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90. Abt ract (continued)

moisture forecasts from the addition of SSM data, but moisture and cloud analyses were

clearly improved when the SSM data was assimilated; a decrease in global root mean square

error of about 5% was indicated.
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irrov~d capabilities to specify the moisture field (including water

vapor, cloud, and precipitation) are potentially afforded by an optimally

designed combination of satellite-based sensors. The implications for

nu.Merical weather prediction (NWP) are promising, since, radiatively, water in

its manv forms is the most active constituent of the troposphere (Isaacs et

al., 1986). " ile infrared cloud contamination may often be circumvented by

exploiting the high horizontal resolution of infrared sensors, microwave

teioperature retrievals suffer little degradation from the presence of cloud.

This advantage also applies to some extent to the retrieval of the atmospheric

moisture profile from millimeter wave data.

A strong feature with sufficient line strength for this application, is

'he (313-220) rotational line of water vapor, located at 183.31 GHz. Two

ins' ruints have been proposed to utilizc the 183 Cliz absorption line to

obtain watcr vapor profiles in the 1990's time frame. These are: (a) the

civilia n Advanced Microwave Sounding Unit (AMSU)-B package, a five channel

radiometer to be flown as part of the first NOAA-NEXT satellite, and (.b) the

Defense Meteorological Satellite Program (DMSP) SSM/T-2 millimeter wave

moisture sounder, an enhancement of the current operational SSM/T-I microwave

temperature sounder.

This study presents the results of state of the art observing system

simulation experiments (OSSEs) designed to assess the impact of of the Special

Sensor Microwave 183 GHz (SSM/T-2) water vapor sounder and the associated

SSM/T-l temperature sounder on NWP. A novel feature of the present study is

the comprehensive approach we have taken to simulating the SSM/T microwave

(T-1) and millimeter wave (T-2) data. Our study is based on the nature run

prepared by the ECMWF and simulated FGGE data base prepared by NMC as de-

scribed by Dey et al. (1985) for the period 10-30 November 1979. The forecast

analysis system for the OSSE is the AFGL Global Spectral Model (GSM) (Brenner

et al., 1984) and the AFGL Statistical Analysis Program (ASAP) (Norquist,

1986). Four observing system configurations are investigated: (1) in experi-

ment NOSAT only the conventional upper air soundings and aircraft reports are

used; (2) in experiment STATSAT, the currently operational civilian tempera-

ture soundings (TOVS) aze added; while (3) in experiment SSMSAT the SSM/T

temperature and moisture soundings are added to the NOSAT configuration;

finally (4) in experiment SSM+TOVS, both the SSM and TOVS data are added.

• " • • • m m | | II



As an aid to interpretation, our OSSE results are calibrated against

results from (real data) observing system experiments (OSEs) described in more

detail by Louis et al. (1988). In addition to conventional assessment indices

(such as geopotentiai height fields, etc.), our analysis of the results also

focuses on moisture related variables. We identified two measures of impact

of particular interest: relative humidity and cloud amount. Due to the

importance of moisture fields to the prediction of electro-optical systems

effectiveness, it is useful to study a variable directly related to water

vapor. Relative humidity is the parameter most commonly used as an input to

propagation models (Moore and Peterson, 1984). This assessment will be

important for situations with moderate to high relative humidities.

For situations near saturation, cloud prediction indices are most

important. Therefore we have examined the rms and bias error of cloud

fraction. Since cloud amounts were not saved during the nature run, truth is

based on the diagnosis of large scale (i.e. non ccnvective) cloudiness from

the nature run relative humidity fields. We find that the statistical

measures of impact based on cloud amount are closely related to those based on

relative humidity. We note that special attention is given to the simulated

retrieval errors in the presence of cloud. Cloud and retrievals over land are

two situations where problems with the 183 GHz retrievals are expected based

on previous retrieval simulation studies (Isaacs and Deblonde, 1985).

The plan of this report is the following: Section 2 discusses OSSE

methodology in general and develops the methodology for realistic simulation

of the SSM sensors. Background material describing the scientific basis for

the 183 GHz sensor have already been reviewed by Isaacs (1987). This material

is not repeated here. Section 3 describes the reference atmosphere and

simulated conventional data. Section 4 describes the sensor simulation study

of the SSM/T statistical (i.e. D-matrix) retrievals, and our plan for

simulating SSM/T data for the OSSE. The simulated SSM/T data observational

errors are based on the results of our sensor simulation retrieval study.

These results are examined in Section 5. Section 6 contains the specific OSSE

design we employed. Results are reported in Section 7. Finally, Section 8

contains a summary and our main conclusions.

The experiments described here were conducted in tandem with an OSSE to

determine the impact of Doppler wind lidar instrument or WINDSAT. The WINDSAT

2



study makes use of the same baseline OSSEs and OSEs as the current study. The

WINDSAT study is described in a companion report (Scientific Report No. 7) of

the current effort. Each report may be read independently: To achieve this

we have repeated some common material in both reports.

2. Background

OSSE studies run the gamut from simple insertion of grid point values

into unsophisticated models to the use of complex radiative transfer models to

simulate data for operational forecast analysis systems. The current study is

relatively sophisticated and state of the art. As a reference point we

discuss in S, ction 2.1, considerations which might lead to an ideal OSSE. We

then describe our methodology for simulating remotely sensed data (Sec-

tion 2.2). This methodology is later applied in Section 3 to the SSM/T-1,2.

2.1 General OSSE strategy

There are four components common to any OSSE:

i) A four dimensional reference atmosphere, often called the nature

run. This is considered to be the "TRUTH".

2) A sampling procedure to obtain observations.

3) A data assimilation system, composed of a forecast model and

analysis procedure.

4) A quantitative verification procedure.

Usually, the nature run is simply a long forecast made by an advanced NWP

model or Global Circulation Model. The more sophisticated the nature model,

the better. Remotely sensed data are influenced by many geophysical

parameters, including sea surface temperature, atmospheric aerosol, clouds,

etc. In some cases these parameters affect the accuracy of retrievals of

other parameters or make such retrievals impossible. These parameters may be

responsible for spatially correlated observing errors by inducing local

geophysical biases in the retrieved fields (Hoffman, 1988). These parameters

should be included in the nature run. For example, SSM/T should provide less

accurate retrieval of atmospheric boundary layer humidity over the ocean when

3



wind speeds are high and the surface emission dominates the atmospheric

emission.

From the point of view of NWP, the most important characteristics of any

proposed remote sensing system are its geographical coverage, horizontal and

vertical resolution and its error characteristics. In a simulation study

these characteristics must be properly accounted for. These considerations

lead immediately to a number of issues which bear on the interpretation of the

results of OSSEs.

For NWP, it is not just accuracy of the measurement which is important,

the measurement must be representative as well. NWP is really concerned with

the spatially and temporally smoothed behavior of the atmosphere. Variations

on the scale of meters and seconds, in fact on the scale of kilometers and

minutes, are generally sub-grid scale and are parameterized within the

model. Consequently, that part of the measured signal attributable to these

scales is considered to be noise from the NWP point of view. This source of

error can in some cases be predominant. A prime example is radiosonde

observations (RAOBs). When two radiosondes are carried by the same balloon,

agreement of the measured quantities is very good, but measurements made by

two radiosondes, some distance apart, do not agree as well. One implication

of this is that as models improve in resolution, this source of error

decreases. No existing global model has fine enough resolution to'represent

all scales of motion which exist in nature. In fact the smallest scales

represented by models are usually severely damped for computational reasons.

A method to unfilter the nature run was suggested by Hoffman (1988).

The procedures for simulating data from the nature run should be as

realistic as possible. The process of simulating the observations should be

sophisticated enough to generate realistic observing error statistics.

When generating errors for an OSSE, we would like to divide the process

into the following parts:

(1) Representational errors. The nature model state should be

unfiltered to restore realistic small scales to the model state.

(2) Sampling. The realistic model state is interpolated to the

observing locations. (Space and time interpolation are used as needed.)

4



(3) Geophysical local bias. Local biases, depending on the sensor type

and on the geophysical parameters of the realistic model state, will be

added. Global biases should be corrected by the data producer and may be

ignored in an OSSE.

(4) Random error. The last error component is random. It might contaiin

vertical and horizontal correlations. Note, however, that representational

errors and geophysical local biases already induce vertical and especially

horizontal correlations. We feel that horizontal correlations are mostly

caused by representational errors and geophysical local biases. On the other

hand, vertical errors may be correlated if the sensor retrieval algorithm

interrelates several independent observations to a profile of retrieved

temperature or other variable.

(5) Sensor filtering. When a sensor uses a statistical retrieval

method, all its observations should be filtered by projecting onto the

vertical basis functions which are used in the retrieval. This is also true

for so-called physical retrieval methods.

Note that (3)-(5) above can be replaced by simulating the sensor and its

retrieval scheme (e.g. Atlas et al., 1985). However, this is costly, and we

would prefer instead to perform selected sensor simulation/retrieval studies

in order to define reasonable local biases. For example, we might study

retrieval bias as a function of cloud amount for each retrievable parameter.

Such studies are of interest in themselves.

Spatially correlated errors are difficult for an analysis scheme to

remove, because the data tend to corroborate each other. Real data tend to

have correlated errors. Even for radiosondes, significant vertical error

correlations are present. The data used in the present experiments had data

errors which are almost totally uncorrelated. As a result the errors are too

easy for the analysis to filter. Atlas (1988, pers. comm.) reports that he

undertook some Perfect data experiments in which the random errors were

absent. The results of these experiments are nearly identical to the results

of the experiments which had random errors.

The data assimilation system forecast model and analysis procedures

should be as realistic and up to date as possible. Impacts of observing

systems depend to a certain extent on the forecast and analysis methods
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used. In some cases, there may be a severe mismatch between the analysis

system and the new data. For example, the AFGL analysis system does not

presently include a surface pressure analysis nor does it use surface pressure

observations in the upper air analysis; clearly adding a new source of surface

pressure data would have no impact. In general it must be noted that

operational analysis systems have been tuned for the data they normally

receive. The best use of a novel data type may require considerable effort.

Verification of OSSE results is easy because we have total knowledge of

the "TRUTH". In these experiments we may legitimately use the word error

instead of difference when we compare an experiment to the nature run.

Interpretation of these results is not so easy. As noted above, OSSE results

are typically too good. The control case is often so good that there is

little room for positive impact. There are two reasons for this: first, the

forecast model is more similar to the model used to generate nature than it is

to the real atmosphere. Second, the observational errors are too random and

easy for the analysis to filter out. For these reasons it is desirable to

calibrate the OSSE results to OSE results. In the present case we conduct two

OSSEs, NOSAT and STATSAT, for which we have previously conducted analogous

OSEs. We use only a very simple calibration procedure in Section 7.-

Basically we assume OSSE impacts in statistical measures relative to STATSAT

are proportional to corresponding OSE impacts in deriving our estimates of

actual SSM/T-I,2 impacts.

It is possible to use a series of real analyses for the reference

atmosphere, but the results of such experiments would be difficult to

interpret for the following reasons. In this situation the "TRUTH" is the

actual atmosphere, not the reference atmosphere. Therefore, in data rich

areas, the reference atmosphere would agree well with the "TRUTH" while in

data voids it would not. Consequently, simulated observations from the new

observing instrument in data rich areas would add correct information, but

have little impact because of the concentration of other observations already

available, while simulated observations in data poor areas would add erroneous

information, which would be carried by the model during the data assimilation

cycle to other areas. If the results are then verified in data rich areas we

might obtain a negative impact by adding a new observing system. Greater

accuracy in the simulated observing system would not avoid adding erroneous

data in data poor areas.
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2.2 Sensor simulation methodology

Our general approach to sensor simulation, which is specialized to the

SSM/TI,2 in Section 4 is described here. Consider a vector of geophysical

parameters. Let t be true values and r be retrieved values from a sensor

simulation study. We will study the error

e - r - t. (2.1)

Our object is to model e in terms of a white noise process so that we may

simulate realistic observations using a pseudo-random number generator. Since

the retrieval has only a limited number of degrees of freedom, we project

(2.1) onto the empirical orthogonal functions (EOFs) of the retrieval scheme,

obtaining

e- r - t . (2.2)

Here, for example, T is given by

- T
t - B (t - ) (2.3)

where B is the matrix of EOFs and p is the ensemble average. Our simulated

values will be obtained by adding values of the modeled e to values of

sampled from nature and then transforming back to physical space.

We model e in terms of geophysical parameters, g. To account for a

constant term, we assume that the first element of g is one. Our analysis

will yield

e - Ag + n (2.4)

where n is a noise process with zero mean and covariance matrix <n nT>.

These n may be modeled by

A
n - Cc (2.5)
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where C is the matrix of eigenvectors of <n RT> and the e are white noise.

Combining (2.2), (2.4) and (2.5) yields our model of r,

A -

r - B(t + Ag + Cc) + (2.6)

In (2.6), E is obtained by projecting the values from the nature run according

to (2.3), g is a vector of geophysical parameters diagnosed from the nature

run and e are obtained from a random number generator. The B, A, C and p

are constants from the retrieval algorithm and our analysis of the sensor

simulation data.

3. Data Sources

The data used in this study, the nature run and simulated observations

exclusive of the SSM data were prepared by ECMWF and NMC respectively as

described in a report by Dey et al. (1985), which we summarize below in

Section 3.1 and 3.2 respectively. These data were prepared as part of a joint

NMC-ECMWF-NASA/GLA effort to conduct WINDSAT experiments which began as a

result of a workshop held at NMC in February, 1983. The 10 - 30 November

period was chosen for this work because both ECMWF and GLA had already

conducted real data OSEs for that period. Two TIROS satellites were in

service during this period. Further details of our OSSE design are given in

Section 6.

3.1 Nature run

ECMWF generated the nature run. The nature run is simply a 20 day.

forecast from the FGGE IlIb analysis produced at ECMWF for 00 GMT 10 November

1979 (Bengtsson et al., 1982). The model used in the nature run forecast was

a version of the 15 layer, 1.875 ° grid point model (Hollingsworth et al.,

1980; Tiedtke et al., 1979). This model included fairly complete physics with

a diurnal cycle.

To conserve storage space, as we unpacked the gridded nature run tapes we

interpolated the 1.875* grid to a 2.5" grid which we have used for all our

data sets and comparisons. A 2.5* grid is substantially finer than the

spectral transform grid used by our R30 forecast model and is therefore more

than adequate to present our results. In fact the nature run is rather
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smooth, smoother than many of our analyses and forecasts, and the 2.50 grid is

more than fine enough.

3.2 Simulated observations

NMC simulated the FGCE Level lib data for the period, in the NMC folmat

(Office Note 29) from the ECMWF nature run. Almost all Level lib data were

simulated. However NMC did not simulate constant level balloon data (COBAL),

experimental satellite stratospheric sounding data (LIMS) and significant

level data. Later GLA converted the NMC data to the standard FGGE format

(WMO, 1986). We received copies of the nature run and FGGE format Level lib

data from CLA, courtesy of R. Atlas.

The simulated standard FGGE Level IIb data were created by replacing all

the observed atmospheric variables in the real FGGE Level lib data with values

interpolated from the nature run corrupted by adding a simulated observing

error. Therefore if a particular radiosonde report is missing in the real

data, it is missing in the simulated data, if it is present in the real data,

it is present in the simulated data and has the same quality control marks and

missing data flags as the real observation. This yields very realistic data

coverage and quality control in the simulated data. However certai

discrepancies are possible: For example, CDWs may be present where the

moisture field in the nature run is inconsistent with cloudiness. Typical

data coverage by standard FGGE IIb data is shown in Fig. 3.1. The data points

shown are those actually used by the analysis program, after a gross error and

buddy checking quality control; all data with observation times in a 6-hour

period centered on the analysis time are shown. The radiosonde locations are

those with height observations used for an analysis at OOZ on 25 November, at

the a - 0.5 level. All other plots in Fig. 3.1 show data locations for OOZ on

21 november. Cloud track winds are most numerous at low levels (a - .86 and

.72) and upper levels (a - .27 and .22), whereas aircraft wind reports are

concentrated at upper levels (a - .27 and .22). Coverage by the TOVS data,

shown here for height observations at the a - 0.5 level, illustrates the

satellite tracks and the fact that retrievals over land were not used.

The value of the nature run at an observing location is determined by

spatially interpolating the nature run at the closest synoptic time (00, 06,

12 or 18 GMT). The vertical interpolation is linear in In(p) and the
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horizontal interpolation is quadratic in latitude and longitude for height

(Z), wind components (u,v), and temperature (T). For relative humidity (RH),

the horizontal interpolations are linear.

The simulated observational error which is added to the value of the

nature run at the observing location is composed of a bias and a random

Gaussian error which is not correlated with anything else. The size of the

random error, or observing error standard deviation (OESD) is appropriate for

the particular observation. The OESDs depend on report type, variable and

pressure level and are displayed in Table 3.1 reproduced from Dey et al.

(1985). Biases are zero except for TIROS.

The TIROS biases depend on retrieval path and are displayed in Table 3.2

reproduced from Dey et al. (1985) which is based on Fig. 2 of Schlatter

(1981). In actual practice, the retrieval paths, labeled A, B and C are set

depending on whether the retrieval was deemed clear, partly cloudy or

cloudy. Note that the OESDs in Table 3.1 for TIROS also depend on the

retrieval path (and are based on Fig. 3 of Schlatter; 1981). In simulation

the retrieval path was determined from the nature run total fractional cloud

coverage, f, according to

A if f <- 60

Path-i B if 60 < f <- 90

C if 90 < f

This relationship was tuned to give approximately the same proportion of the

different retrieval types as were actually observed on 12 November 1979. The

nature run cloud coverage in turn is deduced from the nature run RH as

described below. Since the nature run RH field is spatially correlated, the

TIROS observational errors will be also. All other errors are uncorrelated.

The nature run cloud fraction at 500, 700 and 850 kPa is determined using

a version of Fye's (1978) cloud fraction to RH conversion algorithm. This

algorithm is tuned to the ECMWF forecast so that the nature run cloud

statistics are reasonable. Any effect of high cirrus cloud on the observation

errors is ignored. Layer and total cloud amounts are then calculated assuming

random overlap between individual cloud levels within the layer. (That is,

cloud free fractions multiply as one progresses down through the atmosphere.)

10



The simulated data described here are quite complete and realistic, yet

have two major failings. First the observational errors are uncorrelated.

For example, consider the CDWs: The typical CDW OESD used is of the proper

size (order 8 m/s), but real CDW errors have large horizontal correlations due

to height assignment errors which are responsible for the largest part of the

OESD. In reality, then, the CDW errors are not much reduced by the filtering

of the analysis procedure. In the simulation experiments described here, on

the other hand, the analysis is able to average out the CDW errors very

effectively because they are uncorrelated and the observations are dense.

Second the nature run has little energy in the smallest scales. Small scale

energy present in the real atmosphere, must be considered part of the

observational error and thereby induces spatially correlated errors for all

observations. The absence of this source of error also contributes to the

(unrealistic) ease with which the analysis averages out the observational

errors in the simulation experiments.
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Table 3.2 Biases Used to Simulate TIROS Temperature Retrievals for November

Retrieval Method

Pressure Layer A B C

50-70 0.0 0.0 0.0
70-100 -0.7 -0.7 -0.5
100-150 -0.5 +0.15 -0.1
150-200 -0.1 +0.3 +0,4
200-250 +0.5 +0.6 +1.2
250-300 +0.6 40.5 +0.9
300-400 +0.1 -0.05 -0.15
400-500 -0.4 -0.3 -1.1
500-700 -0.5 -0.35 -1.2
700-850 -0.5 +0.35 -0.6
850-1000 -0.35 +0.3 +1.65
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4. Sensor Simulation Study of SSM/T D-Matrix Retrievals

Application of the methodology described in Section 2.2 above to simulate

the T-1 and T-2 retrievals required several processing steps. These steps

which include manipulation and extraction of the nature run data, radiative

transfer simulations based on the extracted nature run data, and statistical

analysis of the simulation data are described in greater detail below.

4.1 Generating dependent and independent data sets

The first step involved generation of two data sets containing selected

temperature and relative humidity profiles culled from subsets of the nature

run. The temperature and humidity data sets, labeled (Dependent) Set 1 and

(Independent) Set 2, were the basis for conducting statistical retrievals and

generating retrieval error statistics which were used to simulate retrievals

for the OSSEs.

A particular objective of our work is to realistically reproduce the

error characteristics of the millimeter/microwave observing system, including

its spatial attributes. Some type of retrieval classification is necessary

because geophysical paramet4rs such as cloudiness or surface type directly

affect the quality of the retrieval. The categories used to construct'the

matrix for the statistical retrievals (the so called D-Matrix) from Set 1 and

retrieval error statistics from Set 2 are indicated in Table 4.1. Note that

the number of categories for water vapor is twice that for temperature since

cloudiness has little effect on temperature retrievals. We anticipated that

having more retrieval verification categories would induce horizontal.

correlations in the OSSE retrievals.

Sampling of the nature run was conducted so that each category contained

approximately 200 to 700 profiles. Set I profiles were extracted from nature

run output valid at 00 GMT on 17 November and at 12 GMT on 26 November.

Statistical retrievals were performed within the actual time period chosen for

the assimilation experiments at 12 GMT on 21 November and 0 GMT on 22

November. Throughout the experiment only oceanic profiles were used since the

impact of the data would be greatest in these regions.

In order to account for the effects of cloud and ocean surface roughness,

40% of all profiles were randomly flagged as cloudy and 30% of all profiles
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were flagged as having high surface wind. These percentages are consistent

with global wind (SEASAT) and cloud statistics, (personal communication,

R. Atlas, 1988; Newell et al., 1974) and no attempt was made to assign cloud

and wind flags based on actual geophysical features. During retrieval

simulations, however, surface wind and relative humidity, acting as a

surrogate for cloud cover, were used for classification. To insure realistic

representativeness of the statistics all conditions are sampled rather than a

random distribution.

4.2 Preprocessing geophysical profiles

The nature run temperature data are on 12 mandatory pressure levels

ranging from 50 mb down to 1000 mb, while the relative humidity data is

specified on the lowest 6 mandatory levels (1000 - 300 mb). Since the

numerical model we have used to simulate radiative transfer in the milli-

meter/microwave spectral region, RADTRAN (Falcone et al., 1982), requires

temperature and water vapor information on 64 pressure levels from I mb to

1000 mb, preprocessing of the extracted profiles was performed. Temperature

profiles vere interpolated vertically (linear in In p) between 1000 mb and

50 mb. Above 50 mb climatology from the U.S. Standard Atmosphere Supplements

(1966) was used. Relative humidity profiles were converted to water vapor

density and then interpolated vertically between 1000 mb and 300 mb, with

climatology from the Phillips radiosonde set (Phillips et al., 1988) used

above 300 mb.

4.3 Computing brightness temperatures from geophysical profiles

Radiative transfer simulations were run for each of the 12 instrument

channels indicated in Table 4.2 (Falcone and Isaacs, 1987). The brightness

temperature at frequency v, Tb(v), was evaluated from (Isaacs et al., 1988):

T b(,)- { T + (1-fs) (Tcr'(O) + JST(P)dr]I } V(p) + T(p)drV  (4,A)

where

T (p) - exp [- J0 k(vp')dp'/p (4.2)
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and

Tv(p) - exp [- s k(a,,p,)dp,/p] (4.3)

Here A is the cosine of the path zenith angle r and r' are the upward and
V V

downward transmission functions, and Tc is the cosmic background tempera-

ture. Since all simulations were performed for nadir fields-of-view, the

zenith angle cosine, A. in (4.2) and (4.3) above was set equal to unity.

The nonscattering radiative transfer equation (4.1) is used for all

simulations since scattering by cloud size droplets is negligible. The cloud

model drop size distributions (Table 4.3) have mode radii of less than 10 Am

with appreciable numbers of drops falling off rapidly beyond 100 Am. The

single scattering albedo for such drops at 183 GHz is about 10-4 . Generally,

a single scattering albedo of 0.05 or greater is required before a significant

scattering source function is attained. At 183 GHz, this implies significant

numbers of drop sizes of a few millimeters or more, i.e. precipitation sized

drops. Due to the nature of the cloud drop size distributions treated, there

are few such large droplets (Deirmendjian, 1975).

Profiles of atmospheric absorption coefficients, k(v,p), for each

frequency of interest were calculated using the RADTRAN simulation algorithm,

and these provided the transmission profiles (4.2), (4.3) necessary to

evaluate channel brightness using (4.1). The channel set and design noise

equivalent brightness temperatures (NEAT's) for the SSM/T-l and T-2 sensors

are given in Table 4.2. For Set 1 profiles no noise was added to computed

brightness temperatures since these were only used to construct D-Matrices.

During simulations using Set 2 profiles Gaussian noise with a mean of zero and

standard deviation equal to the channel NEAT was added to each brightness

temperature.

The procedure described above was applied to clear sky simulations. To

simulate the effect of cloud within the field-of-view of the radiometer, a

suitable set of cloud models was incorporated within the evaluation of the

atmospheric attenuation profiles. The cloud models chosen were taken from the

AFGL FASCODE model (Falcone et al., 1979). Mode radii, cloud liquid water
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content (LWC), and the vertical extent of the five cloud models are given in

Table 4.3.

Cloud attenuation, a(v,T,z), was calculated using the Rayleigh

approximation (van de Hulst, 1957):

2

a(v,T,z) - 6R Im (- m 2 ) LWC (4.4)m 2+ 2

where P is the frequency in wavenumbers, m is the complex index of refraction

of water evaluated using Ray's (1972) empirical expression, and LWC is the

cloud liquid water content. Falcone et al., (1979) have shown that the use of

the Rayleigh approximation instead of the full Hie theory for these cloud

models is justified for frequencies less than about 300 GHz.

Clouds were incorporated into the brightness temperature simulation

process by randomly selecting from among one of the cloud types with

associated LWC given in Table 4.3 or choosing the option that the simulated

scene was clear. Cloud attenuation calculated from (4.4) was then added to

the clear sky absorption for each atmospheric layer within the vertical domain

specified for the selected cloud type model. The effect of partially filled

fields-of-view was then treated by multiplying the local cloud attenuat.ion by

a random number between 0 and 1. It was assumed that all cloud types were

equally probable, and that only a single cloud layer was present. The second

assumption tends to underestimate cloud impact, but we note that these

assumptions could be relaxed given appropriate cloud coverage statistics and

frequency of occurrence data. Given that beam filling is particularly

unlikely for cumuliform clouds with horizontal extents of a few kilometers

this treatment of the field-of-view should be more accurate. Since the

profiles of temperature and water vapor were given at constant pressure levels

rather than at constant heights as are the cloud models, cloud vertical extent

had to be interpolated to the appropriate pressure level within individual

profiles. Within cloudy layers relative humidity was not adjusted to

saturation.

Finally, for millimeter and microwave radiation surface emissivity is

typically less than 1.0 and retrieval results are highly sensitive to

characteristics of the underlying surface (Isaacs and Deblonde, 1987). During

simulations we allowed the emissivity to vary with sensor and surface type
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according to Table 4.4. These are consistent with the RADTRAN surface

emissivity models given by Isaacs et al. (1989).

4.4 D-Matrix and statistical retrievals

A variety of possible retrieval approaches could be applied to the

183 GHz water vapor retrieval problem. These include both physically based

methods and those relying on statistical principles. These are summarized in

Table 4.5 (see Isaacs, 1987 for further details). For this study we have

adopted a simple statistical approach.

The specific statistical inversion or D-Matrix approach to atmospheric

parameter retrievals has been described by various investigators (Rodgers,

1976; Smith and Woolf, 1976; Gaut et al., 1975; Isaacs et al., 1985). It is

essentially a least squares approach which finds the most likely combination

of atmospheric parameters which yields the set of observed radiometric data.

The method used here utilizes an eigenanalysis of the observed data and

retrievable parameter covariance matrices. Briefly, an individual retrieval

of temperature or relative humidity on k vertical levels from n channels of

brightness temperature measurements is represented by the matrix equation:

p - Db

with

D - (PBT) (fA'&I
T)

where

p is a vector containing the retrieved profile

b is a vector containing n brightness temperatures

Pks is the retrievable atmospheric profile at k levels for s

samples

Bns are brightness temperatures for n channels and s samples

4 are eigenvectors of BBT

A is a diagonal matrix whose elements are the corresponding

eigenvalues

By setting some of the diagonal elements of A to zero, the method allows one

to retain only those EOFs whose corresponding elgenvalues are relatively

large. This yields a more stable matrix inversion and reduces the effect of
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noise in the brightness temperature data. In this study, then, the tempera-

ture and relative humidity profiles and associated brightness temperatures

from Set 1 were combined to construct D-Matrices for each of the categories

shown in Table 4.1. An eigenvector was retained only if the ratio of its cor-

responding eigenvalue to the largest eigenvalue was greater than 1.0 x 10- 6

Once the necessary D-Matrices were created, error statistics were

calculated by simply retrieving relative humidity and temperature from Set 2

radiances using the Set I D-Matrices and comparing the retrieved profiles with

the true profiles. Retrievals of both variables were done separately in that

humidity was fijst retrieved using both SSM/T-l and SSM/T-2 data, followed by

temperature retrievals using the same radiometric data.

For each error statistic category in Set 2 the retrieval or observing

error standard deviation (OESD) at each level, the mean retrieval error

(bias), and the interlevel correlations of the retrieval error were

computed. Subsequently, EOFs of the vertical correlations were also computed;

these were needed to reconstruct the appropriate vertical errors during the

retrieval simulations. A more detailed discussion of the actual retrieval

errors which were used during simulation is contained in Section 5.

4.5 Simulation of D-Matrix retrievals

To conduct the OSSE the following sequence of steps was repeated for the

location of each simulated retrieval:

* Compute the next satellite field-of-view (FOV) location and time.

* Interpolate the nature run data to the FOV location.

* Based on predefined criteria, determine the geophysical category of

profile.

* Perturb the interpolated profile based on OESD, bias and vertical

error correlations for that category.

Simulations were created for the entire assimilation period (6 Z

18 November 1979 - 0 Z 25 November 1979). Retrievals were organized in 6 hour
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intervals, centered on the synoptic times to accommodate the AFGL statistical

analysis system (Norquist, 1986).

Computation of the satellite surface FOV requires specification of

(1) the orbital characteristics of the sensor-bearing platform, and (2) the

scanning attributes of the sensor itself. The orbital parameters of the DMSP

polar orbiting satellite are well documented and we.have used these in our

simulations. Although the operational T-I and proposed T-2 instruments have

different scan patterns we have assumed for consistency that both scan

patterns are identical so that measurements from one sensor are coincident

with another. This eliminates an additional preprocessing ambiguity in which

smaller T-2 footprints would have to be combined and interpolated to the

larger FOV of the T-1 sensor. Orbital and scan parameters as well as details

of the FOV computation used in our simulations are described in Appendix A.

Note that although scanning characteristics associated with the T-2 sensor are

included in Appendix A they were not used during the OSSE.

Once the location of the current sounding location is computed, it is

verified against a data base of surface type and any FOV falling over land is

rejected. For an accepted FOV, nature run data is interpolated bilinearly in

space and linearly in time from the nearest two nature run time levels.to

create the unperturbed or "true" profile.

The resulting data pattern for a typical 6-hour period (in this case OOZ

on 25 November) is shown in Fig. 4.1.

Assignment of the profile into one of several geophysical classes is

based on a number of criteria:

Surface type (ice/ocean): From an NMC data base which reflects November

climatology, each gridpoint on the 2.5' x 2.5* grid is flagged as either

land, ice covered, or ocean.

Geographic location: Points poleward of approximately 30° which are not ice

covered are flagged as midlatitude profiles. All other profiles are

considered tropical. To allow for a smooth transition from tropical to

midlatitude statistics, the crossover point for each satellite orbit was

taken to be 30° plus a random Gaussian perturbation.
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Sea surface roughness: Assuming that the 1000 mb wind in the unperturbed

profile is equal to the surface wind, profiles with a horizontal wind

speed less than or equal to 7 as I- are assigned a low wind/calm ocean

flag. Those with a higher surface wind are assigned the high wind/rough

ocean flag.

Cloud cover: Methods to infer cloud cover from relative humidity data (and

vice-versa) vary in complexity. The approach we have adopted utilizes

the Tibaldi scheme (Norquist, 1988) which is actually a means of convert-

ing cloud cover data to relative humidity in four atmospheric layers. We

have adapted the method to solve the inverse problem, and since the

scheme then yields a percent cloud cover in each vertical layer we

convert this to a binary cloud/no cloud assignment. If the number of

relative humidity levels in which the computed cloud cover exceeds 50% is

greater than 3, then the profile is cloudy. In all other cases the

profile is clear.

Finally, the profile derived from nature run output was perturbed by an

amount which depends upon the error statistics associated with the geophysical

category. Given an unperturbed profile of atmospheric parameters, P, the

perturbation is of the form:

P- P + E

where

P is the unperturbed profile obtained from the nature run

E is the retrieval error

P is the retrieved profile.

The total retrieval error at any vertical level k may be written as

Ek - Ek + E k

where

ik is the systematic component

E k is a random component.
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For each profile to be retrieved the systematic component is the same for each

category and level. The random component is computed from:

N

Ek eBik
E k -~ i

with i-1

Bik - kik k

where

Oik is the value of the ith EOF at level k determined from

eigenanalysis of the vertical error correlations

ck  is the retrieval error standard deviation

e is a random number from a Gaussian distribution with a mean of

0 and a standard deviation of 1

N is the number of EOFs.

Since the error correlation EOFs, the error standard deviation, and the

systematic error are different for each geophysical category horizontal and

vertical retrieval error statistics should be reproduced with greater

fidelity.
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Table 4.1 Geophysical categories used to generate retrieval error statistics. Also
shown are the number of samples in each category.

Set 1 Set 2
Training Number of Geophysical Independent Number of

Parameter Sub-Sample Profiles Category Sub-Sample(s) Profiles

T Ice 438 1 Ice 438

Ocean 536 2 Calm ocean, Tropics 459

3 Calm ocean, Mid-Latitudes 493

4 Rough ocean, Tropics 583

5 Rough ocean, Mid-Latitudes 629

.......................................................................................

RH Ice, Clear 430 1 Ice, Clear 437

Ice, Cloudy 452 2 Ice, Cloudy 440

............................................................................

Ocean, Clear 430 3 Calm ocean, Tropics, Clear 425

4 Calm ocean, Mid-Latitudes, Cleai 523

5 Rough ocean, Tropics, Clear 435

6 Rough ocean, Mid-Latitudes, Clear 293

Ocean, Cloudy 427 7 Calm ocean, Tropics, Cloudy 351

8 Calm ocean, Mid-Latitudes, Cloudy 238

9 Rough ocean, Tropics, Cloudy 392

10 Rough ocean, Mid-Latitudes, Cloudy 259
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Table 4.2 Microwave mission sensor characteristics

Polari-

Instrument Frequency zation FOV Response NEAT
(GHz) (H or V) (km) (K)

SSM/T-I 50.5 H 200 surface 0.6

53.2 H 200 T at 2 km 0.4

54.35 H 200 T at 6 km 0.4

54.9 H 200 T at 1O km 0.4

58.825 V 200 T at 16 km 0.4

59.4 V 200 T at 22 km 0.4

58.4 V 200 T at 30 km 0.5

SSM/T-2 91.655±1.25 V 100 surface, water vapor 0.6

150.00±1.25 V 60 surface, water vapor 0.6

183.31±1 V 50 water vapor 0.8

183.31±3 V 50 water vapor 0.6

183.13±7 V 50 water vapor 0.6
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Table 4.3 Cioud type characteristics

Mode Radius Liquid Water Vertical Extent
Model Type (Jm) Content (gm"3 ) (km)

I Stratus 2.7 0.15 0.5 - 2.0

2 Cumulus 6.0 1.00 1.0 - 3.5

3 Altostratus 4.5 0.40 2.5 - 3.0

4 Stratocumulus 6.25 0.55 0.5 - 1.0

5 Nimbostratus 3.0 0.61 0.5 - 2.5
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Table 4.4 Surface emissivity used for various surface types during radiative
transfer simulations

Instrument Ice Calm Ocean Rough Ocean

SSM /T-1 .85 .45 .58

SSM/T-2 .95 .70 .83
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Table 4.5 183 GHz water vapor profile retrieval techniques

Investigators/ Organization Approach Reference
Date

Gaut et al., ERT Use of 183 GHz and AFGL-TR-75-0007.
1975 other channels for

water vapor and cloud
properties

Schaerer and NASA Profile retrieval simu- Radio Science, 14,
Wilheit, 1979 lation using 5 channels 3, 371-375.

and iterative method

Rosenkranz MIT Statistical retrieval J. ARRI. Meteor., 21,
et al., 1982 based on 60 GHz and 1364-1370.

183 GHz simulations

Wang et al., NASA Aircraft radiometer data J. Clim. and Appl.

1983 and retrieval Meteor., 22, 779-788.

Kakar, 1983 JPL Chahine-type retrieval J. Clim. and Appl.
Meteor., 22, 1282-1289.

Kakar and JPL Statistical correlation J, Clim. and Appl.
Lambrigsten, technique Meteor., 23, 1110-1114.

1984

Isaacs and AER Statistical retrieval AFGL-TR-85-0040;
Deblonde AFGL-TR-85-0095.

1985, 1987 Radio Science, 22 3,
367-377.

Isaacs et al., AER Unified retrieval AFGL-TR-88-0058.
1988
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Figure 4.1 Data coverage by SSM data. Height observations at a-0.
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5. Statistical Analysis of Simulated Sensor Errors

After creating data sets 1 and 2 which contained selected relative

humidity and temperature profiles spanning a range of geophysical conditions

D-Matrix statistics were computed and retrievals were conducted as described

in Section 4. These calculations resulted in a set of class dependent

retrieval error statistics which were used in the subsequent observing system

simulations.

5.1 Relative humidity retrieval error statistics

Retrieval bias

The systematic error or bias of the relative humidity (RH) retrievals

which were obtained by retrieving set 2 profiles with set I D-Matrices are

shown in Figs. 5.1 through 5.10. Each vertical profile is representative of a

particular geophysical category; the categories themselves have been described

in section 4.

Midlatitude profiles (Figs. 5.5, 5.6, 5.9, 5.10) have the same general

shape consisting of mostly positive bias throughout with larger values

(approximately 5 to 10 percent RH) in the mid troposphere decreasing to near

zero at the surface and 300 mb. At the same time tropical bias profiles

(Figs. 5.3, 5.4, 5.7, 5.8) tend to have a structure with negative values in

the lower troposphere changing to positive values at higher levels. Profiles

for polar ice surface retrievals show little, if any, bias at the six

retrieval levels. And in all cases retrieval bias is generally small, in the

range of 5 to 10 percent, but occasionally increasing to near 20 percent (see

Class 3, 4, and 7 profiles).

Finally, there appears to be only a slight difference between

corresponding clear and cloudy profiles, the only noticeable difference being

a slight negative shift (about 5 percent) of the cloudy profiles to more

negative (or less positive) values. This may be a function of the cloud

models used and field-of-view beam filling effects, however the fact that

separate D-Matrices for clear and cloudy conditions were used ought to

minimize the cloud signature in the bias profiles.
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Interpreting the nature of these systematic errors is not entirely

straightforward. The relationship of variations in observed brightness

temperatures to variations in water vapor amounts under conditions of non-unit

surface emissivity is highly dependent upon the value of the emissivity and

the structure of the low level temperature profile, as well as the water vapor

amount itself. Moreover, the water vapor retrieval problem is inherently non-

linear because variations in w-ter vapor concentrations directly affect the

atmospheric transmission and therefore, the vertical weighting functions.

This implies that, for example, an increase in water vapor in the 1000 to 850

mb layer may produce either a positive or a negative change in the T-2 channel

radiances and there is no clear way to state a priori what the sign of this

change will be.

Retrieval error standard deviation

The OESD profiles for relative humidity retrievals are shown in

Figs. 5.11 through 5.20. These profiles generally contain larger errors at

700 or 500 mb and lower errors at the surface. This is at variance with

typical statistical retrieval errors which tend to have largest errors in near

surface layers.

The range of errors in the OESD curves is considerably greater than the

corresponding bias profiles with values between 8 and 25 percent. This means

that, on average, random errors will tend to dominate the systematic error

component and any error correlations in the horizontal between simulated

retrievals will tend to be small. This was indeed the case when resulting

retrieval error correlations of the OSSE were computed as a function of

distance.

Geographical dependence of the OESD profiles is also evident. The

essential feature here is that extratropical profiles (Figs. 5.15, 5.16, 5.19,

5.20) have larger values than corresponding tropical profiles (Figs. 5.13,

5.14, 5.17, 5.18). This is most likely a reflection of the greater

atmospheric variance present in the midlatitudes than in the tropics. Since

the retrieval scheme operates in a least squares sense, it tends, in the mean,

to retrieve profiles reflective of the average atmospheric conditions which

were used to construct the particular D-Matrix. Thus statistical retrievals

of profiles from a population with higher variance will result in higher rins
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error values. This tropical/extratropical distinction has probably been

blurred somewhat by binning profiles from the northern hemisphere extratropics

together with southern hemisphere extratropical profiles because conditions in

the November southern hemisphere (emerging summer) are likely to be more

similar to tropical conditions than those in the northern hemisphere

atmosphere (emerging winter).

Finally, the effect of cloudiness is quite evident in these profiles. A

comparison of clear/cloudy category pairs shows that cloudy profiles have

errors 2 to 4 percent greater than their clear counterparts. Moreover, the

effect is greatest at levels below 500 mb where most of the clouds in the

forward model are found.

Vertical error correlations

Vertical correlations of the retrieval errors were computed for all

categories and two examples are shown here. Fig 5.21 shows the correlation of

errors at 1000 mb with all other levels for Class I retrievals. In this

example the errors at levels 300 mb through 850 mb are only weakly correlated

with that at the surface. Fig. 5.22 shows the interlevel correlations with

respect to the 500 mb level. This is an example of a more typical bimodal

structure with relatively high positive correlations at adjacent levels and

smaller anticorrelations at more distant levels.

5.2 Temperature retrieval error statistics

Retrieval bias

Profiles of temperature retrieval systematic errors for five categories

are shown in Figs. 5.23 through 5.27. The most significant differences among

the profiles depend on latitude. For example, both midlatitude profiles

(Figs. 5.25 and 5.27) are characterized by negative biases of order -0.5

to -1.0 K below 300 mb and smaller positive biases above this level. On the

other hand, profiles obtained from tropical retrievals (Figs. 5.24 and 5.26)

have generally positive biases of order 0.5 to 1.0 K in the lower to middle

troposphere with negative errors at higher levels. These bias values in the

lower atmosphere are somewhat puzzling. The statistics used to construct the

retrieval matrix were an amalgam of both tropical (relatively warm) and
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midlatitude (relatively cold) profiles. Since the single D-Matrix was used

one might expect that there would be a tendency for the retrieved lower

troposphere temperatures to be too high in midlatitude cases and too cold in

tropical cases. The results indicated here may again be a reflection of the

fact that northern hemisphere winter and southern hemisphere summer profiles

were mixed in computing the midlatitude statistics. As is the case with RH

retrievals, the effect of varying sea surface roughness (surface emissivity)

upon the error profiles is iuite weak.

Retrieval error standard deviation

All the temperature OESD profiles contain large values near the surface

and also near the tropopause. This agrees with results found in previous

efforts to retrieve temperature using microwave channels (Isaacs et al.,

1988). And the latitude dependence of the vertical error structure is again

consistent with notions of atmospheric variability which applied to the RH

retrievals. That is, errors are higher by approximately 1.0 K in the

midlatitude categories (Figs. 5.30 and 5.32) than in the tropical categories

(Figs. 5.29 and 5.31). For all profiles the range of values is from 1.0 to

3.0 K at all levels.

Vertical error correlations

Lastly, the interlevel correlations of the temperature retrieval error

were computed and several examples of correlations for Class 1 are shown in

Figs. 5.33 through 5.35. Each curve has a clearly defined structure;

retrieval errors are positively correlated at nearby levels and negatively

correlated for levels which are more distant.

In sum, these statistics were compiled by performing actual D-Matrix

retrievals using simulated brightness temperatures corresponding to a small

subset of nature run data. These statistics, in turn, were an integral part

of the OSSE which was conducted using the much larger data set of the week

18 - 25 November 1979.
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Figure 5.1 Relative humidity retrieval bias, Class 1.
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Figure 5.2 Relative humidity retrieval bias, Class 2.
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Figure 5.3 Relative humidity retrieval bias, Class 3.
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Figure 5.4 Relative humidity retrieval bias, Class 4.
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Figure 5.5 Relative humidity retrieval bias, Class 5.
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Figure 5.6 Relative humidity retrieval bias, Class 6.

41



o-l#I~rX R.H. I 1RIEb. 0115
COM 7

200

300

4 00

-J 50-zr
So

M 600J

cLl

700

800.-

900

|0 I ee I I I n I i a I I a a a a a" a a I a I , a . p I a . a . I a a a a

-25 -20 -15 -10 -5 0 5 10 15 20 25
MEAN ERROR IPERCENT)

Figure 5.7 Relative humidity retrieval bias, Class 7.
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Figure 5.8 Relative humidity retriLval bias, Class 8.
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Figure 5.9 Relative humidity retrieval bias, Class 9.
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Figure 5.10 Relative humidity retrieval bias, Class 10.
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Figure 5.11 Relative humidity retrieval error, standard deviation, Class 1.
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Figure 5.12 Relative humidity retrieval error, standard deviation, Class 2.
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Figure 5.13 Relative humidity retrieval error, standard deviation, Class 3.
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Figure 5.14 Relative humidity retrieval error, standard deviation, Class 4.
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Figure 5.15 Relative humidity retrieval error, standard deviation, Class 5.

50



O-WTR[X R.H. RETRIEVAL E
CLASS 6

i I S I ( j | II I I I I 

100

200

300

400

-J 500 "

LU

0 600
Uj)

0-

700

800

900

1000
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

HUMIOITY ERROR (PERCENT)

Figure 5.16 Relative humidity retrieval error, standard deviation, Class 6.
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Figure 5.17 Relative humidity retrieval error, standard deviation, Class 7.
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Figure 5.18 Relative humidity retrieval error, standard deviation, Class 8.
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Figure 5.1.9 Relative humidity retrieval error, standard deviation, Class 9.
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Figure 5.20 Relative humidity retrieval error, standard deviation, Class 10.
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Figure 5.21 Relative humidity retrieval vertical correlations with 1000 mb

ecror, Class 1.
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Figure 5.22 Pelative humidity retrieval vertical correlations with 500 mb

error, Class 1.
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Figure 5.23 Temperature retrieval bias, Class 1.
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Figure 5.24 Temperature retrieval bias, Class 2.
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Figure 5.25 Temperature retrieval bias, Class 3.
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Figure 5.26 Temperature retrieval bias, Class 4.
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Figure 5.27 Temperature retrieval bias, Class 5.
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Figure 5.28 Temperature retrieval error, standard deviation, Class i.
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Figure 5.29 Temperature retrieval error, standard deviation, Class 2.
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Figure 5.30 Temperature retrieval error, standard deviation, Class 3.
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Figure 5.31 Temperature retrieval error, standard deviation, Class 4.
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Figure 5.32 Temperature retrieval error, standard deviation, Class 5.
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Figure 5.33 Temperature retrieval vertical correlations with 1000 mb error,

Class 1.
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6. OSSE Design

\o now describe the OSSE we have conducted which makes use of the

simulaited data described above. In our experiments the data assimilation

s~sz .n used is the AFGL system which was used by Norquist (1988) and Louis et

,ai. (]). I'his system is briefly described in Section 6.1, with special

atreintion to changes made for the present experiments. Our verification

etrategy is su:,marized in Section 6.2.

To :minimie transient behavior, i.e. spinup, we preceded our experiment ;

a spinup procedure which included a four day forecast and three day d:ita

assi:miIlation as described in Section 6.3. The experiments themselves,

STATSAT, NOSAT, SSM+TOVS and SSMSAT and the companion real data experiments

orO- do orilbed in Seccion 6.4. The real data OSEs are described in greater

,.et.:iI b lv ou; Ct al. (1988).

'; I AFCL forecast and analysis system

Each simulated data assimilation experiment described here consists of

o:,ne assimilation run for seven days and three forecasts, each four days in

length. The real data assimilation experiments each consist of two of these

assimilation runs. Each assimilation run consists of a series of assimilation

cycles, and each cycle in turn is made up of a 6-hour forecast that serves as

a first guess for the analysis, an optimum interpolation analysis which

combines the first guess fields with the observations, and a nonlinear normal

mode initialization of the analysis. The initialized analysis is the starting

point for the next 6-hour forecast, which is then used as the first guess of

the subsequent assimilation cycle. The forecast model used for the 6-hour

forecast is a complete global spectral model (GSM). This model is also used

to produce forecasts out to 4 days starting from days 3, 5, and 7 of the

asqimilation runs.

6.1.1 Analysis

The AFGL Statistical Analysis Program (ASAP) (Norqulst, 1986, 1988) was

developed from the NMC multivariate optimal interpolation (01) procedure as

d,.sc:rbed by Bergman (1979) and by McPherson et al. (1979). The ASAP O is a

mritivarlate analysis of height and wiri components and a univariate analysis

of relative humidity, both in model sigma layers. The correctionF for an
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analysis grid point are weighted sums of surrounding observation-minus-first

guess residuals. The equations for these weights as well as the computation

of the horizontal and vertical correlation functions follow Bergman (1979).

The analysis error evolves according to simple rules (Norquist, 1986). The

great circle distance method for correlation functions equatorward of 70°C

latitude is included as described by Dey and Morone (1985) without changing

the Bergman formulation (including map factor) for latitudes poleward of 70'

latitude. The analysis takes place in the sigma coordinates of the model on a

Gaussian grid of 62 x 61 latitude-longitude points.

Data used by the height-wind analysis include Type 1 observations (radio-

sondes, pibals, etc.), Type 2 observations (aircraft), Type 4 observations

(satellite retrieved temperatures or thicknesses) and Type 6 observations

(cloud drift winds (CDWs)). The Type 3 surface observations are not used at

all. This implies that satellite "heights" are anchored only by the 6 h fore-

cast in regions where radiosondes are absent. In all experiments, except for

the three-day preliminary assimilations, the CDW data were combined (i.e.

locally averaged) into "super-obs". There are two principal reasons for doing

this: First, to limit the total number of observations, so that computer

memory restrictions are not exceeded, and second, the CDW errors are- strongly

correlated horizontally because the main error is due to height assignment.

Satellite temperature profiles are not used over land in any of the

experiments.

Since the statistical models used by the 01 are never exact in practice,

we decided for convenience and realism to leave most of the statistical models

in the 01 as they were for the real data OSEs described by Louis et al.

(1988). The statistical models and parameters used are identical to those

described by Norquist (1986), which in turn are based on NMC practice as

described by Dey and Morone (1985). The 01 assumes that radiosonde

observational errors are correla-ed vertically and that satellite height

observational errors are correlated vertically and horizontally. A number of

studies colocating 3atellite and radiosonde height data were performed by

Louis et al. (1988) and slightly different models and parameters for the

satellite height observational errors were used in the OSEs reported here.

These observational errors are described in detail in Section 2.3 of Louis et

al. (1988).
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In the SSM/T OSSEs we do not directly use the statistical properties

described in Section 5 which were used to simulate the data. Instead we saved

the actual errors used in simulating the data and used them to develop global

models of the observing errors for use in the 01. Our first motivation for

this is that the results of Section 5 do not allow us to estimate horizontal

correlations. Secondly, the models of the observing errors used in our sensor

simulation1 study are considerably more complex than those used by the ASAP Of

and we did not wish to make major modifications to the analysis procedure. Ini

studying the global simulated errors we grouped all errors generated for the

>0 and 12 GMT intervals together. Basically we found that:

1) The vertical height error correlations were fairly well fit by a simple

functiior

- 1/(l + k(A(In p));

where we found k to be .3744 by a least squares fit. The observed

correlations and the fitted function are shown in Fig. 6.1. The

corresponding RH correlation were all small and deemed not significantly

different from zero,

2) The horizontal height error correlation are close to zero. The RH

horizontal error correlations are also very small except at 300 and

400 mb where they remain above .2 out to 3000 km (Fig. 6.2). In both

cases we modeled the horizontal error correlations by

g - exp(-(d/d0 ) )

where we choose do as 83 km for height and 198 km for RH.

3) No significant biases were found and the rms errors were of the expected

size (see Table 6.1).

The statistical models used in the 01 make use of these findings.

The ASAP 01 was adjusted to assimilat the SSM/T data. The SSM

retrievals of RH on mandatory pressure levels are used directly, while the
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T retrievals are first converted to heights. In principle, this transforma-

tion is not necessary, the analysis scheme could make use of the the fact that

sigma level heights, the analyzed variables, are correlated with the observed

mandatory level or layer temperatures. For SSM/T we retrieve temperature on

mandatory levels directly, instead of layer temperatures. The level tempera-

tures are interpolated linearly in in p to the sigma levels and then inte-

grated hydrostatically to obtain the sigma level heights. The predicted or

first guess height at the first sigma level within the retrieved temperature

profile is used to begin the integration. The integration also assumes

temperature varies linearly in In p. The procedure used is identical to the

procedure for anchoring satellite thicknesses described in Hoffman et al.

(1988) from the point at which mandatory level temperatures are available.

Note that the retrieved profile is not extrapolated vertically at all.

The data selection algorithm was altered to recognize the SSM/T data.

The basic data selection algorithm follows Bergman (1979) as described by

Norquist (1988). The first stage of data selection is done in terms of

profiles: Data items in the up to 8 closest profiles are candidates to be

chosen for use in the actual analysis in the second stage. Here closeness is

measured by the magnitude of height height forecast error correlation times

the number of non missing data items in the profile times a measure of data

quality. (A Z observation is considered one data item and a (u,v) pair is

considered one data item.) The data quality is taken to be unity for all data

except it is 0.42 for TOVS and 0.92 for SSM/T height data. These data quality

values are rough estimates of the ratio of RAOB to TOVS and RAOB to SSM/T

height OESDs. Thus RAOB and other type 1 data are preferred over all

others. A SSM/T profile will be preferred to a TOVS profile. The second

stage of data selection, which was not altered, selects for each analysis

point up to 10 data items from the selected profiles which individually would

give the largest reduction in estimated analysis error. In this second stage

the actual estimated OESDs are used.

6.1.2 Forecast and initialization

The AFGL normal mode initialization (NMI) is basel -n the NMC NMI

(Ballish, 1980). The AFGL global spectral model is based on the NMC GSM

designed by Sela (1980). For the version used here, the physics routines are
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taken almost intact from NMC (circa 1983). The hydrodynamics, i.e., the

adiabatic, inviscid dynamics including vertical and horizontal advection, time

stepping, and transformations between spectral and physical space, were

completely redesigned, as documented by Brenner et al. (1982, 1984).

There are a number of parameters in the forecast and initialization codes

that can be adjusted. Briefly, the spectral resolution of the forecast model

is defined by a rhomboidal truncation at wave number 30. The Gaussian grid of

the forecast model contains 76 x 96 latitude longitude points. There are 12

lavcrs, the first (top) 5 of which have no moisture. The sigma interfaces are

at 0.N0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.375, 0.50, 0.65, 0.80, 0.925.

and 1.00. The time scheme used is centered semi-implicit with a time step of

1'.25 minutes. Horizontal fourth order diffusion (-KV 4 ) is applied to all

modes of divergence and to modes in the upper half of the rhomboid for

vort icity, temperature and specific humidity. The diffusion coefficient used

is K - 6.1015 m4 s -I  In the NMI, two Machenauer iterations are applied to

modes for the four largest equivalent depths which have periods less than or

equal to 48 h.

6.2 Verification Procedures

Our verification procedures include subjective comparisons of analyses

and forecasts, quantitative comparisons of rms errors of analyzed and forecast

fields and a calibration of the quantitative measures making use of the OSE

results. These procedures will be described in more detail in the next

section. Here we describe the diagnostic fields which we compare.

One of the performance measures we use in measuring impact is the rms and

bias error of a diagnosed total cloud fraction. Although the "real" simulated

clouds generated during the nature forecasts were not saved, the large scale

(i.e., nonconvective) cloud fraction is readily diagnosed from the RH field.

This sort of measure puts a premium on proper forecasting at the higher range

of RH, since errors at lower values have no effect on large scale cloud

amounts.

To convert RH to level cloud coverage fraction, f, we invert the Tibaldi

scheme described by Norquist (1988, Appendix A). Level clouds are obtained at

the first six mandatory layers, i.e. 1000, 850, 700, 500, 400, and 300 mb.

There are combined pairwise assuming maximal overlap into low, middle and high

75



layer cloud fractions, fL' fM and f.. The three layer cloud fractions are

then combined into a total cloud fraction fT assuming random overlap,

(I - fT ) 
- (1 - ft)(l fM}(l - fH )

6.3 Spinup experiment

To begin our experiments we first performed two 96 h forecasts starting

from "perfect" initial conditions on 00 GMT 11 and 21 November 1979. These

initial conditions are taken directly from the nature run, interpolated to the

model sigma structure, analyzed into spherical harmonic coefficients and

initialized with the adiabatic NMI. We found the growth of forecast error

(i.e., forecast - nature) to be rather slow in these forecasts. In fact the

forecast ending on the 00 GMT 15 November was not much worse than a typical

analysis. Accordingly, this state was used as the initial "analysis" for a

three day SPINUP assimilation experiment, ending 00 GMT 18 November. SPINUP

makes use of the standard STATSAT configuration.

6.4 Schedule of impact experiments

The end of the SPINUP assimilation is used as the starting analysis for

all our OSSEs which therefore run from 00 GMT 18 November through 00 GMT

25 November. (The first analysis of each OSSE is at 06 GMT 18 November.) For

each OSSE 96 h forecasts are made from 00 GMT 21, 23 and 25 November.

The OSSEs described here are STATSAT, NOSAT, STATSAT + SSM/T and NOSAT +

SSM/T. STATSAT includes all the Level II data which were simulated by NMC as

described in Section 3.2 except that surface observations are not used and

satellite temperature soundings over land are not used. In NOSAT the

satellite temperature soundings and CDW observations are excluded. In the

other experiments the SSM/T-I and T-2 data are added.

The OSEs STATSAT and NOSAT are analogous to the OSSEs, at least as far as

data usage is concerned. The OSEs however were run for one week each during

February and June 1979. These experiments are described in detail by Louis et

al. (1988) and are used here primarily to calibrate the OSSE results. One

notable differenc. between the OSSE and OSE experiments is that the OESD for

satellite heights for STATSAT and NOSAT in the February OSE were substantially

larger than in the other experiments. (These values are given by Louis et

al., 1988.)
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Tabl~e 6.1 SSM/T OESDs used in data assimilation experiments

p(tpb) 1000 850 700 500 400 300 250 200 150 100 70 50

Z(m) 7.98 7.98 14.01 21.71 25.08 26.57 27.01 28.38 32.15 38.37 39.40 41.85

REIQ%) 7.91 18.35 14.45 15.12 15.17 19.35 - - - - -
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Figure 6.1 Vertical height error correlations of simulated SSM retrievals
based on collocation with radiosondes. Solid curve is least
squares fit to data used in 01.
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at 300 nib, 500 mb and function used in 01.
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7. OSSE Results

7.1 Subjective synoptic evaluation

The spinup forecast, starting from perfect initial conditions at 00 GMT

11 November, and the spinup assimilation, which was performed from the end of

the spinup forecast at 00 GMT 15 November to 00 GMT,18 November were compared

with the corresponding nature data. The spinup forecast had very similar

500 mb height patterns, but our forecast is consistently warmer than the ECMWF

forecast. The possible reason for this warm bias is the lack of a radiation

parameterization in our model: a typical radiative cooling of the atmosphere

of 1 K/day would correspond to a 500 mb height difference of roughly 20 m/day,

which is consistent with the approximate height difference of 80 m at the end

of the 4-day forecast. The analyses during the spinup assimilation, which

correspond to a STATSAT configuration, are also quite similar to the nature

data, except that they are considerably noisier, possibly due to the warm bias

of the first guess, which is only corrected at data locations.

Results for the Northern Hemisphere from the OSSE assimilation period

(00 GMT 18 November to 00 GMT 25 November) are shown in Fig. 7.1 - 7.4 for 00

GMT 23 November. The 500 mb height pattern of the nature data (Fig. 7,.la)

shows a distinct wavenumber four pattern, which is present throughout the

entire November time period. Several smaller scale, mobile troughs are

superimposed on the long-wave structure. The analyses from all three OSSEs

shown in Fig. 7.2 - 7.4 are visibly noisier than nature, both at 1000 and

500 mb. The error patterns of all three OSSEs look similar: the long-wave

low over Eastern Canada is too low in the OSSEs, and there is large area of

negative height errors at 70°-80°N, centered at 90°E. These two features are

present throughout the entire assimilation period. The error over Canada is

worst in STATSAT, whereas the other feature is worse in the SSM OSSEs. There

are two regions where the SSM+TOVS analysis is noticeably worse than either

SSMSAT or STATSAT: one is the long-wave trough at 150°W, which is much too

deep in SSM+TOVS, less so in SSMSAT, and approximately correct in STATSAT, the

other a small short wave over Newfoundland, which is not captured well in any-

of the OSSEs, with the largest errors in SSM+TOVS, smaller errors in STATSAT,

and the smallest errors in SSMSAT. At day 7 of the assimilation (00 GMT 25

November, Fig. 7.5 - 7.8) the 500 mb height errors over the Pacific have
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grown, and they now appear in all three OSSEs. Over the Eastern Atlantic is

an area of large height errors in SSM+TOVS (Fig. 7.8), which is virtually

asent in either SSMSAT (Fig. 7.7) or STATSAT (Fig. 7.6). The fact that

addrIg TOVS data to the SSMSAT data lead to such a drastic degradation of the

a:u~lysis in those regions is troubling, since the O is designed to optimally

coMbine all available data, given the correct statistics of the true fields

and errors.

Some possible reasons for this analysis degradation are related to the

fact tha! the satellite thicknesses are anchored to the first guess surfac,-

cressure. Satellite data are thus not able to correct barotropic first guess

height errors, i.e. errorz present at both the 1000 and 500 mb levels. The

E-cror statisti2.s used in the 01, however, do not take this anchoring error

iuto a(count, thus resulting in inappropriately large weights being given I')

treLlite "height" ooservations, at the expense of other, non-satellite

data. Even in the absence of nonsatellite data, the addition of satellite

data may worsen the 500 mb height analysis, if the first guess errors in

surface pressure and 500-1000 mb thickness are compensating each other. All

these potential problems would be exacerbated by adding TOVS to the SSM

data. Another possibility is that in the presence of significant biases in

the satellite data, which we have ignored in our OSSEs, mixing TOVS and SSM

dato in overlapping data swaths may introduce noise in the analysis. Finally.

because of central memory limitations, some aircraft and cloud track winds

used in the SSMSAT analyses could not be used in SSM+TOVS. Any of these

reasons may result in initially small analysis differences, which could be

amplified during the 6-hour forecast between analysis time periods, and

through differences in data selection due to quality control procedures that

depend on the first guess. In an effort to identify these scenarios, analyses

and first guess fields for the OSSEs were studied along with the corresponding

nature data and the simulated observation residuals.

The analysis error over the Atlantic and the short wave associated with

it, which at 00 GMT 25 November is lGated over Ireland in the nature data,

but is displaced about 10 ° West in the SSM+TOVS analysis, can be traced back

to Newfoundland at 00 GMT 23 November, at which point the analysis errors for

the SSM+TOVS analyses are already substantially larger than for the SSMSAT

analyses. The two analyses diverge over that area in the preceding 24
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hours: the 500 mb height errors at 00 GMT 22 November (Fig. 7.9) are much

more similar in SSMSAT and SSM+TOVS over Newfoundland. In the time period

between 00 GMT 22 November to 00 GMT 23 November, SSM and TOVS data are both

present over the area only at 06 GMT and 18 GMT, i.e. at times when there are

no RAOBs over the area; the impact of the TOVS data at those times should be

small, given the higher data density and smaller OESDs of the SSM data. At

the other times, only TOVS satellite data are present over the oceans, but

there were no obvious instances where the additional thickness information

might have lead to larger 500 mb height errors. It is thus not entirely clear

what caused the two analyses to diverge over that area.

Whatever the reasons for initial, small analyis differences are, the

persistence and amplification of these errors requires some additional

explanation. As is shown in Fig. 7.8b,d and 7.10a,b, the analysis errors and

the first guess errors at 00 GMT 23 November have a large barotropic

component, and, as a consequence, the analysis is ineffective over the ocean

areas, where there are no radiosonde observations of geopotential. In

agreement with this scenario, the satellite observation residuals are small

compared to the actual analysis errors. Where radiosondes are present, the

analysis errors are smaller than the first guess errors right over those

locations, except one radiosonde at 12 GMT 22 November (at Sept Isles, Quebec,

at 50.22°N, 66.25°W) and another at 00 GMT 23 November (St. Johns,

Newfoundland, at 47.62°N, 52.75°W), which were rejected by the gross error

check in SSM+TOVS, but not in SSMSAT. At those locations, the first guess

field in SSM+TOVS had diverged too far from the truth for the RAOBs to be

used. The rapid, error growth during this short period is taking place in a

strongly baroclinic zone, in which a strong sensitivity to initial conditions

of even a 6-V ur forecast can be expected. After 00 GMT 23 November, the

short wave is entirely over the ocean, thus making it impossible for the

analysis to correct the by now well established height errors.

The other area of large analysis errors apparent in Fig. 7.8b is over the

Pacific, near the international dateline. This error, which is associated

with a longwave trough in the nature data, can also be traced back several

days (it is already visible at 00 GMT 21 November), but it is an essentially

stationary feature. The longwave trough is consistently analyzed too deeply
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in bot' S>MSAT and SSMFTOVS analyses), and at several times (including 00 CMT

25 November) a smaller scale ridge downstream of the trough is too strong.

The trou,.h is always analyzed more deeply in SSM+TOVS than SSMSAT. As was the

case over the Atlantic, the analysis errors have a strong barotropic com-

ponent Sin:e the longwave trough is entirely over the ocean, only satellite

height data are available, and again the height residuals were found to be

much smaller than the actual first guess height errors because of the anchor-

ing of the satellite thicknesses. A comparison of the first guess a'.d analy-

sis errors at 00 GMT 23 November show the negligible impact of the analysis,

Sow~'ing the persist-e of the first guess errors. The reason for the ini-

tial dvergenep of the :SMSAI and SSM+TOVS analyses is again not entirely

:e a r.

.% eI:Il.: of the Southern Hemisphere height fields is given in

1ji. 7.11 7.14 for 00 CMT 25 November. Again, the OSSE analyses are a1

inoi c noisier than ature. In addition, the 500 mb hUeights are consistently

too high ove: 4ntarctica. iihe nature data show a number of small scale,

mobile troughs at 500 and 1000 mb, a situation typical for the entire

assimilation period. Analysis errors are due to both amplitude and phase

errors of thesi: feaLures, and are present at both 500 and 1000 mb. .Overall,

both the SSM-iTOVS a.l SSMSAT analyses seen the best, and the STATSAT analyses

worst over the Southern Hemisphere.

As discussed in previous sections the OSSE included simulated retrievals

of relative humidity from SSM/T-2 brightness temperatures. Therefore, it is

also of interest to assess the impact of such data upon the analyses and

forecasts of moisture during the assimilation period. Comparisons between the

analyses of different experiments is not very informative since instantaneous

fields of relative humidity are rather noisy. Instead, we display only

difference plots, averaged fields, and differences of averaged fields for

illustrative purposes.

In Figs. 7.15 and 7.16 we show difference plots of the analyzed moisture

field at 850 mb with the nature run field for 2 different times during the

assimilation period (23 November and 25 November, both at 00 GMT). In each

tigure fields for the STATSAT, SSMSAT, and SSM+TOVS experiments are shown.

In this set of figures differences in relative humidity are plotted with

a contour interval of 25% with negative differences shown as dashed lines and
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positive differences shown as solid. The times shown represent analysis

differences at days 5 and 7 of the assimilation period. It is quite clear

that the moisture analyses created with the SSM retrievals are much improved

over the STATSAT analyses. In addition, the results for SSMSAT and SSM+TOVS

are very similar with only minor differences seen between the two experi-

ments. It seems that the presence or absence of TOVS retrievals has only a

small impact upon the humidity analysis and that nearly all the improvement

stems from inclusion of the additional SSM data. Improvement is most dramatic

over southern hemisphere ocean areas where conventional moisture data is

practically nonexistent. Smaller, but equally clear improvements are seen in

the northern hemisphere as well, For example, note the improved analysis over

the central North Atlantic Ocean on 25 November. Also noteworthy is the fact

that the analyses are improved over land areas even though SSM retrievals were

confined to the oceans. This is quite evident over equatorial Africa on

25 November, and over South America on 23 November. Thus the use of the

additional data source over one region has the potential to improve subsequent

analyses in more distant areas downstream from the data location.

Another useful means of viewing the moisture fields associated with the

OSSEs is by converting relative humidity fields to cloud cover fields. The

resulting cloud cover fields offer some insight into the accuracy of the

analysis/forecast relative humidity fields and the algorithm which is used for

the humidity to cloud conversion.

We have used moisture fields from both the STATSAT and SSMSAT experiments

to infer large scale cloudiness. For this work the inverse Tibaldi scheme was

applied (see Section 6.2). We found the complete relative humidity fields

(i.e. with all spectral coefficients retained) to be highly noisy making

interpretation difficult. Instead, we filtered the fields by using a T15

spectral truncation which allows us to focus only on the large scale features.

Cloud cover results for STATSAT and SSMSAT at 00 GMT 25 November are

shown in Figures 7.17 and 7.18, respectively. We show only the inferred low

cloud cover with a contour interval of 25 percent. For a surface pressure of

1000 mb this would include clouds in the layer from 950 mb to 733 mb. In

Fig. 7.17 is the cloud cover inferred from the nature run. Remaining panels

show the inferred cloudiness of the analyses valid at the same time and the

corresponding analysis - nature difference fields.
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Main features in the nature run cloudiness include the low amounts of

clotiineqs over the northern hemisphere subtropics associated with the

descending branch of the Hadley circulation. Note in particular regions with

less than 25% cloud cover over the southwest U.S., northern Africa, and

southern Asia. High cioud amounts ar. seen in the equatorial regions of

Africa as well as South America which it might be noted, are close to the

general location of the ITCZ as it advances southward during November.

As seen in the relative humidity fields, the SSMSAT results are more

realistic (relative to the nature run) than those of STATSAT. In SSMSAT the

analvs;is of cloudiness over central Africa and South America is in reasonable

agreement with the nature run while the STATSAT field completely misses the

high cloud amounts in these same areas.

The lifference plots also show the SSMSAT analysis to be better than

STATSAT. Again note South America and equatorial Africa where the cloud

amount errors in STATSAT exceed -75% over large areas. It is also interesting

to note that nearly all errors in STATSAT and SSMSAT over the continents are

negative. This is most likely a reflection of the fact that the physics

package in the GSM contains no evaporation over land surfaces; consequently

the lowest levels in the model tend to be too dry.

Finally, although we found that the inferred cloud coverage agrees with

the large scale relative humidity fields in a qualitative sense, we also fond

that cloud amounts were generally much too high. Global statistics for the

nature run, assimilations, and forecasts showed an average total cloud cover

of roughly 80 percent while climatological values are known to be closer to

50 percent. To the extent that that the resulting cloud fields mirror

relative humidity patterns this implies that humidity in both the GSM and

nature run is too high. However it is also possible that the humidity to

cloud conversion method is biased. Any quantitative use of the cloudiness

inferred by this means, for example simulation of satellite imager data, will

require some tv.-iing of the scheme to reduce the observed bias.
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7.2 Objective statistical evaluation

As an objective measure of the quality of the analyses and forecasts,

root mean square (rms) and mean (bias) statistics of the differences from

nature were calculated. Fig. 7.19 shows the global 500 mb rms height error of

the NOSAT, STATSAT, SSM, and SSM+TOVS analyses and forecasts. The NOSAT

analysis errors increase from the 35 m typical for the STATSAT analysis to

50 m by day 4 of the assimilation, whereas the STATSAT analysis errors

decrease by only 1-2 m over the assimilation period. The forecast error

growth is more rapid in STATSAT, but errors remain smaller than those of the

NOSAT forecast for the entire 4-day forecasts. The SSM analysis errors are

consistently smaller than those of STATSAT, by up to 2 to 3 m. The day 3

forecast errors are smaller than those of STATSAT, but the day 7 forecast is

worse. The SSM+TOVS analysis have larger errors than those of SSM, and the

forecasts are either the same (day 7) or worse (day 3). Compared to STATSAT,

SSM+TOVS analyses and the day 3 forecast is only slightly worse (by less than

I m), whereas the day 7 forecast is noticeably worse. The objective results

thus confirm our impression from the subjective evaluation that the SSMSAT

analyses (and forecasts) are closest to nature. The reasons for the

degradation of the analyses in SSM+TOVS discussed in the previous section in a

regional context thus apply globally, as well.

Results at other levels largely mirror those at 500 mb. The 1000 mb

height statistics (not shown) show a much smaller impact of the satellite data

(NOSAT analysis errors differ by no more than 3 m from STATSAT), but

qualitatively the same results apply. In particular, the SSMSAT analyses are

closer to nature than either STATSAT or SSM+TOVS, the day 3 forecast is most

skillful in SSMSAT, whereas the day 7 forecast is roughly the same.

The global error statistics of humidity analyses and forecasts for

STATSAT, SSMSAT, and SSM+TOVS are shown in Fig. 7.20. The rms error curves

for all three experiments were obtained by differencing the 850 mb analyses

and forecasts with the corresponding nature run forecasts. In each plot the

solid curves denote the assimilation errors and the broken curves the errors

of the forecasts which were run off the day 3, 5, and 7 analyses.

The error statistics for the STATSAT and NOSAT experiments may be

considered baselines against which to judge the other OSSEs. In STATSAT

simulated TOVS temperature retrievals were included with the rest of the
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conventional radiosonde network data used in the NOSAT experiment. Since the

STATSAT experiment used the same moisture data we would expect the relative

humidity error statistics to be quite similar. In fact, comparisons of

STATSAT with NOSAT (not shown) show the analysis errors to be virtually

identical, with differences in the rms errors of less than 1%. The actual

values of the rms errors throughout the 7 day assimilation period are

approximately 27%. Errors in the forecasts approach 30% by 4 days.

In the SSMSAT experiment the simulated SSM temperature and moisture

retrievals were inserted at the same time that the TOVS data was excluded.

The results shown, clearly indicate an improvement in the accuracy of the

moisture analyses and forecasts when such data is used. Analysis errors are

roughly 5% smaller throughout the 7 day period with rms errors values of about

22 Forecast errors are also initially iess than those of STATSAT by 5% but

increase more quickly so that after 4 days they differ by only 2%.

In SSM+TOVS bot-h types of satellite data were included. As expected

based on the subjective evaluations the impact of adding the TOVS data to the

SSM retrievals is at '0st minimal. Both analyses and forecasts for the

SSM+TOVS experiment have slightly larger rms errors, but in all instances the

differences are less than or equal to 2%. Note the tendency for the forecast

error curves to flatten out late in the forecast period at about 30%. This

most likely represents the upper limit on possible analysis/forecast errors

based on the natural variability of the relative humidity fields.

In sum, both the subjective and objective evaluations of the moisture

data indicate a distinct positive impact upon relative humidity analyses when

simulated SSM-derived moisture retrievals are added to conventional

observations during the global assimilation cycle. Only minor impact

(relative to SSMSAT) is seen when the SSM data is combined with TOVS

temperature retrievals.

7.3 Evaluation of zonal cross sections

We examined zonal cross sections of u and v wind components, temperature

and relative humidity at individual synoptic times and averaged over the last

five 0000 GMT analyses of the experiments. Zonal averaging is denoted here by

square bracKets ([ ]) and time averaging by an overbar ). Our purpose here

is to determine how well the assimilation system is capturing the mean meri-
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dional circulation, pole to equator temperature and humidity structure and

zonal jets and to describe the impact of the different observing systems on

these features. These features are important climate diagnostics. Errors in

zonally averaged quantities are also important to NWP because errors in the

climate make a persistent contribution to errors in the analyses and these

errors may be useful in diagnosing faults in the physical parameterizations

used in the model. In the following, the impact of tha SSM OSSEs will be

compared with that of the WINDSAT OSSE. The WINDSAT OSSE is identical to

STATSAT, except that simulated wind observations from a proposed satellite-

based lidar wind profiler were made available to the assimilation. The

WINDSAT OSSE is described in more detail in a separate technical report

(Hoffman et al., 1989). We concentrate here on the time averaged fields for

tL. nature run and SiAI',Ai and on tne impact of SSM on the wind, temperature

and humidity fields. These fields and differences from the nature run are

displayed in Figs. 7.21 through 7.24. For comparison the some results for the

WINDSAT experiment are also displayed.

Considering first the zonal time averaged zonal wind component

(Fig. 7.21), we see in all cases the midlatitude jets peak near 200 mb. The

N.H. jet is somewhat narrower and stronger. The jet maximum is near, 30 m/s in

all cases. Easterly winds extend through the depth of the atmosphere in the

tropics. The trade winds (surface easterlies) are a bit stronger in the

N.H. The nature [u] is quite similar to observed fields. Compared to the

CFDL monthly mean [ii] for November 1979 (Lau, 1984), the jets in the nature

run are positioned somewhat poleward and have slightly different magnitudes.

STATSAT, SSMSAT and WINDSAT [u] agree well with the nature run. In all three

cases the errors are order I m/s with WINDSAT having somewhat smaller errors.

In Fig. 7.22, which depicts [V] both Hadley and Ferrel cells are readily

apparent. On the other hand the surface southerlies in the S.H. Ferrel cell

are stronger than in the N.H. The maximum convergence at the surface where

the two returning branches of the Hadley cell meet is at 10°N. The cor-

responding upper level divergence is at 250 mb. The N.H. Hadley cell appears

to be somewhat stronger than the S.H. Hadley cell. Compared to the CFDL

monthly means, the surface winds agree fairly well, but the poleward branches

of the Hadley cell are twice as strong in the GFDL analyses. Comparing

STATSAT, SSMSAT and WINDSAT to the nature run, we see that all three analyses
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are qualitativeiy in agreement with the nature run. Magnitudes of the (vi are

all similar. However STATSAT has more small scale features in the tropopause

region and SSMSAT misses the strong northerly surface flow over the Southern

Ocean at 70°S. At the surface WINDSAT and STATSAT appear to be roughly

equivalent,

Considering the amount of high quality wind data available to WINDSAT,

the small improvements to the zonally averaged wind fields are disappoint-

ing. The lack of improvement in the tropical mean meridional circulation may

be caused by deficiencies in the assimilation system. First, the analysis

wind increments must be non-divergent: although the height and wind analysis

decouple in the tropics, the wind analysis still uses structure functions

derived from the height structure function and the assumption of geostrophy.

Secondly, in the NLi, there is -ao account of the effects of cumulus

convection.

The [T] has a broad maximum between 20°S and 20'N at all levels through

the tropopause. Poleward of 200, temperature decreases. The magnitude of the

poieward temperature gradient decreases with elevation up to the 200 mb level

where the gradient reverses. Tropopause height varies from 200 mb in the

polar regions to 50 mb at the equator. The the nature run [T] agree's vell

with the GFDL values except that the GFDL tropical tropopause is roughly at

the 100 mb level. Compared to the nature run, we see that STATSAT is too cold

(by 2 K) in the tropical PBL (below about 900 mb) and too warm at the equator

at 850 mb (by 1.4 K). This implies the equatorial region is too stable. In

the S.H. between 60°S and 80°S STATSAT is too cold below 850 mb (up to -5 K)

and there are large positive errors over Antarctica. Note that the surface is

about 700 mb south of 80°S. In the Artic below 850 mb STATSAT is also too

warm. There are large errors above the tropopause; the poles are warm and the

equatorial region is cold. WINDSAT has errors similar to STATSAT, however the

upper level errors are substantially reduced in magnitude, the equatorial PBL

is even colder (by 3 K) and the errors over Antarctica are reduced. For SSM

the analyses are too cold below 850 mb at all latitudes. In the tropics the

errors are larger (-5 K) and therefore the atmosphere is even more stable.

The SSM analyses are very cold at 80°N (250 K). Like WINDSAT the errors above

the tropopause are smaller than in STATSAT.
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The [(- in the nature run (Fig 7.24) is very moist at the surface where

it has a maximum of 85% at 10°N and a minimum of 75% at 30°N. (gall tends to

decrease from the surface to 500 mb and then increase again up to 300 mb. In

addition, moisture is carried upwards by the ascending Hadley circulation near

the equator and dry air is brought downward by the descending branches of the

Hadley cell near 30°N and S. As a result, a primary feature is the two

subtropical minima which occur in the middle troposphere. The northern

hemisphere minimum (about 34%) occurs at 500 mb while the southern minimum

(31.2%) lies near 650 to 700 mb. This pattern is repeated, but with smaller

amplitude by the Ferrel cells.

[ZI errors are relatively large in all assimilations. We may contrast

nature with the cross sections for STATSAT and SSMSAT. In STATSAT the low

level averaged relative humidity analysis below 850 mb is consistently too dry

by 10 to 15%. At higher levels equatorial relative humidity is too high by 5

to 15%. And at higher latitudes, the upper level analysis is again too dry,

exceeding 15% poleward of 700. A major result of these analysis differences

is that the northern and southern hemisphere mid-level minima are greatly

increased in magnitude to 19.5 and 38.2%, respectively. Additionally, the

asymmetry seen in nature with respect to height is gone and both features now

occur at 650 mb. In SSMSAT the averaged low level analysis is still too dry,

but the difference is smaller, often less than 5%. At higher levels the

averaged analysis is also improved with differences less than or equal to

5%. One exception is the SSMSAT analysis at 850 mb near 30°S where the

difference with nature is 13.8% compared with 9.5% in STATSAT. As in STATSAT,

the averaged SSMSAT analysis does not retain the asymmetry in the moisture

field which is seen in averaged nature data, although the magnitudes of the

minima are better analyzed. In short, as determined from differences in

averaged analyses, SSMSAT relative humidity analyses are closer to nature at

most latitudes and at all vertical levels. However, in general, the polar

regions and boundary layer are too dry and the mid latitude and tropical

atmosphere above the PBL is too moist. Since moist air is more buoyant and

low level moisture represents an energy source for moist convection, these

errors tend to stabilize the analyses. Both the temperature and humidity

errors in the tropics suggest that too much stabilizing convection may be

taking place in the AFGL model. The temperature errors might also be due to

the lack of a radiation parameterization.
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Relative humidity is dependent not only upon the actual water vapor

amount but also on the ambient air temperature which determines the saturation

value. If we make the assumption that the analysis of water vapor in its

conserved form (e.g. mixing ratio, specific humidity) is constant from nature

to the analysis, then analysis - nature differences in the averaged relative

humidity would tend to be inversely correlated with analysis - nature

differences in the averaged temperatures.

For STATSAT, with the exception of a broad area of negative temperature

differences over the equator at 500 mb, we do not find a strong relationship

between the two variables. In fact, in some areas the temperature and

hu;midity differences seem to be positively correlated. In the SSMSAT results

the relationship is perhaps stronger with a larger area of negative tempera-

ture differences which arcs from the surface in the southern midlatitudes to

the equatorial midtroposphere coinciding with positive relative humidity

differences of order 5 to 10%. Nevertheless, the temperature differences tend

to be less than 1.5 K in most areas of large relative humidity analysis

error. We cannot then conclude, at least from the zonal-time averaged

statistics, that most of the errors in the analyzed humidity are due to

discrepancies in the temperature analyses.

7.4 Calibration with OSSE results

A luxury of OSSEs is the ability to exactly compute error measures. We

took advantage of this in our discussion of the analyses. Analysis errors in

the real world are not well known. In fact, recently Daley and Mayer (1986)

presented analysis error of the OSSE experiments of Atlas et al. (1985) (which

were discussed in the introduction) as surrogates for real analysis errors.

We now turn to an examination of the forecast errors. In order to have a

closer correspondence with the real world and to simplify our calibration

procedure we have calculated rms difference between the forecasts and the

simulated radiosondes. We then describe a procedure to calibrate these

differences using the NOSAT - STATSAT impact observed in our previous OSEs as

a yardstick, and present some results of the calibration procedure. Some

discussion of the results of the companion OSSE experiments. WINDSAT is

included here for comparison.
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7.4.1 Rms difference between OSSE forecasts and radiosondes

Rms differences between OSSE forecasts and the simulated radiosondes used

in the data assimilation experiments were calculated for different regions and

for several variables at each layer in the atmosphere. The variables examined

include geopotential height, temperature, vector wind, relative humidity, and

cloud cover. Mean differences were also calculated and examined but were

small relative to the rms difference for nearly all variables. Some regulari-

ties observed in the mean differences are described in Section 7.4.4. One

aspect of the procedure we used is that the forecast heights are anchored by

the verifying radiosonde report. Consequently, height errors described here

are actually thickness errors. As described below we curve fit the data to

determine impacts in terms of predictability time, i.e. the length of the

useful forecast.

Due to the variable density of radiosonde coverage, global averages are

very similar to N.H. extratropical averages and S.H. extratropical averages

are based on fairly small samples. Of course, these statistics are biased

towards land areas. Consequently, differences between NOSAT and STATSAT are

less pronounced than they might otherwise be. As a result of these factors as

well as the radiosonde errors themselves, we expect only qualitative agreement

between impacts described here and impacts measured in Section 4.2 by

comparing forecasts grid point by grid point to the nature run.

Examples of the growth of forecast errors as evidenced by the rms dif-

ference are displayed in Figs. 7.25 through 7.27. In each figure there are

three panels, showing results averaged over 3 forecasts for the N.H.

extratropics, tropics and S.H. extratropics. Here the tropics are taken to

run from 30°S to 30°N. Rms difference curves for smaller regions which were

studied, generally behaved as described here for the larger parent regions.

In the S.H., the rms difference curves sometimes exhibit a sawtooth

pattern due to sampling problems; there are usually about 60 RAOBs at 00 GMT

and only about 40 at 12 GMT in the S.H. Most of the non-reporting RAOBs are

in the Australian sector.

Considering, first the rms difference for 500 mb geopotential (Fig. 7.25)

we see that impacts in the N.H. are relatively small. WINDSAT lags STATSAT by

approximately 7 h. Midway between these two lie SSMSAT and NOSAT. SSM+TOVS
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is equivalent to STATSAT In the tropics, the differences are all near 20 m

and the growth rate is very small. Apparently, the tropical analysis error;

are so large chat the error growth is near saturation. At least during th.

initial part of the forecast WINDSAT has a slight edge, which because of the

slow growth of differences corresponds to 3 or 10 hours of predictability

time. Impacts in the S.H. are very large. WINDSAT is 36 h better than

STATSAT, which is in turn more than 36 h better than the NOSAT forecasts. The

three sounder based systems are roughly equivalent with SSMSAT and SSM+TOVS

,ctter than STATSAT by 12 and 8 hours respectively.

Next, we consider the rms vector wind differences at 200 mb

(Fig. 7.26). Clearly, WINDSAT always yields a big improvement. Compared t,)

STATSAT, WINDSAT provides 1, 2 and 2.75 day improvements in forecast skill in

:hc N. H., tropics and S.H. respectively. NOSAT is particularly poor o%,el tLh(

S !..-nd the tropics. It is quite good over Europe, where it outperfor-mi leti

SS!t+TGVS and STATSAT. Of the three sounder systems, SSMSAT is generally

better, improving predictability by at least a day in the S.H. and tropic!.

The rms difference for relative humidity at 850 mb are shown in

Fig. 7.27. Impacts in terms of forecast time are all relatively small in th,

N.H. generally in the range 3 to 12 h. In the extratropics, WINDSAT is the

best. This might have been anticipated since the WINDSAT analyses of mass and

wind are superior in the extratropics and since relative humidity is so

strongly influenced by the large scale synoptic systems which are better

forecast by WINDSAT. In the tropics, the SSMSAT moisture forecasts arc the

best. Overall the ranking is WINDSAT, SSMSAT, NOSAT, SSM+TOVS and STATSAT.

It appears that using TOVS degrades the moisture analysis. Since TOVS

relative humidity retrievals were not used, this poses a conundrum. TOVS data

affect the model specific humidity indirectly because tho lI ed -nribles

are temperature and relative humidity. That is, in an area with only TOVS

data the updated temperature field is combined with the unaltered relative

humidity field to update the model specific humidity.

We also calculated rms difference in cloud cover layer by layer. Cloud

cover was diagnosed from relative humidity using the inverse Tibaldi scheme

(as described in Section 6.2). Invariably, the corresponding relative

humidity and cloud cover plots look very similar. Fig. 7.28 shows the global

rms difference for 850 mb relative humidity and cloud cover. Except for the
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fact that the cloud cover errors are larger in magnitude, the curves in the

two panels of Fig. 7.28 are nearly the same. For this reason we have not

included any other cloud cover rms difference statistics in this report.

We examined the growth of rms difference for levels others than those

described here. The results shown here are generally representative. In the

next section tables summarizing all the levels are given. One notable

exception to the general trend discussed so far, is the positive impact of

SSM+TOVS on the upper level heights. For example, Fig. 7.29 shows the N.H.

50 mb height rms difference evolution. Here the ordering is SSM+TOVS,

STATSAT, WINDSAT and NOSAT with an increment of about 6 hours between each

pair; SSMSAT and STATSAT are roughly equivalent.

7.4.2 Calibration procedure

It has been observed that OSSE forecasts are too good because any two

models, such as the model used in the experiments and the model used to

generate nature, are more alike than any model and the real atmosphere.

Consequently, it is unwise to naively carry over the forecast impacts observed

in OSSEs to the real world. For example, at short forecast times, OSSE

forecasts tend to be so good that there is little room for improvemdnt; adding

a new observing system might then have a smaller impact than in the real

world. On the other hand, at longer forecast times, real data forecasts will

be so bad that a new observing system will have no impact while the

corresponding OSSE impact may be significant.

For these reasons it is desirable to calibrate the OSSE results.

However, for the present experiments we find that the OSSE impacts are fairly

similar to the OSE impacts and the calibration procedure does not greatly

alter the conclusions one might draw from the OSSE results directly. To

minimize practical and interpretive difficulties we use only very simple

calibration approaches. Our principal assumption is that the OSE impaL uf

adding or removing an observing system is proportional to the corresponding

OSSE impact. In our calibrations we always take STATSAT to be our standard.

We use the NOSAT - STATSAT differences to determine the constant of

proportionality.

Impact may be measured in many ways. Useful impact measures should

account for differences in variability from season to season and from region
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t regior. ,-example an impact of 10 geopotential meters is meaningless

without chc context. of place, season and vertical level. Usually, for the.

parp,.e of co:,iparisori, it is reasonable to scale the squared errors by th. ii

-uspcctive climate variance

It is also oft,-ri hc lptul to define impact in terms of the change in

prelictabilitv ti:-me For example, one might define the predictabiliry tiI(,

i'.e at which the wean squared forecast error reaches thL. climate var i :-

ve. 1 Forecasts with errors this large are normally worthless. A posit

imp,;ct ir: predictability time would then indicate the additional time thai :h(

Mesurire. impact i.i terms of predictability time is especially useft'

wheni co,-bined with a common idealization of the growth of forecast error.

o-. sii,plv i-ara:meter izat ions of the growth of error have been advanc d

(e.F. p alcher atd Kalnav, 198/ and references therein). Remarkably geod it-,

(t.emble averag ed forecast error growth curves have been obtained, 1,,,

fitting relatively simple autonomous constant coefficient ordinary

differeotial equations. These coefficients describe the growth of small

'-rrors, the satura:ion of large errors at the climate variance levi 1 and tha

source of errors due to modeling deficiencies. Since these constarint should

be the same for a set of experiments, e.g. for all our February OSEs, all

fitted error growth curves for the experiments should be the same except f(,r a

translation with respect to the time axis. This shift is the impact in terr-;

of predictability time.

A direct reading of the predictability times from the rms difference

curves proved difficult because our sample is rather small. We could fit the

parameterization of Dalcher and Kalnay (1987). Instead, we took advantage of

the observation that our rms difference curves grow nearly linearly, at least

during the forecast period from 12 to 48 hours, to fit these data with a

series of straight lines having a common slope. In the N.H. these fits were

very good. They are less reliable in the S.H. and tropics, presumably because

the number of radiosondes in these regions 4s small. Our results for height,

wind and relative humidity nre shown in Tables 7.1 through 7.3. In the

tables, each item in the columns labeled R**2 is the fraction of variance'

explained by the fitting procedure or equivalently the square of the cortel a-

tion coefficient. The other columns in the tables display the predictabiliy
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time impacts of the various experiments, all relative to STATSAT. Some of

these values have been quoted earlier. These impacts are the difference in

the x (or time) intercepts of the fitted lines. (These intercepts are

proportional to the y (or rms difference) intercepts with proportionality

factor equal to the common slope.)

The NOSAT impact, i.e. the difference between NOSAT and STATSAT, in the

OSE experiments were then used to calibrate the OSSE results according to

(Expected OSE impact) - (NOSAT OSE impact)*(OSSE impact)/

(NOSAT OSSE impact)

This provided us with calibrated intercepts which we combined with the

observed OSE error growth rate (the common slope) to create calibrated rms

difference curves for WINDSAT, SSM and SSM+TOVS experiments. These are

displayed along with the observed OSE results in the figures. The horizontal

distances between the various curves are the predictability time impacts.

7.4.3 Calibration results

The calibration procedure described above allows us to translate our OSSE

results into anticipated real world impacts in a quantitative manner. Several

examples are provided in Figs. 7.30 through 7.32. Complete details are

provided Ly Tables 7.1 through 7.3 and the above equation for the expected

impact.

In Fig. 7.30, the S.H. 500 mb height rms difference for the STATSAT and

NOSAT OSE experiments are plotted. The calibrated OSSE results for SSM,

SSM+TOVS and WINDSAT are also plotted. These are the three straight lines

between 12 and 48 h on the plots. They are plotted only for this period since

it is only this period which was used in the curve fitting. Note that the

February (a) and June (b) OSEs provide two independent calibrations. In both

cases the dramatic improvement seen in the OSSEs for WINDSAT is expected to

carry over in actuality. A 36 h improvement in forecast skill relative to

STATSAT is anticipated and the expected impact of the SSM data is 12 h. In

the N.H. (not shown) STATSAT and NOSAT OSSE results are nearly equivalent, so

impacts expected from advanced observing systems cannot be calibrated.
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The tropical 200 mb vector wind rms differences are shown for February

(a) and June (b) OSSEs (Fig. 7.31). Because the growth rates for the

differences are so small, it is difficult to judge the impacts by eye. In this

case, in terms of predictability time there are significant impacts. WINDSAT

has a 24 h advantage over SSMSAT, a 48 h advantage over SSM+TOVS and a 60 h

advantage over STATSAT. Further SSM+TOVS has approximately a 12 h advantage

over STATSAT which in turn has a 12 h advantage over NOSAT. However, not much

weight should be given these results since in the tropics and S.H., the

calibration procedure is not very reliable.

For the N.H. 850 mb relative humidity or cloud cover (Fig. 7.32), the

actual impacts are all expected to be rather small. Note again the close

relationship between relative humidity and cloud cover statistics.

The calibration procedure does have some uncertainties and drawbacks.

The main drawback is the assumption of a linear relationship between impact in

the OSSEs and in the OSEs. Of course the data assimilation system and nature

are highly nonlinear. In the current experiments, the uncertainties are

mostly due to the small sample size, especially in the S.H. where the number

of radiosondes used in the verification is small. For example, in some cases

the sense of impact between NOSAT and STATSAT is reversed in OSSEs ahd OSEs.

In these cases the calibration produces nonsensical results. This occurred

when calibrating the S.H. 850 mb relative humidity rms difference. In other

cases the OSE impact between NOSAT and STATSAT is quite small. This implies

negligible calibrated impact for any change to the data assimilation system.

This occurred when calibrating the N.H. 500 mb height rms difference.

7.4.4 Forecast biases

In general the biases during the forecast are small compared to the rms

difference. However in many cases the biases grow very steadily with time

indicating that the AFGL model is warming and drying relative to the ECMWF

nature.

We examined -h biases by fitting straight lines with a common slope as

described in Section 7.4.2. However in this case all data from 12 to 96 hours

was used. The common slope obtained from the fit is then the rate at which

the biases grow. Some of these are displayed in Table 7.4 for the N.H.

OSSEs. Generally speaking the forecasts are warming relative to nature by one
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third to one degree per day. The height biases reflect these temperature

biases. These results are consistent with the warming seen during the spinup

forecast (Section 4.1) Also the forecasts are drying in the lower atmosphere

by I to 1.5 percentage points of relative humidity per day. For temperature

and height there are many cases when the fraction of variance explained by the

fit is greater than .99, indicating that the bias grows very linearly. For

example Fig. 7.33 shows the evolution of bias for the N.H. 500 mb height in

the OSSEs. Differences between the experiments are not significant. Results

for the tropics and S.H. are not as regular and clear cut presumably because

of sampling variability. This also applies to the OSEs, although there is

some evidence of the forecasts warming during the February OSEs in the mid

troposphere. In the N.H. the dry relative humidity biases are substantial at

1000 mb. In this case the bias at the start of the forecast is already -17 to

-18 percent. At other levels the initial dry bias is only of order 5%.

Typically, the analyses are dry by 5% and the forecasts continue to dry out by

1% to 2% per day for the first two days of the forecast. For example, the

evolution of the biases of the 850 mb relative humidity forecasts are shown in

Fig. 7.34. Again, differences in the experiments are not significant. The

trends are not so clear cut in the tropics and extratropics and the OSEs. In

the tropics, in the OSSEs, the atmosphere tends to moisten during the

forecast. In this case the boundary layer is analyzed dry but the mid

troposphere is slightly moist.
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Table 7.1 Predictability impacts (days) for height (a), wind (b) and relative

humidity (c) for the N.H. extratropics. Impacts for cases with

R**2 less than 0.25 (i.e. for correlations less than 0.5) are not

shown.

A. Neight

Noveeber OSSE February OSE June OSE

L P(M) ............................................ .............. ..............

R**2 NOSAT SSM/T SSN+TOVS WINOSAT R**2 NOSAT R**2 NOSAT

1 1000 .000 - - - .603 .266 .219

2 850 .822 .183 -.143 .022 .601 .975 -.287 .920 -.319

3 700 .991 .168 .118 .011 .488 .996 -.048 .989 -.032

4 500 .999 .141 .144 -.008 .307 .999 .023 .985 -.003

5 400 .999 .098 .113 -.017 .255 .998 .022 .960 -.020

6 300 .998 .038 .064 -.010 .186 .998 .000 .978 -.070

7 250 .996 .019 .050 -.013 .167 .998 -.019 .958 -.115

8 200 .996 -.011 .045 .012 .103 .998 -.051 .874 -.145

9 150 .994 -.013 .060 .029 .120 .997 -.104 .778 -.175

10 100 .996 -.100 .049 .065 -.112 .993 -.121 .449 -.444

11 70 .999 -.412 .060 .214 -.294 .990 -.127 .111

12 50 .998 -.699 .064 .307 -.368 .972 -.220 .434 -.585

B. Vector wind

Noveeber OSSE February OSE June OSE

I P ( 1) ... .......... .. .. .. .... .... .... .... ... .... .. .. ... .. ... .... .... ....... ...

R**2 NOSAT SSN/T SSM+TOVS WINDSAT R**2 NOSAT R**2 NOSAT

1 1000 .969 .414 .191 -.094 .928 .909 .161 .910 .451

2 850 .963 .474 .207 -.210 .915 .987 .122 .977 -.144

3 700 .981 .458 .149 -.314 .973 .990 .040 .932 -.184

4 500 .976 .410 .179 -.176 .866 .996 .015 .948 -.160

5 400 .985 .373 .182 -.145 .846 .995 .009 .984 -.152

6 300 .980 .233 .134 -.154 .806 .977 -.058 .990 -.103

7 250 .970 .214 .147 -.163 .941 .989 -.060 .987 -.135

8 200 .948 .126 .214 -.142 1.079 .979 -.171 .990 -.235

9 150 .860 .001 .318 -.095 1.301 .965 -.292 .988 -.250

10 100 .892 .232 .489 .127 1.244 .929 -.175 .984 -.108

11 70 .884 .265 .572 .331 1.222 .893 -.035 .964 .010

12 50 .929 .245 .506 .399 1.001 .938 -.076 .970 .157

C. Retative humidity

Noveffber OSSE February OSE June OSE

R**2 NOSAT SSM4/T SSM+TOVS WINOSAT R**2 NOSAT R**2 NOSAT
.. . .. . . .. . . .. . . . . .. . . . .. .. . . . . .. .. ... . . . . .. . . .. . . . . . . . . .. . . . . . . . . .. . .. . . . . . . . . .. . . . . . .. . ... . . .. . .

1 1000 .781 .213 .197 -.013 .490 .822 -.154 .107 -

2 850 .959 .320 .388 .168 .543 .935 .100 .964 .233

3 700 .954 .365 .330 -.029 .719 .856 .136 .945 .120

4 500 .906 .475 .392 .242 1.121 .973 .400 .934 .262

5 400 .921 .161 .116 .014 .763 .990 .114 .886 -.019

6 300 .853 .188 .146 .066 .908 .861 .355 .846 -.086
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Table 7.2 Predictability impacts (days) for height (a), wand (b) and relative

humidity (c) for the tropics. Impacts for cases with R**2 less

than 0.25 (i.e. for correlations less than 0.5) are not shown.

A. Height

November OSSE February 0S June OSE
t PI) ............................................ .............. ..............

R**2 NOSAT SSN/T SS*+TOVS WIN DSAT R**2 NOSAT R**2 NOSAT

1 1000 .000 - .158 - .312 .181
2 850 .131 - - - .126 - .643 -. 466
3 700 .652 -.490 -.033 .176 .445 .484 .395 .779 -. 641
4 500 .551 -.224 -.145 -.623 .610 .028 - .241

5 400 .569 -.348 -.302 -1.007 .398 .695 .066 .672 -.804

6 300 .381 -.687 -.364 -.917 .414 .633 .658 .545 -.800

7 250 .4"7 -.499 .116 -. 050 .65 .000 - .880 -. 921
8 200 .411 -. 147 .731 .665 .940 .001 .881 -. 517
9 150 .191 - - - - .041 .962 -. 348

10 100 .171 - - - .130 .556 -.354

11 70 .009 - - .094 .005
12 50 .005 - - .002 .000

B. Vector wind
-- = == -== =-=2CC ..== CC = z= ======z C = = = ==z= m=z

November OSSE February OSE June OSE

I PM) ............................................ .............. ..............

R**2 NOSAT SS/T SSN+TOVS UINDSAT R**2 NOSAT R**2 NOSAT

1 1000 .450 .802 .815 .458 1.389 .047 - .641 .323

2 850 .846 .416 .082 .029 .846 .813 -. 246 .791 -.304

3 700 .881 .771 .765 .479 1.307 .368 .968 .883 .165

4 500 .550 .882 .956 .267 1.682 .402 .023 .770 -.321

5 400 .565 .861 1.150 .664 2.000 .334 .472 .775 - .794
6 300 .494 .261 1.762 -. 128 3.908 .806 -. 433 .537 -. 575

7 250 .398 .418 1.454 .693 3.479 .788 -.212 .638 -. 089
8 200 .664 -. 462 1.317 .482 2.057 .666 -. 649 .345 -. 449
9 150 .739 .168 .932 .350 2.624 .328 1.527 .653 -.433

10 100 .033 - - - - .577 -.536 .902 -.158
11 70 .873 .355 .854 .636 1.719 .015 - .736 -.267

12 50 .698 1.160 2.006 1.534 3.665 .049 - .018

C. Retative hunidity

November OSSE February OSE June OSE
S P(t) --------------------------------------------. .............. ..............

R**2 NOSAT SSM/T SS14+TOVS WINDSAT R**2 NOSAT R**2 NOSAT

1 1000 .114 - - - .256 -1.478 .522 .319

2 850 .424 1.520 2.104 1.775 1.671 .521 -.121 .944 .071

3 700 .433 .601 .349 .460 1.018 .830 .210 .816 -.285

4 500 .795 -.237 .064 .086 .149 .000 - .899 -.098

5 400 .624 -.135 -.192 -.243 -.059 .545 1.828 .393 .016

6 300 .157 - - .467 -.682 .480 -.275
............................................................................................. 00..
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Table 7.3 Predictability imacts (days) for height (a), wind (b) and relative

humidity (c) for the S.H. extratropics. Impacts for cases with

R**2 less than 2.5 (i.e. for correlation less than 0.5) are not

shown.

A. Height

November OSSE February OSE June OSE
I P(L) ............................................ .............. ..............

R**2 NOSAT SSM/T SSIOTOVS WINOSAT R**2 NOSAT R**2 NOSAT

1 1000 .000 - - - .062 - .024 -

2 850 .486 -. 082 2.098 2.082 1.954 .000 - .308 -. 363
3 700 .795 -1.076 .469 .471 1.357 .582 -1.396 .318 -1.958
4 500 .671 -1.597 .498 .285 1.686 .678 -1.231 .688 -1.372
5 400 .668 -1.634 .524 .323 1.491 .469 -1.625 .777 -1.783

6 300 .734 -1.709 .472 .350 1.106 .399 -1.592 .751 -2.208

7 250 .742 -1.659 .528 .448 .949 .570 -1.423 .711 -3.210

8 200 .747 -1.605 .619 .502 .784 .403 -1.765 .598 -4.398

9 150 .717 -1.768 .626 .518 .798 .369 -1.745 .689 -4.280
10 100 .647 -2.243 .318 .267 .193 .483 -1.111 .560 -5.290

11 70 .577 -3.387 -. 004 .841 -1.169 .802 -. 787 .013 -

12 50 .610 -4.762 -. 845 1.256 -2.376 .764 -. 337 .184

B. Vector wind
-============== ns===== _- s==== ====== ==_~--J=---------- -_-- -----SlI IClaII Zlt~¢ mZ = ZI ZZ

November OSSE February OSE June OSE

t P(M) ............................................ .............. ..............

R**2 NOSAT SSM/T SSN+TOVS UINDSAT R**2 NOSAT R**2 NOSAT

1 1000 .145 - - - .057 - .304 -1.757

2 850 .716 -.518 1.674 1.119 3.372 .795 -1.274 .688 -2.197

3 700 .696 -1.133 1.117 .406 2.559 .265 -2.042 .700 -2.487
4 500 .651 -1.435 .644 .172 2.306 .672 -.651 .320 -2.112

5 400 .601 -1.615 .536 .445 2.571 .573 -. 714 .454 -1.461

6 300 .852 -1.547 .333 .081 2.055 .242 - .154 -

7 250 .819 -1.359 .135 .043 1.516 .24 - .024

8 200 .808 -1.562 1.011 .539 2.749 .777 -1.113 .004

9 150 .520 -1.716 1.448 .390 3.460 .117 - .016

10 100 .051 - - - .016 .124 -

11 70 .265 -1.454 1.621 .503 4.040 .059 .575 -3.541

12 50 .169 - - - - .290 -.335 .418 -1.083

C. Retative humidity
m===== == = = = z = = == == = = =s--z==ns. us== s zl=== = =---== ==mn

November OSSE February OSE June OSE

PM ............................................ .............. ..............

R**2 NOSAT SSN/T SSM+TOVS WINDSAT R**2 NOSAT R**2 NOSAT

1 1000 .133 - - - .005 - .705 -.075

2 850 .432 .062 1.102 .510 2.193 .364 -.969 .140

3 700 .741 .398 .832 .314 1.263 .188 .067
4 500 .322 -.026 2.434 .407 2.980 .045 .662 .225

5 400 .427 .014 1.667 .293 2.778 .493 -.037 .005

6 300 .168 - - - - .158 - .705 .664
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Table 7.4 Growth rate of forecast bias for height (m/day), temperature
(K/day) and relative humidity (%/day) for the N.H. extratropics.
Impacts for cases vith R**2 less than 0.64 (i.e. for correaltions
less than 0.8) are not shown.

1 P(1) R**2 Z R**2 T R**2 RH

1 1000 .000 - .175 - .673 -1.467

2 850 .561 - .879 .443 .753 -.948

3 700 .963 4.232 .983 .718 .848 -1.074
4 500 .989 12.625 .991 .937 .284

5 400 .992 18.747 .986 .903 .014
6 300 .992 25.569 .986 .689 .057
7 250 .993 28.995 .985 .544 -

8 200 .994 31.843 .979 .426 - -

9 150 .995 35.529 .955 .371 -

10 100 .996 39.334 .970 .375 -

11 70 .998 43.682 .964 .406 -

12 50 .997 47.277 .973 .415 -
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Figure 7.1 Northern hemisphere height analyses and analysis errors at 00 CMT

23 November. The contour interval in the 500 mb analyses is 80 m,

at 1000 mb it is 40 m. The contour interval of the error maps is

40 m at both 1000 and 500 nib. Shown are 500 mb nature data (a),

1000 ib, nature data (b).
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Figure 7.2 Format as in Fig. 7.1. STATSAT analysis (a) and analysis error
(b) at 500 mb, and at 1000 mb (c,d).
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FigurA 7.3 Format as in Fig. 7.1. SSMSAT analysis (a) and analysis error (b)
at 500 nab, and at 1000 nib (c,d). Raob height residuals at a-0.5
used in the analyses are marked by crosses in panel b.
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Figure 7.3 (continued).
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Figure 7.5 Northern hemisphere height analyses and analysis errors at 00 GMT

25 November. The contour interval in the 500 mb analyses is 80 in,

at 1000 mb it is 40 m. The contour interval of the error maps is

40 m at both 1000 and 500 mb. Shown are 500 mb nature data (s

1000 mb nature data (b).
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Figure 7.6 (continued).
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Figure 7.8 (continued).
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Figure 7.9 Northern hemisphere SSMSAT (a) and SSM+TOVS (b) analysis errors at

500 mb for 00 GMT 22 November.
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Figure 7.10 Northern hemisphere SSM+TOJS first guess errors at 500 mh (a) and
1000 mb (b) for 00 GMT 23 November. Raob height residuals at
a-0.5 used in the analysis are marked by crosses in panel a.
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Figure 7.11 Southern hemisphere height analyses and analysis errors at 00 GMT

25 November. The contour interval in the 500 mb analyses is

80 m, at 1000 mb it is 40 m. The contour interval of the elrrr

maps is 40 m at both 1000 and 500 mb. Shown are 500 inth naiturc

data (a), 1000 mb nature data (b).
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Figure 7.13 Format as in Fig. 7.11. SSMSAT analysis (a) and analysis error

(b) at 500 mb, and at 1000 mb (c,d).
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Figure 7.19 Rms height errors at 500 mb. (a) NOSAT, (b) STATSAT, (c) SSMSAT,

(d) SSM+TOVS. Analysis errors are shown in solid curves,
forecast errors in dashed curves. Julian day 322 corresponds to

00 GMT 18 November.
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Figure 7.19 (continued).
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Figure 7.20 Global rms analysis/forecast errors for 850 mb relative

humidity. (a) STATSAT, (b) SSMSAT, (c) SSM+TOVS. Solid curves

denote analysis, broken curves are forecasts.
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134



I I j220

1001
00 60 40 20 0 -20 -40 W _

LJATIT"m I M

b * C

H ~ H

2i00 n

.27 .4

~60700.

so 60 20 0 2 -40 -0 -01 so0 20 0 -20 -40 -60 -0
WGF ILATIRM , KES~

Figure 7.22 Zonal time averaged v component of wind. (a) Nature,
(b) STATSAT, (c) STATSAT - Nature, (a) WINDSAT, (e) WINDSAT-
Nature, 1(f) SSMSAT, (g) SSMSAT - Nature. Contour interval is
0.5 ms , negative values are dashed.
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Fig~ure 7.24 Zonal time averaged relative humidity. (a) Nature, (b) STATSAT'

(c) STATSAT - Nature, (d) WINDSAT, (e) WINDSAT - Nature

(f) SSMSAT, (g) SSMSAT - Nature. Contour interval is 5 percent

negative values are dashed.
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Figure 7.25 Forecast rms error growth, 500 mb height. (a) Northern
hemisphere extratropics, (b) Tropics, (c) Southern hemisphere
extratropics.
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Figure 7.26 Forecast rms error growth, 200 mb wind vector. (a) Northertn

hemisphere extratropics, (c) Southern hemisphere extratropics.
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Figure 7.28 Forecast rms error growth. (a) 850 nib relative humidity, global
statistics, (b) 850 nib cloud cover, global statistics.
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Figure 7.29 Forecast rms error growth, 50 mb height, northern hemisphere
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Figure 7.32 Calibrated 850 mb relative humidity summer OSSE rms errors for
northern hemisphere extratropics. (a) Relative humidity.
(b) Cloud cover.
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SSum~rrv and Conclusions

The impact of the 183 GHz temperature and RH retrievals on the AFGL GDAS

was evaluated by comparing the results of OSSEs using the SSM data instead of

(SM>SAT) or in addition to TOVS data (SSM+TOVS) with baseline OSSEs using the

full F'GGE data set (STATSAT) and, for calibration purposes, no satellite data

,,: all (NOSAT). Our principal findings are that the RH forecast errors were
s ightly affected in the Northern Hemisphere extratrcpics, but a marked

i:., rovemnnt could be seen in the tropics and the Southern Hemisphere

cxtratropics. Interestingly, though, WINDSAT moisture forecasts were superior

to SSMSAT in the extratropics, even though only RAOB moisture data were u5;ed

in XWINDSAT, reflecting the dominant role of the mass and wind fields in

forcing the moisture field in the extratropics.

Gridpoint to gridpoint comparisons of the OSSE analyses with the

corresponding nature data showed the SSMSAT height analyses to be superior to

STATSAT and SSM+TOVS, when measured in terms of global rms errors. Moistur,!

analyses were clearly improved by the addition of SSM data: rms errors of

SSMSAT and SSM+TOVS, which were almost identical, were approximately 5% less

thain those of STATSAT and NOSAT (22% vs. 27%). SSM+TOVS and STATSAT had

cc:rparable height errors. Weather features were identified by subjective

synoptic evaluations which were analyzed better in SSMSAT than SSM+TOVS. The

s mewhat surprising result that adding TOVS data led to a degradation of the

h eight analyses was caused by a combination of factors, some of which were

related to the anchoring of satellite thicknesses, others to data selection

and quality control procedures.

Cloud cover estimates derived from the relative humidity fields were too

higi,. Eltlaer the model is too moist or the relative humidity to cloud cover

algorithm needs to be tuned. In any case, cloud cover differences or

comparisons are still useful since all relative humidity fields converted to

cloud cover will be too cloudy in the same way. Thb comparisons of rms

differences of cloudiness yield the same results as comparisons of rms

differences of relative humidity. This might have been expected in view of

the facts that the statistics calculated the averages over large samples and

that the relative humidity to cloud cover relationship is simple. This

ielationship is nonlinear but it is 1-to-I and monotonic and it does not

d Tp i or, any other model parameters known to impact cloudiness s,,ch as
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temperature lapse rates, vertical wind shears, vertical velocity or

divergence.

The OSSE analyses were all found to be noisier than the corresponding

nature data. We also found that the the AFGL model has a tendency to warm and

dry out relative to the ECMWF nature model. This warming was seen in all the

forecasts. We note that the version of the AFOL model which we used has no

radiation parameterization and hence no cooling mechanism although there is a

constant source of warming due to the fixed sea surface temperature.

To calibrate these OSSE results with previously conducted OSEs, error

statistics were also computed between the OSSE forecasts and the simulated

radiosonde observations. Impacts in the N.H. forecasts were larger when

calculated as grid point rms errors than when calculated as radiosonde rms

difference. As seen in the synoptic charts the greatest impacts tend to be

polar, however the verifying radiosondes tend to be midlatitude. The impact

of the SSM data was found to be generally small in the Northern Hemisphere,

but quite substantial in the Southern Hemisphere. This result is in agreement

with numerous previously conducted OSSEs and OSEs which measured the impact of

satellite data. When measured in terms of 500 mb height, Southern Hemisphere

forecast errors of SSMSAT (SSM+TOVS) lagged those of STATSAT by about )

hours. By comparison, addition of lidar wind profiler data to STATSAT led to

a gain of 36 hours of forecast time. These forecast time gains were

essentially unchanged when the OSSE results were calibrated by the ratio of

OSSE vs OSE STATSAT-NOSAT impact. The RH impact could not be calibrated with

OSE results because there is essentially no difference between STATSAT and

NOSAT OSE moisture errors.

There are some important caveats that apply to the results reported

here. As is the case with all OSSEs and OSEs, the measured impacts apply to

the particular data assimilation system used here. While the assimilation

system is reasonably "state of the art", some aspects, in particular the

anchoring of the satellite thicknesses and the limitations of data selection,

may limit the extent to which our conclusions are generally valid. Since wu

used simulated data in our experiments, the realism of our OSSE results

depends on how realistic the simulated observation errors were. We took

particular care that they were of sufficient size and had the appropriate

error correlation structure. Finally, the calibration of our OSSE results
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wl; L -.E RAOB statistics suffers from the usuol problems of the uneven

'.is* r5'urien of radiosondes, particularly the bias toward land areas (where no

,ellite data were used), and the small sample sizes over the Southern

h.nre is considerable opportunity to improve and refine the experiments

reFcrted here and elsewhere. Such efforts would allow the quantification of

erelaiive impact of proposed advanced temperature sounders and doppler wind

!i.dars. In addition cost benefit analyses of observational accuracies cou!,l

he supt-orted by such studies. It is also important that the assimilation

sysscm be modified to best take advantage of the novel observations. And in

future studies it will be important to carefully simulate the geographical

coverage and error characteristics of proposed instruments. In particular,

iatu-ral phenomena which give rise to correlated observational errors should be

n-c-Ided t* -he extent possible.

T ue .rror charact eristics and distribution of simulated temperature aiid

Rh -etrieials for example should depend on the global distribution of

,fra(ds. These geophysical parameters are in turn associated (correlated) in

re.l world with the geophysical parameters which are to be measured. This

is one cause of spatial and temporal error correlations and as such it. should

be included in our simulation of observational errors. Hepce, it is important

t-hat the model used to generate nature also can provide a realistic

d-scription of the cloud field. In future work we anticipate using a newer

nature run generated by the ECMWF using - T106 spectral truncation and more

compiete physical parameterizations. This nature run includes many diagnostic

fields generated by the physical parameterizations.

No existing global model has fine enough resolution to represent all

scales of motion which exist in nature. In fact, the smallest scales

rppr,esented by models are usually severely damped for computational reasons.

i real data assimilation these small scales are considered part of the

ol, rrvational error. In fact, for radiosondes, this is the greatest source of

er-or. Although the length scale i; small, these errors are correlated.

Tfe . o re simulated observations should include spatially correlated errors

could be accomplished by unfiltering the nature run, thereby restoring,

r ;: -llest resolvable scales as sugge.,ted by Hoffm:n (1988).
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Appendix A. MICROWAVE SOUNDER FIEIDS-OF-VIEW FOR THE 183 GHz OSSE

A.A Approach

A basic element of the 183 GHz observing system simulation experiment

(OSSE) is the inclusion of simulated retrievals of water vapor and temperature

from the SSM/T-2 and SSM/T-l millimeter moisture and microwave temperature

sounders, respectively. These sensors along with the SSM/I microwave imager

will define the special sensor complement relevant to meteorology to be

carried aboard the polar orbiting DMSP satellites in the 1990's time frame.

In order to locate the additional initialization data potentially available

from this observing system in space and time for the purpose of the OSSE, it

is necessary to develop a simple sensor scan line generation program (SLCP)

for these sen5 rs. The approach consists of a sim:ple model assuming nominal

characteristics both for the DMSP orbital platform and the SSM/T-l and SSM/T-2

cross-track scanning sensors. Using basic information regarding both platform

and sensor and latitude and longitude of each possible instrument specific

field-of-view (FOV) is calculated along with the time associated with the

observation. The resulting output, therefore, provides a simulated data

ephemeris for each sensor which can be used to locate the available Satellite

data for assimilation into the numerical weather prediction (NWP) model. Once

the potentially available data is located in this manner, the appropriate

errors in vertical temperature and moisture profiles may be assigned based on

their dependence on such factors as latitude and surface type (i.e. ocean vs.

land).

The problem is simplified considerably by assuming that the DMSP orbit is

circular, the earth is a sphere, and the satellite subtrack can be assumed to

be a great circle. In this case concepts from spherical trigonometry can be

applied to both subtrack and sensor scan line location calculations. The

calculation should thus provide a useful simulation of an operational sensor

ephemeris. The calculation may be divided into two parts: (a) location of

the satellite subtrack position when the sensor (i.e. SSM/T-l or SSM/T-2) is

observing a specified FOV, and (b) location of the center of the FOV itself.
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A.2 Platform and Sensor Characteristics

It is assumed that the DMSP platform is in a circular orbit at an

altitude of 833 km with a nominal period of 101.35 minutes. The inclination

of the orbital plane with the equatorial plane of the earth is 98.7 degrees

insuring sun synchronicity. Other key satellite parameters are summarized in

Table A-l. These include the time and longitude of.the ascending node chosen

to start the calculation. The ascending node positions the satellite at the

equator crossing from southern to northern hemisphere. The longitude and time

of the ascending node determine the local solar time at which the satellite

transmits the meridian. This determines whether data is being collected from

a morning or noon satellite.

Both the SSM/T-l and SSM/T-2 sounders are cross-track scanning sensors.

Data coverage is provided by scanning perpendicular to the satellite subtrack

in a Specifiable scanning pattern. The desired scanning pattern consists of a

fixed number of scan positions incremented along the scan and an interscan

calibration period. Each scan position determines a field-of-view. It should

be noted that modeled FOV's are approximate. One source of error are those

associated with pointing angle accuracy. For example, the beam position

repeatability, scan plane alignment, and distribution of the actual beum

position about the desired beam position have tolerances of about

0.4 degrees. Additionally, the beamwidth for the bSM/T-2 used in our

calculation corresponds to the 183 GHz channels only. The two lower frequency

channels at 91.6 and 150 GHz have beamwidths of 3.7 and 6.7 degrees,

respectively. Finally, since beamwidths for both sensors are determined by

the 3 dB power points, there is some overlap.

The SSM/T-l views 7 positions, one at nadir and three to either side.

The scan angle increment is 12 degrees and the FOV is twelve degrees for a

total scan from -36 to 36 degrees of nadir. The total swath width is thus

42 degrees to either side of nadir. The SSM/T-2 has a total of 28 viewing

positions which scan from -40.5 to 40.5 degrees of nadir in steps of 3

degrees. Each FOV is approximately 3 degrees so that the total swath width is

identical to that of the SSM/T-l. The SSM/T-2 never actually views the nadir

position along the satellite subtrack. Two scan positions, those denoted 14

and 15 view -1.5 and 1.5 degrees, respectively, from nadir. The scan patterns

for the SSM/T-l and SSM/T-2 sensors are illustrated in Figure A-1.
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Th total scan cycle period, T', for the SSM/T-l sensor, i.e. the time it

t~lit- to sweep ou a full 360 degrees including FOV sampling and calibration

is 32 seconds. The scan cycle period for the SSM/T-2 is 8 seconds. During

,.hc scan cycle period each sensor views FOV's for 42 degrees and calihrates

etc. for the rest of the cycle. Assuming a constant rotation rate for the

-: ics, a FOV sampling time and an interscan period can be calculated. These

a od other sensor related characteristics are given in Table A-2. In order to

ktep account of the sensor position at any time, we define a scan line iindex,

rJ and a scan position index, nJ , for each sensor j , where j = 1,2 denote the

SSM/T-l and SSM/T-2, respectively. Associated with each index pair (m j , :. j )

will be a lonitude, latitude, and time , The calculation is

initialized by specifying the time and longitude of the ascending node and the

iritial sensor positions. (By definition, tho 1Li itude at the ascending node,

timrs is o.r ) The initial sensor positions are,:

6 1 I 1

(A.1)
2 2 2 2

(n ,n )t, - (n 0 ,, 0 )

and provide a starting point for simulating the scan cycle. The scan .position

index is incremented by one until the total number of scan positions, N1 , for

each: sensor is reached. At this point, the scan line index is incremented.

Based on these indices the sensor scan angle and time past the ascending node

can be evaluated. The scan angle at scan position ni is given by:

n - 0o +  -INT( ) + I } AJ (A.2)

where is the initial scan angle, nJ is the scan position index, NJ is the

total number of scan positions, and A& is the scan angle increment for

sernsor j. Scan angles can take on values which are both positive and negativ,.

depending whether they are to the starboard or port side, respectively, of the

spacecraft velocity vector. The time along the satellite ,ubtrack can be

evaluated by noting the elapsed time since the ascending node indexed by the

number of scan lines acquired and the current scan position. Thus the current

time will be:
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t(min - to + I(N J - n,) + nJ(t 1 /NJ) + mJ - m) At (A.3)

+ (mi - mn N )N 0

where t is the FOV sampling time and AJ is the interscan period.

Table A-I. DMSP Satellite Platform Characteristics

Parameter Description Assumed Value

P Satellite period (m) 101.35 min

Satellite inclination to equatorial 98.7 deg
plane (deg)

Z0  Satellite altitude (km) 833 km

R0  Radius of the Earth (km) 6371 km..

t o  Time of ascending node (h,m,s) 0:0:0 (GMT)

Longitude of the ascending node (deg) 0.0 deg
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1,1l1 A- .. S-nsor Characteristics for the SSM/T-1 and SSM/T-2 Sensors

Assumed Valu,

P.i L, m e r Description SSM/T- I SSM/I- 2

& Initial scan angle sensor j (deg) 0.0 1.5
0 "

Cross-track scan angle increment .'or 12.0 3.0

sensor j (deg)

J  
Total number of scan positions for sensor j 7 28

T Scan period for sensor j (s) 32.0 8.0

FOV sampling time for sensor j (s) 7.47 1.87

Interscan period for sensor j (s) 2 4.53 6.13

Scan line index for sensor j

nj  Scan position index for sensor j

0 nj )  scan angle at scan position index n3

for censor j (deg)

F1(n j ) Azimuth angle at scan position index nj

for sensor j (deg)
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Orbital Track

- - - SSM/T-1
-SSM/T-2

Figure A-1. SSM/T-1 and SSM/T-2 FOV scan line pattern.
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A. . -eld-0f-View Locatioli

The geometry required to calculate locations for each field-of-view is

illustrated in Figu-e A-2. Here the ascending node is denoted by tha letter

A. -i nerd point tloig the satellire subtrack as letter B, and the starboard

E,'xnt ot a geineral scan line denoted by the letter E. The pole is

-I C. Assuming the satellite suhtrick (arc AB) to be a great circle, we

C--T'i cd.culatte the latitude and longitude of poirt B by applying Napier's

*a: ies Selbv, VC6 , p. 223) for the spleiric:itl riangl. ABC. The latitud,

a- ;,ir t B will be ijven by the arc l.:ipth (in d(.gI, s ) u, side a:

k(t) Oi - , (A.4)

-ie rho bonc i:ude will be given by the angi a C:

-. - C + (t - O) (A. 5)

wrere is the angular velocity of the earth. The longitude increment is

a,.drd to that of the ascending node and a correction is made for the rotation

of the earth since the ascending node time.

The unknowns a and C are obtained from our knowledge of sides c and- b and

aI Ie A. Angle A is a constant and is equal to the difference in angle

between the orbital plane of the satellite and a typical meridian or:

A e - 90.0 = 8.7 deg (A.6)

Side b is simply the arc length from point A (on the equator) to the pole

point C, or:

b - 90.0 deg (A.7)

The length of side c is obtained from the elapsed time since the ascending

node realizing that one orbital period corresponds to 360 degrees. Thus:

c - 360 (t - to ) / p (A.8)

a = 2 tan-l [h(b,c,B,C)] (A. 9)
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C- tan 1  [f(b,c,A)] tan -1 [g(b,cA)] (A.10)

where

B - tan -I [f(b,c,A)] tan I [g(b,c,A)] (A.11)

and the functions f, g and h are given by:

1 1 1 1
f(b,c,A) - tan I (B+C) - cos I (b-c) sec (b+c) cot A (A.12)

g(b,c,A) - tan I (B-C) - sin - (b-c) csc i (b+c) cot 1 A "A.13)
222 2

1 1 1 1
h(b,c,B,C) -tanI tan I (b-c) sin 1 (B+C) csc 1 (B-C) (A.14)

Upon substitution of the quantities A (A.6), b (A.7), and c (A.8) into

equations (A.11) through (A.14), the unknowns a (A.9) and C (A.10) can be

evaluated. Equations (A.4) and (A.5) then yield the desired subtrack point

latitude and longitude, respectively.

Similar considerations apply to the location of specified fields-of-view

along the scan line. In this case the spherical triangle BEC (Figure A-2) is

considered. The length of side a (equation A.4) is simply:

a - 90.0 - A(t) (A.15)

The angle at B is determined from the orbital inclination and is:

B - 81.3 deg (A.16)

The length of the scan line segment fn J at position nj in degrees can be

obtained from the scan angle (A.2) and the local zenith angle given by:
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a J - sin-1 f0 R 0 sin (
j] (AI

From Figure A-3, it can be seen that this angle is:

fi J e - , (A. 18)
n n n

The Napier analogies (equations (A.9) through (A.14)) can now be applied to

solve for the latitude and longitude for the FOV specified by each sensor's

scan indices. The unknowns are the length (in degrees) of the side d and th

new angle C included by ECD in Figure A-2. Given these, the latitude and

iongitude of the field-of-view are:

'(n n ) = 90.0 - d (A.19)

( n hj - -c (A.20)
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C(P)

Satellite Subpoint Track
..... Sensor Scan Line

Figure A-2. Geometry for location calculation.
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Figure A-3. Scani angle geometry.

A-11



-- - - -- -- - ------ -------

-- -- --- 4 - ------

a% n'.a9 I

Figur A-4 Sbat t trd fo poa riigpatom(4huso

orit)

A-1



.. r .. 4

V1. V,

- -,*~7 J.
.~< < < .--

< < *%*'' &

.4 4 4.'.--v.4
- ~ k Il -Ile

-- -~ *(4e 4~
-. 0,Oe

* ~ 4..4~e

40 <-~ *V.;- ~ ~ '~4

It *: J . ,~, , r . " _,I

Figure A-5. Subsatellite points indicating coverage density for two weeks of

orbits.
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Figure A-6. Location of SSMI/T-1 temperature soundings (1) and SSM/T-2 water

vapor soundings (2) assuming FOV's of 180 and 50 kmn,
respectively.

A-14


