
UNCLASSIFIED
SECURITY CLASSIFI]CATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE "A. Vrrvvos
Wro, O ;R T£I ro"~

1. REPORT NUM. R 12. GOVT ACCESSION NO. 3. RECIPIENI'S CATALOG NUMBER

4. TITLE (andSubt,tle) 5. TYPE Or REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report:SYSTEAM KG 29 March 1989 to 29 March 1989
SYSTEAM Ada Compiler VAX/VMS x MC68020/0S-9, Version 1.81, 8. PRFORMINGbRG. REPORT NUMBER
VAX 8350 Ciost) and KWS EB68020 (Target), 89032911.10076

7. AUTNOR(s) S. CONTRACT OR GRANT NUMEERs)

IABG,
Ottobrunn, Federal Republic of Germany.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

IABG,
Ottobrunn, Federal Republic of Germany.

11. CONTROLLING OFFICE NAME AND APDRESS 2. REPORT DATE
Ada Joint Program Office
United States Department of Defense 1, NuMbL ot PA6Lb
Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office; 15. SECURITY CLASS (ofth,sreport)

IABG, UNCLASSIFIED1S.jCi.JS I CA" ;Oh,'DOw',GRADI NG

obrunn, Federal Republic of Germany. hL U N/FICA__ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _N/A

DISTRIBUTION STATEMENT (ofthisReport)

proved for public release; distribution unlimited.

N)ISTRIBdTION STATEMENT (of the Abstract entered in Block 20 If dffierent from Report)

DI
E ECTE n

UPP,,EMENA i NOTES
EJUN15 1989

29. KEYWORDS (Continue onreverse s,e if necessar) and identify by block number) .. .

Ada Programming language, Ada Compiler Valdation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MI -STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on ,everse side if necessary andidentif) by block number)

SYSTEAM KG, SYSTEAM Ada Compiler VAX/VMS x MC68020/OS-9, Version 1.81, VAX 8350 under VMS
Version 4.7 (Host) to KWS EB68020 'inder OS-9/68020, Version 2.1 (Target), Ottobrunn
West Germany, ACVC 1.10.

DD Iu,1 1473 EDITION or I NOV 65 IS OBSOJ.TE

AVF Crt~ol Number: IABG-VSR-O3

Ada COMPILER

VALIDATION SUMMARY REPORT:
Certificate Number: 89032911.10076

SYSTEAM KG
SYSTEAM Ada Compiler VAX(VNS x MC680Z0OS-9 Version 1.81

VAX 8350 host and KWS EB68020 Target

Completion of On-Site Testing:
29 Marcn 1989

Prepared By:
IABG mbH, Abt SZT
E~nstienstr 20D8012 O~tc brunn

West Germany

P-e.ared For:
Aaa Joint Program Of 'ice

United States Department of Defense
Wasnington DC 2301-3081

Ada Comoiler Validation Summary Report:

Compiler Name: SYSTEAM Ada Compiler VAX/VMS x MC68020/OS-9
Version 1.81

Certificate Number: 89032911.10076

Host: VAX 8350 under VMS Version 4.7

Target: KVS E868020 under 0S-9/68020 Version 2.1

Testing Completed 29 March 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Dr S. Heilbrunner
Einsteinstr 20
D8012 Ottobrunn
West Germany

Vaiation Organization
Dtr. Jo4n F. Kroner
±nstitute for Dezense Analyses
Alexandria VA 22311

To. I n
IAccession For

,INSPECTM NTIIS GPA&I
6

Ada <oint Program Of ice DTv' Y\D El
Dr John Solomond UJuw nstceJ []
Director Just t oatiou
Department of Deiense
Washington DC 20301

Dlstributl u/

'Av311 s.. , 'or
Dist

Li_

Ada Comoier Vaiidation Summary Report:

Compiler Name; SYSTEAM Ada Compiler VAX/VMS x MC68020/0S-9
Version 1.81

Certificate Number: 89032911.10076

Host: VAX 8350 under VMS Version 4.7

Target: KIE E368020 under 05-9/68020 Version 2.1

Testing Completed 29 March 198? Using ACVC 1.10

This report has been reviewed and is approved.

A b 1, Aot SZT
Dr S. Heilbrunner
Einsteinstr 20
D8012 Ottobrunn
' e~t Germany

Aaa Vai aation Organizat
Jo nn F. Kra-)er

Alexandria VA 22311

Ada Joint Program Office
Dr John Solomond
Director
Department of Defense
'4ashington DC 20301

CONTENTS

CHAPTER I INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-I
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFCATONS .. 3
3.7 ADDITIONAL TESTING INFORMATION3-6
3.7.1 Prevalidation3-6
3.7.2 Test Method3-6
3.7.3 Test Site3-7

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER AND LINKER OPTIONS

CHAPTER I

INTRODUCTION

This Validation Summary Report -V4S" describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability, (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers coniorm to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler ant
evaluating the results. The purpose c4 validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing a'so identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for tne foIowing purposes:

1-i

INTRODUCTION

To attempt to identify any language constructs supported by the
compiler that co not conform to the Ada Stanaard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by tne Ada Standard

Testing of this compiler was conducted by the AVF according to procedures
established by the Ada Joint Program Office and administered by the Ada
Validation Organization (AVO). On-site testing was completed 29 March 1989
at !ABG mbH, Ottobrunn.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. !52). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearingnouse
Ada Joint Program Oiffice
OUSDRE
The PenTagon, Rm 3D-12 9 (Fern Street)
Vashing:on DC 20301-3081

or -rom:

IABG mbH, Abt SZT
Einsteinstr 20
D8012 Ottobrunn
West Germany

-Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-2

'NTF-D0 UiCT I.Ji

1.3 REFERENCES

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-.987.

2.n~jr Y j 1i~j.in PrDr j vjjtintj, Ada Joint
Program Office, 1 January 1987.

3. j iLn~jpj Mj!i Ajig .4.ili+ Tlp!=ntnltra vidr, SoiTech,
inc., December 1986.

4. J .QMEi1~r YIi Dni C@ ili1Y Ulgd-'S 99f, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all iniormation relevant to the
Commentary point addre:sed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February IF83 and ISO 86E2-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Fa ;:, ity. The AVF is responsible for
conducting compiler vailids: ons ac:ording to procedures
contained in the A c;-e; Vaid0or P-ocedures and

AVO The Ada Validation Organizaton. The AVO has oversight
authority over all AVF practices ;or the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO ;rovi,es adminis-rative and technical
supoort ;or Ada valida:ions to ensure consistent practices.

Compiler A processor for the Ada language. In the context of th's
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host Th! computer on which the compiler resides.

1-3

Inapplicab!e An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a comgiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, thich may comprise one or more
files.

Vithdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the suczessful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is e'xamined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

1-4

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may re~use to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. in some cases, an implementation may legitimately
detect errors during compilation of the test.

Two li brary units, the package REPORT and the procedure CHECKFILE, support
the self-crecking features of the executable tests. The package REPORT
provides the mechanism by wnich executable tests report PASSED, FAILED, or
NOT APPLICAELE results. It also provides a set of icentity functions used
to defeat some compiler optimi:ations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECKFILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECKJILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, ccntaln
lines with a maximum length of 72 characters, use small numeric values, and
olace features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-5

INTRODUCTION

customized according to impementation-specific values--for example, an
illegal file name. A list of the vaiues used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability o- a test to an implementation is
considered each time the implementation is validated. A test tra: is
inapplicable for one validation is not necessarily inapplicable ;or a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from tre
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

COn Pr.ATION INF0.0RMTCK,

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: SYSTEAM Ada Compiler VAX/VMS x MC68020/OS-9 Version 1.81

ACVC Version: 1.10

Certificate Number: 89032911.10076

Host Computer:

Machine: VAX 8350

Operating System: VMS Version 4.7

Memory Size: 12 ME

Target Computer:

Machine: Kr 5 EB68020

Operating System: OS-9/68D2N Version 2.1

Memory Size: 2 MB

Communications Network: V24 connection

2-1

CONFIGURATI0N INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
difierences. However, tests in other classes also characterize an
implementation. The tests demonstrate the ollowing characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test 029002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

Predefined types.

(1) This implementation supports the additional predefined types
SHORTINTEGER, SHORTFLOAT and LONGFLOAT in the package
STANDARD. (See tests 986001T..Z (7 tests).)

c. E xressi.n evaluation

The order in whicn expressions are evaluateo and the time at which
constraints are checked are not oefineo ny the language. While
the ACVC tests do not specifically attempt to determine tne order
of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C3217A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (--. test C3.5712B.)

(3) This implementation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903A.)

2-2

ONF IGURA7:ON INFORMATION

(4) No exception is raised wnen an integer literal operand in a
comparison or membership test is outside the range of the base
type. (See test C45232A.)

(5) No exception is raised when a literal operand in a fixed-point
comparison or membership test is outside the range o the base
type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A. .Z (26 tests).)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A...Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AOI4A.)

e. Array types.

An implementation is aIlowed to raise NUMERIC ERROR or
CONSTRAINTERROR for an array hav;nc a 'L:NGH tnat exceeds
STANDARD.iNTEGER'LAST and/or SYSTE. AX 7 T.

Thfs implementation evaiuates the ?L:NGTH of e:n constrained
array subtype during eIEnoration o: tne type :ocaraticn. This
causes the declaration of a constrained array sub:yoe with more
than INTEGER'LAST (which is equal to SYSTEM.MAXINT for this
implementation) comoonents to raise CONSTRPAINTERrOR. However the
optimisation mechanism of this implementation suppresses the
evaluation of 'LENGTH if no object oi the array type is declared
depending on whether the bounds of the array are static, the
visibility of the array type, and the presence of local
subprograms. These general remarks apply to points (1) to (6).

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception if the
bounos of the array are static. (See test C36003A.)

2-3

CONFIGURATION INFORMATION

(2) CONSTRAINT ERROR is raised when 'LENGTH is applied to an array
type with iNTEGER'LAST * 2 components if the bounds of the
array are not static and if the subprogram declaring the array
type contains no local subprograms. (See test C26202A.)

(3) CONSTRAINT_-ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components if the bounds of the
array are not static and if the subprogram declaring the array
type contains a local subprogram. (See test C3602B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises CONSTRAINT-ERROR when the array type is declared if the
bounds of the array are not static and if there are objects of
the array type. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
!NTEGER'LAST components raises CONSTRAINT-ERROR when the array
type is declared if the bounds of the array are not static and
if there are objects of the array type. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC.ERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises CONSTRAINT-ERROR when the array type is declared if the
bounds of the array are not static and if there are objects of
the array type. (See test E52103Y).

f. Discriminated types.

(1) in assigning record types with discriminants, the expression
is no evaluated in its entirety before CONSTRAINTERROR is
raised when checking wnether the expression's subtype is
compatible witn -ne target's sutzyce. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that all choices are evaluated before
checking against the index type. (See tests C43?07A and
C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

2-4

CONF:GURAT:ON FNORMATQN

(3) CONSTRAINT-ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

The pragma INLINE is supported for functions and procedures. (See
tests LA3004A..B (2 tests), EA3004C..D (2 tests), and CA3004E..F
(2 tests).)

i. Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1O12A, CA2009C, CA200F, BC3204C,
and BC3205D.)

(2) Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

(3) Generic library subprogram specifications and bodies can be
compiled in seoarate compilations. (See test CA1DI2A.)

(4) Generic non-library package bodies as subunits can be compiled
in separate compilations. (See test CA2009C.)

(5) Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs. (See test CA2009F.)

(6) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

(7; Generic package declarations and bodies can be compiled in
separa:e compiations. (See tests CA200?C, BC3204C, and
BCM20AD.)

(5) Generic library package specifications and bodies can be
cDmciled in separate compilations. (See tests BC3204C and
BC32205D.)

1) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

j. Input and output.

(1) The package SEQUENTIAL-10 can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE22E.)

2-5

CONFIGURATION INFORMATION

(2) The package DIRECTIO can be instantiated with unconstrained
array types and record types with discriminants without
defaults. However, this implementation raises USE-ERROR upon
creation of a file for unconstrained array types. (See tests
AE21O1H, EE2401D, and EE2401G.)

(3) Modes IN-FILE and OUT-FILE are supported for SEQUENTIALIO.
(See tests CE21D2D..E, CE2102N, and CE2102P.)

(4) Modes INFiLE, OUTFILE, and INOUTJFILE are supported for
DIRECTIO. (See tests CE21O2F, CE21021..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

(5) Modes IN-FILE and OUT-FILE are supported for text files. (See
tests CE3I2E and CE31021..K (3 tests).)

(6) RESET and DELETE operations are supported for SEQUENTIALIO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECTIO. (See
tests CE2102K and CEZ1O2Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests C M2F..G (2 tests), CE3104C, CE311OA, and
CE3114A.)

(9) Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

(10) Temporary sequential files are not given names. (See test
CE21OBA.)

(11) Temporary direct files are not given names. (See test
CE2108C.)

(12) Temporary text files are not given names. (Eec test CE3i12A.)

(21) More than one internal file can e associated with each
external permanent (not temporary) file for sequential files
wnen reading only or writing only. (See tests CE2!O7A..E (5
tests), CE2O2L, CE2I1OB, and CE21I1D.)

(14) More than one internal file can be associated with each
external permanent (not temporary) file for direct files when
reading only or writing only. (See tests CE2107F..H (3
tests), CE2110D and CE211IH.)

(15) More than one internal file can be associated with each
external permanent (not temporary) file for text files when
reading only or writing only. (See tests CE3111A..E (5
tests), CE31142, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 43 tests had been withdrawn because of test errors. The AVF
determined that 266 tests were inapplicable to this implementation. All
inapolicable tests were processed during validation testing except for 159
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 14 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A----- -------. _.. .

Passed 29 1132 2057 17 27 46 3408

Inapplicable 0 6 25? 0 1 0 266

Vithdrawn 1 2 34 0 6 0 43

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
------------ -----i _

Passed 202 591 566 245 172 99 161 232 137 36 252 325 290 3406

N/A 11 58 114 3 0 0 5 1 0 0 0 44 30 266

Wdrn 0 1 0 0 0 0 0 1 0 0 1 35 5 43

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

A39005G B97102E BCOVB CD2A62D CD2A63A CD2A63B
CD Ar3C CDZA62D CM2A66A CDZA6E CDA66C CAA66D
CD2A73A CD2A73B CD2A73C CD2A?3D CDA76A CD2A76B
CD2A76C CD2A76D CD2ABIG CD2A8SG CDZA84N CD2A84M
CDSOI1O CD2iC CD7205C CD5007B CD7105A CD7203B
CD7204B CD7205D CE21071 CE311IC CE3301A CE3411B
E28005C CD2DI1B ED7004B ED70CSC ED7005D ED7006C
ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 1NAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an impiementation is considered
each time a validation is attempted. A test that is inapplicable ior one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 266 tests were inapplicable for the
reasons indicated:

a. The following 159 tests are not apolicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C241130..Y (11 tests) C357050..Y (11 tests)

3-2

TEST INFORMATION

C357060. 3 (11 tests) C357070. .Y Q! tests)
C357080. 3 (11 tests) C358020..Z (_ tests!
C452410. Y (11 tests) C453210. .Y (11 tests)
C454210. Y (11 tests) C455210. .Z (12 tests)
C455240. 1 (12 tests) C456210. .Z (12 tests)
C456410. 1 (11 tests) C460120. .Z (12 tests)

b. C34007P and C34007S are expected to raise CONSTRAINTERROR. 1his
implementation optimizes the code at compi e time on lines Z05 and
221 respectively, thus avoiding the operation which would raise
CONSTRAINT-ERROR and so no exception is raised.

c. C41401A is expected to raise CONSTRAINT-ERROR for the evaluation
of certain attributes, however this implementation derives the
values from the subtypes of the prefix at compile time, as allowed
by 11.6 (7) LRM. Therefore elaboration of the prefix is not
involved and CONSTRAINT-ERROR is not raised.

d. The following 16 tests are not applicable because this
implementation does not support a predefined type LONG-INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C05614C C45631C
C45632C BE20C4D 55 B07A BSSBCC B860001
CD7 101F

e. C45531M. .P (4 tests) and C42 .P (4 tests) are inapplicable
because this implementation has a value of MAX-MANTISSA of less
than 48.

f. C47004A is expected to raise CONSTRAINT ERROR whilst evaluating
the comparison on line 51, but this comoiler evaluates the resu't
without invoking the basic operation qu "cation (as allowed by
11.6 (7) LRM) whicn would raise COTANT ..E R ana so no
exception is raised.

g. 036001F is not applicable because, ?or this im emeniaiion, the
package TEXTJO is depenoezt upon package SYSTEM4. Tris test
recompiles package SYSTEM, making paCkage TEXT_1O, anc hence
package REPORT, obsolete.

h. B86001X, C45231D, and CD7IO0G are not applicabla because this
implementation does not support any preoe~ined integer type with a
name other than INTEGER, LONG-INTEGER, or SHORT-INTEGER.

. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

j. B86001Z is not applicable because this iWlementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

3-3

TEST INFORMATION

k. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

I. CDIO09C, CD2A41A, CD2A41B, CD2A41E and CD2A42A..J (10 tests) are
inapplicable because this implementation imposes restrictions on
'SIZE length clauses for floating point types.

m. CD2A611 and CD2A61J are inapplicable because this implementation
imposes restrictions on 'SIZE length clauses for array types.

n. CD2A71A..D (4 tests), CD2A72A..D (4 tests), CD2A74A..D (4 tests)
and C02A5A..0 (4 tests) are inapplicable because this
implementation imposes restrictions on 'SIZE length clauses for
record types.

o. CDZA84B..I (8 tests), CD2A84K and CD2A84L are inapplicable because
this implementation imposes restrictions on 'SIZE length clauses
for access types.

p. CE2102D is inapplicable because this implementation supports
CREATE with IN-FILE mode for SEQUENTIAL_1O.

a. CE2102E is inapplicable because this implementation supports
CREATE with OUT-FILE mode for SEOUENTIALIO.

r. CE2102F is inapplicable be:ause this implementation supports
CREATE with INOUTFILE mode for DIRECTIO.

s. CE21021 is inapplicable because this implementation supports
CREATE with IN-FILE mode for DIRECT_!O.

t. CE2102J is inapplicable because this implementation supports
CREATE with OUT-FILE mode for DIRECT-IC.

u. CE2102N is inapplicable because this impiementation supports OPEN
with IN-FILE mode for SENUENIAL-0.

v. CE21020 is inapplicable because this implementation supports RESET
with IN-FILE mode for SEUENTIAL 10.

w. CEZ102P is inapplicable because this implementation supports OPEN
with OUTFILE mode ior SEQUENTIAL10

x. CEZ1O2Q is inapplicable because this implementation supports RESET
with OUT-FILE mode for SEQUENTIALIO.

y. CE2102R is inapplicable because this implementation supports OPEN
with INOUTFILE mode icr DIRECTIJ.

CE21O2S is inapplicable because this impiementation supports RESET
with INOUTFILE mode for DIRECTIO.

3-4

TEST INFORMATION

aa. CE2102T is inapplicable because this impiementation supports OPEN
with IN-FILE mode fcr DIRECTTO.

ab. CEZIO2U is inapplicable because this implementation supports RESET
with INFILE mode for DIRECTTO.

ac. CE2102V is inapplicable because this implementation supports OPEN
with OUT-FILE mode for DIRECT 10.

ad. CE2!02W is inapplicable because this implementation supports RESET
with OUT-FILE mode for DIRECTIO.

ae. CE2107C..D (2 tests) raise USE-ERROR when the function 'NAME is
applied to temporary sequential files, which are not given names.

a?. CE2107L is inapplicable because, for this implementation,
temporary sequential files are not given names.

ag. CE2107H is inapplicable because, for this implementation,
temporary direct files are not given names.

ah. CE31OZE is inapplicable because text file CREATE with INFILE mode
is supported by this implementation.

ai. CE3 OF is inapplicable because text file RESET is supported by
this implementation.

aj. CE3102G is inapplicable because text file deletion of an external
file is supported by this implementation.

ak. CE31021 is inapplicable because text W e CREATE with OUT FILE
mode is supported by this implementation.

V. CE3O2J is inapplicabie because text ?ie OPEN witn NFLE mode
is supported by this implementation.

am. CE i 2K is inapplicabie because tex. file OPEN wi U" I LE mode
is supported by this implementation.

an. CE31IIH and CE3115A are innapplicabie because tney assume that a
PUT operation writes data to an external file immediately. This
implementation uses line buffers; only complete lines are written
to an external file by a PUTLINE operation. Thus attempts tc GET
data before a PUT-LINE operation in these tests raise END-ERROR.

ao. CE31129 is inapolicable because, for this implementation,
temporary text files are not given names.

ap. CE3202A is inapplicable because the underlying operating system
does not allow this implementation to support the NAME operation
for STANDARD-INPUT and STANDARD-OUTPUT. Thus the calls of the
NAME operation for the standard files in this test raise

3-5

TEST INFORMATION

USE-ERROR.

aq. EEZ4OD contains instantiations of package DIRECT-IO with
unconstrained array types. This implementation raises USE-ERROR
upon creation of such a file.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will reauire modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 14 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B22003A B24009A B29001A B38OO3A B38009A B38009B
B51001A B9100IH BA11OIE BCODD BC2001E BC3204B
EC3205B BC3205D

3.7 ADDITIONAL TESTING IWFGRMATION'

3.7.1 Prevalidation

Prior to validation, a set o test results for ACVC Version 1.10 produced
by the SYSTEAM Ada Compiler VAX/VMS x MC8020/OS-9 Version 1.E1 was
submitted to the AVF by the applicant for review. Analysis of these
resulis demonstrated that the compiler successiully passe! all applicable
tests, and the compiler exhibited tWe expecte6 behavior on all inapplicable
tests.

3.7.2 Test Method

Testing of the SYSTEAM Ada Compiler VAX/VMS x MC63020/O-9 Version 1.81
using ACVC Version 1.10 was conducted by IABG on the premises of IABG. The
configuration in which the testing was performed is described by the

3-6

TEST INFORMATION

following designations of hardware and software components:

Host computer: VAX 8350
Host operating system: VMS Version 4.7
Target computer: KWS EB68020
Target operating system: 05-9/68020 Version 2.1
Compiler: SYSTEAM Ada Compiler VAX/VMS x MC68020/OS-9

Version 1.81

The host and target computers were linked via a V24 connection.

The original distribution tape for ACVC 1.10 was read on the VAX 8350, and
customized to remove withdrawn tests and tests requiring unsupported
4loating-point precision and to customize tests that make use of
implementation-specific values. Tests reouiring modifications were
modified accordingly as detailed in section 3.6.

The full set of tests was compiled and linked on the VAX 8350, then all
executable images were transferred to the KWS EB68020 via the V24
connection and run. Results were printed from the host computer.

The compiler was tested using command scripts provided by SYSTEAM KG and
reviewed by the validation team. The compi!er was tested using all default
option settings as explained in aopendix F. All chapter B tests were
compi!ed with the LIST option on. The completer was not called explicitly
during this validation, but is called, when needed, by the link command.

Tests were compiled, linked, and executed (as appropriate) using a single
host and target computer. Test output, compilation listings, and job logs
were caotured on magnetic tpe and archived at the AVF. The listings
examined on-site by the validation team were also archived.

2.7.3 Test Site

Testir; was conduc:ec at IA2 ntH, Ottobrunn a.d was c,pleted on 29 March
1989.3

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

SYSTEAM KG has submitted the following Declaration
of Conformance concerning the SYSTEAM Ada Compiler

VAX/VMS x MC68020/OS-9 Version 1.81.

A-1

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: SYSTEAM KG
Ada Validation Facility: IABG m. b. H., Abt. SZT
Ada Compiler Validation Capability (ACVC) Version 1.10

BASE CONFIGURATION

Base Compiler Name: SYSTEAM Ada Compiler
VAX/VMS x MC68020/OS-9 Version 1.81

Host Architecture: VAX 8350
Host OS and Version: VMS 4.7
Target Architecture: KWS EB68020
Target OS and Version: 0S-9/68020 Version 2.1

Implementor's Declaration

I, the undersigned, representing SYSTEAM KG Karlsruhe, have
implemented no deliberate extensions to the Ada Language
Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. I declare that SYSTEAM KG Karlsruhe is the owner
of record of the Ada language compiler(s) listed above and, as
such, is responsible for maintaining said compiler(s) in
conformance to ANIS/MIL-StD-1815A. All certificates and
registrations for Ada language compiler(s) listed in this
declaration shall be made only in the owner's corporate name.

/ Date: Apri! 11, 1989
SYSTEAM KG'Dr, Winterstein
Dr. Geprg Winterstein, President

Owner's Declaration

I, the undersigned, representing SYSTEAM KG Karlsruhe, take
full responsibility for implementation and maintenance of the
Ada compiler(s) listed above, and agree to the public
disclosure of the final Validation Summary Report. I declare
that all of the Ada language compilers listed, and their
host/target performance, are in compliance with the Ada
Language Standar ANSI/MIL-STD-1815A.

/

I! / Date: April 11, 1989
SYSTEAM KG X aVlsruhe
Dr.interstein

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the SYSTEAM Ada Compiler VAX/VMS x MC6S020/0S-9 Version
1.81 , as described in tnis Appendix, are provided by SYSTEAM KG. Unless
specifically noted otherwise, references in this appendix are to compiler
documentation and not to this report. Impiementation-speciiic portions of
the package STANCARD, which are not a part of Apendix F, are:

package STANDARD is

type SHORT-INTEGER is range - 32_76 . . 32_67;
type INTEGER is range - 2147483_648 .. 2147_482_647;

type SHORT.FLOAT is digits 6 range
- 16.FFF. .E32 .. 16o.FF7063

type FLOAT is digits 15 range
- 16#.FFFF_FF_FFFEE256 . 16O.FFF FFEE256'

type LONGFLOAT is digits KS range
- 16#O.FFFF FFFFFFFFFFF8#E40?6 .. 16FFFFFFFFFFFF_FFF8#E4096;

type DURATION is delta 201.00E-14 range
- 131_072.0 .. 131_071.999_938_964_843_75;

end STANDARD;

B-I

Appendix F Chapter 7

7 Appendix F

This chapter, together with the Chapters 8 and 9, is the Appendix F required in lAdal,
in which all implementation-dependent characteristics of an Ada implementation are
described.

7.1 Implementation-Dependent Pragmas

The form, allowed places, and effect of every implementation-dependent pragma is
stated in this section.

7.1.1 Predefined Language Pragmas

The form and allowed places of the following pragmas are defined by the language;
their effect is (at least partly) implementation-dependent and stated here. All the
other pragmas listed in Appendix B of [Ada] are implemented and have the effect
described there.

CONTROLLED
has no effect.

INLINE
Inline expansion of subprograms is supported with the following restrictions:
the subprogram must not contain declarations of other subprograms, tasks, generic
units or body stubs. If the subprogram is called recursively only the outer call of
this subprogram will be expanded.

Chapter 7 Appendix F

INTERFACE
is supported for assembler and for the call of OS-9 kernel functions from an Ada
program. For each Ada subprogram for which

PRAGMA interface (OS9. <ada..name>)

is specified, the body of the subprogram <adaname> must be implemented by
the os-9 kernel.

The pragma ensures the OS-9 standard, in particular:

- Saving of registers
- Calling mechanism.

The name of the routine which implements the subprogram <ada-name> should be
specified using the pragma external.name (see § 7.1.2), otherwise the Compiler will
generate an internal name that leads to an unsolved reference during linking.

The functions of the OS-9 kernel use registers for the transport of parameters. There-
fore, the package system provides some types to specify parameters.

SUBTYPE osg-wordlong IS integer RANGE - 2 ** 31 .. 2 ** 31 - 1;
-- signed 4-bytes

TYPE osgparameter
IS RECORD

dO. dl. d2. d3. d4. d5 : osg-wordlong;
aO, al. a2 : address;
error : boolean;

END RECORD;

The components do .. d5 and aO .. a3 indicate the use of the corresponding registers of
the target machine. Before any call of an OS-9 function the values of those components
are copied into the corresponding registers. After the call the values of the registers are
copied into the corresponding components of the parameter block. To indicate whether
the result of a call is valid the OS-9 functions will set the condition code register and
the pragma will set a corresponding boolean value into the component error.

The SYSTEAM Ada Compiler does not check the correct use of the registers. If it is
violated the call will be erroneous.

The following example will show the intended usage of the pragma interace (osg).
The given procedure serves to open a file with a constant name. It is calld in the
body of the main program.

Appendix F Chapter 7

WITH system:

PROCEDURE osg-call IS

read-mode : CONSTANT system.osg-wordlong := 2 ** 0;

file-name : CONSTANT string :- "/HO/TEST/Fl" & ascii.nul;

PRAGMA resident (file-name);

-- The file "Fl" must exist in the directory "/HO/TEST".

param-osg : system.osagparameter;

path : system.osg-wordlong;

use-error : EXCEPTION;

PROCEDURE osg.iLopen (pb : IN OUT system.os9gparameter);
PRAGMA interface (osg. os9gi-open);
PRAGMA external-name ("I$Open". osg-iopen);

BEGIN
param-osg.dO read-mode;
param-osg.aO filename'address;
os9giopen (param.osg);
IF param-osg.error THEN

RAISE use-error;
END IF:
path := param-os9.dO;

END osg-call;

If the subprogram is implemented by an assembly language program the

PRAGMA interface (assembler. <adaname>)

can be used. In this case, the actual parameters for the subprogram are written into
a parameter block before the call; withinthe subprogram body, the address of this
parameter block is stored at (4,A7). It is recommended to store all parameters in
a record object; then the subprogram has only one parameter (of the corresponding
record type) and the parameter block contains only the address of the record object.

Chapter 7 Appendix F

MEMORY-SIZE
has no effect.

OPTIMIZE
has no effect.

PACK
see §8.1.

PRIORITY
There are two implementation-defined aspects of this pragma: First, the range
of the subtype priority, and second, the effect on scheduling (§6) of not giving
this pragma for a task or main program. The range of subtype priority is 0 ..
15, as declared in the predefined library package system (see §7.3); and the effect
on scheduling of leaving the priority of a task or main program undefined by not
giving pragma priority for it is the same as if the pragma priority 0 had been
given (i.e. the task has the lowest priority). Moreover, in this implementation
the nackage system must be named by a with clause of a compilation unit if the
predefined pragma priority is used within that unit.

SHARED
is supported.

STORAGE-UNIT
has no effect.

SUPPRESS
has no effect, but see §7.1.2 for the implementation-defined pragma suppress-
all.

SYSTEM-NAME
has no effect.

Appendix F Chapter 7

7.1.2 Implementation-Defined Pragmas

SQUEEZE
see §8.1.

SUPPRESS-ALL
causes all the run-time checks described in [Ada,§11.71 to be suppressed; this
pragma is only allowed at the start of a compilation before the first compilation
unit; it applies to the whole compilation.

EXTERNAL-NAME (<string>, <adaname>)
<ada.name> specifies the name of a subprogram, <string> must be a string literal.
It defines the external name of the specified subprogram. The Compiler uses a
symbol with this name in the call instruction for the subprogram. The suprogram
declaration of <ada.name> must precede this pragma. If several subprograms with
the same name satisfy this requirement the pragma refers to that subprogram
which preceds immediately.
This pragma will be used in connection with the pragmas interface (os9) or
interface (assembler) (see §7.1.1).

RESIDENT (<ada.name>)
this pragma prevents assigments of a value to the object <ada__name> from being
eliminated by the optimizer (see §3.2) of the SYSTEAM Ada Compiler. The
following code sequence demonstrates the intended usage of the pragma:

x : integer:
a : SYSTEM.address;
PROCEDURE do-something (a : SYSTEM.address);

BEGIN
x :- 5;
a := x'ADDRESS;
do.soething (a); -- a.ALL will be read in the body

-- of do-something
x := 6;

Chapter 7 Appendix F

If this code sequence is compiled by the SYSTEAM.Ada Compiler with the option

OPTIMIZER->ON

the statement x :,- 5; will be eliminated because from the point of view of the
optimizer the value of x is not used before the next assignment to x. Therefore

PRAGMA resident x);

should be inserted after the declaration of x.

This pragma can be applied to all those kinds of objects for which the address
clause is supported (cf. §8.5).
It will often be used in connection with the pragma interface (os9. ...) (see
§7.1.1).

7.2 Implementation-Depen dent Attributes

The name, type and implementation-dependent aspects of every implementation-de-
pendent attribute is stated in this chapter.

7.2.1 Language-Defined Attributes

The name and type of all the language-defined attributes are as given in [Adal. We
note here only the implementation-dependent aspects.

ADDRESS
The value delivered by this attribute applied to an object is the address of the
storage unit where this object starts.
For any other entity this attribute is not supported and will return the value
system. address-zero.

MACHINEOVERFLOWS
Yields true for each fixed point type or subtype and false for each floating point
type or subtype.

,ppendix F Chapter 7

MACHINE-.ROUNDS
Yields true for each real type or subtype.

STORAGE-SIZE
The value delivered by this attribute applied to an access type is as follows:
If a length specification (STORAGE-SIZE, see §8.2) has been given for that type
(static collection), the attribute delivers that specified value.
In case of a dynamic collection, i.e. no length specification by STORAGE-SIZE has
been given for the access type, the attribute delivers the number of storage units
currently allocated for the collection. Note that dynamic collections are extended
if needed.
If the collection manager (cf. §5.3.1) is used for a dynamic collection the attribute
delivers the number of storage units currently allocated for the collection. Note
that in this case the number of storage units currently allocated may be decreased
by release operations.

The value delivered by this attribute applied to a task type or task object is as
follows:
If a length specification (STORAGE-SIZE, see §8.2) has been given for the task type,
the attribute delivers that specified value; otherwise, the default value is returned.

7.2.2 Implementation-Defined Attributes

There are no implementation-defined attributes.

7.3 Specification of the Package SYSTEM

The package system required in [Ada,§13.7] is reprinted here with all implementation-
dependent characteristics and extensions filled in.

Chapter 7 Appendix F

PACKAGE system IS

TYPE designated-by-address IS LIMITED PRIVATE;

TYPE address IS ACCESS designated-by-address;

FOR address'size USE 32;

FOR address'storage-size USE 0;

address-zero : CONSTANT address :- NULL:

TYPE name IS (motorola_68020_osg);

system-name : CONSTANT name : motorola_68020_osg;
storage-unit : CONSTANT : 8;
memory-size : CONSTANT := 2 ** 31:
min.int : CONSTANT : - 2 ** 31:

max-int : CONSTANT : 2 ** 31 - 1;
max-digits : CONSTANT 18;
max-mantissa : CONSTANT : 31;
fine-delta : CONSTANT :m 2.0 ** (- 31);
tick : CONSTANT : 0.01:

SUBTYPE priority IS integer RANGE 0 .. 15;

FUNCTION "I" (left : address; right : integer) RETURN address;

FUNCTION " (" Cleft : integer; right : address) RETUR% address;

FUNCTION (-" Cleft : address; right : integer) RETURN address;

FUNCTION "-" (left : address; right : address) RETURN integer;

SUBTYPE external-address IS string;

-- External addresses use hexadecimal notation with characters
-- 09..690, 'a'..'f' and 'A'..'F'. For instance:

- - "7FFFFFFF"
-- "80000000"
-- "8" represents the same address as "00000008"

Appendix F Chapter 7

FUNCTION convert-address (addr : external-address) RETURN address;

-- CONSTRAINT-ERROR is raised if the external address ADDR
-- is the empty string, contains characters other than
-- "0"..09. 'a'..f'. 'A'..'F' or if the resulting address
-- value cannot be represented with 32 bits.

FUNCTION convert-address (addr : address) RETURN external-address;

-- The resulting external address consists of exactly 8
-- characters '0'..'9'. 'A'..F'.

non..adaerror EXCEPTION;

-- non.adaerror is raised, if some event occurs which does not
-- correspond to any situation covered by Ada. e.g.:
- - illegal instruction encountered

- - error during address translation

-- illegal address

TYPE exception-id IS NEW integer;

no-except;.on-id : CONSTANT exception-id := 0;

-- Coding of the predefined exceptions:

constraint-error-id : CONSTANT exception-id
numeric-error-id : CONSTANT exception-id
program-error-id : CONSTANT exception-id
storage-error-id : CONSTANT exception-id
tasking-error-id : CONSTANT exception.id : ...

non-ada.error.id : CONSTANT exceptionid : ...

status-error-id : CONSTANT exceptionid := ...
mode-errorid: CONSTANT exceptionid : ...

name-error.id CONSTANT exceptionid : ...

use-error-id CONSTANT exceptionid ...

device-error-id : CONSTANT exception-id : ...

end-error-id : CONSTANT exception-id : ...

data-errorid CONSTANT exception-id :- ...

layout-error-id : CONSTANT exception-id :- ...

time-error-id : CONSTANT exceptionid : ...

Chapter 7 Appendix F

SUBTYPE osagwordlong IS integer RANGE - 2 ** 31 2 31 - 1:

TYPE osgparameter IS
RECORD

dO. dl. d2. d3. d4. dS : osgwordlong:
aO. al. a2 : address;
error : boolean;

END RECORD;

FOR os9_parameter USE
RECORD AT MOD 4;

dO AT 0 RANGE 0.. 31;
dl AT 4 RANGE 0 31:
d2 AT 8 RANGE 0 31;
d3 AT 12 RANGE 0 31;
d4 AT 16 RANGE 0 31;
d5 AT 20 RANGE 0 31;
aO AT 24 RANGE 0 31;
al AT 28 RANGE0 .0 31;
a2 AT 32 RANGE 0 31;
error AT 36 RANGE 0 7:

END RECORD;

FOR osgparameter'size USE 37 * storage-unit;

no-error-code : CONSTANT 0;

TYPE exception-information IS
RECORD

excp-id exceptionid;

-- Identification of the exception. The codings of
-- the predefined exceptions are given above.

code-addr : address;

-- Code address where the exception occured. Depending
-- on the kind of the exception it may be the address of

-- the instruction which caused the exception, or it
-- may be the address of the instruction which would
-- have been executed if the exception had not occured.

error-code : integer;

END RECORD;

Appendix F Chapter 7

PROCEDURE get-exceptioninformation
(excp-info : OUT exception-information);

-- The subprogram get-exception-information must only be called
-- from within an exception handler BEFORE ANY OTHER EXCEPTION
-- IS RAISED. It then returns the information record about the
-- actually handled exception.
-- Otherwise, its result is undefined.

TYPE exit-code IS NEW integer;

error : CONSTANT exit-code 10;
success : CONSTANT exit-code : 0;

PROCEDURE set.exit.code (val : exit-code);

-- Specifies the exit code which is returned to the
-- operating system if the Ada program terminates normally.
-- The default exit code is 'success'. If the program is
-- abandoned because of an exception, the exit code is
-- 'error'.

PRIVATE

-- private declarations

END system;

7.4 Restrictions on Representation Clauses

See Chapter 8 of this manual.

7.5 Conventions for Implementation-Generated Names

There are implementation generated components but these have no names. (cf. §8.4
of this manual).

Chapter 7 Appendix F

7.6 Expressions in Address Clauses

See §8.5 of this manual.

7.7 Restrictions on Unchecked, Conversions

The implementation supports unchecked type conversions for all kind of source and
target types with the restriction that the target type must not be an unconstrained
array type. The result value of the unchecked conversion is unpredictable, if

targettype'SIZE > source-type'SIZE

7.8 Characteristics of the Input-Output Packages

The implementation-dependent characteristics of the input-output packages as defined
in Chapter 14 of [Ada] are reported in Chapter 9 of this manual.

7.9 Requirements for a Main Program

A main program must be a parameterless library procedure. This procedure may be
a generic instantiation; the generic procedure need not be a library unit.

7.10 Unchecked Storage Deallocation

The generic procedure unchecked-deallocation is provided, but the only effect of
calling an instantiation of this procedure with an object X as actual parameter is

X : KNJLL;

i.e. no storage is reclaimed.

However, the implementation does provide an implementation-defined packi-ge col-
lection.manager to support unchecked storage deallocation (cf. §5.3.1).

Appendix F Chapter 7

7.11 Machine Code Insertions

A package machine-code is not provided and machine code insertions are not sup-
ported.

7.12 Numeric Error

The predefined exception numeric-error is never raised implicitly by any predefined
operation; instead the predefined exception constraint-error is raised.

Chapter 8 Appendix F: Representation Clauses

8 Appendix F: Representation Clauses "

In this chapter we follow the section numbering of Chapter 13 of [Ada] and provide
notes for the use of the features described in each section.

8.1 Pragmas

PACK
As stipulated in lAda,§13.1], this pragma may be given for a record or array type.
It causes the Compiler to select a representation for this type such that gaps
between the storage areas allocated to consecutive components are minimized.
For components whose type is an array or record type the pragma pack has no
affect on the mapping of the component type. For all other component types the
Compiler will try to choose a more compact representation for the component type.
All components of a packed data structure will start at storage unit boundaries
and the size of the components will be a multiple of system. storage.urnit. Thus,
the pragma pack does not effect packing down to the bit level (for this see pragma
squeeze).

SQUEEZE
This is an implementation-defined pragma which takes the same argument as the
predefined language pragma pack and is allowed at the same positions. It causes
the Compiler to select a representation for the argument type that needs minimal
storage space (packing down to the bit level). For components whose type is an
array or record type the pragma squeeze has no effect on the mapping of the
component type. For all other component types the Compiler will try to choose
a more compact representation for the component type. The components of a
squeezed data structure will not in general start at storage unit boundaries.

Appendix F: Representation Clauses Chapter 8

8.2 Length Clauses

SIZE
for all integer, fixed point and enumeration types the value must be <= 32;
for shortfloat types the value must be = 32 (this is the amount of storage
which is associated with these types anyway);
for float types the value must be = 64 (this is the amount of storage which is
associated with these types anyway).
for longf loat types the value must be = 96 (this is the amount of storage which
is associated with these types anyway).
for access types the value must be = 32 (this is the amount of storage which is
associated with these types anyway).
If any of the above restrictions are violated, the Compiler responds with a RE-
STRICTION error message in the Compiler listing.

STORAGE-SIZE
Collection size: If no length clause is given, the storage space needed to contain
objects designated by values of the access type and by values of other types derived
from it is extended dynamically at runtime as needed. If, on the other hand, a
length clause is given, the number of storage units stipulated in the length clause
is reserved, and no dynamic extension at runtime occurs.

Storage for tasks: The memory space reserved for a task is 10K bytes if no length
clause is given (cf. Chapter 6). If the task is to be allotted either more or less
space, a length clause must be given for its task type, and then all tasks of this
type will be allotted the amount of space stipulated in the length clause (the
activation of a small task requires about 1.4K bytes). Whether a length clause is
given or not, the space allotted is not extended dynamically at runtime.

SMALL
there is no implementation-dependent restriction. Any specification for SMALL
that is allowed by the LRM can be given. In particular those values for SMALL are
also supported which are not a power of two.

8.3 Enumeration Representation Clauses

The integer codes specified for the enumeration type have to lie inside the range of the
largest integer type which is supported; this is the type integer defined in package
standard.

Chapter 8 Appendix F: Representation Clauses

8.4 Record Representation Clauses

Record representation clauses are supported. The value of the expression given in an
alignment clause must be 0, 1, 2 or 4. If this restriction is violated, the Compiler
responds with a RESTRICTION error message in the Compiler listing. If the value is
0 the objects of the corresponding record type will not be aligned, if it is 1, 2 or 4 the
starting address of an object will be a multiple of the specified alignment.

The number of bits specified by the range of a component clause must not be greater
than the amount of storage occupied by this component. (Gaps between components
can be forced by leaving some bits unused but not by specifying a bigger range than
needed.) Violation of this restriction will produce a RESTRICTION error message.

There are implementation-dependent components of record types generated in the
following cases :

0 If the record type includes variant parts and if it has either more than one dis-
criminant or else the only discriminant may hold more than 256 different values,
the generated component holds the size of the record object.

* If the record type includes array or record components whose sizes depend on dis-
criminants, the generated components hold the offsets of these record components
(relative to the corresponding generated component) in the record object.

But there are no implementation-generated names (cf. [Ada,§13.4(8)]) denoting these
components. So the mapping of these components cannot be influenced by a represen-
tation clause.

8.5 Address Clauses

Address clauses are supported for objects declared by an object declaration. If an ad-
dress clause is given for a task entry, subprogram, package or a task unit, the Compiler
responds with a RESTRICTION error message in the Compiler listing.

If an address clause is given for an object, the storage occupied by the object starts at
the given address.

8.6 Change of Representation

The implementation places no additional restrictions on changes of representation.

Appendix F: Input-Output Chapter 9

9 Appendix F: Input-Output

In this chapter we follow the section numbering of Chapter 14 of [Ada] and provide
notes for the use of the features described in each section.

9.1 External Files and File Objects

The total number of open text files (including the two standard files), sequential files
and direct files must not exceed 10 for each class. Any attempt to exceed this limit
raises the exception use-error.

File sharing is allowed for reading and writing without any restriction.

The following restrictions apply to the generic actual parameter for element-type:

& input/output of access types is not defined.

0 input/output of unconstrained array types is only possible with a variable record
format.

* input/output is not possible for an object whose (sub)type has a size which is not
a multiple of system. storage -unit. Such objects can only exist for types for
which a representation clause or the pragma squeeze is given. Use-error will be
raised by any attempt to read or write such an object or to open or create a file
for such a (sub)type.

9.2 Sequential and Direct Files

Sequential and direct files are represented by OS-9 random block files with fixed-length
or variable-length records. Each element of the file is stored in one record.

9.2.1 File Management

Since there is a lot to say about this section, we shall introduce subsection numbers
which do not exist in [Ada].

Chapter 9 Appendix F: input-Output

9.2.1.1 The NAME and FORM Parameters

The name parameter string must be an OS-9 file name. The function NAME will return
a file name string which is the file name of the file opened or created.

The syntax of the form parameter string is defined by:

form-parameter :: [form-specification { . form-specification })

form-specification ::- keyword [=> value]

keyword ::m identifier

value : identifier I string-literal I numeric-literal

For identifier, numeric-literal, string-literal see lAda,Apper.dix El. Only an integer
literal is allowed as numeric-literal (see [Ada,§2.4]).

In the following, the form specifications which are allowed for all files are described.

ALLOCATION -> numeric-literal

This value specifies the number of bytes which are allocated initially; it is only used in
a create operation and ignored in an open operation. The default value for the initial
file size is 0.

P-ECORDSIZE => numeric-litertl

This value specifies the record size in bytes. This form specification is only allowed for
files with fixed record format. If the value is specified for an existing file, it must agree
with the value of the external file.

By default, element-type 'SIZE / system.storage-unit will be chosen as record
size, if the evaluation of this expression does not raise an exception. In this case, the
attempt to write or read a record will raise use-error.

If a fixed record format is used, all objects written to a file which are shorter than
the record size are filled up with zeros (ASCII.NUL). An attempt to write an element
which is larger than the specified record size will result in the exception use-error
being raised. This can only occur if the record size is specified explicitly.

Appendix F: Input-Output Chapter 9

9.2.1.2 Sequential Files

A sequential file is represented by a random block file with either fixed-length or
variable-length records (this may be specified by the form parameter).

If a fixed record format is used, all objects written to a file which are shorter than the
maximum record size are filled up with zeros (ASCII.NUL).

RECORD-FORMAT => VARIABLE I FIXED

This form specification is used to specify the record format. If the format is specified
for an existing file, it must agree with the format of the external file.

Variable record size is used as default. It means that each record is written with
its actual length. A read operation transfers exactly one file element with its actual
length.

Fixed record size means that every record is written with the size specified as record
size.

9.2.1.3 Direct Files

The implementation dependent type count defined in the package specification of
direct-io has an upper bound of :

COUNT'LAST = 2-147-483-647 (= INTEGER'LAST)

Direct files are represented by OS-9 random block files with fixed-length records.

Chapter 9 Appendix F: Input-Output

9.3 Text Input-Output

Text files are represented as random block files or sequential character files depending
on whether the file name denotes a disk file or a terminal device. Each line consists of
a sequence of characters terminated by a line terminator, i.e. an ASCII.CR character.

A page terminator is represented as a line consisting of a single ASCI.FF. A page
terminator is always preceded by a line terminator.

A file terminator is not represented explicitly in the external file; the end of the file is
taken as a file terminator. A page terminator is assumed to precede the end of the file
if there is not an explicit one as the last record of the file.

9.9.1 File Management

In the following, the form specifications which are only allowed for text files or have a
special meaning for text files are described.

CHARACTERIO

The predefined package text-io was designed for sequential text files; moreover, this
implementation always uses sequential files with a record structure, even for terminal
devices. It therefore offers no language-defined facilities for modifying data previously
written to the terminal (e.g. changing characters in a text which is already on the ter-
minal screen) or for outputting characters to the terminal without following them by a
line terminator. It also has no language-defined provision for input of single characters
from the terminal (as opposed to lines, which must end with a line terminator, so that
in order to input one character the user must type in that character and then a line
terminator) or for suppressing the echo on the terminal of characters typed in at the
keyboard.

For these reasons, in addition to the input/output facilities with record structured
external files, another form of input/output is provided for text files: It is possible
to transfer single characters from/to a terminal device. This form of input/output is
specified by the keyword CHARACTER-1O in the form string. If CHARACTERIO
is specified, no other form specification is allowed and the file name must denote a
terminal device.

For an infile, the external file (associated with a terminal) is considered to contain
a single line. Arbitrary characters (including all control characters) may be read; a
character read is not echoed to the terminal.

Appendix F: Input-Output Chapter 9

For an outfile, arbitrary characters (including all control characters and escape se-
quences) may be written on the external file (terminal). A line terminator is rep-
resented as ASCII.CR followed by ASCII.LF, a page terminator is represented as
ASCI.FF and a file terminator is not represented on the external file.

9.3.2 Default Input and Output Files

The Ada standard input and output files are associated with the corresponding, stan-
dard files in OS-9.

9.3.3 Implementation- Defined Types

The implementation-dependent types count and field defined in the package specifi-
cation of text-io have the following upper bounds:

COUNT'LAST = 2-147-483-647 (= INTEGER'LAST)

FIELD'LAST = 512

Chapter 9 Appendix F: Input-Output

9.4 Exceptions in Input-Output

For each of name-error, use-error, device-error and data-error we list the condi-
tions under which that exception can be raised. The conditions under which the other
exceptions declared in the package io.exceptions can be raised are as described in
[Ada,§14.4].

NAME..ERROR

" in an open operation, if the specified file does not exist;

" in a create operation, if the specified file already exists;

• if the name parameter in a call of the create or open procedure is not a legal OS-9
file specification string; for example, if it contains illegal characters, is too long
or is syntactically incorrect; and also if it contains wild cards, even if that would
specify a unique file.

USE-ERROR

* if an attempt is made to increase the total number of open files (including the two
standard files) so that there are more than 10 in one of the three file classes text,
sequential and direct;

* whenever an error occurred during an operation of the underlying OS-9 system.
This may happen if an internal error was detected, an operation is not possible
for reasons depending on the file or device characteristics, a size restriction is
violated, a capacity limit is exceeded or for similar reasons; in general it is only
guaranteed that a file which is created by an Ada program may be reopened and
read successfully by another program if the file types and the form strings are the
same;

* if the function name is applied to a temporary file;

" if an attempt is made to write or read to/from a file with fixed record format a
record which is larger than the record size determined when the file was opened
(cf. §9.2.1.1);

DEVICE..ERROR
is never raised. Instead of this exception the exception use-error is raised when-
ever an error occurred during an operation of the underlying OS-9 system.

DATA-ERROR
the conditions under which data-error is raised by textio are laid down in
[Ada]. In the packages sequential-io and direct-io, the exception data-error
is not raised in all cases by the procedure read if the element read is not a legal
value of the element type.

Appendix F: Input-Output Chapter 9

9.5 Low Level Input-Output

We give here the specification of the package low-level-io:

PACKAGE low-level-io IS

TYPE device-type IS (null-device).

TYPE data-type IS
RECORD

NULL;
END RECORD;

PROCEDURE send-control (device : device-type;
data : IN OUT data-type);

PROCEDURE receive-control (device : device-type;
data : IN OUT data-type);

END 1ow-level-io.

Note that the enumeration type device-type has only one enumeration value, null-
device; thus the procedures send-control and receive-control can be called, but
send-control will have no effect on any physical device and the value of the actual
parameter data after a call of receive-control will have no physical significance.

Chapter 10 -References

10O References

[Ada] The Programming Language Ada Reference Manual,
American National Standards Institute, I~nc.
ANSI/MIL-STD-1815A-1983,
Springer Lecture Notes in Computer Science 155, 1983

[05-9] OS-9/68000 Document Set,
Microware Systems Corporation, Des Moines, Iowa

[ST16/851 J. Schauer,
SYSTEAM Ada System, Cross Reference Generator User .Man-
ual for VAX/VMS x MC68020/OS-9, SYSTEAM Document No.
16/85/VMO1.81, 1988

IST19/841 W. Herzog, K. Wachsmuth,
SYIS TEAM Ada System, Installation Manual for VAX/VMS x
MC68020/OS-9, SYSTEAM Document No. 19/84/ VMO 1.81, 1988

[ST21/841 W.-D. Lindenmeyer,
SYSTEAM Ada System, Sousrce Generator User
Manual for VAX/VMS x MC68020/OS-9, SYSTEAM Document No.
21/84/VMO1.81, 1988

IST27/841 W.-D. Lindenmeyer,
SYSTEAM Ada System, Pretty Printer User Manual for VAX/VMS
x MC68020/OS-9, SYSTEAM Document No. 27/84/VMO1.81, 1988

[ST3O/84] W.-D. Lindenmeyer,
SYSTEAM Ada System, Syntax Checker User Manual for VAX/VMS
x MC68020/OS.9, SYSTEAM Document No. 30/84/VMO1.81, 1988

[ST33/841 W.-D. Lindenmeyer,,
SYSTEAM Ada System, NonInit User Manual for VAX/V"MS x
MC68020/QS-9, SYSTEAM Document No. 33/84/VMO1.81, 1988

IST4/841 W.-D. Lindenmeyer, D. Schmidt, M. Dausmann,
SYSTEAM Ada System, Library User System User Manual
for VAX/VMS x MC68020/OS-9, SYSTEAM Document No.
4/84/VMO1.81, 1988

IST9/ 85) W. Herzog,
S YSTEAM Ada System, Name-Expander User Manual for VAX/VMS
x MC68020/OS-9, SYSTEAM Document No. 9/85/VMO1.81, 1988

[VAX! VMS] VAX/VMS Document Set,
Digital Equipment. Corporation, Maynard, Massachusetts

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for eacn of these names
before the test is run. The values used for this validation are given
below. The use of the operator '*' signifies a multiplication oi the
following character. The use of the '&' cnaracter signifies concatenation
of the preceeding and following strings. T e values within single or
double quotation marks are to highlight characters or string values:

Name and Meaning Valg

$ACC S1ZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value o; an access
type.

$BIGID1 - 'I' D Z'

An identifier the size of the
maximum input line length which
is identical to $BIGiD2 except
for the last character.

SBI G ID 2 ZE4 " A'? 2
An identifier the size of the
maximum input line length which
is identical to $BIGID! except
for the last character.

BIGD3 &27 '3' & 127 * 'A'
An identifier the size of the
maximum input line length which
is identical to SaIGD4 except
for a character near the middle.

C-!

TEST PARAMEE'E;

$BIG.AD4 127 , 'A' & '4' & 127 * 'A'
An iden:ioier the size o4 the
maximum input line length which
is identical to $B?" ,1n except
ior a character near the middle.

$81G IT -LIT 25 * '0' "
An integer literal o; value 298
with enough leading zeroes so
that it is the size oi the
maximum line length.

$BIG-REALLT 5 '0' a "00.0"
A universal real literal o4
value 690.0 with enough leading
zeroes to be the size o4 the
maximum line length.

UiG TR GI . *
A string literal wnich whe-
catenated with BIG_ TING2
yieIcs the image oi BIG T DI.

R .G STRiNG '"' 127 t 'A' & '1' &
A strinc liHeral which when
catenated to the end o
B6G_ STRT NG yields the image o;

$BLANKS,
A sa ,nc. a ar k: :wen .,
cnaracters le-rs tnan tne s;:2
o tne maximum ine .n .

$COUNT LACT 2!.743647
A universal in~eaer

'Vhose va-ue is
TEXT_ 1 .3DUNI'LAST.

SDEFAULTMEMS1ZE 2147 483_68

An integer literal whose value
is SYSTEM.MEMORY_SiZE.

$DEFAULT STOR UNIT 8
An integer literal whose value
is SYSTEM.STORAGEUNIT.

C-2

7ETP4RAA1E7ERE

$DEFAULT-S~YS-NAME MOTOROLA-.68020-0c9
The vilue of the- constant
SYSTEM.)*YSTEM-NAME.

$DELTA..DOC 24a .0#E-31
A real literal whose value is
SYSTEM. FINE-DELTA.

$FIELD-LAST 5A2
A universal integer
literal whose value is
TEXJO.FIELD'LAST.

$FIXED -NAME NO-SUCH FIXEDTYPE
Ine name of a pre~aesined
fixed-point type other than
DURATION.

$FLOATNAME NO _SUCH _TYPE)AVAILABLE
ne name of a preceiined
'oating-point type other than
L 0A T S HO KOA 7 orC.
LONGJLOAT.

$GRPEATER -THAN DURATION 0.0
A universal real iealthat,
lies between 0URATTON'EAE LAS
and DURATION'LAST 3r any v'ije
in the range of DURATIO0N.

$G-REATER THAN DURATIO BAS-E "z7 200j 000.,

Auniversal reaili'teral -7a*
r e at er t ha n D UR A 7 _ 0N '~ 3 A

$HIGH PRIORITY
A n ;Integer Irteral r.n e 'a ue
i : the u:ore, bound o~ zne ra n:
for the subtype SYS7EM.POKT';'Y.

$ILLEGAL EX.TERNAL.LE.NAM--I abcS3_de-.dat
Ar. external fiii narnt W~iCn-
contains invalid cnarac-ters.

$TLL:GAL EXTERNAL FILE NAME2 abctdef.dat
An external file name wn. ich
ic too long.

S.NT7GER FIRST -:147483648
A universal int,.Oer literal
wnose value is INTEGER'FIRST.

C -3

TEST PARAMETERS

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUS- 2147483648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESSTHANDURATION -0.0
A universal real literal that
lies between DURATION'BASEIFIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LES "THANDURATIONBASE_F:RET -200_000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOVPRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANT:SSA_DOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MAX_DIGITS 18
Maximum digits supported for
41oaiing-poinT types.

8MAX ,N LE5 25

Maximum input line engh
Permizted by the implementation.

SMAXINT Za7483647
A universal in eger literal
whcse value is EYETE.NAX , N

$MAXINTOLU5_1 2,147,183,648
A universal integer literal
whose vaIue is SYSTEM.MAXINT,1.

tMAXLENINT_BASED_LITERAL "2:" & 250 , 10 & "11:"
A universal integer based
literal whose value is 2411'
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

C-4

TEST PARAMETERS

SMAXLENREALBASEDLITERAL "16:" & 248 * '0' & "F.E:'
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTR!NGLITERAL '"' & 23 *'A' & 9"
A string literal of size
MAXINLEN, including the quote
characters.

tNtIN_INT ^ -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

$MIN_TASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NO SUCH TYPE AVA1LABLE
A name of a predefined numeric
ty/e other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG_;LOAT, or LOGINTEGER.

NAME L:T MOTOROLA_68020_0S?
A Wls: of enumeration lterals
in the type SYSTEM.NAlE,
separaied by commas.

sREG SED:NT 1OFFFFFFFE
A basen integer literai wnose
highest orcer nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

SNEV_MEM_1ZiE 2_147_483_648
An integer literal whose value
is a permitted argument for
pragma MEMORY_SIZE, other than
sDEFAULTMEM_51ZE. If there is
no other value, then use
$DEFAULTMEMSIZE.

C-5

TEST PARAMETER-S

$NEWSTORUNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE.UNIT, other than
$DEFAULTSTORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEWSYSNAME MOTOROLA_68020_OS?
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 32

An integer literal whose value
is the number oi bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICIK 0.01
A real literal whose value is
SYSTEM. TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 43 tests had been withdrawn at the time of
validation testing for the reasons indicated• A reference of the form
Ai-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE. --63"
oi line 204 will apoear at the top of the listing page due to a
praga PAGE in line 203; but line 203 contains text that follows
the pragema and it is this that must appear at the top of the

o

b• A39005G This test unreasonably expects a component clause to pack
an array component into a minimum size (tine 30).

c. B:7:02E This test contains an unitended illegality: a select
statement con-ains a null statement at the place of a selective
Waki alterna-ive (line 31).

. - c03 This ,est wrongly ex-cts -ha- circular instantiations
wiV be ae c:e d in severai co. on units even tnough none of
tne units is illegal with re- spect :o the units it depends on; by

-02561 the il egal tY need not be dezected until execution is
atepted ine 9r"

e. rD2A620 This test wrongly requires that an array object's size be
no greater th)an 10 althougn its subtype's size was specified to be
40 (line 137).

. CD2A63A..D, CDZA66A..0, CDZA73A..0, CDZA76A..D 16 tests] These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to
a derived sub- program (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Aoditionally, they use the
'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

D-1

g. CD16A81G, CDZA83G, CD'6A84N & M, & CD50110 [5 tasts: These tests
assume that dependent tasks will terminate wniie the main pro-
gram executes a loop that simply tests ior task termination; this
is not the case, and the main program may loop indefinitely (lines
74, 85, 86 & 96, 86 & 96, and 58, resp.).

h. CD2B15C & CD7205C These tests expect tha! a 'STORAGESIZE length
clause provides precise con- trol over the num~ber of designated
objects in a collection; the Ada Stancart 13.2:15 allows that such
control must not be expected.

i. CD2D11B This test gives a SMALL representation clause for a
derived fixed-point type (at line 301 that defines a set of model
numbers that are not necessarily represented in the parent type;
by Co-mmentary A47-00099, all model numbers of a derived fixed-po~jnt
type must be representable values oft the parent type.

j.CD5007B This test wrongly expects an implicitly declared
subprogram to be at the the address that is specified for an
unrelated subprogram (line 303).

k. ED7004B, ED7005C & D, ED7006C & D 15 testsJ These tests check
various aspects of the use of the thre-e SYSTEM pragmas; the AVO
withdraws these ts as being inappropriate for validation.

CD7:OrA Th1is tes: recuires that successive calls to CAL'NDAR.CLOCK
cnange cy a: las: SYSTEM.TICX; however, by Commentary A1-00201,
it is only the expected frequency olf change triat must be at least

SYSEM.:CK-psticiarinstances c-f cange may be less (line 29).

ni. CD72032, 'a CD'"0S4P These tests use the 'SZE length clause and
attribute, wnose interpretation is considered Problematic by the

n., v70D aes 11ck ae snai te o bie civ e: it treats the
s~ecI!: ca:on, STorace to be res-ervec -or a task's activation as
thougn ;it epe -,,a zne sPeci-ica-6ion of' '.torage for a collection.

^ . .107~ T 7is1 test recuires that o0jct o wo similar scalar
types be distinguisned when readi fr.om a iile--DATA-ERROR is
expecte,. to be rsm;se-d~ an attem z. to read one ob iect, as of t he
other type. However, ;it is not clear exactly how the'Ada siandard
,.2. 4 4 is to Le interpreledi; thus, this tlest objective is not

considered valid. (line 9,0)

p. CE311C This test requires certain behavior, when two files are
associated with the same external file, that is not required by
the Ada standard.

q. CE33O1A This test contains several calls to END-OFLINE &
ENOOFPAME that have no parameter: these calls were intended to
specify a file, not to re-aer to STANDARD-INPUT (lines 103, 107,

2THDRA'JN TE3T5

118, 132, & 136).

r. CE3411B This test requires that a text file's column number be set
to COUNT'LAST in order to check that LAYOUT-ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the
test would thus encumber validation testing.

0-3

APPENDIX E

COMPILER AND LINKER OPTIONS

This appendix contains iniormation concerning the compilation and linkage
commands used within the command scripts for this validation.

E-1

Compiling, Linking and Executing a Program Chapter 3

3 Compiling, Linking and Executing a Program

3.1 Overview

After a program library has been created, one or more compilation units can be com-
piled in the context of this library. The compilation units can be placed on different
source files or they can all be on the same file. One unit, a parameterless procedure,
acts as main program. If all units needed by the main program and the main program
itself have been compiled successfully, they can be linked. The resulting code can then
be transmitted to the target system and executed.

§3.2 and §3.4 describe in detail how to call the Compiler and the Linker. Further on
in §3.3 the Completer, which is called to generate code for instances of generic units,
is described.
§3.5 explains the information which is given if the execution of a program is abandoned
due to an unhandled exception.
The information the Compiler produces and outputs in the Compiler listing is explained
in §3.6.
Finally, the log of a sample session is given in §3.7.

3.2 Starting the Compiler

To start the SYSTEAM Ada Compiler, call the command

$ CADA:COMPILE <source> [LIBRARY=<directory>] -
[0PTIONS,,<string>] -

[LIST-<filespec>]

The input file for the Compiler is <source>. If the file type of <source> is not specified,
<source>.ADA is assumed. The maximum length of lines in <source> is 255; longer
lines are cut and an error is reported.

<directory> is the name of the program library; [.ADAL 1B] is assumed if this parameter
is not specified. The library must exist (see §2.2 for information on program library
management).

Chapter 3 Compiling, Linking and Executing a Program

The listing file is created in the default directory with the file name of <source> and the
file type . LIS if no file specification <filespec> is given By the parameter LIST. Oth-
erwise, the directory and file name are determined by the file specification <filespec>.
If no full file specification is given, missing components are determined as described
above (i.e. the default directory is used if no directory is specified, the file name of
<source> if no file name is specified and the file type .LIS if the file type is missing).
See §3.6 for information about the listing.

Options for the Compiler can be specified by using the parameter OPTIONS; they
have an effect only for the current compilation. <string> must have the syntax

"[option {. option}]"

where blanks are allowed following and preceding lexical elements within the string.

The Compiler accepts the following options:

LIST => ON/OFF (default is OFF)
OPTIMIZER => ON/OFF (default is ON)
INLINE => ON/OFF (default is ON)
COPY-SOURCE => ON/OFF (default is OFF)
SUPPRESS-ALL
SYMBOLIC-CODE

The options LIST and SUPPRESS-ALL have the same effect as the corresponding
pragmas would have at the beginning of the source (see lAda,Appendix B, and §7.1.2
of this manual).

No optimizations like constant folding, dead code elimination or structural simplifica-
tions are done if OPTIMIZER => OFF is specified.

Inline expansion of subprograms which are specified by a pragma inline (cf. §7.1.1)
in the Ada source can be suppressed generally by giving the option INLINE => OFF.
The value ON will cause inline expansion of the respective subprograms.

COPY-SOURCE => ON causes the Compiler to copy the source file <source> into the
program library.

A symbolic code listing can be produced by specifying the option SYMBOLIC-CODE
when calling the Compiler. The code listing is written on a file with file type .SYM
whose file name and directory are identical with those of the listing file.

The source file may contain a sequence of compilation units, cf. §10.1 of (Ada]. All com-
pilation units in the source file are compiled individually. When i compilation unit is

Compiling, Linking and Executing a Program Chapter 3

compiled successfully, the program library is updated and the Compiler continues with
the compilation of the next unit on the source file. If the compilation unit contained
errors, they are reported (see §3.6). In this case, no update operation is performed on
the program library and all subsequent compilation units in the compilation are only
analyzed without generating code.

The Compiler delivers the status code WARNING on termination (see [VAX/VMS,
DCL Dictionary, command EXIT]) if one of the compilation units contained errors.
A message corresponding to this code has not been defined; hence %NONAME-W-
NOMSG is printed upon notification of a batch job terminated with this status.

3.3 The Completer

The Compiler does not generate code for instances of generic bodies. Since this must
be done before a program using such instances can be executed, the COMPLETER
tool must be used to complete such units. This is done implicitly when LINK is called.

It is also possible to call the Completer explicitly by

$ CADA:COMPLETE <ada&name> [LIBRARY=<directory>] -
[OPTIONS-<string>] -

[LIST=<fi1espec>J

<adaname> must be the name of a library unit. All library units that are needed by
that unit (cf. [Ada,510.5]) are completed, if possible, and so are their subunits, the
subunits of those subunits and so on. The meaning of the parameters LIBRARY and
LIST corresponds to that of the COMPILE command (cf. §3.2). Options apply to all
units that are completed; the following ones are accepted (cf. §3.2):

OPTIMIZER => ON/OFF
INLINE => ON/OFF
SUPPRESS.ALL
SYMBOLIC-CODE

The Completer delivers the status code WARNING on termination (see [VAX/VMS,
DCL Dictionary, command EXIT]) if it detected some error. A message corresponding
to this code has not been defined; hence %NONAME-W-NOMSG is printed upon
notification of a batch job terminated with this status.

Chapter 3 Compiling, Linking and Executing a Program

In this case a listing file containing the error messages (cf. §3.6) is created. If no file
specification <filespec> is given by the parameter LIST, the listing file is created in
the default directory with file name COMPLETE and the file type . LIS; otherwise, the
directory and file name are determined by the file specification <filespec>. If no full
file specification is given, missing components are determined as described above (i.e.
the default directory is used if no directory is specified, the file name COMPLETE if no
file name is specified and the file type . LIS if the file type is missing).

3.4 The Linker

An Ada program is a collection of units used by a main program which controls the
execution. The main program must be a parameterless library procedure; any param-
eterless library procedure within a program library can be used as a main program.

The Linker generates an executable program on the host without using the target.

To link a program, call the command

$ QADA:LINK <adaname> <filename> [LIBRARY=<directory>] -

[OPTIOINS=<string>] -

[LIST=<filespec>]
[COMPLETE=Z1/FF]
[DEBUG=ON/0FF]
[SELECT=ON/0FF] -

[STACKSIZE=<integer>J

[EXTERNAL= <string>J -

<ada.name> is the name of the library procedure which acts as the main program.

<filename> is the name of the file which is to contain the executable code after linking.
No file type is assumed if none is specified.

<directory> is the name of the program library which contains the main program;
[. ADALIB] is assumed if this parameter is not specified.

The COMPLETE parameter specifies whether the program is to be completed before
it is linked; default is ON. If the Completer is called, the parameters LIBRARY,
OPTIONS and LIST are passed to it (cf. §3.3).

Compiling, Linking and Executing a Program Chapter 3

The DEBUG parameter specifies whether debug information is to be generated. DE-
BUG=ON causes a second file containing the symbol table of the executable program
to be generated; this symbol table is needed for debugging the program with the OS-9
debugger. The name of this file is also <filename> with file type .STB; default is ON.

SELECT=ON causes the object code of subprogram bodies to be included in the
executable program only if this subprogram may be called during program execution.
In the case of OFF the code of all compilation units mentioned in a context clause (in
a transitive manner) is linked together; the default is ON.

The STACK-SIZE parameter specifies the stack size of the resulting program in bytes;
the default is 64K bytes.

The EXTERNAL parameter specifies files which contain object code of those program
units which are not written in Ada (e.g. object modules of subprograms written in
assembly language). For those program units the pragmas

PRAGMA interface (assembler) -- (cf. §7.1.1)
and

PRAGMA external-name C ...) -- (cf. §7.1.1)
must be given in the Ada source.

<string>, specified by the parameter EXTERNAL, is a string literal that denotes the
names of the external object files, separated by commas.

Ezample:

EXTERNAL-"A. OBJ* B. OBJ"
A and B denote object files

§3.4.1 gives additional information concerning the inclusion of external object code.

The following steps are performed during linking. First the Completer is called, unless
suppressed by COMPLETE=OFF, to complete the bodies of instances. Then the
Pre-Linker is executed; it determines the compilation units that have to be linked
together and a valid elaboration order. A code sequence to perform the elaboration
is generated. Finally, all object files including those specified by the EXTERNAL
parameter are linked.

The Linker of the SYSTEAM Ada System delivers the status code WARNING on
termination (see [VAX/VMS, DCL Dictionary, command EXIT]) if one of the above
mentioned steps failed (e.g. if one of the compieted units contained errors, if any
compilation unit cannot be found in the program library or if no valid eleboration order
can be determined because qf incorrect usage of the pragma elaborate). A message
corresponding to this code has not been defined; hence %NONAME-W-NOMSG is
printed upon notification of a batch job terminated with this status.

Chapter 3 Compiling, Linking and Executing a Program

5.4.1 Inclusion of External Object Code

The Linker is able to read only those object files which were written by a tool of
the SYSTEAM Ada System; files which have a format that does not conform to the

internal object code format used by the SYSTEAM Ada System cannot be read. This
restriction must be obeyed when additional code is linked to the program by use of the
EXTERNAL parameter.

If an object file is transmitted from the target to the host by use of the TRANSMIT
tool (cf. §3.5), the resulting file on the host has the appropriate format and no further
action is necessary.

If an object file is copied to the host by another tool (that is not part of the SYSTEAM
Ada System), the file must be converted into S-Record format before copying. On the
host, this S-Record file is converted into the binary format appropriate for the Linker
by giving the command

$ CADA:EXBIN <s-filename> [OUT=<bilename>]

<s.filename> is the name of the input file; if no file type is specified, . S is assumed.

The OUT parameter specifies the name of the output file; the default file name is the
name of <s.filename>, default file type is .OBJ and default directory is []

It is also poss"ble to convert binary format into S-Record format on the host by calling

$ QADA:BINEX <b_..ilename> [OUT'<s-..i1ename>]

<b.filename> is the na:ne of the binary input file; if no file type is specified, . OBJ is
assumed.

The OUT parameter specifies the name of the output file; the default file name is the
name of <b.filename>, default file type is .S and default directory is [I.

Compiling, Linking and Executing a Program Chapter 3

3.5 Executing a Program

After linking, the program can be transmitted to the target.

3.5.1 File Transfer

File transfer is done by the TRANSMIT tool, which is able to transmit files from the
host to the target and vice versa.

Transfer of one file is done by giving the command

$ OADA:TRANSMIT <target-line> <direction> <kind> -

<vms_.filename> <os9_filename> [STATISTICS=ON/OFF]

<target-line> is the terminal line used for the host-target communication. It must be
connected to the target and an OS-9 session must be active on that line. The logical
name of that line is defined during installation of the SYSTEAM Ada System.

The parameter <direction> specifies whether the file is sent to the target or received
from the target. The allowed values are SEND and RECEIVE.

<kind> describes the kind of data (on the file) to be transmitted. The allowed values
are TEXT and BINARY; if a binary file is to be sent to the target, the file must have
the internal object format described in §3.4.1.

The file name on VMS is given by <vms..filename>.

The file name on OS-9 is given by <os9_filename>.

The parameter STATISTICS specifies whether statistical information about the file
transfer is to be output.

If file transfer between host and target is not done via a terminal line (and therefore the
TRANSMIT tool is not used), the BINEX tool (cf. §3.4.1) can be used to transform
the executable program into S-Record format. Then the S-Record file is copied to the
target and again transformed into binary format.

Chapter 3 Compiling, Linking and Executing a Program

5.5.2, Operations on the Target

On the target, the program can be executed by giving the command (os9 is the prompt
of the operating system)

os9 <filename>

<filename> must be a full path name.

Another way of executing the program is first to load it from the current data directory
into main memory and then to start it:

os9 LOAD -D <filename>
os9 <filename>

In this case <filename> denotes the relative path name of the file in the current data
directory.

The default stack size for the main task is 64k Bytes. Additional stack space is allocated
if a modifier is added on the command line, e.g.

oag <filename> #100

which results in a stack size of 164k Bytes. The default stack size for the main task
can be modified permanently by using the LINK parameter STACK-SIZE (cf. §3.4).

If an Ada program is abandoned due to an unhandled exception, a message is displayed;
the message has the following form:

(1) *** Ada program abandoned due to unhandled exception!
(2) exception :
(3) raised at :
(4) error code :

In line (2) the exception identification is displayed. For the predefined and I/O excep-
tions, the Ada names are printed. For all user-defined exceptions, a hexadecimal value
uuuuxxxx is shown: uuuu indicates the library key of the comp"-.tion unit in which the
exception is declared, xxxx is the compilation unit relative num Ker of the exception.
Non.adaserror, defined in package system, stands for any other exception.

Compiling, Linking and Executing a Program Chapter 3

In line (3) a code address is shown. Depending on the type of exception (fault or trap),
this can be the address of the instruction that caused the exception (for a fault), or of
the following instruction (for a trap). Line (4) shows the error number given by the
OS-9 operating system. The corresponding messages are listed in (OS-9,Error Codesi.

3.6 The Compiler Listing

The listing for a compilation unit starts with the kind and the name of the unit and
the library key of the current unit.

Example:

= PROCEDURE MAIN. Library Index 76

By default only source lines referred to by messages of the Compiler are listed. A
complete listing can be obtained by using pragma LIST or the Compiler option LIST.
The format effectors ASCII.HT, ASCII.VT, ASCILCR, ASCII.LF and ASCII.FF are
represented by a '-' character in the listing. In any case, those source lines which are
included in the listing are numbered to make locating them in the source file easy.

Errors are classified into SYMBOL ERROR, SYNTAX ERROR, SEMANTIC ERROR,
RESTRICTION, COMPILER ERROR, WARNING and INFORMATION:

SYMBOL ERROR
pinpoints an inappropriate lexical element. "Inappropriate" can mean "inap:ro-
priate in the given context". For example, '2' is a lexical element of Ada, but it
is not appropriate in the literal 2#012#.

SYNTAX ERROR
indicates a violation of the Ada syntax rules as given in [Ada,Appendix E].

SEMANTIC ERROR
indicates a violation of Ada language rules other than the syntax rules.

Chapter 3 Compiling, Linking and Executing a Program

RESTRICTION
indicates a restriction of this implementation. Examples are representation clauses
which are provided by the language but are not supported in this implementation;
or situations in which the internal storage capacity of the Compiler for some sort
of entity is exceeded.

COMPILER ERROR
We hope you will never see a message of this sort.

WARNING
messages tell the user facts which are likely to cause errors (for example, the
raising of exceptions) at runtime.

INFORMATION
messages tell the user facts which may be useful to know but probably do not
endanger the correct running of the program. Examples are that a library unit
named in a context clause is not used in the current compilation unit, or that
another unit (which names the current compilation unit in a context clause) is
made obsojete by the current compilation.

Warnings and information messages have no influence on the success of a compilation.
If there are any other diagnostic messages, the compilation was unsuccessful.

All error messages are self-explanatory. If a source line contains errors, the error
messages for that source line are printed immediately below it. The exact position in
the source to which an error message refers is marked by a number. This number is
also used to relate different error messages given for one line to their respective source
positions.

In order to enable semantic analysis to be carried out even if a program is syntactically
incorrect, the Compiler corrects syntax errors automatically by inserting or deleting
symbols. The source positions of insertions/deletions are marked with a vertical bar
and a number. The number has the same meaning as above. If a larger region of the
source text is affected by a syntax correction, this region is located for the user by
repeating the number and the vertical bar at the end as well, with dots in between
these bracketing markings.

The following page contains a reprint of a complete Compiler listing which shows the
most common kinds of error messages, the technique for marking affected regions and
the numle ring scheme for relating error messages to source positions.

Compiling, Linking and Executing a Program Chapter 3

** SYSTEAM ADA - COMPILER VAX/VMS x MC6B020/OS-9 1.81 **

** 88-11-22 / 14:11:16

- PROCEDURE LISTING EXAMPLE

2 abc: procedure integer RANGE 0 .. 9 :- IOE-I;

>>>>> SYNTAX ERROR
Symbol(s) deleted (1)

>>>>> SYMBOL ERROR (1) An exponent for an integer literal must not
have a minus sign

3 def integer RANGE 0 .. 9;

>>>>> SYNTAX ERROR
Symbol(s) inserted (1):

6 bool :- (abc AND (def * 1)) OR adf;
1 2 3

>>>>> SEMANTIC ERROR (1) Actual parameter for LEFT Is not of
appropriate type

>>>>> SEMANTIC ERROR (2) Actual parameter for RIGHT is not of
appropriate type

>>>>> SEMANTIC ERROR (3) Identifier ADF not declared

PROCEDURE LISTING EXAMPLE

- ** Number of Errors 6
- * Number of Warnings : 0

a * Number of Source Lines : 7
a * Number of Comment Lines : 0 -

*** Number of Lexical Elements : 42 a

a ** Code Size In Bytes 0 f
* Number of Diana Nodes created : 51 w
a Symbol Error In Line 2. f
a * Syntax Error in Line 2, 3.
** Semantic Error in Line 6.
**** CPU Time used 1.6 Seconds

* End of Ada Compilation **

... . . " **II •

Chapter 3 Compiling, Linking and Executing a Program

3.7 Sample Session: Compile, Link and Run

This chapter shows the log of a sample session. The lines starting with "S" are VMS
commands, all other lines are output.

(For exaple2 it is assumed that a routine with the name ASSEMBLERLEXAMPLE, which
outputs the text "Assembler routine is called", has been written in assembly language
and that the file A. OBJ contains its object code.)

$ OADA:CREATELIB
SYSTEAM ADA - LIBRARY-MANAGER VAX/VMS x MC68020/OS-9 1.81

$ QADA:COMPILE examplel OPTIONS-"list => on"
compiling DISKO: [ADA.TEST]EXAMPLEI.ADA:2
in library DISKO: [ADA.TEST.ADALIB]
SYSTEAM ADA - COMPILER VAX/VMS x MC68020/OS-9 1.81
PROCEDURE LISTING-EXAMPLE

Number of Errors : 6
**** Number of Warnings 0

CPU Time used : 1.4 Seconds

$ TYPE exazple2.ada

WITH texto;:
USE textio;

PROCEDURE execu-ion-example IS
PROCEDURE assemblerroutine;
PRAGMA interface (assembler. asse--bler-routine);
PRAGMA external_name ("ASSEMBLEREXAMPLE".

assembler-routine);

BEGIN
put-line ("Main program starts"):
assembler-routine;
put-line ("Main program stops");

ENL execution-example;

Compiling, Linking and Executing a Program Chapter 3

$ CADA:COMPILE example2
compiling DISKO:[ADA.TEST]EXAMPLE2.ADA;1
in library DISKO:[ADA.TEST.ADALIB)
SYSTEAM ADA - COMPILER VAX/VMS x MC68020/0S-9 1.81
PROCEDURE EXECUTION-EXAMPLE. Library Index 47
*** No Errors during Compilation ***

CPU Time used : 2.1 Seconds

$ CADA:LINK execution-example example EXTERNAL="A.OBJ"
SYSTEAM ADA - COMPLETER VAX/VMS x MC68020/OS-9 1.81
SYSTEAM ADA - PRE-LINKER VAX/VMS x MC68020/OS-9 1.81
SYSTEAM ADA - LINKER VAX/VMS x MC68020/OS-9 1.81

$ CADA:TRANSMIT charly SEND BINARY example /hO/test/example
SYSTEAM ADA - FILE-TRANSMITTER VAX/VMS x MC68020/OS-9 1.81

$ SET HOST/DTE charly

os9 /hO/test/example

Main program starts
Assembler routine is called
Main progrzm stops

os9 -\

$ CADA:DELETELIB
** Information: Program library DISKO:[ADA.TEST.ADALIB] deleted

