UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFOKE TOMPLETLING FORV

1. REPORT NuUM. R |2. GOVY ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitie)

Ada Compiler Validation Summary Report:sysTeEaM KG
SYSTEAM Ada Compiler VAX/VMS x MC68020/0S-9, Version 1.81,
VAX 8350 Host) and KWS EB68020 (Target), 890329I1.10076

5. TYPE OF REPORT & PERIOD COVERED
29 March 1989 to 29 March 1989

e. Purouuxuo_'bas. REPORT WUMBER

7. AUTHOR(s)

IARG,
Ottobrunn, Federal Republic of Germany.

8. CONTRACT OR GRANT NUMEER(s)

9. PERFORMING ORGANIZATION AND ADDRESS

IARBG,
Ottobrunn, Federal Republic of Germany.

10. PROGRAM ELEMENT, PROJECT, TASK
AREA § WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Ada Joint Program Office

United States Department of Defense
Washington, DC 20301-3081

FT3 . RUWBER UF PAGES

12, REPDRT DATE

14, MONITORING AGENCY NAME & ADDRESS(/f different trom Controliing OHice,;

AD-A210 423

IABG,

15. SECURITY CLASS (of this report)
UNCLASSIFIED

obrunn, Federal Republic of Germany.

2 F T i0N/ NG
152. EEE%DEEE 1CA™ SON/DOWNSRADING

DISTRIBUTION STATEMENT (of this Report)

proved for public release; distribution unlimited.

JISTRIBUTION STATEMINT (of the abstractentered n Biock 20 If different from Report)

CLXSEIFIED

DTIC

ELECTE

WPPLEMINTARY NOTES

JUN 15 1988

“H

18. KEYWORDS (Continue onreverse si0e if necessary andidentify by block number)

1815A, Ada Joint Progranm Office, AJPO

Ada Programming language, Ada Compiler Val‘dation Summary Report, Ada
Compiler Validation Capability, ACVC, Valicdation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MI_-STD-

. - >
PO T - O

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

West Germany, ACVC 1.10.

SYSTEAM KG, SYSTEAM Ada Compiler VAX/VMS x MC68020/0S-9, Version 1.81, VAX 8350 under VMS
Version 4.7 (Host) to KWS EB6802C -inder 0S-9/68020, Version 2.1 (Target), Ottobrunn

DD TURR {473 EDITION OF 1 MOV 65 1S OBSO.ETE

AVF Control Number: IABG-VSR-033

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 89032911.10076
SYSTEAM XG
SYSTEAM Ada Compiler VAX/VNS x MC68020/05-9 Version 1.8
VAX 8350 Host and KNS5 EB68020 Target

Completio

Prepared By:
IABG mbH, Abt SC7
Einstienstr 20
DEO:L2 Oxtokrunn
West Germany

Precared for:
Ada Joint Program QOF7ice
United States Departament of Defense
Vasningion DC 20301-208!

Ada Compiler Validation Summary Report:

SYSTEAM Ada Compiler VAX/VMS x MC68020/0S-9%
Version 1.81

Compiler Name:

Certificate Number: 89032911.10076

Host: VAX 8350 under VNS Version 4.7

Target: KWS EB68020 under 05-9/68020 Version 2.1

Testing Completed 29 March 1989 Using ACVC 1.10

This report has been reviewed and is approved.

——— o o s - — i ——— ———— — - -

1ABG bH Abt SLT
Or S, Hellbrunner
Einsteinstr 20
D8012 Ottobrunn
West Germany

Al ———

e o sl i o o o e s e e e e s et >

da Validation Organization
Jr. Jofn f. Kramer

Instizute for Defense Analvses
Alexandria VA 2231

Cedid

A 8l

Ada“Joint Program Office .
Dr John Solomond

Director

Department of Defense
Washington DC 20301

oTIC

SOPY
INSPECTER
6

DT*C 7.5
Unaunounced
Justitication

l_Accesston For ‘
NTIS GPA&I

a
a

By

Dlat riduticn/

| G

Avatll mo
tpaciu‘

{

i
N

Av 1lab 14t ¢ (‘n*es
for

Ada Compiier Viiidation Summary Report:
Compiler Name: SYSTEAM Ada Compilar VAX/VYMS x M(53020/0S8-9
Version 1.81

Certificate Number: 89032911.10Q076

Host: VAX 8350 under VMS Version 4.7

Target: KWS E362020 under 0S-9/63029 Version 2.1

Testing Completed 29 March 1989 Ysing ACYC 1.10

Tnis recort has been reviewed and is approved.

TAZG mbH, Abt SIT
Dr 5. Heilbrunner
Zinsteinsir 20
D8012 Qttobrunn
west Germany

Aaa Validation Organizat)
Jr. Jonn FL Kramer

inctitute for Defanse Analvs
Alexandria VA 22311

G e - — - - ———— ————— — -

Ada Joint Program Office .
Dr John Solomond

Director

Department of Defense
Mashington DC 20301

CHAPTER

CHAPTER

CHAPTER

(2]

(9%]

Pl s b P
« e e e .

~rI

()) W L)) LW) L LW

APDENDIX A

APPENDIX

APPENDIX

APPENDIX

APPENDIX

(241

(S BN N 7% I % I S

Yy -

S BN B T I o AR I SR 7% Y pN Iy

QW Y

CONTENTS

INTRODUCTION

PURPQSE OF THIS VALIDATION SUMMARY REPQORT
USE OF THIS VALIDATION SUMMARY REPQRT

REFERENCES
DEFINITION OF TERMS e e e e
ACVC TEST CLASSES e e

CONFIGURATION INFORMATION

CONFIGURATION TESTED e e
IMPLEMENTATION CHARACTERISTICS

TEST INFORMATION

TEST RESULTS
SUMMARY OF TEST RESULTS BY CLASS
SUMMARY OF TEST RESULTS BY CHAPTER .
WITHDRAWN TESTS
INAPPLICABLE TESTS .

TEST, PROCESSING, AND EVALUATION MODIFICATIONS . .

ADDITIONAL TESTING INFORMATION .
Prevalidation .
Test Nethod
Test Site

DECLARATION OF CONFORMANCE
APPENDIX F OF THE Ada STANJARD
TEST PARAMETZRS

WITHDRAWN TESTS

COMPILER AND LINKER OPTIONS

e s & e .
[N P

WWWWWOLWWWDwWw

S 7% I 7N By 2N B

n N
t ot
D

1
O OO U R) P e et

CHAPTER 1
INTRODUCTION

~
-~

This Validation Summary Report “{VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms wused within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capabitity, (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though a1l validzted Ada compilers conform 10 +the Ads tandard, it
must be understood that some differences do exist bztween implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum vatues of integer types.
Other differences between compilers result from .the characteristics of
particular operating sysiems, hardware, or implementation strategies. Alil
the dependencies observed during the process of testing this compiler are
given in this report. .

The information in this report is derived érom the +test resulis produces
during wvalidation testing. The validation proc2ss includes submitiing &
suite of stsndardized tests, the ACVC, 2s inputs to an Ade compiler ang
evaluating the results.. The purpose of vaiidating i5 to ensure conformity
of the compiler to the Ads CStandard by tessiing that the comgiler properly
implements legal language «constructs and that it identifies and rejects
illegal language constructs. The testing glso identifies behavior that s
implementstion dependent, obut is permitted by the Ada Standard. 3Six
classes of tests are used. These tesis are designed %o perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VER documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for 2ne foliowing purposes:

s

INTRODUZ TION
To attempt %o identify any languags constructs supported by the
compiler that 40 not conform to the Ada Stanaard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
sv the Ada Standard

Testing of this compiler was conducted by the AVF accerding to procedures
established by the Ada Joint Program Office and zaministered by the Ada
validation Organization (AVO). On-site testing was completed 29 March 1989
a3t TABG mpH, Ottobrunn,

1.2 USE OF THIS VALIDATION SUNMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "freedom of Information Act”
(§ U.S.C. #552), The results of this wvalidation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
rapresent or warrant that &il statements set forth in this report are
accurate and compiete, or that the subject compiler has no nonconformities
‘0 the Ada Siandars other than those presented. Copies of this report are
available to the public from:

Ada Infermation Clearinghouse

Ade Joint Program O+<ice

QUSDRE

The Pentagon, Rm 2D-129 (Fern Street)
Washington DC 24301-308!:

or 4rom:

IABG mbH, Abt SZT
Einsteinstr 20
DB012 Ottobrunn
West Germany

-Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 2231t

1-2

1'3

REFERENCES

1. Reference Mapual for the Ada Programming Langyage,
ANSI/MIL-STD-1B15A, Fepruary 1983 and IS0 8652-1987.

2. Ada Compiler Validation Procedyres and Quidelings, Ada Joint
Program Office, 1 January 1987.
3. Adg Compiler Validatiion Capabiljty Implemeniers’ Guide, SofTech,

Inc., December

1986.

4. Agd3 Compiler ¥Yalidstion C3pgbilily User's GQuide, December 1986.

1.4 DEFINITION OF TERMS

ACVC

Applicant

AVF

AVD

Compiler

Fgiled test

Host

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ads programming language.

An Ada Commentary contains ail information relevant to the
point addre:zsed by a comment on the Ada Standard. ihese
comments are given a unique identification number having the
form Al-ddddd.

ANSI/MIL-STD-18154, february 1983 and IS0 86E52-1987.

The agency requesting validation,

The Ads Validation Faciiity. “he AVF 1t responsible for
conducting compiler wvaiidations &ciording to proceaures
contained in the Ags {Coppiizr Velida:iion Procedures 2nd
giglgellines.

The Ada Validation ({rganizstion, The AVO has oversight
authority over all AVF practices <tor the purpose of
mainiaining & uniform process for velidztion of Ada
compilers. The AVO orovi.es administrative and technical

supoort for Acda valications to ensure consistent practices.

A processcr for the Ada language. In the context of this
report, & compiler is any language processor, including
cross-compilers, translators, and interpreters.

An ACVC test for which the compiler generates a result that

demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

1-3

Inapplicab'es An ACVC test that wuses features of the lzn
test compiler is not required to support or may legitim
support in a way other than the one expected by the test.

Passed test An ACVC test for which @a compiler generates the expected

result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks @ comgdler’'s conformity regirding a

particular feature or a combination of features to the Ada
Standard. In the context of ;his report, the term is used to
designate & single test, which may comprise one or more

files.
Withdrawn An ACVC test found to be incorrect and not wused to check
test conformity to the Ads Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test opjective, or contains itlegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard 1is measured using the ACV(. The ACV(
contazins both legal and illegal Ada programs siruciured into six test
¢lasses: A, B, C, D, E, and L. The first letter of 5 test name identifies
the <class to which it belongs. (lass A, C, D, and E tests are executable,
and special program units are vused to report their results during
execution, Class B tests are expected to produce compilation errors.
{lass L tesis are expected to produce errors because of the way in which a
orogram library is used at link time,

g 8is s3ful compiltétion and execution of legal Ada
ograms with certain language constiructs which cannot be verified 2t run
ima. re are no exsiicit pr gram componenis in a Class A tesi to <check
semantics, For example, & 135s A test <checks that reserved words of
another language (other than those already reserved in the Ada language)
are not 1ireated as reserved words by an Ads compiier., A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

ensure the succe

Class § tests check that a compiler detects illegal language wusage.
Class B tests are not executable. Each test in this class is compiled and
the resuliing compilation listing is examined to verify that every syntax
ar semarti» error in the test is detected. A Class B test is passed if
eyery illegal consiruct that it contains is detected by the compiler.

1-4

INTRODUCTICON

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. EZacn Class £ test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Siandard for some oOarameters--tor example, the number of identifiers
permitted in 2 compilation or the number 9% units in a library--a compiler
may r2+use to compile a Class D test and still be a conforming compiler,
There<ore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class £ tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each (Class E test 1is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Theretore, 3 Class € test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable resson.

Class L testis check that incomplete or illegal Ada programs involving
nuitiple, separately compiled units are detected and not allowed to
sxecute., (lass L tests are compiled separately and execution i1s attempted.
A (lass L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are 2latorated. In some cases, an implementation may legitimately
detect errors during compiiation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, suppert
the self-cnecking features of the executable tests. The package REPORT
provices the mechanism by wnich executable tests report PASSED, FAILED, or

NOT APPLICAELE results. It also provides a set of icentity functions used
to defest some compiler optimizations allowed by the Ada Standard that
weuld circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined io0 verify tnat the units are operating correctly. 1f these
units 23re not operating correctly, then the validstion is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 5SS characters, ccntain
lines with & maximum lengih of 72 characters, use small numeric values, and
place features that msy not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-3

:_

INTROGUC T ON

customized according to impiemeniation-specific values--for example, an
illegal file name. A list of the wvaiues used for this validation is
provided in Appendix (.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inappiicable to
the implementation. The applicability of 2 test tc an implementation is
considered each time the implementation is validated. A test tnst is
inapplicable for one wvalidation is not necessarily inapplicabie for &
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from tre
ACYC and, therefore, is not wused in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

CHAPTER 2

CONFIGURATION INFORMATICM

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:
Compiler: SYSTEAM Ada Compiler VAX/VMS x MC68020/05-9 Version 1.81
ACVE Version: 1.10
Certificate Number: 89032911.1007¢6
Host Computer:
Machine: VAX 835D
Operating System: VMS Version 4.7

Nemory Size: 12 M3

Target Computer:
Machine: KWS EB6BOZO

Operating Systen: 0S-9/68020 Version 2.1

Memory Size: 2 MB
Communications Network: V24 connection
2-1

CONFIoURATION INFORMATION

2.0 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other <classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. C(Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test 029002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. {Se2 tests DSSAQ3A..H (B
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive

procegures separately compiled as subunits nested to 17
levels. (Ses tests Do4005E..6 (3 tests).) :

Predefined types.

(4

{1) This impiementation suppoorts the additional predefined types
SHORT_INTEGER, SHORT_FLOAT and LONG_fLOAT in the package
STANDARD. (See tests B8860017..2 (7 tesis).)

Excressicon evaluation.

(g}
rrt

The order in which expressions &re svaluatea and the time at which
constraints are checked are noi eefinea by the language. Whiie
the ACVL tests do not specificaliy attempt to determine tne order
o7 evaluation of expressions, test resuits indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for
mempership in a component’s subtype. (Sea test £32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (Sae test (357128.)

(3) This implementation uses no extra bits for extra precision and
uses atl extra bits for extra range. (See test C23903A.)

2-2

e

CONFIGURATION INFORMATION

(4) No exception is raised wnen an intecer [iteral operand ir a
comparison or membership test is outside the range of *he base
type., (See test (435232A.)

(5) No exception is raised when a literal operand in a fixec-point
comparison or membership test is outside the range of the base
type. (See test C48252A.)

(6) Ynderflow is gradual. (See tesis C45524A..7 (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even,
(See tests C46012A..2 (26 tests).)

(2) The method used for rounding to longest integer is round 1o
even. {(See tests C45012A..2 (206 tests).)

universal
t CIADI4A)

(2) The method used for rounding %o integer in s
real expressions is round away from zero. (See

w 0

e, Array types.
An implementation s allowed 10 raise NUMERIC_EAROR or
CONSTRAINT_ERRCR for an array heéving 3 'LENGTH tnat exceess

CTANDARD.INTEGZR'LAST anc/or SYSTEM.MAX_INT.

This implementation evaiuates the 'LINGTH o7 =£3ch constirzined
array subtype during elzsoration o tne type zsc.araticn. This
causes the declaration of 2 constrainsd grray sSuplype with more
than INTEGER'LAST (which is eguel <o SYSTEM . MAX_INT for this
implementation) compcnents to raise CONSTRAINT_ERROR However the
optimisation mechanism of this implementation suppreszes the

evaluation of 'LENGTH if no object of the array type 1S declared
depending on whether the bounds ot the arrcy are static, the
visibility of the array type, end the opresence of local
subprograms. These general remarks apply ‘o0 points (1) to (6).

(1) Declaration of an array type or subtype deciaration with more

than SYSTEM.MAX_INT components raises no exception if tha
bounas of the array are stitic. (Se2 test C36002A.)

2-3

~

CONFIGURATION INFCRMATICN

{2) CONSTRAINT_EARROR is raised when 'LENGTH is appiied to an arrav
type with INTeGER'LAST + 2 components if the bounds of the
array are not static and if the subprogram declaring the array
type contains no local subprograms. (See test C26202A.)

(3) CONSTRAINT_ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components if the bounds of the
arrgy are not static and if the subprogram declaring the array
type contains a local subprogram., (See test C362028.)

(4) A packed BOOLEAN array having a "LENGTH exceeding INTEGER'LAST
raises CONSTRAINT_ERROR when the array type is declared if the
pounds of the array are not static and if there are objects of
the array type. (See test (52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT_ERROR wher the array
type is declared if the bounds of the array are not static and
if there are objects of the array type. (See test CS52104Y.)

(6> A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR

aither when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation

raises CONSTRAINT_ERROR when the array tyne is declared if the
bounds of the array are not static and if there are objects of
the array type. (See test E52103Y).

f. Discriminated types.

(1) In aszigning record types with discriminants, the expression
is not evalugted in iis eniirety before CONSTRAINT_ERROR is
raised when «checking wnether ine expression's subtype s
compatible witn the target’s subivee. (See test C£S2013A.)

g. Acgregatas.

(1) In the evalustion of a multi-dimensional aggregate, the test
resulis indicate that ail choices are evaluated before
thecking against the index type. (See tests C43707A and
€432078.)

(2) In the evaluation of an aggregste containing subaggregates,

all choices are evaluated before being cthecked for identical
bounds. (See test £432128.)

2-4

(3)

»j

CONFISURATION INFORMATION

CONSTRAINT_ERROR is raised after a!l choices are evaluateo
when a bound in & non-nuil range of a non-null aggregate goes
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

The pragma INLINE is supported for functions and procedures. (See
tests LA3J004A..B (2 tesis), EA3C04C..D (2 tes*s), and CA300D4E..F
(2 tests).)

i. Generics.

(1)

(%)

Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1012A and CA2009F.)

Generic library subprogram specifications and bodies can be
compiied in seosrate compilations. (See test CAIDI2A.)

Generic aon-library package bodies &s subunits can be compiled
in sepirate compilations. (See test CAZ009C.)

Generic non-likbrary subprogram bodies can be compiled in
separate compiistions from their stubs. (See test CA2009f.)

Generic unit Locies and their subunits c¢an be compiled 1in
separate compilstions. (See test CA3011A.)

aneric package declarations and bodies can be compiled in
pargte compilations. (Cee tests (A2009C, BC3204C, and
1

ckage speciticetions and bodies can be
ate compilations. (See tests BC3204C and

Generic unit bodies and their subunits <can be compiled in
separate compilations. (See test CA3011A.)

j. Input and output.

(1)

The package SEQUENTIAL_IO can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201iE.)

2-35

F.......................l.l......l.l.l....l...l.l.l...................l..l........---l?*

CONFIGURATION INFORMATION

{2) The package DIRECT_ID can be instantiated with unconstrained
array types and record types with discriminants without
defaults. However, this impiementation raises USc_ERROR wupon
creation of a file for unconstrained array types. (See tests
AE2101H, EE2401D, and EE2401G.)

(3) Modes IN_FILE and OUT_fILE are supported for SEQUENTIAL_IO.
(See tests CEZ2102D..E, CE2102N, and CE2102P.)

(4) Modes IN_FILE, QUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
- CE21027, and CE2102V.)

(5) Modes IN_FILE and QUT_FILE are supported for text files. (See
tests CE3102E and CE2102I..K (3 tesis).)

(6) RESET and DELETE operations are supported for SEQUENTIAL_IO.
(See tests CE2102G6 and CE2102X.)

(7) REStT and DELETE operations are supported for DIRECT_I0. (See
tests CE2102K and CE2102Y.)

{8) RESET and DELETE operations are supported for text files.
{See tests CI3102F..6 (2 tests), (ES2104C, CE31:0A, and
CE3114A.)

(9} Overwriting to 3 sequential file does not truncate the file.
(See test CE2208B.)

(10) Temporary sequential files are not given names,. (See test
C£21084.)

{i) Temporary direct files are not given names. (See test
CE2108C.)

{i2) Temporary text files are noi given names. (See ta2st [EZI124.)

associated with each
ile for sequential files
ee tests [E2107A..E (5
)

(iZ} More than one internal #ile <c¢zn bte
external opermanent (not temporary) f
wnen rezding only or writing oenly., (5
tests), (E2:102L, CE22110B, and CE2111D.

(i4) More than one internal file can be associated with each
external permanent (not temporary) file for direct files when
reading only or writing only. (See tests CE2107F..H (3
tests), CE2110D and CE2111H.)

{157 More than one internal file can be associated with each
external opermanent (not temporary) file for text files when
reading only or writing only. (See tests CE3111A..E (5
tests), (231142, and CE3113A.)

CHAPTER 3
TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 43 tests had been withdrawn because of test errors. The AVF
determined that 266 tests were inapplicable to this implementation. All
inapelicable tests wers processed during validation testing except for 159
executable tests that use floating~point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 14 tas*s were required to successfully demonstrate the test objective.
{See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
contormity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

e WA R DR L

Passed 129 1132 2087 17 27 46 3408

Inapolicable 0 6 259 0 1 0 Z%6

Withdrawn 1 2 3 0 6 0 43

TOTAL 130 1140 2350 17 34 46 3717
3-1

TEST INFORMATION

3.3 SUMMARY OF

RESULT CHAPTER
e A S SUS- SR - JAUOY SN : S U
Passed 202 5§11 Seo 245 172 99 el 232
N/A 11 58 114 3 0 0 S 1
Wdrn 0 1 0 0 0 0 0 1
TOTAL 213 650 680 248 172 99 166 354

3.4 VITHDRAWN T

The following 43 tests were withdrawn from ACVC Version 1.10 at

this validation:

A3900S6
COZAB2

CD2A73A
CO2A76C
CdS0110
Cd72048
£28005¢
ED7006D

TEST

ESTS

B97102E
CD2AE2D
CD2ZA73

CD2A76D
(pagisc
CD72050
CD2D11B

8C30098
CC2AG6A
C(D2A73C
CD2ABiG
£D7205C
CE21071
ED7004B

RESULTS BY CHAPTER

CD2A62D
CDZA&LE
CD2ATID
CDZAB3G
(050078

rE1114e

Voo s

ED70CSC

137 36
0 0
0 0
137 36

CDZA62A
CD2A6EC
CDIA76A
COCAB4N
CO7105A
CE3301A
eD7005D

3]
- -

253 404

TOTAL

S N 9 ST VRN ¥ JUS £ S

325 290 3408

o

44 30 26¢

1 35 S

the time of

(D2A&2H
CD2AGED
(D2A76B
CD2ABM
tD72038
(E34118
£07006C

Sea Appendix D for the re3son that each of these tests was withdrawn.

.5

INAPPLICEEL

- e mw-.
-
-

Scme tests do not spoiy to all compilers because they make use of
that a compiler is not required by the Ada Stancard 10 support.

depend on the result of another test that s either inapplicas! or
withdrawn. The applicability of & test to en imsciementation is considered

esch time a validation i1s attempted. A test ihat is inapplicable +or one
validation attempt is not necessarily inapplicable for a sutsequent
attempt. For this velidation attempt, 256 tests were inapplicable for the
ressons indicated:

a. The following 159 tests are not apolicabie because they have
fioating-point tyoe declarations reauiring more digits than
SYSTEM . MAX_DIGITS:

£241130..Y (11 tests) €357050..Y (11 tests)

3-2

4

-

TEST INFCORMATION

£357060..Y (11 tests) £357070..Y (i1 tesgisy
€357080..Y (11 tests) £358020..7 (12 tests:
£452410..Y (11 tests) £453210..Y (11 tests)
£454210..Y (11 tests) 455210..7 (12 tests)
£455240..2 (12 tests) £456210..7 (12 tests)
£456410..Y (11 tests) €460120..2 (12 tests)

C34007P and (34007S are expected to raise CINSTRAINT_ERROR. This
implementation optimizes the code at ccempile time on [ines 205 and
221 respectively, thus avoiding the operaticn which would raise
CONSTRAINT_ERROR and so no exception is raised.

C41401A is expected to raise CONSTRAINT_ERROR for the evaluation
pf certain attributes, thowever ;nls implementation derives the
values from the subtypes of the presix at compile time, as allowed
by 11.6 (7} LRM. Therefore elaboration of the prefix is not
involved and CONSTRAINT_ERROR is nct raised.

The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

C45231C €45304C £45502C €45303C €45504(C
C45504F C45611C C456;3C Case1a(l C45631C
£45532C BS2004D LSSBO07A °350%¢C 5860C:W
CD7101F

C45531M,.P (4 tesis) and C4S3224..P (4 tecsts) are inappliczble
because this implementation has a value of MAX_MANTISSA o7 less
than 48.

C47004A is expected to raise CONSTRAINT_EREQ0R whilst evaluyatirng
the comparison on line 51, but this comoilar evaluates the result
without invoking the basic opersiion queii<ication (a5 aliowed bv
11.6 (2) LEBMY which would raise (ONSTRAINT_ZZROR ans so no

exception 1s reiseg.

£36001F is not applicable beczuse, for this implemeniaticn, the
patkage TEXT_10 is depencest wupch package SYSTEM. Tnis test
recompiles package SYSTEM, making packzce TSi1_i0, anc hence

package REPORT, obsolete.

B86001X, C45231D, and CD7i01G are not a&pplicebiz berauze this
implementation does not support any preano‘ned intager tvpe with a
name other than INTEGER, LONG_INTEGER, or SHORT_INTEGER.

B86001Y is not aprlicable because this implementation supports no
predefined fixed-roint type other than DURATION.

B86001Z is not applicable because this imclementation supporisS no

predefined floating-point type with 3 name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

3-3

-3

-t

)

TeST INFORMATION

(960058 is not applicable because there are no values of
DURATION’BASE that are cutside the range of DURATION.

type

£D1009C, CD2A41A, CD2A41B, CD2A41E and CD2A42A..J (10 tests) are
inapplicable because this implementation imposes restrictions on
'SI1ZE length clauses for floating point types.

CD2A61] and CD2Ab1J are inapplicable because
imposes restrictions on

this implementation
'S5IZE length clauses for array types.

CD2A71A..D (4 tests), CD2A72A..D (4 tests), CD2A74A..D (4 tests)
and CD2A75A..D (4 tests) are inapplicable because this
implementation imposes resirictions on 'SIZE length <clauses for

record types.

CD2AB4B..1 (B tests), CD2A84K and CD2A84L are inapplicable because
this implementation imposes restrictions on 'SIZE length clauses
for access types.

(£2102D is inapplicable because this implementation supporis
CREATE with IN_FILE mode for SEQUENTIAL_IO.

CE2102E is inapplicable because this implementation supports
CREATE with OQUT_FILE mode for SEQUENTIAL_IO.

CEZ2102F is inapplicable because this implementation supports
CREATE with INQOUT_FILE mode for DIRECT_IO.

$€21021 is inappriicable because this implementation supports
CREATE with IN_FILE mode for DIRECT_IO.

fE2102J is inapplicable because this implementation support:s

CREATE with OUT_FILE mode for DIRECT_IC.

CE2102N is inapplicable because this impiemensetion supports OFEN
with IN_FILE mode for SEQUENTIAL_IC.
[£2:020 is inapplicable because this implemenistion supperts RESET
witnh IN_FILE moce tor SEQUENTIAL_IS.

supports (QPEN

(E2102P is inapplicabie because this implementation

with QUT_FILE mode for SZQUENTIAL_IO.

$(E2102Q is inapplicable because this
vith OUT_FILE mode for SzQUENTIAL_IC.

implementation supports RESET

CE2102R is inaoplicable because this QPEN

with INOUT_FILE mode fcr DIRECT_IZ.

implementation supports

£2102S is inapplicable becayse this
with INOUT_FILE mode for DIRECT_IO.

impiemgentation supports RESET

3-4

éd.

2b.

ac.

3ad.

ae.

a9.

ah.

ai.

3j.

ak.

o

én.

30.

ap.

CE21027 is inapplicable because this imoiementation supports QPEN
with IN_FILE mode fcr DIRECT_IO.

CE2102VU is inapplicable because this implementation supports RESET
with IN_FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports OPEN
with QUT_FILE mode for DIRECT_IC.

CE2102Y is inagplicable because this implementation supports RESZT
with OUT_FILE mode for DIRECT_IO.

CE2107C..D (2 tests) raise USE_ERROR when the function “NAME s
applied *to temporary sequential files, which are not given names.

CE2107L is inapplicable because, for this implementation,
temporary sequential files are not given names.

CE2107H is inapplicable because, for this implementation,
temporary direct files are not given names.

CE3102E is inapplicable because text file CREATE with IN_FILE mode
is supported by this implementation.

CE2102F is inapplicable because text ftii2 REStT is supporied by
this implementation.

£E31026 is inapplicable because text file deletion of an external
file is supported by this implementaticn.

{E3102I is inapplicable because text +<iie CRZATE with OQUT_FILE
moce iS supported bv this impiementaticn

02J is inapplicsble bezause tex®t iie JPEN witn IN_FILE mode
ypported bv ihis implementstion.

cibie because tex?® filz OPEN with OQUT_FILE mode

{E2102K is inapoiileb
is implementation.

i
IS supported py th

CE311iB and CE2115A are innapplicable because tney assume that a
PUT operation writes data to an exiernal file immediately. This
implementation uses line buffers; only complete lines are written
to an external file bv a PUT_LINE operztion. Thus attempts to GET
data beftore & PUT_LINE operation in thesz tests raise END_ERROR.

(E31128 is inapplic3able because, for this implementation,
temporary text files are not given names. '

CE3202A is inapplicable because the wunderlying cperating system
does not allow this implementation to support the NAME operation
for STANDARD_INPUT and STANDARD_OUTPUT. Thus the c¢alls of the
NANE operation for the standard files in this test raise

3-5

e
TeST INFORMATICN

USE_ERROR.

aq. EE2401D contains instantiations of package DIRECT_IO with
unconstrained array types. This implementation raises USE_ERROR
upon creation of such a file.

3.6 TEST, PROCESSING, AND EVALUATION MODIiFICATIONS

It is expected that some tests wiil recuire modifications of code,
processing, or evaluation in grager to compensate for legitimaise
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examcles of such modifications include:
adding a length clause to alier the default size of 3 collection; splitting
3 Ciass B test into subtests so that all errors are detected; ang
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 13 tests.

The following tests were split because svntax errors at one point resulted
in the compiler not defeciing other errors 10 the test:

<2003A BZ24009A B29001A B380032 B38009%A B380098
BS10014A 5910014 gA1101E B8CC00LED BC2001¢ BC3204¢

BC32088 BC320S

2.7 ADDITIONAL TESTING INFCRMATION
3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.1i0 oproduced

by +the CYSTZAM Adz Compiler VAX/VMS x MC:8020/0S5-9 Version 1.81 was
submitied to the AVF bty ihe applicant for review, Analysis of these
s

resyls demonstrated that the compiier success<ully passes all applicabie
tests, and the compiler exhibited the expected behavior on all inaeplicable
tests.

2.7.2 Test Method
Testing of the SYSTECAM Ads Compiler VAX/VMS x MLH3020/05-9 Version 1.81

using ACVC Version 1.10 was conducted by IAEG on the premises of IABG. The
configuration in which the testing was pertformed is described by the

3-6

v

"EST INFORMATION

following designations of hardware and software components:

Host computer: VAX 8350

Host operating system: " VWS Version 4.7

Target computer: KWS EB68020

Target operating system: 05-9/68020 Version 2.1

Compiler: SYSTEAM Ada Compiler VAX/VMS x MC&8020/05-9

Version 1.81
The host and targei computers were linked via a V24 conrnection.

The original distribution tape for ACVC 1.10 was read on the VAX 8350, and
customized to remove withdrawn 1tests and tests requiring unsupported
loating-point precision and to customize tests that make wuse of
implementation-specific values. Tests reguiring modifications were
modified accordingly as detailed in section 3.6.

The full set of tests was compiled and linked on the VAX 8350, then all
executable images were transferred to the KWS EB68020 via the V24
connection and run. Results were printed from the host computer.

The compiler was tested using command scripts provided by SYSTEAM K& and
reviewed by the validation team. The compiler was tested using all default
ootion settings as expleined in appendix F. nrl chapter B tests were
compiled wWwith the LIST cption on. The completer was not called explicitly
during this validation, out is called, when needed, by the link command.

Tests were compiled, linked, and executed (as appropriate) using a single
host and target computer. Test output, compilation listings, and job logs

wers captured on mzgnetic itape and archived at the AVF. The 1listings
examined on-site by the validation %team were also archived.

+ =3
gst Sits2

*ins was conducteg 2t IABS mbh, Cttobrunn and wgs campleted on 29 March

3-7

APPENDIX A
DECLARATION OF CONFORMANCE

SYSTEAM KG has submitted the following Declaration
of Conformance concerning the SYSTEAM Ada Compiler
VAX/VMS x MC68020/05-9 Version 1.81.

A-1

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

Compiler Implementor: SYSTEAM KG
Ada Validation Facility: IABG m. b. H., Abt. SIZT
Ada Compiler Validation Capability (ACVC) Version 1.10

BASE CONFIGURATION

Base Compiler Name: SYSTEAM Ada Compiler
VAX/VMS x MC68020/0S-9 Version 1.81
Host Architecture: VAX 8350
Host 0OS and Version: VMS 4.7
Target Architecture: KWS EB68020
Target O0S and Version: 0S-9/68020 Version 2.1

Implementor's Declaration

I, the undersigned, representing SYSTEAM KG Karlsruhe, have
implemented no deliberate extensions to the Ada Language
Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. I declare that SYSTEAM KG Karlsruhe is the owner
of record of the Ada language compiler(s) listed above and, as
such, 1is responsible for maintaining said compiler(s) in
conformance to ANIS/MIL-StD-1815A. All certificates and
registrations for Ada language compiler(s) 1listed in this
declaration shall be made only in the owner's corporate name.

el
! 7.// ;Z)
s / Y ¥ Date: April 11, 1989

SYSTEAM KG 'Dr. Winterstein
Dr. Geprg Winterstein, Presidenrt

Owner's Declaration

I, the undersigned, representing SYSTEAM KG Karlsruhe, take
full responsibility for implementation and maintenance of the
Ada compiler(s) 1listed above, and agree to the public
disclosure of the final Validation Summary Report. I declare
that all of the Ada 1language compilers 1listed, and their
host/target performance, are in compliance with the Ada
Language Standard ANSI/MIL-STD-1815A.
. /

A e i /

L’/'L/LJ\«"/
[/ — Date: April 11, 1989
SYSTEAM KG Kaylsruhe

i

Dr./Tinterstein

APPENDIX B
APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-depencent conventions
s mentioned in cnhapter 13 of the Ada Standard, and to certain allowed

restrictions on representation clauses. The implementstion-dependent
characteristics of the SYSTEAM Ada Compiler VAX/VNS x MC62020/05-9 Version
1.81 , as described in tnis Appendix, are provided by SYSTEAM KG. VUnless

specifically noted otherwise, references in this appendix are to compiler
gocumentation and not to this report. Impiementation-specific portions of
ihe pzckage STANDARD, which are not 3 part of Acpendix f, are:

package STANDARD is

type SHORT_INTEGER 15 range - 32_768 .. 3
type INTEGER is range - 2_147_4B83_648 .,

_167;
_187_482 647,

~N R

type SHORT_FLQAT is digits 6 range
- 168B0.FFFF_FERE3D2 .. l680.FEFF _rBEEZDT,
tyoe FLOAT is digits 15 rznge
~ 16H0.FFF7_FFFF _Frir _ECHE2SH 1680 . FFFF _FEFF_FFFF_EHEDSG,
tyee LONG_FLOAT is digits 18 range
- 16HC.FFFF_FFEF_Frer_rrrBHE4(T6 168FFFF FFrif _FFEF _FPTBRESDOS;

type DURATICN is deita 281.08E-14 range
= 131.072.0 .. 131_071.999_938_964_843_75;

end STANDARD;

B-1

Appendix F ' Chapter 7

7 Appendix F

This chapter, together with the Chapters 8 and 9, is the Appendix F required in {Ada),
in which all implementation-dependent characteristics of an Ada implementation are
described.

7.1 Implementation-Dependent Pragmas

The form, allowed places, and effect of every implementation-dependent pragma is
stated in this section.

7.1.1 Predefined Language Pragmas

The form and allowed places of the following pragmas are defined by the language;
their effect is (at least partly) implementation-dependent and stated here. All the

other pragmas listed in Appendix B of [Ada] are implemented and have the effect
described there.

CONTROLLED
has no effect.

INLINE
Inline expansion of subprograms is supported with the following restrictions:
the subprogram must not contain declarations of other subprograms, tasks, generic
units or body stubs. If the subprogram is called recursively only the outer call of
this subprogram will be expanded.

Chapter 7 ' Appendix F

INTERFACE ~
is supported for assembler and for the call of OS-9 kernel functions from an Ada
program. For each Ada subprogram for which

PRAGMA interface (0S9, <ada_name>)

is specified, the body of the subprogram <ada.name> must be implemented by
the OS-9 kernel.

The pragma ensures the OS-9 standard, in particular:

- Saving of registers
- Calling mechanism.

The name of the routine which implements the subprogram <ada_name> should be
specified using the pragma external_name (see § 7.1.2), otherwise the Compiler wil
generate an internal name that leads to an unsolved reference during linking.

The functions of the OS-9 kernel use registers for the transport of parameters. There-
fore, the package system provides some types to specify parameters.

SUBTYPE os9_wordlong IS integer RANGE - 2 ** 31 .. 2 ** 31 - 1;
-- signed 4{-bytes

TYPE o89_pearameter

IS RECORD
a0, 41, d2, d3, d4, d5 : os9_wordlong;
a0, al, a2 : address;
error :\boolean:

ERKD RECORD:

The components dO .. d5 and a0 .. a3 indicate the use of the corresponding registers of
the target machine. Before any call of an OS-9 function the values of those components
are copied into the corresponding registers. After the call the values of the registers are
copied into the corresponding components of the parameter block. To indicate whether
the result of a call is valid the OS-9 functions will set the condition code register and
the pragma will set a corresponding boolean value into the component error.

The SYSTEAM Ada Compiler does not check the correct use of the registers. If it is
violated the call will be erroneous.

The following example will show the intended usage of the pragma interface (os9).
The given procedure serves to open a file with a constant name. It is called in the
body of the main program.

_:

Appendix F ‘ Chapter 7

WITH system;

PROCEDURE os9_call IS
read_mode : CONSTANT system.os9_wordlong := 2 *=x 0;
file_name : CONSTANT string := "/HO/TEST/F1" & ascii.nul;
PRAGMA resident (file_name);
-- The file "F1" must exist in the directory "/HO/TEST".
paran_os9 : system.os9_parameter;

path : system.os9_wordlong;

A Y

use_error : EXCEPTION;

PROCEDURE osS_i_open (pb : IN OUT system.os9_parameter):
PRAGMA interface (0s9, os9_i_open);
PRAGMA external_name ("I$0pen", o0s9_i_open);

BEGIN
param_o089.40 := read_mode;
param_o089.2a0 := file_name’'address;
os9_i_open (param_os9);
IF param._osS.error THEN
RAISE use_error;
END IF:
path := param_0s9.40;
END os9_call;

If the subprogram is implemented by an assembly language program the

PRAGMA interface (assembler, <ada_name>)

can be used. In this case, the actual parameters for the subprogram are written into
a parameter block before the call; within the subprogram body, the address of this
parameter block is stored at (4,A7). It is recommended to store all parameters in
a record object; then the subprogram has only one parameter (of the corresponding
record type) and the parameter block contains only the address of the record object.

~,

*—

Chapter 7 ‘ Appendix F

MEMORY_SIZE
has no effect.

OPTIMIZE
has no effect.

PACK
see §8.1.

PRIORITY

There are two implementation-defined aspects of this pragma: First, the range
of the subtype priority, and second, the effect on scheduling (§6) of not giving
this pragma for a task or main program. The range of subtype priority is 0 ..
15, as declared in the predefined library package system (see §7.3); and the efiect
on scheduling of leaving the priority of a task or main program undefined by not
giving pragma priority for it is the same as if the pragma priority 0 had been
given (i.e. the task has the lowest priority). Moreover, in this implementation
the nackage system must be named by a with clause of 2 compilation unit if the
predefined pragma priority is used within that unit.

SEHARED
is supported.

STORAGE_UNIT
has no effect.

SUPPRESS

has no effect, but see §7.1.2 for the implementation-defined pragma suppress.
all.

SYSTEM_NAME
has no effect.

e

Appendix F ' Chapter 7

7.1.2 Implementation-Defined Pragmas

SQUEEZE
see §8.1.

SUPPRESS_ALL
causes all the run_time checks described in [Ada,§11.7] to be suppressed; this
pragma is only allowed at the start of a compilation before the first compxlatxon
unit; it applies to the whole compilation.

EXTERNAL_NAME (<string>, <ada_name>)

<ada_name> specifies the name of a subprogram, <string> must be a string literal.
It defines the external name of the specified subprogram. The Compiler uses a
symbol with this name in the call instruction for the subprogram. The suprogram
declaration of <ada_name> must precede this pragma. If several subprograms with
the same name satisfy this requirement the pragma refers to that subprogram
which preceds immediately.

This pragma will be used in connection with the pragmas interface (0s9) or
interface (assembler) (see §7.1.1).

RESIDENT (<ada_name>)
this pragma prevents assigments of a value to the object <ada_name> from being
eliminated by the optimizer (see §3.2) of the SYSTEAM Ada Compiler. The
following code sequence demonstrates the intended usage of the pragma:

x : integer:
a : SYSTEM.address;
PROCEDURE do_something (a : SYSTEM.address):

BEGIN
x = 5;
a := x"ADDRESS;
do_something (a); -- a.ALL will be read in the body
-- of do_something
x := 6;

Ry

Chapter 7 ' Appendix F

If this code sejuence is compiled by the SYSTEAM Ada Compiler with the option

OPTIMIZER=>0ON

the statement x := B; will be eliminated because from the point of view of the
optimizer the value of x is not used before the next assignment to x. Therefore

PRAGMA resident (x):;

should be inserted after the declaration of x.

This pragma can be applied to all those kinds of objects for which the address
clause is supported (cf. §8.5).

It will often be used in connection with the pragma interface (0s9, ...) (see
§7.1.1).

7.2 Implementation-Dependent Attributes

The name, type and implementation-dependent aspects of every implementation-de-
pendent attribute is stated in this chapter.

7.2.1 Language-Defined Attributes

The name and type of all the language-defined attributes are as given in [Ada). We
note here only the implementation-dependent aspects.

ADDRESS

The value delivered by this attribute applied to an object is the address of the
storage unit where this object starts.

For any other entity this.attribute is not supported and will return the value
systen.address_zero.

MACHINE_OVERFLOWS

Yields true for each fixed point type or subtype and false for each floating point
type or subtype.

.

appendix F ' Chapter 7

MACHINE_ROUNDS
Yields true for each real type or subtype.

STORAGE_SIZE
The value delivered by this attribute applied to an access type is as follows:
If a length specification (STORAGE_SIZE, see §8.2) has been given for that type
(static collection), the attribute delivers that specified value.
In case of a dynamic collection, i.e. no length specification by STORAGE_SIZE has
been given for the access type, the attribute delivers the number of storage units
currently allocated for the collection. Note that dynamic collections are extended
if needed.
If the collection manager (cf. §5.3.1) is used for a dynamic collection the attribute
delivers the number of storage units currently allocated for the collection. Note
that in this case the number of storage units currently allocated may be decreased
by release operations.

The value delivered by this attribute applied to a task type or task object is as
follows:

If a length specification (STORAGE_SIZE, see §8.2) has been given for the task type,
the attribute delivers that specified value; otherwise, the default value is returned.

7.2.2 Implementation-Defined Attributes

There are no implementation-defined attributes.

7.3 Specification of the Package SYSTEM

The package systenm required in [Ada,§13.7] is reprinted here with all implementation-
dependent characteristics and extensions filled in.

_

Chapter 7 Appendix F
PACKAGE system IS ~
TYPE designated_by_address IS LIMITED PRIVATE:
TYPE address IS ACCESS designated_by._address:
FOR address’'size USE 32;
FOR address’storage_size USE O;
address_zero : CONSTANT address := NULL;
TYPE name IS (motorola_€8020_089);
system._name : CONSTANT name := motorola_68020_os9;
storage_unit : CONSTANT := 8;
memory-size : CONSTANT := 2 == 31;
min_int : CONSTANT := - 2 *» 31;
max-int : CONSTANT := 2 =+ 31 - 1;
max_digits : CONSTANT := 18;
max_mantissa : CONSTANT := 31;
fine_delta : CONSTANT := 2.0 ** (- 31);
tick : CONSTAKT := 0.01;
SUBTYPE priority IS integer RANGE O .. 15;
FUNCTION "+" (left : address; right : integer) RETURN address;
FUNCTION "+ (left : integer; right : address) RETURK address;
FUNCTION *"-" (left : address; right : integer) RETURN address;
FUNCTION "-" (left : address; right : address) RETURN integer;

SUBTYPE external_address IS string;

-- External addresses use hexadecimal notation with characters

== *0'..'9°, *a’..'f’ and *A’'..'F'. For instance:
-- "TFFFFFFF"

-- "80000000"

-- "8" represents the same address as "00000008"

Appendix F

Chapter 7

FUNCTION convert_address (addr

: external_address) RETURN address;

-~ CONSTRAINT_ERROR is raised if the external address ADDR

-- is the empty string, contalns characters other than

-- *0°..'9", 'a’..’f", 'A’..°F" or if the resulting address

~= value cannot be represented with 32 bits.

FUNCTION convert_address (addr : address) RETURN external_address:

-- The resulting external address consists of exactly 8

-= characters "0'..°'9°, °‘A°'.

non_ada_error : EXCEPTION

CFC.

N\
-- non_ada_error is raised, if some esvent occurs which does not

-- correspond to any situation covered by Ada, e.g.:

-- illegal instruction encountered
-- error during address translation

-- illegal address

TYPE exception_id IS NEW intege
no_except.on_id : CONSTANT
-- Coding of the predefined exc
constraint_error_id : CONSTANT
numeric_error_id : CONSTANT
program_error_id : CONSTANT
storage_error_id : CONSTAKT
tasking_error_id : CONSTANT
non_ada_error_id : CONSTANT

statua-error-id : CONSTANT

mode_error._id : CONSTANT
name._error_id : CONSTANT
use_error.id : CONSTANT
device_error_id : CONSTANT

end_error.id + CONSTANT
data_error_id : CONSTANT
layout_error_id : CONSTANT

-~

~

time_error._id : CONSTANT

r

exception_id :

eptions:

exception_id :
exception_id :
exception_id :
exception_id :

exception_id :=

exception_id :

exception_id :
exception_id :
exception_id :
exception_id :
exception_id :

exception_id

exception_id :
exception_id :

exception.id :

Chapter 7 ' Appendix F

SUBTYPE os9._wordlong IS integer RANGE - 2 #* 31 .. 2 =*x 31 - 1;

TYPE os9_parameter IS

RECORD
a0, di, d2, &3, d4, a6 : os9_wordlong:
a0, al, a2 : uddress;
error : boolean;

END RECORD;

FOR os9_parameter USE
RECORD AT MOD 4:

a0 AT O RANGE O .. 31;
di AT 4 RAKGE O .. 31;
a2 AT 8 RANGE O .. 31;
43 AT 12 RANGE O .. 3%1:
d4 AT 16 RANGE O .. 31;
dbé AT 20 RANGE O .. 31;
a0 AT 24 RANGE O .. 31;
a2l AT 28 RANGE O .. 31;
a2 AT 32 RANGE O .. 31:
error AT 36 RANGE O .. 7;

END RECORD:
FOR os9_parameter'size USE 37 * storage.unit;
no_error.code : CORSTANT := O;
TYPE exception_information IS

RECORD

excp_id : exception_id;

-- Identification of the exception. The codings of
-- the predefined exceptions are given above.

code_addr : address;

Code address where the exception occured. Depending
on the kind of the exception it mzy be the address of
the instruction which caused the exception, or it

-- may be the address of the instruction which would

-- have been executed if the exception had not occured.

error_code : integer;

END RECORD;

Appendix F ' Chapter 7

PROCEDURE get._.exception_information
(excp_-info : OUT exception_information):

-- The subprogram get_exception_information must only be called
from within an exception handler BEFORE ANY OTHER EXCEPTION
IS RAISED. It then returns the information record about the
actually handled exception.

Otherwise, its result is undefined.

TYPE exit_code IS NEW integer:

error : CONSTANT exit_code := 10;
success : CONSTANT exit_code := 0;

PROCEDURE set_exit_code (val : exit_code);
-- Specifies the exit code which is returned to the
-- operating system if the Ada program terminates normally.
~- The default exit code is ‘success’. If the program is
-- abandoned because of an exception, the exit code is
-- ‘error’.
PRIVATE

-~ private declarations

END systern;

7.4 Restrictions on Representation Clauses

See Chapter 8 of this manual.

7.5 Conventions for Implementation-Generated Names

There are implementation generated components but these have no names. (cf. §8.4
of this manual).

-

~

ﬂ

Chapter 7 ' Appendix F

7.6 Expressions in Address Clauses ~

See §8.5 of this manual.

7.7 Restrictions on Unchecked Conversions

The implementation supports unchecked type conversions for all kind of source and
target types with the restriction that the target type must not be an unconstrained
array type. The result value of the unchecked conversion is unpredictable, if

target_type 'SIZE > source_type’'SIZE

7.8 Characteristics of the Input-Output Packages

The implementation-dependent characteristics of the input-output packages as defined
in Chapter 14 of [Ada] are reported in Chapter 9 of this manual.

7.9 Requirements for a Main Program

A main program must be a parameterless library procedure. This procedure may be
a generic instantiation; the generic procedure need not be a library unit.

7.10 Unchecked Storage Deallocation

The generic procedure unchecked.deallocation is provided, but the only effect of
calling an instantiation of this procedure with an object X as actual parameter is

X := NULL;

i.e. no storage is reclaimed.

However, the implementation does provide an implementation-defined packege col~
lection_manager to support unchecked storage deallocation (cf. §5.3.1).

Appendix F ‘ Chapter 7

7.11 Machine Code Insertions

A package machine_code is not provided and machine code insertions are not sup-
ported.

7.12 Numeric Error

The predefined exception numeric_error is never raised implicitly by any predefined
operation; instead the predefined exception constraint_error is raised.

Chapter 8 ' Appendix F: Representation Clauses

8 Appendix F: Representation Clauses °

In this chapter we follow the section numbering of Chapter 13 of |Ada) and provide
notes for the use of the features described in each section.

8.1 Pragmas

PACK

As stipulated in {Ada,§13.1], this pragma may be given for a record or array type.
It causes the Compiler to select a representation for this type such that gaps
between the storage areas allocated to comsecutive components are minimized.
For components whose type is an array or record type the pragma pack has no
affect on the mapping of the component type. For all other component types the
Compiler will try to choose a more compact representation for the component type.
All components of a packed data structure will start at storage unit boundaries
and the size of the components will be a multiple of systen.storage _unit. Thus,

the pragma pack does not effect packing down to the bit level (for this see pragma
squeeze).

SQUEEZE

This is 2n implementation-defined pragma which takes the same argument as the
predefined language pragma pack and is allowed at the same positions. It causes
the Compiler to select a representation for the argument type that needs minimal
storage space (packing down to the bit level). For components whose type is an
array or record type the pragma squeeze has no effect on the mapping of the
component type. For all other component types the Compiler will try to choose
a more compact representation for the component type. The components of a
squeezed data structure will not in general start at storage unit boundaries.

Appendix F: Representation Clauses Chapter 8

8.2 Length Clauses

SIZE
for all integer, fixed point and enumeration types the value must be <= 32;
for short_float types the value must be = 32 (this is the amount of storage
which is associated with these types anyway);
for £loat types the value must be = 64 (this is the amount of storage which is
associated with these types anyway).
for long_float types the value must be = 96 (this is the amount of storage which
is associated with these types anyway).
for access types the value must be = 32 (this is the amount of storage which is
associated with these types anyway).
If any of the above restrictions are violated, the Compiler responds with a RE-
STRICTION error message in the Compiler listing.

STORAGE_SIZE
Collection size: If no length clause is given, the storage space needed to contain
objects designated by values of the access type and by values of other types derived
from it is extended dynamically at runtime as needed. If, on the other hand, a
length clause is given, the number of storage units stipulated in the length clause
is reserved, and no dynamic extension at runtime occurs.

Storage for tasks: The memory space reserved for a task is 10K bytes if no length
clause is given (cf. Chapter 6). If the task is to be allotted either more or less
space, a length clause must be given for its task type, and then all tasks of this
type will be allotted the amount of space stipulated in the length clause (the
activation of a small task requires about 1.4K bytes). Whether a length clause is
given or not, the space allotted is not extended dynamically at runtime.

SMALL

there is no implementation-dependent restriction. Any specification for SMALL
that is allowed by the LRM can be given. In particular those values for SMALL are
also supported which are not a power of two.

8.3 Enumeration Representation Clauses

The integer codes specified for the enumeration type have to lie inside the range of the

largest integer type which is supported; this is the type integer defined in package
standard. .

\-

Chapter 8 - ' Appendix F: Representation Clauses

8.4 Record Representation Clauses

Record representation clauses are supported. The value of the expression given in an
alignment clause must be 0, 1, 2 or 4. If this restriction is violated, the Compiler
responds with a RESTRICTION error message in the Compiler listing. If the value is
0 the objects of the corresponding record type will not be aligned, if it is 1, 2 or 4 the
starting address of an object will be a multiple of the specified alignment.

The number of bits specified by the range of a component clause must not be greater
than the amount of storage occupied by this component. (Gaps between components
can be forced by leaving some bits unused but not by specifying a bigger range than
needed.) Violation of this restriction will produce a RESTRICTION error message.

There are implementation-dependent components of record types generated in the
following cases :

o If the record type includes variant parts and if it has either more than one dis-
criminant or else the only discriminant may hold more than 256 different values,
the generated component holds the size of the record object.

e If the record type includes array or record components whose sizes depend on dis-
criminants, the generated components hold the offsets of these record components
(relative to the corresponding generated component) in the record object.

But there are no implementation-generated names (cf. [Ada,§13.4(8)]) denoting these
components. So the mapping of these components cannot be influenced by a represen-
tation clause.

8.5 Address Clauses

Address clauses are supported for objects declared by an object declaration. If an ad-
dress clause is given for a task entry, subprogram, package or a task unit, the Compiler
responds with a RESTRICTION error message in the Compiler listing.

If an address clause is given for an object, the storage occupied by the object starts at
the given address.

8.6 Change of Representation

The implementation places no additional restrictions on changes of representation.

G

Appendix F: Input-Output Chapter 9

9 Appendix F: Input-Output

In this chapter we follow the section numbering of Chapter 14 of [Ada] and provide
notes for the use of the features described in each section.

9.1 External Files and File Objects

The total number of open text files (including the two standard files), sequential files
and direct files must not exceed 10 for each class. Any attempt to exceed this limit
raises the exception use_error.

File sharing is allowed for reading and writing without any restriction.

The following restrictions apply to the generic actual parameter for element_type:

e input/output of access types is not defined.

« input/output of unconstrained array types is only possible with a variable record
format.

» input/output is not possible for an object whose (sub)type has a size which is not
a multiple of system.storage_unit. Such objects can only exist for types for
which a representation clause or the pragma squeeze is given. Use_error will be
raised by any attempt to read or write such an object or to open or create a file
for such a (sub)type.

9.2 Sequential and Direct Files

Sequential and direct files are represented by OS-9 random block files with fixed-length
or variable-length records. Each element of the file is stored in one record.

9.2.1 File Management

Since there is a lot to say about this section, we shall introduce subsection numbers
which do not exist in [Ada].

-

_‘

Chapter9 =~ Appendix F: Input-Output

9.2.1.1 The NAME and FORM Parameters ~

The name parameter string must be an OS-9 file name. The function NAME will return
2 file name string which is the file name of the file opened or created.

The syntax of the form parameter string is defined by:

form.parameter ::= [form specification { , form_specification }]
form_specification ::= keyword [=> value]
keyword ::= identifier

value ::= jdentifier | string_literal | numeric_literal

For identifier, numeric_literal, string_literal see |Ada,Apper.dix E]. Only an integer
literal is allowed as numeric_literal (see [Ada,§2.4]).

In the following, the form specifications which are allowed for all files are described.

ALLOCATION => numeric_literal

This value specifies the number of bytes which are allocated initially; it is only used in

a create operation and ignored in an open operation. The default vzlue for the initial
file size is 0.

2ECORD.SIZE => numeric._literal

This value specifies the record size in bytes. This form specification is only allowed for
files with fixed record format. If the value is specified for an existing file, it must agree
with the value of the external file.

By default, element_type 'SIZE / system.storage_unit will be chosen as record
size, if the evaluation of this expression does not raise an exception. In this case, the
attempt to write or read a record will raise use_error.

If a fixed record format is used, all objects written to a file which are shorter than
the record size are filled up with zeros (ASCII.NUL). An attempt to write an element
which is larger than the specified record size will result in the exception use_error
being raised. This can only occur if the record size is specified explicitly.

———————

Appendix F: Input-Output Chapter 9

9.2.1.2 Sequential Files
A sequential file is represented by a random block file with either fixed-length or
variable-length records (this may be specified by the form parameter).

If a fixed record format is used, all objects written to a file which are shorter than the
maximum record size are filled up with zeros (ASCILNUL).

RECORD_FORMAT => VARIABLE | FIXED

This form specification is used to specify the record format. If the format is specified
for an existing file, it must agree with the format of the external file.

~

Variable record size is used as default. It means that each record is written with
its actual length. A read operation transfers exactly one file element with its actual
length.

Fixed record size means that every record is written with the size specified as record
size.

9.2.1.8 Direct Files

The implementation dependent type count defined in the package specification of
direct_io has an upper bound of :

COUNT’LAST = 2_.147_483_647 (= INTEGER'LAST)

Direct files are represented by OS-9 random block files with fixed-leng*h records.

Chapter 9 - ' Appendix F: Input-Output

8.3 Text Input-Output b

Text files are represented as random block files or sequential character files depending
on whether the file name denotes a disk ﬁ_le or a terminal device. Each line consists of
a sequence of characters terminated by a line terminator, i.e. an ASCII.CR character.

~ A page terminator is represented as a line consisting of a single ASCIL.FF. A page
terminator is always preceded by a line terminator.

A file terminator is not represented explicitly in the external file; the end of the file is
taken as a file terminator. A page terminator is assumed to precede the end of the file
if there is not an explicit one as the last record of the file.

9.8.1 File Management

In the following, the form specifications which are only allowed for text files or have 2
special meaning for text files are described.

CHARACTER_IO

The predefined package text_io was designed for sequential text files; moreover, this
implementation always uses sequential files with a record structure, even for terminal
devices. It therefore offers no language-defined facilities for modifying data previously
written to the terminal (e.g. changing characters in a text which is already on the ter-
minal screen) or for outputting characters to the terminal without following them by a
line terminator. It also has no language-defined provision for input of single characters
from the termiral (2s opposed to lines, which must end with a line terminator, so that
in order to input one character the user must type in that character and then a line

terminator) or for suppressing the echo on the terminal of characters typed in at the
keyboard.

For these reasons, in addition to the input/output facilities witk record structured
external files, another form of input/output is provided for text files: It is possible
to transfer single characters from/to a terminal device. This form of input/output is
specified by the keyword CHARACTER.IO in the form string. If CHARACTER_IO

is specified, no other form specification is allowed and the file name must denote a
terminal device.

For an infile, the external file (associated with a terminal) is considered to contain

a single line. Arbitrary characters (including all control characters) may be read; a
character read is not echoed to the terminal.

Appendix F: Input-Output Chapter 9

For an outfile, arbitrary characters (including all control characters and escape se-
quences) may be written on the external file (terminal). A line terminator is rep-
resented as ASCII.CR followed by ASCII.LF, a page terminator is represented as
ASCILFF and a file terminator is not represented on the external file.

9.3.2 Default Input and Output Files

The Ada standard input and output files are associated with the corresponding stan-
dard files in OS-9.

9.8.8 Implementation-Defined Types

The implementation-dependent types count and field defined in the package specifi-
cation of text_io have the following upper bounds :

COUNT'LAST

2_147_483_.647 (= INTEGER'LAST)

FIELD'LAST 512

Chapter 9 .) Appendix F: Input-Output

9.4 Exceptions in Input-Output o

For each of name_error, use_error, device_error and data_error we list the condi-
tions under which that exception can be raised. The conditions under which the other

exceptions declared in the package io_exceptions can be raised are as described in
[Ada,§14.4).

NAME_ERROR

o in an open operation, if the specified file does not exist;
e in a create operation, if the specified file already exists;

o if the name parameter in a call of the create or open procedure is not a legal OS-9
file specification string; for example, if it contains illegal characters, is too long

or is syntactically incorrect; and also if it contains wild cards, even if that would
specify a unique file.

USE_ERROR

o if an attempt is made to increase the total number of open files (including the two
standard files) so that there are more than 10 in one of the three file classes text,
sequential and direct;

e whenever an error occurred during an operation of the underlying OS-9 system.
This may happen if an internal error was detected, an operation is not possible
for reasons depending on the file or device characteristics, a size restricticn is
violated, a capacity limit is exceeded or for similar reasons; in general it is only
guaranteed that a file which is created by an Ada program may be reopened and
read successfully by another program if the file types and the form strings are the
same; . ’

e if the function name is applied to a temporary file;

» if an attempt is made to write or read to/from a file with fixed record format a

record which is larger than the record size determined when the file was opened
(cf. §9.2.1.1);

DEVICE_ERROR

is never raised. Instead of this exception the exception use_error is raised when-
ever an error occurred during an operation of the underlying OS-9 system.

DATA_ERROR

the conditions under which data_error is raised by text_io are laid down in
[Ada]. In the packages sequential._io and direct_io, the exception data_error

is not raised in all cases by the procedure read if the element read is not a legal
value of the element type.

"—L —

Appendix F: Input-Output Chapter 9

9.5 Low Level Input-Output

We give here the specification of the package low_level_io:

PACKAGE low_level_io IS
TYPE device_type IS (null_device):

TYPE data_type IS
RECORD
NULL:
END RECORD;

PROCEDURE send_control (device : device_type:
data : IN OUT data_type):

PROCEDURE receive._control (device : device_type;
data : IN OUT data_type);

END low.level_io;

Note that the enumeration type device_type has only one enumeration value, null_
device; thus the procedures send_con%trol and receive_control can be called, but
send_control will have no effect on any physical device and the value of the actual
parameter data after a call of receive_control will have no physical significance.

Chapter 10 ‘ ' References

10 References

[Ada] The Programming Language Ada Reference Manual,
American National Standards Institute, Inc.
ANSI/MIL-STD-1815A-1983,

Springer Lecture Notes in Computer Science 155, 1983

[0S-9] 05-9/68000 Document Set,
Microware Systems Corporation, Des Moines, lowa
[ST16/85] J. Schauer,

SYSTEAM Ada System, Cross Reference Generator User Man-
ual for VAX/VMS x MC68020/0S-9, SYSTEAM Document No.
16/85/VMO1.81, 1988
[ST19/84] W. Herzog, K. Wachsmuth,
SYSTEAM Ada System, Installation Manual for VAX/VMS x
MC68020/0S-9, SYSTEAM Document No. 19/84/VMO1.81, 1988
[ST21/84] W.-D. Lindenmeyer,
SYSTEAM Ada System, Source Generator User
Manual for VAX/VMS x MC68020/0S-9, SYSTEAM Document No.
21/84/VMO1.81, 1988
[ST27/84] W.-D. Lindenmeyer,
SYSTEAM Ada System, Pretty Printer User Manual for VAX/VMS
- x MC68020/0S-9, SYSTEAM Document No. 27/84/VMO1.81, 1988
[ST30/84] W.-D. Lindenmeyer,
SYSTEAM Ada System, Syntaz Checker User Manual for VAX/VMS
x MC68020/0S-9, SYSTEAM Document No. 30/84/VMO1.81, 1988
[ST33/84] W.-D. Lindenmeyer,,
SYSTEAM Ada System, Nonlnit User Manual for VAX/VMS »x
MC68020/0S-9, SYSTEAM Document No. 33/84/VMO1.81, 1988
[ST4/84] W.-D. Lindenmeyer, D. Schmidt, M. Dausmann,
SYSTEAM Ada System, Library User System User Manual
for VAX/VMS x MC68020/0S-9, SYSTEAM Document No.
4/84/VMO1.81, 1988
[ST9/85) W. Herzog,
SYSTEAM Ada System, Name-Ezpander User Manual for VAX/VMS
x MC68020/0S-9, SYSTEAM Document No. 9/85/VMO1.81, 1988
[VAX/VMS| VAX/VMS Document Set,
Digital Equipment Corporation, Maynard, Massachusetts

APPENDIX €
TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such valtues is identified by the extension .TST in its file
name. Actual values to be substituted are represented oy names that begin
with a dollar sign. A value must be substituted for eacn of +these names
befora the test 1is run. The values used for this validation are given
. below. The use of the operator 'x' signitizs & multiplication of the
following character. The use of the '&' cnaracter signifies concatenation
o7 the precesding snd fatlowing strings. The values within single or
double quotation marks are to highlight characters or siring values:

_-memm S eSS Emme -——

An integer 1literal whose value
is the number of biis sufficient
to hold any value o+ an sccess

type.
33I16_101 253 0 23 5 Y
An identifier the size of ths
maximum input line iength which
is jdentical to $BIG_ID2 excep:
tor the last character.
$2I1G6_I02 234 « T4 3 'Y
An identifier the sizs of the
maximum input line length which
is identical to $BIG_ID! -excapt
for the last character.
$BIG_ID3 27 0« AT R '3 % 127
An identifier the size of the
maximum input line length which
is identical to $BIG_ID4 vexcept
for a character near the middle.
-1

—mem P S - R am e -

$3I16_1D4

An identifier the size of the
maximum input line tength which
is identical to $8IG_ID2 except
for a charactier near the migdle.

$RIG_INT_LIT
An integer literal of value 298

witn enough leacing zeroeg so

that it is the size of +the

maximum line lengin.

$BIG_REAL_LIT
A universal real 1literal of
value €90.0 with enough leading
zeroes to be the size of the
maximum iine length.

$21G_STRINGI
& siring literai wnich whe:
gazenassd with IG_STRINGZ
yielas the image of BJIG_IDT,
$31G_STRING?
A string literal whith when
catenatec te the ang ot
BIG_STRINGLI wvieids the image of
326_i071,
$3LANKS
A sa2zuence 0 rianks TWent
cnagracter 1225 than +ne gze
07 e mMeximum .(ine :a2ngih
$COUNT_LASY
A universal intecen
Tizars! whose value i
TZXT_10.CJUNT'LAST
SPEFAULT _MEN_cI7E
An integer literal whose value
is SYSTEM.MENMQRY _S1:It.
S$DEFAULT_STOR_UNIT
An integer literal whose value
is SYSTEM STORAGE_UNIT.

€-2

-
)
~4q

1ty

117

Value

127 « TAT & T4 &
252+ 107 & 298
230 + '0* § “§90.0"
LI B .77 * VA! 3(
TR0 e A g
2127483647
2_147_483_648

8

&

YA’

vy

_\»

-

(227 PORAMLTCRE

Name and Meaping Yalue

$DEFAULT_SYS_NAME MOTOROLA_68020_0Q59
The value of the- constant
SYSTEM.SYSTEM_NANE.

$DELTA_DOC 2H1.08E-31
A real literal whose value s
SYSTEM.FINE_DELTA.

SFIELD_LAST 5i2
A universal integer
lTiteral whose value is
TEXT_I0.FIELD LAST.

SFIXZD_NAME NO_SUCH_FIXED_TYPE

ne name of 3 i

ixed-point type 0

URATION.

e
-3 0.

c+ o

o
m
AN W

-+ —
r
[+ T4

i
f
D

$FLOAT_NAME MO_SUCH_TYPE _AVAILABLE
Tw name of a precefined
tsating-point type other than
|

rrALT

e
g
C Sr‘.O‘\. -’....'-"Hq or
NG _

QDQI

o

La

$GREATER_THAN_DURATION 0.0
A universal real iiterzl
lies betwesn DURATION'ZASE®
gnd DURATION'LASY or anv
in the range of DURATION,

R

c+
—e U ¥
[SEN TN V]

L4
Q -
(4]

$CREATZR_THAN_DURATION_3AS
A unxve sal regl &}ter
greater than DURATIO

ar literal whosa Ve,
yocer bound o+ ‘na o
he subtype SYSTEM.PRICGR!

$TLLEGAL _SYTEONAL _FILE NAME! abceddes.dat
An external fiie neme whica
¢ontains invalid characters,

$ILLEGAL _EXTEANAL_FILE_NAMEZ abcrdef dat
An external file name which
is too long.

$INTZGER_FIRST -2147482648

A universal int
wnose value is IN

€-3

TE5T PARAMEIERS

Name and Mgining Vglus
$INTEGER_LAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.
$INTEGER_LAST_PLUS_! 2147483648
A universal integer literal
whose value is INTESRER'LAST + 1.
$LESS_THAN_DURATION -0.0

A wuniversal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LES

«r

_THAN_DURATION_BASE_FIRST -200_000.0
A universal real literal that is
less than DURATION'BASE’FIRST.

$LOV_PRIORITY 0
An integer literal whose wvalue
is the lower bound of the range
tor ihe subiype SYSTCM.PRIORITY.

$MANTZSSA_DOC K
An int2ger liieral whose wvalue
is SYSTTM.MAX _MANTIGSA.
SMAX_DIGITS i3
Maximum digits supporiesd for
ficating-poinT types.
SMAX _IN_LZN 283
Maximum inpyt iine rengh
permitted 5v the implameniazion.
SMAX_INT 147483047
A URiversal integer literai
whose vaiue is EYSTEM.MAX_INT
$MAX_INT_PLUS | 2_147 _433_648
A universal integer iteral
whose viiue is SYSTEM.MAX_INT+1,
SMAX_LEN_INT_BASED_LITERAL “2:" & 250 « Q7 & "11:”

A universal inizger bpased
literal whose wvalue s 28114
with enough leading zerges in
the mantissa to b2 MAX_IN_LEN
long.

C-4

Nape and Meaning

$MAX_LEN_REAL_BASED_LITERAL
A universal real based liters!
whose value is 1€:F.E: with
enough leading zeroces in the
mantissa to be MAX_IN_LEN long.

$MAX_STRING_LITEZRAL
A string literal of
MAX_IN_LEN, including tne
charzcters.

size
quote

-

$MIN_INT
A yniversal
whose value is

integer litersl
SYSTEM.NIN_INT,

SMIN_TASK_SIZE
An integer literal whose wvalue
is the number of bits required
to hold a task object which has
no entries, no declarations, and

“NULL:" as the only statement in
115 cody.

$NAM:
A name 0f & predefined aumeric
tvoe other than FLOAT, INTESER,

SHORT_FLOAT, SHORT_INTESER

\a

LONG_L0AT, or LONE_INTEGER.
SNAME _LIZT
A 1isT 0f enumerztion literazis
in the Tyce SYSTEM NAME,
SPOEr3Ted DY COMMES
$NES_BASED_INT
A bazes integer iitaral whose
highess orger noncaro b
talis in the sign Bit
205ivi0n of the orepresentation
for SYSTEM.MAX_INT.
$NCW_MEM_SIZE
An tnteger litersl whose valus
is a permittad argument for
pragma MEMORY_SIZE, otner than
$DEFAULT_MEM_SIZE, 14 there is
no pther value, then use

$DEFAULT_MEM_SIZE.

C-5

TEST PARAMETERS

Valug

"16:" & 248 * "' L "F.E:"

thy 0 N
& 283 ¢

’A! & Iy

~2147483648

32

—

NG_SUCH_TYPE_

m

x>
-4
—~
p ey
m

—_——— -

~.

'_483_048

£

1

ny

e

TEST PARAMEIERS

Name and Meaning Yalue

$NEW_STOR_UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE_UNIT, other than
$DEFAULT_STOR_UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE_UNIT,

$NEW_SYS_NAME MOTOROLA_68020_0S9
A value of the type SYSTEM.NAME,
other than $DEFAULT_SYS_NAME. I+
there 15 only one value of that
type, then use that vaiuve.

$TASK_SIZE 32
An integer litaral whose value
is the number of bits required
to hoid a task object which has
@ Single entry with one "IN OUT’
parameter,

$TICK 0.01

A resi literal whose wvalue s
SYSTEM.TICK.

C-6

APPENDIX D
WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform +to the
Ada Standard. The following 43 tests had been withdrawn at the time of
vilidation t{asting for tne reasons indicated. A reference of the form
Al-ddddd is to an Ada Commentary.

[» M

€2,

-ty

£28005C This test esxpects that the string "-- TOP QF PAGE. --63"
pt line 204 will apoear at the top of the listing page due to a
przgma PAGE in line 203: but itine 203 contains text that follows
the pragme, and it it this that must appear at the top of the

pz3e.

A39005G This <est unreasonsbly expects a component clause to pack
an array component inic 3 minimum size (line 30).

ES7102E This test contains an wuniisanded illegality: a select
stztement contains & nuil siziement at the place of & seiective
wait alternstive (line 313,

BCZG0%2 This test wrongly expscts thgt circular instantiations
wiii be get:zcied !n sever:i coempiiztlicn uniis even though none of
the ynits is itilegal with re- spest 1o the units it depends on; by
AI=-002%6, the iliegality ne=2g not be detectes untii execution is
gtiampied {line 953

CDZA62D This test wrongly reguires that an array objest’s size be
no grezter than 10 althougn its5 cubtype’'s sice was specified to be
&0 (line 137).

€

CD2A63A..D, CD2A6BA..D, CDZAT73A..D, CDZA76A..D (16 tests] These
tests wrongly attempt to check the size of objects of g derived
type (for which a 'SIZE length clause is given) by passing them to
3 derived sub- program (which implicitly converts them to the
parent tyre (Ada standard 3.4:14)). Aoeditionally, they wuse the
'SI7E length <¢lause &né attribute, whose interpretation s
considered problematic by the WGES ARG.

D-1

LaTTLAS S
wiiHutaw

<

-4

m
w
~4
w

(D2A81G, CD2AB3G, CD2A84AN 3 M, & CDSO110 [5 <tastisi These tests
assume that dependent tasks will terminate whiie the main pro-
gram executes 3 loop that simply tests for task termination; this
is not the case, and the main program may loop indefinitely (lines
74, 85, 86 & 96, B6 & 96, and 58, resp.).

CD2B15C & CD720SC These tests expect that a 'STORAGE_SIZE length
clause provides precise con- trol over the number of designated
objects in a collection; the Aca staneazrg 13.2:15 allows that such

contro!l must not be expected.

CD2D118 This test gives 3 SMALL reporesentation clause for &
derived fixed-point type (at line 30 that defines a set of model
numpers ihat are not necessarily represented in the parent type;
by Commentary AI-D0099, all model numbers of a derived fixed-psint
type must be representable values ¢f the parent type.

(DS0078 This test wrongly expects an implicitly declared
subprogram to be at the the address that is specified for an
unrelated subprogram (line 303).

ED70048, EDFO0SC & D, ED7006C & D (5 tests] These tests check
various aspecis or the use 0f the three SYSTEM pragmas; the AVO
withdrsws these tecsis as being inaperozriate for validation.

CD7I0EA This tast recuires that successive calls to CALENDAR.CLOCK
cnange ov at i233% SYSTEM.TICK; however, by Commeniary AI-00201,
it is oniy the expected fregquency of cnange trat must be at least
CY5TEM.TI0K--ozrticyular instances of change may be less (line 29).
072028, 3 CD72028 These testis use the 'SIiZE length <clause and
atiribute, wnose inierpreiaiion 1s considered problemstic by the
wG? ARG

072050 This tsgt checks ar invalid itecst objective: 1t treats the
308Cifi¢ation 27 siorage t0 be reservec for & task’s sctivetion as
“heugn it wJere lika tne specificeiion of t*torage for g collection,
221077 This test recyires that oblecis of two similar sczlar
tvees te distinguisned wnen read +from a file--DATA_ERROR is
expectes 10 be r3iseg tv an attempt to resd one obiect as of the
piher type However, it is noi ciear exactly now the Ada standard
14.2.4:4 is to te interpreied; thus, this test objective is not
tonsidered valid. (line 90)

CE3111C This test regquires certain behavior, when two files are
associated with the same external file, that is not required by
the Ada siandarg.

CE£3301A This test contains several calls to END_OF_LINE &

END_QOF _PAGE that have no parameter: these calls were intended to
spec:fy a file, not to refer to STANDARD_INPUT (lines 103, 107,

0-2

WITHDRAWN TESTS

118, 132, & 136).

r. (34118 This test requires that a tex: file’s column number be set
1o COUNT'LAST in order to check that LAYOUT_ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the
test would thus encumber validation testing.

0-3

APPENDIX E

COMPILER AND LINKER OPTIONS

This appendix contains information ctoncerning the compifation and linkage
commands used within the command scripts for this validation.

E-1

Compiling, Linking and Executing a Program Chapter 3

3 Compiling, Linking and Executing a Program

3.1 Overview

After a program library has been created, one or more compilation units can be com-
piled in the context of this library. The compilation units can be placed on different
source files or they can all be on the same file. One unit, a parameterless procedure,
acts as main program. If all units needed by the main program and the main program
itself have been compiled successfully, they can be linked. The resulting code can then
be transmitted to the target system and executed.

§3.2 and §3.4 describe in detail how to call the Compiler and the Linker. Further on
in §3.3 the Completer, which is called to generate code for instances of generic units,
is described.

§3.5 explains the information which is given if the execution of a program is abandoned
due to an unhandled exception.

The information the Compiler produces and outputs in the Compiler listing is explained
in §3.6.

Finally, the log of a sample session is given in §3.7.

3.2 Starting the Compiler

To start the SYSTEAM Ada Compiler, call the command

$ CADA:COMPILE <source> [LIBRARY=<directory>] -
[OPTIONS=<string>] -
(LIST=<filespec>]

The input file for the Compiler is <source>. If the file type of <source> is not specified,
<source>.ADA is assumed. The maximum length of lines in <source> is 255; longer
lines are cut and an error is reported.

<directory> is the name of the program library; [.ADALIB] is assumed if this parameter

is not specified. The hbra.ry must exist (see §2.2 for information on program library
management).

Chapter 3 ' Compiling, Linking and Executing a Program

The listing file is created in the default directory with the file name of <source> and the
file type .LIS if no file specification <filespec> is given by the parameter LIST. Oth-
erwise, the directory and file name are determined by the file specification <filespec>.
If no full file specification is given, missing components are determined as described
above (i.e. the default directory is used if no directory is specified, the file name of
<source> if no file name is specified and the file type .LIS if the file type is missing).
See §3.6 for information about the listing.

Options for the Compiler can be specified by using the parameter OPTIONS; they
have an effect only for the current compilation. <string> must have the syntax

»[option {, option}]"

where blanks are allowed following and preceding lexical elements within the string.

The Compiler accepts the following options:

LIST => ON/OFF (default is OFF)
OPTIMIZER => ON/OFF (default is ON)
INLINE => ON/OFF (default is ON)
COPY_SOURCE => ON/OFF (default is OFF)

SUPPRESS_ALL
SYMBOLIC_CODE

The options LIST and SUPPRESS_ALL have the same effect as the corresponding

pragmas would have at the beginning of the source (see |[Ada,Appendix B} and §7.1.2
of this manual).

No optimizations like constant folding, dead code elimination or structural simplifica-
tions are done if OPTIMIZER => OFF is specified.

Inline expansion of subprograms which are specified by a pragma inline (cf. §7.1.1)
in the Ada source can be suppressed generally by giving the option INLINE => OFF.
The value ON will cause inline expansion of the respective subprograms.

COPY_SOURCE => ON causes the Compiler to copy the source file <source> into the
program library,

A symbolic code listing can be produced by specifying the option SYMBOLIC_CODE
when calling the Compiler. The code listing is written on a file with file type .SYM
whose file name and directory are identical with those of the listing file.

The source file may contain a sequence of compilation units, cf. §10.1 of [Ada]. All com-
pilation units in the source file are compiled individually. When 2 compilation unit is

Compiling, Linking and Executing a Program Chapter 3

compiled successfully, the program library is updated and the Compiler continues with
the compilation of the next unit on the source file. If the compilation unit contained
errors, they are reported (see §3.6). In this case, no update operation is performed on
the program library and all subsequent compilation units in the compilation are only
analyzed without generating code.

The Compiler delivers the status code WARNING on termination (see [VAX/VMS,
DCL Dictionary, command EXIT]) if one of the compilation units contained errors.
A message corresponding to this code has not been defined; hence ZNONAME-W-
NOMSG is printed upon notification of a batch job terminated with this status.

3.3 The Completer

\

The Compiler does not generate code for instances of generic bodies. Since this must
be done before a program using such instances can be executed, the COMPLETER
tool must be used to complete such units. This is done implicitly when LINK is called.

It is also possible to call the Completer explicitly by

$ GADA:COMPLETE <ada_name> [LIBRARY=<directory>] -
[OPTIONS=<string>] -
[LIST=<filespec>]

<ada_name> must be the name of a library unit. All library units that are needed by
that unit (cf. [Ada,§10.5]) are completed, if possible, and so are their subunits, the
subunits of those subunits and so on. The meaning of the parameters LIBRARY and
LIST corresponds to that of the COMPILE command (cf. §3.2). Options apply to all
units that are completed; the following ones are accepted (cf. §3.2):

OPTIMIZER => ON/OFF
INLINE => ON/OFF
SUPPRESS_ALL
SYMBOLIC_CODE

The Completer delivers the status code WARNING on termination (see [VAX/VMS,
DCL Dictionary, command EXIT)]) if it detected some error. A message corresponding

to this code has not been defined; hence ANONAME-W-NOMSG is printed upon
notification of a batch job terminated with this status.

ah AL T oL o SCEE T I 4 - -

Chapter 3 ' Compiling, Linking and Executing a Program

In this case a listing file containing the error messages (cf. §3.6) is created. If no file
specification <filespec> is given by the parameter LIST, the listing file is created in
the default directory with file name COMPLETE and the file type .LIS; otherwise, the
directory and file name are determined by the file specification <filespec>. If no full
file specification is given, missing components are determined as described above (i.e.
the default directory is used if no directory is specified, the file name COMPLETE if no
file name is specified and the file type .LIS if the file type is missing).

3.4 The Linker

An Ada program is a collection of units used by a main program which controls the
execution. The main program must be a parameterless library procedure; any param-
eterless library procedure within a program library can be used as a main program.

The Linker generates an executable program on the host without using the target.

To link a program, call the command

$ QADA:LINK <ada_name> <filename> [LIBRARY=<directory>] -
[OPTIORS=<string>] -
[LIST=<filespec>] -
[COMPLETE=C}/OFF] -
[DEBUG=0OK/OFF] -
[SELECT=0K/OFF] -
[STACK_SIZE=<integer>]
[EXTERNAL=<string>] -

<ada_name> is the name of the library procedure which acts as the main program.

<filename> is the name of the file which is to contain the executable code after linking.
No file type is assumed if none is specified.

<directory> is the name of the program library which contains the main program;
{.ADALIB] is assumed if this parameter is not specified.

The COMPLETE parameter specifies whether the program is to be completed before

it is linked; default is ON. If the Completer is called, the parameters LIBRARY,
OPTIONS and LIST are passed to it (cf. §3.3).

Compiling, Linking and Executing a Program Chapter 3

The DEBUG parameter specifies whether debug information is to be generated. DE-
BUG=ON causes a second file containing the symbol table of the executable program
to be generated; this symbol table is needed for debugging the program with the 0S-9
debugger. The name of this file is also <filename> with file type .STB; default is ON.

SELECT=ON causes the object code of subprogram bodies to be included in the
executable program only if this subprogram may be called during program execution.
In the case of OFF the code of all compilation units mentioned in a context clause (in
a transitive manner) is linked together; the default is ON.

The STACK_SIZE parameter specifies the stack size of the resulting program in bytes;
the default is 64K bytes.

The EXTERNAL parameter specifies files which contain object code of those program
units which are not written in Ada (e.g. object modules of subprograms written in
assembly language). For those program units the pragmas

PRAGMA interface (assembler, ...) -- (cf. §7.1.1)
and

PRAGMA external_name (...) -~ (cf. §7.1.1)
must be given in the Ada source.

<string>, specified by the parameter EXTERNAL, is a string literal that denotes the
names of the external object files, separated by commas.

Ezample:

EXTERNAL="A . 0BJ,B.OBJ"
A and B denote object files

§3.4.1 gives additional information concerning the inclusion of external object code.

The following steps are performed during linking. First the Completer is called, unless
suppressed by COMPLETE=OFF, to complete the bodies of instances. Then the
Pre-Linker is executed; it determines the compilation units that have to be linked
together and a valid elaboration order. A code sequence to perform the elaboration

is generated. Finally, all object files including those specified by the EXTERNAL
parameter are linked.

The Linker of the SYSTEAM Ada System delivers the status code WARNING on
termination (see [VAX/VMS, DCL Dictionary, command EXIT)) if one of the above
mentioned steps failed (e.g. if one of the compieted units contained errors, if any
compilation unit cannot be found in the program library or if no valid eleboration order
can be determined because of incorrect usage of the pragma elaborate). A message
corresponding to this code has not been defined; hence XNONAME-W-NOMSG is
printed upon notification of a batch job terminated with this status.

ﬂ

Chapter 3 ' Compiling, Linking and Executing a Program

8.4.1 Inclusion of Ezternal Object Code

The Linker is able to read only those object files which were written by a tool of
the SYSTEAM Ada System; files which have a format that does not conform to the
internal object code format used by the SYSTEAM Ada System cannot be read. This
restriction must be obeyed when additional code is linked to the program by use of the
EXTERNAL parameter.

If an object file is transmitted from the target to the host by use of the TRANSMIT
tool (cf. §3.5), the resulting file on the host has the appropriate format and no further
action is necessary.

If an object file is copied to the host by another tool (that is not part of the SYSTEAM
Ada System), the file must be converted into S-Record format before copying. On the
host, this S-Record file is converted into the binary format appropriate for the Linker
by giving the command

$ CADA:EXBIN <s_filename> [DUT=<b_filename>]

<s_filename> is the name of the input file; if no file type is specified, .S is assumed.

The OUT parameter specifies the name of the output file; the default file name is the
name of <s_filename>, default file type is .0BJ and default directory is [J.

It is also possible to convert binary format into S-Record format on the host by calling

$ CADA:BINEX <b_filename> [DUT=<s_filename>]
<b_filename> is the na'ne of the binary input file; if no file type is specified, .0BJ is
a2ssumed.

The OUT parameter specifies the name of the output file; the default file name is the
name of <b_filename>, default file type is .S and default directory is [].

Compiling, Linking and Executing a Program Chapter 3

3.5 Executing a Program

After linking, the program can be transmitted to the target.

8.5.1 File Transfer

File transfer is done by the TRANSMIT tool, which is able to transmit files from the
host to the target and vice versa.

Transfer of one file is done by giving the command

N

$ QADA:TRANSMIT <target_line> <direction> <kind> -
<vms_filename> <os9_filename> [STATISTICS=ON/OFF]

<target_line> is the terminal line used for the host-target communication. It must be
connected to the target and an OS-9 session must be active on that line. The logical
name of that line is defined during installation of the SYSTEAM Ada System.

The parameter <direction> specifies whether the file is sent to the target or received
from the target. The allowed values are SEND and RECEIVE.

<kind> describes the kind of data (on the file) to be transmitted. The allowed values
are TEXT and BINARY:; if a binary file is to be sent to the target, the file must have
the internal object format described in §3.4.1.

The file name on VMS is given by <vms_filename>.
The file name on OS-9 is given by <os9_filename>.

The parameter STATISTICS specifies whether statistical information about the file
transfer is to be output.

If file transfer between host and target is not done via a terminal line (and therefore the
TRANSMIT tool is not used), the BINEX tool (cf. §3.4.1) can be used to transform
the executable program into S-Record format. Then the S-Record file is copied to the
target and again transformed into binary format.

Chapter 3 . Compiling, Linking and Executing a Program

8.5.2 Operations on the Target

On the target, the program can be executed by giving the command (089 is the prompt
of the operating system)

089 <filenanme>

<filename> must be a full path name.

Another way of executing the program is first to load it from the current data dxrectory
into main memory and then to start it:

089 LOAD -D <filename>
089 <filename>

In this case <filename> denotes the relative path name of the file in the current data
directory.

The default stack size for the main task is 64k Bytes. Additional stack space is allocated
if 2 modifier is added on the command line, e.g.

o9 <filename> #100

which results in a stack size of 164k Bytes. The default stack size for the main task
can be modified permanently by using the LINK parameter STACK_SIZE (cf. §3.4).

If an Ada program is abandoned due to an unhandled exception, a message is displayed;
the message has the following form:

(1) *x* Ada program abandoned due to unhandled exception!

(2) exception
(3 raised at
(&) error code

In line (2) the exception identification is displayed. For the predefined and I/O excep-
tions, the Ada names are printed. For all user-defined exceptions, a hexadecimal value
uuuuxxxx is shown: uuuu indicates the library key of the comp*!~tion unit in which the
exception is declared, xoocx is the compilation unit relative nu: 'ber of the exception.
Non_ada_error, defined in package systen, stands for any other exception.

Compiling, Linking and Executing a Program Chapter 3

In line (3) a code address is shown. Depending on the type of exception (fault or trap),
this can be the address of the instruction that caused the exception (for a fault), or of
the following instruction (for a trap). Line (4) shows the error number given by the
0S-9 operating system. The corresponding messages are listed in {0S-9,Error Codes].

3.6 The Compiler Listing

The listing for a compilation unit starts with the kind and the name of the unit and
the library key of the current unit.

Ezample:

= PROCEDURE MAIN, Library Index 76

~

By default only source lines referred to by messages of the Compiler are listed. A
complete listing can be obtained by using pragma LIST or the Compiler option LIST.
The format effectors ASCIL.LHT, ASCIL.VT, ASCH.CR, ASCILLF and ASCILFF are
represented by a ’~’ character in the listing. In any case, those source lines which are
included in the listing are numbered to make locating them in the source file easy.

Errors are classified into SYMBOL ERROR, SYNTAX ERROR, SEMANTIC ERROR,
RESTRICTION, COMPILER ERROR, WARNING and INFORMATION:

SYMBOL ERROR

pinpoints an inappropriate lexical element. " Inappropriate” can mean "inaprro-
priate in the given context”. For example, ’2’ is 2 lexical element of Ada, but it
is not appropriate in the literal 2#012#.

SYNTAX ERROR
indicates a violation of the Ada syntax rules as given in [Ada,Appendix E|.

SEMANTIC ERROR
indicates a violation of Ada language rules other than the syntax rules.

Chapter 3 ‘ Compiling, Linking and Executing a Program

RESTRICTION
indicates a restriction of this implementation. Examples are representation clauses
which are provided by the language but are not supported in this implementation;
or situations in which the internal storage capacity of the Compiler for some sort
of entity is exceeded. '

COMPILER ERROR _
We hope you will never see 2 message of this sort.

WARNING

messages tell the user facts which are likely to cause errors (for example, the
raising of exceptions) at runtime.

INFORMATION
messages tell the user facts which may be useful to know but probably do not
endanger the correct running of the program. Examples are that a library unit
named in a context clause is not used in the current compilation unit, or that
another unit (which names the current compilation unit in 2 context clause) is
made obsoiete by the current compilation.

Warnings and information messages have no influence on the success of a compilation.
If there are any other diagnostic messages, the compilation was unsuccessful.

All error messages are self-explanatory. If a source line contains errors, the error
messages for that source line are printed immediately below it. The exact position in
the source to which an error message refers is marked by 2 number. This number is

also used to relate different error messages given for one line to their respective source
positions.

In order to enable semantic analysis to be carried out even if a program is syntactically
incorrect, the Compiler corrects syntax errors automatically by inserting or deleting
symbols. The source positions of insertions/deletions are marked with a vertical bar
and a number. The number has the same meaning as above. If a larger region of the
source text is affected by a syntax correction, this region is located for the user by
repeating the number and the vertical bar at the end as well, with dots in between
these bracketing markings.

The following page contains a reprint of a complete Compiler listing which shows the
most common kinds of error messages, the technique for marking affected regions and
the numt ering scheme for relating error messages to source positions.

Compiling, Linking and Executing a Program Chapter

2
v

ARAARARK R AR AR R AN KRR AR R R RR AR R R RR R ARAAR KA AR AR AR KA AR AR AR AR R ARRRRKARARKRNRNAKRRRK
XK

xR
*x SYSTEAM ADA - COMPILER VAX/VMS x MC68020/0S-9 1.81 r%
x % L%
** 88-11-22 / 14:11:16 xx
Xk * %

ARKARKRARAKKARKARK AR KRR ARAARRRA K AR R AR R AN KR RA AN RARKARRRARARRARARRRRRARARRARARRR AR

= PROCEDURE LISTING_EXAMPLE =
2 abc : procedure integer RANGE 0 .. 9 := 10E-1;
:1......1: 1

»>>>> SYNTAX ERROR
Symbol(s) deleted (1) .
»>>>> SYMBOL ERROR (1) An exponent for an integer literal must not
have a minus sign
3 def }nteger RANGE 0 .. 9;
1
\
»>>>> SYNTAX ERROR
Symbol(s) inserted (1):
6 bool := (abc AND (def * 1)) OR adf;
1 2 3
>>»>>> SEMANTIC ERROR (1) Actual parameter for LEFT is not of
appropriate type
»>>>>> SEMANTIC ERROR (2) Actual parameter for RIGHT is not of
appropriate type
>>>>»> SEMANTIC ERROR (3) Identifier ADF not declared

»xxx CPU Time used 1.6 Seconds

= PROCEDURE LISTING_EXAMPLE =
= *xxxx Nymber of Errors : 6 -
~ *xxx Number of Warnings : 0 -
= *xxx Nuymber of Source Lines : 7 -
= *x*xxx Nymber of Comment Lines : 0 -
= *xxx Nuymher of Lexical Elements : 42 -
= ***x%x Cpode Size in Bytes : 0 -
= *xxx Nymber of Diana Nodes created : 51 -
= **x2x%x Symbol Error in Line : 2. -
= =x2% Syntax Error 1in Line : 2, 3. -
= **xx%x Semantic Error in Line : 6. -

AXRRRARARRARARRARRARRERARARRRARARARAAAKARAKKAKRARRAARKAARRAKXARKAARARRRARARANRAAARRRRRARAKK
xR

K%
*x End of Ada Comptilafion . xx
E % 1 x %

XA A AR A AR AR A AR AR AR R AR R AR KRR K RA RN AR AR KRR ARARRARRRRRRRARARARARARKRRAARARARK

s

Chapter 3 - : Compiling, Linking and Executing a Program

‘N

3.7 Sample Session: Compile, Link and Run

This chapter shows the log of a sample session. The lines starting with ”$” are VMS
commands, all other lines are output.

(For example2 it is assumed that a routine with the name ASSEMBLER_EXAMPLE, which
outputs the text ” Assembler routine is called”, has been written in assembly language
and that the file A.0BJ contains its object code.)

$ QADA:CREATELIB
SYSTEAM ADA - LIBRARY-MANAGER VAX/VMS x MC68020/0S-9 1.81

$ QADA:COMPILE examplel OPTIONS="list => on"
compiling DISKO:[ADA.TEST)EXAMPLE1.ADA:2
in library DISKO:[ADA.TEST.ADALIB]

SYSTEAM ADA - COMPILER VAX/VMS x MC68020/08-9 1.81
PROCEDURE LISTING_EXAMPLE

xx Number of Errors : 6

**x% Number of Warnings : 0
CPU Time used : 1.4 Seconds

$ TYPE exaxzple2.ada

WITH text_io;
USE text_io;

PROCEDURE execu-ion_example IS
PROCEDURE assembler_routine;
PRAGMA interface (assembler, assexbler_routine);
PRAGMA external_nzme ("ASSEIMBLER_EXAMPLE",

assembler_routine) ;

BEGIK
put_line ("Main program starts"):
assembler_routine;
put-line ("Main program stops");

ENv execution._example;

S

Compiling, Linking and Executing a Program Chapter 3

$ CADA:COMPILE example2

compiling DISKO:[ADA.TEST)IEXAMPLE2.ADA;1

in library DISKO: [ADA.TEST.ADALIB]

SYSTEAM ADA - COMPILER VAX/VMS x MC68020/0S-9 1.81
PROCEDURE EXECUTION_EXAMPLE, Library Index 47

*** No Errors during Compilation ===

CPU Time used : 2.1 Seconds

$ CADA:LINK execution_example example EXTERNAL="A OBJ"

SYSTEAM ADA - COMPLETER VAX/VMS x MC68020/0S-9 1.81
SYSTEAM ADA - PRE-LINKER VAX/VMS x MC68020/0S-9 1.81
SYSTEAM ADA - LINKER VAX/VMS x MC68020/0S-9 1.81

\

$ QADA:TRANSMIT charly SEND BINARY example /hO/test/example
SYSTEAM ADA - FILE-TRANSMITTER VAX/VMS x MC68020/0S-9 1.81

$ SET HOST/DTE charly

089 /hO/test/example

Main program starts
Assembler routine is called
Main prograzm stops

0s9 ~\

$ CADA:DELETELIB
*» Information: Program library DISKO: [ADA.TEST.ADALIB] deleted

