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SECTION I

INTRODUCT ION

This is the final report of a 4O-month research contract with the

Armament Laboratory, Eglin Air Force Base, FL, aimed at tne development

of grid generation techniques and computational methods for predicting

transonic flow about stores in the captive and vertical launch posi-

tions. This research was carried out through a very integrated and co-

operative effort between personnel at Eglin AFB and Mississippi State

University. The total research effort in store aerodynamics producea

two MS theses (References 1 and 2), four PhD dissertations (References 3

through 6) that are completed, and three additional PhD dissertations

(References 7 through 9) that are expected to be completed this school

year. Moreover, this research produced or contributed to 36 other pub-

lications (References 10 through 45). It also led to the development of

the Air Force EAGLE Code, which has been widely distributed to agencies

in the Department of Defense (References 18,19,41).

The purpose of this report is not to cover the details of all the

work performed, which would not be practical as indicated by the large

number of publications given above. Rather, the purpose is to stumarize

the complete research effort and to try and tie together the total pro-

gram. This research is more or less naturally divided into two parts,

computational methods for solving the flow equations ann grid generation

techniques for constructing meshes. Consequently the report is divided

into two technical areas.

The first area, Section II, of the report covers the computational

metnods for solving the flow equations. To this end, Paragraph 1 covers

the equations being solved as well as a description of how these equa-

tions are formulated for ntmerical solution. Paragraph 2 gives the hls-

tory and a perspective of the numerical algorithms that were developed

during the course of this research. Paragraph 3 summarizes some of the

accomplishments and results. Section IiI covers the research carried

out on grid generation. Section IV gives recommendations for future

worK.



SECTION Ii

FLOW SOLVERS

1. EQUATION FORMULATION

The equations used in this research were tne three-dimensional

unsteady compressible Euler and Navier-Stokes equations. in so.ie cases

both Euler and Navier-Stokes equations were soived, with the Navier-

Stokes equations being solved in viscous regions ana the Euler equations

solved elsewhere. This approacn of solving the Navier-Stokes equations

only in viscous regions does save some CPU time, but the savings are not

large because it only takes 10-20 percent more CPU time to solve the

Navier-Stokes equations per grid cell per time step than it does to

solve the Euler equations per grid cell per time step (Reference 4). Tne

largest cost in using Navier-Stokes equations is attributable to: (1)

the increase in the number of cells required to resolve viscous regions,

(2) the increase in the namber of iterations sometimes required to con-

verge the steady state Navier-Stokes solutions which is probably due to

highly stretched grids, and (3) the reduction in the time step size for

unsteady Navier-Stokes solutions which is due to the small grid cell

size required to resolve viscous regions.

The three-dimensional compressible unsteady integral conservation

law form of the flow equations was transformed from the Cartesian coor-

dinate system to a time varying curvilinear computational domain (Refer-

ences 1,3, and 7). Coriolis terms, apparent mass terms, etc., were then

captured naturally as part of the solution and not handled explicitly.

The integral conservation law form of the equations was solvea in a

cell centered finite volume formulation (Reference 1) in order to handle

arbitrary geometries and eliminate certain conservation difficulties as-

sociated with the finite difference formulation. Also, it was pointeo

out in Reference 46 that the finite volume formulation yields superior

results compared to the finite difference formulation for solution aaap-

tive problems, which was part of this research. Perhaps the most com-

pelling reason for using the finite volume formulation was that upwind

schemes were used to solve the flow equations and it is straignt forward
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to maintain conservation in the finite volume formulation, whereas, it

is most difficult (if it can be done at all) to maintain conservation in

the finite difference formulation of upwind schemes for steady or un-

steady flow solutions about arbitrary geometries.

In summary, the equations used were the three-dimensional compres-

sible unsteady Euler and Navier-Stokes equations. These equations were

transformed to a time dependent curvilinear coordinate system and dis-

cretized in a cell centered finite volume formulation for numerical so-

lution.

2. NUMERICAL ALGORITHMS INVESTIGATED: A HISTORY AND PERSPECTIVE OF
SKOAL, COPEN, BMULE, AND REDOX

During the course of this research four basic algoritrins were de-

veloped for the numerical solution of the Euler and Navier-Stokes equa-

tions. Each algorithm was thought to be an improvement over the

preceding one. All of the algorithms were finite volume upwind schemes

of one type or another. For example, the first three algorithms, SKOAL,

COPEN, and BMULE, were based on flux vector splitting and the last,

REDOX, was based on flux difference splitting. The first two al6o-

rithms, SKOAL and COPEN, were explicit, and the remaining two algorithms

were implicit. The first three algorithms were first or second order

acett-u in space o- time. The fourth algorithm, REDOX, was first or

second order accurate in time, and first, second, or third order accu-

rate in space. Flux limiters were not used in the first three algo-

rithms, as the flow regime of interest was transonic and limiters were

never needed. However, the fourth algorithm, REDOX, was a high resolu-

tion scheme, and three aifferent limiters were used. Each algorithm is

briefly described in the chronological order in which it was developed,

and the reasons are given why each algorithm was thought to be an im-

provement over the preceding one.

3i



a. SKOAL

SKOAL is a three-dimensional unsteady finite volume flux vector

split explicit code (References 1 and 14). According to Van Leer (Ref-

erence 47) it was the first three-dimensional flux vector split code

ever written. A feature unique to the SKOAL code and not used in any of

the succeeding codes, was the way the elgenvalues were evaluated at the

cell faces. The elgenvalues at the cell faces were evaluated by averag-

ing the dependent variables at the cell centers located on either side

of the cell face. These cell face eigenvalues were used to determine the

direction of propagation of information across the cell face, and then

each piece of the split flux vector was appropriately upwind differ-

enced. Once the direction of information passage was established, the

eigenvalues were not recomputed using one sided differences, rather the

eigenvalues as determined by the averaging of the dependent variables

were used. This caused some smearing of the solution such as smearing

shocks over four or five cells. As a point of interest, much sharper

solutions could be obtained by reevaluating the eigenvalues using one

sided differences based on the sign of the eigenvalues obtained by the

dependent variable averaging. However, this led to instabilities in

regions where the sign of the eigenvalues obtained by the two different

methods differed. Consequently, the eigenvalues used were those ob-

tained by averaging the dependent variables.

The CFL limit of the explicit scheme used was two. The SKOAL code

was reasonably robust and numerous computations about rather complex

configurations were computed such as those reported in References I and

14, and in particular those reported by Lijewski (References 21, and 24).

b. COPEN

The only difference between the COPEN and SKOAL codes was the way

the eigenvalues were evaluated at cell faces. Rather than average the

dependent variables on either side of a cell face as was done in SKOAL,

the dependent variables were extrapolated to the cell face from either
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side. Therefore, each cell face had associated with it a set of eigen-

values on the left side of the cell face and a set of eigenvalues on the

right side of the cell face, and corresponding to each side of the cell

face was a set of left and right fluxes. The flux at a cell face was

then obtained by a linear combination of the fluxes on each side of the

cell face (Reference 12). Tne COPEN code was also used for several com-

putations, including a store moving away from a second body (Reference

12).

c. BMULE

The BMULE code is simply an implicit version of the COPEN code. The

particular implicit scheme used is a block triangular scheme and is de-

scribed in References 3, 29, and 38. This scheme requires only two

passes through the computational domain at each time step rather than

the three passes that are required by the more frequently used block

tridiagonal type scheme of Beam and Warming (Reference 48). Also, the

operation count is less for each pass of the block triangular scheme

than it is for each pass of the block tridiagonal scheme. In addition,

it has more favorable stability properties than the block tridiagonal

scheme as pointed out by Anderson (Reference 49).

A disaovantage of tne block triangular scheme is that it is a back-

ward and forward substitution method and, as such, inherently resists

vectorization. however, Beik and Janus have vectorizea this portion of

the code cy passing through diagonal planes. An explanation of this

vect.rization process is given in References 3 and 29. Aitn the vec-

Lorization of the block triangular solution scheme, the code was fully

vectorizea.

It turned out that tne BMULE code was faster per time step per grid

point than either of the preceding explicit schemes on a Cray X-AP. Tne

reason for this was tnat the explicit coces required three flux balances

per time step, whereas, the implirit code requirea only one. The im-

plicit solution process does take longer than the explicit solution

process, but this is outweignted by the reduced number of flux balances

required. Since the implicit scheme requires fewer time steps to redC
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convergence (typically about one-fifth the number of time steps to get

to the same level of convergence) than does the explicit scheme for

steady state problems, the end result is a large saving in CPU time. Tne

implicit scheme does require much larger memory than does tne explicit

scnene, but efficient use of the solid state aevice (SSD) on the Cray

X-MP minimizes the additional memory cost.

a. REDOX

The REDOX code is the same as the BMULE code except for the method

used to perform the flux balances for the right hand side of the equa-

tion. Flux vector splitting was used to perform the flux balances in

the BMULE code, whereas, flux differencing splitting based on Roe aver-

aging was used in the REDUX code. The REDOX code is a three-dimen-

sional, steady or unsteady, finite volume, implicit, upwind, high reso-

lution (TVU), flux difference split scheme that can be run first or sec-

ond order in time and first, second, or third order in space on

stationary or dynamic, blocked or unblocked, grids for solving the Euler

or Navier-Stokes equation in subsonic, transonic, supersonic, or hyper-

sonic flow. Three fiux limiters, minmod, SuperDee, and Van Leer, are

available in the code. The best descriptions of the CFD technology in

the REDOX coae are given in References 7, 39, and 50.

The original intent in constructing the REDOX code was to linearize

the equations as is normally done in developing an implicit scheme. how-

ever, several problems were encountered in this approach having to do

with the formal difficulty of linearizing terms involving Roe variables.

For example, the scheme obtained from making certain linearization ap-

proximations of the Roe variables experienced convergence difficulties.

It was found that if the left hand side of the BMULE code was used (that

is, the BMULE solution matrix), then convergence was much improved.

This means that flux vector splitting is used on the left hand side and

flux difference splitting on the right hand side. It is the flux dif-

ferencing splitting on the right hand side that controls the quality of

tne solution.

6



A disadvantage of the REDOX code compared to the BMULE code i3 that

it takes 20 to 40 percent more CPU time per time step per grid point

depending on the problem. However, an advantage of the REDOX code is

that shocks and contact discontinuities are captured much more sharply.

In addition, viscous regions can be accurately resolved with far fewer

points. Numerical solutions from the BMULE and REDOX codes are compared

with the Blasius solution for a simple flat plate laminar boundary layer

in Reference 7. In this case, the REDOX thin-layer Navier-Stokes solu-

tion is in good agreement with the Blasius solution with only three

points in the boundary layer, whereas, neither the coarse or fine grid

BMULE solutions agree very well with the Blasius solution. The BMULE

code can be made to agree with the Blasius solution but many points are

required. This example required about the same number of cycles to con-

verge both codes, so the increase in CPU time per point is mace up for

by the possibility of using fewer grid points.

The REDOX code is presently considered to be the best and most pow-

erful code of those developed thus far. It is also the only one that is

under further development, and it presently receives 90 percent of the

total effort devoted to maintenance.

3. RESULTS

a. Innovations

Those things having to do with the numerical solution of the Euler

and Navier-Stokes equations that can be considered innovations include:

(1) SKOAL was the first three-dimensional unsteady completely upwind

Euler code.

(2) It was found for the REDOX code, which used flux differencing
splitting on the right hand side of the equations, that the use
of flux vector splitting in the solution matrix on the left hand
side of the equations, led to a more stable, robust, and rapidly
convergent scheme, than when flux differencing splitting was
used in the solution matrix on the left hand side of the equa-
tions.
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(3) It is acceptable for the cases considered, to use Jacobian
freezing when using Newton-type subiterations in order to save
CPU time.

(4) It is possible to accelerate Newton-type subiterations by the

use of two time steps, one local and one minimum. The local
time step is usea much like in a steady state solution, where it
appears as a coefficient of the residual on the right hand side
of the equation. The residual, however, contains a time deriva-
tive in order to obtain true time accuracy with the minimum time
step appearing in the time derivative.

(5) It is possible to obtain time accurate numerical results for
fine grid transonic Navier-Stokes solutions of an oscillating
supercritical wing in turbulent flow, with maximum CFL numbers
of the order of ten to the fourth power.

(6) Accurate Navier-Stokes numerical solutions for laminar viscous
flow over a flat plate can be obtained with only three grid
cells in the viscous region using the high resolution REDOX
scheme.

b. Application

To illustrate the type of results that can be obtained, numerical

solutions are presented for the mutually interfering transonic flow

about a multi-body wing-pylon-store configuration. The solution for

this configuration was the basic objective of this research effort. This

example illustrates the capability of the code to compute both steady

state multi-olock solutions and unsteady dynamic multi-block solutions

for flow about complex configurations. Steady state multi-block solu-

tions are demonstrated by computing the flow about the wing-pylon-store

configuration with the store in the captive position. Unsteady dynamic

multi-block solutions are demonstrated by computing the flow about the

complete multi-body configuration as the store moves away from the par-

ent wing-pylon configuration through a vertical launch trajectory. Un-

fortunately, no experimental data are available for comparison with the

unsteady moving store solution; however, experimental data are available

for the captive position and are compared with the numerical solutions.

Grid generation for this configuration is discussed in Section III

of this report. The wing-pylon-store configuration considered was the

same as that used in wind tunnel experiments. The basic configuration



is shown in Figure 1-a with the store in the captive position and in

Figure 1-b with the store located two store diameters below the pylon.

The wing was a symmetrical airfoil and the leading edge was swept 45 de-

grees. The store was an ogive-cylinder with a cylindrical sting joined

to the store boattail. The pylon was a biconvex airfoil shape, and a

small gap existed between the store and pylon in both the experimental

and computational configuration. The complete grid was composed of 30

blocks.

The numerical solution was run for a freestream Mach number of 0.85

and zero degrees angle of attack. Numerical and experimental surface

pressure distributions on the outboard and inboard sides of the store

(see Figure 2) in the captive position are shown in Figures 3 and 4,

respectively. Notice that there is a large lower pressure region on the

inboard side of the store (Figure 4) than on the outboard side of the

store (Figure 3). Figures 5 and 6 are included to show that the same

thing happens, computationally and experimentally, on the pylon. The

result of this pressure differential would be that a released store

would have an initial side force that would push the store toward the

fuselage rather than away from the fuselage.

The reason for the pressure being lower on the inboard side of the

store and pylon is attributed primarily to the presence of the store.

Figures 7 and 8 are used to argue this point. These figures compare

computations corresponding to the store dropping through a point 2 store

diameters away from the pylon with steady state experimental data for

the wing and pylon only (no store) at the same flow conditions. Notice

that the inboard and outboard pressures on the pylon without the store

present are now much closer to the same values. (One should note that

it is dangerous to compare unsteady computations with steady state ex-

perimental data, but unsteady experimental data are not available and

the assumption is made that the store being 2 diameters away will not

significantly influence the unsteady flow about the wing and pylon.)

The only way to truly get an idea of the flowfield about such a con-

figuration is through color graphics. Figure 9 shows the surface pres-

sure distribution from a view above the wing-pylon-store configuration

9I
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as the store moves away from the wing and pylon. The top insert in Fig-

ure 9 is for the store in the captive position at the instant of verti-

cal launch. The other inserts on the figure are for when the store is

moving through the points of 0.4, 1.0, and 2.0 store diameters away from

the pylon. Note that even on the upper surface the pressure changes,

particularly when the store is near the pylon. Figure 10 shows the same

sequence of positions from a similar view below the wing. Figure 11 is

another view from below the wing showing the same sequence, but it is a

view that makes it easier to see more detail. In these figures, red is

the highest pressure, followed in order by yellow, green, and blue,

where blue is the lowest pressure shown. The flow about the store is

not influenced significantly by the presence of the wing-pylon by the

time the store passes through a point 2 store diameters away from the

pylon.

This 30-block wing-pylon-store example was not a trivial case, el-

ther from the grid generation point of view, or the flow solution point

of view. However, once a grid is constructed and a flow solution ob-

tained, any modifications to the configuration or flow conditions can be

carried out rather rapidly, and new solutions obtained.

One of the primary difficulties associated with this work is post

processing of the results, particularly for the unsteady computations.

For unsteady computations the time required to transmit the necessary

grid and flowfield information is prohibitive, even on high speed data

lines. It is suggested that a way around this problem may be to down-

load a restart file from the Cray computer (a restart to a solution that

has been essentially completed on a Cray) to a large workstation (that

is, one with lots of in-core memory, disk space, high quality graphics,

and is capable of sustaining 10 or more mflops), and then running it on

the workstation (albeit ror a long period of time) and using the high

quality workstation graphics for post processing a few time steps. Now

having said this, it must be pointed out that this approach will not

work effectively for the store separation problem just addressed iO it

is desired to make an animation composed of every time step of the com-

putation of the store trajectory. However, for unsteady problems that

become periodic, or for those problems where it is not necessary to
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process every time step of the solution, this would seem to be a reason-

able approach, at the present time, to post processing enormous amounts

of information.

4. CONCLUSIONS

Four numerical algorithms were developed during the course of this

research for solving the unsteady Euler or Navier-Stokes equations for

arbitrary three-dimensional geometries. Each algorithm was an

improvement in computational technology over the preceding one. The

last algorithm developed, REDOX, used flux vector splitting on the left

hand side of the equation in the solution matrix, and flux difference

splitting on the right hand side of the equation to compute the residual

vector. The result was a high resolution upwind scheme for solving

steady state or unsteady, inviscid or viscous 'lows, about arbitrary

configurations. The numerical results were validated by comparisons

with available experimental wind tunnel data for a wing-pylon-store

configuration with the store In the captive and vertical launch

positions.
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SECTION III

GRID GENERATION SYSTEM

1. GENERATION SYSTEM FORMULATION

In order to computationally treat general multi-store configura-

.tons including fuselage, wing, and pylon, the development of a general,

three-dimensional grid generation system was an essential part of this

project. The complexity of this geometrical configuration required a

grid code of such generality that the resulting EAGLE grid code is ap-

plicable to arbitrary three-dimensional configurations, and thus has be-

come a major resource to computational fluid dynamics and all other

areas of computational field problems. This code has now been acquired

by well over 100 governmental, industrial, and university agencies

across the country.

The grid code is discussed in general in the sections that follow.

Complete detail and user instructions are given in References 18 and 19,

and some features are discussed in other references cited herein.

The formulation of the EAGLE grid code is discussed in Reference 27,

and in complete detail in Reference 19, with an introductory discussion

given in Reference 18. A brief summary follows here.

boundary segment and setting these values in the array of position vec-

tors with one index constant. With values set on the sides of the rec-

tangular array of position vectors in this manner, the generation of the

grid is accomplished by determining the values of Cijk in the interior

cAf the rectangular array from the specified boundary values on its

sides, e.g., by interpolation or a PDE solution. The set of values,

Cijk , then orms the nodes of a curvilinear coordinate system filling

the physical region. A physical region bounded by six generally curvec

sides can thus be considered to have been transformed to a rectangular

computational region on which the curvilinear coordinates are the inde-

pendent variables.
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a. Boundary-Conforming Structured Grids

Finite difference (or finite volume) and finite element solutions

both require a discrete set of points or cells covering the physical

field, and the efficiency of the computation is greatly enhanced if

there is some organization to this set. This organization can be pro-

vided by having the discretization defined by the nodes of a curvilinear

coordinate system filling the physical field. Such systems are readily

available from handbooks for certain simple configurations such as re-

gions that are cylindrical, spherical, elliptical, etc. For general re-

gions of arbitrary shape, numerical grid generation provides the

curvilinear system.

The (urvilinear system can be constructed simply by setting values in

a rectangular array of position vectors:

-ijk (i-1,2,.... ; j-1,2,...,J; k-1,2,...K)

and identifying the indices (i,j,k) with the three curvilinear coordi-

nates. The position vector r is a three-vector giving the values of the

Cartesian coordinates (x,y,z) of a grid point. Since all increments in

the curvilinear coordinates cancel out of the transformation relations

for derivative operators, there is no loss of generality in defining the

discretization to be on integer values of these coordinates.

Fundamental to this curvilinear coordinate system is the coincidence

of some coordinate surface with each segment of bounoary of the physical

region, in the same manner that surfaces of constant radius coincide

with the inner and outer boundary segments of the region between two

concentric spheres filled with a polar coordinate system. This is accom-

pl1shed by placing a two-dimensional array of points on a pnysical
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b. Composite-Block Structure

Although in principle it is possible to establish a correspondence

between any physical region and a single empty rectangular block for

genpral three-dimensional configurations, the resulting grid is likely

to be much too skewed and irregular to be usable when the boundary ge-

ometry is complicated. A better approach with complicated physical

boundaries is to segment the physical region Into contiguous sub-

regions, each bounded by six curved sides (four in 2D) and each of which

transforms to a rectangular block in the computational region, with a

grid generated within each sub-region (References 42,13,16). Each

sub-region has its own curvilinear coordinate system irrespective of

that in the adjacent sub-regions.

This then allows both the grid generation, and numerical solutions on

the grid to be constructed to operate in a rectangular computational

region, regardless of the shape or complexity of the full physical re-

gion. The full region is treated by performing the solution operation

in all of the rectangular computational blocks. With the composite

framework, partial differential equation solution procedures written to

operate on rectangular regions can be incorporated into a code for gen-

eral configurations in a straightforward manner, since the code only

needs to treat a rectangular block. The entire physical field then can

be treated in a loop over all the blocks.
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The generally curved surfaces bounding the sub-regions in the physi-

cal region form internal interfaces across which information must be

transferred, i.e., from the sides of one rectangular computational block

to those of another. These interfaces occur in pairs, an interface on

one block being paired with another on the same or different block,

since both correspond to the same physical surface. Grid lines at the

interfaces may meet with complete continuity, with or without slope con-

tinuity, or may not meet at all.

Complete continuity of grid lines across the interface requires that

the interface be treated as a branch cut on which the generation system

is solved just as it is in the interior of blocks. The interface loca-

tions are then not fixed, but are determined by the grid generation sys-

tem. This is most easily handled in coding by providing an extra layer

of points surrounding each block. Here the grid points on an interface

of one block are coincident in physical space with those on another in-

terface of the same or another block, and also the grid points on the

surrounding layer outside the first interface are coincident with those

just inside the other interface, and vice versa. This coincidence can

be maintained during the course of an iterative solution of an elliptic

generation system by setting the values on the surrounding layers equal

to those at the corresponding interior points after each iteration. All

the blocks are thus iterated to converge together, so that the entire

composite grid is generated at once.

The construction of codes for complicated regions is greatly simpli-

fied by the composite grid structure since, with the use of the sur-

rounding layer of points on each block, a flow code is only required

basically to operate on a rectangular computational region. The neces-

sary correspondence of points on the surrounding layers (image points)

with interior points (object points) is set up by the grid code and made

available to the computational fluid dynamics solution code.

The original impetus for using blocked grids was (1) to simplify the

gridding of complex configurations, and (2) permit the solution of large

problems requiring many grid points by keeping only the information

needed to solve one block in central memory while retaining the informa-

tion associated with the remaining blocks in secondary memory. Experi-
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ence exposed a third reason for using blocked grids, having to do with

computer cost and/or job turnaround. Supercomputer installations place

a high price on the use of central memory, whereas, the use of secondary

memory is relatively cheap. For example, when more than two million

words of central memory are used on a Cray X-MP 2x4, the cost increases

considerably on commercial machines, and the priority decreases consid-

erably on government machines. By blocking, the use of central memory

can be controlled, not only to fit the available memory, but also to fit

the available budget and time constraints.

c. Surface Grid System

The specification of the boundary point distribution is a two-dimen-

sional grid problem in its own right, which can also be done either by

interpolation or a Partial Differential Equations (PDE) solution. In

general, this is a 2D boundary value problem on a curved surface, i.e.,

the determination of the locations of points on the surface from speci-

-ied distributions of points on the four edges of the surface. This is

best approached through the use of surface parametric coordinates,

whereby the surface is specified by a 2D array of points, rij, e.g. a

set of cross-sections. The surface is then splined, and the spline co-

ordinates (surface parametric coordinates) are then made the dependent

variables for the interpolation or PDE generation system. The genera-

tion of the surface grid can then be accomplished by first specifying

the boundary points in the array Cijk on the four edges of the surface

grid, converting these Cartesian coordinate values to spline coordinate

values on the edges, then determining the interior values of the spline

coordinates from the edge values by interpolation or PDE solution, ana

finally converting these spline values to Cartesian coordinates.

The surlace grid generation system is discussed in Reference 43, and

in complete detail in References 51 and 19.
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d. Adaptive Coupling

Finally, dynamically-adaptive grids continually adapt to follow de-

veloping gradients in the physical solution. This adaption can reduce

the oscill1:ions associated with inadequate resolution of large gradi-

ents, allowing sharper shocks and better representation of boundary lay-

ers. Another advantageous feature is the fact that in the viscous

regions where real diffusion effects must not be swamped, the numerical

dissipation from upwind biasing is reduced by the adaption. Dynamic

adaption is at the frontier of numerical grid generation anJ may well

prove to be one of its most important aspects, along with the treatment

of real three-dimensional configurations through the composite grid

structure.

With structured grids and implicit flow solvers, the adaptive strat-

egy based on redistribution is by far the most simple to implement, re-

quiring only the regeneration of the grid at each adaptive stage withoit

modification of the flow solver unless time accuracy is desired. Time

accuracy can be achieved, as far as the grid is concerned, by simply

transforming the time derivatives, thus adding additional convective-

like terms which do not alter the basic conservation form of the partial

differential equations.

Two approaches for generating adaptive grids were investigated in the

present study: (1) the control function approach based on the elliptic

generation system, and (2) the variational approach based on the calcu-

lus of variations. Both methods have proven their capabilities for con-

trolling the grids, but because of the longer computing time and less

sensitivity in the variational method, the control function form shouid

be the more promising tool for future applications. More detail and

results are given in References 33, 5, and 8.

This adaptive control function formulation has been incorporated into

the EAGLE grid code, providing a composite-block adaptive grid genera-

tion system for general three-dimensional regions to be coupled with PDE

solvers.
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2. CODE FOUNDATION

The development of the EAGLE grid generation system was founded on

four essential items, the first of which was elliptic grid generation.

The elliptic generation system is discussed in Reference 27, and in de-

tail in References 44 and 19.

The second essential element of the foundation of the present code

was the algebraic grid generation technique of transfinite interpolation

developed in the automobile industry. The EAGLE code generates an alge-

braic grid by transfinite interpolation, which then serves as the ini-

tial solution to start the iterative solution for the smoother elliptic

grid. (The algebraic grid can, of course, be taken as the final grid if

desired). The algebraic generation system is discussed in Reference 27,

and in complete detail in Reference 19.

The third component of the basis of the EAGLE code, and the item that

is fundamental to the grid structure, was the technique of block-struc-

tured grids (Reference 42), which allows arbitrary configurations to be

treated. This implementation of the block structure is discussed in

Reference 27, and in complete detail in Reference 19.

Finally, a study was conducted as a part of this project to identify

point distribution functions that reduce the truncation error induced

into the CFD solution by the grid (Reference 10). These distribution

"unctions were used in a number of places in the code, as is discussed

in Reference 19.

a. Design Considerations

A *"undamental design criteria of the grid code was ease of use, and

toward that end NAMELIST input was adopted even though not standard in

FORTRAN 77. This input form was chosen because it allows the input to

be read as English, and requires only the specification of essential

items that differ from default values. This input form also creates a

type of high-level language for grid generations. A NAMELIST emulator

(Reference 2) was written in order to allow the code to be ported to

systems not supporting NAMELIST.
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Another feature that evolved from use of the code was the use of nun-

bered points, curve and surface segments, and spacings corresponding to

preliminary sketches (Reference 45). This was done in order to allow

changes in spacings and in the number of points on segments to be made

in a localized fashion without having to be repeated throughout the in-

put runstream.

In order not to limit the size of configurations, provision wds made

for keeping only one block of the grid in core at a time, with the re-

mainder stored on separate files on a solid-state disk (SSD) on the Cray

X-MP, or on conventional disk files on other systems.

Provision was made for returning all or any number of parts of tne

grid for plotting, and a threeadimensional grid and contour plot code

was written for the IRIS 2500 graphics system. (This graphics system

was obtained from a DoD Research Equipment Grant for use on this pro-

ject.) These plot codes have been ported to the IRIS 3010 and IRiS

4D/70 GT Systems.

As the code evolved it became clear that an error-checking mechanism

was necessary to aid the user in the construction of complicated con-

figurations, and therefore extensive error-checking was installed

through which the code guides the user in the correction of input er-

rors.

The total grid generation code package consists of a front-end bound-

ary code (approximately 15,000 lines) which generates the boundary sur-

face or curve segments for input to the grid code (about 20,000 lines).

Both of these codes were written in modular form so that additional fea-

tures can be easily incorporated, and new features have indeed continu-

ally been added. These codes are not static even now, but can continue

to be extended in a straightforward manner to incorporate emerging new

techniques in grid generation. The framework provided allows these

codes to continue to evolve to include important 'eatures of other grid

generation codes rather than having to compete with others.
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b. Grid System

The EAGLE grid code (Reference 19, Vol. III) is a general three-di-

mensional elliptic grid generation code based on the composite-block

structure. This code allows any number of blocks to be used to fill an

arbitrary three-dimensional region. Any block can be linked to any

other block (or to itself) with complete (or lesser) continuity across

the block interfaces as specified by input. In the case of complete

continuity, the interface is a branch cut, and the code establishes a

correspondence across the interface using a surrounding layer of points

outside the blocks. This allows points on the interface to be treated

just as all other points so that there is no loss of continuity. The

physical location of the interface is thus totally unspecified in this

case, being determined by the code.

This code uses an elliptic generation system with automatic evalua-

tion of control functions either directly from the initial algebraic

grid and then smoothed, or by interpolation from the boundary-point dis-

tributions. In the former case the smoothing is done only in the two

directions other than that of the control function. This allows the

relative spacing of the algebraic grid to be retained but on a smoother

grid from the elliptic system. In the latter case, the arc length and

curvature contributions to the control functions are evaluated and in-

terpolated separately into the field from the appropriate boundaries.

The control function at each point in the field is then formed by com-

bining the interpolated elements. This procedure allows very general

regions with widely varying boundary curvature to be treated.

The control functions can also be determined automatically to provide

orthogonality at boundaries with specified normal spacing. Here the

iterative adjustments in the control "unctions are made by increments

radiated from boundary points where orthogonality has not yet been at-

tained. This allows the basic control function structure evaluated 'rom

the algebraic grid, or from the boundary-point distributions, to be re-

tained and thus relieves the iterative process from the need to estao-

lish this basic geometric form of the control functions.
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Alternatively, boundary orthogonality can be achieved through Neumann

boundary conditions which allow the boundary points to move over a sir-

face spline, the boundary point locations being located by Newton it-

eration on the spline to be at the foot of normals to the adjacent field

points. This is the boundary treatment used in the adaptive mode. Pro-

vision is also made for extrapolated zero-curvature boundary conditions

and for mirror-image reflective boundary conditions on symmetry planes.

Although written for 3-D, the code can operate in a 2-D mode on ei-

ther a plane or curved surface. In the case of a curved surface, the

surface is splined and the generation is done in terms of surface para-

metric coordinates.

The code includes an algebraic three-dimensional generation system

based on transfinite interpolation (using either Lagrange or Hermite

interpolation) for the generation of an initial solution to start the

iterative solution of the elliptic generation system. This feature also

allows the code to be run as an algebraic generation system if desired.

The interpolation, though defaulted to complete transfinite interpolati-

on from all boundaries, can be restricted by input to any combination of

directions or lesser degrees of interpolation, and the form (Lagrange,

Hermite, or incomplete Hermite) can be different in different directions

or in different blocks. The blending functions can be linear or, more

appropriately, based on interpolated arc length from the boundary point

distributions.

Blocks can be divided into sub-blocks for the purpose of generation

of the algebraic grid and the control functions. Point distributions on

the sides of the sub-blocks can either be specified or generated by

transfinite interpolation from the edges of the side. This allows addi-

tional control over the grid in general configurations, and is particu-

larly useful in cases where point distributions need to be specified in

the interior of a block, or to prevent grid overlap in highly curved

regions.

The composite structure is such that completely general configura-

tions can be treated, the arrangement of the blocks being specified by

input, without modification of the code. The input is user-oriented and
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designed for brevity, easy recognition, and localized modification. For

example, the establishment of correspondence, i.e., a branch cut, be-

tween two blocks requires only the simple input statement

$INPUT ITEM - "CUT", START- , , , END - , , , BLOCK =

ISTART- , , , IEND- , , , IBLOCK __$

where START and END give the three indices of two opposite corners of

the cut section on one block (BLOCK), while ISTART and IEND give the

corners of the corresponding section on the other block (IBLOCK). (The

three indices can even be replaced by a single point number, correspond-

ing to a previously-set numbered point.) The code sets up the point cor-

respondence on the surrounding layers for complete continuity without

additional input instructions.

The code is written in modular form so that components can be readily

replaced. The code is vectorized (Cray X-MP) wherever practical and

includes provision for separate storage of each block on the CRAY solid-

state device (or conventional disk) to allow very large grids to be gen-

erated.

c. Boundary System

An auxiliary front-end code (Reference 19, Vol. II) sets up boundary

data for input to the grid code. This auxiliary code builds boundary

segments in response to a series of input commands that again are de-

signed to be user-oriented, brief, easily recognized, and localized. The

following features are included: (1) generation of generic plane con-

ic-section or cubic curves, (2) generation of cubic space curves, (3)

generation of generic conic-section surfaces, (4) generation of cubic

surfaces, (5) generation of surfaces by stacking, rotating, or blending

curves, (6) extraction and concatenation of surface segments, (7) trans-

'ormation of surfaces by translation, rotation, and scaling, (8) rever-

sal or switching of point progressions on surfaces, (9) establ shment of

point distributions by curvature and with specified end, or interior,
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spacings, (10) establishment of surface parametric grids by transfinite

interpolation, (11) generation of tensor-product surfaces, (12) genera-

tion of surfaces by transfinite interpolation, (13) generation of grids

on curved surfaces, and (14) intersection of surfaces.

This front-end code is coupled with the grid code through its output

to allow changes to be strictly localized in the input runstream, i.e.,

changes in point distributions or numbers of points on a segment can be

made at a single place in the boundary code runstream without having to

be also made in the grid code runstream.

3. RESULTS

The EAGLE grid code has been applied to numerous configurations by

researchers at Mississippi State and at Eglin AFB. Further applications

have been made by other agencies that have acquired the code. Its de-

velopment has contributed both a major computing resource to the CFD

community and also some fundamental contributions to numerical grid gen-

eration.

a. Innovations

The development of the EAGLE grid code produced the following ad-

vances in numerical grid generation:

(1) Improved automatic evaluation of control functions for elliptic
generation systems from boundary point distributions (Reference

4 4). This involved the separate interpolation of curvature and
arc length distribution effects, the use of transfinite interpoo
lation for that interpolation, and a special interpolation based
on hyperbolic tangent distribution functions to treat large
variations in curvature.

(2) A smoothing procedure for control functions that smoothes the
functions in the two directions other than that in which the
distribution is being controlled (Reference 44).

(3) Evaluation of control functions from the algebraic grid, fol-
lowed by smoothing (Reference 44). This retains the distribu-
tion from the algebraic grid but with a smoother grid.

34



(4) Improved iterative adjustment of the control functions for

boundary orthogonality (Reference 44). This involved the devel-
opment of a procedure for radiating changes in the control func-
tions into the field from all boundary points.

(5) Automatic evaluation of locally optimum acceleration parameters
for the SOR iteration in the elliptic generation system (Refer-
ence 44). A feedback stability limitation was also developed
for use with iterative adjustment of control functions for
boundary orthogonality.

(6) Automatic adjustment to use directed differences for first

derivatives, based on the sign of the control functions (Refer-
ence 44).

(7) Newton iteration on a surface spline for the application of
Neumann boundary conditions to achieve orthogonality or zero
curvature at the boundary (Reference 27).

(8) Full transfinite interpolation, based on either Lagrange or Her-
mite interpolation, for the algebraic grid (Reference 27). This
involved the use of arc-length blending functions interpolated
by transfinite interpolation of one less dimension, with auto-
matic correction for zero arc lengths.

(9) Full implementation of an elliptic surface grid generation sys-
tem based on surface parametric coordinates in a composite-block

structure with boundary orthogonality (Reference 43 ).

(10) The identification of optimal distribution functions to reduce
truncation error induced by the grid (Reference 10).

b. Applications

(1) General

Applications of the EAGLE grid code have been made to one, two, and

three-store configurations. Some of these configurations have Included

pylon, wing, and fuselage. The stores have incorporated "ins, wings,

canards, and deflected fins. Results have been reporteJ in References

6, 11, 15, 18, 24, 25, 26, 34, 40, 51 and other cited references.

The adaptively coupled grid and Euler codes have been applied to two

ana tnree-dimensional wings (References 5,33), and to single-store con-

figurations (Ref. 8).
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(2) Wing-Pylon-Store Configuration

A particular application of the EAGLE grid generation system was the

multi-body problem of the wing-pylon -store configuration in Figure 12.

The wing is a symmetric wind tunnel model with 45 degrees of leading

edge sweep. The pylon is a biconvex airfoil shape, while tne store is

an ogive-cylinder with an aft cylindrical sting.

The surface grid defining the hardware geometry was built entirely

with operations in the EAGLE boundary code. Coordinates for the wing

root and tip were read in, ana the wing was built by interpolation be-

tween root and tip coordinates, using the BLEND operation. The chord-

wise point distribution was set by CURDIST, which allows control over

spacing at both the leading and trailing edges.

The pylon, store, and sting were constructed according to dimensions

and specifications by building up curve segments and then rotating these

curves, or by interpolating between them with BLEND or TRANSUR. The py-

lon was generated separately and then affixed smoothly to the wing lower

surface through operation INTSEC. Since the ultimate purpose of the

grid was for modeling store separation through the unsteady Euler equa-

tions, a gap was left between the lower surface of the pylon and the top

of the store, consistent with the wind tunnel model.

The grid developed for this problem is a 30-block system containing

approximately 220,000 points. The block boundary curves are shown in

Figure 12a. The system consists of a C-J grid enclosing the pylon,

store, and sting, with an H-type grid surrounding the wing and the em-

beddea C-0 structure. An H-0 structure extends from the nose of the C-0

to the upstream grid boundary. The downstream and inboard boundary

planes can be seen in Figure 12b.

The boundary for the C-0 grid was generated by rotating curves about

the axis of the store and sting. This approach, while quite simple for

an isolated body, was complicated considerably by the need to have the

C-0 boundary interface smoothly with the highly curved lower surface of

the wing. Additional complexity was caused by the 45-degree sweep angle

of the wing leading edge.
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The curves to be rotated each included a "C"-like segment emanating

from a point ahead of the store nose and terminating at the leading edge

of the wing at a point to the right or left of the pylon. A second seg-

ment of the rotated curves consisted of spar lines extractea from the

lower wing grid with operation EXTRACT. The third part extended from

the wing trailing edge to the downstream boundary.

Operation INSERT was then used to combine these segments, resulting

in two bounding curves. Operation ROTATE was then used to form the

outer bounuaries of three of the five blocks in the C-O structure. Two

additional blocks in the store grid structure were bounded in part by

the lower wing surface. The boundaries of these two blocks ahead of the

wing were generated with BLEND, using the "C" curve segments from the

previous ROTATE operation as the two bounding curves. Operation TRANSUR

was "ound to be inappropriate for generating these last two surfaces,

since the bounding curves consisted of three space curves and a line

aegenerated to a point (a curved triangle). This logically causea the

transfinite interpolation method to produce results inconsistent with

the boundaries.

Figure 12c i3 a side view of the pylon and store, showing the inter-

face of the C-grid with the surrounding H-grid. The difficulties inher-

ent in interfacing the C-grid with the wing are graphically evident at

the leading edge. The clustering of points in the gap between the pylon

and store was necessary so that the unsteady flow field could be re-

solved there during store separation. A sixth block is embedded in the

gap. Figure 12d is a view looking downstream at a plane about mid-

chord. The asymmetry due to the swept leading edge is evident.

The remainder of the grid system, consisting of 24 blocks, surrounds

tne C-O system. Except for the H-0 cylindrical structure ahead of the

C-O system, these remaining blocks are nearly rectangular. The genera-

tion of their boundaries is remarkably easy with the EAGLE surface gen-

erating code. The far-field boundaries were placed 40 store diameters

upstream and downstream of the nose of the store, and 20 diameters out-

boara of the store.

41



After all block boundaries had been generated, these surfaces were

used as input to the EAGLE elliptic grid generation code. Several pre-

liminary runs were made before the final boundary configuration was ar-

rived at. These trial runs were necessary because of the large

curvature ana acute angles formed by the three-dimensional intersectior,

of the C-0 grid with the lower wing surface.

Fine adjustments of block boundary curves were necessary to prevent

grid lines from crossing during interpolation for the initial algebraic

grid. Even so, the grid finally deemed acceptable had crossed lines in

one block in the initial grid. However, the elliptic solver corrected

this in five iterations. No doubt the task would have been simplified

by modifying the block structure so that the C-0 grid enclosed only the

store and sting, with rectangular blocks inserted between i: and the

wing.

The final elliptic run was for 50 iterations, requiring 526 CPU sec-

onds on a Cray X-MP/24.

c. Technology Transfer

The EAGLE grid coce was first released to users in the United States

by the Air Force in April 1987 at a week-long workshop on it use

held at Eglin AFB which was attended by 99 people. A second workshop

and user's forum was held in October 1988. The code, though developed

on a Cray X-MP has now been ported to a number of other systems

including Cray 2, VAX, IRIS, Sun, Apollo, CYBER, and IBM. A FORTRAN

77 standard version of the code has also been produced (Reference

2). This version is interactive from a graphics workstation in

the sense that input commands can be given one at a time and error

messages are given immediately.

d. Documentation

This code was first reported in Reference 27. Full documentation for

both the use of the code and its operation is given in References 18 and
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19. The surface generation part of the grid code :as reported in Refer-

ence 43. The adaptive version, coupled with the Euler solver, was re-

ported in Reference 33. A number of examples of the use of the grid

code have oeen reported in the references listed herein. Reference 45

dis(usses some o ne specifi. techniques used ir the application of the

code.

4. CONCLUSIONS

An essential element of computational fluid dynamics solutions on

general regions is the construction of a grid on which to represent the

"low equations in finite form. The grid must be generated for the

region of interest, and this is far from being a trivial problem. In

fact, at present it can take orders of magnitude more man-hours to

construct the grid than it does to perform and analyze the flow solution

on the grid. This is especially true now that flow codes of wide

applicability are becoming available, and grid generation has been cited

repeatedly as being a major pacing item. The flow codes now available

typically require much less esoteric expertise of the knowledgeable user

than do the grid generation codes.

The construction of structured grids in complicated regions has been

greatly facilitated by the use of composite-block grids in which the

region is broken up into sub-regions bounded by six (four in 2D) curved

sided within each of which the grid is generated separately but with

complete continuity across the connecting interfaces. This continuity

is accomplished through the use of a surrounding layer of points outside

each computational block, with values at the (image) points thereon set

equal to those at corresponding (object) points in the interior of

another (or the same) block.

This then allows both the grid generation, and numerical solutions on

the grid, to be constructed to operate in a rectangular computational

region, regardless of the shape or complexity of the full physical

region. The full region is treated by performing the solution operation

in all of the rectangular computational blocks. With the composite

framework, partial differential equation solution procedures written to
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operate on rectangular regions can be Incorporawd into a cae for

general configurations in a straightforward manner, since tne coue only

needs to treat a rectangular block. The entire physical fieia then caii

be treated in a loop over all the blocks.

The original impetus for using blockea grids .is to simplify te

gridding of complex configurations and to permit the solution of large

problems reouiring many grid points by keeping only the in'ormation

needed to solve one block in central memory while retaining the

information associated with tt. remaining blocks in secondary memory.

Experience exposed a third reason for using olocKed grids, having to c

witti computer cost and/or job turnaround. Supercomputer installations

generally place a high price on the use of central meiiory, whereas th;

use oo secondary memory is relatively cheap. For example, on a CRAY

X-MP/24, the cost increases considerably on commercial machines, and tne

priority decreases considerably on government machines, when more than

two million words of central memory are used. By blocking, the use op

central memory can be controlled, not only to fit the availdble memory,

but also to fit the available budget.

The EAGLE grid generation system (References I-4) is a powerful tool

with which grids can be constructed for general boundary configurations.

This code was designed to be very user-oriented with e"ficlent and eas-

ily recognizable input. This algebraic/elliptic grid generation code was

initially released by the Air Force at a workshop in April 1987 that was

attended by 99 people from aerodynamics, hydroaynamics, electromagne-

tics, and other areas in industry, government laboratories, and univer-

sities. A second workshop on the code was held in October 1988 at which

a second edition of the code was released. The broau range of applica-

tion areas represented among the attendees at these workshops is evi-

dence of the interest in this code and the area of numerical grid gen-

eration in general. This 35,000 line code is made available by the Air

Force to users within the United States as a spin-off of the development

for Air Force applications.
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SECTION IV

RECOMMENDATIONS

1. FLOW SOLVERS

The REDOX code should continue to be exercised and maintained for the

solution of transonic flow about stores. It should also be coupled with

a six-degree of freedom code and used for the computation of actual

store trajectories.

This research led to the aevelopment of stable algorithms capable of

solving the unsteady Navier-Stokes equations on extremely fine grids

that had large aspect ratios. This opportunity to investigate large

aspect ratio cells led to the discovery of certain numerical difficul-

ties when the aspect ratios were extraordinarily large. Further re-

search into numerical difficulties associated with large aspect ratio

cells is in order.

in some regards, computational fluid dynamics is ahead of wind tunnel

experimentation. For example, it has, as yet, not been possible to ob-

tain true unsteady experimental transonic store aerodynamic data. Such

data are desperately needed for code validation. Even unsteady static

pressure measurements on the surface of a simple store con'tguratIon as

it separates, or moves relative to a flat plate would be useful. Compe-

tent experimentalists should be challenged to produce good unsteady

data.

2. GRID GENERATION SYSTEM

Because of the emphasis on composite grids, the tasks of subdividing

the grids, generating surface grids, and providing interfaces have be-

come more time consuming and critical than the task of generating the

interior grids. How a grid should be subdivided depends on the geome-

try, the numerical algorithm used, the flow features, etc. So, given a

limited computer resource, the sub-grids of a composite grid must be

selected with care. This implies a learning process and a need for hu-

man interaction. Like geometry definition, the tasks of sub-griding,
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interfacing, and surface grid definition are being assigned to inter-

active workstations. These are not simple tasks or ones for which

off-the-shelf software is yet available. This is evidently a pacing

area of research in complex grid generation.

Surface grid generation has a dominant effect on the quality of the

volume grid, is very time-consuming, and is in considerable need of im-

provement in regard to the specification of bounaary data sets and the

interactive manipulation thereof. Surface definition continues to be a

pacing problem. More emphasis should be put on the development of CAD

geometry tools especially suited to the needs of CFD.

The topological definition of the block structure requires

considerable experience and is difficult to teach. There is a need for

automation of this process, perhaps through the use of artificial

intelligence or other means.

The critical need for graphical interaction, especially in regard to

surface grid generation, block definition, and grid control is evident.

Codes should have an efficient and effective user interface witn

error-checking and on-line instruction. The process of grid generation

for complex configurations still requires too large an amount of

man-time.

It appears now that the theoretical developments necessary for

effective grid generation are largely in hand, but that a very large

amount of effort is still needed in the efficient implementation of the

processes.
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