. (A3.9)
0 cP

In view of (A3.5) and (A3.7) the time derivative of (A3.8) along the

solutions of the closed loop tracking error system satisfies

+ 1 "+ C 1t(,)+ ~+ +" J (c) I X+ ii

22 21 22~~. A21

+ (c (A3.1o)

221 g19210

where

M (C) r(-c)(v.2a qP.+ ) -1/2(ca,+(l-c)b (A3.11)

~I+c- ,'2,
~. v (A3...,

-1/2(ca4.+ (l-c)b c (!-a

/ I



112

m(c) -(-c)b +c c(a-)], (A3. llb)
1 3' A

and

W'

-nV (I-c) + c-- (A3.lc)

V

Provided that a <2_I (which is guaranteed by condition (5.4)), the

upper bound p of parameter u which guarantees the definite positivity

of matrix M(c) is given by (see Saberi-KI-alil, 1984)

(v 1 -2o 1 JP 01If
V (v -2a J. P.H)a + aIb2 (A3.12)

Chosen A* A min(p,p ), for each O<<p* the application of the lemmap

contained in Appendix 1 completes the proof of the Theorem.
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Abstract

We define the playability property of a qualitative differential game, and we
characterize it by a regulation map which associates with any playable state a
set of playable controls. We extract among these playable controls the set
of discrimilnating and pure controls of one of the players. We characterize
them through an adequate "contingent* Hamilton-Jacobi-Isaacs equation,
and we provide sufficient conditions implying the existence of continuous or
minimal playable, discriminating and pure feedbacks.

R69=64

Nous difinissons une propridtd de jouabihtd de jeux difftrentiels qualitatifs,
que nous caractrisons & l'aide d'une correspondance do rhgulation qui as-
inocie & tout 6tat jouable un ensemble do contrles jouables. On distingue
parmd ces contr6les .jouables l'enaemble des contr~les diacrlmlnants et
des contr~les pure d'un des joueurs. Nous carat~risons ces concepts par
une 6quation d'Hamilton-Jacobi-Isaacs "coutingente, et nous Anongons des
conditions auffisantes impliquant l'exisance do retroactions jouables, dis-
criminantes at pures.



We consider a two-player differential game whose dynamics are described by

ii) v(t) IE V(-(t),y(t))

The rule of the game are se-valued inpsP: Y -. X and Q: X~
Y, stating the constraints imposed by one player on the other.

The playability domnain of the Same K C X x Y is defined by:

K := {(x,y)EXxY I zEP(y) and yEQ(z)}

(We consider only the time-independent case for th~e sake of simplicity).
The playability property states that for all initial state (z0 , yo) E K,

there exists a solution to the differential game which is playable in the sense
that

V t 2: 0, z(t) E P(y(t)) & y(t) E Q(z(t))

We shall charaterize it by constructing decision rules

(zY)tV) (Z' Y; V) & (Z' Y,u %(Z' 'zY; U)

which involve the contingent derivatives' of the set-valued maps P and Q,
with which we build the regulation map R mapping each (z, y) 6 K to
the regulation set

R(x, y) ={(u, v) I ue E (x, y; v) and v EE *(z, y;u)}

The controls belonging to R(z, y) are called playable.

'We recall that the eatinsent eone Tic(x) to a subset KaLtz 2 K Is the closed cone
of elements v satisfying

lImlnfd(z+Ae,K)/h = 0

The contingent derivative of the st-valued map Q froms X to Y at a point (3,Y) of Its
graph Is the closed positively homogenous set-valued map DQ(s, 3r) from X to Y defied
by

Graph(DQ(z, r)) := T~rph(z)(r)
or, equivalently, by.

v eDQ(z, )(9) 4- ian d (, Q(z + 41) -v =0
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The Playability Theorem states that under technical assumptions, the
playability property holds true if and only if

V (z, y)E6K, R(z,gy) 0

and that playable solutions to the game are regulated by the regulation
law:

vt >0, u(t) E *P(Z(t),y(t);V(t)) &V(t) E= *(Z(t),g(t);u(t))

We then introduce the subset

A(z, y; ) (u 6 U(z, y) I(u, v) E R(x, y)

of discriminating controls which allow the first player to associate to any
control v E V (X, Y) played by the second player at least a control u E U (z, y)
such that the pair (u, v) is playable and the subeet

BwEV) (z, ; v

of pure controls which allow the first player to find a control u Cz U(z, y)
such that (u, v) is playable for all v r=V(,y

These concepts are particularly relevant for games "against nature' or
"disturbances" (see 111,12,26,21] and their references).

Before going further, it may be useful to relate them concepts to more fa-
miliar ones through an adequate Hamilton-Jacobi-fisacs's equation (see[181).

For that purpose, we characterize the rules P and Q by their indicator
functions Wp and WQ defined respectively by

WP(z,Y) {0 if E P(Y) JQXY 0 if Y EQz
+0if x 0P(Y) zy) 1+-o if V 0Q(Z)

These functions are only lower semicontinuous, but we can still "differ-
entiate" them by taking their contingent epiderlvatives 2 . We set

H(Wp + WQ;z, y; u, ) := DT(Wp +Wq)(x, y)(f(x, i; -4,g(x,si;v))
2The contingent derivative DtW(s) or a attended funtilon W brm X to ItU {+oo)

at x e Dow(W) is defied by

EpDIW(x) :- Tsp(w)(s.W(s))

or, equivalently, by

DTW(x)(s) - Umint V(s +hu') - V(S)
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We shall prove that
-the gamneisplayable ifand only if

inf H(Wp + W 0 ;z,y; u,v) =0
uU (up) ,VeV(u'p)

and the regulation map is equal tofR(Z,Y) = {(U,u) e U(X,Y) x V(Z'p) I
H(Wp + Wq;x, y; u, v) = iU14Deu(x.p),v(x,) H(Wp + WQ; x, y; u','

-the first player has a discriminating control if and only if

sup if H(Wp +WQ;x, y; u, v) = 0

and the feedback map A is equal to{A(z, y; v) =fu e U(z, y) I
H(Wp + WQ; x. y; u, v) = inf .'eu(a,v) H(Wp + WQ; z, y; u'. v)}

- the first player has a pure control if and only if

if sup H(Wp + WQ; ,y; u, v) = 0
WEU(u-p) VY(SwV)

and the feedback map B is equal to{B(Z, V) =u Ue U(Z, Y) I sup.ev(.v,) H(Wp + WQ; X, Y; U, V
= feu'E(.V) supev(.,) H(Wp + WQ; z, y; u', v))

We then deal with the main topic of this paper: construct single-valued
playable feeadbacks (6i, ii), such that the differential system

I 2?(t) = fzt'W xt'~)

has playable solutions for each initial state. By the Playability Theorem,

they must be selections of the regulation map R in the sense that

V (Z'p W E K, (S. V) -(,2(x, ), ;(Z'Y)) Es R(z Y)

We shell prove the existence of such continuous single-valued playable
feedbacks, as well as ore contructive, but discontinuous, playable feed-
backs, sucl as the feedbacks associating the controls of R(z, V) with mini-
mal norm (the playabl slow feedbacks, as in 113,35) More generally, we

/r
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shall show the existence of possibly set-valued feedbacks associating with
any (z, V) e K the set of controls (u, ii) e R(z, y) which are solutions to a
(static) optimization problem of the form:

(is, ) E R(:, Y) I r(z,V; U,V) :5 %0.4 Y T(z, Y; u IV')

or solutions to a noncooperative game of the formn:

In other words, the players can Iraplement playable solutions to
the differential gamne by playing for each state (.z, i) E K a static
game on the controls of the regulation subset R(z,yi).

We also consider the issue of finding discrinating feedbacks, which
are selections of the set-valued map A. We shall provide for instance suffi-
cient conditions implying that for a continuous feedback O(z, y) E V (z, y)
played by the second player, the first player can find a feedback (continuous
or of minimal norm) G(z,yi) such that the above differential equation has
playable solutions for each initial state.

Finally, we address the question of constructing continuous pure feed-
backs fi(z, V) which have the propert of yielding playable solutions of the
above differential equation whatever the continuous feedback ;(x, V) played
by the second player 3.

We use for constructing these feedbacks selection theorems (for instance,
Michael's continuous selection theorem, see 129,30,31]), we need to prove the

Sone can also construct "dynamic feedback controls" which anu selections (i, a) of the
contingent derivative of the regulation map.

(Iz, r. %, v), Z(z,. ra , 9)) e DR(z, p)(f(s, r, a), g(z, r, r))

With these dyainl feedbacks, playeas implement the differential sstm

X't (Z(tq(t).ia(t).))

EVst)pQ;at) MW(t))

which yields playable solutions.
In other words, the playes cn implemaA playable solutions to the difeeatlal

Same by playing for each state (x, V) e K a etatie game on av.loditlee of the
eontrsel In the derivative DR(s, y)(f(x. p a), #(a. r, )) of the regulation subset.

hilalasal selections (b,&*) provide heavy trajecteries (see 15)) Ia the came of control
sopium
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lower semicontinuity of the met-valued mae R, A and B. In the case of the
set-valued map B, we need a Lower Seinicontinuity Criterion of an infinite
intersection of lower semnicontinuous maps. We provide such a theorem at
the end of this paper, which can be useful for other purposes.
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Abstract

A dynamic decision model is said to be forward-looking if the evolution of the underlying
system depends explicitly on the expectations the agents form on the future evolution itself.
Such models lead to nonstandard stochastic dynamic optimization problems where one has
to take into account the fact that there is a circular (closed) relationship between future
forecasts and future system behavior. In this paper we study a class of such problems where
there is an additional control input designed to make the system track a given trajectory.
This leads to a game-theoretic formulation in which context we consider both finite and
infinite horizon formulations. It is shown that for the finite horizon problem the unique Nash
equilibrium solution requires (fixed size) memory for both agents because of spillover across
stages, whereas for the infinite horizon version no memory is needed.

1. An Introduction to Forward-Looking Models
We refer to a dynamic stochastic model as forward-looking if one of its inputs involves

future expectations of the system trajectory, using (possibly noisy) measurements on the past
realizations. Such decision models find wide-spread use in economics, where they are more
commonly known as rational ezpertations models. A few representative papers in this area
are the works of Lucas (1975), Sargent and Wallace (1975), Barro (1976), Taylor (1977),
Shiller (1978), Blanchard (1979), and Blanchard and Kahn (1980). Perhaps the simplest
such model that captures the salient features of forward-looking behavior is described by the
scalar difference equation

yt+i = ayt + bt, + ct+i, (la)

where a and b are constant parameters, {et} is a sequence of independent zero-mean random
variables with finite (positive) variance, and vt is the decision variable chosen at time t under
some "expectation! of the future behavior of the system based on information available at
time t. If the forecast of interest is n steps into the future, for example, one possibility is to
replace vt in (1a) by Etyt+n, the conditional mean of yt+. based on the information available
at time t. This information, which we denote by 'it, could involve a direct measurement of
all the past values of the system trajectory, that is {yt, yt-1, ...} =: t, or involve some noisy
measurement on the state trajectory, /,t = zs, where {xt} is a measurement sequence defined
by

t Thi work as performed while the author was spending a sabbatical year at INRIA,
SopUa Antipolis, France, and it wae she partidly supported by the Air Fores Office of Sci-
entifie Research under Grant No. AFOSR 084-0056, through the University of Ilinois.
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=ut + ft, (lb)

with { ,} being another sequence of independent, zero-mean random variables with finite
variance.

A basic question addressed in the literature over the years has been the existence of
a (unique) stochastic procss (t that satisfies (Is) whenever vt = Etyt+. and the time
interval is infinite. The answer to this question is that there is, in general, more than one
such solution even in the class of stationary processes. However, as we have recently argued
in Bagar (1987), a better approach towards policy determination in these forward-looking
models would involve the optimization of an appropriate los function, by carefully taking
into account the informational dependence as well as the correlation of policies across stages.
One such criterion would be

S:= inEE{[Yt(t) - t+.]I 2 P (2)

where minimization is subject to the dynamic constraint (1a), with Vt = -t(qt), and uses
the boundary condition vt a 0 for t > T. In the above, [a, T] stands for the time horizon,
which could also be infinite, and p denotes a positive discount factor (0 < p < 1). It has been
shown in BaW (1987) that the dynamic policy optimization problem admits the solution
vt = Etzt+l when n = 1, but for n > 2 the unique solution for the finite-horizon version is
different from Etyt+m. For n = 2, for example, the best forecast into the future (by two time
steps), under the criterion (2) and using the information (i{t = y} is given by

V; = -1;(t) = atyt + t t-I, (3a)

for 2 _5 t _< T, where the sequences {at} and {P} are determined recursively off-line. For
the nosy measurement case, {it = z}, the solution is again unique and is given by

"; = "I;(Z,) = ato, + tVt_1, (3b)

for 2 _5 t < T, where the sequences (at) and {i} are the same as in (3a), and Ot is a
sequence of estimates generated recursively by a KaIan filter, under the assumption that
the underlying statistics are Gaussian. An interesting feature of the solution is that for the
infinite-horizon version (that is as T -. oo) the coefficient sequence (0t) vanishes for all finite
t, and the solution becomes vt = Etyt+2 ,thus eliminating the correlation across stages.

In the present paper, we consider a more general formulation than that above, where
now two separate agents, say A and B, have influence on the system trajectory, one of them
(A) again making a two-step ahead forecast of the trajectory, whereas the other one (B)
trying to drive the trajectory as close to a specific target as possible. For such a scenario, the
system equation would be replaced by

yt+, = ayt + bvt + cwt + t+ti, (4)

where vt = -t(y') is controlled by agent A and tot - At(y') by agent B. Taking the time
horizon as [0,T + 1), the two cost functions to be minimized by A and B, respectively, are

T

tMo
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and

JB(1A) = I~t - Ut+r12 + kW11018%5b
t-0

where (9t,2 < t _5 T+2} is the desired trajectory, k is a positive weight on agent B's control,
PA, PB are the corresponding discount factors, y := {",'Y9-9 .. ,to}, AL := {AT+ , ALT ..1 AO},
and v2+1 M 0, the last identity reflecting the fact that no forecast is made at time t = T + 1.
Furthermore, we assume that the independent random variables et (1:5t5T+2) each have zero
mean and a probability distribution that asigns positive probability to every measurable open
subset of the real line. One such distribution would be the normal (Gaussian) distribution
with positive variance.

Since this is a problem with multiple objectives, several equilibrium solution concepts
would be applicable, with the one adopted here being the noncooperative Nash equilibrium
solution. Therefore, we seek a pair (y*,u*), preferably unique, satisfying the pair of inequal-
ities

JA(*,M*) <_ JA(',*) J5 (:y*,p) < J(S*, ), (6)

for all admissible -y and A. Other possibilities would have been the Stackelberg solution with
either agent acting as the leader and the Pareto-optimal solution, which, however, we do not
discuss here because of space limitations.

The first question we attack, in section 2, is a "simpler" version of the above, where
agent A's policy is fixed as vt = Etyt+2, t < T, which is in general a suboptimal policy for
A. We obtain the best policy for B under this additional structural restriction, and derive
the corresponding expression for {t) (see Theorem 1). Furthermore, we study the limiting
behavior of the two policies, for the infinilte-horizon problem. Subsequently, in section 3,
we derive the unrestricted Nash solution and prove its (generic) existence and uniquenews
(see Theorem 2), with details of the derivation provided in the Appendix. We also study
the limiting behavior of the solution as T - oo, and analyze the discrepancies that exist
between the two stationary solutions of Theorem 1 and Theorem 2. The paper concludes
with a discussion of the "noisy measurement' case and some other possible extensions, in
section 4. Throughout the analysis, we take the reference trajectory (to be tracked) as the
zero trajectory, an assumption that does not bring in much loss of conceptual generality but
leads to considerable simplifications in the resulting expressions.

2. The Optimal Tracking Strategy Under Perfect Myopic Forecast
With vt taken as Et/t+2 (which myopically minimizes each term of (5.)), and {,Vt}

taken as the zero trajectory, the dynamic policy optimization problem faced by agent B is
the minimization of FT + I, where

7+1

Fr+ - E 4(V1+1 + k.,,)}p', (7.)

the dynamic constraint is

YT+2 = £IT+i + CWT+I + et+2, (7b)
it+I = ayt + bE,,+ 2 + cwt + i,+I, t < T,

and the information constraint is wt = A(y'). Note that this is not a standard linear-
quadratic stochastic control problem because of the presence of the conditional expectations

/
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term in (7b), which could even make the dynamic constraint nonlinear in the past values of
the trajectory. We will show below, however, that the optimal! control is still linear, thus
making the corresponding forecast also linear in the available Information. The derivation
entails a recursive approach where the structure of ut is determined alongside the optimal
control at each step of the iterative minimization.

Before presenting the main result of this section, we first introduce two sequences {pt}
and {(&t which are defined recursively by

Ppa~pl+
Pt + c 2 px +lkz-' P7+2 1, (8a)

C2 ah+ kvt2

"T-1 = 1 il1. (Sb)

Next we define a third sequence {gt} in terms of the other two, according to

gt = -capt+i/(c 2Pt+1 + kvt), t _< T + 1. (8c)

We are now in a position to state the main result, after invoking a condition which generically
holds.

Condition I. The sequence {vt} generated by (86) does not vanish for any t S T -i 1.

Theorem 1. Let Condition I be satisfied. Then, the dynamic policy optimization problem
with myopic forecast admits the unique solution

wt =/A(Yt) = gtt, 0 <_ t _T "l'1, (9-2)

with the corresponding forecast policy given by

Vt = EgYt+ 2 = (a + cgt+1)(a + cgt) y: htyt. (96)

Lt+IL/t

The minimum value of PO + ' in (6a) is

PO+ 1 = poE{y4} + Ao, (9c)

where Ao is the last step of the backward recursion

AT+, - var(fT+2),

A-i = p3A1e + ptvwr(ea).

Poof. The proof proceeds by recursively showing that the minimum value of F.T + is given,
for each a :5 T + 1, by

fre[+ = (p. - )/pBIy(y.'} + A..

The result is trivially true for a = T + 2, where we take AT+ = 0. Let us therefore assume

its validity, along with (9a) and (9b), up to s + 1, and verify the expression, as well as (9a)
and (9b), for a. The minimization problem faced by agent B at time s is

P.7+, ' + E(y+, 1 + k),.(1 ')'}], ()
P.
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which is equivalent to nnf,°+y.+, + kW I y'},
which uses the dynamic constraint

4+1= ay= + bE.*Y+ 2 + Cl' + e*+1. (*)

We also have the relationship

Y8+2 = (a + eg.+1)y.+l + b[(a + Cg,+ 2)(a + Cg.+I)/'.+2.+I]y.+l + e.+2,

where we have explicitly used (ga) and (9b), with 9 replaced by a + 1. (Of course, if a= T+ 1,
the last relationship would not be needed since the conditional expectation term in (*) would
be missing.) Now, taking the conditional expectation of the last expression with respect to
'y, substituting this into (*), taking the conditional expectation of the resulting expression
again with respect to y', and solving for the resulting E.y.+1 in terms of y. and w, we arrive
at the expression

= -,[ay. + cus].
IS

Using this, E.y.+ 2 can easily be evaluated to be
E.y,+2 = a + cg.+ + bh#+1 [ay. + cW,(

a u,

under which the dynamic constraint becomes equivalent to

Va+I = 1[eZ?° + cW] + '.+I.

This makes the minimization problem a standard inear-quadratic one, and hence it readily
follows that the minimaiing control is uniquely given by (ga) with t = a. Substitution of this
solution into (e) and (**) finally verifies the asserted form for T+I and the structure of the
forecast policy as given by (95). We should note that Condition I has explicitly been used in
the proof, to make sure that one can solve uniquely for E.y°+1 and Ey.+2 . 0

Condition 1, under which the existence and uniqueness of the optimal control (9a) is valid,
holds whenever a and b have opposite signs, regardless of the magnitudes of the parameters of
the problem. The result follows by inspection, since with ab < 0 and L'T+l = 1, we have Pt > 0
for all t :5 T + 1. For ab < 0, however, there may exist isolated values for the parameters
for which the condition does not hold for some t. [A more precise statement here would be
that with all but one of the parameters fixed (and ab > 0), there will exist at most a finite
number of different values of that parameter for which Condition I is violated. This follows
since for each t, vt is a rational function of the quintuplet (a,b, c, pB,k).] For example, for
the parameter values a = a = k = 1, b = 2, we have YT = 0, which shows that Condition 1
may fail even for a two-stage problem. However, if we perturb the value of b to b = 2.1, and
take p3 - 1, then Condition I holds for all values of t. In fact, running the coupled recursive
equations (8a)-(8b) in retrograde time, we find that (for these parameter values) the pair
(Pt,p,) converges to (0.504147,1.880960) in 29 steps, within the accuracy of six decimal places.
Hence, in this case, the infinite-horizon version (even with no discounting) admits a unique
optimal stationay control, given by wt = IA(y,) - -1.135124 y. If, in the above, b is instead
taken to be 1, again Condition I holds, the pair (ve,pi) converges to (0.694146,1.787692) in 9
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iterations, and the optimal control policy converge to tut = (yt) = -0.787692 yt. A a final
numerical experimentation, reflecting a different set of parameter values, we consider the case
of a = 2,b = -30o = 0.8,c = k = 1. For this set, we already know that Condition I holds,
since ab < 0. Studying the convergence of the optimal policy to a stationary control, we find
that the pair (vt,pt) converges to (2.796267,1.521150) in 26 iterations, with the resulting
stationary policy being t = A(yt) = -0.325719 yt.

S. The Nash Equilibrium Solution

We now remove the restriction that agent A's input to the system is a myopic forecast,
and allow him to determine the 'best' choice for vt by minimizing the cost function JA.

As we have discused in section 1, this joint optimization problem can best be treated as
a noncooperative game, and hence we study in this section the Nash equilibrium of the
underlying game, as defined by (6).

There are two general approaches to the derivation of Nash equilibria in such dynamic
games. One would be first to guess (or propose) a structure for the solution in terms of
some parameters, and then to validate the equilibrium property of the asserted structure
and to obtain the corresponding values of the parameters so that the resulting policies are
in Nash equilibrium. A second approach would be to obtain the Nash solution recursively
(by employing the definition of atagewise or feedback equilibrium; see, for example, Ba.ar and
Olsder (1982)) by solving static games conditioned on the available (common) information,
at each step of the iteration. Note that this would be applicable only if both agents have
identical information (which is the case here), since otherwise stagewise decomposition would
not be possible. Now, two disadvantages of the first method are that (i) one has to guess the
structure of the solution correctly, and (ii) even if the initial guess is correct there is no way
to show (using this method) that the validated Nash solution is unique. The second method,
on the other hand, is capable of answering the uniqueness question, but it only produces
candidate solutions which subsequently have to be checked for their equilibrium property.
What we will, therefore, choose to do in the sequel is to use an appropriate combination of
'the two approaches, to generate candidate solutions and verify their existence and uniqueness.
We should note in passing that even though the problem may look, at the outset, as a standard

lnear-quadratic one, the presence of the two-step delay in the cost function of agent A makes
the game a nonstandard one, thus eliminating the possibility of direct application of results
available on linear-quadratic feedback Nash games (as, for example, covered in Balar and
Olader (1982)).

Before presenting the solution in Theorem 2 below, we first introduce some sequences
which will be needed in the characterization of the equilibrium policies. Towards this end,
let (mt}, {a}, {nt) be three sequences generated by

mt-1 = I a +At+ bottmg1; mr= a-k (10a)I, ,mi (;oC2

-1 .~ ~
=n- I-Cpt + optati; AfT 0, (1,b

- bmt lb

nti PAn(1 - b"?;mt1,(1= + PA t(I - b,)2; nI = 1,

where at, 3t, fi, 1 are defined, for t _< T, by

at + (I - "m)~ntt - ._o l+crft), t T,(l)

/2+Pn( mt( m t
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- k~c'k1 1 1 t:5 T +1 (ll

(1 - 6)PAN~mlc + by(1 bn - cn)

-(bki~t + k 12 ,44P-1 t T+ 1, (12b)

and K 1 , 1 ,

(k13 ,, k22:,)

is a 2 X 2 matrix sequence generated by the discrete time Riccati equation

Kt - pBA:[Kt+i - Kt,C(C'Kt,C + k) 1IC'Kt + lhA, + Q, (1a
KT+1 =jka2 pa/(k + c2)JQ,

with

(at lo ) 1 (0 0 0<~

Finally, let rats ras, rpts r,~, be defined by

rt CI(1 - bMt)PAmnt - b1 (14a)

rt=-c(bkxi,,+j + k22,,+l)(1)
t~g~:= - k + Ck,,+i 16

rot c( - bmt)PAntmt - bec1d
2+ nt -bmt)(1 - bin, - iff),(5)

:- c(bkll,,41 + kltl (15b)
rot + c2 ki,,+l

The last four expressions are the coefficient terms in (lla)-(12b), Indicating the dependence
of at, 5t, O, and A, on 5t, at, 6, and Pt, respectively. A certain relationship between these
coefficient terms in fact determines the existence of a unique Nash equilibrium solution, as
to be elucidated below.

Condition 2. For allit <5 T,

ratat0 , ror 1, (16a)

PAV,(- bv)( -frAtt) 96 b2 . (lee)

Theorem 2. Lot Condition 2 be satisied. Then, the forward-looking tracking model (4).(5)
admits a unique Nash equilibrium solution {-,yt4}t, where amet AWs (best forecast) policy

-noR,~ Mt0,(1'
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and agent B 's (bast tracking) policy is
:W PAY, ~ ) = rky + , V ,,, 1: < : 7 _

. -[00(k + c')Iy+,, t - T + 1 (18a)

a ap o, t=O

where the sequence {t} Is genemted by

oVo, t = 0. (18b)

Proof. We will first verify the structural consistency of the solution (17)-(18) under the Nash
inequalities (6), and then discuss the existence of the solution. Some details of the derivation,
as well as a proof for the uniqueness of the solution will be given in the Appendix.

Towards verifying the validity of (6), first consider the second inequality, where agent
A's policy has been fixed as given by (17). Then, agent B faces a stochastic control problem
with cost function J'B (given by (56) with zero reference trajectory) and state dynamics

Yt+ = 
(a+bat)yt+b~t't-l+cwt+et+I , t_ T

Y0T+1 + CWT+1 + ET+2 ,t = T + 1,

where the sequence {Ze} is generated by (18b) in view of (17). The optimal control at time
T + 1, W7+1, can readily be obtained, to be given by the second line in (18a). To obtain
the remaining controls, we introduce a new state vector, z := (yt, 7- 1), and reformulate the
problem as one of minimizing J9 under the dynamic constraint

zt+I = Atxt + Cwt'+ Dej+1 ; D := (1 0)',

where control wt is allowed to depend on zt, t :_ T. [Note that even though ut-I is rot
available to agent B, ; - is since it is generated by yt-1 .1 This is the familiar linear-
quadratic optimal control problem, whose unique solution is

wt = -(k + C'Kt+,C)-C'Kt+Azt, (*)

where {KIt} is generated by (13a). (Note that the terminal constraint on Kt at t = T + 1
Is not Q because we have already substituted for the optimal wT+, and have reduced the
cost function Js to the one where the leading term is now y4*+, instead of ;+2. Now, the
optimal control (*) is clearly linear in , and Vt-, at time t, and a little algebra shows that
it can be expressed in the form (18a).

We now focus attention on the firt inequality of (6), where agent B's policy is fixed as
given by (18a). Then the problem faced by agent A is one of optimal forecast, where the
cost function is JA (given by (5.)) and the dynamic constraint is

yt , (.+cat)V,+c~t,... 1 +b.,+,, 1:5t:ST
- -[akl(k + c2 )]Y7+1 + C2+2, t T + 1
- (a + cao)Vo + buo + el, i0.

Bcause of the form of the cost function, the available linear-quadratic theory cannot be
directly applied to this problem; nevertheless, a ene can employ a dynamic pmrannomiin type

./
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argumenut to construct the optimal solution In retrograde time, as in the Proof of Theorem
21 Of BOWa (1987). It ha. been shown in the Appendix that the optimal solution is unique
(under somes conditions which will be specified later), and the optimal policy at time t as a
function of three variables, yt, Vt- and vt-... The Precise expression is

t- t(st) =Stgt+ $vt-i + Att- 1, 1:<t <T

Where

at + 1 -n),nIPAflt(1 - bmt)Qlitec + (a + cat)mt) - b(a + crt)] *

b
P 6 + (1-bmt)2 PAflt

&2 i(1bt)pn (pAnt(l - 6mt)Qit, + c~tmt) - bc~t], (

and {mt}, {rt}, (n) are generated by (10a)-(10c). In writing down these expressions, we
have already assumed the validity of (16a) and (16c), since otherwise mt and fint would not
have been well defted. We should note, however, that even in the pure forecast problem
discussed in Balar (1987), a condition similar to (166) was required for the well-posedness of
the problem.

Now, to complete the derivation, we substitute for at and fit in (e) and (oo) from (11a)
and (12a), respectively, and observe that the resulting expression for at is identical With that
of Ott, and also when the resulting expression for #t is added to jut, the outcome is identical
tof8,; in other words,

When the latter is used in (**) recursively, it follows that {fgt} is generated by the same
sequence (of y.'s) as {Ft}, and hence that (**) admits the simpler representation (17).

This then completes the verification of the existence part of the theorem; more precisely,
Of the fact that the Policies (17)-(18) constitute a Nash equilibrium pair under Condition 2.
Note that (164) in Condition 2 imply guarantees that there is a unique solution to the two
Pairs of coupled equations (11) and (12), for all t, and it may also be referred to as the Na
conldition.

As we have indicated earlier, the uniqueness part of the theorem has been verified sepa-
r..ely in the Appendix. 0

Severa observations and remarks would be in order here. Firstly, we note that, as
opposed to the metmondtea solution of Theorem I1 (obtained under myopic forecast), the
unique Nash equilibrium solution incorpoates memory, for both saints. For agent A, the
%est* forecast policy is a linear function of the most recet meaurement and the most recent

decision take by that agent. [Tise is true Sisic %- In (17) can be repaced by wt-1, without
dieting the solution. For agent B, on the other hanid, the Gbest" tracking policy is a linear
function Of the roost recent esurement and a linart aggregate of all past mesasureents,
weighted In an approtrlate manner. The solution Is characteriseid In terms of towr gain
coefficients (atit, s t, A)l which can be computed recursively. Hence, the solution does not
chRag Structurally Over time, which makes It feasible to obtain stationarV Nash policies for
the lnlnte-hodlsn version, provided that the sequences {afl, {(Vi {Pl ( t}) converge
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for all finte t as T-oo, where the superscript T in the sequence, denotes the dependence of
each sequence.on the terminal time, taken as a parameter. Even though the computation of
the four critical quantities (at,,. ma y look complicated at the outset, the iterations
are in fact quite straightforward, requiring simple algebraic manipulations at each step. The
order one has to follow in the computation is as follows:

Starting at t=T, first compute the quadruple (aT,'TJr) ftom (1lz)-(12b), using
the given boundary conditions on K2 '+, rT, miii and nT. Note that this computation
involves the solution of two pairs of coupled linear equations, at which point we invoke
the Nash condition (16b) to obtain a unique solution. At this stage also condition (16c)
is invoked, so that (11a) and (12a) are well defined. The next step would be to obtain
the new values fr kt+, mt, int, n, at t=T + 1, using the iterations (134), (10a), (10b)
and (10c), respectively. At this stage, condition (le6) is invoked so that (10a) and (10b)
are weLl-defined relationshipe. These new values for K, m, t%, n are then used again in
(11.)-(12b) to update the values of the gain coeficients, and this procedure is repeated
until the initial stage t = 0 is reached.

We should point out that similar to Condition 1 in Section 2, Condition 2 also generically
holds, in the sense that if all but one of the parameter values are fixed, then there is only a
finite number of values for that parameter for which the condition fails.

Even though it is not our intention to provide here a general convergence analysis for the
infinite-horizon problem (this would in fact be quite a challenging task), it would nevertheless
be instructive to study some properties of the stationary solution, assuming that such a
solution exists and Condition 2 holds for all t of interest. Accordingly, letting

a* h im OC, R~=hm al', a l:= lrn , *.. n'~ n:= flm nt',
2'* -0 2-os T-00 T-qa

it readily follows that n*=O. In view of this, we arrive at the stationary Nash policies

Wt= y'*(pt) = a*yt + - (19.)

where {9t} is generated by

;= o:Y +'6 5 *tf1, (19c)

and the following relationship holds:

ai - (20)

Now, using these stationary policies in the system equation (4), we arrive at the result that

the equilibrium trajectory {yfl is generated by

P*+i = (a + 6a* + cZ)yt, + bp*ut*._ + £#'*tI + et+,

where {(vt* and {U,} denote the discrete-time stochastic processes generated by (19.) and
(19b), respectively, when y, - y , t ?: 0. Note that, as stochastic processes, they are identical
alnost awsly, and hence, by also using (20), it can be shown that the equilibrium trajectory
{s#') is generated by the simpler dynamics

uY*+J M i'Q- + 4J

t* - e7/7 + p*wt*i I

/•,,• .:,., ., , ,
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1 *1
which admits the ARMA representation

vt*+, + OB' * - a*yt_ = ,,+1 + ,. (21)

An important observation that can be made here In that the relationship

E-t ,= "

holds, that in we have perfect foresight. Said differently, the stationary Nash solution satisfies
the side condition of myopic foresight introduced in section 2, in spite of the fact that the
two solutions (of Theorem I and Theorem 2) are structurally different. [Compare (20) (or its
stationary version) with (17)-(18).] This clearly implies that the Nash solution is disadvanta-
geous to agent B (at least in the limit as T-oo), since it does not yield the best (optimum)
solution obtainable under the side condition induced by the equilibrium solution itself. A
reason for this inefficient behavior on the part of B is that in the analysis of section 3 agent
A is also an active player, whereas in section 2 he was passive. Such features can be observed
even in finite-horizon problems, as the following example demonstrates.

Numerical example 1. In our general formulation, let T=0, E[yo] =: o, and all other
parameter values be unity. Then, the two solutions given in Theorem 1 and Theorem 2 and
the corresponding values of expected costs and trajectory sequences can be computed to be
as follows:
Theorem 1: 16 1

Wi =fi(YI) = -vI, Wo=o(Yo) =- Yo, Vo = o, (22a)
5 3~

2 1.

1 =!YO + el; 92 = lil+ C2-

Theorem 2:

1 3 1
Wi = 4(YI) = -Y, o =&;4(Yo) =-yo, vo =';(Yo) = !YO, (22b)

5 5 15

Y1=!O+i; * = II+ (2-

A number of observations can be made in connection with this example:
1. In both caes above, we obtain perfect foreight ( i.e. v0 = Eoy2 ), but the corresponding

trajectories are different. Even though (as we have seen earlier) the Nash solution does
not generally enjoy perfect foresight for the finite-horizon :ase, here it does, mainly be-
cause the problem involves basically a single stage, thus eliminating the effect of spillover
acrss consecutive periods.

2. Agent A incurs equal expected costs in both cases, whereas agent B does worse with the
Nash solution. This is, of course, consistent with our earlier comments just preceding this
example, which, even though were made in the context of the infinite-horison problem,
are equally valid here since the Nash solution satisfles the boundary condition (i.e. perfect
foresight) of the myopic solution.

/
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3. Since Ai = 1 in a universally optimal policy for agent B at stage t=1, whichever
equilibrium solution in adopted (even outside the two considered here) the trajectory
will be given by

~1
Y12 = j11 + e2

Y1 = Yo + V0 + too.

Now, if we let vo = EoV2 , and attempt to solve for vo from the above ec, --ions, we first
obtain (since wo = Mo(yo) is known to B for each fixed uo)

1 1 1 1
vo = EoY2 = -Eoy1 = -1o + ivo + tWo,

2 2 2 2

from which vo can be solved uniquely to give

0= 7o()= Yo + Wo; wo = o(Yo). (0)

This shows that the actual choice for vo = -o(yo) (under perfect foresight) depends
explicitly on B's policy 14o, and the two solutions given above are two different manifes-
tations of this dependence. Both (22a) and. (22b) use (o) as a constraint, but while in
(22a) JB is minimized subject to (o), in (226) the choices are determined by the Nash
solution of a game played between the two agents at time t=0. One could envision other
scenarios between the two agents which would lead to still different choices for Mo (and
thereby -to), but in all cases the resulting expected cost to A will be the constant 5/4,
independent of Mo and ao.
We now conclude this section with a second example, which is an extended version of

the previous example with an additional stage. It will serve to demonstrate some additio. l
features of the solution given in Theorem 2.
Numeri4al ezample R. In the general formulation, let T=1, and all parameter values be unity.
Then, the unique Nash equilibrium solution (as presented in Theorem 2) can be computed
to be as follows:

W2 = A;(Y2) = -IY2, I = 14(I) = _31 - 0.190476yo,
28

wo = A;(yo) = -0.74603210; (23)

S=i'1(y') = -j1i + 0.31746yo, vo = (yo) = 0.253 68yo.

The corresponding equilibrium trajectory is generated by

1 = 0.5079366Y0 + I,

y = 0.25vp + 0.1 26 98 411o + e2
Y3* = 0.54 + e3 ,

from which it follows that E11* = 0.125yg + 0.063492yo # "t (y7 ,yo); that is, the solution
does not lead to perfect foresight at time t=1. However, Eoy2 = 0.2 53 96 81o = 't(yo); that
is, there is perfect foresight at t-0. This latter result is not a feature of this example only,
but holds for the general solution of Theorem 2 (even though it may be rather difficult to
prove algebraically). Through an Indirect reasoning that follows the proof of Theorem 2, as
given in the Appendix, one can conclude that Eoy 1 0*(yo) is a genuine property of the
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general Nash solution since, at the initial stage, the variable vo minimi an expression that
is a perfect square in Y2 (see (A.1)) and there is no spillover effect. o

4. Some Extensions

A first extension of the results presented in section 2 and section 3 would be to the more
general case where the reference trajectory is not zero and the cost function (Sb) contains
additional (time-varying) weights on the deviation from the desired trajectory (i.e. the first
term). The reason why we have not included this in our presentation here is because such
an extension does not entail anything conceptually new, while requiring some additional
notation which would have complicated the resulting expressions considerably. The gist of
the results for the nonzero reference trajectory case is that the statements of both Theorem I
and Theorem 2 remain essentially intact, with the only difference being that now each policy
includes an additive (bias) term which depends linearly on the desired reference trajectory.
The existence conditions in both cases are identical to the earlier ones. For the case when
there is a time-varying weight in the first term of (Sb), the results again remain intact,
with only the additive term 1 in (8a) replaced by this new weight and Q in (13a) adjusted
accordingly.

A second extension would be to the class of problem where the agents do not have
direct access to the trajectory {yt}, but rather acquire common noisy measurements {zt}, as
defined by (Ib), where now tit = z' . Towards studying this extension, let us assume that {t}
and {et} are sequences of independent Gaussian zero-mean random variables with variances
var(et) =: v > 0, var(ft) =: rt > 0, and that they are independent of yo which is also a
Gaussian zero-mean random variable, with variance a0. Then, in the formulation of section
2, we interpret the operator Et as the conditional expectation E{.Iz t , w-'}. Note that here
we have replaced Yqt = z' with it := (zt,wt-), without any loss of generality, since w - 1 is
measurable with respect to ztl. Now, letting gt := Etyt, it is a standard result (see, for
example, Bertsekas (1987) or Kumar and Varaiya (1986)) that it is generated by the Kalman
filter equations:

PT+z = aPr+/ + CWT+ 1 + [aT+2/(6T+2 + T+2))rT+2,

t+ = at + bEtyt+ 2 + cwt + [bt+ 1 (a1 +I + ct+i)]r,, t < T; = 0,

rt+I := zt+I - ayt - bEtyt+2 - cwt, (24b)

&t+l = [a2 g/(at + d) + 't+I, 5o = o', (24c)

where {rt} is a sequence of independent Gaussian random variables, known as the innovation
sequence. In writing down these relationships, we have made explicit use of the fact that
both EtYt+2 and wt are zr-measurable.

Now note that the error sequence {et}, et := yt - it, is generated by

eg+C = ae + ei+l - lat+t1(at+i + +I)Irt+I; eo = 0, (A)

and that Etct+. = 0 for all n > 1. In view of this last property,

Eft/+2 = Et+it 2 + EtC,+2 = Et ,+2,

and hence (24a) can be rewritten as

P7+2 = a97+1 + CWT+J. + +&T+21/(aT+2 + 'T+2)]rT+2, (25)
9tI= a~t + bEt~,., 2 + Cuit + [&t+i/(bt.,. + ct+i)r,, t <- T; -1 0 . (5
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Furthermore, since y O t + et, and 9. is orthogonal to es, the counterpart of (7a) for the
noisy cue would be: T

T+i T+I

2 -r{D2 + kut)p- + E{et+ 1}p , (26)

where the second summation term does not enter the optimization, since the sequence {et}
generated by (A) is independent of the control sequence {itu}. Hence, the problem faced by
agent B is the - i ation of the first term of (26) subject to the dynamics (25), where
wt = ot(91), which is compatible with the original Information i = (Y, t'-

1 ) since Ot is
generated by (qt-,ut-). Then, the problem is identical with the perfect information case
(apart from a change of notation), in view of the fact that (ri} is a zero-mean independent
sequence, playing the role of {et} in (7b). This shows that the problem (with myopic forecast)
features certainty equivalence, making the statement of Theorem I valid also in the noisy ase,
with only yt replaced by Ot, and (9c) including an additional positive term due to the second

term of (26). The following theorem summarizes this result.

Theorem 3. Let Condition 1 be satisfied. Then, the dynamic policy optimization problem
with myopic forecast, as formulated in section 2 but with common noisy measurements (1b)
for.both agents, admits the unique solution

,ot : t(yt)=: tgt, 0 < t < r+ , (274)

with the corresponding forecast policy given by

,t = ( a + cgl,+)(a + ,gt) O, (27b)

where {9t} is generated by (25), and {gt}, {&} are as defined by (8c) and (8b), respectively.

Hence, for the noisy case, certainty equivalence holds under myopic forecast, and the

statement of Theorem I basically remains intact. For Theorem 2, however, there is no direct
counterpart, and derivation of the Nash equilibrium solution is quite a nontrivial task. We
will not pursue this extension here, since presenting the full details of the derivation of the

Nash equilibrium solution would at least double the length of the present paper. What we
can say at this point, however, is that (guided by the results presented in Bagar (1978b) for a
linear-quadratic nonzero-sum dynamic game with a different type of an information pattern

and a different type of a cost function for one of the agents) the problem will generically
admit a unique Nash equilibrium solution, linear in the available common information. This

solution will not satisfy the certainty equivalence or separation principle of stochastic control,

and thus will have no relationship with the solution presented in Theorem 2. The following
numerical example (which is the 'noisy' version of the second example of section 3) should
serve to corroborate this claim and to give some indication as to the intricacies involved in
the derivation of the general solution.

Numerical ezample S. Consider the second numerical example of section 3, but with noisy
measurement (Ib) for both agents, and with all parameter values (including the noise vari-
ances) equal to unity. Hence, the cost functions are

JA = E((VI - Ys)' + (0 -(2)

J = E~yg+U +V22 + W2 +V2+ 2,(28)
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and the dynamic constraints are

Ms = 1+ W2 + 6a

S1 + VI + W1 + C2 (29)

V1 = YO + tO + e + 0,

where W2 = A2(z 2 ) tX - j(z 1), oo p (zo), xA = ((z), ti = 'Yo(zo); 20 Yo + Co,
x, = yi + C, and x2 - y2 + f. The first significant difference between the perfect and
the noisy measurement case appears in the construction of the best 12, which now depends
explicitly on (Ml,Mo) sad (Yi,,to). [Recall that in the perfect measurement case covered by
Theorem 2, there was a universally optimal policy for agent B at the terminal stage of the
game.] With the quadruple (-7y, ,;&sMo) fixed, say at (-y,;&), the minimization of .J with
respect to P2 becomes a standard quadratic optimization problem,

min E{(y2 + W2 + 8)2 +
WS

whose unique solution is

2 2 11."2 = M2.(Z'y ,P) = - E y~l, ,pI =' : Y2-,.. (30)

Here P2,, is generated by the Kalman filter:

.2-, = 01-ops + -Y(zI) + P.A.(Z") + 1(Z2 - 9.-,. - "(Z') -A (Z'))3

11io=o go + Yo(zo) + ,O(Zo) + !(zI - go - yo (Zo) - ,O(Zo)) (31)
5

which depends on (-y,&) partly directly and partly through Di-o := E[ylla,-Yo,ol. To
obtain the pair (y7,uj that is in Nash equilibrium with (30), we follow a procedure quite
analogous (in principle) to the one followed in the proof of uniqueness (for Theorem 2) in
the Appendix, geared towards obtaining' a (unique) stagewise equilibrium. Accordingly, the
derivation involves the solution of two static games, one at t=1 and the other one at t=0. To
characterize the static game at t=1, we substitute (31) into (28), eliminate the intermediate
variables and take expectation over the statistics of Ca, e and t2, to arrive at the reduced
conditional (on z 1 ) cost functions:

A = E{__4,, - 9(y, + -1) + !01 + (-. + ,I)1 2

+ (,o _ V, - V, - W101
2

l
1

S},

J4 = E{-L1 (yl + i + ) - 91 - 1('n + A01,
+1'9 2 2r1+a]

+I- (5, + -Y, + ;I) + 8(y, + VI + W')12 + (,I + V, + W.)2 + Wf1 .

In the above, we have made notational simplifications by suppressing the (-o, ,o)-dependence
of 01 and the arguments of ('yipi). This is clearly a static game in the pair (VI,wi), and its
Nash solution can be obtained for each fixed (.y,pI) and (yo, Mo), where we take vo = jo(zo).
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Diffrentlating JA with respect to Yj and J1 with respect to vl, and setting the resulting
epreslons equal to aro after conditioning on s , we find that the Nash condition is satisfied
and there exists a unique solution to the Pak of equations, linear in yi, i,, f, and -to. Now

requiring consistency in the solution (as in the proof f uniqueness for Theorem 2 in the
Appendix), we set v, = ,i(zl), w, = is,(z'), and solve the resulting pair of linear equations
(in v, and wi) uniquely, to arrive at the policies:

= 1 1(i,,yOpo) = -o. 5 2 3 l0oi + 1.54761Myo(zo), (32a)

Wi = j('1 ,yo, po) = -0.285714#1 - 0.928571-yo(zo). (32b)

Note that here yo is yet to be determined.
To complete the solution, we next formulate the game at t--O, by substituting (30) and

(32) into (28), again eliminating the intermediate variables and averaging over the statistics
of the random variables involved, to obtain the reduced conditional (on zo) cost functions:

4 = E{(0.619048to + 1.208790yo - 0.029304#o + 0.648352(vo + wo)) 2

+ (0.485714vo + 0.2952389o - 0.514286wo + 0.190477 1o + 0.809524po)21zo},

JB = E{1(0.61904"o - 1.19413901 + 1.384615yi2

+ I(0.619048,yo - 0.42490" 1 + 0.615385y,) 2 + (0.619048"1o - O.8W52491 + yl)2

+ (0.285714 1 + 0.928571,yo)2 + Y2 +W

where both Yi and 9i depend on (vo,wo), the latter through z1, as given in (31).
The procedure here is the same as at t=: First obtain the Nash solution of (JA,4J)

in terms of (-to, Ao), then require consistency (vo=,yo(zo),,oo=po(zo)) and solve for (vo, too)
from the resulting equations, which will lead to policies whose argument is 80. At each step
the uniqueness condition is met, and thus the procedure yields the unique Nash equilibrium
policies (at t=0):

vo = '7 (zo) = +o.248227go, (33a)

wo = /(xo) = -o.7517730o. (33b)

These policies are finally used in (32) and (31) to complete the characterization of the Nash
equilibrium policies:

VI= y ) = -0.523810l' + o.3841 6 19o, (34a)

WuI = p7(z1 ) = -0.28571497 - 0.230496 to, (34b)

W2 = ;(Z2) = -0.592, (34c)

where
0; = o.0 5910 2 go + 0.073209' + 0.6153sU2
971 = 0 .19 858 2 to + o.6si (35)

go = O .

An equivalent representation for -1* in (34a) would be

V, = Y'y(Z') = -0.32381W97 + 1.5647619vo,

/



143

which show. explicit dependence on vo. Note that the policies (34) are different from their
counterparts in the nois..fEe case (i.e. (23)), thus corroborating our earlier remark that the
*noisy version' does not feature certainty equivalence.

The equilibrium trajectory corresponding to the unique Nash solution is generated by

Ys; = Y2*- 0-592* + 63
y2 = y'- - 0.8095240- + 0-15 366 40 + C2

yU =yo -O.5O3546lo + el.

Using these, it is easy to check that, as in the second example of section 3, E~y3* 0 Yz)
while Eoy2*= -yo*(zo), which show. that the Nash solution could lead to perfect foresight at
the initial stage, even in the noisy case. As we will discuss in a companion paper, this turns
out to be a general property of the Nash solution for the 'noisy version" of the problem of
secton S.

Appendix
In this appendix, we first complete the proof of the existence part of Theorem 2 by

showing that the policy (**) given there indeed solves agent A's optimization problem. Sub-
sequently, we establish the uniqueness of the Nash solution presented in Theorem 2.
Ezistece. The optimization problem faced by agent A is the minimization of JOT, where

E{(vt -V+)~~a

under the constraints
YT+2 = ak/(k +.c2)IIIT+l + CT+2

Yt+I M(a + cs)yt + ctYl+ but+ et+,, 1 <t <T

y1 = (a + co)yo + el;

9= extut +P/t~t-i, vg =-ty)

We now claim that, for a general t,

muin JtT = min E(,PAnt,(vt~1 - Mt+lYt+2 - init+,t+1)2 + (t't - Yt+2) 2 } + qt, (A.1)

where (qt) is a sequence depending only on the variances of the additive stochastic terms ct,
t <5 T + 2. Under the validity of this assertion, the optimal policy at time t is obtained by
miniiing the following quantity with respect to the scalar variable vt+i=:v, for each fixed
Y t+ 1:

E(Pnt+~v- met+I(a + ca,+i,)yt+i - mt+1c~t+1;t - mt+lbv - me+lat+Iyt+1

- mtii~~itt]2 + ((a + c~tt+1 )yt+1 + C~t+ig't + bu - t1ittI2 y' 1 . (A

Being quadratic and strictly convex (in v), this optimization problem admits a unique solution
(for each fixed yt+ 1 ,9t, t), given by

=t+ M2'I+( 1 t+1) =&t+lsft + A,+It + #tIt (A.3a)
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fTh 0 t :5 T - 1, and at the initial stage by

'0= - o(YO) =&oyo, (A.3b)

Where

= b + ( - ins 2 P~ s PA nt (I - bin,) (Ati at + (a + c~t) m t) - b(a + cas)I

P~~~ + +1 - bt)pt

=t b2  ~n + P (1 - bmt))(ffsfi + c~,in5 ) - bc,].

As we have discussed earlier (in the proof of the existence part of Theorem 2), substitution
for at and fi (from (11a) and (12a), respectively) into the three expressions. above, leads to
the equivalences &t at and 41 + $t =- t. Hence, the optimal solution (A.3) admits the
equivalent representation '

= -atYt +AjttIi+ (it -A~tt-j, 1 <t < T (A.4)

We now turn to verification of the structural form (A.1). The result trivially holds for
t=T, with mT = eak/(k + cl), Ar = 0. Let us therefore assume the validity of the assertion
for t+1 and prove it for t. Towards this end, we substitute (A.4), with t replaced by t+1,
into (A.2), and arrive (after some rather tedious algebra) at an expression which is a perfect
square in tvt, yt+i and V7t:

E~nt(vt _ Mti,,+i _ rntstd2jy'41}. (A.5)

Here mt, rt and ni5 are defined in terms of mt+1, at, and nt+l as in (10a) through (10c). [In
fact, it is not difficult to see that the resulting cost should be a perfect square, because (A.2)
can be made equal to zero by appropriately choosing vt and vt4.1. With this observation, it
then remains to find the three coefficients nt, mt and At.] Now, since the minimum of (A.2)
over vt+1 is equal to (A.5), we have

min ii = -Min E{(Vt-I - Y+1) 2 +PA mini Jt}

= main Z{(v... - yt+i)2pAftt('t - mtyt+ ign 2

+ pAfq, + (I + pAnt+jmt+jVar(t+2)1,

which is in the ame form as (A. 1), with

qtI:= PAlqt + (1 + PAflt+jin't+i)Uer(It+2)I.

This then completes the proof of optimality of (**) in the proof of the existence part of
Theorem 2.
Uniqueness. It is a well-known fact that dynamic games could admit nonunique Nash eqazilib-
ria, with each such equilibrium leading to a different cast pair which are in genera Incompara.
bie (see, for example, Bagar and OWdor (1982)). Thus, 'uniqueness Is an important question
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to pose, if the proposed equilibrium is to be of value. As we have discussed extensively in
e papers (for example, Baqr(1976), BW,(1977)), the maln sourc of nonuniqueness in

Nuh equllbria is the so-called onforwmaewi.,umiquesa u which arises If eaeh agent, in
his one4ided optlrbaatloA, has the freed of choosing different representations of the same
policy. What we prove in the sequel is that for the game problem covered by Theorem 2
there is no informational nonuniqueness, and the structural form (17)-(18) is the only form
n which a Nash equilibrium can exist. Furthermore, we show that structural uniqueness is

guaranteed under Condition 2. In the prooI we will not explicitly derive the expressions for
this unique Nash solution, since we have already shown in the first part of the proof that
(17).(1S) exists a a Nash equilibrium.

Towards devising a proof for uniqueness, we first introduce two generic functions quad(.)
and ln(.), where

quad(.) = a quadratic function of its arguments
lin(.) = a linear function of its arguments.

Furthermore, we introduce a class of nested subgmea {G.}, parameterized by a, each one
being a replica of the original game but defined on a shorter time interval, [5,T + 1], 0 < a _
T + 1. More precisely, for the subgame G., the cost functions are defined by (5a)-(5b) with
the lower limits changed to t=a-l, and with the action variables being v.T := (vT, .., v.+m, v.)
for A, and w. + ' := (wT+,..,w.+i,w.) for B, where vt = u(y'), wt = -It(yt), and a similar
convention as above applying to the policy variables juf+ ,-y.r. To be consistent with this
convention, for 8=0 we extend the limit of the summation to t = -1 in both JA and JB,

by adding zero as the incremental cost term at t = -1. Now let (j := j07,;! : =' oo+ ') be
a Nash equilibrium solution for the original game (Go), such as the one given in Theorem
2. Then, it is a well-known property of the Nash solution (called the etagewife equilibrium
property) that for any j, the truncated version of these policies, (,, +"), constitutes a
Nash equilibrium solution for G., with the past policies (-i , IA - ) fixed at ( -,y-).

We now develop a procedure for studying the uniqueness of the solutions of these indi-
vidual subgsmes. First consider the case a = T + 1, where GT+I is not really a gSme but
a one4ided optimization problem for agent B, since only B is active at t = T + 1. Then,
clearly the solution is unique, and is given by the second line n (18a). Note that this solution
is both informationally and structurally unique (regardless of the past policy choices), the
former being due to our assumption in section 1 on the structure of the probability distribu-
tion of the additive system noise. Hence, in the study of the second game in the sequence,
G7, we can take uT+l as in (18a), without any loss of generality. Accordingly, substituting
this TI+i, say 144,, into both JA and JD, eliminating the intermediate variables using the
evolution equation (4) and averaging over the statistics of the random variables by employing
their independence property, we arrive at the structural forms

CostA(Gr) = qud(YT, VT, Tr, VT- t)

cost' (GrT) = quad(w, vr, ,T) + quad(w_-1), (A.6)

which are the costs incurred to A and B, respectively, conditioned on the information available
at time T, i.e. *T=YT. Since the first cost shows explicit dependence on VT.-, we fix
VT-I = IT-1(r - 1), andsolveforthe Nash equilibriumof the remultingstatic game. Because
of the quadratic structure of the cost functions, the Nash solution, If it exists, will be linear
in the pair (yT, vT-1); furthermore it will be (structurally) unique under conditions not
depending on yT and vtT-, and Condition 2 precisely serves this purpose. Hence, the static
game defined by (A.6) admits a unique Nash solution, for each fixed tr-i, given by

T = jY(y) a Iln(W,vT_) (A.7a)

: r,

/. ,-,/
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WT AIT(Y) R in(gT,uT,), (A.7b)

where 'jT-, nr-ditr-). The linar functions here are precisely the ones given in (17)
and (18), with 7_-i In the latter case replaced by r-,. The solution is also unique rcp-
reasentionvia since, because of our nonsingular statistics assumption on the probability
distributions of the random variables Involved, yr cannot be expressed in term of the past
values of the trajectory aimoa #uwr (which would have been possible In a purely determin-
istic problem). We now note that the complete (unique) solution to subgame CT is (A.7)
along with 1+, which was the unique solution (for agent B) to subgame GT+I."

The next game in the sequence, Gr'-t, involves the the action variables (vT,vT-.) for
agent A and (auT+I,Wt,T-1) for agent B. Since every Nash equilibrium is necessarily a
stagewis equilibrium and.since the. unique (linear) Nash solution of GT does not depend
structurally on v7_1 and WT-1, it follows that every Nash equilibrium for GT-1 should
match with that of GT for policies j'r+j, j5r and -'y. Hence, the equilibrium solution of
GT-1 will be nonunique only if the last components of the policy sequences, (-I, T-I),
are nonunique at equilibrium. Towards a study of this, we substitute the solution of GT into
JA and Jy, with VT-_ in (A.7b) replaced by a general function of yr-z say *T_1(gr-1),
since B does not have direct access to vr-i. [It is important to note at this point that if
B had direct access to vT-, the solution would have been informationally nonunique, for
reasons discussed extensively in Balar (197T8a) for a different class of such games.] Now, after
eliminating the intermediate variables and averaging over the stochastic variables, we arrive
at the following reduced costs for Gr-i, conditioned on the common information available at
time T-1, i.e. yT-1:

CO tA(GT-1) = quad(Y.-I, V'-T, 9T-1,VT 9-, kr-i (Y-))

costB(G t.) -quad(yr-i, UT-I, Wj, -t(YT-S)).

Here, in addition to the unknown (but fixed) function OT-i, we also have V- =
fixed by an arbitrary choice of T-2 Under an appropriate condition which is independent of
0T-1 and pT-2 (which is also guaranteed by C"ondition 2), this static gum admits a unique
equilibrium for each fixed Or-I and yr-2:

tV- I = TT-i (Yr-1, Vu-2, 0t-1 (Yr-i)) M lin(pr- ,rs,V, r-I( t-)), (A.8a)

where V'r-=-Y7r.s(YT-). Next, we impose consistency in the solution for each fixed 'YT-2,

which requires that 'jr- M Or-,. Using this side condition in (A.8a), we arrive at

t'r--o =/i(Y-t 9 r-,,r-i)

which, being Ini- admits the unique solution (for each fixed yr-' and yr-2)

VT-i = rYt-(yT-i,vr-2) i fin(Yr-i,vr-i), (A.9a)

under a nonsingularity condition which is met under Condition 2. Letting #T-1 = r- in
(A.8b), we finally obtain for r- (for each fixed ,-tr):

WT-1= ir-(w-i, -) - lin(r-t,'r-.) (A.9b)

This then completes the verification of the uniquenes of the solution of QT-t, for each fixed
7T-2. Note that the complete solution to GT-1 is given by 6+:,, (A.7) and (A.9), with

,/ ,. .
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v2r- in (A.7b) replaced by the expression in (A.9a). Here. we could also have expressed
(A.7a) in terms of yT, Instead of (IT,tvT-1), b' ibstituting for VT-1 from (A.9a), but this
is not necessary since agent A does have access to his past decision value, and enriching
his normation set by also Including put decision values does not lead to inormational.
nonuniqueness.

The important observation here is that, for each fix ed -r-2, the solution of subgame
GC2 _s (to be denoted (-.,jT_;Ar+ji,,1T T_)) is structurally unique, with each strategy
being liear in its arguments. More preisely, we have j2- linear in (W,vT-s), j-s linear
in (W-1,VT-2), AT+, inr In T+, A linear in (vT,Vr,-WI_2(j1T-2)) and ;r.-I linear
in (y r-1, vT7-(y7-)). Furthermore, the solution is informationally unique because of the
nonsingular statistics of the additive noise in the dynamics (4). Then, in the construction
of the Nash solution for subgame GT-2, we first substitute for ('T,'YT-1;#T+1,T1,ir-)
from the unique solution of G,-i, with yT-2 replaced by a general function 07- 2 , as in the
construction of the solution for G7-. Repeating the same procedure as in GT-i, we can
obtain a linear stagewise Nash solution for G T- 2 for each IXed 1r-s, whose uniqueness is
again guaranteed by Condition 2. Following this procedure in retrograde time, we find that
for each s, the subgame G. admits a unique stagewise equilibrium (for each fixed -i.-), linear
in the available information as well as in -y.-I. Since -- i is trivially zero, the process halts
at s=0, leading to the conclusion that the game Go admits a unique stagewise equilibrium,
linear in the common information available to the agents. This then establishes uniqueness
of the Nash solution of the original problem (which is identical with Go), since every Nash
equilibrium is a stagewise equilibrium and we have already proven that the game admits at
least one Nash equilibrium.

We conclude this Appendix by pointing to the fact that the above procedure would have
been an alternative method for the construction of the Nash solution given in Theorem 2, but
alone it would not be sufficient, since a stagewise equilibrium need not be a Nash equilibrium.
0
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Abstract This paper deals with the construction of cooperative equilibria for stochastic dynamic
games, where the players cannot observe the actions of their opponents. For a particular class of
dynamic games with payoffs defined as the limit of average gains one establishes the existence of
perfect equibria which are also Pareto-optimal.

1. Introduction

The aim of this paper is to explore the possibility to construct cooperative equilibria in stochastic
sequential games of infinite duration with payoffs defined as limit of averages. A stochastic sequential
game is a discrete-time dynamic game that involves an element of uncertainty represented by a random
noise affecting the state transitions. Sequential games include as a particular case the class of so-called
repeated games, which arise when a static game (e.g. a matrix game or a Cournot duopoly game) is
played repeatedly over an infinite number of periods.

One of the most interesting features of dynamic game theory is that it allows the study of cooperative
or collusive behavior among the agents engaged in the control of a dynamic system, even in the absence
of any external mechanism which makes cooperative agreements binding. Recall that the presence of
such a "cheating preventing" device is a precondition of cooperation in static games (Luce and Raiffa
1957). Cooperative solutions of dynamic games, on the other hand, can be supported by "cheating-
proof" equilibrium strategies, which imply that a player react with a punitive action to any breach
of cooperation by his partners. This fact has been first established for deterministic repeated games
(see Aumann 1959, Friedman 1977, Rubinstein 1979, 1980, and Radner 1980), and later studied in
the more general context of deterministic sequential and differential games in Tolwinski 1982, 1986,
Haurie and Tolwinski 1984, 1985, and Tolwinski et al. 1986. The collusive equilibria of dynamic
games considered in these works have been obtained under the assumption that a player making his
decision at a given instant of time has complete information about hiis partners' action history. The
importance of this assumption stems from the fact that it ensures that each player has the ability to
detect any breach of cooperation by other players, and then to react to it in an appropriate manner.
The question addressed in the present paper Is whether the above assumption can be relaxed, i.e., can
a cooperative equilibrium be constructed for a dynamic game, where the players have only incomplete
information about other players actions?

- .4

/ i



UPvw U- an Imp-

150

The issue of existence of cooperative equilibria in repeated games when the inforination held by each
player about his opponents actions is distorted by random noise has been addressed by Radner 1981 or
Rubinstein and Yar r 1983 for the case of average payoff criteria, and Radner 1985 , Porter 1983, Green
and Porter 1984 and Fudenberg and Maskin 1986, among others for the case of discounted payoffs.
Radner considered the problem of monitoring cooperative agreements in the context of a repeated
principal-agent game, and obtained cooperative epsilon equilibria under the assumption that the
players maximize their average payoffs over a finite but arbitrarily large number of periods. Radner's
approach has been closely related to the idea of sequential tests of power one (Robbins and Siegmund
1974); it takes advantage of the fact that only the changes of policy that are maintained for relatively
long periods of time can have any noticeable impact on long-term average payoffs. The changes of this
type, on the other hand, can be detected by means of statistical tests. Radner's approach involves
a so-called triggering mechanisms: a strategy is then a combination of a cooperative policy, a threat
(or punitive) policy, and a switching rule which triggers punitive retaliations. The repeated game
structure is not essential for the obtention of such cooperative equilibria as it will be shown in the rest
of this paper which establishes a result similar to Radner's in the realm of sequential stochastic games.
However an infinite horizon setting is essential for such equilibria to exist, since as shown by Basar 1977
a stochastic sequential game played over a finite time horizon, contrarily to deterministic sequential
games typically admits as equilibria only those which correspond to the strictly noncooperative mode
of play (viz. the feedback Nash equilibria obtained through the dynamic programming approach).
What makes the situation different for infinite horizon stochastic sequential games is the fact that
there is always enough time for a player to retaliate if cheating has been detected. When the strategy
evaluation criteria defining the players payoffs ire the limits of the average transition rewards, then
only the long term effects of strategic choices really matter. This fact also facilitates the construction
of efficient cooperative equilibria..

The paper is organized as follows. In Section 2 the definition of the stochastic sequential game is
introduced. In Section 3 the definitions of admissible strategy pair, perfect equilibrium, and efficient
strategy pair are given. Section 4 is concerned with the extension of Radner's approach for the
construction of efficient collusive equilibria, to the class of stochastic sequential games.

2. The stochastic sequential game format

We consider a two-person nonzero-sum discrete-time dynamic stochastic game, also referred to as a
stochastic sequential game and defined as follows:

Let a dynamic system be described by the state equation

-(t+I) = ![z(t), ui(t), u,(t), w(t)), t.0i ,1,' . ... (1)

where z(t) 6 Rl" is the state vector, u(t) e R" is the control variable of Player i, i = 1, 2, and
{, t=) 0,1,2 .... ) is a purely random sequence of independent identically distributed random
variables, with values in R?; n, ml, m2 , p are given integers. The function! : W xfM" x ." xR"P -

R' is given and known by the two players. We assume that each player is able to directly observe the

/
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state vector z(t), but can observe neither his opponent's actions nor the realizations of the random
variable w(t). As & consequence, Player i selects his control ui(t) from a given subset U of m., on
the basis of the information represented by the random sequence

zi(t) = {z(0),z(1)...,:(t- 1),z(t)}, t=0,1,2,... (2)

In other words, a strategy of Player i is defined as a sequence of mappings

,=-tit : t=0,l,2,...}, i=1,2 (3)

where - associates an element of Uj with every ,(t). The collection of al. strategies of Player i is
called Player i's strategy space and it is denoted by r,.

One can view the controlled stochastic system (1) as a family of discrete-time stochastic processes
with values 'in .", defined over a measure space (03, E). The information structure (2) corresponds
to an increasing family of a-fields E = {, : t = 0, 1, 2,...). A strategy yt of Player i is a E,-adapted
stochastic process with value in U,. Associated with any admissible strategy pair - = (i , 72), a
probability measure P., is defined over (11, E).

For obvious reasons, a strategy requiring a player to recall the whole sequence L,(t) for every t, would
be of little practical value. Therefore, we consider among the admissible strategies r the class of the
so-called Extended Markovian (EM) strategies. Under the EM strategies Player i chooses his control
u,(t) on the basis of an extended state vector zi(t) = (z(t), (t)), where yi(t) is an auxiliary state
variable with values in a given set Y1 and which summarizes the information available to player i
concerning the history of the game up to time t. We call Z = ." x Y x Y2 the set of all possible
values for the extended state variable. The evolution over time of the auxiliary state variable yi(t) is
described by an auxiliary state equation of the form

Yi (0) = y'?,
,(t + 1) = g,[z(t),u1 (i),u 2(t),w(t),y,(t)], t = 0,1,2,... (4)

where g, : lW x Rt" x R" x IR' X Y - Y is a given function, and y* is a given initial value.

A stationary EM strategy 7f in r, is such that for every 1, 7-, is a function of the extended state alone,
i.e., 7- does not explicitly depend on t. In such a case, the symbol 7 will be used to denote 7it, i.e.,
Player i's decision rule at stage t, as well as his strategy, i.e., the whole infinite sequence of those rules
Also one should notice that an EM strategy implies a specific information stru.ture associated with
the auxiliary state equation (4).

Remark 1. The choice of the auxiliary variable y,(t) and state equation (4) is part of the design of
a strategy by Player i. In some strategy designs the auxiliary state variable Vj(t) can be used as an
indicator of the mood of play. v'(t) a 1 indicates that a cooperative mood of play prevails whereas
p(t) = 0 indicates that a noncooperative mood of play Is adopted. ra section 4 cooperative equilibria
will be obtained in this clas of EM strategies.

Remark 2. The so-called stationary feedback strategies for which the extended state variable at any
time t reduces to z(t) = x(t) constitute a particular subclass of EM strategies. This class ofstratexim
has been the object of most of the attention devoted to the theory of stochastic sequential games
(Sobel 1971, Whitt 1980).
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3 Strategy evaluation criteria (payoff functionals) and equilibria

Let hi : U, x U2 x R." -- R represent the transition reward function of Player i, i 1,2. We
say that the strategy -y is admissible if the following payoff functionals are well defined for any initial

extended state z(0)

r T-i .

In the above formula, z, , ul, u2 are stochastic processes associated with the strategy pair -y and the
expectation is taken with respect to the probability measure induced by the strategy pair 7Y, where

7 = (71,,1) = , = (-,,,2) : t = 0,1,2,.... (6)

The expression (6) defines the so-called limit of average criteria for strategy evaluation in this infinite

horizon stochastic sequential game.

Remark 3. The use of a limit of average criterion implies that the player is only concerned by the
lasting effects of his strategic choices. More precisely any effect which appears in a finite number of

transitions will become negligible.

Remark 4. With the limit of average criterion it often happens that the payoffs associated with a
stationary feedback strategies do not depend on the initial state. This ergodicity property will be
exploited in the construction of cooperative equilibria.

Definition 1. An EM strategy pair 7" = (71, -t;) , associated with the extended state z(t) and the
auxiliary state equation (4), is a (perfect) equilibrium if it is admissible and at any initial extended
state z(O) E lR the follow;.ig holds

J, [-z(0); J'1 >_,Z(O); 71, 721 (7)

for all -Y E rF such that (,y1 , 7y) is admissible and

J2 JZ(0); 7'] 12 JI[Z(0); 71 , 72) (8)

for all 72 E r 2 such that (-f, , -2) is admissible.

Definition 2. An EM strategy pair 7 = ('v,y;) is efficient if it is admissible and at any initial
extended state z(O) E " the following holds for any - Admissible

J,[(0 );J] > 2! (0);-'] i = 1,2 * ,(z(0);,y] = Jz(0); 7] i = 1,2 (9)
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4. Efficient Cooperative Equilibria

In this section we extend to a sequential game format the approach initially proposed by Radner

1981 in the realm of repeated games, for the construction of efficient perfect equilibria. The following

assumptions are assumed to hold:

(Al) The game has a stationary feedback equilibrium 1 = (Al, p0) generating payoffs whose values
are independent of the initial state of the system, i.e.,

Ji(zo;A)=VN = const. foreveryz 0 E IR", i =1,2 (10)

In addition, there exists an efficient stationary feedback strategy 77 -- 7, T) such that

Ji(zo; 7) = Vic = const. for every zo E WB", i= 1,2 (11)

and
V5 > V," for = 1, 2. (12)

(A2) There exist numbers M, and M2 such that

I h,-x, r ,(z)] I <5 M, (1+ z ii), i = 1,2 (13)

II ft, 17(T), w] II < M2(l+ II - 1) (14)

for every z E X.

(A3) The components of the random vector w have finite expected values and variances.

The random variables defined below will serve as statistics for monitoring adherence to cooperative
policies ?? during the play. Let

xv(t) = flz(t - 1), r7(x(t - 1)), UY(t -1](5

and
e,(t) = E {hI=,,Ct), IffCl=C 11, i =1,2. (16)

Consider the stochastic processes

TI(t) = hj[(Of, 7j(.T(t)),u2,(t)j- el(t)

and

92 (t = h2 (Z(t), US(1)), (z(t))1 - e2(9), (17)

and define

S,(t) = T t,(s), t = 1,2,..., i = 1,2 (18)
8.0

We shall denote by f(t) and Si(t) the values of fi(t) and S(t) respectively, corresponding to the

case when uj(t) = (z(t)) for all t and j 0 i.
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Remark 5. The random variable zx(t) defined in (15) is the state that would result from the use of

the strategy pair Y at period t - I and at state x(t - 1) (recall that n is a feedback strategy pair).

The conditional expected value ei(t), given the observed state z(t - 1) defined in (16) can thus be

computed by Player i at each period t. The stochastic process V,(t) defined in (17) is thus based

on a comparison between the conditional expected transition reward when the cooperative feedback

strategy pair prevals and the actual realization of this reward. This will provide the information basis

permitting Player i to detect cheating by his opponent provided that he can observe his own transition

rewards.

Lemma 1. Under (A2) and (A3), .j(t)/t converges to zero almost surely.

Proof: This result is a direct consequence of the generalized Strong Law of Large Numbers (Feller

1971, page 243, Theorem 3), provided that E{I,(t)} can be shown to be bounded for all t E {1,2....

To see that the latter is true, observe that

E{1,(t)21 = E{h,[z,(t), 7r(X,(t)] 2 } 
- e,(t) 2  (19)

In view of (A2) one has

i hx(t), ,i(x(t))]I _ M, (1+ 1I z(t)Ill

M, [1+ 1 f [(t - 1), t7(z(t - 1)), w(t - 1A II(

. M(I + M2(1+ II W(t - 1) (0

= M(+ II W(i - 1)1l]
where M is a constant depending on M, and M2 . Hence,

Ie.(t) 1=( E{hj} - M(1 + E{fl w(t - 1)111} (21)

and
E h M

2
[1 + 2E{II w(t - 1) 11) + E{11 W(t - 1) I2}] (22)

Therefore, (A3) implies that the variances of '$(t) are bounded for all t. •

We now proceed to the construction of an efficient cooperative equilibrium defined by an EM strategy

pair. Let {bi(t)), i = 1,2 be two sequences of positive numbers 3uch that bi(t) tends to infinity,

and bj(t)]t converges to zero when t approaches infinity. We define the auxiliary state variables,
g(), i = 1,2, with value in Yj = {0, 1) and the following dynamics

Y,(o) = 1
1 if yI(t - 1) = 1 and S,(t)/ >_ -b,(t)/t (23)

Yi~t) 0otherwise

we define an EM strategy pair, - = (yi, -y2), as follows

2 ( t 7i (z(t)) ifj(t) for ,2 (24)
,,(Z('), 1f(t), ?3( 7) i,(z(t)) io

Remark 6. The dynamics for the information variable yd(t) given by Eq. (23) does not seem at first
sight to be of the general form described in Eq. (4). However it would be easy and straightforward to

obtain the form given in (4) by noticing that the variables Sj(t) satisfy the following state equation

S4(t+ 1) = S,(t) + 9,(t) ,i - 1,2.
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Remark T. The strategy yj is such that Player i begins the play in & cooperative (Parsto efficient)

mood of play; however if some "cheating" is detected at period t through the mechanism defined by

(17), (18) and (23), then Player i switches to a purely noncooperative mood of play (feedback Nash

equilibrium) and maintains it forever.

Proposition 1. There exists a sequence {b(t)) such that the strategy pair -f defined by (24)-(25)

constitutes a perfect equilibrium, and the payofs generated by -y coincide with OC, i.e., the equilibrium

-y is also efficient.

Proof: If yj (t) or y 2 (t) is zero, then both players use policies (P, p2), which constitute an equilibrium

by (Al). Now, consider the cases when yj (t) = y2(t) = 1. Since the policies ('i', ih) are Pareto-optimal,

any deviation from %7, which leads to an increase in the payoff of player i, must at the same time cause

a decrease in the payoff of the other player. Suppose that Player 1 has unilaterally changed 77 for a
policy C, which generates a sequence of one step payoffs which satisfy:

E((,,12 ){hlz(t), Uz(t)], 2(t)} = Eq{h,[zqt), 71(X,(t)),172(.(t))]} + 61(t) (25)

If the above change of policy is to have any effect on the overall payoff of player 1, one must have

T-1

lia (1/T) Z 61(t) > 61 > 0 (26)
tno

for some number 61, because otherwise

T- i

lirn (11T) E((,,,) F_ hj[x(t), ujt,2A lim (1/T)E A ([r (t), 1,()

T- 1
+ lr (11T) F 6 (t)

7-0T- I

< W + lrn (1/T) F, Vc (27)
7-0 .0

In the case when (26) holds, Player 2 will receive a payoff of the form

C.,,.){2(t,t), ), )] u= Et) - {h2 [(t), q(z1(t))l) + 62(t) (28)

where
T-1

ir (1/T)E 6,(C) < h < 0 (29)
too0

for some number 62. Hence, in view of Lemma 1,

lrn s2(t)/t < liM 92(9)/t + 3 :5'- 2 .S. (30)

Since b2(9)/t approaches zero when t tends to infinity, (30) implies that 1(t) will eventually become

zero almost surely. In other words, any deviation from th which could lead to an increase in Player
l's payoff will almost surely be detected by Player 2, who will then switch to p2. The best response

of Player 1 in such case will be to switch to p1, and his payoff resulting from this turn of events will
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be V,9. To complete the proof, it suffices to show that, provided that the sequences {b (t)}, i = 1,2
be conveniently defined, if Player I stays with T. then he will receive VIc, which by assumption is

Peater than V 
N .

By Lemma I we know that for every integer m, there exists a number T,. such that

P{ (t)1t 2! -1/r, for t 2 T.) = 1, i= 1,2 (31)

Hence, if we define the sequences f{b,(t)) i = 1, 2 in ouch a way that they satisfy

bi(t)=oo for 15t<T 1 , bd(t)=t/m for T._:5t<T.+,, m =1,2,... (32)

then S(t)/t 2! -bd(t)/t almost surely for all t and i = 1,2. Therefore, assuming that Player 2 uses

If, if Player 1 does not deviate from Th, then Yi(t) and Y2 (t) will almost surely remain equal to one

for all t, which means that Player l's expected payoff corresponding to the use of strategies (24)-(25)

will be equal to VO.

Since the same argument as the one given above applies to the analysis of consequences of deviations

from -2 t1y Player 2, we have shown that the strategy pair given by the expression (25) with b,'s
satisfying (32) is in fact a perfect equilibrium and that it generates Pareto-optimal payoffs. Thus, the

proof has been completed. 9

5. Conclusion

We have shown that a class of sequential games with limit of averages payoffs admit efficient collusive

equilibria in the class of extended markovian strategies. This result completes and extends Radner's

theory.
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1. Introduction

Economic Agents operating in uncertain, stochastic environments can face a

tradeoff between current period expected reward and accumulation of information of

uncertain value. For example, a firm producing to meet uncertain demand might

produce at the expected current reward maximizing output, based on his current

beliefs about the form of the demand curve, or it might choose to experiment by

varying outpuc, thus taking short term losses in order to sharpen beliefs about the

form of the demand curve. A parametric representation of the agent's problem is

made by considering the utility function u(x,y) and the conditional density

f(ylx,f). Here the random variable y is what the agent is trying to control

(e.g., current period profits) and x is the control variable. The parameters 0

of the conditional density of y given x are unknown, but the agent has opinions

about 0 given by a distribution A. The agent attempts to minimize the present

discounted value of the stream of expected losses, EE6 tu(xt,yt), where the expec-

tation is taken with respect to current beliefs. The problem is complicated by the

fact that beliefs are updated from period to period using Bayes Rule; consequently

current period actions can be expected to influence future period beliefs. This

introduces stochastic dynamics into the model.

This paper considers the problem in the case in which the density f(ylx,I) is

a location family. In this case the model can be written y - g(x.) + t, where C

is an i.i.d. random variable whose distribution may involve unknown parameters.

When g(x,o) - x'p the problem is one of controlling a linear regression process

with unknown parameters over an infinite horizon. Many approximate control rules

for this problem have been proposed, for example sequential least-squares estimation

combined with one-period optimization conditioning on the current estimates. The

analogous policy for the nonlinear model is clear. In practice several policies can

work "well." though it is possible to compose examples in which the policy men-
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tioned, for example, is easily improved. Fros an economic modelling point of view,

however, we are Interested in the gRZmIl policy, and in the consequences for

convergence of beliefs and policies of following the optimal policy. Will it be

optimal for an agent to learn the parameters (and thus converge to "rational

expectationsm)?

This paper gives general conditions under which the sequence of beliefs

converges to a limit and the sequence of optimal policies converges to a limit.

Under further conditions the limit policy is the optimal one-period policy for limit

beliefs. Conditions under which the limit belief is point mass at true parameter

values, corresponding to consistent parameter estimates are more stringent and are

still under investigation.

Least-squares control rules in the linear regression model have been widely

discussed and studied analytically by Taylor (1974) and Jordan (1985) and experi-

mentally by Anderson and Taylor (1976). Improvements using a Bayesian approach were

suggested by Zellner (1971) and studied by Harke (1975). The optimal policy in

the linear regression case has been studied by Kiefer and Nyarko (1987). who obtain

results on convergence of beliefs and policies, convergence in a different class of

models has been studied by Easley and Kiefer (1986). Results on optimal learning

while controlling a stochastic process are collected along with an example in Kiefer

(1988).

2. The Decision Problem: Uncertaint. Policies and Rewards

In this section we sketch the general framework we wish to study.

Let 0' be a complete and separable metric space, let -7 be its Borel field,

and (01, -7 , P') a probability space. Define the stochastic process (c on

(01, .7 , P'). The ct are assumed to be independent and identically distributed,

with the com eon marginal distribution p(ctlI) depending on some parameter, f in

Rh which is unknown to the agent. We assume that the set of probability measures,

(p((), is continuous in the parameter ( (in the weak topology of measures); and

that for any C, f e p(deIf) - 0. Let t. the acton jag, be a compact subset

of 0. Define 0 - Rm x 1 h to be the parameter space. If the Otrue parameter"

is * - (0,) c 6. and the agent chooses an action xt c :k at date t, then the

agent observes yt, where,

Yt g(xt'P) + Ct (2.1)

and c is chosen according to p('.I). The function g is assumed measurable;
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further restrictions are introduced implicitly through assumptions on the updating

equation (2.2) and the reward function (2.3).

One example is the simple linear regression model with unknown slope and

intercept and with the c independent draws from the normal distribution with

mean zero and variance a? In that example 01 is e, -7 is the collection of

Betel sets. on e, and PI is the infinite product of independent univariate
2normal distributions with means zero and common variance a . The parameter f is

the variance of c, a2 . The action space I is a closed interval in R . The

parameter 0 c R2  consists of the slope and intercept of the regression. The
2 1

space e is R. xRi.+

Let .7 be the Borel field of B, and let P(e) be the set of all probability

measures on (e, J ). Endow P(e) with its weak topology, and note that P(G) is

then a complete and separable metric space (see e.g., Parthasarathy (1967, Ch. II,

Theorems 6.2 and 6.5)). Let A0 c P(G) be the prior probability on the parameter

space, with finite first moment.

The agent is assumed to use Bayes rules to update the prior probability at each

date after any observation of (xt, yt ). For example, in the initial period, date

1, the prior distribution is updated after the agent chooses an action xl, and

observes the value of yl. The updated prior, i.e., the posterior, is then

P1 - r(x,, y, A.), where F:X x R1 x P(9) - P(S) represents the Bayes rule

operator. If the prior, pO, has a density function, then the posterior may be

easily computed. In general, the Bayes rule operator may be defined by appealing to

the existence of certain conditional probabilities, although some care is needed

(see Diaconis and Freedman (1986)). Under some conditions the operator r is

continuous in its arguments, and we assume this throughout. Any (xt, yt ) process

will therefore result in a posterior process, (Pt ), where for all t - 1,2,...,

At -r(xt, Yt' Pt-) (2.2)

1.

Let iin - P(S) x I [,x I x P(e)]. A artial history, h , at date n isi-1

any element hn - (pO'(xl' Yl, A1
) .... (Xnl Yn-l'An-l ) '  ; hn  is said to be

admissible if (2.2) holds for all t - 1,2,...., n-1. Let L be the subset ofn n
consisting of all admissible partial histories at date n. A Jhe is a sequence

fr - { t -)l . where for each t : i, the policy function wt :Ht .- I specifies the

date t action xt - xt (h), as a Borel function of the partial history, h t in
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Ht, at that date. A policy function is 55U if r t(h) - g(l) for each t,

where the function g(.) maps P(O) into i.
Define (D, -2 , P) - (6, -7 , wo) X (0', .7 , '). Any policy. r, then

generates a sequence of random variables ((xt(w), Yt(W) . Pt (W)} -I  on (0, ) , )

as described above, using (2.1) and (2.2). See Kiefer and Nyarko (1987) for

technical details.

For any n - 1,2.. let be the sub-field of 2 , generated by the

random variables (h., xn). Notice that x is 2n -measurable but y n and n

are not - measurable. Next define 2 - nVtn n n

Let u:X x R - R1 be the utility function, so u(xt, yt) is the utility to

the agent when action x t  is chosen at date t and the observation yt is made.

The reward function r:Xt x P(G) - R , is defined by

r(xtt - f Re(xt, yt)p(dftjea#tul(d#) (2.3)

The inner integration marginalizes with respect to t, given the parameter f, the

outer integration is with respect to parameters. Assume that the reward function is

uniformly bounded, continuously, and concave in x for given A. Note that this

assumption restricts g(-.,.), U(.,.) and p(.J.).

Let 6 in [0,1) be the discount factor. Any policy w generates a sum of

expected discounted rewards equal to

VX(P 0 ) - f Z 6t'ir(xt(w), At-l( )P(dw) (2.4)
t-i

where the (xt, At) processes are those obtained using the policy w. A policy r

is said to be an o if for all policies w and all priors g0  in

in P(e), V .0 ) > V 0&0). Even though the optimal policy, t (when it exists)
9

may not be unique, the value function V(j0 ) - V .(p0) is always well-defined.
if

3. Existence of a Stationary Optimal Polico

Straightforward dynamic programing arguments can be used to show that station-

ary optimal policies exist and the value function is continuous.

Theors.3-1: A stationary optimal policy S:P(e) - exists. The value

function, V, is continuous on 1(e), and the following functional equation

holds:

/
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V( ) - a tr(x. 0) + S£V(;)p(dcj(),s(d#)) (3.1)

where r - (x. y, P) and y - g(x. p) + c, and whore the integral is taken over

R x 0.

Proof: Let S - (f:P() R I f is continuous and bounded).

Define T:S -. S by

Tw(p) - max (r(x,;) + 6fV(p)p(dcj-)p(dD)) (3.2)

xg

one can easily show that for wcS, TwcS; and that T is a contraction mapping.

Hence there exists a vcS such that v-Tv. Replacing w with v in (3.2) then

results in (3.1); and since vcS, v is continuous. Finally, it is immediate that

the solution to the maximization exercise in (3.2) (replacing w with v) results

in a stationary optimal policy function (see Blackwell (1965) or Haitra (1968) for

the details of the above arguments).

4. Convergence of the Process (;&} .

In this section we prove that the posterior process converges for P-a.e W in

0, to a well-defined probability measure (with the convergence taking place in a

weak topology).

Note that for any Borel subset, D, of the parameter space 0, if we suppress

the 's and let, for some fixed w, p t(D) represent the mass that measure p (W)

assigns to the set D, then

Pt(D) - E[l(00D) I. ] (4.1)

Define a measure p. on 9 by setting, for each Borel set D in 0,

ps()- E 11 g8tDOI% 1 (4.2)

The measure p. is the limiting posterior distribution and is indeed a well-defined

probability measure.

Theorem .1. The posterior process -(p ) converges,.for P-a.e. w in 0.

in the weak topology, to the probability measure IA.

Siia of Proof: Use (4.1) above to show that for any Borel set D in 0,

Is (D) is a Martingale measure, establish that the sequence of probability
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measures, t (w), for fixed w, Is tight using the assumption that the first

moment of pf is finite, then apply Prohorov's Theorem (e.g., Billingsley

(1968, Theorem 6.1)) to deduce that pa is a probability measure.

Note that this result on convergence of beliefs is quite different from the

standard consistency result looked for in econometrics. The Mfartingale Convergence

Theorem allows us to establish convergence, but the limit measure p is a random

variable, in the sense that it depends on the particular sequence of shocks real-

ized. In a standard estimation problem, the limit result is that beliefs converge
and the limit belief is independent of sample paths, and the limit belief is correct

in the sense that p. assigns point mass to the true parameter value. Standard

results do not hold here because along any sample path for which beliefs converge,
the sequence of actions (x) may also be converging. But if actions converge too

rapidly, they may not generate enough information to identify all the unknown

parameters. One can construct examples in related problems in which this phenomenon

occurs (see e.g., Kiefer (1988)).

5. Ontimization and Limit 3eliefs and Actions

In Theorem 4.1, convergence of beliefs was established for an arbitrary Ixt)

sequence (i.e., without taking into account the underlying maximization problem).

In this section we ask what action (or actions) x corresponds to the limiting

beliefs u .

Theorem 5.1 establishes that the limit action is the action which maximizes
single period reward for limit beliefs.

Theorem.1: The limit action i - i exists, is unique for given p)
t.

and maximizes the one-period reward, r(x,p,), for limit beliefs a .

Proof of Theorem 5-1: Recall from Theorem 4.1 that lim -ju exists for

all sample paths. The sequence (x ) and (p satisfies for each t

(simultaneously, a.e.) the functional equation

v(t) - r(xt,P t ) + 6v(r(xt,yt,Pt))p(d j()pt (U). (5.1)

Taking limits along any convergent subsequence gives
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V(p.) - r(i,) + 5p(r(iy .))p(&J ) .(d)

where i is a limit point of the (t) sequence. (In taking the limits one uses

the fact that V is bounded and the integral in (5.1) is E[V(p t)I.t.] to apply

Chung (1974, Theorem 9.4.8).) However, from convergence of beliefs (i,y) yields

no information so r(i,y,A.) - od. and (5.1) becomes V(.) - r(i,#.) + 6(.).

Nov we show that i solves the problem

max r(xp.) (5.2)
xeX

A- ASuppose on the contrary that there is an xcX such that r(x ,p ) > r(x,p ). Then

by the functional equation
(A.#.)> + 6 'A.A.

V~p r( 2: ) + sfv(r(Q,9,Y))p(d.1e)pu(de). (5.3)

But by Blackwell's Theorem (see e.g., Kihlstro- (1984, 1- 1. p. 18)), since the

A Aexperiment "observe (x,y)" is trivially sufficient for the experiment 'make no

observations," we obtain,

fv(r(x,y,p.))p(dcl)p.(dO) > V(p ) (5.4)

Hence, from (5.3) and (5.4) V(p ) > r(i,p ) + 8V(p ), which is a contradiction.

So x solves problem (5.2); that is, x maximizes the one-period reward r(x,$)

for limit beliefs, p . Since r(.,p) is strictly concave in x, x 'must be

unique.

6. Conclusion

We have considered the decision problem facing an agent controlling a nonlinear

regression process when parameters in the mean function and in the error distribu-

tion are unknown. The agent faces a tradeoff between accumulating information by

varying the values of the regressors and accumulating one-period reward by following

the one-period expected reward maximizing policy. We show that the problem can be

brought into the dynamic programuing framework and that the value function satisfies

the usual functional equation. The sequence of beliefs about the unknown parameters
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is shown to converge almost surely. Further. the optimal action process converges

to the one-period optimal action under limit beliefs.
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ABSTRACT

According to developments in management information systems, more investigation is

required to adapt the fundamental features that American management information sys-

tems have to the Japanese technical climate. One important problem is to decide the

kind and the accuracy of management information systems. If complete information is

desired regarding a system in each stage of control, some time and cost will be en-

tailed. Otherwise, if incomplete information make a decision quickly, we must put

up with using a probability that control a non-optimum system. We have not the com-

plete accuracy for the information and the decision both. This is analogous to Hei-

senberg's uncertainty principle. In this paper, we discuss the relation between the

information and the decision in optimal inventory processes in this viewpoint.

INTRODUCTION

According to management information system development, more investigation is re-

quired before adapting the funiamental features of the American management informa-

tion system to the Japanese tecnnical climate. One important problem is to decide

the types and the accuracy of such a management information system. If complete in-

formation is desired regarding a system in each stage of control, some time and cost

will be entailed. Otherwise, if incomplete information is used to make a decision

quickly, we must put up with using a probability that will control a non-optimum

system. We do not have complete accuracy for both the information that is available

and decisions that are made. This is analogous to Heisenberg's uncertainty princi-

ple. This paper discusses the relation between information and decision in an opti-

mal inventory process from this viewpoint.

Additionally, we introduce the general principle of balance. We thus possess two

weapons namely the principle of optimality in dynamic programming and the principle

of balance in a management information system. In the third section, this principle

of a balance will be applied to the development of the relation between information

and decision in optimal inventory processes. Then, problems regarding quantity ap-

proximation, time approximation, demand approximation, the criterion approximation

and system structure approximation are summarized. The fourth section discusses the

stability of the optimal inventory equation and presents a design for an optimal in-

ventory system.

Finally, we point out that one source of imprecision stems from both randomness and

fuzziness, and conclude with a discussion of some areas for further research.
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Principle of Balance

The stochastic properties of quantum mechanics are based on the uncertainty princi-

ple. A balance relation is pointed out wherein it is theoretically impossible to

measure with the same accuracy at the same time for a pair of quantities, called a

conjugate quantity.

The phenomenon that is analogous to this principle in physics exists in many fields.

Let us generally call this the principle of balance and discuss the relationship be-

tween this principle and several phenomena.

For example, the approximating of linear prediction theory due to Wiener leads to

the problem of minimizing the quadratic form

N M
E = I (ak - IoAak_J)

2

k-O 1-0

over the real quantities A, , where the quantities ak are given real numbers. E

is the prediction error. The prediction error decrease and the structure complex

increase when M is increased. It is an important practical question of decide how

large to make M that balance the prediction error and the structure complex.

(1) Principle of Optimality in Dynamic Programming [1]

The principle of optimality in dynamic programming indicates that the optimal policy

should harmonize the balance between costs involved in deciding present and future

values on a new state reduced by its decision, because dynamic programming involves

multi-stage decision processes. The information for the future is necessary in to

make a decision in the present. The principle of optimality is an exact mathemati-

cal expression for this idea.

Let us assume Rth Laulti-stage decis'in processes. We shall be concerned with cri-

teria possessing a structure which ! rmits us to focus our attention solely upon the

past and present history of the process in a search for values of policies. Then,

to construct the optimal policy of the Rth sLage, whatever the initial state and

initial decision are, the remaining (R - l)th decisions must constitute an optimal

policy with regard to the state resulting from the decision on the first stage. We

must determine the first decision in order to determine the balance between gain in

the first stage and gains in remaining (R - 1) stages.

(2) Principle of Balance in Information and Decision

If complete knowledge of the system is deemed necessary at any stage, then an appre-

ciable time is usually required to accumulate this data. During this time, the sys-

tem is oncontrolled. That is to say that time is one of the most valuable resources

we have; it is unique in the fact that it cannot be reversed or replaced. It takes
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time to make decisions and then to implement those decisions. If, however, we make

a decision quickly, using incomplete information about the system, there is a non-

negligible probability that a non-optimal action will be taken. We cannot have com-

plete accuracy in both information and control. This is the uncertainty principle

in a management information system.

Information and Decision in Optimal Inventory Processes

This section discusses some applications of principle of balance in regard to infor-

mation and decision in multi-stage stochastic inventory control processes. Multi-

stage stochastic inventory control processes will be introduced in Section 4. At

first, if we observe the exact inventory quantities, then we have the right decision

and the optimum expected cost, but we must accordingly allow for the cost of more

observation. This sort of approximation relates to the quantity aspects. Secondly,

instead of keeping records and placing orders at each period, it may be better to

observe and order at intervals of a few periods, even when this delay necessitates

paying a penalty charge for getting items quickly. This type of approximation re-

lates to the component of time. Also, there are some approximation problems in re-

gard to determining demand information, optimum criterion and inventory system struc-

ture, etc.

(1) Approximation of Observation [7], [8]

A major problem in modern management is that of keeping records. However, sometimes,

at a certain point, the cost of keeping records is greater than the gain that is ob-

tained by using these records. These factors provide the motivation for a study of

the approximation of observation of inventory quantity. It is necessary to decide

on the degree of observation approximation that harmonizes with the observation cost

and the gain obtained by using approximate information. We have obtained the follow-

ing results, using both analytic and computational studies. [7, 8]

1) Optimal choices between degree of observation M and degree of policy N depend

on the unit costs for this inventory process.

2) Inventory processes are as sensitive to M as to N

3) Inventory processes are as sensitive to the backlogging problem as to the lost

sales probler, etc.

We can determine the degree of approximation that balances the cost of observation

and the total expected cost, if the approximate observation quantity is used.

(2) Approximation in Time [9], [10]

In introducing the basic optimal inventory equation, explicit use was made of the
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assumption that observations and orders are made at each period. However, this as-

samption may be questionable. Instead of keeping records in every period, it may be

better to count the number of items when the supply is low, and even to pay a penalty

charge for getting items quickly when the supply is very low. The problem that we

want to study is that of determining the time to examine the number of items remain-
Ing in stock.
The results of analytic and computational studies are given in [10]. As we might

have expected, the shortage and the total expected cost increase with increasing var-

lability of time interval in decision. Thus, we can determine the time of observa-

tion and control that balances the cost of observation and the expected cost, which

are obtained by using an approximate time.

(3) Approximation of Demand Information [11]

The first step away from completely deterministic demands and a step of considerable

import, is the classical theory of probability with its introduction of random vari-

ables. We want to indicate the existence of high levels of uncertainty. We can con-

sider the following three cases.

1) Stochastic problem; the case when the stochastic feature is known.

2) Adaptive problem; the case where the demand distribution contains unknown sto-

chastic parameters.

3) Game theoretic problem; the case when the stochastic feature is unknown.

In [11], we have compared the solutions for cases when the probability density func-

tions of demand are assumed to be exactly known, adaptively known and game theoreti-

cally known. The total expected cost increases as the completeness of information

decreases.

(4) Approximation in Criterion [12]

The problem of establishing the inventory system effectiveness criterion is a very

fundamental one.

Let us discuss the following problems of a multi-stage nature, namely average cost

per period and probability criterion.

1) Multi-stage problem

We often say that we are planning for the next year, and that we wish to minimize the

multi-stage expected costs or maximize the multi-stage expected profits. It is clear

that managers need not plan for next year only and that, in fact, they must consider

many years in advance. In this case, the optimal policy in one period does not al-

ways mean the optimal policy in multi-stage periods. However, under some assumption,

the former coincides with the latter.
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2) Average cost per period

In the stationary approach, we select a particular (a, S) policy, calculate the

long-run costs based on this policy, and then select the policy variables so as to

minimize long-run cost. Let the minimum cost be denoted by k . In the dynamic pro-

gramming approach, the technique depends on the minimum cost function Cn(x) . If

the interest rate is zero, then, as period n becomes infinite, C (x) will tend

toward infinity. It seems plausible that there will be some connection between

lim [C (x)J/n and k.
n

3) Probability criterion [12]

Let us discuss the criterion which minimizes the probability that the inventory over

all stages exceeds a fixed level. The profits in the probability criterion are as

follow. At first, this is simple, because we do not require an estimation of the

cost functions. Secondly, we have the same policy characterized by the principle of

constant stock level as the criterion of cost functions.

(5) System Structure Approximation [12]

Consider an inventory system that has many benefits. Under individual inventory con-

trol, each location puts in their orders separately and is concerned only with its

own welfare. Under its centralized inventory control procedure, by contrast, quan-

tity orders are made simultaneously for all locations in the network. There are im-

mediate advantages and disadvantages to controlling such an inventory system central-

ly.

Since information about the entire supply network is recorded at a central location,

decisions can be made effectively and expediently in emergencies, but the resulting

decisions are more complex. An important question is the determination of how many

benefits that are optimal in order to achieve centralized control.

Inventory System Design

Most of the authors who have written on the subject of inventory control have made

the assumptions either that we have obtained or that we shall have information used

to make the necessary decision. In this section, on the contrary, let us determine

the kind and accuracy of the information, on the assumption that we know how to de-

cide when to have some information. (3]

There are two types of costs with regard to information. One is the observation

cost, which is entailed in obtaining information. The other is the error cost, ow-

ing to the approximation of information. Our aim is to minimize the sum of these

costs. A model of our inventory control process is the multi-stage stochastic in-

ventory problem. Let L(y) be given by:



174

Ti L(y) =fgyh(y-&)*(9)d& + Jy'p(-y) (Q)d9 1

Where L(y) represents the sum of the expected inventory cost fgh(y-C)0(&)d9 and

the expected penalty cost fyp( -y)O(C)dC in each period, and 0(4) is the demand

probability density in each period, given that, at the beginning of a period, the sum

of the initial inventory on hand and the stock to be received in a period is y . We

define the functional f n(x) as the total expected discounted cost over n periods,

where x is the inventory on hand at the beginning of the first period. We have ob-

served that f nx) can be written for all x in the following functional equation.

f nx) - min [c(y-x)+L(y)+Gfn-l (x-0)0()d ] (2)
yzx

In (2) c(y) is the ordering cost and a denotes the discount factor (0 < a < 1).

At first, we shall review the stability of the inventory process which is fundamental

to design issues. In the following, we introduce the inventory processes design and

the inventory policies control problems.

DISCUSSION

We have shown that the environment for approximation of observations and policies

affects our inventory processes.

Much of the decision making in the reai world takes place in an environment in which

the goals, the constraints and the consequences of possible actions are not known

precisely. To deal quantitatively with imprecision, the traditional approach is to

employ the concepts and techniques of probability theory and, more particularly, the

tools provided by decisiontheory, control theory and information theory. This is

now questionable especially in view of the developments in the field of fuzzy sets

theory (4], [5].

There is a differentiation between randomness and fuzziness, with the latter being

a major source of imprecision in many decision processes. By fuzziness, we mean a

type of impression which is associated with fuzzy sets, that is, classes in which

there is no sharp transition from membership to nonmembership. There are many facets

of the theory of decision making in a fuzzy environment which require more thorough

investigation. This is also the case with inventory systems.
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CLASSIFICATION METHOD USING MULTICRITERION OPTIMISATION:

APPLICATION TO THE STOCK EXCHANGE.
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ABSTACT:

This paper propound a preference model and a decision model for an economic system. With the
multicriterion optimisation, we develop a method permitting the choice of stock portfolio in stock
exchange. In the first part, we compare two fuzzy numbers, representative of the value of two
actions according to a criterion, and we introduce the threshold notion. In the second part, we
compare two classing result from two criterions; a new classing will be deduct of this comparison.
This one give the composition of a portfolio.

I INTRODUCTION
The stock exchange is too complex economic system to build an elaborate model. Nevertheless,
with a simple model, we can have a better understanding of the system ; and so deduct a best
adapted command.
There is two types of models:
- Economic model: with several parameters as social, political, financial events.
- Technical model : based on the quotations, these models give the value of the Beta coefficient, the

index ....

The first one, too much subjective, must be used with a lot of precautions. The second one contains

a part of the information wich circulates in the market. The estimations given by the technical
models are often biaised ; since they are obtained by the study of the past. It is important to utilize
a method which integrate this error.
These different models give a set of criterions which allow to valuate the stock exchange.
Let C = (C,,C 2,...,CJ} the criterion set.

A= {A1 A2,...,An) the possible set of stocks on the system

To integrate the error of estimation, we consider an uncertainty domain containing the value. So all
the values become fuzzy numbers
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II COMPARISON OF TWO FUZZY NUMBER

In this part, we develop a preference model allowing the comparison of two fuzzy numbers. In our

application, each criterion is applied on each stock So a criterion matrix C(a) C can be created.

With the notion of fuzzy numbers, the criterions become :

[C (a,),C (a)] ; where [CC ] represent the limits of a uncertainty interval. The domain of

fuzzy number, representative of the criterion, integrate the error of estimation. We must add to this

error, the possibility of a future event unforeseeable by the past. For that reason, we introduce a

threshold notion: S,. A stock (aj) will.be better than an other stock (ak), for a criterion (C,), if the

value of the criterion applied to the stock (a) is better than the value obtained with the second

stock (a,) ; and if the difference is higher than the threshold S.

If C(a) > C1(ak) + Si = > a is prefered to a. forC

In this case, a perturbation P, due to an unforeseeable event, will not change the choice, if his

amplitude is not higher than the threshold Si.

if P<S we have:

C() > Ci(a) + P = > a is always prefered to a

for the criterion C1.

We see immediately than if:

C1(a) < Ci(a,) + Si
C,(ak) < C(a) + S.

Then, is not prefered to ak and ak is not prefered to a,. To describe this possibility, we introduce

the indifference's relation ; which is noted : I.

In order, to compare two stocks aj and ak, by using the criterion Ci, we have consequently three

choice relations:

- Preference (P)

- Indifference (I)
- No preference (NP)

We define the different relations as following:
1 Ci+ (aj)-Ci+ (ak) > Si
I I Ci-(aj)-Ci-(ak) > Si  f > aj P at

12 Ci-(aj)-Ci-(ak) <= Si

Considering:
M = ((Ci+(aj) + Ci-(aj))-(Ci+(ak) + Ci-(ak)))/2
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We can use a function of M, noted : F. This function (f) depends on several parameters (uncertainty
domain, threshold, ...).

S121 -S1 <  <-S, => I a

F2 F>Si M > a, P ak
123 F <-S, => aNP ak

IF IIF
Representation of the different cases

2 C¢ + (&)-C 1+ (a.) < -S
The obtained results are the same than the precedent, if we change j and k.

3 -S < = C+(a)-C+ (a.) < = Si
31 -Si<= F <= S, => a 3 1 a

F > S=> a1 P ak
F < Si => JNP ak

The method consist in comparing the n actions two by two, for the criterion Ci.A preference matrix
Pc(j,k) (n*n dimension) can be built. To use this matrix, we must code the preference relations.
We take the following coding:

ifa P ak - > P,(J,k) = 1
if aj I ak => Pci(jk) = 0
if a NP ak - > Pc(jk) =1

Every criterion will have a matrix nn which display the comparison between the stocks.
For one criterion, two stocks are compared owing to the rows of the matrix Pci. The row j shows the
preference for the stock j with regard to the others. The value of the preference for this stock is
given by the sum of the row.
Let us build the vector:

Vrom1(k) - Pc1j,k)
Vsomi(k) represent a performance measure of the stock ak. We would terminate this study, if the
found classification was the same for all criterion Ci: this is improbable. So we introduce a method
which compare two contradictory classing. This method will give the value of all the stocks for the
criterions set and then a classing.
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II COMPARISON BETWEEN TWO CRITERIONS

In this part, we develop a decision model allowing the comparison of two criterions. This method
consist in setting the criterions in a hierarchical order, beginning by the most important for the
investor, and ending by the less one. With two classing, related to two criterions, we build a new
classing. We take the two most important criterions, then the second and third, and so on. To be
able to define a global classing with two contradictory primary classing. we introduce the criterion
preference coefficient, written CL1.
Let aj and ak be two stocks, Ci and Ci+ I be two criterions with Ci prefered to Ci +1. The stocks, aj
and ak have each one a value for each criterion: Vsomi(aj),Vsomi+ 1(a1) for the stock a ; and
Vsomi(ak),Vsomi+1(ak) for the stock ak. More exactly, we normelize the vectors Vsomi(a3 ) by doing
the following tranformation:

Vsomi(a) = (Vsomi(a3)-Vsom i min)/(Vsom i max-Vsom i min)

With Vsom min and Vsom max, the minimum and the maximum value of the vector Vsomj(), for

the criterion Ci.
In order, to establish the new classing, we make the difference between the two values of the two
stocks for a criterion :

Di = Vsomi(a)-Vsomn(a)
if Di> 0 => ajPak
if Di+1 < 0 => akPaj

This two criterions do not permit us to choose between the stocks a. and a. A solution consist in
saying that the second criterion is less important than the first one. Then we multiply the second
(Di. 1) by the criterion preference coefficient (CPi) ; with CPi less than CPi.. The new preference
relation becomes:

Di+1 = > Di+ t " Cpi

So we have the following relations:
1) Obvious relations:

Di > 0andD,+, >=0 => a1 P a
Di < 0andDi+, <=0 => a3NP ak

Di =0andD +, =0 > a I ak
Di = 0andD,+, >0 => a3 P a.
D i =0andD,, <0 => aNP a,
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2) Solutions depending of CPi :
Di > 0 and D,,, < 0 or Di < 0 and Dj t > 0

Di + Di+I*CP1 > 0 = > a, P a

Di + Dj I*CP. < 0 M > aNP ak

Di + D.I*CP = 0 => a Ia,

By comparing n stocks with themselves, we obtin a preference matrix Pi (n'n). And then, we
calculate the sum vector VSi(k) ; it gives so a new classing which use the two criterions C, and C, .
With the criterion C+ and C+, we obtain the sum vector VSi+ 1 (k). The result of VS- and VSj+j
will be compared with C,,3 and will give VSi+ 2(k) ; and so on, until VSm(k). At leastthe sum vector
will give us the definitive classing for the criterions set.

Exemple:
let A= {A1,AZA3)

C={Cl,C2}
Si=O

C, Ca. C2 ca

(5 C!)O

Pc, = 1 0 1 => Vsom 1 =

I~ lil 

(.211

PC2 - (o0i00= 0 = > Vsom2  CD
let CL =0

Ci= ) = > VS, )
1 -1
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IV CONCLUSION

The use of this method, on the stocks of the stock exchange of Paris, has a real increase of the portfolio

D.4 fit with regard to the method of simple investing. Our work, at the present time, is oriented to the

amelioration of these models; with the function F, as also on the determination of the different

thresholds.
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Abctat

We are concerned with a class of problems described in a somewhat imprecise

way as follows. Consider a linear operator of the form L + V(x), where L is the

generator of some Markov process xt and the "potential" V(x) is some real-valued

function on the state space of xt. We are interested in probabilistic representations

for solutions u(tx) of the evolution equation

(1) gf = Lu + V(x)u, t ;, 0

with initial data at t = 0. The Feynman-Kac formula gives a well-known stochastic

representation for u(tx). We seek a different probabilistic representation for

I =-log u, if u(t,x) is a positive solution to (1). In this representation the operator

L is replaced by another generator Lt (perhaps time dependent), chosen to solve it

certain stochastic control problem. The dynamic programming equation for this

stochastic contrQl problem is

(2) - = H(1) - V(x), where

H(l) = - clL(e I).

Anothcr way to view the change of generator from L to L is by change of

probability measure through conditioning.

Next suppose that the state space of xt is euclidean Rn, that

L= Lu= uE, I = - c log uE and

H,(I) = -elL'(c"I).

Under various assumptions it turns out that 14 -, 10 as e - 0,

lim EH ((-1I) = Ho(xIx)
-0

where Ix is the gradient, and that I(tx) is a viscosity solution of the first-ordcr

partial differential equation

HO(X,Ix).
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When xt is a nondegenerate diffusion on Rn, then L is a second order elliptic
partial differential operator. In this case, the logarithmic transmation provides an
analytical approach to large deviations questions of Ventsel-Freidlin type, and for
more precise results in the form of asymptotic series expansions of 1 in powers of
E. The logarithmic transformation technique is also of use to study certain
asymptotic problems in which ul(tx) obeys a nonlinear parabolic partial differential
equation.

i/
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MACROSCOPIC PROPERTIES
OF

DISCRETE DIFFUSIONS
by

E. Benoit*, B. Candelpergher", C. Lobry*

The mathematical Wiener process, and more generally mathematical

diffusion processes, are mathematical idealizations of physical processes like Brownian

motion for instance . The starting point in the definition of the Wiener process is the

definition of the random walk IV

tt+dt = tt + ZtIdt

R.W.(dt) t E{ O, dt, 2dt,....pdt ..... ndt = 1)
t =0

where Zt is a sequence of independent ranom variabls taking values *1 with equal

probabilities . This Is certainly a simple mathematical object but not a good Idealization

because It contains a parameter dt and, dpriori, there Is no universal way to fix it.

As it is well known, the usual way to deal with this dlfficulty is to consider

the whole famillu R.W.(dt) (dt> 0) and, because we want to Idealize physical random motions

In which the elementary step is very small compare to the scale where the phenomenum is

observed, we take the limit when dt 4 0. This limit Is a mathematical object known as the

Wiener prcMs. rlathematlcally speaking the Wiener process Is a probabillty measure on

the Infinite dimenasional vector space : RI 0 • 1 . Because of the great cardinelity of this spece

a problllty measure Is no longer a simple object and its definition requires the knowledge of

most of the technlcalltles of measure theory . The only way to avoid all those technicalities Is

to work only on probbillty spaces of finite cardinallty . This Is the case of the random walk

R.W.(dt) whlch Is defined on the soece -1 +1) . But we lose universalitu of the wiener



190

process How can we recover it?

Define the Wlier Walk (W.W) as RW.(dt) for dt infinitesimal and

look for its macroscopic properties.

The real number dt considered here is infinitesimal in the formal sense

of Non Standard Analusis ( N.S.A.) . A macroscopic observation of the process is an

observation which Is not able to distinguish differences at the microscopic level : For Instance

if the position of the process at time t is x we consider that our mesurement is not able to

give the exact value of x but merely anu value which is infinitelu close to x ; an such a value

is idealized by the shadov of x, which is the standard real number infinitesimally close to

x . Thus the property :

'The shadow of t is positive"

is a sentence which makes sense in the language of N.S.A. (but not in the conventional

language ant thus is called external ) and expresses a propertu of W.W. which makes no

reference to dt . It does not depend on dt provided it is infinitesimal. BU this way we recover

universality of the Idealization.

This mathematical model in which the law of the process is defined at the

microscopic level (dt) and is observed at a macroscopic one fits very well with the Brownian

motion In which we actually observe at a venj large scale ( say 10-6m for position and 10 - 2

sac for time ) the consequences of about 1 0 21- 10 22 kicks per second b the molecules of a

gaz on the Brownian particle

In this approach ol the technicallties assocfated to measure theonj are

suppressed and replaced by those which are associated to the use of the richer lnguwe of

N.S.A. Where is the benefit ? The benefit Is In the fact that we need very faw elements of

NS.A. , vithout comparison with whet we need from mesure theory . This Was recogrnsed b

E. NELSON 11 . In this book, among other things, he establishes In less then 80 pages (

Including the necessary rudiments of N.S.A.) the external equivalents of all the essential

Properties and carecterisetans of the Wiener process In our paper [21 we have extended the

/
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approach of NELSON to the more genewal processes:

Itdt - tt b(Ittt)dt+ (I t ) Zt,/dt

t E{ 0dt, 2dt...,pdt .... ndt =)

In this lecture we shall explain

1 ) What means "almost sure" on a finite set with uniform probability.

2) What means (neerly)continuous' for a discrete mapping from

0 , dt, 2dt...pdt,.....ndt = i ) to P and why it is a macroscopic concept.

3) How one can prove the following:

Theorem Consider the process defined by:

tt+dt = tt b(tt,t)dt+ s(tt) Zt,/dt

t E{ o, dt, 2dt,...,pdt,....ndt= i}

to=0

where dt is an infinitesimal, Zt Is a sequence of Independent random variables taking values

in *1 with equal probabilities and the mapings b(.,.) and s(.) we standard continuously

differentiable, bounded with their derivative Then 'almost every" trajectorj is (nearij)

continuous'.

/
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ABSTRACT

The concept of local controllability is investigated for non-relativistic quantum

systems. Sufficient conditions will be sought such that the solution of the

controlled Schrodinger equation can be guided, over a short time interval, to any

chosen point in a suitably prescribed neighborhood of the solution in the absence of

control. Evolution equations which are linear in the controls but nonlinear in the

quantum state 0 are considered. Our formulation and analysis will (for the most

part) run parallel to those of Hermes.

I. INTRODUCTION

In recent years, there has been a growing interest in the system theoretic

problems of filtering and control of quantum mechanlcal systems. Several note-

worthy efforts exists: (i) Tarn, Huang and Clark [I] and van der Schaft (2] have

explored the formal basis for the modelling of quantum mechanical control systems.

(ii) Clark, Tarn and their associates (3-6] have obtained results on quantum

nondemolition filtering problem. (iii) Belavkin [7) has investigated the

measurement and control problem in quantum dynamical systems. (iv) Pierce, Dahleh

and Rabitz [8] have studied the optimal control problem of quantum mechanical

systems. (v) Butkuvskiy and collaborators have discussed the control of quantum

objects in broad terms and have set forth general conditions for controllability of

pure quantum states [9-11).

To the authors' knowledge very little has been published in the way of

mathematically definitive results on the controllability of quantum systems. In [12]

the authors are able to establish a series of global controllability conditions for

the Schrodinger equation which is linear in state and linear in the external

controls by extending the geometric approach as implemented by Sussmann and

Jurdjevic [13,14], Krener [15], Brockett (16], Kunita (171 and others.

A
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In the present contribution, we shall consider evolution equations which are

linear in controls but nonlinear in the quantum state; in this case the work of

Hermes (18] is extended to obtain conditions for local controllability along an

unguided reference solution.

II. PROBLEM FORMULATION WITH NONLINEAR GENERATORS

In adapting Hermles' work [18] to our ends, it is convenient to think in terms

of the x representation (191. Thus the state vector feH will be represented by

the wave function C(x) e L2 (Rn), where xeR
n stands (ordinarily) for the set of

spatial coordinate variables associated with the quantum system. (More generally,

x may stand for any complete set of compatible variables [19] built from the

position and momentum variables. Spin and other internal degrees of freedom can be

incorporated by essentially trivial modifications.) Now, let us define a class of

operators H in H which are supposed to be skew-Hermitian (norm preserving) and

time independent and to have, in the x representation, the mode of action

(HE)(x) - Hf[ x - A1 f I((H l )(x)).f ,q( q )x) I

Here, p, q are some integers, the HA, (A - 1,.....p - ..... q) are closed,

skew-Hermician linear operators acting in H, and the mappings fA, : CI_ C1  are

real analytic. (By the last requirement we mean that f A,(w) is a real analytic

function of its argument w, this argument in itself being generally complex, w E

C1. Also, in expression (I), fA(w)fA,' A (w') is to be interpreted as the usual

product of complex functions.) Throughout the current section, the generators

H0 ... Hr entering the "controlled Schrodinger equation" will be assumed to be of

this more general form. Thus, while Ho ... Hr are still taken skew-Hermitian, they

need not be linear--although the linear case is certainly included.

We shall further assume that a unique local solution exists for the initial

value problem

"4 [ ,tM]t tO '  t rO - (2)

posed by the Schrodinger equation so generalized, the admissible controls u, now

being real, analytic, bounded functions of t. To establish that this is a viable

assumption, we note that it is automatically fulfilled within the framework of [12],

provided 0 belongs to the analytic domain DW; moreover, in Ref. 20 it has been

shown to be valid for a certain relevant class of partial differential equations.

On the other hand the formulation of genJaUI conditions on H0 + Zu1H2 for the
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existence of a unique local solution of (2) awaits further mathematical

developments.

Our next task is to specify the Lie bracket appropriate to the (generally)

infinite-dimensional, (generally) nonlinear control problem (2). wherein the

Hk . k-O .... r are of type (1). First, we appeal to the chain rule to define a sort

of derivative operator, DH, correspovding to an operator H of that type:

((DHt)(x))C(x) - A 1 fAl((HA l)(x))...fAP-.l((HA'.l )(x))

f!,U((HA. (x))fA (3)

where Cr H and f'(w) is the derivative of f(w) with respect to its argument.

The Lie bracket of two operators H. K of the indicated class is then specified by

([H.K]()(x) Z [H,K](Ix - ((DHf)(x))(Ke)(x) - I(DKC)(x))(Hf)(x), (4)

to apply V f 6 H and V x. Again we shall employ the notation adHK - [H,K].

1+ K - [HadvK], w - 1, 2 .... ; also, sdK -K. The prescription (4) for the Lie
product is obviously consistent with that of (121, for, if H and K are linear,

[H.K] - HK - KH as in [12).

Remark 1. The above definitions and specifications are tenable even if H an,.

H, of (1) are = skew-Hermitian (or even if skew-Hermiticity is not a meaningful

concept). As is well known, skew-Hermiticity of the generators of time displacement

is an indispensible requirement in conventional quantum theory, where it is

necessary for the probability interpretation of 0t" On the other hand, there are

circumstances in which one may be led to drop this requirement, namely, (i) in

approximate treatments of the Schrodinger equation designed to yield simple pictures

of complicated phenomena involving many degrees of freedom, and (ii) in radical

revision& of conventional quantum theory aimed at a more fundamental description of

the microscopic world. The optical model of nuclear reactions, (211 wherein a

complex potential is introduced to simulate the effects of inelastic processes, is a

good example of circumstance (i), while the hadronic theory proposed by Santilli

(22] suffices to illustrate possibility (ii). Obviously, in the latter context new

interpretations as well as a new formal apparatus (see, e.g., Ref. 23) must

accompany the enlarged mathematical framework.

Remark 2. The mop-age of this comment is similar to that of Remark 1, except

that the subject is nonlinearity of the generators H0 ... H r rather than

violation of their skew-Hermiticity. Conventional quantum mechanics is necessarily

a linear theory, in chat the superposition principle is an essential property.

Specifically. linearity of the operators .. H is required to maintain this0  r

property. But again one might agree, either (i) in the framework of approximation

methods, or (ii) in fundamental extensions of quantum theory, to sacrifice
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linar-.-. The Hartree-Fock approximation [19,21] of atomic and nuclear physics

furnishes a prominent example of a nonlinear approximation to the conventional

quantum description. On the other side of the coin, nonlinear quantum theories at

the first-principles level have been considered by a number of authors; for example.

Wigner [241] has suggested that a resolution of the mysteries associated with

"collapse of the wave packet" might be sought in terms of such a theory. (25]

III. GENERALIZED DECOMPOSITION THEOREM

_ r
Consider the system (2), wherein it is assumed that 0 c D - n dom Hk

k-O

null sec. Let Vt (4) c D denote the solution (evaluated at time t) of the

associated reference oroblem
dt H0 q0 (5)

This problem corresponds to free evolution of the quantum system, the external

controls being turned off; accordingly qt Vt (44) will be referred to as the

homozeneous reference solution. Treating 4, rewritten , as an arbitrary element

of the allowed domain D, we obtain a mapping - V (n), which in general defines a

nonlinear operator. (We note that in the special case that the generator H0  is

linear, V t(c), which traces an integral curve of the vector field H0 , serves to

define a linear evolution operator V . However, in the nonlinear setting of the

present analysis, we are strictly not allowed to divorce operator from operand,

since an operator of class (1.) generally depends on the point of H at which it

acts.) The differential of the mapping - v t(), to be denoted DVt (), is also

(generally) a nonlinear operator. One may loosely interpret DV (0), as the

derivative of the object Vt( ), a state vector, with respect to its argument, which

is again a state vector. By DVt()Ix we will mean the differential of the (wave

function) - (wave function) map (x) - - Vt()Ix .

Definition 1. A complex-valued function g: t - g(t) - g1 (t) - ig2 (t) is said

to be comlex analytic in the variable t, where t c R1 , if the functions g, and

92 are real analytic in t.

Theorem 1. (Generalized Decomposition Theorem (cf. Refs. 18,26)). Let ; be

an arbitrary element of the common domain D of the operators Ho ... '. . and

suppose that (1) the maps t - Vt ()lx and t - DVt()/ix are complex analytic in t

for all x and (ii) the differential DVt(r) converges in the strong operator

topology to the ideatity operator id. as t - 0
+ . Then, a sufficient condition for
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Vt(W t()) to provide a solution of the controlled dynamical problem (2), is that

Wt(4) satisfy

d4 - E!a j u H ' 0 . c D. (6)
"_O 0 1-1

If DVt( ) is one-to-one, the state condition is also necessary.

Proof. A necessary and sufficient condition for V t(W t()) to be a solution

r
of (2), given that V0(W0 (o)) - Wo() - 0, is HoVt(Wt(o)) + uIHIVt (W t() )

(W-d v ( )) - q v (0)1 wt +  DV () d" ( )  
()

Since by definition Vt () must satisfy the differential equation av t()/at -

H 0Vt(), where may be regarded as an indeoendent variable so far as the Cime

derivative is concerned, the initial terms in the first and last members of (7)

cancel. Thus condition (7) may be distilled to

DV (0) d Wt(0) u'(t)Hs]V,(Wt(0)) . (8)

The crucial step is to prove that, V C and V x,

LV( t tH'][d0  r u(t)H21 V (ni x (9)t &-O &' 0-1 u 1 2_1 x

Once property (9) is established, the theorem is in hand; for if W t(O) satisfies

(6), It will then follow from the sL'ficiency of (8) that Vt (W (0)) solves problem

(2).

In order to establish (9), we examine the quantity

g1(t;H Pix - DV E(n 0 V! [ad.' 0Hj] - H'Vt(()J. (10)

With g an element of the allowed domain, the maps t - V ( )fy and t - H V ()i

are complex analytic by our hypotheses, as is the map t - DVt()Ix. Consequently,

the right-hand side of (10) is complex analytic in t, for all and for all x.

Therefore it is legitimate to evaluate gl(t;Hl)Ix be means of its Taylor expansion

in t.

To begin with, we know gl(O;Hl)lx - 0, because DVt( ) - id in the strong

operator topology as t - 0+, and V0 ( ) - C. Next, consider that

LDV 4 - V C - D. [Htr) - D (H (V (M)
dt t at t 0 HV0 )

- (DHo(V (C))))DVt(W)

(The differentials i the first line are all with respect to C, as is indicated

explicitly in places where confusion might arise. The differential D (Ho(Vt(])] is
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computed as the product of the differential of the mapping Vt(C) - HO(Vt( )) and

the differential of the initial mapping r - Vt( ).) In similar vein,

d[H Vt(r)] - 0[H (Vt ())] - DH (Vt(C))HoVt(r)

Using these last two relations, we may obtain (with the dot indicating time

derivative)

0 V

-t;H - DHo(Vt(r))DV( )

DVt() [ad d. . dt [H IV (M)
'-0 0

-DH (V ( ))[DVt) W -) fad. H 1  -H (0
0 t V

0  
L! 0 t

+ JDH 0(V C))HI V t(r) - DHA(Vt(n')HOVt(c)j

- t() X t [ad o H
v-O

- DH0(Vt('))g2(t;Hj) - gl(t;adHA) (1H)

But we know, from previous argument or its extension, that g1 (t;H 1 )lx and

g1 (t;adH0H I)Ix tend to zero as t - 0+; it follows that gt(O;H2)jx - 0 for all

and for all x.

The pattern is now set for an inductive construction of successive time

derivatives of g(t;HI). In particular, based on the above results we may form

g1 (t;H1 ) - [DHo(vt(-))g,(t;H1)l + DHo(Vt(t))k2(t;Hj)

2DH0 (Vt( ))g2(t;ad 0 HoI) + g(t;ad 0 H ,

and it follows that gi(t;H )IX - 0 as t - 0 . Continuing the process indefinitely.

we arrive at the result that at t - 0 all the time derivatives of gj (t;H 1 )lx

vanish, to arbitrarily high order. Thus gi(t;Hi)lx is identically 0, V , Vx, i.e.,

DVt(r) i 0 (ad H111 - H1V(Cl

V- 0

A- 1 ... , r. The desired property (9) ensues upon multiplying this equality by

uI(c) and summing over A.

Corollary1. Same as Theorem I, except that "complex analytic" is everywhere

to be repldced by "real analytic". (See Ref. 18)

Proof. Direct observation.
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IV. LOCAL CONTROLLABILITY ALONG A REFERENCE HOMOGENEOUS SOLUTION

Definition 2. The system (2) is said to be locally controllable along the

solution 9t " Vt(4) of the control-free problem (5) on the manifold M c H if, for

snall t > 0, there exists a set of uI(t), I - 1, ... , r, such that the solution

Ot of (2) can be controlled to a neighborhood of 'I on M. The precise meaning of

the last phrase is that 0t can be steered into any direction of the tangent space

TM of M at the point qt - V (4) C M, V 0 C M.
"1 t

We may now formulate the central result of this section.

Theorem 2. Assume that the homogeneous solution of system (2), i.e., the

solution qt - Vt( 4) of the uncontrolled system (5), satisfies the hypotheses (i)

and (ii) of Theorem I for (and specifically 4) on a finite-dimensional

submanifold M, M C D C H, dim M - m. Assume further that there exist integers

V I. (with I - 1 . .. , r and J - 1 . .. , k < -, and 0 < &'l < 22 < ... < k )

v2J2

such that the set ([advo1 H 1]4) spans the tangent space TM of M at - V t(o)
H0 'It

for all 4 c M. It follows that system (2) is locally controllable along qt on M.

(Cf. Theorem 2, Ref. 18.)

Proof. If the functions u j(t), where I - 1 ... , r and J, - 1 . .., ki,

qualify as admissible controls (real, analytic, bounded functions of t), then so do

the finite linear combinations
a k

a1  I k,u (t) I a (t) r
S t j j 1uj (t) . .....

wherein the real coefficients a.,, , ak , are chosen (for convenience) to obey

k JjI  la~j.1 ... r .X-1 ,1-li, r

Let us abbreviate the set (a~j) simply as A. By generalized decomposition in the

multi-input, complex case of the preceding subsection (i.e., by virtue of Theorem 1,
a'

the solution of problem (2), with the u, as controls, is given by

4.  (Wa(4.)). The solution (, _ Wa(0) of the boundary value problem (6),
t tt t t

ta~~~~ ~~ ,V(().Thsou I(

restated for the controls u a , evidently obeys the integral equation

r a d d ,

1-1 V- 0 tiI
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Thus

V (e¢(O)) 1,o Dvt(Wt( )) V&-(O) 1,

- ft -'J'(s) L d.aDV ()[dj HIO - (12)0 0 VIj ) t

where a- 0 means aU of the a je are zero. By assumption, we can find a set of

integral (or zero) powers Y &' , where I - 1 ... , r, J. - 1 . .., ki,

0 < V l < V12 < ... < VlkI, and vmax - max(v1j ) < -, such that the set

t[ad 1H,1 ]0 ... , (ad"A HJ] 0, 1 - 1 ... , r) spans TM . Then, since (also by
H 0 H t

assumption) DV (#) - id strongly as t - 0+, there must exist a time t1 > 0 such that

the set

DVt(0) [a"lHl> .... DVt() +dHI HI>}t. H 0 J 10

spans TM , over the time interval 0 < t :_ t1 .

We now proceed to make a judicious choice of the original functions uj I(t)

involved in (12). One can realize admissible controls u1j, (t) obeying the

conditions

tl_- (.V (0, for v o y *j, 0 :<5 v m + 1
fo uIj (s) v! ds - o - max (13)

c ,0 , for
cIj WI.1j

where I - 1 ... , r, J, - 1. kj, and the c1j2  are real constants. The

connection between the u j, and the uAj1  will be specified shortly. The power v

being integral, inversion of relations (13) is in effect ju-t a classical finite-

moments problem. (Note that in the upper range v > vmax + 1, we have

t + 3

f I - -' d) . 0 (t max[0 u1je~ v!11 ) I.

since 11j I is by assumption bounded. This implies that the higher moments not

specified by (13) will be negligible.)

With t in the interval 10,tll, we now carry out'the change of variable

s - t h/t in the integral on the left of (13):
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r ecfO~IGgjj(5) (La)d, 0 (~) .+f (tPh/t) .'l. 'daX+

Hence

r , for v o 0 < V < Vmx +

ft- (tlh/t) L-L dh - ]+1 , for v ,oU j 2!L l c j , I v j I

0 t max+ , for v > Yma x + .

Setting uj (s) - uIJ2 (t1 s/t) in (12), we arrive finally at the result

_am Vd() 2ao cj ]j, + 1 rV'J Ij a + 2]

8a,j. V (W(4)) IaO - clJjt) DV () L (adH 0 'H'0 + 2]

where, for t < tI, the last term can be neglected, t 1 being small. Consequently the

set ({Vt(Wt(O))/aa1  , . - 1 ... , r, J - 1 ... , k2) spans TM for t in the

interval (O,tl], where t, has been chosen above. This means that we have been

able to choose the controls so that, for small t > 0, the state defined by system

(2) can be steered into any direction of the tangent space on M at the point t "

V t(). Then by definition the system is locally controllable along the reference

solution Vt(0), for all 0 c M.

Remark 3. Theorems l and 2 remain true as stated if the Hk, k - 0 ... , r, are

not skew-Hermitian.

Example 1. The theorems of the present paper are aimed at an infinite-

dimensional space of quantum states. However, the results obtained herein are still

valid (with trivial alterations) for a finite-dimensional state space. As pointed

out in Remark 3, from a mathematical standpoint we may also dispense with the

assumption that the generators H0 .... H r are skew-Hermitian.

For example, consider a nonlinear control system on Rm , m < -, defined by

Ldt x(t) - A(X(t)) + u(t)B(X(t)) , x(O) - x, (14)

where A and B are real analytic vector fields corresponding to nonlinear

operators of the sort introduced in Section II. Then, as argued in Ref. 18, a

sufficient condition for local controllability along the homogeneous (u 0)

solution of (14) is rank([adAB]X 0 , v - 0,1,2 ..... e) - m. This is precisely the

condition which would enter the finite-state-space version of Theorem 2. Problem

(14) does not strictly refer to a quantum-mechanical system; its study is,

nevertheless, illuminating.

While surely of high interest, the identification and analysis of "non-trivial"

L|
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examples of the utility of Theorem 2. meaning examples concerned with novel quantum

control systems characterized by nonlinear generators, exceeds the scope of the

present work.

V. SUMMARY AND OUTLOOK

It has been our aim to augment the foundation for the concept of

controllability of quantum-mechanical systems (12]. In the generalized, nonlinear

formulation of the quantum control problem, we were able to determine conditions for

the property of local controllability along a homogeneous (i.e., control-free)

solution, without having to refer to the existence of an analytic domain which was

assumed in the ffl obi. analysis of (12]. (Our treatment of this case amounts to an

extension of Hermes' work [18] to a multi-input, complex-state problem.) From the

results obtained herein on the controllability of the solution of nonlinear

Schrodinger equations, one may regain, upon appropriate specialization or

adaptation, certain well-known systems-theoretic results in finite-dimensional state

space (see, in particular, Refs. 13-18).

Clearly, only a modest beginning has been made toward achieving the larger goal

of a comprehensive theory of quantum control. The following problems, among others,

await concerted effort:

(i) Adaptation of the notions of observability, identification, realization,

and feedback to the quantum context (27].

(ii) Study of a controlled version of the Schrodinger equation for the time

evolution of the density operator, (19] so as to extend control theory to the realm

of quantum statistical mechanics.

It is evident that powerful mathematical techniques must be invoked to carry
through this program; moreover, one must confront the profound conceptual obstacles

intrinsic to the quantum measurement process [25,28,29].
I
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FROM TWO STOCHASTIC OPTIMAL CONTROL PROBLEMS
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I. Introduction

In recent years, interest has developed in the connections between stochastic
control theory, dynamic programming and quantum mechanics [1-4, 7, 12, 13] and (related)

variational approaches [9, 11, 14, 15] to Nelson's stochastic mechanics [10]. In this
paper, we will start by considering two stochastic optimal control problems, one

"forward" in time, one "backward" in time. We show that, if there are solutions to the

extended Hamilton-Jacobi equations associated with the control problems, then there is a

solution of a Schrodinger equation and conversely, if there is a sufficiently

well-behaved solution to a Schr~dinger equation, there are solutions to a pair of

extended H-J equations. We note the connection between the H-J equations and the main

dynamical equations of Nelson's stochastic mechanics. The H-J equations are equivalent

to a pair of inhomogeneous "backward" and "forward" heat equations via a well-known
exponential transformation. One may thus pass from these to a Schr~dinger equation (and

back).

2. Definitions and Notations
We assume a given underlying probability space (0,F,P). En denotes n-dimensional

Euclidean space, (tO,tl) an interval in El. S denotes (t0 ,tl) x En; S - [t 0 ,tlj x En.
Definitions of stochastic process, Brownian motion will be taken from [6) as will other

elements of our framework which will be noted below.

A solution of a stochastic differential equations

d - b(t, (t))dt + o(t,f(t))dw (2.1)

with initial data c(s) - y is to be interpreted as in [6) as a solution of the integral

equation

t t
f(t) - f(s) + f b(r,f(r))dr + f a(r,f(r))dw(r) (2.2)

S 5

Here, w is standard Brownian motion of dimension n. With the vector notation

C(-I...n), b-(b...bn), we have

n
d~i - bi(t,f(t))dt + I oij(t, (t))dvA i-l, ...n

1-1
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The notation C' 2 (S) denotes the class of functions 0 in C1 2(S) (meaning C1 in t,

C2in x) which satisfy 10(t,x)I s D(1+1x k ) for some constants D,k, when (t,x) e S.

L 3. Two Stochastic Optimal Control Problems

We consider first a "forward" stochastic optimal control problem, Problem 1, in 3.1,

then the symmetric "backward" problem, Problem 2, in 3.2. The controls v and V will take

values in E

3.1 Problem 1

Consider the stochastic differential equation

d - v(t,((t))dt + odw (3.1.1)

with initial data i(s) - x e En, at time s e (t0 ,tl). Here, w is a standard n-dimensional

Brownian motion, and

aij - 4/D 6ij

where 6 is the Kronecker delta, and D is a positive constant. We assume that v belongs

to a class of admissible control functions defined as follows:

Definition 3.l.A f6]. A feedback control law v (the term feedback refers to the fact

that the control is a function of the state f(t)) is admissible if v is a Borel

measurable function from S into En , such that

(a) For each (s,x), to  s S ti, there exists a Brownian motion w such that (3.1.1)

with initial data i(s) - x has a solution C, unique in probability law

(b) For each k > 0, Esxl (t)Ik is bounded for s S t S tj, and

t
Es |X ] v(t,f(t))I

k 
dt <

s

(the bound may depend on (s,x)). The subscript ax refers to the fact that

f(s) - x.
Either of the following conditions are sufficient for the admissibility of v:

(i) For some constant MI , lv(ty)l s M1 (l+Iyj) for all (t,y) cS. Moreover, for any

bounded Borel set B c En and to < t' < ti , there exists a constant K, such that, for all

x,y e B and t0 s t s t',

Iv(t,x) - v(t,y)I S KlIx-yj

(K1 may depend on B.t'; and both Mi, K1 may depend on v).

/.
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(ii) v satisfies a Lipschitz condition on S. Further, if (i) or (ii) holds, the

Brownian motion w can be specified in advance, which is the case in Problem 1.

Now, for (t,x) eS and v e En. let

12
L(t~x,u) - lmu + Q(t,x) (3.1.2)

where Q is continuous on S, and let W,: En * R+ (R.+ denoting no"-negative real numbers)
be continuous and assume

IQ(c,x)l S C(, + lxi)k  (3.1.3)

(x) :S C(I + IxI)k

for some constants C,k.

We define a cost function

J(s,x,v) - Esx it' L(t,E(t),v(t,f(r)) dt + W,( (t,)}
s

The conditions on Q and W, ensure that J is finite.

Now let the optimal control problem be as follows: Find an admissible feedback

control v*, among all admissible feedback controls, which minimizes J(s,x,v). The

following Verification Theorem gives sufficient conditions for the existence of a

minimizing v*.

Theorem 3.1.B [61. Let W(sx) be a solution of the dynamic programming equation

n 8

0-- 4W +uiE, 8 +-1m V2 + Q(S,X)] (3.1.4)
as ,e [ Aa 1  i 2 sx]

(s,x) C S

with boundary data

V(tl,x) - WI(X), x i E ,  (3.1.5)

1,2such that W is in Cp (S) and continuous on S. Then,

(a) W(sx) < J(s,x,v) for any admissible feedback control v and any initial data

(s,x) I S.

(b) If v* is an admissible feedback control such that

n
A + vt(sx) - + - m(v*(sax)) 2 + Q(s,x)

En [ DAW + 1 ij + Q(sx)] (3.1.4)

for all (s,x) i S, than W(s,x) - J(s,x,v*) for all (s,x) t S.
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Now let us assume that there exists a W satisfying the hypotheses of the

Verification Theorem, and an optimal control v*. Then, since the controls take values

in En, which is open

mv* - grad W for all (sx) e S (3.1.6)

and
aw
z - DAW + 1- (grad W)2  ( (3.1.7)

for all (sx) e S. Equation (3.1.7) is analogous to the Hamilton-Jacobi equation of

classical mechanics; we shall refer to it as an extended Hamilton-Jacobi equation.

3.2 Problem 2

Now let us introduce another type of admissibility for a feedback control function

as follows:

Definition 3.2.A A feedback control law V is backward admissible if V is such that

V(i,x) - - v(tg+t - ,x) for all (r,x) c 5, and

v is an admissible feedback control law.

We consider the stochastic differential equation

dn - V(?,q (r)) dr + /2 dw (3.2.1)

where V is a backward admissible feadback control law, and

U(.) - w(to+t1 - -).

We say that q is a solution to (3.2.1) with terminal data n(o) - y En , with

to 7 r < o : tj, if q satisfies the integral equation

- (a) - f(rw1(r)) dr - f.ID dQ(r) . (3.2.2)
1 ~ 7

By making the change of variable

T - to + t -t'

a - t 0 + t 1 - S,

.- to t1  r

(3.2.2) becomes

n(t +tj-t) - q(tg+t S-) -V(to+t -I, q(t0+t1-1)) (-dA)

r 25 ./ (t0 +t1 -l) (3.2.3)
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Define ;(t) - I(t0+c1 -t). Nov (3.2.3) becomes

;(tt
v iUa)* t; (l()) dLI + fJ2/D V(.t) (3.2.4)

a 8

and we have

;(s) -y (3.2.5)

We now define

J(s,y~v) - Esy i; 2t( (J1,; ) + Q(1,i (1))]d1 + Wo(;(t,))}

-E0OY f[M2 (V7(r~ri(r))) 2+ Q(r,~n(r))]dr + UO (,?(to))}
0

- J(a,y, ) (3.2.6)

Here Q is the same as in Problem 1, WO: n 
. R+ is continuous and

Uo(Y) : C(l + jyj)k, (C,k as in (3.1.3)), Thus, Q(1,.(i)) - Q(tr+t-,A, (t0+tt-1)).

We now consider, as in Problem 1, the problem of minimizing (3.2.6). For given

terminal data y e En at time a e (tOt], we shall say that V. is backward optimal if

V. is backward admissible, and

(ayV) Z J (ay, V)

for all backward admissible V.

In view of (3.2.4) - (3.2.6), we have the following version of the Verification

Theorem:

Theorem 3.2.B Let W be a solution of the dynamic programming equation

n^8W0 W + i, n ^aw
0
8- + -n [ DAW + I i T- + m Q(s~y)] (3.2.7)

(sy) C S

with W(ti.y) - W0 (y), y . En. such that W is in C%' (S) and continuous on S. Then:

(a) W(sy) : J (s,y,v) for any admissible feedback control v and any initial data

(s.y) C S.

(b) If v* is an admissible feedback control such that

Da I. ;t .("Y) , + "(;*(SY)), + Q(s.Y) "

A (3.2.8)

n _V + J1
+iveai
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T*

for all (s.y) e S, then I(s,y) - J(s,yv*) for all (s,y) e S; is optimal

Now suppose there exists a function " satisfying these hypotheses,

and an optimal control v*. Define

W(Oay) - (t 0+t 1 -0.y) , t < u s t•

aw aw
Then 5(tO ,y) - W(tjy) and - -ao as

We define

.(Oy) V- .(tO+-s,y) , - ",* (s,y).

Now we have

- n a2
0 LW + D&W - j ! (V.y)) 1W + - m(V.(,,y)) + Q(O,y) (3.2.9)

and, as in Problem 1,

mv* grad 5 (3.2.1I0)

-a (grad W)2 + Q on. 3."

We have let

v*(s.y) - -. (r0 +t1 -s.y) . y E

From (3.2.6) we have

.(0,y.v.) - J(s'yv*). (3.2.12

If the Verification Theorem 3.2.B is satisfied, then V* is optimal; that is

J(s.y,v) at . (sy,-?*). 3. . ;

From (3.2.6) and (3.2.11), (3.2.12) implies

'( y, )> ¢,y~ .).(3.2.14)

for all backward admissible U.

Therefore, if v* is an optimal control in the sense of Theorem 3,2.A. then 9. is a

backward optimal control for Problem 2, aind the ce'r,etc is :9lso true.
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4. Extended Hamilton-Jacobi Equations, the SchrSdincer Equation

and Inhomozeneous Backward and Forward Heat Equations.

4.1 Extended Hamiltcn-Jacobi Equations and the Schrodinger Equation

We have seen, that if there exist W, W. v*, V' satisfying the conditions

of the Verification Theorems, then W is a solution of the equation

t (tI,x) - L (grad G(t,x)) + D&G(t,x) + Q(t,x) - 0

(t,x) C S

with

G(t1 ,x) - We(x), (4.1.2)

and W is a solution of the equation

(tx) + L (grad a(tx))
2 
- D&G(tx) - Q(t,x) 0 (4.1.3)

at 2m

(t,x) 4 S

with

Z(t0 .x) - ii0(x). (4.1.4)

We now show that, when there are solutions G, G of (4.1.1). (4.1.3), then there are

solutions of a Schr~dinger equation. From now on D shall denote A/2m.

Proceeding as in [4), with G* - H , * - , we have

2' 2

a *-2 +*)
t( -H) - (grad(G*.H*)) + D&(G*-H*) + Q - 0 (4.1.5)

8 (0*+H*) 1*2(41

a-(G*tH*) + L (grad(G*+H*))2 + D&(G* H*) - Q - 0 (4.1.6)

Adding and subtracting (4.1.5). (4.1.6) gives

8H* 1 Y + 1 (4.1.7)
- + (grad H + (grad G*) D40* - Q - 0

-- + 1 grad H* grad *- DAH* - 0

Equations (4.1.7), (4.1.8) are equations (19), (20), of J43, except for the potential

Q which was taken to be zero in [4].

At this stage, we make the following observation: if we define

(VG* ) " 
2D

G* "
Q (4.1.9)

, C
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then (4.1.7) becomes

_aH* 1 *.2 1 *.2 *

a-* + 1- (grad H)- (grad ) + D4G* + - 0 (4.1.10)

(4.1.8) is unchanged:

B G 
+  

--1 grad grad -DL * - 0 (4.1.8)i-M
If we now multiply (4.1.10) by i, and subtract (4.1.8), we obtain

(-G*+iH*) -- DH* + grad H* grad G* + m (grad )

2i (grad H*)2 - iDAG* - i

or

S(-G*+iH*) - iDA(-G*+iH*) + i. (grad(G*+iH*)) -iQ (41 11)

Straightforward differentiation gives us

Proposition 4.1.A. If G, C are solutions to (4.1.1), (4.1.3), then

= -- ~H (4.1 ] i?

.: o i. -h2 6 to)2 - hG N0

-T 2m m , -QI1.

Conversely, suppose we start with the Schrodinger equation

2ih a - .1 
t m- A - PO (t,X) f S

with given potential P. Assume there is a solution 0 of (4.1.14), 0 - 0, all (t.xj, wit.

- (-M+iN] 41

and suppose that M and N are C 1,2 functions on S. Running the above arguments backwards,

we see

-- + 1 (grad N) - _ &rid M) D - F - 0 (.iI8r M

Ft 
+ 

- grad N grad M - D4N - 0

The passa . Ero,,' ." ' pair ': .,. :: . . . • . . ... )uS



213

de Broglie for introducing his *theorie du guidage" (see [5]; equations (4.1.16),
(4.1.17) are the so-called equations (J) and (C) of Louis de Broglie). Together with
this pair of equations he defined the quantum potential Qp by

- Da -A (grad M)2 (4.1.1)

The purpose of the definition (4.1.18) was to reduce equation (4.1.16) to the form

8N 1
T + T (grad N)2 + Qp - p - 0 (4.1.19)

which is the Hamilton-Jacobi equation of classical mechanics for the motion of a mass-
point in the potential P - Qp. As the reader may anticipate, if we next
introduce the *modified potential" Q by

Q - P - 2Qp - P - 2DAM + (grad N) (4.1.20)

then

T(N+M) + L (grad (N+M))
2 

- Dc(N+M) - Q - 0 (4.1.21)

Tu (M-N) - L- (grad (M-N))2 + D&(H-N) + Q - 0 (4.1.22)

Thus we have

Proposition 4,1. If

is a solution as above to

2m(4.2.12)

then (M-N) is a solution of

ac -
3- (grad G)2 + DAG + 0 (4.1.23)

and (N+M) is a solution of

L- + L (grad Z)2 _ DAG - Q - 0 (4.1.24)

Equations (4.1.23, (4.1.24) are the equations (4.1.1), (4.1.3) with Q replaced by Q,
which is given by (4.1.20) (note that Q is specified once P is given, and
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Remarkc 4.1. C

Nelson's E~uations

if we talc. gradients of equations (4.1.8), (4.1.10) and define

m 3M

we obtain

au -A rad u2  grad v 2~
(4.1.25)

at~m2 2 a

au A-(4.1.26)
t 2TM Vuu

Nelson derived these equations, which are the main dynamical equations in his theory

theory, via different methods (&/M representing the force field acting on a microscopic

microscopic particle undergoing a Brownian motion). He found, with

that 
x( iS

satisfied

i L1 - -AZ -0at 2

and the converse.

Doing this involved recognizing that (4.1.10), (4.1.8) (equivalently (4.1.17),

(4.1.16) or C and .1 of Louis de Broglie) are the imaginary and real part of the

Schr~dinger equation (modulo the factor of ) which we used in going from (4.1.10),

(4.1.8) to Prop. 4.1.A.

4 .2 Inhomogeneous "backcward and forward" heat equations

Now, if we make the exponential transformation

0(t~x) *exp(-G(t,x)/A) (4.2.1)

in equation (4.1.1), we have

D&O + (4.2.2)1

with

0(t, ,X) - exp (-G
3imilarly, if

;(t,x) w exp -tx)(4 2.3)

/ .~ 7
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is put in (4.1.3), we have

It A (4.2.4)

with

j(t
0

,x) - eip [i( 0 .)

Thus from Proposition (4.1.B) and the above transformation we have the following

Fact I. If ; given by

is a solution to (4.1.14) then

) .exp [(M N) I is a solution of

o DO + (4.2.5)at

ii) -exp jjS!(2 N) is a solution of

- (4.2.6)

iii) The square of the modulus of 0(t,x) is given by

Il;(t.x)112 - exp(-2M/#1) - 0(t,x) #(t,x) - 0*(tx)

iv) 0* is a solution of the Fokker-Planck equation

* n*
J - X . (vi(tx)o*) + DAO* (4.2.7)at i- axi

where

vj(t,x) 2D a(tx) i " . ..n. (4.2.8)0(,x) axi

(t,x) C S.

Conversely, suppose there exist solutions 0. of the equations

--D + ; R (to,tj) xEn  (.~O

for given R, satisfying conditions

- (4.2.12)

-. -.-"--...--. .- .. . ... .... .o
'/ , " ". .... " ' ,'
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where # and 01 are non-negative, continuous, a 4 bounded functions on En. (We refer to

18] for existence theory.) It may be seen, ES], that

O(Zx) > 0, and ;(t,x) > 0 in S

provided that neither io nor 01 vanishes identically. Now, defining by

exp ,(4.2.13)

exp (4.2.14)

we see that W is a solution of

3 - (grad G2 + DG + R 0 (4.2.15)

with

G(t1 ,x) - -A log #1 (4.2.16)

and W is a solution of

-
+  (grad U)2 DAG -R -0 (4.2.17)

with

G(t0 ,x) - -f log 01 (4.2.16)

Thus, from Proposition 4.1.A and the above arguments, we have

Fact II. If 0, 0 are solutions to the Cauchy problems (4.2.9), (4.2.11) and (4.2.10),

(4.2.12), then

expw -(7) J - exp

2A

where

2- 2

satisfies

iA 8; _2  (4.2.19)j~- ~
: L'- )

at +
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a) the solution of the Schrdinger equation (4.2.19) depends, like W and Qon
the initial and terminal data of the Cauchy problems.

b) -

II;tXxII - x 2mD - (t,x) i(t'x)

- *(t~x) .(4.2.20)

Fact I is obtained in the proof of Theorems 4.3 of (15]; Fact II is more or loe implicit
in Theorem 4.4 and Corollary 4.4.1 of (151, however, the arguments here give Fact II
more directly.

Example Homogeneous "backward and forward" heat equations, n -1

The solution of

at -DO on (to , t where 0 < to < tj < T, (4.2.21)

-X 1 r~~c _24C~) (4.2.22)

is known to be

;(t~x) -exp rDTt to :5 t :9 t1  (4.2.23)

Similarly, the solution of

at a t7(4.2.24)

Ox)- 74ID ~ exp [4* -o) (4.2.25)

is known to be

1.otx 4.D x 4;j (4.2.26)

Then

Q(t~x) -- 2uD log k(t,x)

-2T- + mDlog(T-t) + sDlog4gD (..7

NoW(t~x) - -.+ aDlogt + mDlog4wD (..8

.!!(tx) 2E~. -- + .e !log(t(T-t)) + mDlog4wD

/* t x 
E t
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C(tx) - t.j?)(t(I 1 - +) " (logt - log(T-t))

2 4(tT2-()-

2 (t(Tt1)J 2t(T-t)E*(x -* 2t X)T-) MI

Thus, by Prop. 4.2.B,

-MX ex[{.4 L + + !log(t(T.t)) + mDlo4rD]

(mxZ 1- T-t2 it) 2 t~ L
+ i f 4 | T-t)I + S-log (4.2.29)

17t4- IT(T-t) j 2 (YtI I
A

satisfies

8 -* 2. (_ ( T 12 AT -La L - + . T(4.2.30)
8t 2m (4 (tT_.)) t(T-t)j

References

1. A. Blaquiere, Liens entre la theorie geometrique des processus optimaux et la
mecanique ondulatoire, C.R. Acad. Sc. Paris, Serie A., Vol. 262 (1966), pp. 539-595.

2. A. Blaquiere, Interpretation d'un coefficient de diffusion complexe en mecanique
ondulatoire, C.R. Acad. Sc. Paris, Serie A, Vol 268 (1969), pp. 1304-1306.

3. A. Blaquiere, System Theory: A new approach to wave mechanics, J. Optim. Thy.
Appl., 32, 4 (1980), pp. 463-478.

4. A. Blaquiere and A. Marzollo, An alternative approach to wave mechanics of a
particle at the non-relativistic approximation, Information, Complexity and Control in
Quantum Physics, Proc. of the 4th International Seminar on Mathematical Theory of
Dynamical Systems and Microphysics, Udine, 1985, Springer-Verlag, Wien, 1987.

5. De Broglie, L., Une tentative d'interpretation causale et nonlineaire do la
mecanique ondulatoire, Gauthier-Villars, Paris, 1956.

6. W, Fleming and R. Rishel, Deterministic and Stochastic Optimal Control,
Springer-Verlag, Berlin, 1975.

7. F. Guerra and L. Morato, Quantization of dynamical systems and stochastic control
theory, Physical Review D, 27, 8 (1983), pp. 1774-1786.

S. A.M. Il'in, A.S. Kalashnikov, O.A. Oleinik, Linear Equations of a Second Order of
Parabolic Type, Russian Mathematical Surveys, Vol. 17, Macmillan and Co., Ltd., London,
.1962.

9. S. Mitter, Non-linear Filtering and Stochastic Mechanics, Stochastic Systems: The
Mathematics of Filtering and Identification wich Applications, Proc. NATO Advanced Study
Institute, Las Arcs, Savoie, France 1980, Reidel, Dordrecht, 1981.

10. E. Nelson, Derivation of the Schrdinger Equation from Newtonian Mechanics,
Physical Review, 150, 4 (1966), pp. 1079-1085.

11. E. Nelson. Ouantum Fluctuations. Princeton U.P PrIncetnn 1985

/ ,. ,



12. L. Papiez, Stochastic optimal control and quantum mechanics, J. Math. Phys., 23, 6
(1982), pp. 1017-1019.

13. K. Yasue, Quantum mechanics and stochastic control theory, J. Math. Phys., 22, 5
(1981), pp. 1010-1020.

14. K. Yasue, Stochastic Calculus of Variations, J. Func Analysis, 41 (1981),
pp. 327-340.

15. J.C. Zambrini, Variational processes and stochastic versions of mechanics,
J. Math. Phys., 27, 9 (1986), pp. 2307-2330.



CONTINUOUS PROGRAMMING AND NONLINEAR

FILTERING OF QUANTUM CONTROLLED PROCESSES.

V.P. BELAVKIN
Moscow Institute of Electronic Mashinebuilding

B. Vusovski 3/12, Moscow 109028

A quantum continuous Bellman equation is derived for the solution of the pro-

blem of optimal control of a quantum stochastic process with nondemolition measure-

ments. The solution of this equation uo(t,ut,p) together with the solution of the

corresponding nonlinear filtering problem p - 1r(t) defines the optimal control

strategy do(t,zt,q(t)) = uo(t,ut,rr(t)).

Let us consider a quantum controlled process over the algebra F.= B(E) described

by the family of normal representations i(t) :9 +- BtaDC(Ut) where&t&( F)

Ft = A (t ([O,t[) is the Fock space.

Let Ut x UWt) be a iHausdorf space of controlling processes

ut = {u (t')It' E [ ,t[ such that Ut xUs =t~ for all t,s E R + , where
t

U5 C x U(t+-r) and U =U U - U .We consider a quantum controlled pro-
SO T<S

cess i(t,ut) = i(t)(ut) over the algebra & - (E) with respect to Bt. C BCFt),

Ft is the Fock space over £2 ([O,t[) described by the Hudson-Parthasarathy dynamical

equation (1) for P(t,ut) - i(t,ut.p)

dP-y (u, P) 9 Idt - 2Re$ (P) & dA + A (P) * dN, P(O) - p E &

where A - A(t,u t), a - 0(t,u t), T(u(t)) - Y(t~u t, u(t)) are defined in standard way

by operator-valued functions V(t), X(t) :Ut -. A(t,ut) - i(t,ut, a) with unitary

V(t,ut) and self-adjoint H(t,ut,u(t)). We shall suppose that the controls u t EU t

are defined by strategies ut =d t(zt,q ) - { d t(t+r)IT E [O,s() where zt= (ut,qt)

qt q1 p qt . q0 t , qs-q(t4.T)IT E (O,s[1 are the results of nondemolition mea-
surements on the interval [t,t+s[, qs E R~tts described by a commnutative pro-

t
cess Q(t) satisfying the equation respecting to dY X*Idt+WedA, dI1.XX*1dt +

+ 2ReX *VedA +IedN

dQ -g(u(t))O0Idt - 2Re(b 0I)dY +(f 0I)dI Q(O) xlI

Let us consider the optimal control problem with the operator-valued risk

Rt(u) E A (u) - V A(t+s,u ) , satisfying the equation
s)
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Rt (U) f iS(t,ut,u(t))dt + Rt (u)
0 -0

where S(t,ut,u(t))EA(t,ut) for all tER+ . The optimal control strategy d0 is de-
+ tfined as a solution of the extremal problem

(Peto, Rt(ut,dt(zt,qt))) - inf ,

where p is an initial state on & and w is the vacuum state on B(F),F - . This

solution can be found by the quantum dynamic programing method as the solution of
the following Bellman continuous inverse-time equation.

THEOREM. Let r(t,zt,dt)E & be the averaged risk operator uniquely defined by

i(t,ut,r(t,zt,dt)) - Et[Rt(ut,dt(zt,qt))]

where Et is the conditional expectation with respect to St . 60 S(Ft) corresponding

to the vacuum state wt on B(Ft) and

r(t,ztdt) xtoi(t,ut,r(t,zt,dt)) - (n(t,zt),r(t,zt d t))

be the posterior risk, corresponding to the strategy dt, where Xt is the condition-
al expectation on St with respect to the commutative algebra Ct generated by

qt {q(tt,)Itt } . Then inf (;(t,zt),r(tjdt)) = r(t,ut,;(t,zt)) where the
dt

functional p - r(t,ut,p) satisfies the following Bellman equation

-atr(p)= inf ((p,s(u))+ ((poy(u),6) +1(lb1 2 +f2(poo,6)2)r(p))
uE U(t)

where at ./at, 6= 6/6P , x E 6 i(t,ut,x) - X(t,ut),

p-y(u) - i[p,h(u) ] + I (xp.x* I + [x,px*])

poo - 2Reb(x-(p,x))p + f(xPx* -(P,x*x)P),

and S(u), h(u) E & are defined by

i(t,ut,s(u)) - S(t,ut ,u),

i(t,ut,h(u)) - H(t,ut,u)

and ;(t,z t) is an posterior state on & satisfying the nonlinear filtering equation

dn- ff.y(u)dt - l.ad&/(jbI 2 + f2 (t,x*x)) , ;(O) - P,

where dZ-2RebdY+ fd, di=dY-( ,x)dt, d - dT1- ( ;,x)dt

In particular, for the Brownian observation (f -O)

-a r(P) i lnf((P,s(u))+ ((py(u),6)+2(Ree(x.(p,x))p,6)2)r(p) }t u

. . ,"; . ....-.. _
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where 0 b/JbJ and for the Poissonian observation (b -0)
I

- r(o) - inf {(o,s(u)) + ((p-Y(u),6 ) + - (P-xpx*/(0,x*x),6)2 )r(p) I
u2

The linear dynamical programming for Gaussian p and canonical x was consi-

dered in (2), and the general formulation of quantum dynamical programming for the

partially observable controlled quantum objects in operational approach was given

in (3]
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AUTOMATIQUE ET REGULATION BIOLOGIQUE

Daniel CLAUDE

Laboratoire des Signaux et Sys"=me,
C.N.R.S.- E.S.E.,

Plateau do Moulon, 91190 (3if-sur-Yvette, France.

RiswInd A la m~moire de Richard Bellman, nous prdsentons les contr6les; bipolaires en biologic. De par
ses seules applications thdrapeutiques aux domaines des tuwneurs c6r6brales et de la cancdrologie, cette
n-jithodologie, liant l'automatique hla rdgulation biologique, aurait certainement eu Cse faveurs. Nous en
montrons toute la richesse en ouvrant d'autres perspectives qui justifient pleinement le lien entre les
mathdmatiques et la m~decine qui intiressait tant Richard Bellman.

Abstract :In memory of Richard Bellman, we present bipolar controls in biology. From its therapeutic
applications in the field of cerebral tumors and cancerology alone, Richard Bellman would have cer-tainly
been in favour of this methodology which links control theory to biological regulation. We show all its
richness in opening other prospects that entirely justify the link between mathematics and medicine which
interested him so much.

1. INTRODUCTION

Depuis maintenant plusicurs d6cennies, de nombreux chercheurs ont pensd A crder un lien entre les
mathdmatiqoes et la mddecine (cf. les livres rtcents de Winfree 1 26 1 et de Swan [(25 1 ). en particulier par
les essais de moddlisation de certains phdnom~nes biologiques et par exemple, en cancirologie , par Is
recherche de procddures mddcameiiteuses (chimiothdrapie) ou par la misc en place de protocoles
ddtmission de particules actives spdcifiques (radiothdrapie). Ius souhaitaient ainsi riunir la thioric
mathfmatiqoc et Is pratique m~dicale. Lautomatique, appliqu6e I certaines rigulations biologiqoes, r~pond
I cette exigence et k cette esp~rance.
En biologic, de nombreuses rigulations font appel I plusieurs agents aux actions coupies. Il en est ainsi de

Is rigulation de r'hydratation cellulaire ou du contw6le de la mitose danm leaquels interviennent lea ortioldes
d'une part et la vasopresaine dautre part, de m~tne que l'insuline et le glucagon rigulent l'activitd
glycdmique. LA faillite dana certaines pathologies des thdrapeutlques conuistant k administrer one scale
hormone trouwe so explication danm in fait que ron a ndglWg In 0actions do rautre hormon qu intervient
A caus dun jeu subtil do feedbacks crolsis. En outre, I& biologic eat un domaine fortement non linhsire oba
lc principe de superposition des actions n'a pa cours.
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Ainsi, toutn action thdrapeutique zuosurable doit passer par unn mddlisadi non lindaire multivariable,
suffisamment fiche pour prendre en compte les aspects pr~ponddrants dos phdnombnes 6tudids, et assen

simple pour envisager crunn manibro raisonnable Its possibilit6s do commands do e systbznns at en
ddire lts actions thdmapeutiques. A cause des couplages, Ies solutions proposdes, par ICU caractbra
faussement paradoxal. pouvent surprendre, ddranger. voir provoquer des bostilits. Pourtant, its rdsultats

cliniques sont Mi. authentifis par Its radiographic: et Its scanners, et on doit espdrer que Its deux exompios
que nous allons traitor, permettont do convaincre do Is. ndcessitd do ddvelopper rapidement It champ

d'action des thdrapeutiques bipolaires dowt Bomrnid-Weil oath i'origino.

11 LE SYSTEME S URRENO-POSTHYPOPHYS AIRE ET LA VASOPRESSINO-
CORTICOTHERAPIE

Dans In cadre do l'application do l'automatique aux traitements chixniothdrapiques on cancdrologie,
Sundareshan at Fundakowski [ 24]1, s'interrwgent stir In caractbre dual do l'objet do ces thdrapeutiques et
souhaitent trouver des agents qui soin capables do ddvuire les cellules malignes tout en prdservant Its

collulos; sainoa. En fait, an sein do rorganismo existe un important systhme qui assure In rdgulaton du
d~iveloppement celiulai tant au point do van do la nuitoso quo do Iltydratain do la colhulo, caest In systime
hormonal surrtno-posthypophysaire.
Le systbme sunrdno-posthypophysaire, formEd par Its cortico-surrtnales dane part ot par la. neuro-
posthypophyse dautre part, intorvient ainsi aui premier chef dans les manifestations cliniques observies

chez It ma2ad neuro-chirurgical. Co systbme oat responsablo do manifestations aussi diverses que certtmus
oedbume du cerveati certaus collapsus cdrdbraux aggravant Its suites dintervention pour hdmatome sous-
dural, et intervent darn l~vohudon des tumours c&r6braWe malignas.
La reconnaissance, dui couplage entre ces deux glandes date des ann~os 30 ( cf.1 23]1), et on Mytm, amx
actions ago-antagonists ( f.[ 4, 6,7]) assure des r~gulations majeures. Ainsi, la cortisone, sectit~e par

Ins cortico-surr~nales. eat tin merveilleax agent, non seulement conra lIhyperhydrazaton CCeulai ais

atiss comme produit anti-muntotique, comme cola a dtd ddmonitd in vivo aussi bien dana in cas do tmaurs

cdbralos wualignes en culturs queo danm ceiui do touts aw lignde cancdreuse en culture do tisu. Quant i In
vasopressine, secrdtde par la nouro-poathypophyse, olin oar reaponsable do la rdiabsorption do leau par It
tube rdnal et oat an facteur do croissazuce tout k fait important. Ce. premier facteur do croissance

polypeddique a Mi ddcouvert en 1968 par Bernard-Weil. Dulage. Olivier at Pietto [9 1 a leur rdsultat a did

cosiflisud ultdrieurement par Ios autewrs amdricains, Rozengurt. at ali. ( 20 1a n 1979, at Monaco

etrall(l1S 1en 1982. Nous renvoyous iPawlikowskl[ 119 1pour avoir un rappel rcent desactions

witogdniques des neuropeptides. Le ddsdquilibre ente Ins corticoldes at I& vasopreammoe, avec an excbs do
vasopresulne favcurlsani In ddveloppement tumoral, a &Ad de nouveau mesurd rdcemment en cancdrologie
digatve ( d. (11] I). mais U a did constaid dans bWon Cures cam. Do plus, I cause doi couplage ente ces

deux hormones, certain: oedbmem cdrdbraux rdsistent I la cortisone at los tummurs canadreuuos no sent

vraiment infiuenefes par Its carticoldes quo pour an court laps do temps St avoc des doses tifs dlevdas do
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ces hormones. Pire encore, lorganisme malade so place dans une position "d'hom6ostasie pathologique"
(cf. Bernard-Weil [ 4] et cc ddsdquilibre rdguld bdndficie do sauvegardes biologiques pwssantes qui

tefldent i le maintenir en I'dtat comme s'il s'agissait dui foactionnemeat physiologique " normal".
Cest ainsi qu'est prdservi le ddsdquilibre vasopressine-corticoldes chez It malade cancereux,
l'adznimstration de corticordes ayant pour effet daugmenter lc taux de vasopressine pourtant diji
anormalement Elevd ( cf. [ 3]1).
La solution consiste donec k envisager l'administration simultande de vasopressine et de corticordes
( cf. 5 1 ), un modble multivariable non lindaire venant comforter les intuitions preunibres du m~decin
( cL 4, 6, 7])).
Ce mod~le, reprisentd par un syst~me diftentiel non lindaixe A deux entrdcs, el et c2, et deux sorties, z, et

z2, peut s'&rire sous la formec suivante (cf. [15])

k, [(u+p )i +ci(v+q )i + e,

3

V+ -i + k(upIci v+q)i]+ e2

X = e
(2.1)

z= H- y

z2 = mLogf( H +Y )/m]

avec H - x+X ; V - y+Y, oii x et y d~sigment respectivemant las actions des corticoldes et de la
vasopressine endogtnes et X et Y les actions des hormones exogtnes ( thdrapeutiquc).
Ul s'agit dun diveloppament en sdrie dans laquel apparaissent des expressions antagonistes u - H -V at des
expressions agonistes v = m Log [( HN+V )/m]) + 0( t), avec 0( t) aA + B sin( tt) + C cog( O), ol las
constantes A, B, C et 0) (w o) 2n / 24 dans un rythune circadien ) ddterminent le sy~mchroniseur 0( t) lit aux
rythmes biologiqucs. L'inwoduction de la puissance cubiquc a justifa par lea conditions de stabilitE dui
systbme ( cf. [ 4]; p( t ) reprdsente in possible stimulus osmotiquc ; q( t ) correspond & un dventuel
stimulus voldmique (hdniorragie par exemple) ou in stress ; les parambues, k,-, cj, ci (i -1.2.3) sont

constants ; le pararn~te m est pris en gdn~ral constant ( m - 0,8 ) mais peut aussi etre considdrE comma
variable dans le temps. Lorsque q a des valeurs positives. par forte augmentation de la voldmue par
exemple, ettelles qu x et ydeviendraient n6gatifs, on prdvoit la possibilit6 dofaire quitter km avaleur 0.8
pendant Ie transitoire mdcessaire.
Le. sysrhme est Ecrit dana on syat~me dunitE commune ( u.c. ) pour lequel:
0,4 u.c. - 77 ng~nl de cortisol ( F) 1. 1 V.U/mI do vasopressine ( VP)
vuleurs qui correspondent k la moyenne des valours expdrimentales des rythmes circadiens de ces
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hormones.
WO valcurs x, y, X. Y peuvent 6tre assimildes k des concentrations hormonalesat sont ainsi sujeus I des

contraintes do positivit6. Dana le cas physiologique ( X - 0, Y - 0 ; p - 0. q - 0), 1'Equilibration at
simul~e avec un champ pararedirique do ( 2.1 ) donnant un cycle-limito tel que le couple ( %v ) adue
rorigine ( 0, 0 ) comme point critique. L'quilibration ( X -0, Y - 0 ) devient pathologique si ue
modification dui champ (2.1 ) permet & un nouveau cycle-limite d'apparafuoe.
Les pa ambtaes k-, ci, 1 ci ( i = 1, 2, 3 ) pout Ie systbine simulant I& patholopie, et i~ .4 pour Ie

syst~me simulant le cycle physiologique, sont identifids I partir des donndes cliniques at physiologiques, I
I-aide do la rodthode drint~gration numdrique do Davidon-Fletcher-Poweil avec contraintes ( cf. (1]) Le
crittre kminimiser J (k., ci, ck1 ,T) est dorn par:

Ski, ci, -, c,T)= [ij -x,)' + ( j- yj)2  (2.2)

o&z i et j disignent des valeurs expdnmentales et x et y les; solutions "endoghaes" dui systbnme ( 2.1 ) dana
lequel on apris X =O,Y=0, p =O0t q =. La quantitT corespond i tris cycles, soit ici, 172 heures.
Dans Ie cas d'une homdostatie pathologique, in "simulation thdrapeutique" consiste h d6tarminer les
hormones exog~nes X et Y de fa~on & ramener Ie systbme dans une position d'homdostasie physiologique.
Une premitre mithode ( cf. (6, 7] consiste i dcrire Ies entes; el Ct C2 dans une forme semblable I cole

des hormones endog~nes, soit:

3
e1, [k3 -i (U+PY+C 3 -i (v+q)i]+X,(X-oL1 )+X(X -ctj) 2+X(X-n1 9

(2.3)
3

e2 X [k3 +, (u+pYi+ c*+ vqi+ (-01))(- )+ (- )

avec X , X2, X3., X , X na,, n des paramAtres constants ayant pour r~le cdEviter la ddrive dui cycle-

limite do dimension 4 que suivent Ies quatre itats du systbme. On identifie alots [as paranultres do ( 2.3 ) &
I'aide do la nu~thode do Davidon-Fletcher-Poweli.

Remarque 1: LA tentation do prendr pour les entrdes e, Ct e2 la diffdrence cne Its Equations do Mtt

physiologique et do l'dtat pathologique conduit k on contr~lo qui pout no pas satisfaire Its conditions do

positiviti des variables x, y, X, Y, ni assurer l'existence drun cycle-limite ( cf. (6]).

Line seconde midthode, basde en premier ( cf. (151 sur It ddcouplage at la lindarisation des systmes non
lindaires (cd. (12, 13, 14) et Its bibliographies affdrentes ).consista en fait k inverser le systbine (2.1)
(cf. 16,17])
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A partir du systbine (2.1) on considare alors les relations suivantes:

v 1/2(z + Me(Z2/M)

L (2.4)

x et y dtnt solutions des dquations diffdrcndelles:

3

x =~[k,(z,+p)i+c 1 (z2+ e+q)i]

(2.5)
3

y -~ [k'(z,+p)i+c'(z 2 +0+q)if
i i C

II s'agit donc do permettue aux sorties z1 et z2 du syst~me (2.1) de passer do la position pathologique,

donnde par los Equations diff~entielles:

3

Vi-I ~,k)W~~i(ic,(,qi

3

i2= [(k.+k 1)(14,+p)i+(c+c)(V+q)i] ) .e(V2/M) (2.6)

avec v2+ A +B sin( cot) +C cos( cm) cc o -2x/24,

i l'dquiiibre physiologique d&rit par les Equations diffdrontielles obtenues partir des donndes
expdriuenales:

Ym( (( 1 ~,+( 4 + 4 )V .(-P 2 M) (2.7)

avec v w92 + A + B sin( cm) + Ccosg c m C- 2x/24.

-~ - . --- _ _ _
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On 6orit z, et z2 sous laforme:

Le souhait dui thdrapeute eat alors de trouver des fonctions 8, et 82 qui permetnt on premier de ddfinir un

transitoire amenant lea courbes pathologiques initiales, reprdsentdes par x et y, vona lts courbes
physiologiques que doivent suivre les variables N ot Y.s3omme des actions des hormones ondogbnes et
exogbnes. En second, apres la pdriode tanaitoire ( deux i trois jouns ), le thdrapeute souhaite i la fois, voir
sinstalle un rigime permanent aussi proche que possible du rythrne circadien physiologpque pour les
variables H et Y. et re e n place, pour de nombreuses raisons faciles k deviner, une action thdrapeutique
pdriodique do pdriode dgalo ici & 24 heures.
Cependant, l'analyse imm~diate des Equations ( 2.5 ) montre qu'avec los coefficients dui pathologique, il ny
a aucune raison pour que l'introduction dana ces Equations dos rythoses physiologiques entraine
l'apparition d'un cycle-limite. Bien an contraire, comme le confirnent lea simulations numiriques. on
assiste i une ddrive affine dui cycle. LA d~monstraiion de ph~non*n dtant dvidente.
Ainsi, la soule possibilitd, en rdgime permanent, eat do ddformer aussi peu quo possible le rythme
physiologiquc pour assurer la p~niodicitE do I& thdrapeutique roprdsentie per X et Y, los fonctions 8, et 82

Etant alora; cles aussi pdriodiques. On est conduit ainai i rdalime une optimisation sous lea contraintes
x 2: 0, y Z 0 , X k 0 , Y Z: 0 . Enfin, il faut sasanrer quo It cycle-limite obtenu eat sable et quo It systbme
eat en plus structurellement stable.
Dost I noter quo le principe do l'utilisation do loptimisation eat judicioux an regard do Is notion do rythine
physiologique moyen qni eat utilisde et aussi via i vis des incertitudes qn'ambne rutilisation dun mod~e.
Ainsi lIn fonctions 8, et 82 doivent permeture do satisfir lea conditions do postivitE des variables x, y,

. Y, et, apr~s un transitoire, doivont assurer lexistonce dfun rigime permanent cydlique et basi sur le
rythme circadien. 13 s'agit alors do tnouver nne ciasse do fonctiom suffisamment riche pour pouvoir conteni
los solutions cherchdes. On pent envisager une recherche hybrids en sdparat Ia partie transitor dun tigime
permanentOn pout aIons considre la classe do fonctiona & quatr. pmrambtrea, dense dana lensemblo des
fonctions continues sur tout intervallo compact, et difinie par:

f() +a bd ICos 'dt +c avec d >0 (2.9)f -POmJI l+ dz-cos (bt)

Coes clams do fonctions eat utilisde par Bosbernita [21J dans a borohs~ des Equations difftirentielles
universelles ( cf. (2Z 22]).
Cams 1 P rond m~thods eat en Coam d~nnis.

0{



Rmsarque,2: On pomnrait s'inquidtor do limpossibilitd do trouver un conutle tbrapUdq capable de
rdtablir Ins rjibus phymiogqus, mins on no doit pea oublier quo dana la rdn"t les parambme qui

Manbeirltoo~iumdo-sy am *wmbse s si ap ds do la ositiphyoogiQue i
stuation patbologiqus, le- tdrapoute, dens let cud. rd~svbiki pMt&l qu'un mniside forcd chn lydam
proche do rythin physiologique, pendant mie p~albd suffimae pennoi aux paruosm do so zecle stir
I'bmiosasie pbysiologiquo.

IIL LE COUPLAGE INSULINE-GLUCAGON Fr LE DIABETE

Lactivitd glycdiique pout etre considdrde comme la rdsultante dos actions antagonists du glucagon
byperglycdmiant at do rins~Mio hypoglycimianto. cos dcix hortnones agissant crune fagont couple.. Cc
systim prdsent. par rapport an syadene surdno-posthyoysln une pardoulaiti remnrquble an plan
anatomique. Dana le cas do la rdponse glycdmique, la nature a instaild le nidcanismo do counnando do Is
r~gulation dana tin utoendroit - los Dlots do Langerhians - an sein do pancrdas. On trouve danm ces amas
ceilulaires la fabrication simultande do I'insulino et do gitacagon sous l'action coordonnde do la.
sonarostadino. Dovant les rdsultats cliniqucs obtenus I I'aido de la .11sin- i 19- i sezublait,
au regard des onjeux en diabdtologie. interessant do proposer tine modtlisatioc do systime insuline-
glucagon sous ranglo do la, vision bipolaire des systms ago-antagonirsm dffinis par Bernaid-Weil
La moddlisation proposde prend la forme tun systbmo diffdrontiel non lindaire, & trois entr~s
Cl,C 2 ,e 3 twissomues zl,z 2,z3 ainsididfii(c.[8]):

3
K ~ [ki( H - V +c3 )1 +cj(lf + . mi e

.3
V-[k,(H - V +c 3 )i+c1 (H + Y-M)i] +C2

'iCm 2  (3.1)

6-S, (G0 -G)+g 2[g 3 (th(g 5 (H - Y +Y-X+g 5 ))+th(g4 (X-Y+g3 ))-2h( 4 5 ) + 3]

ZIMH*- V

Z~wmVO -
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avac N x +X, y+Y,.o& xat y ddsignent inapeciveionles actions dugSlucagoneatdo inuline
andogkmat Xt mY lea actios des hotmines exombhus ( thtapuque).
Go -O,78. be le tad baphyoloque doavpse glydique G(t)etm-21.

Le systbme eaz 6crit dam tin systhmi dunia cominuzi pour lequel tie umnt6 coimiint vdrifmeL 10 ptU/ml dinsuine-l100 pgft1 de glucagon. g

100 g do glucose, an reprdsemde par Is fonction :

P( t)=PI/(PI -P2 ) 10 0 .-P3 Iep(- P2t)a-exP(.t) (3.2)

Comm pour It nodMe du systine suino-pothypophysaire, lea pararnohre des 6quations ( 3.1 ) at ( 3.2)
ont dtd identifids, & raide de Is. mfihodoptimisation non lindaire de Davidon-Fletcher-Powell, h partir des
courbes expdriinentales. Les paraibtms ddinissant la function p( t) ont diE ajustds tine seule fois car Its
conditions dabsorption intestinale du glucose sot noins influencdes par les anomalies hormonales quo los
autres processus du nidtabolisme glucidique. Par contre. bien enienu, les paromtres do rdquation ( 3.1)
sont i identifler dana le caa physiologique et dana le caa pathologiqu.
LA recherche dun contr~le ( ihdmpeutique ) visant k corrger los anomalies do Ia rdponse glycimique chez lo
diabdiu a dtd obtenue dana un premier temps ( cf. 8] en prenant los entes a, at e2 sous Ia forme:

3
a, - fk3+(H - Y +p )i+ c3,,( H + Y -m)

(3.3)
3

e2= ~ H - Y +p)i + c;,( H - Y -in)']

Elles perinetent do moite oni place tin contr6lo asymptotique tondant I ramenor Ia position limite
paihologique k la valeur physiologique inoyenne do la glycsmie (1I g/l ), le ddsdquilibre initial glucagon-
inauline avan Is. chag en glucose, comme rdquulibre physiolopique, diant des points critiques stables du
inodkle physidlogique.
On pent aussi opdre comne powr le systme sufffno-posthypophysaire et considdrer lea relations:

Km12(-z1 +z2+m)

(3.4)
xmN -x

YMY-y

4 x ay dm solutions dos iquaiians dlffuwiellea:

"M
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3

x ki-I +iZ

(3.5)

11 eagft ici do porinotte aux sorties zl, z2 at z3 du syarkuc 3.1) do passer do In position pathologique:

z1 (0); Z2 (0); G (0) (3.6)
i rdquilibre physlologique " asyiptotique":

ZI - 0; Z2 -=0; 0 =1 (3.7)

L:1quilibre phyuiologique dovant bion entendu euoe anoeint avant 1'mgestion suivante, soit clans; un dilai
drenviron 5 heuros.
Powr dMerminer ha "thdrapeutique" - X, Y - i appliquer an systbino "pathologique' ( 3.1 ) on pout aiors, par

exeample, iztillsor do nouveau la classo do fonctions; & quatre pararnbues donnie par la relation ( 2.9 ) ot
effectuar =an optimisation, sous les contraintos x k 0, y 2t 0, X Z 0, Y 2: 0, on minimisat r~cart entro los

tri sorties z,, z2 at z3 d~u systhino "paxrhologique" contr~l6 ( 3.1 ) et los trois sorties 9j, %~ Ct %~ du
systbrne "physiologique" ( 3.1 ) sounti aux entrdes 0,1=0,0e2 -0 at e3 - p( t ).
Ceci fora l'objet dune prochaino Etude, inais les simulations effectueS avec los entrdes 01 orte 2 sous la

forme ( 3.3 )( cf[ 8) monndjqu'une ioilure approche dla courb glcmique est obtenue avec
'intorvontion simultan~e des deux actions X et Y (insulino ot glucagon ) plut6t quavec rinsuline seule.

IV. CONCLUSION

Nous avons prdsenti ot illustrd par deux examples tine nouvelle mdthode do recherche liant Etroitoinont

l'automadque et Is biologic. Conte vole dont Bernard-Weil esn rinitiateur, ouvre tin champ divestigation
inmmense on permetant, r- tin pocdd do inoddilsation original qui mappmm .ini "dynmical metaphors

do Rosen [21] do prenore en compto laspect ago-antagonisme qui intorvient dan. =n grad nosubre do
rdgulations biologiques. Conte moddlisatiork, k a Im- do simler nsl blen 16 pathologique quo le
phymiolgqpopose des contr~la bipolaires amx iticidences &&qapedqme pufois uaromnanwoa DI nest

pa question quo l'auomaticien rooms dans I.. prdcision midic&W dwr il Wa pas Ia compime, nais il
peat qumnd a iIndiuer, conmm is motre ddij un conk nombre do publtation mdical (c. ( 5,
10,111 ).qusIal -uutqr des Mhrsamqwes bipolalm Meod pa k pa no CM" CAPPOlIon 11 West
pea donwt quo dana an avesir que 1on dolt tundra MAu Pnche quo Posible, ons thmpeutiques
coudasmu s auppim.r rdmi do FA~uc Mwa grad nonlafw s b mains.

-. - .,4
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CANCER RESEARCH

Werner DUchting
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ABSTRACT: The aim of this contribution is to illustrate the
impact of computer simulation in the field of biology and medi-
cine. This paper shows how systems analysis, control theory and
computer science can stimulate new approaches to interpret can-
cer, to predict tumor growth and to optimize tumor treatment.

Starting with a review of the current biological knowledge about
the origin of cancer a computer model is constructed
- to simulate the time behaviour of disturbed cell growth control
circuits

- to predict spatial tumor growth (2-D, 3-D) and
- to simulate different kinds of cancer treatment (surgery, ra-
diation- and chemotherapy).

In the long run the aim of our work is to optimize treatment
strategies and schedules in vitro and in vivo by computer simula-
tion prior to clinical therapy.

1. BIOLOGICAL BACKGROUND OF THE CANCER PROBLEM

Cancer is a multistep process with the stages of initiation,

promotion and progression. Characteristic features of malignant
tumors (1) are uncontrolled proliferation, invasion in adjacent

normal tissue, metastases induced to other tissues via lymphatic
channels and the ability to evade immune surveillance. Though

cancer treatment is concentrated on a prevention of metastases

(2) the central question in the background of research is: Which

is the initiating event that is responsible for a stepwise trans-
formation of a normal cell into a tumor cell? Recent investiga-

tions in the field of molecular biology have focussed on dominant
cellular genes called *proto-oncogenes" which can be activated by
tumor viruses, gene amplification, gene translocation and genetic

mutation. In spite of this progress (3) the main question how
genes and the growth of normal and malignant cells are regulated
still remains open.
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Most of the normal tissuesi in the body ccriain some cells that

can renew themselves (neurons, liver cells, kidney cells) if a

tissue is injured. The division of a cell into two new ones

involves four stages: GI - S -- G2 - M (G1 is a gap after

stimulation; S is the phase of DNA replication; G2 is a second

gap period and M is the stage of mitosis). When the replacement

has been completed the repair process stops. Furthermore, at

particular stages of the cell cycle the cells may be blocked by

drugs or agents, or they may move out of the cell cycle into a

resting phase known as GO (4).

In contrast to the normal cell a tumor cell is theoretically able

to divide indefinitely. In addition a different morphology, lar-

ger nucleus, abnormal number of chromosomes and the formation of

new capillaries (tumor angiogenesis) which is associated with a

more rapidly growing tumor (5) can be noticed.

For studying the process of carcinogenesis tumors are induced to

animals or to cell cultures (in vitro). Cell cultures are not

only used to study the division of tumor cells, but also to

determine the effecz of chemotherapeutic drugA. During the last

years a large progress has been mace in experiments gaining hard

data about normal and abnormal cell-growth control processes for

instance of cell-cycle phase durations.

2. MODELING APPROACHES

Starting from basic biological test results a large body of

mathematically oriented work applying mathematics to the field of

biology and medicine has been published (6-10). Unfortunately

these models which consist of complicated formulae, are in most

cases not completely understood by clinicians. In this dilemma

the combined application of methods of systems analysis, control

theory, automata theory, computer sciences and heuristics Is a

good link between the diverging areas of medicine and mathema-

tics.
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our own approach developing closed-loop control circuits for
tumor growth started in 1968 (11). At that time the subject of
consideration was focussed on stability conditions and on the
interpretation of cancer as an unstable closed-loop control cir-
cuit. Step by step the dynamic behaviour of cell renewal control
loops (Fig. 1) was investigated. Blockoriented simulation lan-

guages have been used for simulating the macromodels. As a result
the number of cells as a function of time has been plotted (12).

Then oncologists advised us to consider not only the time but
also the spatial behaviour of tumor growth. In a first approach
we developed models at a cellular level which described the 2-D
behaviour of a normal cell inoculated into a nutrient medium (in
a Petri dish). Next we extended this approach and tried tc simu-
late tumor growth in the tissue qf a tobacco leaf (13).

D1 D2 D3

I +
STEM CELL PROLIFERATION MATURAION. C

I - POL - POOLFUNCTION POOL.,

LCONTROLLER I

R: Required tissue oxygen (desired number of erythrocytes)
C: Number of red blood cells (erythrocyt~s)
E2: Production of the erythropoietin hormone
D1, D2, D3: Disturbance

rig.l: Multi-loop control circuit of erythropoiesis
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After getting the results shown in Figure 2 we improved these

models by introducing distinguished cell cycle phases (G1, S, G2,

M, GO, N). Thus, we were able to simulate the 3-D growth of a

single dividing tumor cell (14) inoculated into the center of the

cell space of a nutrient medium at the beginning of the simula-

tion run (Fig. 3).

The introduction of distinguished cell-cycle phases was necessary

because chemotherapeutic agents and rays effect only a very

particular phase of the cell cycle that means they act phase -

specifically.

After simulating in vitro tumor growth the attempt was made to

substitute the nutrient medium by static blood vessels (15).

However, very soon it was clear that a more realistic structure

of capillaries was desirable for simulating in vivo tumor growth.

3. DESIGN STRATEGIES OF A HEURISTIC MODEL

The modeling of complex cell growth requires a considerable

simplification. Some of the oversimplifying assumptions are

- constant volume of a cubic cell

- constant phase duration and constant cell loss

- only horizontal and vertical communication between neighboring

cells

- a limited tissue volume by computer facilities

- side effects, immunologic reactions, heterogenity, drug resis-

tance and the formation of metastases are neglected.

If you want to construct a model of high order, it is necessary 4
to design a modular concept. In this case it means to design

modular structured subsystems.

P-
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(i) You need cont-ol models (Fig. 4) which describe the cell

division of normal and tumor cells at a cellular level

including experimentally gained data e.g. of cell-cycle

phase durations.

(ii) Heuristic cell-production and interaction rules are re-

quired describing the cell-to-cell communication. For in-

stance one rule of the catalogue may say:

All tumor cells residing at a distance larger than 100 tim

from the capillaries after the next division step will

enter the resting phase GO.

(iii) Cell movement is described by transport equations (diffu-

sion-, Poisson-equation), that means we have to introduce

into the model gradients for pressure and metabolic com-

pounds.

(iv) To represent 2-D and 3-D simulation results computer-

graphics software packages are necessary.

I

TEI'ICELLS G1 IS I62 M

CELL CYCLE GO E

E: DIFFERENTIATED END CELLS CELL DEATH

Fig. 4: Simplified cytokinetic model describing the division of a
normal cell
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The large body of statements, rules and equations has been trans-

formed into algorithms. In addition algorithms considering tumor

treatment (surgery, radiation- and chemotherapy) have been deve-

loped in subprograms written in FORTRAN IV. To start the simula-

tion program packages the following input data have to be fed

into the computer (VAX 730):

- notations about the character of a cell (normal, malignant)

- cell-cycle phase durations

cell-loss rates

- initial configuration of normal tissue and of tumor cells

- distinguished data about the kind of the planned tumor trpa:-

ment.

4. SELECTED SIMULATION RESULTS

Numerous simulation runs have been performed by DUchting and

Vogelsaenger (15-17) simulating tumor growth and different kinds

of treatment. Some special results will be demonstrated now.

4.1 Growth of capillaries

The simulation of in-vivo tumor growth requires a realistic

structure of capillaries. Therefore Vogelsaenger (16) investi-

gated the question: Is the formation of capillaries a stochastic

or a regulated process? In (16) the assumption is made that each

cell of an organ in evolution has a special request for oxygen

and glucose. Therefore, parallel to the formation of tissue

capillaries are built with a specific structure corresponding to

the required oxygen and glucose. That means from the viewpoint of

control theory the request for oxygen supply is regulated to a

constant level by building a special structure of capillaries. A

comparison between Figure 5 and Figure 6 shows that for the

cortex of & rat the simulation result is highly similar to the

experimental result received by B~r (18).

/I
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RIM

VENTRICULUS

Fig. 5: Capillary network in the cortex (simulation result)

4.2 Spread of tumor cells in the cortex

Now the assumption is made that a single tumor cell is arbitrari-

ly placed in the tissue of the cortex at T=1 unit of time. If

this tumor cell resides close to a capillary it will divide and

move in accordance with the cell production rules (Fig. 7).
Further tumor growth is possible only because tumor cells produce
a substance which is called tumor-angiogenesis factor (TAF). This

factor stimulates nearby blood vessels to send out new capilla-
ries (Fig. 8) which grow towards the tumor, penetrate it and lead

to further rapid tumor growth. Recently great efforts have been

made to attack cancer by trying to find a protein which inhibits

the production of the tumor-angiogenesis factor.

. .. /.
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RIM

VENTRICULUS

Fig. 6: Vascularization of the cortex (18)

4.3 Chemotherapeutic treatment in vitro

As pointed out in section 1, the cytotoxic effect of chemothera-
peutic drugs is tested in cell cultures. These are very good in-
vitro systems which can be simulated by a computer model. Figure
9(a) shows a tumor spheroid at T-200 units of time which has
grown up from a single tumor cell inoculated into the center of
the cell space at T-1 unit of time.
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Fig. 7: Spread of tutor-cells JA tbe, e~rtexat T-45 units of time

RIM

NEW CAPIL-
LARIES

TUMOR CELLS

VENTRICULUS

Fig. 8: Formation of new capillaries at T-120 units of time
(tumor-arigiogenesis effect)
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Fig. 9 (a)-) simulation of a chemotherapeutic treatment of a

tumor spheroid (in vitro)
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At T-201 units of time it is assumed that all proliferating tumor

cells (i.e. the outside rim) have been killed by a cytotoxic drug

(Fig. 9(b)). Now the remaining resting tumor cells (GO-phase) in

..the neighborhood of the nutr ient medium are being recruited into

the cell cycle again, and after a short time of remission the

tumor spheroid continues to grow (Fig. 9(c)-(d)). Therefore, a

second therapeutic attack or a combined approach is recommended.

The task which has been solved in (15) is to determine the opti-

mum time at which the drug has to be applied for a second (and

more) time(s).

5. FUTURE PROSPECTS

From the voluminous catalogue of unsolved problems in the area of

cancer research I think there are three promising avenues of

future work in the modeling field:

Optimization of distinguished methods and schedules of cancer

treatment.
- Generation of a more realistic initial configuration of a tumor

by combining CT-pictures (Computer Tomography) with predictive
models describing tumor growth and last not least

- Consideration of facts which had to be neglected so far (forma-

tion of metastases, immunologic reactions, drug resistance,
heterogenity, side effects).
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ABSTRACT

The structure-activity models are primarily oriented towards the
evaluation of molecular similarity. The approach and the model of
structure-activity relations presented in this report is based on the
similarity parameters developed-by use of probability functions. The
molecular structures are encoded as sequences of numbers representing
counts of paths of different lengths. The similarity index between
two compounds is calculated as the difference between the gains of
information derived through the comparison of the corresponding
molecular path sequences. The similarity index is used as a basic
information for modelling the property prediction model. The corre-
spondences between the ranks representing orderings according to the
similarity index value are then searched and expressed as correlation
indices. The correlation matrix represents the source of data for
clusterisation of the compounds. Optimal classification is obtained
after several testings with different threshold values. The classifi-
cation of a compound with unknown biological activity into one of the
obtained clusters of compounds with known biological responses repre-
sents the source of data for prediction procedure. The method is
illustrated on a group of bensamidines.
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1. Introduction

The biological response prediction models are often based on cluster

analysis methods. Cluster analysis is a multivariate technique that

identifies groups or clusters of related objects in a multidimensional

space [1,2). The classification is aimed towards the search of

pattern points which correspond to natural and useful groups of

chemical compounds. The location of pattern point within a cluster is

used for semi-quantitative determination of biological activity [3) or

other physicochemical property. This is an usual procedure for

property prediction of non-available or not yet synthetized compounds.

The last decade brought in the chemical literature many different

classifying algorithms. As a rule the results after the application

of different algorithms to the same data set differ. Consequently,

the choice of the classification algorithm must be done very carefully

according to the nature of the studied problem. In general, all

methods for identifying clusters in a multidimensional space contain

some heuristic and arbitrary elements. Quantitative evaluation of the

accuracy of the classification method and the prediction power is

possible only in the case where the chemical data are abundant.

Basic assumption used in development of structure-activity models is

the expectation that molecules with similar structural features will

exhibit similar physicochemical properties and biological or pharmaco-

logical activities [4]. Structural similarity or dissimilarity of

drugs finds application in quantitative structure-activity relations-

hip (QSAR) studies and in drug design [5]. The definition of the

similarity within the models is based on mathematical terms, which

describe the chemical structure of the drug. The most difficult

problem in modelling is the derivation of mathematical expressions for
chemical structure encoding. The mathematical terms used in the model

are expected to contain a lot of information and to have general

applicability to different chemical systems under a variety of

conditions.

The model presented in this report makes use of -the mathematical -

property of the molecular graphs. The classification approach is K
based on the comparison of all possible molecule ranking* (represented

- -.-,-- --, -* -...... . -.
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as strings) generated according to the similarity Of a particular
molecule from the initial set. The results of string comparison are
expressed as correlation coefficients and used for group generation.
The properties associated with a group are used as source data for
prediction of an unknown biological response.

2. The developed model

2.1. Definition of the molecular similarity measure

An important problem in modelling structure-activity relations (SAR)
is the definiton of the molecular similarity. The similarity itself

is a mathematical relation with transitive, reflectional and equiva-

lence properties, but the molecular similarity derived from the

mathematical properties of the molecules does not always reflects in
the same manner these mathematical relations in the real chemical
world. In the real word there are other elements besides the chemical

structure that govern the molecular behaviour.

The selection of appropriate molecular descriptors in SAR is of a

great importance. In the chemical literature it is commonly accepted
that major factors that govern the chemical events and biological

activity are the molecular shape and the molecular structure [6]. In
our model the molecular descriptors are derived from the molecular

graph, not from the molecular physico-chemical properties (73. We
decided to use as mathematical descriptors a set of structural
parameters already found useful in the study of structure-activity
relationships. The molecular model used is the structural formula in
which the hydrogen atoms are supressed according to the widely

accepted practice [03. The hydrogen atoms are less essential for the

chemical behaviour and their presence can be always deduced if
required. The characterization of the chemical structure is done by
enumeration of the self-avoiding walks or paths with different length

in the h dogen depressed graph. The use of path codes in the

di"sion of Similarity versus property or activity has shown that
shoter paths, in particular the paths of lengths two and three,
reflem ths physicoochmial properties of the compound [9 while paths
of -longer leia.h, which enoode the plesence of structural details at
larger separations reflect the molecular shape and are of interest for

-f
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study of the biologioal activity P 03.. Derivation and computation of
self-avoiding paths may be found elsewhere E11,12].

The approach and the model of structure-activity relations presented
in this report is based on the similarity parametres developed by use

of probability functions. The sequence of path numbers for a compound
Ai may be viewed as a distribution of a particular property of the

molecular graph [13]. The domination of the size effect which may
obscure the analysis when molecules of different size are considered,

may be avoided by normalization of the path sequences. The path

sequences are normalized by dividing the entries in every sequence
represented as a vector xi (xi = [xi], J-1,2,..,m; m is the number of
the longest pazh) by the number o, atoms in the structure. We denote

the normalized vector as xv.

Following Jeffrey [14] the similarity between two chemical structures
Ai and Ak belonging to a studied data set can be defined as [15]:

U
Il(Ai/A) (P Z (J -PkJ)lo092(PiJ /Pkj J

where pil is the probability that a randomly selected element of the
sequence Ai will be found in the J-th group of elements, p'j is
defined analogously.

Zn the case of strings of path numbers characterizing a molecule, the
probability that a randomly selected path is in the group of paths
with length j will be:

pit = x?/(__xiS) (2)
Jul

As pij is calculated from the elements which reflect the molecular
features of Aa the quantity I(At/Ak) measures quantitatively the
degree of similarity sik between the molecules Ai and Ax. The

similarity matrix 8 for a particular net of compounds is obtained by

calculating the similarity indices Olk for evesy pair (Ai ,Aa) in the
data set.

. .
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The similarity index in the developed model is used as a basic
information for property prediction. The studied compounds are

ordered according to the similarity index value between the compound

Ai and all others componds in the data set. The ranking is obtained

with ordering of the structures by ascending values of the similarity

indices C15]. After generation of all rankings in the data set a nxn

matrix is obtained. The relationship between the compounds may be

expressed quantitatively by use of different string comparison met-

hods: trace, alignment and listing C16]. The calculated quantities

give an information about the similarity between two compounds

"derived" from the similarity relationships of both compounds to all

elements present in the data set. In that way all individual

structural characteristics present in the data set are fully conside-

red.

The correspondence between two particular sequences is calculated by

counting the number of identities in traces generated for these

sequences [15]. A trace between two sequences consists of lines

connecting the elements from both sequences. An element can have no

more than one line and the lines must not cross each other. If the

elements connected ) a line are the same then the pair represents an

identity, if they are different, the pair constitutes a substitution.

The result of the comparison between the elements of the sequences A

ard B is expressed as the quantity W(A,B). W(A,B) represents the

number of different identities found in all traces generated by

comparison of two ranks and diminished by one [15]:
a

W(AB) =t (ci -1) (3)

where n is. the number of the sequence elements; ci is the number of

identities in the trace i on the right of element i. Detailed

description of the method of calculation of W(A,B) is given in [15].
The correlation coefficient r for two compounds Ai and P4 is computed

according to the expression [13]:

(j [2W(Aa,Aj)/n(n-1)] (4)

where n is the number of the string elements.

The correlation coefficient nj is I if the orderings of the sequence
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elements compared are identical and approaches zero if they are

completely different. The correlation coefficients nj for all

possible rankings in the data base form the correlation matrix R. An

element of R gives a quantitative estimation of the similarity between

the compounds Ai and Aj. Two similar compounds i.e., Ai, A4 will

generate always a similar ordering of the rest of the data set

elements and they will have very high rj. If the contrary is true,

then the value of rij will be low.

2.2. The compound clustering

The developed clustering algorithm makes use of the correlation matrix

R. The first step of the procedure is the search for the most

correlated compounds within the matrix R. The searched compounds

represent the kernels of the future clusters. Each kernel in the very

beginning contains only two compounds with the highest found rij.

Other kernel elements are added according to the first threshold value

defirad on the base of the first chosen value of nj. The kernel

elements are represented in Fig.1 with the sign G (note that this sign

represents two compounds, the compound i and J). The second step

completes the clustering procedure. Another threshold value is

defined for classification of the rest of the data set components. An

element k is added to a particular kernel if the value of r for this

element i.e., rkn is bigger or equal to the second threshold value.
If two or more kernels satisfy this condition then the element is

added to the kernel with the highest mean value of rkn. The second

threshold value is lower than the threshold value for kernel generati-

on. The prescribed values r in both steps may be changed during the

clustering procedure according to the nature of the classified data.

Sometimes, the first threshold value happens to be too high. This

results in a small number of clusters. In this case the threshold

value is decreased. On the other side, the criteria for this

threshold value has to be high enough because if it is low the

similarity criteria can be lost. Optimal classification of the

compounds is obtained after several testings with different threshold

values of the correlation index.
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2.3. Property prediction

The membership information for a compound with unknown biological
activity in a cluster with known biological responses is used for

property prediction. The developed procedure for biological response
prediction assumes that the values of the biological responses of all

compounds in the cluster contribute to the value of biological
response of the unknown compound. The-contribution of a particular

compound in the cluster is taken to be proportional to the degree of
similarity of that compound to the unknown one. The property
predicition procedure is as follows:

let compound x be classified into a group having n compounds. The
average of the correlation coefficients of the group ra (ra is

calculated as the sum of nj of the cluster divided by n) and the
average of the biological responses for the group BRa (BRa is

calculated as the sum of BRj, J=I ...... n divided by n) are used for
prediction of the unknown value of BR by the application of the

following equation:

n
BRpeaiected(x) = BR& + _ ((BRi-BRa)(1+rui-ra))/n (5)

For a large data base calculation of the similarity index, the

correlation coefficient as well as the property prediction requires a
computer aid. A computer program has been developed in programming

language Pascal and implemented on Vax 11/750. The procedure and the

model is represented in Fig.2.

3. Applicatons

A group of compounds which consists of 73 bensamidines derivatives

with dopamine receptor affinity has been taken as a basic data set.

The experimental values of loaP for these compounds have been taken

from the work of Hansch and coworkers [17). The obtained clustering

consists of 11 groups, 12 compounds are not classified because of low
values of their correlation coefficients. The correlation matrix is

displayed in Fig.1 where eleven groups of highely correlated compounds
may be recognised. The values of logP presented on the left side of
the figure are grouped very well too. The predicted values for
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selected compounds are shown in Table I. The thresholds values have

been obtained after several attempts. Finally, as the optimal the

kernel threshold value has been taken to be 0.94 and the cluster

threshold value 0.8.

4. Discussion and conclusion

The method presented in this report shows that string comparison
tehniques may be applied in chemical classification of compounds with

similar biological activities. The developed method and models may be

considered as an evidence how certain mathematical tehniques may be

applied for derivation of the relationship between biological system

response and structure of chemical compound i.e., the potential drug.

The molecular path counts are found as suitable non-empirical parame-

ters for description of the molecular structure. The same approach

may be applied to other applications with other molecular descriptors

and sequence comparison having different contents. Obtained predicti-

ons of biological responses are optimistic and suggest further

development of the method.
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Fig.1. Clusterization of 73 benzamidine derivatives
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Table I. Predicted valuies of lom? for bensamidine derivatives

Comp.kNo. 11 Measured BR 11 Calculated BR I Prediction error

3 5 2.35 2.47 55%

2 2.25 1 2.46 I 10%

8 * 2.68 3.10 It 16%

73 3.03 5 3.02 1. 0%

24 It 3.77 1 4.11 It 9%

34 11 4.00 1. 3.92 52%

40 It 4.09 It 4.22 13%

69 4.68 4.33 8%
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The theory of feedback control as a pos' 1ble stabilizing mechanism has already been introduced into

ecosystem analysis. One problem in the theory is the identification of the informational links by which

such controls operate. Cyclic controls, for example, zero-mean sine functions added to certain exchange
flows in the system, might also contribute to system stability. Their advantage is that they operate without
need for information from the rest of the system. The theory of ecosystem cyclic control is presented and
applied to data from an oyster reef ecosystem.

I. INTRODUCTION
To address the problem of ecosystem stability and performance, the previous control studies

utilized solely classical control principles, feedback and feedforward (Olsen, 196!; Lowes and Blackwell,
1975; Mulholland and Sims, 1976; Vincent, et.al., 1977; Goh, 1979; Hannon, 1985b,c, 1986; DeAngelis,
1986). If knowledge of the current output is used to modify the inputs to control the system, we have a
feedback control situation (Wonham, 1984). Feedforward control uses current knowledge of the
disturbance (rather than output) as the basis for a corrective action (Takahashi, et. al., 1970). The major
problem with these kinds of controls, however, lies in explaining how the requisite information flows
occur.

An alternative approach to ecosystem stability is found in the concept of cyclic (or vibrational)
control (Meerkov, 1980; Bellman, et.al.,1986). Basically, cyclic controls are periodic variations (zero-
mean) in the flows between components in an ecosystem or between the ecosystem and the surrounding
environment. If the amplitudes and frequencies of these variations are within the appropriate range, the
ecosystem, unstable without such variations, could under certain conditions be stabilized by their

introduction without any information flows.

Oscillations-induced stabilization of ecosystems has been investigated by a number of researchers.
Armstrong and McGebee (1976) developed a theory for the coexistence of a variety of species using a
smaller number of rsources. Their technique involved a the sequential staging of the species in a periodic
manner, sharing the resource through time. Kemp and Mitsch (1979) used an empirical model to
demonstrate the stable coexistence of three plankton species on the same resource if one of the resource
inputs (wave energy) was regularly pulsing. They speculated that only a special range of frequencies and

% in nr by. the Illinois Department of Energy and Natural Resources
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pulse amplitudes would produce the needed stability. The pulsing resource appeared to force a sharing

between the three species, disadvantaging the species which was the most prolific under steady conditions.
Levins (1979) established the sufficient conditiomwof cwxis by requiring that the resource or the
species functions contain externally induced time-vatrying elements that enter the equations nonlinearly.
Nonlinear dynamics in Levins' ueatment was essential since it resulted in terms with even powers of zero

mean oscillatory functions. The averages of such terms gave rise to the "average" nonzero inputs which

acted as effective new resources and under certain conditions ensured stable oscillatory regimes of the

system.

The goal of the present paper is to assess cyclic (vibrational) control theory as a tool in ecosystem

analysis and management. We show that an unstable linear system can be made asymptotically stable by
zero mean parametric excitations as well, and hence, nonlinearities are not necessary for oscillatory

stabilization. We also utilize nonzero averages of even powers of zero mean oscillatory functions to obtain

stabilizing corrections. However, we average not the original system with 3scillations, but some other

specially constructed system, the average of which reveals the dynamics of the original cycling system.

For the purpose of illustration, we have chosen a modeling technique known as flow analysis (Hannon,
1973, 1985a; Barber, et. al., 1979) from a variety of ecosystem modeling approaches, each valid for

certain system classes. First, we briefly review the flow analysis technique and present the theory of linear

cyclic control of ecosystems. Then, we apply cyclic control to an oyster reef ecosystem where it acts in

only one of the component flows. The extension of the theory to nonlinear systems can be done on the

basis of the work of Bellman, et. al., 1986. The theory indicates the range of the amplitude/frequency

raio in which stabilizing cycles should be sought and asserts the existenc of stabilizing cycles in this

range. The actual stabilizing amplitudes and frequencies are deternilnee via trial and error solutions of the

differential equations.

II. FLOW ACCOUNTING

In the analysis of complex dynamic systems, it is necessary to develop consistent definitions and
categorize all the identifiable flows. We start with the diagram shown in Figure . For more details on the
ecological accounting system, see Hannon (1973), Finn (1976), Levine (1977, 1980), Hannon (1979).
Patten, at. al., (1976), Herendeen (1981), Ulanowicz (1984) and Hannon (1985a).

In Figure 1, n x n matrix P is called the production-consumption matrix . This matrix represents
n processes which consume and produce n commodities. By process, we mean an aggregation of similar
consumers-producers which is viewed as a single ecosystem component By commodities, we mean the
substances produced and consumed by the components of the ecosystem. The elements of the ith column
represent the breakdown of the main part of the consumption of the ith process. The elements of the ith

row describe the breakdown of the main part of the production by the same process. Therefore, each
element of P is the amount of commodity i (row number) which is used by process j (column number) in
the given time period. For example, pi could be the daily amount of algal biomass (commodity i)

consumed by a particular class of herbivores (process j). This is a multicommodity system since
commodities listed along any of the rows are nocommenszable with commodities in any other row.
Therefore, the row sums may be calculated since they an all the same commodity and, we assume,
possess the same nutitional qualities for all consumes (The exception to this rule is the nonbasal heat of
respiration which by definition has zero value to any component in the ecosystem). But, in general, the

/
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column sums cannot be formed because a common measure of a value of each element along the columns

may not exist. Commodities of different qualifties, even though measured in the same units (e.g.,gins-
carbon) cannot be meaningfully added together. The inputs to omnivores and dettivores, for example,
are of different qualities, both chemically and in nutritional meaning, to the consumer.

The diagonal elements in P are the self-use eM which are for example, own-waste consumption

by rabbits and the consumption of decomposers by decomposers and cannibalism.
The full output vector q' is the sum of the vector of the nonbasal heat w given off by each of the

components and the total output vector q.

The system in Figure i is shown without joint products, that is, each process (column) is assumed

to produce a commodity of only one type. The joint product case is discussed in Hannon, 1985a and

Costanza and Hannon, 1986.
The relationship to the external environment of the measurable quantities in the ecosystem modeled

in Figure 1 is summarized in Table 1. The features of each quantity in this table are identified by the letters
in the corresponding boxes. The table shows two vectors: r and e. The net output vector r is composed
of three types of flows: exports (A & D), imports (D & E) and the heat of basal metabolism (B). By
imports we mean those quantities which can be produced by the ecosystem but enter the system from the

external environment. Exports are those quantities which can be produced by the ecosystem but which are
not necessarily produced by it, and which leave the ecosystem for the external environment. The letter D
in the import and export columns indicates those measured quantities which are passing through the

ecosystem in the given time period, therefore, the quantity A - E is the net export. The system Ls
perturbed by the externally induced change of the net export. The heat of basal metabolism (basal

respiration) is that given off by the organism at rest. We take the heat of basal metabolism (B) as a
surrogate for the commodity flows which are used in rebuilding the stocks metabolized during the given

period. By stocks we mean the accumulated output quantities in each of the components in the system.

Net Output

p. the umoun of i
used byj . P + r .

Figure 1. Steady State Ecosystem Flow Accounting Diagram

1Matrices are uppercase symbols and vectors are lower case; both are in bold type. The elements of either
are in plain type with the app.mpriate subscripting. A dot over a symbol indicates the time derivative.

-----------------------------...-----
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Table I. Description of the Quantities which Form the Net Output and
Nbaproduced Input.

The stocks are, for example, the amount of biomass of algae which has accumulated in the producer (sun

capturing) component of an aquatic ecosystem. The vector e stands for those input commodities that the

ecosystem is incapable of producing (e.g., sunlight) but that are necessary for ecosystem functioning.

III. FLOW ANALYSIS

Next we combine the flow definitions above with the possibility of a growth in the stock of

process j during the given time period AL These flows are graphically shown in Figure 2 for the

individual process.

The consumption flows p4, production flows p.& and the storage flow As/At are internal to the

ecosystem boundary, while the net output flows rj, the nonbasal respiration flow wj and the nonproduced

input flow ej cross the ecosystem boundary. The nonbasal respiration flow (e. g., the energy used in

chasing prey, avoiding predators, food-searching and reproduction) is of such low quality that it cannot be

utilized further by the ecosystem, and it is therefore considered a waste. The rj consists of the net export

of the process (export minus import) and the stock replacement (basal respiration). The net input vector e

is assumed to cause no restriction to the level of qj and is dropped from further consideration at the current

stage of the model development.
The total outflow q, is defined for the steady state ecosystem as

_ + r. + w (

To take into account a growth in stock, Asj, over the time period At when the system is not in the steady

state, definition (I) is augmented as

0 4 Sj

+(2)
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Consumtion Flows NonlissalWat
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Internal Environment of die Ecosystcm

Figure 2. The Definition of the Input and Output Flows of a Typical Process (j).

Three important simplifying assumptions are now made for the ecosystem shown in Figure 2 with
qj'defined in (2).

i) a commodity weighting or importance factor is assigned to each of the commodities produced in
the system. The weight for each commodity is independent of which component consumes this
commodity. A weight of zero is given to the nonbasal heat of respiration, and therefore, the vector w
disappears from the formulation. The element qj can be then be formed by the simple addition of all the

elements along the jth row of matrix P, the rate of the jth stock growth and the jth element of vector r. For
a more complete discussion of the commodity weighting issue, see Hannon, 1985a.

ii) the inputs to process j, pj form a constant ratio with the output of process j, qj. Thus, pi/qj =

gij = constant. The constants gj are determined from the data on the ecosystem at its steady state and

* they are assumed to remain constant for the dynamic form of our model presented below. These constants
represent the internal behavior of the jth process. The gj incorporate the consumption flows into the

model by locking them into a constant relationship with the output of the receiving process. Thus, the
problem of summing the consumption flows (see Figure 2) is avoided.

iii) the stock (s) of any process Ci) stays in constant proportion to the total output (qj) of this
process. That is: bij = sy/qj - constant, forming a diagonal matrix B = diag(bt ..... bnn). This

* assumption allows us to obtain a balance equation using definition (2) since now
q1 -s/b. . (3)

If the results of assumptions i) and ii) are combined with (2) and (3), and if At becomes
infinitesimal, we have

Sj n Sk
__ kol *i +(4)

where =dsJ/dL

,/
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Equation (4) is the dynamic description of the stock for process j. However, most experimental

ecosystem data is presented as 4lows. Therefore, we change (4) into a dynamic description of the flows

for process j. Substituting (3) and its time derivative into (4) yields
n

bj ,j = k k Vi j, n,

or in matrix form

4=Aq -BOlt, A - -'( - G). 5

This time invariant ordinary differential equation (5) is in the "standard" form for the flow analysis

approach.

IV. STABILITY ANALYSIS

The stability properties of the behavior of q when the system is subjected to a step change in r
depend entirely on the matrix A in (5). If the real parts of all the eigenvalues of A were negative, the

system would respond in a stable manner (Luenberger, 1979, p 158). However, in (5) the sum of the

eigenvalues of matrix A is always positive. Therefore, the system will always respond to "sufficiently

rich" changes in r in an unstable manner.

From an ecological viewpoint, a positive r represents an output of the ecosystem (for

example, the amount of fish -aught in th,; annual season). From the control theory viewpoint however,

this output represents an input to the system or a control action. For example, the amount of fish caught

directly affects the rate of (re)production of fish and many other quantities produced in the ecosystem,

which in turn, also affect the fishing success. If the system (5) is to accurately represent the functioning of

an ecosystem, the equations must be judiciously modified to include stabilizing or controlling flows.

Equations (5) can be made to respond stably by modifying r to include a feedforward or a feedback

control. Let us, however, demonstrate the use of cyclic control for ecosystem stabilization through the

addition of a cyclic flow to one of the elements in the matrix G.

In the flow accounting framework, cyclic control alone cannot guarantee stability of the system.
However, only a very simple form of constant feedback is required'to make cyclic control effective. Such

feedback can be easy to maintain since it need not ensure stability but only "condition" the system for

cyclic control. On the other hand, for a broad class of the so-called decentralized systems, no constant or

time-varying feedback exists that can stabilize the system (Anderson and Moore, 1981). In these cases,

the addition of cyclic control can result in the desired stabilizing effect.

Since equation (5) is still always unstable, several changes must be made to r to demonstrate the

cyclic control. First, r must be broken into two parts: a vector of net outputs which are independent of the

output q, and another vector which contains the feedback and cyclic control and depends on q. The first
vector contains the "set point" vector for the system, rs: the vector of net outputs which in the absence of
cyclic control determines the unstable steady state level q of the total output. The introduction of cyclic

control converts the unstable steady state q. into asymptotically stable T-periodic operating regime, qs(t),

where T is the period of a cyclic control. A feedback control is needed to convert the trace of the matrix in
equation (5) to a negative value (Meerkov, 1980). Assume that this is an internal control that changes the

net output from the system in linear proportion to the production flows, a "flow" control (Harmon, 1986).
For simplicity, let the linear proportionality be represented by a diagonal matrix of constants, Q. In this

case, vector r in equation (5) is given by:
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r =r + rs = r - r + Qq

where rc = Q &0 )

Equation (5) then becomes:

= BI. - G -Q)q +B'Ir - r)
.1 A B-1~

- Nq +B (rc -rs), N = B(I- G -Q). (6)

The constant vector B'l(r--rs) will be dropped because it is independent of q and therefore does not

affect the stability analysis.

Matrix Q must have only one non-zero element with sufficiently large absolute value to cause a

sign change in the trace of N. Therefore, we further assume that matrix Q makes the trace of matrix N

negative, but does not guarantee system stability, i. e., we simulate the circumstances where the feedback
controls (like Q) are not adequate to make all of the eigenvaues fall in the left-half plane. This situation

can arise if the information gathering processes of the system are somehow limited, resulting in lack of

controllability and/or observability (Luenberger, 1979). but are sufficient to condition the system for cyclic
control.

Let us again augment the vector r = Qq - D(t)q, where D(t) is a periodic, zero mean matrix. The

periodic input D(t), is weighted by the state vector of the system q, and therefore D(t) appears in the

system equation in the form of parametric perturbations or cyclic control. In this case equation (6)

becomes

4 B" [D( + Ifb ]q (7)

Because equation (7) is time-varying, eigenvalues can no longer describe its stability. It is

possible, however, to associate stability properties of the oscillatory system (7) with a certain constant

matrix that describes its avrge behavior. The stabilizing action of cyclic controls consists in converting

the remaining right-half plane eigenvalues of system (6) into "left-half plane on-the-average" ones. In this

case, stabilization is achievable without the need for additional information flows, provided that the

amplitudes and frequencies of the cyclic controls are within a critical range.

Assume, for simplicity, that the ijth element of the cyclic control matrix D(t) is given by dij(t) =

cipos(cot), where c is the amplitude and o~ij is the frequency of the oscillation.

In order to describe the average behavior of system (7), we introduce the parameter e as

e max(l/0)i.)

and define
AandCij= a ij /C and CO= ij /E

so that the ijth element of D(t) can be rewritten as dii(t) = (a. Je)cos( t/.e).

With this notation, the cyclic control matrix D(t) takes the form

I



272

and system (7) becomes

q= [N + -. B)q. (8)
tE

Thus, if the aij's and 13's are assumed constant, the amplitudes c.4 and the frequencies o) U of the

zero-mean cyclic terms d i(t) are parameterized by a positive e. It has been proven (Bellman, Bentsman

and Meerkov, 1985) that there exists an e0 = constant > 0, such that for any E satisfying the inequality 0 <

E < o the stability properties of system (8) are defined by the eigenvalues of a constant matrix

T

M =lim -1 (I)(INOI(O dT (9))

T-- oo 0 J
0

where d(t) is the state transition matrix of

dT

where t = t/e.

Specifically, for sufficiently small E, system (8) is asymptotically stable if all the eigenvalues of M have

negative real pans. As seen from this result, the elements of matrix M are defined in terms of the elements

of matrices N, B " , "amplitude/frequency" ratios aj., and "frequency/frequency" ratios 0, J.
Consequently, M provides a link between ai, 1i3 and stability of (7): If aii and 13. are found which place

all the eigenvalues of M in the left-half plane, then there exists an E such that oscillations with amplitudes

a, ..le and frequencies 13j Ic guarantee asymptotic stability of system (7). The matrix

M' j,= M-N

can be thought of as a "correction" of N induced by oscillations.

In the context of ecological systems, cyclic control is easy to apply. Indeed, ecological systems are

usually described by sparse matrices and therefore the cyclic contol matrix D(t) might often satisfy

condition D2(t) =0 independently of the magnitudes and frequencies of the oscillations. In this case,

since B is a diagonal matrix, all non-zero elements of matrix M' are given as

2

m' = - ..l -Y (Y.
bii P3ij

where n denotes the jith element of the matrix N. Therefore, the only elements of D(ti that will affect the

eigenvalues of M are those off-diagonal ciements that have a corresponding non-zero symmetric ele-znt in

N.
The first step in the search for amplitudes and frequencies of the stabilizing oscillations is to find

m' 's that move all the eigenvalues of N+M' to the left-half plane. A straightforward way to accomplish

this is to try only one of the appropriate elements at a time, and let gi. increase from 0 to a sufficiently

large number. When the appropriate set of elements m'. and, hence, g.. have been identified, we must
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Table 2. Oyster reef Input-Output flow matrix (P), along with vectors for net export + stock
replacement respiration (r), total output excluding waste heat (q), waste heat (w),

and total output including waste heat (q').

P

(1) (2) (3) (4) (S) (6) r q w q#

Oysters 1 0 15.79 0 0 0 0.51 17.80 34.10 7.365 41.47
Detritus 2 0 0 8.17 7.27 0.640 6.19 22.27 0 22.27

Microbiota 3 0 0 0 1.21 1.21 0 2.875 5.295 2.875 8.17
Meiofauna 4 0 4.24 0 0 0.66 0 1.75 6.65 1.75 8.4

Deposit Feeders 5 0 1.91 0 0 0 0.17 0.215 2.295 0.215 2.51

Predators 6 0 0.33 0 0 0 0 0.2 053 0.15 0.68

Net Input e 41.47 0 0 0 0 0

Control Q 1.52 2.28 .94 1.26 2.09 1.38

return to equation (8), placing (a.jI)cos(.i/e) at these locations in D(t). Then, by changing e and
1i i

repeatedly solving equation (8) for stabilizing pairs of (a4,), the areas of stabilizing amplitudes and
frequencies can be found. The search for stabilizing oscillations becomes complicated when the stabilizing
matrices that satisfy D2 (t) = 0 do not exist (see for example, Wu, 1975).

Cyclic control could naturally arise in an ecosystem as i) an oscillation of the flows between
various components or ii) a part of the net output, a cyclical export (import) from (to) a particular

component, the interpretation used in this paper.
What follows is a simple example of ecos) tern stabilization by a cyclic control.

V. APPLICATION TO THE OYSTER REEF ECO.SYSTEM

In this section, we apply the theory presented above to the oyster reef ecosystem (Dame and
Patten, 1981). This compact but complex system is shown at steady state ( i.e., for constant flows) in

Figure 3.

The data from Figure 3 have been arranged in the proposed accounting framework (Figure 1) in
Table 2. In this arrangement, estimates of the basal metabolism or structt.-al-rebuilding respiration are

included in the net output

From the data in Table 2, we constructed G for use in the N matrix. With the feedback control
elements of diagonal matrix Q, shown in Table 2, the trace of N is negative and its eigenvalues are:
0.0726 ±0.0371i, -0.1753, -.0089, -0.0994 and -0.0028. Because the complex pair has positive real
parts, the system is unstable. Let us demonstrate that a cyclic control can be found to stabilize the system

at the given steady state.

:A
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PHYTOPLANKTON
& SUSPENDED
ORGANIC MATTER 10.44**

14.72*. 1  " 0.51 ,. -l 0.30"

- I OYSTER - PREDATORSI

6.16 (- 2 14 1.91 5 _11 0.43"
(RESUSPENSION) DEPOSITED 0.64 FEDE S

2 2

" qMICROBIOTA "FMEIOFAUNA

" / (2.4) 1.21 . (24.12) |

•RESPIRATION ""MORTALITY FLOWS LEAVING THE SYSTEM

Figure 3. The Oyster Reef Ecosystem. Flow units are kcal/m -day.2 Stock unit: kcal/m.

Let m'5.3 be the only non-zero element of matrix M', indicating a cyclic net input to deposit

feeders and a cycle in the flow 5-3. Then by experiment, for m'5,, > 0.0346, all the eigenvalues of matrix

N + M' are in the left-half plane. Choosing 03, f 1.0, from equation 11 we obtain

1

bXF53 b b L = 1.7298,
where b.= 7.0893 and n3.,=-1.1632. Thus, according to the theory of Section IV, oscillations of the

form d5 3(t) = to,3wSin(ot), a 3 > 1.73, should stabilize the system for sufficiently large to. The
asymptotic nature of the theory implies however, that condition as., >1.73 should be partially observed

for smaller o) as well. It is precisely this insight that motivates the numerical search for the actual
parameters of stabilizing cycles at low frequencies. In Figure 4, we demonstrate that condition, (53

>1.73, is partially observed for W2x > 0.08. The amplitudes ae q3d5'3(t)/b5,5 . The cross-hatched region
in Figure 4 corresponds to the actual stabilizing amplitudes and frequencies of the cycles d5 3(t).
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0.0 0.1 0.2 0.3

Frequency, Cycles/day

Figure 4. Cyclic Control in the Oyster Reef Ecosystem. The Range of the Parameters of the

Stabilizing Oscillations of the Net Input to the Deposit Feeers 5 and of the Connection

to the Microbiota 3.

While our choice of Q was largely arbitrary, we find the data in Figure 4 interesting. They show,

for example, that a cyclic net input to the Deposit Feeders (which in turn allows them to cycle their feeding

on the microbiota) can stabilize this ecosystem (given the above 0). With a cycle frequency of once in

22

seven days, the stabilizing amplitude would range from about 1.1 to 1.7 kcals/m -day, encompassing the
average value of the flow from 3 to 5 of 1.2 kcals/m2--day (see Figure 3). It seems possible that such a

cyclic flow could occur. No data on the variation of flows in chis oyster reef ecosystem were given

(Dame, 1976. 1979; Dame and Patten, 1981). From Figure 4, we also see that smaller stabilizing
amplitudes are associated with lower frequencies. This application to the oyster reef system is expected to

convey a biological possibility of ecosystem stabilization by already existing or intentionally introduced
oscillations.

VI. CONCLUSION
The material presented above demonstrates that cyclic control is a biologically feasible stabilizing

mechanism that could either develop in the course of evolution or be introduced by an ecosystem manager.
The impotat point about cyclic control is that stabilization can be provided without any

information exchange. Therefore, the components that can establish a balanced cyclic exchange of

materials or energy with the external environment and/or with other compoents might bing stability to the

whole system without the cost of building and maintaining addito information links. Thus, since cycles
often occur in ecosystems naturally or can be introduced intentionally, cyclic contl theory constitutes a

viable tool for the ecosystem analysis and management.

maeil or enrg with th exera enirnmn and/o wit othermmmmm copnet migh brn stbiit tom,- the
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SELF CONTROLLED GROWTH POLICY

FOR A FOOD CHAIN SYSTEM

George Bojadziev
Department of Mathematics and Statistics

Simon Fraser University
Burnaby, B.C. V5A 1S6

Canada

Abstract. A behavioural policy of controlled growth for a food chain

model of length 2n is considered. The highest trophic level popula-

tion controls its own growth in order to restrain the growth of the o-

ther 2n-1 populations in the system so as to avoid undesirable out-

comes.

1. INTRODUCTION

The present research concerning control policies for biological systems

in popu]ation dynaf.-_cs mainly deals with human control added to models

of interacting populations. Various pest management programs provide

typical examples of this kind of external control [1,2]. However in re-

ality there are also situations in which one or more populations partic-

ipatirg in the system are the controllers. Such systems change behav-

iour abruptly in response to changes of the size of the interacting pop-

ulations, climatic conditions, diseases, etc. We call this type of con-

trol internal. The classical models in population dynamics usually do

not reflect either the external nor the internal control. The control-

ling populations can apply the internal control to their own members

(self control) or to all or some of the other participating populations in

the model. In this paper the attention is focused on the concept of

self control.

Generalizing a previous paper (Bojadziev and Skowronski [31) here we

study a food chain system of size 2n involving a controlling factor

u(t) which adjusts the number of the highest trophic level population

so that a reasonable size of all populations is maintained. Making use

of a methodology developed by Leitmann and Skowronski [4) (see also

Blaquiere, Gerard, and Leitmann 151) for dynamical systems, we derive

conditions under which the designed control policy results in avoidance
2nof a prescribed region in R so that undesirable outcomes are avoided.

2. THE FOOD CHAIN MODEL

Consider the food chain model with control
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'(t) = f (TC(t), u(tl)11

where t E R+ is the time variable, ;(t) (xl,...x 2n) is the popu-

lation vector, u(t) is the control, and the components of the vector

function f(x,u) - (f' ..... f 2n)T  are given by

fl(x'u) x (a - x

f 2k (xu) x X2k (_ a2k + aB x2___1 e2k x >~2k Y2k k- Y- 2k

(2)

a 2k -2k+ 1
2k+l (xu) = x 2kl -a 2k+l +Y 2k+l 

2k Y2k+l X2k+2

+ '2n-1 x
fn(x ,u) = x2n - a2n +  n 2 2n- 1 )+ UX 2n

k=l,...,n-l, fi(iu) = fi(x,0), i=l,...,2n-i

For u=0 the model (1) reduces to the uncontrolled food chain model

x(t) = f(x(t),0) (3)

In (1.) xii=l,...,2n, is the size of the i-th population; ai (growth

rate coefficient), Ai (interaction coefficient), and yi (trophic weight

factor) are positive constants; y./yi expresses the gain-loss ratio

when population i interacts with population j. The control u(t) E Uto,t] -

[u(t): u(t) E U and u(t) measurable on [to ,t], 0 _< to < t < -, U c R
is a compact set to be specified later in accordance to a growth restric-

tion policy.

2The biological meaning of the control term ux2 n in the last expression

(2) which takes part in (1) is that for u > 0 the population with size

X 2n (the highest trophic level population in the food chain) is enhanced

by increasing the population density (increasing returns) and for u < 0

it dampers its own growth (diminishing returns). The 2n-th population

can be considered as a consumer or predator of a higher level in terms

of organization and brain capability in comparison to the other 2n-1

populations or resources. The self controlled growth of the consumer

(predator) will affect the growth of all populations in the food chain

system.

Each choice of control, say u(to ) co E U on some time interval start-
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ing at t = to, generates a solution or response k[t] - k(i(to), co, t)0 2n 0
of the system (1) with initial state i(t O) which geometrically

0 + 2n
is represented by an orbit 1 in the phase space R n . If cQ - 0

(no control, hence (1) reduces to (3)) the response k(x(t0 ), 0, t) of

(3) can exhibit large variation and may endanger the existence of an

acceptable size of some populations. In order to avoid such undesirable

outcomes, the consumer population with size X2n may opt to self con-

trol its own growth which will affect the growth of the other populations

in the food chain. This can be accomplished by selecting a suitable

control value u(t1 ) = cI E U at a point x(tI) E R2n (switching

point) on some time inverval starting at t = tl, t1 > to. The control

value u(t1 ) = c1 will generate a response k(i(t1 ), c1, t) along a

new orbit tip 1 0 n zl = x(ti).

Using a Liapunov function for the uncontrolled model (3) we define for

the response of (1) an avoidance region A, a security zone S which

safeguards the response of entering A, and design a control policy for

avoidance.

3. THE LIAPUNOV FUNCTION

The coordinates of the nontrivial equilibrium E 0(0) X-0 0(X0... ,X0 T

2n 1 2
E R , of (1) are

0 alyl 0 a2ny2n
2n-1

1 - 2n-l

x0

0 2k 2k 2k+(x2kl = 2k kl k=l,. .. ,n-2 , (4)
2k-1 a2k-l

+ x0

x0 = 2k+ly2k+l + 2k 2k
2k+2 -2k+l

0 2nWe require that E ( Int R; , the interior of the closed positive cone,

so that E°  has biological meaning. Since X2n-l > 0, it follows from

(4) that x 0 0, k-l,... ,n-l. Also from (4) we-see that x0 > 0.0
However, in order to secure that Xk > 0, k-2,...,n-l, we assume that
0
2k •2k+l Y2k+l 2k

The model (3) has the Volterra function (Huang and Morowitz [6])

) =l2n xi

V (i -Y , 0 ", x1 (5
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2n

continuous on Int R , which is actually a Liapunov function with the

following properties.

(i) The minimum of V(i) is attained at the equilibrium E0 (i0 ) given

by (4); minV(x ) = 0;

(ii) V(x) is monotone increasing about E0  (has the nesting property);

dV(i) 2 aV
(iii) ll = f (x,0) = 0 (6)i=l i

where fi are given by (2). From here follows that the equilibrium

E0 (i0) is stable.

The model (3) has a first integral

V(x) = h, h - const > 0 , (7)

which represents a family of level surfaces Vh  in R . The orthog-

onal projection of Vh onto R2n  generates 2n dimensional hypersur-

faces Hh in R2n which are closed, do not intersect, contain inside

the equilibrium E0, and accommodate orbits of (1). Further, if h < h2
the hypersurface H is inside the hypersurface Hh2.

4. AVOIDANCE CONTROL

Here, marking use of a Liapunov design technique (4], we introduce def-

initions and prove a theorem concerning the food chain model (1).

=T 2n
Definition I (Avoidance set A). Given c = (e, 2n) f Int R

and the Liapunov function V(x) by (5),

A A {x E R2n: V(x) - V(Z) h h , (8)

where e. (avoidance parameters), i=l,...,2n, are small as desired for

a particular study. The boundary of A is

aA - Hh R 2n: V(x) - h (9)
C

Definition 2 (Security zone S). Given - (6l,.., 2n)T E Int R
2n

6i > ci' and V(x) by (5),

S A R2 n :  ) V(x) V(3) - h5 } - A , (10)

6i,i-l,...,2n, are security parameters. The boundary of S is given by

aS - Hh {x ( R : V(i) -h }  (11)

From the nesting property of V(R) it follows that h6 - h., hence in
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2nthe (9) encloses the hypersurface (11).
R+ tehypersurface(9

Definition 3 The set A defined by (8) is avoidable if there is a set

S defined by (10) and a control u E U such that for all xS(t s) E S,

the response k(x (ts),u(ts),t) of (1) cannot enter A, i.e.

k(i 5 (ts), U(ts), t) n A = V t . (12)

Now we establish sufficient conditions for the avoidance of A.

Theorem The food chain model (1) is controllable for avoidance of A

if there is a control u(t) E U and a Liapunov function V(x) defined

by (5) so that

2n W
dV(;) i') 0 (13)

where fi(x,u) are given by (2).

Proof. Assume that A is not avoidable, i.e. (12) is violated. Hence

for some xS(t s ) E S, the response k(xS(t S), U(ts),t) enters A, t > t s

-a -st )I E AThen there is a ta > ts  for which xa(t a) = k(x S(t ),u(t s ),t) a A.

From the nesting property of V(x) it follows that V(x s (t s )) < v(x (ta)) ,

meaning that the function V(x) is increasing. This contradicts (13)

which states that V(x) is non-increasing along every response of (1).

5. THE CONTROL POLICY

To design a policy for avoidance the region A by the response of (i)

we use the theorem in the previous section. substituting fi(x,u) from

(2) into (13) with (5) gives

dV() 2n ( ,) V 0il fi (i ' 0 ) + 5x2 n UX 2n -_ 0.

According to (6) the summation term above is zero; the second term gives0 1 _ 1 )Xn  0
Y2n2n(-'- XF2ux- 2nx 2n

which can be written as

u 1 0(14)

X2n 2n

S The inequality (14) establishes a relationship between the control u
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and the controlling population X2n* It requires that

u S 0 V x > X 0

0 (15)
u a 0 V X2n < X2n

According to (15) we specify that

u(t) E U = [-r,r] c R, r=const. (16)

On the' basis of (15) we formulate the following behavioural policy.

Avoidance controZ poZicy: If the response kit] = k(x(to),u(to ),t) of

the food chain model (1) with initial state x(t ) and fixed control

u(t0 ) E U, U specified by (16), enters the security zone S given by

(10), in order to prevent kit] of entering into A defined by (8), a

new control value u(t s ) should be selected from U at a switching

point x(t s ) E S with corresponding response k(x(ts),U(ts),t), ts > t o •

if x 0 the new control value u(t ) should be negative and iff 2n > x2n,
0X2n ' X2n' it should be positive.

Note 1. The control u=0 satisfies (15) but then the response will be

accommodated on a hypersurface Hh enclosed in the security zone S,

Hh, < Hhs < Hh , which may not be satisfactory since large population
Cfluctuations occur.

0Note 2. The particular situation x2n = X2n at x(t s ) E S satisfies

(14), hence any value u E U can be selected temporarily until the re-
0sponse moves to a neighbouring point in S for which X2n * X2n. Then

the avoidance control policy can be applied.
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QUASILINEAR ZATIOI IN BIOLOGICAL SYSTEMS MODELING

S. S. Lee* and K. M. Wang**

The estimation of parameters in differential equations is a basic problem in

biological systems modeling. Rowever, these parameters cannot be estimated easily

when the equations are too complicated and cannot be solved in closed form.

Although Dr. bellaan has proposed to use quasilinearization to solve this problem,

more numerical experiments are needed to show the effectiveness of this approach.

In this paper, quasilinearization is used to estimate the parameters in various

biological models. It is shown that this approach is quite effective and converges

very fast in most situations. Thus, the quadratic convergence property is

preserved.

QUASILINZARIZATION AND THE NONLINEAR ESTIMATION OF PARAE MERS

The algorithm of quasilinearization in estimation is well documented [1-3], only

the essential equations will be discussed in the following. Consider a system

represented by the following system of nonlinear differential equations

dx
R f(x, a, t) (1)

where x and f are H-dimensional vectors with components x,, x2 ..... z and f1 0 f2 0

""° fN' respectively and a represents the L dimensional unknown parameters. Let us

assume that the L parameters cannot be measured directly and only N1 of the N

variables can be measured. These measured values are

xj (xp) - ( )  S - 1,2,...,m, j - 1,2,.. .N (2)

with tm 0 tf. .The problem is to estimate the parameters a1 (t), I a 1,2,...,L and

the initial conditions

xi(0) W ci, i a 1,2,...,N (3)

from the given or measured data, Equation (2). It should be emphasized that the

measured values b5 (M) do contain noise. Let us establish the vector equation

d 0  (4)
dt

C orresponding author, Z. S. Lee, Dept. of Ind. Sagg., Kawas State Utiversity,
Nahattan, KS 66506

** Dept. of Ind. logg., Toinghua University, Taiwan, China
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The problem can be stated as find the values of the vectors c and a so that the

least square expression

J -i m [xjts) - b"s' 5i-1 Sol

is minimized subject to the constraints of Equations (1) and (4). This is a

multipoint boundary value problem with minimization. It can be solved by the use of

quasilinearization . Equations (1) and (4) can be combined to obtain

d g(y,t) (6)
dt

where y and g are N + L dimensional vectors. Equation (6) can be linearized by

the use of Taylor Series with second and higher order terms omitted. The resulting

vector equation is
dy k+1  

7d = g(Yk' t) + J(yk)(Yk+1 - yk)  (7)

where Yk is assumed known and is obtained from the previous iteration and Y,+, is

the unknown function. The expression J(yk ) is the Jacobian matrix. Because of the

fast convergence rate, Equation (1) with unknown initial conditions can be solved

quickly by the use of the superposition principle. In general, less than ten

iterations are needed to obtain a very high accuracy.

W "IrUTFZCZII LZMNZT STSTE

Consider the following simple model of the artificial kidney system (4, 10].
dC1

V1 - - G - K(C1 - C2 ) (8)

dC2

V2 dC K(C - C2 ) Ck C2  Cd 2  (9)

where 0 - urea (or creatinine) production rate

k a mass transfer parameter

Ck a clearance rate of patient kidney

Cd a dialyzer clearance

C I urea concentration in intracellular cell

C2 a urea concentration in extracellular cell

V* volume of intracellular cell

V2 a volume ft extracellular cell

• " " ' 7'"' L'
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In actual experinental situations, the constants or parameters cannot be
mesured. only C2 can be measured at the various values of t. Our problem is to

estimate k and C1 (0) for Equations (8) and (9) from the experimental data

C2  (t ) I C2 s' a a 1,2.....m (10)

Notice that the initial condition of C2 (tuO) can be measured, but CI(tuO) must be

estimated. Thus, an equation like Equation (4) can be established for the parameter

k.

This problem is solved by quasilinearization with the following experimental

data (4)

C2(on) (ts1) a 2.070,2 s

C2 ( WM) (t5i2) - 1.818

C2 (XV) (t8=3) - 1.674

and the values of

0 a 0.031, Cd I 3.6, Ck 0 0, At a 0.01,

C2 (ti0) a 2.538, tf U 3

Four different experiments were carried out with four different sets of initial

approximations. The convergence rates are summarized in Table 1. Notice that five

digits accuracy are obtained in 6 to 10 iterations. The Runge-Kutta intwgration

technique was used.

GLUCOSE AND INSULIN KINETICS ODLING

Consider the folloving simple one compartment model of glucose and insulin in

plasma E5, 6]
uu-z" +zg +  (11)

I I3G 12

do. - I a - a6 + 15  (12)

where 0 a plama glucose concentration

3 a plasma III concentration

I* a parameters or constants.

The problem is to estimate 111 13, 14 # 1 6, (twO) and G(taO) from anperimental data

for I and 0 at various values of t. Again, equations like equation (4) can be

established for the four parameters.

The four paraeter values and the two initial conditions are estimated by

quasilisarisation. The numerical values used are

/|
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12 - -1.56, 15 - 6.94, tf U 180 minutes

At m 0.2.

The experimental data used are listed in Table 2. Several different sets of initial

approximations are used. One of the typical results are listed in Table 3. The

initial approximations are obtained by integrating the equations with the values for

the Zeroth iteration as the initial conditions. The Runge-Kutta technique is again

used. Notice that even with the very extreme initially assumed initial conditions

of zero, only nine iterations are needed to obtain a five digits accuracy.

CARDIOVASCULAR INDICATOR DILUTION MODELING

Consider the following four cell cardiovascular indicator dilution model [7, 8].

dC1
F 31CI + B2C4

dC2
- B(C1 -C 2 )

dC3
T - 3(C2 - C3) (13)

dC4
-r 1 3(C 3 - C4 )

where a1 w F/V, B2 - 8 /V, with

F = volumetric flow rate

F a recycle volumetric flow rateS

V w volume of the well-mixed cells

The boundary conditions for Equation (13) are

Cl(twO) a 0 B ,  C2 (twO) 0 0

C3(tO) a 0 C4 (twO) a 0 (14)

where N is the mass of the injection and the Ci's are the concentrations of the

corresponding cells.

In actual experiments, only the C's can be measured, the parameters 31 and B2

cannot be measured directly and must be estimated indirectly from experimental data.

The values of al. a2 and 33 are estimated by quasilinearization with the

numerical data listed in Table 4. The lunge-Kutta numerical integration formula

with at a 0.2 is used. Various different initial approximations for l' a2 and 3

were used. The convergence rate is again very fast. Three typical convergence

rsults are listed in Table 5 for three different sets of initial approximations.

• ,- .. ....... ,.o." •-

I. , ,
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METUTRBTE PANIcOKIUNTICS MODZLING

Consider the following pharmacokinetic model used to predict the detailed

distribution and excretion of ethotrexate in mammalian species over a wide range of

doses (9]. The material balance equations representing the various anatomical

compartments are

dC C CKPlasma: M + 0L L + Q K C1  QI Q 0 Cp (15)
VpdVt L KRK MN

dC CK
muscle: ~ ~~% C-)(16)

Kidney: VK (C - k C (17)

Lier L CL CG CL

Liver: V L " (C-s) Q (!G-- !L-) - r (18)

dCG 4L kG L i

Gut Tissue: VG - G (C - G) + 1/4 1 (-jj + b Ci) (19)
- Gd G iml

dCL 4 dC.
Gut Lumen: -L- 1/4 -- (20)

dt i=1 dt

VGL dC1  kG Cl4 W " 3 kF VL 1l /(Ko - cG + C~ 1 1

VGL dCi  KG C +

4 dt kF VGL (Ci-i - C1) - K/4( i b C.) (22)

i 2,3,4
where the value of r in Equation (18) can be represented by

r L L (23)

which is the secretion rate of methotrexate out of the liver cells into the bile

ducts. Using the three compartments model, we have

T !a = r -r 1  (24)

dr2T d- -r r 2  (25)

dr3
T -r " r2 r 3  (26)

where C is the drug concentration in the various anatomical compartments, r is the

drug transport rate in the bile, V is the volume of the various compartments, b is

the rate constant for nonsaturable gut absorption, Q is the plasma flow rate, R is
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the tissue plasma equilibrium ratio for linear binding and Kk is kidney clearance

and is equal to 1.1 m/n for rat. The other numerical values used for rat are:

Vp a 9m1 Qk * S a//min

V1 a 100 al Q, a 6.5 /im

Vk a 1.9 m QG - 5.3 ai/amn

% a 8.3 al J 0 0.15

V0 Ga 11 ml1 k  3.0

VOal 11 81 PL 3.0

Q- a 3 /in

The body weight for rat is 200 g. Notice that three compartments were assumed for

bile secretion and 4 compartments were assumed for gut lumen. Some of the

parameters such as RG, k0 and K0 are not measurable. These parameters for

methotrexate in rat will be estimated by quasilinearization using experimental data

obtained by Bischoff et al. [9]. These experimental data as a function of time for

the drug concentrations in the various compartments are listed in Table 6 and are

obtained from the figures of reference [91.

It should be emphasized that the parameters R kG and KG cannot be estimated

easily. This is because that the systems of differential equations cannot be solved

in closed form. thus, quasilinearization forms an ideal and powerful approach.

In addition to the 13 differential equations represented by Equations (15) -

(26), 3 additional differential equations in the form of Equation (4) can be

formulated for the 3 unknown parameters. Thus, there are a total of 16 differential

equations. The initial conditions for the 13 differential equations are all equal

to zero except C p(t) which is

C p(t) a 1200/9 (27)

The 16 different equations can be linearized by using Equation (7). The unknown

parameters can then be obtained by using Equation (5) and superpositoin principle.

The homogeneous and particular solutions cau be obtained by numerically integrating

the linearized equations. In the present work, the modified Adam-Moulton

integration scheme is used with step size as

at a 0.01 minute for 0 9 t ' 30

at a 0.1 minute for 30 r t r 240.

The convergence rates for the three parameters are listed in Table 7. Notice the

fast convergence rates. Only 5 iterations are needed to obtain 4 digits accuracy.

v-7 "
/ .. ++ +
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DISCUSSZO

Since the results of the previous iteration for all t must be stored in the

computer, the storage requirement can be quite large. For example, the

pharmacokinotic model needs (30/0.01 + 210/0.1 + 1) 16 - 81616 storage spaces. In

order to reduce this storage requirement, we can store only the initial conditions

of the previous iteration. The complete profile for all t of the previous iteration

can be obtained by integrating the equations when we calculate the current

iterations. The storage requirements can thus be reduced tremendously. For the

pharmacokinetic problem, the storage requirement is reduced from 81616 to 16.
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Table 1 Convergence Rates of the Artificial Kidney Model

Iteration Cf c1(0) C1 (0) K g C1 () I K C 1 (0) K
o 2.538 1 5. 1 2.538 12. 1 2.538 1 19.2 1 2.538 1 25.
1 1 2.9513 16.1718 1 2.7879 1 S.2057 3.1695 1-35.947 1 2.4352 1 18.619
2 1 2.767S 1 7.5204 1 2.8314 7.4735 1 2.9149 1- 4.79061 3.1274 1-34.37
3 1 2.7997 1 7.5318 1 2.8023 1 7.4970 I 2.9895 1 6.96271 2.7892 1- 7.5045
4 1 2.8000 I 7.5279 1 2.7994 1 7.5351 1 2.7776 1 7.5923 1 2.6165 I 5.6438
5 1 2.7999 1 7.5288 1 2.8000 1 7.5272 1 2.7991 1 7.5369 1 2.8398 1 7.8420
6 1 2.7999 1 7.5286 1 2.7999 1 7.5289 1 2.8000 1 7.S270 1 2.8016 I 7.5273
7 1 2.7999 1 7.5286 1 2.7999 1 7.5285 1 2.7999 1 7.5290 1 2.7999 I 7.5292
a I 1 2.7999 1 7.5286 1 2.7999 1 7.5285 1 2.7999 1 7.5285
9 1 1 2.7999 1 7.5286 1 2.7999 1 7.5286 1 2.7999 I 7.5286

10 1 1 I I I 2.799 I 7.5286 I 2.7999 I 7,5286

Table 2 Experimental Data for Glucose and Insulin Kinetics Model

t 0 (exp)(ts) G(exP)lts)
0 177 581
30 155 182
60 40 95
90 26 87
120 20 97
150 24 106
180 28 10

Table 3 Convergence Rates of Glucose and Insulin Kinetics Model

Iteration I1 12 14 16 B(O) G(O)

0 0. 0. 0. 0. 177. 581.
1 0.051076 0.025872 0.048153 0.22224 181.31 576.58
2 0.038405 0.017182 0.020605 0.052089 177.16 580.37
3 0.045445 0.021543 0.028009 0.043957 177.56 580.06
4 0.046151 0.022149 0.028790 0.043174 177.27 580.35
5 0.046411 0.022281 0.028581 0.043500 177.24 580.38
6 0.046408 0.022286 0.028565 0.043510 177.23 580.39
7 0.046423 0.022293 0.028555 0.043523 171.23 580.39
8 0.046421 0.022292 0.028555 0.043523
9 0.046422 0.022293 0.028555 0.043524

10 0.046422 0.022293 0.028555 0.043524

d i s I °IIil i
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Table 4 Kuerimental Data for Cardiovascular Model

t CI(t ) C2 (t ) C3 (ts) C4 (t8)

0.0 0.9997 0.0 0.0 0.0
2.0 0.2289 0.3314 0.2609 0.1387
4.0 0.1327 0.1887 0.2391 0.2366
6.0 0.1141 0.1347 0.1682 0.2009
8.0 0.0909 0.1066 0.1269 0.1528

10.0 0.0702 0.0834 0.0988 0.1175
12.0 0.0543 0.0646 0.0768 0.0912
14.0 0.0421 0.0501 0.0595 '0.0707
16.0 0.0327 0.0388 0.0462 0.0549
18.0 0.0253 0.0301 0.0358 0.0425
20.0 0.0196 0.0234 0.0278 0,03a9

Table 5 Convergence Rate of Cardiovascular Model

Iter- 81 52 33 I i1 B2 33 I 51 52 93
ation . I I

0 0.1 0.01 0.1 1 0.6 0.2 0.8 1 2. 1.5 3
1 0.4379 0.0725 0.4969 1 0.7663 0.3755 0.9903 1 1.7167 1.2619 1.0049
2 0.4896 0.1772 0.8993 1 0.7966 0.3970 0.9992 i 0.6846 0.2886 0.9983
3 0.6522 0.2679 0.9658 1 0.8013 0.4015 0.9996 1 0.8014 0.4021 0.9992
4 0.7616 0.3635 0.9952 1 0.8017 0.4018 0.9997 1 0.8017 0.4018 0.9997
5 0.7974 0.3979 0.9993 1 0.8017 0.4018 0.9997 1 0.8017 0.4018 0.9997
6 0.8014 0.4015 0.9997 1
7 0.8017 0.4018 0.9997 1 1
8 0.8017 0.4018 0.9997 I

Table 6 Experimental Data for Pharuacokinetics Modeling

t 2 C p(ts )  C Mits )  CO~S )  CLl(ts ) C OL(t a

is 7.7 1.5 20. 20.9 23.98
30 4.0 0.75 10.8 11.5 47.00
60 1.5 0.25 4.0 4.97 59.00
90 1.14 0.16 2.8 3.60 45.50
120 0.80 0.13 2.2 2.80 36.00
180 0.45 0.072 1.1 1.45 18.25
240 0.27 0,043 0.67 0.86 8.90

Table 7 Convergence Rates of Pharacokinetics Model

Iteration R k0

0 1. 20. 200.
1 1.108 22.64 237.2
2 1.112 21.61 224.6

3 1.112 21.97 229.3
4 1.112 21.85 227.7
5 1.112 21.89 228.3
6 1.112 21.89 228.3

//



A THREE-MIRROR PROBLEM ON DYNAMIC PROGRAMMING

Seiichi Iwamoto
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1. INTRODUCTION

The essence of dynamic programming states that a simultaneous

optimization of real-valued two-variable functions is assured by the

two-stage optimization under both separability and monotonicity [15,

16]. We call these two properties the recusiveness with monotoni-

city - dynamic programming structure - [8, 11]. This struc-

ture yields what we call dynamic programmable function [ii].

In this paper we focus our attention on both dynamic program-

ming structure and quasililearization for a class of objective fun-

ctions. Given a differentiable strictly increasing convex function

f R1---- R1, we approximate f(x) by its linear approximation f(x;h)

11 1 1R xR -P R , which is strictly increasing in h for x e R . Thus,

f(x) is a quasilinearization of f(x;h). The N-times composition of

f(xn;.) generates a dynamic programmable function F(x;h) : RxR -

R . Similarly, inverse function f- (y), reverse function f_1 (x;k)

which is the inverse function of f(x;h) with respect to h for fixed

x, and conjugate function f (y) also generate dynamic programmable

functions F- (y;k), F 1 (x;k), and F*(y;h) : RNxR
I ---+ R, respect-

tively. Thus, the function f yields four - main, inverse, reverse,

and conjugate - optimization problems on RN. These problems are

solved through dynamic programming approach. Some relations between

them are established. Finally we illustrate two interesting examples

from Bllman [i].
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i

2. PROBL IS

First of all let us consider the following famous problem [1,

p. 102; 8, p.101; 10, p.183:

X1 X+X2 Xl+" "*"+XN
Max e (1- x1 ) + e (1 - x 2 )+ ... + e (1- x N )

x l+..+ .+

+ e Nxh

s.t. - < x < 1 S n 9 N
n

where h is a real constant. We remark that the N-times iteration of

f(x;h) = eX (1 - x + h)

yields the objective function

f(xl ;f(x 2;...f(xN;h) ... )

= e 1 (1 - x 1 ) + e
1 Ie -(1- x 2 ) + e x2...

( xN) + e ,xh]...f

(See also [11, p.278; 12, p.285]).

Second we consider the following maximization problem:

Max 11-2x 1 2)exp(x1 
2 ) + 2x (1-2x 2 2 )exp(x1 2+X 22 ) + 4xX2

x(1-2x 3
2 )exp(x1 2+x

2 2X 3
2 ) + 8XX2x3 (1-2x3

2)

xexp(x 1 2 +x2 2 +x32 )h

s.t. x1 ZO, x2 0, x3 0

where h a 0. The three-times iteration of

/
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f(x;h) ( (1 -- 2x
2 + 2xh)exp(x

2 1

generates

f(x 1 ;f(x 2 ;f(x 3 ;h)))

= (1-2x12)exp(x 1
2 ) + 2x1expx 1 2 )[(1-2x 2 2)exp(x 2

2) + 2x2exp(x 2 2)x

L(1-2x 3
2 )exp(x 3

2 ) + 2x3exp(x 3
2 )h]].

These two functions are called recursive functions on R N(reap.

R 3) with strict increa8ingness (10, 11]). A function F : RNKR I

- R1 is called dynamic programmable function on RN if it is expressed

as follows

F(,X 12  1. N;h)

f f1 (XlI;f 2(l x'2;'''.;fN l 'x2p'''''X N;h)''"..

where fn: RnxR 1 R1 and f n(XX 2 ...,Xn; ": R - R is non-

decreasing for 1 S n . N, (x 1 , x 2 , . . . x n ) e Rn. Therefore, any re-

cursive function with strict increasingness is a dynamic programmable

function. In the following we are mainly concerned with a class of

recusive functions on X(C R N ) with strict increasingness.

3. MAIN RESJLT

First, we prepare the following fundamental lemma. Let X and

Y be two nonempty sets. For each x e X let Y(x) be a nonempty

subset of Y. That is, Y(-) : X - 2Y  is a point-to-set-valued

mapping, where 2Y denotes the set of all nonempty subsets of Y.

Let

G (Y) a {(x,y)I y C Y(x), X £ X) C XXY
r
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be the graph of the mapping Y(.). In the following it will be clear

from the context whether a notation Y is considered the set or the

mapping.

LEMMA 1 (Maximax Theorem [11; p.268]) Let f : XXR - R be

a function such that f(x;.) : Ri - R is nondecreasing for x p

X. Let g : G (Y) R IR be a function. If Max f(x; Max g(x,y))
xeX yEY(x)

exists, then Max f(x; g(x,y)) exists and both are equal:
(x,y)EGr (Y)

Max f(x; Max g(x,y)) a Max f(x; g(x,y)).
xCX yEY(x) (x,y)CG r (Y)

REMARK This equality remains valid even if the operator Max

is replaced by the operator min under the same condition as stated

above. Furthermore, as a special case we have

Max f(x; Max g(y)) = Max f(x; g(y)).
-=<x<W -00<y<aO -W<xty<w

In general we have for

any differentiable convex

function f : R
1 1 R i  -

f(h) - Max f(x;h) (1)

where

f(x;h) a F(x) + f'(x)h

F(x) a f(x) - xf(x).

Thus, f(x;h) is the Zinear approximation of f(x) at h:
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f(x;h) • f(x) + (h - x)f (x). (3)

The expression (1) is called a quasi zinsariaation of f() (1i; p.135

13; 141).

Furthermore, from Lemma 1, we obtain under f'(x) i 0, -- < x

f(f(h)) - Max f(x1 ; Max f(x2 ; h))
--0<X1 <0 -W<X2 <0

(4)
= Max f(x1 ; f(x2 ;h)).
-m<x1 ,x2<

that is

f(f(h)) Max [F(x.) + f'(x1 )(Max [F(x 2) + f'(x 2 )h])j
--0<x < -<X 2 <W

(5)
Max [F(x 1 ) + f'(xl)F(x2) + f'(x 1 )f,(x 2 )h ] .
-w<x1 ,x2<m

DEFINITION Let f : R -i R1 be a differentiable increas-

ing (resp. strictly increasing) convex function. Then we define F

:RNxR1  .R by

F(x;h) a f(xl; f(x2 ; ... ; f(xN;h)...))

a F(x 1) + f'(xI)F(x 2 ) +... f'(xN-)

xF(xN) + f'(xl)f,(x 2 )...f'(xX)h (6)

where f(x;h). and F(x) are defined in (2), and x (xlx

xN ). The function F : RNxR1  R1  is the reoursive function with

,noreasingness (reep. striot inoeasingnese) generated by f or simply

/ +
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dynamic programmabZe function generated by f.

In the following, it will be clear from the context a function

f (resp. F) is considered f(x) or f(x;h) (resp. F(x) or

F(x;h)).

REMARK The equalities (1) and (4) (Qr (5)) remain valid

if we replace 'Max'-and 'convex' with 'min' and 'concave', respec-

tively. Similarly, a differentiable increasing (resp. strictly

increasing) concave function g : R 1 R generates the recursive

function G : RNxR R1 with increasingnee8 (reap. strict

increaaingnesa), which is also called dynamic programmabLe function

generated by g:

G(y;k) = g(y1 ; g(y 2 ; ... ; g(YN ; k ) '. ' )

= G(yl) + g'(yl)G(y2 ) + ... + (yl)g'(y2) .... g'(yN_1

xG (y N) + g'(Y1)g'(y2)...g'(YN )k (7)

where

y (Y ,Y2,...,yN),

g(y;k) a g(y) + (k - y)g'(y)

(8)

z G(y) + g(y)k,

G(y) , g(y) - yg'(y).

Therefore we have the following main result:

THEOREM 1. (U) Let f: R1  R be a differentiable increas-

ing convex function. Then for h c R

........... ...... ... i
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N
f (h) - Max, F(x;h) (9)

and x - f (h), x2 - f (h), ..., x a f(h), XN h attains

L the maximum, here and in the following fn (h) is the n-times com-

position of f(x):.

nf (x) - f(f(...f(x)... )

(ii) Let g : RI - R be a differentiable increasing con-

cave function. Then for k e R1

gN(k) = min G(y;k) (10)

yeR

and - gN-2 (k) = k attainsyn Yl •  () 2 9 (k), Y-- g(k), YN

the minimum.

4. INVERSION, REVERSION AND CONJUGATION

First we consider the inverse function f- to a continuous

strictly increasing function f. We remark that f : R1 -- PR is

an onto differentiable strictly increasing convex function iff f 1

R - RI is the onto differentiable strictly increasing concave

function. Then we have

COROLLARY (i) Let f : R1 --- RI be an onto differentiable

strictly increasing convex function. Then for k R 1

f'Nk W minN P'I(ylk) (11)

ycR

and -" (k), 2 f-N+2 (k), .... N-- (k), yX a k att-

ains the minimum, where '-1 (ygk) is the dynamic programmable fun-

- i-
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ction generated by f and f-n(y) is the n-time composition of

f-:

f -ny) - f- (f- (.f-l (y).,..

(ii) Let g : 1  R be an onto differentiable strictly

increasing concave function. Then for h e R1

g N(h) Max G- 1 (x;h) (12)
x£R

* -N+1 (h) x -N+2 * -I * xat
and x I  g (h), x2 = g (h), XN- 1 . g (h), xN = h att-

ains the maximum, where G (x;h) is the dynamic programmable fun-

ction generated by g

Here we remark that

F"1 (y;k) F- 1 (yl) + f-1 .(Yl)F-1 (y2 ) +. + f-I-(yl)f- (y2 )

x... f- (YN)F-1 (YN) + f-1 (yl)f-% (Y2 )...f-1-(YN)k

(13)

where

F-1(y) u f-1 (y) - yf-1%(y) (14)

-11
and f-l is the derivative of the inverse function f-1. Similarly,

G -I (x;h) is defined and omitted.

Second we consider the reversion of the linear approximation

f(x;h) of f(x) - not the reversion of f(x) itself - as

follows. For any onto differentiable strictly increasing convex

function f : R R1, its linear approximation f RlxR 1  1

./-7

* .- / '
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defined by (2) or (3) in continuous strictly increasing and linear

in h for x e R. Therefore, f(x;-) :R' --4vR' is invertible for

x e R. Its inverse funiction f- (x;.) R - R becomes

(x;k) * (x) - -
_1  (X)

where (5

F - f (x)

(x) =x(16) f (x) '1Tz4

We call f1  f- (x;k)

the reverae function of

f af(x;h). As we noted

in (1), we have

f(h) aMax f(x;h)

Max LF(x) + f-(x)h] (17)

*Max tf(x) + (h - x)f'(x)]

* =XG

and x ah attains the maximum. This fact is equivalently trans-

formed to

f_ (k) = min f1 Cx~k)

a min (F- 1 (x) + (18)

772



306

"mrin X + k~x

and x = f- 1 (k) attains the minimum (see Fig.2). This fact ref-

lects also the main idear of Newton method from a viewpoint of opti-

mization. Therefore, we have the following reversed form of (9):

THEOREM 2. (U) Let f : R-b R1  be an onto differentiable

strictly increasing convex function. Then for k e RI

-Nf-(k) minN F 1(x;k) (19)
xR

and l = f-N (k), = f-N+1 (k), x N f 2 (k), XN f 1 (k)

attains the minimum, where F_1 : RNxR' - R1 is the N-times com-

position of f-1 (x;k):

F_1 (x;k) = f-1 (xI; f-1 (x2 ; "''; f-1(xN;k) ... ))  (20)

(ii) Let g : R1 ---.R1  be an onto differentiable strictly

increasing concave function. Then for h E R

gN (h) = MaxN G_1 (y;h) (21)
yER

and y g N(h), y 2  g "  (h)_,.., .ag- (h) y  g'(h)

attains the maximum, where G : RNxR1 - R1 is the N-times com-

position of g_1 
(y,: ):

G'1(y;h) ' g_ 1 (yl; g_ 1 (y2 ; ...; g.1 (xN;h)...)). (22)

Here we remark that

I/
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F 1 x2 ) F 1 (xN)

F 1 x;k) F 1 1x1  f -(X I . F I-xlIx2l...f-XN

+ k
f (x)f°ix 2 )° .flxN) (23)

where F_1 (x) is defined in (16). Similarly, G 1 (y;h) is de-

fined from G_ l(Yn) , g°(yn) and h. We call F_1 (x;k), G_1 (y;h)

the dynamic programmable function generated by reverse function

f-(x;k), g-I(y;h)), respectively.

We have the following relation between F - (y;k) and F_1

(x;h):

THEOREM 3. (i) Let f : R 1 R 1 be an onto differentiable

strictly increasing convex function. Then we have by the monotone

transformation y = f(x)

f-1(y;k) = f-1 (x;k). (24)

Furthemore, the monotone transfomation yn a f(xn) 1 9 n S N yields

(y;k) = F 1 (x;k). (25)

(ii) Let g : R + R be an onto differentiable strictly

increasing concave function. Then we have by the monotone trans-

formation x - g(y)

- (x;h) = g 1 (y;h). (26)

Furthermore, the monotone transformation xn U g(y i 1 n I N

yields

/i



308

G-1 (x.h) 2 G 1 (Y;h). (27)

Proof. It is straightforward.

Finally we consider conjugations * and . For any convex

function f -R R we define its conjugate function f R

R1

f (y) = Sup [xy - f(x)]. (28)
-11<X<W

On the other hand, for any concave function g : RI - RI , we

denote its con jugate function R -- RI by

g(x) = inf (yx - g(y)] . (29)
-W<y<W

If both operations * and - are well defined, they are dual

in the following sense:

i-)(y) -f*(-y) y c R1 .

LEMMA 2. Let f R1 --- RI  be a twice differentiable strictly

increasing strictly convex function. Then we have for f'(--) < y

< f'(-)

(i) f*(y) , xy - f(x)

(ii) f*'(y) - x and in particular f*'(y) > 0 for f'(O)<y<f°(-)

and

(iii) f*"(y) >- j- 0

where x satisfies uniquely fr(x) * y. Therefore. f* W (0),

/,.. . . .. '. .. ,
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Y1
f(11 1- R is strictly increasing strictly convex. Thus we

have the following result for f

THEOREM 4. Let f : R --+ R be a twice differentiable

strictly increasing strictly convex function. Then we have for

f-(0) < f*n (h) < f'(-) 0 S n 6 N-1

f*N (h) =-" Max F (y;h) (30)
f° 101<y n e'"(- 1;9nSN

* (N-* N* * *

and y = f (h), 2= f  (h), ., YN-I - f (h), yN - h
*

attains the maximum, where F (y;h) is the dynamic programmable

function generated by f and f*n is the n-time composition of

f.

Similarly, for concave function g, we have the following:

LEMMA 3. Let g : R 1 - R1 be a twice differentiable st-

rictly increasing strictly concave function. Then we have for

g,(-.) < x < gI --")

(i) 9(x) yx - g(y)

(ii) ^9'(x) y and in particular ^9'(x) > 0 for g°(-)<x<g (0)

and

1(iii) (x) - < 0

where y satisfies uniquely g'(y) a x. Therefore, ( (g(-),g(0))

R1  is strictly increasing strictly concave.

THEOREM 5. Let g : R1 -. R be a twice differentiable

, .

• /
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strictly increasing strictly concave function. Then we have for

g'(-) < g n k) <g'(0) 0 9 n S N-1

9' k) = min G(x;k) (31)

and Si 9- (k) 2 -= gN-2 (k), ... , N_ = g(k), RN - k attains

the minimum, where a(x;k) is the dynamic programmable function

generated by -9 and ~nis the n-times composition of 9.

Here we remark that

F (y;h) F (yj) + f (y)F. (Y2 ) + + *4 Y~ 'y) .

(32)

where

F (Y) f f(Y) - yf*'(y)

(33)
-f(x).

Here x satisfies uniquely f'(x) - y. Similar expressions for

e(x;k) and a(x) are omitted.

5. EXAMPLES

In this section we illustrate explicit form of f(x;h), F(x;h)

F- I(y~k), f~1 (x~k), F-1 (x;k), F*(y;k) and others for a given f(x).

5.1 f~x W - ~ e - (0

In this case we have the following expressions. First we

have from (2),(6)
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f(x;h) (1 - x + h)ex - < x,h <

x1 1l 2 x1 .. *N_
F(x;h) = e 1(1- x) + e (1- x2) + +.. N-

x(1 - V + e I +xh -- < X ,h < G.

Second, for inversion, we have from (13),(14)

g(y) P f-1 (y) logy (0, w) . (-a, =) (34)

g(yrk) - f-1 (y;k) = -1 + logy + 0 < y,k <

G(y;k) -F-1(y;k) a-1 + logy, + (yi)- (-1 + logy 2 )

+ (Y" YN-I (-1 + logyN) + (Y1...yN) Ik

yn> 0, k30

where k P 0 means that k is sufficiently large that log...logk

(N-times log operation) becomes well defined. That is, in this case,

.. e

k > ee.  ((N-l)'s e).

Third, for reversion, we have from (15),(16),(20)

f-1U(x;k) - + e-xk - <x < M, k > 0

F-l(x;k) a x - 1 + e- x (x
2 -1) + ... + O-x l " ' -xN1 (1N -141)

+ e-Xl" 1 ... ..Nxk

-<X n < k 0.

.. ... . .... ..
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Moreover, the reversion of g , g(y) defined in (34) becomes

g-l(x;h) - y(i - logy) yh y > 0, - <-h

G_ 1 (x;h) = yI(I - logy1 ) + yly 2 (1 - logy2) + + yl...y N

x(1 - logyN) + y... y h Yn > 0, - < h < m.

Fourth, for conjugation, we have from (28), (29), (32), (33)

f (y) = (-1 + logy)y : (0, C) ,C J

f (y) logy > 0 on (1, w)

f*"(y) 1 I/y > 0

f (y;k) - -y + kxlogy y > 1, k > I

F (y;k) a -yl - Y2lgy1 - ""- YNOgYl...logYN-1

+ kxlogy1 ...1ogy, Yn > 1, k > e2

g(x) - I + logx : (0, 00 (-i, a)

i(x;h) - logx + x-lh 0 < x,h <

G(x;h) - loqx1 + (x1)1 logx2 +... + (x1 ...XN 1 )-1 logxN

+ (xl...xN)-h Xn > 0, h * 0

where h V 0 in this case means that

.-++e -

h > e- 1+0- e (N's a).
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Finally, for reversion of i(y;k), we have

g-1 (x;k) - -xlogx + xk x > 0, -= < k < -

G-1 (x;k) = -xIlogx1 - x1x2logx 2 - ... - x1 ... x N logxN

+ X1...XN k xn 0, < k <.

5.2 f(x) = x2 •[, ) - I, 0)

In this case we have the following result. First, we get

f(x;h) = -x2 + 2xh x,h 0

2 2 N-1

F(x;h) = -x 2 x 2 ... - 2 N1-x... XNX N

+ 2Nx1 ...x Nh xn  0, h 0.

In particular Theorem 1 for case N a 1 implies

Max [2xh - x2 ] = h2  - < h <0*

This is one of the simplest quasilinearization [1; p.134].

Second, the inversion becomes

g(y) P f-1 (y) = /Y (0, ) - (0, )

g(y;k) - f 1 (y;k) * ( y +k) y,k > 0

G(y;k) F- 1 (yk)

Y 7  (y 2 /yl) + +' . (YN/'' YN-1) A

k+ (yl ... yN 1) -n > 0, k > 0.

I
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Therefore, Corollary (ii) for case N = 1 reduces

x>0 /i*-i >

(see also [1; p.1341).

Third, for reversion, we have

f-( x;k) = k(x + 1 x,k > 0

1 1 1

F_1 (x;k) = + (x 2 /x 1) + ... + (XN /x...XNI)
1Ix 2 1 2 NN1* -

k (X XN 1 
x > 0, k > 0.+ .(x .. x)n

Finally, the conjugation yields

f (y) -=-Y [0, =) - [0, 00)
f ~ 2 12

f (y;k) - + yk y,k Z 0

* I 2 1 2 1 2
(y;k) -"y 1 - 4--7Yly 2 4- ' - N- YI 'y N-l y N

2+ ...'YNk  Yn Z 0, k Z 0

4-W : (0 , ) - (= , 0)

1 h
g(x) 1 + hi x,h > 0.

4x

Therefore we get

;(x) amin §(x;h)
o fo<x<d

itHowever if N 1 2 ,then it does not hold that



315

N (h) min m (x;h) h > 0,
0<x <W

because of g(h) < 0.
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EXISTENCE AND COMPUTATION OF SOLUTIONS FOR THE TWO

DIMENSIONAL MOMENT PROBLEM

Gybrgy Sonnevend*

Inst. fUr Angewandte Mathematik,

Universit~t WUrzburg
D-8700 WQrzburg, Am Hubland

Introduction

In this paper we deal with some problems of the theory of two
dimensional.polynomial moment problems. More precizely we give

necessary and sufficient conditions for the existence of a solution,
i.e. of a nonnegative mass distribution supported within a fixed, a
priori given subset S of R2 , which has a fiite set of moments with
prescribed values.We study the problem of characterizing all minimal
support solutions, i.e. those solutions which have a minimal number of

atoms.

The connections between the restricted (or finite),classical,
polynomial (onedimensionall moment problem (as a special case of the
moment problems of Nevanlinna-Pick type) and various other problems in
the theory of orthogonal polynomials, rational Pade approximation

(interpolation of Stieltjes functions),restriction of self adjoint
operators to Krylow-subspaces, construction of quadrature formulae,
minimal partial realizations of causal linear input-output maps, are
well known. Similar applications for the considered two dimensional

generalization motivate our study. The method we use for the solution

of these problems is operator theoretic and is based on solving an
"extension problem" for pairs of commuting, self adjoint operators.The

characterization obtained for the minimal support solutions i.e. for
the analogons of the Gaussian quadrature formulae is different from
the previous approaches, which (as far as we know) used two dimensional

orthogonal polynomials (searching for their common zeros) and poly-
nomial ideal theory, see [ii] for an extensive set of historical and

4
current references. We were inspired by the operator theoretic treat-
ment of moment problems as developped in (12], see also the method of
the paper[16].

* on leave from Dept. of Numr.Anal.,Etv8s University
H. 1088,Budapest, Muzeum k.6-8,Fe'p.
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Since the minimal support solutions are, in general non unique

in the higher dimensional case (in contrast to the onedimensional case)

moreover their set (thus the problem of 'nding at least one element of

it) is not con-vex ard for other reasons like the complexity and stab-
ility ( with respect to errors in the prescribed moments)we propose

and study here an otherparticular (nonminimal) solution , i.e. rass

distribution, the so called analytical centre of the feasible set (of

solutions). Several positive .features and applications of this solu-
tion concept,like stable computability with a relatively small nuwber

of arithmetical operations and the feasibility of high degree homo-

topy methods for computing bounds for any further, not specified
"moment" (i.e. integrals with respect to the underlying measure)are

studied in the last section.

2. Preliminaries

Suppose that S c Rn is a clos~ud set and p is a nonnegative (Radon)
measure supported within S. In rhe general, finite or restriced

moment problem we shall study here the data are the N values reals

(2.1) C. = S d(s) (ds) =

of fixed, linear (continuous) functionals tpj, gtven ty continuous on S

functions K., j=I,...,N on S and one asks for th,, conditions of the

existence and a characerization of all solutions p which have minimal

support belonging to S:

(2.2, M - min, Cj = F Ki(sk) Pk' IPk ; 0, skE S, k =

In the case when S c R2 , i.e. n=2, and for S = (x,y) the functions

K1 ,..., KN have the form

(2.3) xiy J , (i,j) E I, III = N

where I is a finite subset of Z+ ( the set of nonnegative entires)of

cardinality N, the above problem - the so called restricted polynomial

moment problem - is a natural generalization of the Gaussian quad-
rature problem. Of course, one can expect a reasonably simple and

constructive answer to this problem only if I and S have a simple
form, e.g. S is a quadrangle

(2.4) S = [alb 1 ] x [a 2,b 2 ]

and for some fixed, positive L -

/ ,
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(2.5) I =((i,j)li + j S L, i,J Z 0).

We give now an equivalent formulation of the problem(2.2)-(2.3)
which is crucial for our approach.
Proposition 1. The problem (2.2)-(2.3)- with data setic(I),Slis

equivalent to the existence and characterization of quadruples

H,AB,e , where H is a Hiloert space (whose dimension should be mini-
mized), A and B are self adjoint cummuting operators on H and e is a

nonzero vector in H such that

(2.5) cij -< Ai BJe,e >, for all (i,j) E I.

Proof. If there is a solution of problem (2.2)-(2.3) then we define

the Hilbert space

(2.6) H: = L2 (S,du), e: = I on S

and the operators
(2.7) A f(x,y):= x f(x,y) B f(x,y): = y f(x,y)
which are self adjoint and commuting. The conditions in (2.2)can be

expressed as those in (2.5).

Conversely, suppose that (2.5) holds and let A,B have t*a eigen-

vectors (they are common and form a basis of H by the communtativity

and self adjointness of A,B) TV ... , FMand eigenvalues Xl,..,X resp.

Y,-...,#Y ,where M is the dimension of H

(2.8) ATk =Xk k' BTk = Y R 1....M.

Then

(2.9) c1 . -Z xk Yk Pki(ij) E I , where P : =< k Pe> ,...,M.
k=1

This completes the proof and shows that once we constructed the

quadruple <H,A,B,e> then the quadrature formula (2.9)can be obtained

by a low complexity stable numerical method i.e.solviag an eigenvalue

problem.

Not assuming H to be finite dimensional we had to invcke the

general spectral decomposition theorem, see e.g. [12 J ,by which a

representing measure is obtained from the associated projector measure
d ( X) - d ( < E(e,e > )

Proposition 2. If problem (2.1),(2-3) has a solution then the problem

(2.2),(2.3) also has a solution,moreover for the minimal value M we
have the inequality
(2.10) min M I1
which is exact in the sense, that there exist (multiple connected)

domains S such that for the constant weight function U'(x,y)i I on S
and the set I as in (2.5), for arbitrary L we have equality in (2.10)

- The first part is known as Chakaloff's theorem see [61 and is based
on the simple fact that if

• , i , . ,. . " ++/
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Rk

C e.,c E Rk i a O,i=l .,R

then there exist a similar representation in which there are at most
k nonzero constants . For a proof of the second part see §4,ch.2in
[11]. Before going further let us indicate here the connection of the
above problem with the minirmal,partial relization problem for a class
ot two dimensional shift invariant, linear input-output maps

(2.11) Yk,l E Fk i,l.-j U i j

by state-space models of the form

(2.12) Yk,l = <hxk,l>

Xk+1,1+1 F1 xk,l+ I + F2xk+1,l - FIF 2xk,l + gUk, 1

where FI,F 2 are commuting,symetric matrices in RM and h,g E RM,see [3).

The transfer functions assiciated to such maps

T(w,) = "du(x,y) -= T If F ijw i z
(1 -wx) (1 -zy) i=0 j=O i

are generalizations of the one variable Stieltjss functions and should
play the same role in analyzing "passive" input-output maps. Note that
the realizability conditions have the form of complete, infinite moment

conditions, if g = h,

F F i j g>, i~ 0.i,j h, 1 F2 gIt is known that the minimal partial realization problem underlies most
of the basic engineering problems of system analysis, see e.g. [21,
even if for a SUjiable,more exact and stable numerical solution of
these problems other linear information functionals are better suited,

see [14) and below.Connections to(rational)approxination (interpolation)

problems for Stieltjes functions are extensively studied, see e.g.[7],
[10],[14],[16].

3.Exact conditions of existence and minimality

We shall restrict our interest to so called "regular"index sets I,
which - by definition- have the following property.

(3.1) if (i,j) E I, then (k,l) C I, for all k 9 j,, 1 1 j

In order to characterize the minimal solutions (H,A,B,e) we have to
characterize first the sets with consits of a maximal number of

linearly independent vectors among(I.2) Ai be, i,j a 0.

Lemma 1 In the linear space H spanned by the vectors (3.2) (if it is

.. .......... - - - . .. . , -/
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finite dimensional) there always exist a basis consisting of ele-
2

mernts of a regular subset L c Z+

Proof. Let n I be the maximum of the values n such that 
e,Be,..,Bn

-I

are linearly independent. Suppose inductively that nk,k a 1 is the

largest value of n such that Bn-1Ak-1b is linearly independent on

tne vectors AiBje, with i 9 k-2,j 9 ni and i-k-1 jsn-2.Since the

sequence of the n kk-1,...satisfies n1 k n2 ... aka 1, 1 nk-dim H

the above procedure ends in at most dim H steps and yields a regular

set L.

Definition. If L is a regular set, the (generalized)Hankel-matrix asso-

ciated to it is defined by
HL(iIJ ) (2, ): + 2 J

where we order the rows and colums of HL(indexed by elements of L)

according to the lexigographic order in Z2. Further we denote-for

a regular set L

L*: = {(k,l) I 3 (i,j) E L with 1 a k-i a 0, 1 ? l-j a O}
L1:={(k,1) 13(i,j)EL,k 9i+1,1=j},L 2={(k,l 3 (i,j),EL,k=i,l~ij+1}

L2:={(k,l) fki 1 +i2,l=j1 +j2 ,(iI ,j1 )CL, (i2,j2)EL}

Theorem 1. The necessary and sufficient condition .for the existence -

given the moment data c(I) - of a nonnegative representing measure

supported in at most M points of S is that there exists a regular

set L of cardinality m and an extension of the data from c(I) to

c((L*)2 ), i.e. an assigument of values to the unspecified moments

in c((Lw) 2) such that the matrix HL* is positive semidefinite and

(3.3)rank HL - rank HL* SM.

Moreover the minimal value of M for which the above two conditions

can be satisfied equals the minimal number of knots in the correS-

ponding cubature formula.

Proof. In order to understand the role of the matrices HL and HL* note

that these are theGram matrices associated to the set of vectors

W(L) -{AiBJe l(i,j) E L}

W(L*) - {ArBSviv E W(L), 0 9 r 5 1, 0 9 a 9 1).

The necessity of the conditions (3.3) follows now from Proposition 1 and

Lemma 1 since Gram matrixes should be positive semidefinite and their

rank equal the dimension of the space spanned by the underlying vectors.

To prove the sufficiency of the conditions we have to construct a quad-

ruple (H,A,B,e) , such that dim H - rank HL and (2.5) holds. Now we

define H as the Hilbert space spanned by vectors Vij indexed by the

element (i,J) CL* , whose scalar products are specified by

I ,'. '".
• ,,/ u • mlm l
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4Vi,jVk,l" C Ci+k,j+ 1

Since rank H = rank Ht , the operators A,B defined by

AVi,j MVi+1,j BVi'j Vi,j+ 1, (.f)e L

are hereto defined on the whole space H, moreover they are well

defined: if
r,s i a. Vije aij(Vi,jVk,l>(Vr,sVk, I1

(ij)EL 1)ij

for all (k,l) C L* , then

Vr+l, s (i,1)fL ai, j Vi+l, j and Vr,s+1  (ij)EL a i,jVi,Ji

hold. Indeed multiplying the latter relations by Vkr(kl)E L, the

relations obtained are consequences of the previous ones because HL is

a submatrix of LI and H L2 and these are submatrixes of HL*.

These operators A and B are clearly symmetric (i.e. self adjoint)

since for all (i,j),(k,l)E L

) AVi,jVk,l > = Ci+1+k,j+l = Vi,jAVk,i>

and they commute, since

< ABVi,jVkl> = Ci+k+l,j+l+l = <BAVi,jVk,l>

By this the theorem is proved.

The difficulty with this extension problem is partly apparent from the

following fact:the restriction of thd original say infinite dimensional

operators A and B to a Krylow-like subspace W(L) are symmetric but

they may not commute, (in general, they do not commute) .- It is not

clear what further connections (if any) exist between the set I (and

the values c(I)) on one side and the possible sets L on the other side,

is it true that L can be chosen as a subset of I?

These sharp differences between one and higher dimensional polynomial

moment problems have been observed e.g. in [13],where it is first shown

that in the twodimensional trigonometricfinite moment problem the non-

negativity of the associated, generalized Toeplitz matrix (the precize

analogon of our Hankel matrix) is not sufficicient for the solvability.

The theory of normal extensions of operatorssee the appendix written

by Sz~kefalvi Nagy in [12Jis clearly related to our problem since the

operator A + iB - T should be normal, for A,B to be symmetric and

commuting and vice versa. The conditions - in terms of c(I) - for the

condition:spectrum T c S can be easily written down in the case (2.4):

the following matrixes should be nonnegative definite

(3.4) - a1 i1  H bHL 2 - a.2H L b2H L -"1 ' lL"1 ' 2 a2' b 2  -

If S is the disjoint union of two %uadrangles Q and Q2 than we have to

require that there exist a decomposition of each of the moments (fixed

/
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or assigned) such that

Cjj - (Q1) + ci j(Q2) ,J) E (L*)
2

and (3.4) holds for the respectively decomposed matrixes.As an example

of a simple application of Theorem 1 we metion the following fact:

fir six data (c0 ,0o;C 11o;... Ico,2) if the coresponding.3 x 3 matiix

is nonsingular the minimal measures should have 3 atoms and they con-

stitute a one parameter family.

A new numerical approach to solve the existence Problem

It is very difficult to handle the constraint(3.3) numerically, the

set of solutions of the minimal extension problem is not convex.

Observing that the finite dimensional analgon of the solution set to a

moment problem (2.1) has the form of a polyhedron ( in the sequel we

often use abbreviations for N tuples (c,'..., CN ) =c
N )

(4.1) = K (kN,CN) = { I j< k ,j>= ci i=I,...,N, TP m

we see that searching for ;the extremal points "vertices" of K.

It is known that the parameters of a Gaussian quadrature are very ill

cond'atoned functions of the moments ( note that(2.1) is something like

an integral equation of the first order whose right hand side is known

only at some points) - and this has its parallel in the fact that the
N Nvertices of a polyhedron H(k , c ) are nonsmooth functions of the data

cN , or (kN,cN).
We propose now using an bther~specific solution,the"analytic centre"

of the solution set, in order to solve the existence ( and some related

estimation) problems, in a numericaly more feasible manner.

The analytic centre l (K =(kN ,cN) of the polyhedron(4.1) is defined

as the unique point which solves the following optimization problem

max{ log 41k cj, ,N, O,i-1,...,m}

i ji.l = iNi

If the polyhedron is represented in its own space(of dimension m-N,in

general), i.e. K - P - P(am,bm)

P(am,b ) - (xIbi-<aix> a 0, i=1,...,m,x C Rm
-N

by the map pi - bi-(ai'x> ,i-1...,m, then - (a m,b m ) the point,
which solves the problem (assuming int P * 0)

m
max{ 11 (bi-(aix)) Ix E P(am,bm)).

i-1
One can prove that the map (a,bm) - x(a ,b) is affifte invariant

and there exists a two sided ellipsoidal approximation for P around x:

+ E c Pcx + m E, E -( zI<AX,Z> 9 1)
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where the symetric matrix E = E(am,bm)is easily obtained from x(am ,bm )

see [14],[15]. The fact that x(am,bm ) = P(kN,cN) is an analytic, very

smooth function of the data allows to solve the feasibility and linear

optimization problems by a homotopy approachsee [15],which we gene-

ralize now as follows.

The analytic entre of the set (2.1) is defined (if its exists) as

the solution of the problem

(4.2) sup{f log j'(s)dsl f K.(s) '(s)ds = c., j=l,....N}.
S s j'sd N. =,.,

It is easy to prove that the set of values c for which (4.2) has a

solution is convex and dense in the set of all feasible cN, if S is

a domain, i.e. closure (int S) = S. For the trigonometric moment pro-

blem this solution was studied already about 1920, see [10],(14].

Lemma 1. The solution of the problem (4.2) - if it exists - has the

following form N

'(s)= ( Z a K.(s))
j=1

for suitable a E R, which in fact is then the unique solution of the

equation N

(4.3) R -= J K.(s) ( Z ajKj(s)) ds = cj =  ,N
Ja i S I j=1 I I

such that Z jKi (s) is positive on S, here

(4.4) F(a) =Sf log ( r a.K.(sf)ds
S~ 3J

Proposition The moment problem (2.1) has a solution if and only if the
N N

homotopy path a(x) can be continued from x = 1 till x= 0, where a (;)

0 < 1 1 is defined as the solution of (4.3) where cN is replaced by
(1 )cN N cN N e -

C= K) Z a K (s)) ds
N 0 S j=1 i 3

and a. K. is an arbitrarily fixed polynom which is positive on S.j=l J J

The proof is a simple application of the implicite function theorem.

For brevity we can only refer D[9],[15] for the application of this

method for the estimation of (computation of exact upper and lower

bounds in terms of the moments cN for

l(c N ) S f Ko(s) u(ds) 9 u(c
N

It can be expected that for smooth analytic kernel functions

K ,Kj, .. ,N this approach is superior to those using discretizations

of the measure (of the set S) and algorithms based on the simplex

method (note that the latter methods use- as a tool - extremal solu-

tions, only piecewise smooth homotopies);concerning numerical test
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results on this approach-using homotopies along analytic centers- to

solve linear programming problems, see[9].
The special solution of (4.2) in the case of the (real)trigono -

metric moment problem - where K.(s) - exp(i(j-1)s), s EC-,1fl]and u a
measure on[-H,HI(which is symetrical to zero)-,which is a special

case of the Nevanlinna-Pick moment problem, is the so called
"maximum entropy" solution. These analytical centers, more precizely

the coefficients of the trigonometric polynomial[ ;J(eis)fl are ratio-

nal functions of cN which can be computed rather quickly:in O(N2)
arithmetical operations. This and other observations, see(151,lead to

the idea that for the extrapolation of the function aN(X)rational

(multipoint Pade) approximation - with Newton type corrector step to

solve (4.3) - will furnish a rather efficient path following method.

In fact, in a problem closely related to (4.2), the use of a special.

rational extrapolation method can be justified rigorously using a

generalizaiton of the well knwon fact (see e.g.[7]) that the multi-
point Pade approximants (i.e.interpolants) to a Stieltjes function

are again Stieltjes functions, see[15].
In order to solve - over some domain S - the closely related uniform
approximation problems

N
minlK o(s) - I AiKii l L ' S )

we propose following the homotopy path N(A) determined by
N

sup (log( -&) + f(log (K (s)- N KiW-0+ log (e-K (
(cpN) S N

Z BK i(s)))dsi-l
Of course, the sucess of these methods depends (among others) on the
availability of fast and accurate methods for approximating the above
integrals as well as those in (4.3).
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ABSTRACT

The aim of this paper is to propose an approximation procedure to compute the value
function V and the optimal policy 6i related to the stochastic problem (P) of controlling

diffusion processes. This procedure can be easily extended to problems for which stopping
time and impulse controls are also considered.

0 - INTRODUCTION

As we did in [8] for deterministic problems we will employ here as basic tool of

analysis the characterization of V as the maximum element of a suitable set W of functions w.
While in [81 the definition of W requires for w to be subsolution of the first order Hamilton-

Jacobi-Bellman equation, i.e. :

(  . f(xu) + 1(x,u) - aw(x) > 0, Vu i U, (0.1)

here, in the stochastic case, we deal instead of (1) with

f~u)w + (u) ; 0 (0.2)

where L is a second order differential operator.

In what follows (P) will be solved using the characterization mentioned above. To

inmduce the discretizet problems (Ph) we need to define properly the functions wh belonging
to Wh. In fact : the existence of maximum solution Vh for each problem (Ph) and the

convergence of Vh Io V are shown using a Discre Maximum Principle (DMP) that wh must

verify (cfr. [3]). To insu this propMty we use particular schemes to discreize the first and

I
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second de ivaives of w. Furthemror this choice enable us to compute Vh using an algorithm

of relaxation type that increases the values of wh in the vertices of the mangulation employed

Comments on applications ae included in the final chapter.

1 - THE PROBLEM CP)

Let us consider

a) The complete probabilistc space

(", P, F, F(t)) ; (1.l1)

b) The state process y(.), modelled by the diffusion

dy(t) = f(y(t), u(t))dt -o(y(t), u(t)) dw(t)

(1.2)

y(o) = x , t ;o 0, y r Q C Rn

with

Q : open boundet set
w(t) Wien process F(t)-measurable

u(t) control process progressively measuable in a compact set U C Rm

o is a n x n matrix

f and a bounded continuous on Q x U.

c) The cost functional

J(x,u(.)) - E { ,(y(s).u(s)) e-03 ds} (1.3)

with

first exit f of of the * n t jc c y

: bounded contnuous function on Q x U.
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Let us introduce die definition ofthde optimal cost

VWt - unf JRx1u(.), (1.4)
ueU

V(A) being solution (cfr. [5]1[2]) of the Hamilton-Jacobi-Bellman equation

mini {L~u)V - 1(,u)) - 0 in Q
ueU

V -0 in aQ

where the diffeatdal operato L is given by:

LU) - I as(xu) a; + f IxU) cc (1.6)

with

n
a isO& e a Z s a r. (1.7)

4. As it was said in the Intr-oduction we will compute V taking advantage of its
characterization as maximum element of a suitable set, i.e. (cfr. [6], [8], [15]) solving the
following auxilar problem (having V as solution):

(P) : Find thmximutmement w oftheset

h W W s (0) IL(u)W* ;0 Oinfr(Qvu e UQC R"} (1.8)

being

w IC w() 1cw;xl Yx aQ(19

dhe mnul palial order in W.

(Questios conicerning exisience and uicity of dw ied 3Uofl (P ) can be seen in (4], CISD.
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2 - THE D CRET PROBE h)

2.1. Preliminary commets

We w.ll compute V as the limit of the solutions of a sequence of approximate

problem (ph).

To simplify the presentation we will suppose that Q is polyhedric. We consider in Q a
triangulation Qh (union of simplices), xh being (i - 1, 2, .. , N) the veruces of Qh.

Then we define klh by functions wh verifying properties related to (1.8), (1.6). The
main difficulty of this approach is to ensure the existence of a maximum element h.im i4.

Following what we did in [8] for the demninistic case we introduce in 10 the natural

partial order

h h h h h hw w2 *o wl(xi) 4 w2(xi), Vx ve=x of Qh (2.1)

We consider functions wh : Q -. R, wh continuous in 1h with .r constant in t

intrior of each simplex of Qh, i.e., wh ae linear finite elements. So, to define wh it will be
enough to precise the inequality ("discreti n" of L(u)w + I 0 ) to be verify ad at each

h
vertex xn of Qh. Taking (8] into account if suffices to propose a suitable discretization of

n 82
L<u)w = the tarm conuini the second order derivatives of w.r,s = I

2.2 Deftition ofLh(u) %A

h hLet us onsider S(xj(seelg 2). allthe *imcehavingis vertex.

From (1.7) the matrix A = (%) has no negative ciSenvalues X ad orthogonal

eilgenvectorm So

- ' /. ,..,r _- -

' " 7", . .. . " .¢ " " -F-- ", -'



A UDU' (2.2)

with ULT - I
D (diagnaI) Dp Ap O 0

hh

transformlation matrix G(j):

(2.3)

and we deflue

h A-wWx WN w 0x WM ) w -W(GlI) 01') (2.4)

we obtain

h ?wh D4
IL(u)w= I~~= OG ,U) - = A~- (2.5)

h
with bpq(Xj, u) - (GAG)pq.

So, afkr die choice G - U vie have, becaic

bpq -)p q(2.6)

the following diagonal form of L:

LW- Z h 41 r 27
U)-- 1

P = 
I*
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Now. we define nauiuaiy the appmxinated oepuor Lbi

Lb wh~ 7. v~ ( 7h a b (2.8)

p-I

where (~~ , h=. ~'C - .~i .C>)wd

, h %hC - = (,,..,~i,..0
0 X pl i p

lp Xi(Cf'- - (0,0, .,hi, ..., 0)

e~giving the diiwtion of the Tip-a=i and hi such fht C , e 5(4).

2.3. Definition o h

n
Coning back to (1.6), T fr(xlu) will be. disaetzed as it was done -.a [9], i.e.,

r a= 1.
%ewill consider V in the dinection f (see Fig. 2):

I b '-,

So, ftom (2.8) and (2.9) vve can define

IS' ( wl :Qh IR R/ LJI(u)wh . l(u) 0,

(2.10)
Y U et, Yx W , w -C 0 cac

whele u t' is a fidew disomdnii of U And

iT
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Lj('w'(.j 1~, h h -

PI, y.pxi U)(Wh(X, f Cipe) 2 wh(xp

(2.1,1)

-whxi

+~ ~ ~ k 1h( 0 ,e,) . Itx) w(4) + I(u, ,45

Finally we can consider the discretized problem (P)h :Fid the maximum element wh
of the set 14* with respect to the partal order (2.1), Le. find (x) suc that wh(xi) WON

Vx, E Qh, VwhG W.

3 - SOME REMARKS ABOUT 0'h(x)

As hi lP are convex combinations of the vertices of S~iusing the linearity

of wh we have:

jelt jeii

I set ofindex such that e

whobih  " 0 Z h ;O, t -j 1. (3.2)

Aftr (21) (3.1) and (3.2), we can rewrite L'(u)wJ'(x) I(u, ) o as:

vii.

/ . . *.* 4)
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fhxx) I n h K

.,h i p= jet i

E (3.3)

pih "( - f(x !)I
Pfi h i  h- 1

THEOREM 1

There exists an unique wh(x), maximum element of Wh, i.e. (ph) has an unique

solution.

Furthermore the operator Lh verifies the following Discrete Maximum Principle

(DMP) :

(DMP) : If C is a subset of verices of Qh satisfuing Lh(u) wh(xP > 0,

vxl e ,vueUh, th= exis , o < r < such hat: (3.4)

wh(xi)  r( ( (wh(xi )) %0
xi 0 C

We can us ds DW i easblish two impotnt po s of .

The first om is that Zh is chawaeind by the fact that (33) becoes an equality for
hallx 1 Q* famum u a w eh vA "put i un W .ofwh'. Ibs d tiaion lo us

to compim Zh uin im m algoithm of the sae type d them pmentm in 8). The
valu of u pvk do equat wit be uind Do defim the optimal comv Oh.

.... - ........ . ,, mm .sirl
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The second one concern t converence of hoV We have

The solustions wh(x) of the approximate piroblems (Ph) converge uniformldy to V(x),

solution of 031, Le.:

Jim I V(x) wJ'x) I - 0, Yz eQ (3.5)

whereii is the maxim=m of the diamr of the sinplex of Q1'. (see (8]).

The proof is achieved in two steps. We will briefly give here the main deas.

In the fiast part we show

Hr w )V (3.6)

For that we regularize the elenmn of (1.8) by mewns of a convolution with a function
of C- (R2) havig a parameter p > 0. These functions wp can be approximate by functions

wa with this property theo linear finite eeent wh ,altng the sam values of wp,,in the

;I Wpa(3.7)

If we cmnider in (3.7) the low fimits for ld. 0, then the limits for (PAc) (0,0), we
obtain

,Jm ;h ;PW. (3.8)

Finaly,m4w is anabitrryl nof , (3.6) is pove&

113 samod pmt is devoum to show

j~I V. (3.9)

S--



* We consider a sequece of awciliar problem Pa for which the controls u,, can take in

(1.8) a finite number of values and doe number of switeh within thad set of values is, at most.
TL If Vt is the solutice of PA we can show

(3.10)

l V, V.

On the other hand we consider the dismetzed problem P for which we prove

IH-0

-h -h
wn ;) wn.1 ;0 ... J Vii. (3.12)

so, ;;h 4" Vn ; the, uasing 0.10) we obtain (3.9). Finally (3.6) and (3.9)

give (3.5).

4 - COMNT~S ON SOME_ APPLICATIONS

The idea of solving optimal control problems computing the maximum element of a
suitable set of subsolutions of the Hamilton -Jacobi -Bllman equation has been recently
applied to several poblems. Remaining in dhe deteministic appr! A we have study in [91 the
optimutndon of an elcicity ptoucton systemn which com dme hydraulic plants (two of
pumped type) and seven thermic plants (one maclm, two of coal, tow of fuel, one gas
powered and one externa). The numerical data have been provided by EDF (Electricty of
France) :they describe a forecast of the Frenh sysiem. for a week of the year 2000. Other
application can be seen in [12] where several aeria prjdaction/inventory systems are

Cvncemn te stochasti approach we ca mwon:

a) [111 devoted to the optmiztio of the system pueented in [91 considering random
pemnalorun in tdemnd

00,
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p 1
b) (71 in which td agoth ;opowdin. (10] for L(u) -A i used to obtain he optintal

*comrol of a bidimnusioaad diffision ;.

L

C) [1] in which the =nn a solution of an optiml catoxtio pitblem for a damped random
lif- ... wclar is studied.

Pirt awpicltio of die mcedum just pwosed in §2 and §3, as well as a comparison
of these results with those obtained by other clasic methods [13], [14] and [17], will be
pemented in a special session of the next W-.CDC, Austin, 7-9 Dec. 1988.
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A HIERARCIUCAL BARGAINING MODEL IN ENERGY MANAGEMENT

List of authors: . Ruusunen, IL Ehtamo, and R.P. Himillinen
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The purpose of an electric power pool is to reduce the cost of generating
electricity by transferring electric power between the power plants that are
controlled by individual decision makers. During high local demand a system
can transfer energy from the network into the system and thus achieve cost
savings. At the same time other sytems produce electricity into the network
such that power balance in the network is met The benefits of receiving
energy in one period are then compensated by an energy transfer into the
network in some other period. As a whole, the the pooi cn thus achieve cost
savings.

The problem of equitable sharing of the bt its of cooperation during the
planning horizon is a bargaining problem in the dynamic framework. We shall
formulate the energy bargaining model in the dynamic framework and propose'
a new way of dividing the cost savings within the power pooL The energy
exchange contract is determined on the basis of the Nash bargaining scheme.
In our previous studies we have presented a hierachical approach to solve
Nash bargaining problems in the dynamic framework. This approach is
extremely convenient in this application.
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SPECULATIONS ON POSSIBLE DIRECTIONS AND APPLICATIONS

FOR THE DECOMPOSITION METHOD

G. Adomian
Department of Mathematics
The University of Georgia
Athens, Georgia 30602

The decomposition method has now solved very accurately a
rather wide class of nonlinear differential and partial
differential equations [1] showing some significant advantages

over other methods. Once a problem is modeled with a specific
equation (linear, nonlinear, deterministic, stochastic, ordinary
or partial differential equation) with physically correct given
conditions, the method solves the equation without
linearizations, perturbations, closure approximations, white
noise assumptions, or discretization. Certainly, much remains to
be done on the theoretical foundation and the precise
limitations. Rather than a drawback, this is a fascinating
challenge for further work which is beginning to be borne out by
the increasing work in this field particularly in Torino by
Professor N. Bellomo (2] and his co-workers [2] as well as by
many others. The range of problems solved and the rather

remarkable accuracy obtained - the fact that nonlinear systems
with stochastic parameters can be solved and the fact that the
work has applied effectively to parabolic, elliptic, and
hyperbolic equations - certainly suggest this is a useful and
very computational method for frontier applications. Proof of
convergence and convergence rate, error estimates, and perhaps

better generation of Adomian's An polynomials are fertile areas
for further study and dissertations. Pany other research topics
are in the area of applications; some are discused in [3].

Let us point out some speculations on some interesting
possible future applications pointing out that some of these
applications require the development of a correct mathematical

/ : -" "
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model before decomposition can possibly solve them. It is not

useful to apply the method to many existing models since they
have already been linearized and otherwise simplified for
mathematical tractability. Thus it is up to the expert in
physics, engineering, biology, economics, agriculture, etc., to
model the problems retaining the nonlinearities, stochasticity,
delays, etc., since the physically correct solution can be very
different from that -btained from the simplified models. Also
since the technique does not require discratization, it is
evident that substantially less computing time may be involved in
a difficult problem such as Navier-Stokes equations (4).

Nevertheless, some possible applications which represent an
exciting challenge are areas such as nonlinear and possibly
stochastic and multidimensional optiomal control theory,
hypersonic flow, quantum theory and gravitation, generalization
of the Kalman filter, and problems of large space structures such
as vibration, heating, etc., [3].

Before going into these areas, let's look briefly at some
illustrative decomposition examples chosen for clarifying
procedure rather than for difficulty.

Cons ider an ordinary differential equation

d2u/dx2 - 40xu - 2, u(-l) - u(l) - 0. Let L - d2/dx2 and

write (1]

Lu - 2 + 40xu

u - 1 + c2x + L -(2) + L -(40xu)

Let u0 - c1 + c2x + L1(2) - cI + c2x + x2 and let u - Un.
n-0

The components of u are given by

un+1 - L-140xun

for n 1 0 thus

U 1 - L-140xu0 - (20/3)c1 x
3 + (10/3)c2X

4 + 2x5

/
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Similarly S6 72 8

Um (80/9)c x 6+ (200/63)C x + (lO/7)x

n-I
We continue to some n-term approximation 9 n - Z u i which

i-O
iw

approaches u - Z un  as n * m (2]. If we write 93 as an

n-0

approximation,

03 - 0 + u1 + u2

- c1 + c2 x + x
2 + (20/3)c1x3 + (10/3)c2 x4

+ 2x5 + (80/9)c1x6 + (200/63)c2x7 + (1O/7)X
8

Imposing the boundary conditions at -1,1, we write

93(1) - 93(-1) - 0 from which we get

149/9 473/63 c1  -31/7

29/9 -53/63j c2  -3/7

from which 0l, c2  are evaluated. Substituting 9n  onto the
left side of the differential equation, we should get the right
side, or 2, If the approximation is sufficient. We note that the
12-term approximation yields 2.000000 or seven-digit accuracy.

On R3 with L. - *2/ax2 , Ly - *2/ay2 , LZ - a2/&z2 we

write

[L x + L y + Lz ]u- f(x,y,z) + k(x,y,z)u

Solve for each linear operator in turn. Operate on each of the
three equations with the appropriate inverse and write
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uX L' xkx (LX +XLz)U

u , + L f - Lku-L (L +)u
y y y y z

u- " + L f -L wkU - L- (L + Ly)u

where x, 9y, zare the homogeneous solutions. Adding and

dividing by 3.

U U0 + Ku

with

U- (1/3)(v + v + 9 + (L + L 1 + L-) f)
x y z X y z

K (1/3)(L + L-1 + LI )k + C'(L + L)
x y z X y z

+ L 1 (L + L (L + L)
y z X Z x y

assuming u - Z un
n-0

un+l ' K u n

so all components are determined. The inverse operators are

double integrations leading to two constants of integration to
be determined by forcing un to satisfy the given condition.

Suppose k - k(u) so the equation becomes nonlinear. The
S

nonlinear term is expanded as . An where the An are
n-0

Adomian polynomials (1,3] generated for the nonlinear torn and

the procedure is as before except that the Un+l will involve an
An term. Since each An depends only on u0 ,u 1 , . ... un, the

solution can be obtained essentially as easily as in the linear

case.

lw -e i i -f me i i-irlmi mD• mD I el i
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Rather than furthor discussion of the methodology on which

there is now a considerable published literature in the U.S. and
Europe, let us speculate on some applications which appear to be
possible in the very pear future although they require the
modelling expertise of theorists concerned, primarily with each of
those areas.

Some of these, in the authors opinion, are
1) optimal control for nonlinear and, stochastic, and even

multidimensional systems,
2) hypersonic flow, turbulence, single-stage-to-orbit flight

essential for shuttles which can be used for the
construction of space stations,

3) quantum theory and gravitation, and
4) generalizations of Kalman filtering.
Because of page and time limitations we discuss only the

first two here.
1) Suppose we consider a nonlinear, possibly stochastic or even

multidimensional systems which we want to control in some optimal
way. For a linear control system with a quadratic performance
index, of course an analytical solution can be made. Consider

the state equations
Mt W f(xl , . . . , Xn ul u....A , t)

~is, a set of n nonlinear differential equations with x(t)

representing a state vector with n components f ..... f., and
x(to) a given initial vector. Define, for example 

(5] a

performance functional 3(x,u,t) given by

J -'OEx(t 1 ) t1. + tl F(x,u,t) dt
to

where 9 and F are scalar functions with necessary smoothness
properties. Let p - [p,....,pnjT be a vector of Lagrange
multipliers and form an augmented functional

7' " 9fxlt 1 ),t 1 ] + Jt EF(x,u,t) + pT (f-i)l dt

-O VE im t m

~~Z
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integration by parts leads to

T I+E+ ,T x] dt1'- p x] It+JtH+
0 0

with H defined as

H(xut) - ?'(xu,t) + PTf

if u isdifned on to It t 1 we vary u and find the
variation 83" corresponding to 8u, leading to the n adjoint
equations,

3H
- - ax 1

so we have a system of 2n nonlinear differential equations with
two-point boundary conditions. Although this approach has been
discussed by R.E. Bellman and many others perhaps most recently
in (5], analytical solution has usually not been possible except
by numerical methods.* We now have a promising and
potentially valuable alternative since such systems of nonli±nar
differential equations have been solved (even for the stochastic
and/or multidimensional cases) in a analytic approximation by the
decomposition method [1-3].

Another possibility is through solution by decomposition of
the matrix Riccati equation which appears in invariant imbedding
and neutron transport theory as well as modern control theory.
Consider

R I(x) B 3(X) + D (x) R(x) + R (X)D (X) + R (x)DB(x) R(x)
R(0) -0

where 3, 0, R are continuous n X n non-negativ, matrices.
Suppressing the argument x , we have

R B +DMR+RD +RUR
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If L 4/ix

Li - 5 + ER + Nii

where Li - RO U R - DR + RD ,and MRK represents a nonlinear
operator on R Since R(O) -0 'Woeration with L-1 on both
sides yields

R - LlB+L1:11M+L 1 NR.

Let R and NR be written in term of Adomian's An

polynomials. For R this is equivalent to writing R - Rn
n-0o

For NRw rite~ An Identify R0  L1 lB then

-l -

R -L HR +L An n-l + n-l

for n 2 1. The An for UR areqgiven by (1]

A2 % B Rl

A 2 R 1BR I+ R 0BR 2+ R 2B%

A3 0 a 3 + 3 5R0 +RIa 2 +R2 1
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A4 - 2 D R2 + R0  R4 + R4 B R0

+ R1 8 R3 + R3 B R1

so that

R L B
0 -1 -

R L H R +L R B R
1 0 0 0

R L-1 -IR1  L1
R HR 1 + {R0 B R1 + R1  R0 )

R3 H R2 + C1 (R1 B1 + R0 B R2 + R2 B RO)

Finally since HR - DR + RD

R 0 L B

R L D R 0 + R0 D) + I(R 0 B R0

R2  L(DR + R D) + L 1 (R B R +R BR 0)2 1 1 0 1 1

R3 + L-1(D R2 + R2 D) + L-1(R 8 R 1 + R0 B R2 + R2 B RO)

n-i
An n-term approximant is vn  R .R which approaches

imO

. -= Rn as n e. Thus given B,D, a specific R can be
iO.

calculated to a desired approximation. Accuracy has been

demonstrated in (6].

*
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(2)~ $s~ic lw': The present approach to hypersonic
flow pr.ilams is omptational fluid dynamics (CYD), and
intensive 'wrk is being done to develo aaprint.* M? computer

developeants~* inapraptrti emphasIs is certainly
ap~ogiat. etanthe mthouigy now appears promising.

whiicih is quite diffe'rent and emsto have a high potential for
important advanitages a- vell as a pro .bably high adaptability to

sp omputers. This is the decomposition method.
It yields a rapidly converging series solution in analytic

form. It requires no lineariation, perturbation, closure
approximations, or assumption of special mathematically tractable
stochastic procses such as et-orltdpoess
Probably most important is the Ifactthat disrtizat into
grids is unnecessary. Hence, computation should be enourmously
loe, and the difficulty of different time scales in turbulence
is avoided.

In the types of fluid flow which interest us, velocity,
density, and Pressure are stochastic, not constants. Present
treatment of Navier-Stokes equations solves a simplistic
model., not real behavtor. Turbulence is a strongly nonlinear,

strpn6gly stochaslitic phenomenon and cannot be understood by
* Ilinear ised perturbative treatments. The theories of physics are

pertiarbative thories and the theories of mathematics are for
linear operators, (ot her than some ad hoc methods for special
nonlinear equations). What is needed it a way of solving one or
more nonlineir'stochastic operatoi equation whether algebraic,

4differen tial, delay-dif ferential,' partial-difftential, or
systemi of such equations. The computational accur .acy of a

supecospteris dependent on the sophistication of the
mathematical methods programed into it. Typical calculations

* Iconsider millions of discrete time intetvvls 'md smI enough Lso
* trajectories between them can be take as low-rist jolynomi[aa,

e-g-., qbedatics. If stochasticity is involved; the ftt Carlo
me thods ire 'ieed which inserts randiftnes but not the props .rly -

correlated randomness which is pteset in the physical probe.

t, - - - -p



350

In generalized hydrodynamics, the form of wavier-Stokes
equations is kept, but tiz. and distance scales are introduced so
one can go beyond continguu approximation and take account of
molecular structure. However, application, to a real situation
becomes simply a teat of the validity of the linear
approximations, as pointed out in the literature. Fluctuations

are .to usual, assumed Wmall," and delayed effects, due to the
fact that responses cannot be instantaneous, are ignored.

When one studies airflow about aircraft surfaces,
computations are made tens of millions of points, and it is felt
that increasing the volume of computation to the limit in an
ultimate extrapolation, supercomputers will yield complete
accuracy. Not only does this ignore stochasticity, it ignores
the sensitivity of nonlinear stochastic systems to very slight
changes in the model - in fact, to changes essentially
undeterminable by measurement.

To solve an aircraft problem on contemplated next-generation

computers, a 3-dimensional mesh is generated which discratizes
the system of nonlinear partial differential equations into a
zillion, a hundred million, or perhaps a billion coupled
difference equations in as many unknowns. One begins to see then
the tremendous data handling problem, the necessity -for improved
algorithms, and the need for still greater computational speed.
We may also have many unknowns at each point, and, as ve have
pointed out, the system nonlinearities and random fluctuations
need to be taken into consideration. Since usually solutions are
iterative - firet solving an approximation to the original system
of differential equations and than iMproving the solution by
repeated substitution of each new solution - parallel processing
is colicated by the, difficulty of partitioning the work so each
proessor cam woXX itdapemdantly. his is being pursued by many
ingemious ideas necessitated by, the brute force method of

In ail such problems we need to be able to solve coupled
sytmtM of nonlinear (a d generally stochastic as well) partial
differential equations with complex boundary conditions and
possible delayed effects. These syitms are linearizsed and
disoretised (and the stochastic aspects either ignored or

'. ,...
- -
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improperly dealt vith) sao th verJau numerical approximation

methods can be used. This requires faster and, faster

Supa~ to do, theas- camputations in a, reasonable time.
Unfortunately the" fkit"er developments in supercomputers can

quite possiby, give wrong answers because evem a single
one-dimensional nonlinear differentIl eqation without
stoobasticity in coetficientsi inz4tts, and boundary c itions -

let alone vector partial differintiaZ equations in space and time
*with. nonlinear mador , stochastic parameters, - are not solved
exactly. Real systems are nonlinear and stochastic. When you
throw out thes "complications," you have a different problea!
When you linearize and use perturbative methods, you solve a
mathematized problem, not the physical problem. The model
equations, even before the linearization, discretization, etc.
are already wrong because the stochastic behavior is generally
not incorporated or is incorporated incorrectly as an

afterthought.
Our approach to hypersonics, using decomposition, will be

based on previous work on Navier-Stokes (3,4] which showed an
analytic solution can be carried out. For hypersonic cases,
additional effects are present changing the model equations but
the approach is similar. Discussion of a rather global
mathematical methodology, let alone the huge subject .of
hypersonics and turbulence is, of course, not addressable here.
We can only call attention now to the possibility of some
promising alternatives to the present approaches [3].

I.,.:.
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Fuzzy arithmetic In qualitative reasoning
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The pape rovwides a preliminary exploration of the application of fuzzy arithmetic and
fuzzy approximate reasoning techniques to qualitative reasoning problems considered in Artificial
Intelligence. More specifically, this investigation is done along three lines :constraint propagation with
ill-known values, handling of orders of magnitude in ternms of fuzzy intervals or by means of fuzzy
relations.

Reasoning about the behavior of systems in a qualitative way is interesting in two kinds of
circumstances :i) when the system under consideration is complex and the data available about it ae
pervaded with imprecision or even vagueness; ii) when it is sufficient to have a qualitative view of the
system and of its behavior, and this qualitative view is not only easier to get tha a more precise one
from a computational point of view, but also easier to understand. From the beginning of the eighties
there have been a growing interest about qualitative reasoning in Artificial Intelligence ; see (Botirow,
1984; Dormoy, 1987) for an introduction. The intended purpose of this research is mainly to provide
understandable explanations of the behavior of complex system fromt-thekr qualitative description. The
modeling is done in terms of variables which are potentially real-valued, but the analysis and the
description of the system behavior is made only in terms of three values usually, namely *-", "0" and

"",corresponding to whether the variables are negative, zero or positive. Independently, works
motivated by macarch in qualitative economics, have been developed about qualitative controllability
and obserability of linear dynamical system whft real-valiwd variables are approxmaed in ams of
the same thime values ; see Travd and Kaszkurewiez (1966) for instane.

Pram the end of the seventies, fuzzy set and possibilt theory (Zadeb, 1978; Dubois and
Prade. 1985), wbose introduction was initially motivated by the model of compex and. ill-known
sytms, bo been oonskhmb developed bo bhaii a &ftda and an appliedl point of view in
various ditecion ;9 psmilcnnd, &Wz aritmet Mabol and Prads, 1960 IM7 enabes. to hAnde

- - ID-knWb n qmaadda Ien =e*y way which gen ~hu hmm aayss ad bedea a nitdolog for
agig 4"W =amng Odlmn and Zadeb. 1977) hon beew settle in the tawz~ set framvw&k Until4
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now there have been no serious attempt to use fuzzy techniques in qualitative reasoning problems in
Artificial Intelligence -if we except some hints (Raiman, 1985 and preliminary works (d'Ambroo,
1987)-- although it would be desirable In me cues to have a Aner and less sharp description of the
values of the variables than the one provided by "-", "0" or "+". Particularly, the sign of the diffesence
between two positive quantities cannot be determined without any information about their respective
ocder of manitude.

This paper investigates what may be the use of fuzzy arithmetic and fuzzy set-based
approximate reasoning techniques in qualitative reasoning problems. First, a general approach for
refining inrval values attached to variables by exploiting constrints which must be satisfied by these
variables, is extended to fuzzy set values. Then, a fuzzy interval-based approach is proposed for
handling orders of magnitude in arithmetic operations and a valid approximation technique is used in
order to insure a closure property of the operations restricted to the considered fuzzy values. The
interest of fuzzy intervals for interfacing symbolic information and numerical data, is emphasized.
Then another way of dealing with orders of magnitude based on approximate equality relations is
investigated. The concluding remarks point out some other contributions of fuzzy logic to qualitative
control and to qualitative descriptions of systems behavior.

2 - Constraint nronagation with fuzzy valU

2.1 - General discussion

Let X1 ..... Xn denote single-valued real variables. Let Ai be a subset of the real line
which is known to restrict the possible values of Xi, and let R be a relation which must be satisfied by
the Xis and which acts as a constraint on (X1, ..., Xn). Then, the refinement of the possible ranges of
the variables Xi's taking into account R, leads to update the possible range of each variable Xi into a
new subset A'- in the following way

A'-= -{xi 4 Ai13 xj a Aj, j - l,n, j* i and (x1, ..... xi , ..... x.) c R) I

Mor generally in case of several constraints represented by relations Rk, k = l,r, we can iterate this
refinement procedure on each variable taking successively each relation into account ove and over until
no more changes occur in the updated ranges. This is known in Artificial Intelligence as the Waltz
algorithm; see Davis (1987) for a detail study of this procedure both from an implementation and an
application point of view. Let us consider a simple example. Let a -3, Al = [0,2], A2 = [1,3] and
A3 a (0,2 and the onstaint XI + X2 = X3. Then weg V A m [0,1], A"2 .[1,2] and A 3 - [1,21.
Observe that any triple of values in the Caresian product A' x A'2 x A 3 is not necessarily fesible,
e.. x3 A 3 such that x + x2 - X3 with Xl - I and x2 a I

The definition (1) exrsses that A'- is obdined as the intersction of Ai with the result of
the composition of the re"ion R with the Canesian product of the Aj's except Ai. This can be readily
extended to the case whee do Al's ae fuzy sets and/or R repeuens a fuzy constraint; Le.
Vio, J. -LAi(XO -.. i(&LAi(xi)- supx) min(9,(xl ...,x. m n I&(xj))] (2)

j- n;ai J1,a;joi
where IL denotes the membership functions (whose range are (0,1]) of the corresponding fuzzy no

- -,.,... - .,
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and relation When R is an ordinary relation such that Xi is a function f of the other variables Xj, A-,- is
a fuzzy set which can be obtained by applying f, in dhe sense of fuzzy set and possibility theory, to the
Afs (j * i), i.e.

Vxi, PA'1 (xi) - mrn[JA 1(xl), SUP min JLAj(xj)J (3)
r f(xj,j-l~njhi)=xi j-1,n;jWi

When the Af s ane fuzzy intervals and f is monotonic with respect to each variable and can be expressed
in term of arithmetic operations, the A', s are fuzzy intervals which can be easily computed using
results of fuzzy arithmetic ; see Dubois and Prade (1985, 1987). This extends the fact that, for
instance, in the above example the A', s can be obtained as the result of operations on intervals;
namely A)1 - Al rNaA 3 e A2 ), A'2 - A2 ri(A 3 e A1), A'3 - A3 ri(Al * A2), where the circled
symbols are used for denoting the extension of arithmetic operations to intervals. Indeed fuzzy

* arithmetic generalizes interval arithmetic. Note that the refinement is obtained in (2) in one step, in the
* sense that refined A'-s cannot enable us to obtain a more restrictive A'-. This can be easily checked;
* indeed, taking n =2 for notational convenience, we have

minO(A(xl), sup rnin(,±R(xllx2), A.A' 2(x2)))
x2

=sup inin(JAI(xl), lR(x1,x2), sup~ min(ItAI(xl), 9R(xllx2)), AA2(X2))
x2 Xl

A'(Xl) sinc bviously min(LA 1(xl), ttR(xlx2))!; SUP mnlA 1(xl), gLR(xlx2))
xl

In fact (2) can be viewed as a particular case of the general approach to approximate reasoning initiated
in Bellman and Zadeh (1977) and developed in Zadeh (1979), namely, all the pieces of information ae
conjunctively combined and then the result is projected. on the domain of the variable(s) in which we
are interested. Indeed (2) can be equivalently rewritten

V'i, Vxi, gLA'i(xi) - supxj min(LR(xl, -.. , x1,), RI±A(x1) -. LAi(xi), --.- ILAn(xnl)) (4)

j-1,0; joi

In case of several relations Rk the combination/projection method leads to the following
updating scheme where the Rk's are replaced by their cylindrical extenisions when they do not involve
all the variables

:5mink-i,r [min(~1Ai(Xi), SUPxj Min(LRk(Xl"I, .,Xj), miii ILA(xj)))] (6)
jmln; ji jmlIn;jmi

* Tse inequality (6) expresses that if we take into account each Rh separately in the refinement Process,
we are not sure even if we iterate the procedure as in the Waltz algorithm, of obtaining the most
accurate refinement for each variable range. However, what is gom by (6) is obviously valid and morP
easy to coampuse in general.

Nowe that in case of binary relations, the Waltz procedure (iLe. the s Puepocessing of
the Rh's) yields the most accurate result given by (5), provided there is at momt one reltion Rh
between any pair of variables (xixj) and that there is no cycle in the non-ouented graph whose nodes
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correspond to the variables and edges to the binary relations. Indeed, for instance with -3 end two

relations, we have
9A'l(Xl)= min(IAI(Xl), upx2,x 3 min(xLWM 2), 9R'(X2x3), IA2(X2), IA3(O)

m( MAI(xl),Supx 2 min(LR(X,x2),min(LA 2 (*2),supx 3 min(PR(x2,x3)*LA 3 (X3))))) (7)

2.2 - FUY QgWAities and iptgulitUin

In this subsection, we consider particular fuzzy relations which we of interest in practice

for qualitative reasoning. Approximate equalities or strong inequalities Ie.g. 'much greater than") are

examples of binary fuzzy relations which can be easily handled using fuzzy arithmetic techniques.

Indeed an approximate equality can be modelled by a fuzzy relation E of the form ILE(xy)=

9L(lx - yO, for instance

Vx, Vy, ILE(x,y) = max(, min(I, 8).-ix - y )= {OifIx-y1>8+e (8)
8 + e -1x - yl otherwise

e
where 8 and £ are respectively positive and strictly positive parameters which modulate the

approximate equality. Then the approximate equality of variables X and Y (in the sense of E) will be

written under the form of the equality

X-YfL (9)
with the following intended meaning: the possible values of the difference X - Y are restricted by the

fuzzy set L. Here L is a fuzzy interval centered in 0, i.e. L - -L since glL(d) - LL(-d) or if we prefer

IE(x,y) - PE(Yx). Similarly a strong inequality can be modelled by a relation I of the form

9i.(x,y) - I.LK(x - y), for instance l1dx~y+ .+p

Vx, Vy, jI(x,y) = max(0, min(1, )) = 0ifx y + (10)
p X-y-). otherwise

P

where . > 0 and p > 0. The constraint 'X is much greater than Y' (in the sense of I) can then be

written

X-Y=K (1)

where K is a fuzzy interval such that K - K,+) (with IqK,+..)(t) - sup I'K(S)), i.e. K identifies

itself as the set of values equal or greater than a value restricted by K.

If we know for instance that "l is approximately equal to Xj (i.e. X1 - X2 - L) and that

X 2 is much greater than X3 ' (i.e. X2 - X3 w K), we can deduce that
XI -X3=L*K

where e denotes the addition extended to fuzzy intervaisl (see Dubois and Prade (1980, 1987)). It can

1. La Odom oe duim o em adidwiec apidw ^ o Nuays nuof do nl m. ob deLad by
IAKOL(S)., -p m0a&), IL(O). ludin*M Iam1$0 . 9p i g( Whi -i dt adftmonw K ad L = qmectlse1- t-f s)

p y.amedw yth a tlas the ea of inm tdme, It cea bep mhd do ( t, k2, k3.k4) 0 01.12.13,
1 &1  1 k2 . 12. kS h- k4 +14) (ki or Ij a be aalo o.-.
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be proved that it means that it is certain that X1 k X3 + X -(8 + e) and that the value of the difference

X I - X3 belongs to L 0 K at the degree I as soon as XI k X3 + X + p - 8. See Figure 1. Then

depending on the respective values of the parameters, X1 is still greater than X3 (but may be not as

muchs X2 withrespct toX 3)(ifX>8+E),orweareonlysurethatXl is not much smaller than

X3 (ifX + p < ). Moreover, if we know that X3 =A 3, we shall get

X I -A' 1 =A 3 OL eK

This is a particular case of (7) where R = E, R' - I, A2 - (-,+-) - Al.

-L

K

-8-e-6 0 8 &-e ). )+p

Fig= 1i

2.3 - Linear constraints

Another worth-considering particular case of the general problem presented in 2.1 is the

one of linear systems of constraints. For sake of simplicity, we only briefly discuss linear systems

with two variables and two constraints of the form
alX1 + blX2 = A3

a2X 1 + b2 X2 = A4

where A3 and A4 are fuzzy sets of real numbers, and the other coefficients are real numbers. Note that

each of these constraints implicitly defines a fuzzy relation which restricts the possible values of the

pair (X1,X2). Provided that alb2 - a2bl 0, we can deduce, using (3), that

b2A3 e blA4 a2A3ealA4
X I = A " =  - X2 = A "2 =  (12)

alb2 - a2bl a2bl - alb2

with AI - A2 - (--,+-,) ; see the footnote 1 for the definition of the extended difference e and of the

product of a fuzzy quantity by a scalar. If the constraints are changed into alXI + bIX 2 a X3

and a 2X2 + b2X2 - X4 , with X3 = A3 and X4 = A4 , the ranges of possible values ofX3 and X4 are

respectively updated into A' 3 
= A3 r<alA'l 0 blA'2) and into A 4 - A4 ri(a 2 A'l * b2 A 2).

More generally, the coefficients in linear systems may be ill-known. Then direct extensions

of (12) can still be used where the ai's and bj's are replaced by fuzzy quantities and where we use the

product and the quotient defined in fuzzy arithmetics. However in that case we get ranges which are
still valid but may be larger than the actual ranges. This is due to the interactivity constraint which

requires that the values of ai or bj should be the same at the'numrators and the deominator in (12),

even if the coefficients are ill-known, and which is forgotten in a straightforward calculation. This

interactivity constraint should be taken into account for obtaining the actual ranges. See Dubois (1987)
for a general discussion of fuzzy linear programming.

-. - o _ L - I I ll I °- I
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3- umy intervmals and orders of magniLude

Standard qualitative reasoning dsinguishes between values which are mtictly negative (-),
zero (0) or stictly positive (+), and is based on the exploitafion of the following tables fcw the addition

and the product 1 0 1+1- 1? +I-I1

0" 0 +]-- + ?

+ ? 0

? ? ?.

where ? denotes the completely unknown value corresponding to the range (-<.,+.o). However, if we

know for instance that X I =+ ;X 3 =+ ; X1 +X 2 =X3

we can only deduce X2 = ? (while if X I = 0, we get X2 = +). Another simple example of the

undesirably limited representation power of the above calculus is the following

ifXl=+ and X2 =+ then X3=Xl+X2-+

then the fact that X3 > X I and X3 > X2 is forgotten. These kinds of ambiguities could be removed, if

a more precise knowledge about the orders of magnitude, which is often available, could be modelled.

Indeed we have in the general case for the first above example

X I =A ; X 2 =A 2 ; X3 =A 3 ; XI+X 2 =X 3

from which we deduce X2 = A"2 = A2 r' A 3 e A).

This kind of thing still can be done in an approximate way when the Ai's are required to

belong to a prescribed set of labels, such as, for instance : negative large (NL), negative medium

(NM), negative small (NS), zero (0), positive small (PS), positive medium (PM), positive large (PL),
unknown (?). These labels can be represented by fuzzy intervals such as the ones pictured in Figure 2.

They form a (fuzzy) partition of the real line in some sense.
1I ,,

N: NM NS PS ', PL

II I

0

The condition requested to build a meaningful qualitatve calculus am twofold:

Cl. The advantage of qualitative reasoning is linked to the existence of symbolic calculaton tables

such as the ones above. Such tables should be kept when absolute orders of magnitude are

inuoduced,

C2. The calculus, even qualitative, should remain consistent with the real line and the opermions of
the real line of which it is an approximation.

Standard qualitative reasoning trivially meets these requirmnts. However going beyond the four

,-C,, .
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symbols -, 0, +, ? may look challenging. Indeed the closure property of the table sem to be
incompatible with condition C2. For instance let S be the totally ordered set of symbols (NL, NM,
NS,0.PS.PM, PL) ;PS *PS- PM looks reasonable aft sigh But PS is of the0form1,aand
PS * PS w ]0,2a] * PM - [a,b]. Moreover lir nPS =?. Hence results obtained from the addition

n...+m

table built from 8 such that PS * PS = PM is inconsistent with the addition on the reals.

Ii does not mean that qualitative reasoning based on absolute orders of magniude is a
utopia. Interpreting orders of magnitude as intervals or fuzzy intervals apparently forbids the closure
property of calculation tables. But the closure property can be preserved on sibs= of 8 containing
adjacent elements, instead of 8 itself, provided that we look for the best approximation (i the sense of
inclusion) of si e sj by means of unions of adjacent Sk'S, i.e. si . sj .(. U {sk}. Note that the

keK

introduction of the symbol ? in the usual qualitative tables meets the same purpose, that is
+e- (-,O,+) = ?. What is proposed is just a generalization of the way the symbol ? appears.

The example of Figure 2 leads to consider the following term set % = (NL, NM, NS, 0,
PS, PM, PL, (NL,NMJ, [NMNS], (NSPS].... [NL,PM], [NMPL], ?) where [sisj] = (Sk I
si<sk<Sj) forsie 8-(0),sje 8-{0),si<sj. Ofcourse+ [PSPL] and- = NL,NS]. Notethat

(n + 1)n
if 8 has n elements distinct from 0 then 1%1 - (n +(n- )+... +) + 1 = I + I elements. Here

2
I'1 = 22, for instance. This size is not so large for contemporary computers.

e PI PM In. PM'PM4 l

P1 + PM+ PL + PM+  +

PM PM+ PM+ PL P' + PM+ PM+
L PL PL I PTL PL PL PL

PM" + pM PL + PM+  +
PM4 +  PM P PM K+PM' P4

* + P PL + PM+  +

Table2: PM- = [PSPM] ; PM+ = [PMPL]

In Table 2 is part of the addition table (for strictly positive symbols), without any

assumption regarding the model of PS, PM, PL (except that they are adjacent). Note that this Table
corresponds to an associative operation, when restricted to positive values. However, it is no longer
possible to preserve associativity on the whole table. This is due to the approximation procedure since

associative operations remain associative when extended to intervals or fuzzy intervals. For instance
with NL = -PL, (NL PM) e PS a -ePS a NLPSJ], while IL e(PM * PS) - NL* P• M+?.
However this lack of associativity does not prevent to use this approach, since the ranges which are
obtained will be always vaUd evae if they may be too large with respect to the available knowledge.
Moreover, we may try to perform operations in a way wher no information is lost.

/
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The addition law can be improved (with regard to the precision of its results by subsequent
requ tfor instance PS P PM-, which for PS 0,a], PM [a,b with 2a&<Sb. Noe that
it is not necessary to use f intervals. Adjacent intervals can do the job. However there will be
disconiinuity problems when the (real) values of variables cross the boundaries of the intervals
modeling the symbol Only fuzzy intervals can cope with these problems.

4- Fuzzy relations and orders of magnjtude

Orders of magnitude can be expressed in an absolute way in terms of labels such as
"small", "medium" or "large" which can be represented by fuzzy intervals, as said in section 3. They
can also be handled in a relative way by means of relations. This is the topic of the present section.
Raiman (1985, 1986) has proposed a formal system for order of magnitude reasoning with three
binary operators: Ne (for 'negligible in relation to), Vo (for 'close to'), and Co (for 'comparable to).
Inference rules, which can be justified from a Non-Standard Analysis point of view, describe how
these operators work together. See Bourgine and Raiman(1986) for an application in macroeconomics.
In the following, we discuss the modeling of these operators in terms of fuzzy relations.

The idea of closeness seems to be naturally captured by an approximate equality relation.
Raiman (1986) relates the ideas of closeness and of negligibility in the following way: 'x is close to y'
is equivalent to '(x - y) is negligible in relation to y'. In other words, 'x is negligible in relation to y' if
and only if 'x + y is close to y'. If we use an approximate equality of the form gIE(xy) = tiL(IX - yl) (as
in 2.2) for modelling 'close to', the above equivalence would lead to a definition of 'negligible' which
would not be relative (since I(x + y) - yl = xi does not depend on y), but absolute. It can be avoided by
defining the fuzzy relation 'Vo' in terms of a quotient, i.e.

x

tiVo(x,y) = gIM(-) (13)
y

where the characteristic function AIM is such that JLM(l) = 1 and JLM(t) = IM(-). Thus we have
t

gIVo(xy) - LVo(Yx) and M is a fuzzy interval which restricts values which are around 1 and which is
Iequal to its "inverse", i.e. M - - (however we have not M2 - 1 !). Then it leads to define the extent to
M

which x is negligible in relation to y, by
x+y

tiNe(x,Y) - xM( y) (14)
y

The combination/projection method, used in 2.1, enables us to perform the composition of
Vo or of Ne with itself, or of Vo with Ne. The following rnsults an easy to estbish 2

2. Wmlng : in inurval Widianc ad morn puanly in fuzy aitwaic die; Mob Is sqi to fa2 M idf y
M is eaiw positive (Le. 'M(x)( k )arnegdve 6s- P(x) > 0 I, x ! 0). Hem in -ce M lspa
bt na(M-1).
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sup mlil(ILVO(XY), ILVO(YZ)) PM(-) Z IVOWxz (15)
y z

sup MiA(IQVe(X-y), ILN(Y,) - P[(M-1M1) * j(- ) 9M(Z) (17)
y z

SWp Min(IVO(x +Y), 4- AYA - ILM( ) a lt$-) SI(X (17)
y z

They correspond O the following inference rules proposed by Raiman (1986) (for sake of brevity, here
we only discsa puofhe 3rules ued inhe fomlsyUM)

(1) (X VOY) A (yVOZ) (X (VO Z) ;(h) (X Ney) A (yN-.Z) -~(x Nez)
(Iii) (X VOy) A (yNP.Z) (X (NeZ) ;(IV) ((X +y)VO Z) A(y NeX)- (X VOZ)

The fuzzy relation approach shows that several of these rules ae only "qualitatively valid". Indeed in
(15), the fact that MM is a fuzzy set which contains. M mirrors the intuitively satisfying lack of
transitivity of the fuzzy relation Vo, strictly speaking. By contrast, as shown by (16), the relation Ne ia
transitive. The repeated use of the formal rules (i), (iii) or (iv) without control can lead to dubious
conclusions in a way similar to worites such as the bald man paradox (ie., adding an hair to a bald man
leaves him bald, but if we repeat the addition ... ). The results of the composition of fuzzy relations,
such as (15)-(18), are easy to compute in terms of simple fuzzy arithmwe operations on X. The
fuzzy relation calculus enables us to reason about closeness and negligiblity in a rigorous way without
limitations on the chaining by means of control techiniques.

N.. Inference rules expressing the conmpatibility of the relations with respect to arithmetic

operatios,such as (XVO Y) A(z Net) -xzNe ycan bealsodiscussed inour famework ndeed it
can be proved that

SuK,Z~t min(JLVo(x-y), IJ.N@(z-t)) - 9N(M-,1) . l(- -) 2: ge(uv) (19)
u-xz, V=yt v

Again we see that the rule is only "qualitatively valid", L&e xz may be slightly less negligible with
repc to yt than z in relation to tL Alternatively, we could compute what is the possibility that u is not
negligible (in the seaeof Ne) with respect to v.fim (19).

~LZNote that we have only an approximiate equality between ILNe(xy) and I'~e(-xy) using (14);

a perfect equality could be recovered by modifying (14) into p'(xy) - 1/--).

H.LI RAiman (9")mamse of a tuurelation Co whih is sch if xVo y. then xCo y
and exprsses that two values have dsme sign and dho same orde of nugide. We may mwgne to
define Co in reladon to Vo and No in dlffute ways, for hotice byuexpressingthat xCo y 1ff
Vz x N z * yNis z, following aiman (1986). Another way would be to am w ha Co y if
nOtj((X ey) A(y M x)] in thesense ofamos fuzzy neptim a tobecboee nseladon with pM in

order to have nuxKA(,I + Q),.~~. nW 1 . Z;t(u), W (in order to pumaus p4CO k IpVO).

/ u
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5 -Concludingo rmark.

Other tools, not presented here, which have been also developed in fuzzy set4 possibility
theory, may turn to be useful in qualitative reasoning. Qualitative descriptions of the dependency
between variables of the form "the more (or the less) X1 is Al and... and Xa is An. the more (or the

less) Y is B", where Al, ..., A n and B are gradual properties, can be conveniently repireented (by
means of a special kind of fuzzy relation) and dealt with in the framework of fuzzy logic, as recently
shown in Dubois and Prade (1988). Such gradual rules naturally provide a qualitative description of
the behavior of systems. For instance, with n - 2, A1 a large', A2 = 'small', B = large' and the

hedges "the more... the more", we express that "if X1 increases and X2 decreases then Y increases"
(the nature of the increasingness or of the decreasingness can be modulated through a proper choice of
IIA 1, MA2 and 'B).

Besides, a methodology for the control of complex dynamical systems by means of fuzzy
expert rules which provide a qualitative description in terms of fuzzy sets of the relation between action

variables and observable state variables, was settled more than ten years ago (Mamdani and Assilian,
1975) ; see Sugeno (1985) for an overview of existing applications. People in Artificial Intelligence

have also considered the problem of qualitative control recently (e.g. Clocksin et Morgan. 1986).

The intended purpose of this short communication is to point out that fuzzy set and
possibility theory can offer valuable tools for qualitative reasoning problems. In particular
"ommonsense" arithmetic reasoning (e.g. Simmons, 1986) can be easily handled using fuzzy

intervals and fuzzy comparison relations. This framework is especially useful for interfacing numerical

data and symbolic information.
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