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5.1 Executive Summary

The NAIC-affiliated Al group at the University of Massachusetts has completed a number of
projects this year in the area of intelligent interfaces. These projects have made important
contributions towards our goal of supporting cooperating users in their interaction with a
computer and tutoring them about the expertise residing in the knowledge bases they are
using. Our research has concentrated on issues in planning, plan recognition, knowledge
representation, knowledge acquisition, cooperative and distributed problem solving, and in-
telligent tutoring. Advances in each of these areas are essential for a system to be able to
understand the goals of a user, relate these goals to other users' goals, formulate plans to
accomplish the goals, and successfully execute these plans in interactive environments. We
have emphasized the importance of techniques that can deal with open-ended domains where
the actions of agents are not completely predictable but are generally purposeful. We feel
that domains with these characteristics are found in many important applications.

In the area of planning and plan recognition we have completed implementation of a new
plan recognition formalism (GRAPPLE) that provides a hierarchy of procedural descriptions
or plans specifying typical user tasks, goals, and sequences-of actions to accomplish goals.
Included within this formalism is a framework for meta-plans and first-principles knowledge.

We have also built a testbed system (POLYMER) for developing replanning, negotia-
tion, and knowledge acquisition techniques. Exceptions that occur during interactive plan
execution are handled by constructing explanations from the current knowledge base and
then using this structure as the basis for negotiation between affected agents. This approach
can be viewed as a special case of explanation-based learning. Another important aspect of

knowledge acquisition is the design of interfaces based on cognitive models of the way people
view their activities. A prototype system based on this idea has been started this year. We
have also started research on how cooperative agents can negotiate to resolve conflicts in
their viewpoints.

Several dissertations were completed this year. One was a Ph.D. thesis on knowledge
acquisition. This thesis developed the idea of assimilating new knowledge with similar knowl-
edge already in the knowledge base. An M.S. project was completed that developed a schedul-
ing system for representing and reasoning about time. Another Ph.D. thesis, that produced
an object-oriented graphic interface for decision support, is in its final stages of preparation.
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Also this year, we designed and began implementation of a question/answering system
for qualitative reasoning about complex engineering systems. The system allows a user to
design and build environments to teach concepts such as statics, thermodynamics, and kine-
matics. Building these interfaces required extensive knowledge engineering with educators,
psychologists, and physicists.

In sum, this year we have seen the completion of several projects, continued development
of others, and the beginnings of still others in the area of intelligent interfaces. This work
represents a major advance in a number of areas with regard to the previous year.

5.2 Introduction

The NAIC-affiliated Al group at the University of Massachusetts has been working on de-
velopment of interfaces that support cooperating computer users in their interactions with
a computer. These interfaces contain knowledge about typical methods used by people to
achieve tasks as well as knowledge to recognize their plans, help them complete their task,
and provide explanation in support of their activities.

To be approachable and informative, an intelligent interface must be able to understand
what the user intends and to rectify the user's misunderstandings gracefully. It must both
justify its performance and facilitate its own modification. Preferably such an interface should
have command of several communications media, including natural language, programming
languages, and graphics, and use these media where they are most appropriate. Needless to
say, no current interfaces are capable of this range of communicative skill.

The mechanisms we have built facilitate a user's ability to interact naturally with a
system and they improve the computer's ability to describe its own actions and decisions in
a clear and user-centered manner. We have concentrated on several major tres of intelligent
interfaces, including planning, plan recognition, knowledge representation/acquisition, and
cooperative problem solving. This report describes work in each of these four areas.

5.3 Planning and Plan Recognition

Planning is the process whereby a system uses an explicit list of preconditions and goals to
execute actions. Planners can take many forms, e.g., they can be hierarchical, -cript-based
or opportunistic. We are developing sophisticated planning systems to dynamically recognize
and deal with exceptions from expected plans [21 and to specify complex exception-handling
strategies through meta-plans [8].

Plans specify a hierarchical relationship between data and more abstract views of this
data. Although the form and specification of plans vary with the application domain, plans
are composed of sets or sequences of subplans. For example, a plan for processing a form is
composed of steps for filling the form out and then sending it on to the appropriate office.
In the case of monitoring a vehicle, a plan might be composed of subplans which represent
sets or sequences of radio and radar emissions that identify the vehicle and its purpose.

On the other hand, plan recognition is the interpretation of data in terms of instances
of particular plans. As such, it is distinguished by reliance on incomplete and uncertain
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knowledge. It involves the interpretation of sets of subplan instances as (perhaps partial)
instances of more abstract plans.

Plan recognition is a complex and uncertain process. Often there are multiple, ambiguous
interpretations for each subplan or sequence of subplans. Data may also be missing, uncertain,
and/or incorrect.

The prototypical example of plan recognition is the interpretation of a series of actions
as part of some overall task. This ability is relevant to natural language understanding and
computerized intelligent assistants. For example, vehicle monitoring and related situation
assessment problems may also be treated as plan recognition problems. Here, the "plans"
represent vehicle movements or missions and are composed of characteristic sequences of
sensor data rather than "actions." In all, the goal is to form a higher-level, more abstract
view of the data. Stated another way, the goal is to provide an appropriate context within
which to understand the data. A large range of interpretation and situation assessment
problems can be viewed as plan recognition problems.

5.4 A Unified Planning/Plan Recognition Framework

We see planning as a cooperative effort between user and machine. Thus, the individual's
task often cannot be fully automated. Frequently the user and machine must cooperate to
achieve a common goal, which is a task within a plan. We have begun work on POLYMER,
a planning system designed to support cooperative user activities [12]. We intend that the
planner:

" allow the user to initiate planner activity and to invoke the planner for assistance;

" be Interactive or rely on the user to supply control decisions as well as provide missing
information necessary to continue the planning process;

* not be a stand-alone system, but rather accept salient information that guides the
planning process and imposes constraints on further development of a plan.

Realistically, exceptions and interruptions during the execution of a plan are common
occurrences, and an "intelligent assistant" should react to new information as it becomes
available during plan construction and execution. We are building a system that finds expla-
nations for exceptions and adjusts its plans to the understood 'exception' (see next section).
This exception-handler system will be part of the POLYMER system.

The basic cycle of POLYMER for a single user is as follows:

1. A goal is posted by the application (upon encountering a user action).

2. The planner expands the goal into a partial ordering of activities and subgoals, con-
structing the set of actions which can occur next in the form of an eqpected-actions-list.

3. The execution monitor selects an action from the ezpected-actions-list and sends a
message to an active-object (to the user if it is an action which must be performed by
the user, otherwise to a tool object).
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4. The execution monitor compares the actual action taken with the set of actions on the
ezpected-actions-list, and if a match is not found, the exception-handling mechanism is
invoked.

5. Once an explanation has been negotiated successfully (or if a match was found from
step 4 above), control is returned either to: a) Step 3 if more actions remain on the
ezpected-actions-Liat, or b) Step 2 otherwise.

This year we have designed and implemented the knowledge representation, a planner,
and an execution monitor for the unified planning/plan recognition system [121. The key
issues have been the incorporation of an interactive plan/execution cycle and the use of
world" facilities in KEE for dependency-directed backtracking, constraint propagation and

protection interval violation detection. We have begun the definition of a communication
protocol between cooperating agents.

The object-management subsystem of POLYMER contains detailed knowledge about the
domain activities, the objects they create and manipulate, and the people or "agents" who
are responsible for their execution. The activity description language used by POLYMER is
based on formalisms used by other planning systems [3,6,14]. The representation provides
mechanisms to express causality and includes a general looping mechanism for expressing
different forms of iteration. The details of the POLYMER planner and OMS can be found
in [121.

A crucial feature of the project is the emphasis on flexible execution and planning achieved
through powerful exception-handling techniques (see next section). We have begun imple-
mentation of this exception-handling facility as a component of POLYMER.

5.4.1 Exception Handling

A new Ph.D. dissertation has been started which is intended to handle cases when an excep-
tion is'presented to a system's existing plans [2,1]. The motivating force for this work is the
observation that the real world often does not operate in a "typical' fashion. All possible
ways of performing a task goal cannot be anticipated, neither can unexpected contingencies
be predicted. Current planners are too "breakable" in the face of unexpected events.

In addition, intelligent agents are often important parties in plan execution and sources of
knowledge for refining an incompletely specified domain. Similarly, agents perform purposeful
actions; their behavior is seldom random. Previous systems have not tried to understand
"erroneous" agent actions within a planning framework. Replanning is often a reactionary
approach that is not sufficient for sophisticated explanation of unusual occurrences and the
corresponding modification of plans.

In response to these characteristics, we are building a "flexible" intelligent assistant to
help agents perform tasks. The system should go beyond *reactionary" approaches when
encountering unexpected events or states, and should attempt to understand the possible
Intent behind exceptions and how these exceptions might be incorporated into a consistent
plan. This work constitutes an attempt to bridge the gap between the knowledge used to
guide system behavior, and that used to guide the agents' behavior. The eventual goal is
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to have the system's model of the domain more closely approximate the intelligent agents'
model of the domain.

The overall goal of this work is to develop a planning architecture that is robust when
encountering unanticipated contingencies. [In other words, our planning system will "reason"
about exceptional occurrences as they arise, and will include them as part of an evolving plan
whenever possible. In addition, we hope to show that future system performance can benefit
through exception handling, specifically, that the system can acquire new knowledge about
performing domain tasks as the result of an exception.

The basic notion guiding our approach is to use the class of a detected exception together
with a heuristic determination of user intent, to select among a set of strategies which attempt
to discover a role for the exception in the current plan, if one exists. Otherwise, the system
will attempt to negotiate directly with responsible agents in an effort to require additional
explanatory information, or replan if necessary.

The system we are building, called SPANDEX, is based on POLYMER and includes
additional modules to address exception handling. Exceptions are detected by the execution
monitor and classified by the exception classifier. Violations in the plan caused by the
introduction of an exception are computed by the plan critic. Exceptions generated by
unknown agents (generated by world in the diagram) are handled by the replanner. The
replanning approach we have adopted is similar to that of [15], where one or more of a set of
general replanning actions is invoked in response to a particular type of problem introduced
into a plan by an exceptional occurrence. For interactive planning, we extend the set of
general replanning actions to include the insertion of a new goal into the plan.

Our goal is to show that this approach produces a planning system that is less brittle
and more efficient than previous planners which adopt a simpler replanning approach when
encountering exceptional occurrences. Finally, we hope to demonstrate that this approach
produces a system which "learns" about alternative ways to complete task goals, and is able
to use this new knowledge during future planning activities.

5.4.2 The GRAPPLE Plan Recognition System

This year we implemented a second generation intelligent interface, GRAPPLE (Goal Recog-
nition and Planning Environment). This system was discussed in depth in Section 5 of the
RADC NAIC 1986 yearly report. It is also detailed in [9]. It will only be summarized here.

GRAPPLE incorporates state-based information and uses meta-plans and reasoning from
first principles. It follows the classical planning formalism: A goal is specified as a partial
state of the semantic database. A goal can be decomposed into aubg oel, each of which also is
expressed as a semantic database state specification. Achievement of all the subgoals, along
with the posting of the effects of the plan, should lead to satisfaction of the goal of the plan.
Effects can be expressed in high-level as well as primitive plans, allowing for the expression
of complex semantic changes to the semantic database.

A state-based approach to plan representation provides the system more modularity. For
example, in the software development environment, if one of the subgoals for a plan is to have-
more-dik-upace, a number of plans may be retrieved that achieve this subgoal; for instance:
delete.a-fdle, purge-directory, and increase.-quota. The multiple possible plans need not be
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specified statically; they can be determined dynamically in order to exploit the rich sources
of contextual knowledge at runtime. Representing goals as states in GRAPPLE also allows
the interface to avoid a potentially redundant execution of a plan. If a plan has a subgoal
which is already satisfied, then no plan need be executed to achieve the subgoal. The overall
ordering of the plans that can achieve subgoals of a complex plan is determined dynamically
by monitoring the satisfaction of preconditiona. The state-based approach thus allows for the
easy addition and removal of plan definitions from the plan library, without necessitating a
recompilation of all the plans and their subgoals.

5.4.3 Meta-Plans and First-Principles Knowledge

Two problems arise due to the limits in the representational adequacy of existing hierarchi-
cal plan formalisms. The first problem concerns the adequacy of operator definition. The
difficulties here include capturing such relevant domain knowledge as how to recover when
an operator fails or when to use special case operators. We provide a solution based upon
defining meta-plans that dynamically transform plans. The second problem lies in the scope
and role of the domain state schema. Schema can be extended to encompass a deep model
of programming process knowledge. Non-monotonic reasoning and first-principles knowledge
are used to compensate for partial knowledge of the extended state.

We have demonstrated both these features in our use of the GRAPPLE planning for-
malism to describe a plan-based approach to the process of programming [8]. The types of
support that can be provided include generation of agendas and summaries of process status,
detection and correction of process errors, and cooperative automation of process activities.
In this plan-based approach, knowledge of programming processes are expressed as operators
defining the legal actions of programming, together with a state schema defining the predi-
cates that describe the state of the programming world. A plan is a partial order of operators
(with all variables bound) that achieves a goal given an initial state of the world. The al-
gorithms for monitoring programmer actions are the algorithms of plan recognition, where a
plan to achieve some goal is identified incrementally from sequences of actions performed by
the programmer. The algorithms for carrying out a programmer goal are the algorithms of
planning, where a partial order of operators is generated to achieve the stated goal.

The success of a plan-based approach is dependent on capturing knowledge of the complex
programming process in a planning formalism. We have shown that two techniques (meta-
plans and non-monotonic reasoning) can be used to significantly extend representational
power. We have looked at what programming goals are, how individual tools are used, when
special cases arise, how to recover from different types of failures, and what first-principles
knowledge is relevant.

The programming process laws are captured in axioms applying to an extended domain
state, and default rules compensate for the fact that the extended .tate may be incomplete.
The explicit expression of programming process laws allows reasoning from first principles.
That is, no set of rules specifically addresses legal choices of baselines as an independent issue.
Rather, there are rules that relate this choice to a deeper model involving specifications, and
additional rules that allow reasoning within this deeper model. The nature of the default rules
determines the degree of certainty in this reasoning; with a suitable set of default rules, the
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interface will occasionally draw faulty (but correctable) conclusions, as a result of reasoning
independently from the programmer with incomplete information.

Transformations are operations on some world state; in this case, the world state is the
plan network. Therefore, such transformations can be formalized as meta-operators and
synthesized into meta-plans. This approach has the desired generality; it also adds to the
role of meta-plans, which have previously been used to implement control strategies and
capture domain-independent knowledge. The primary advantage of meta-plans is the power
of having expressive generality in a single formalism, as compared with a collection of ad
hoe operator language extensions for each encountered exception. Any aspect of an operator
definition (such as preconditions, subgoals, constraints, or effects), as well as any aspect of
an operator instance (such as bindings of variables or ancestor operator instances) can be
accessed or modified. The transformational approach also addresses practical problems in
providing a complete library of operators. Because knowledge of exceptions is partitioned
from knowledge of normal cases, the two issues can be tackled separately. The process of
writing operators is further improved because multiple transformations can apply to a single
operator, thereby preventing combinatorial explosion in the numbers of operators.

5.5 Knowledge Acquisition

Though planners and plan recognition systems have been around for more than a decade, few
planners are in use outside research laboratories. This is because of the high cost (time and
money) of building customized plan libraries and the difficulties in updating plan libraries. A
crucial problem here is the discrepancy in background an., expertise of the domain expert, who
might be a secretary, clerk, bookkeeper, or manager, and the knowledge engineer. Frequently,
the communication between these two is distorted and obstructed. Additionally, constant
changes in the tasks, task assignation, and general organizational structures require updates
and changes in the plan libraries. In such cases, programmers and knowledge engineers have
to be called upon to modify the system.

We need solutions that will make the benefits of planners accessible to applications in
the real world. These solutions include knowledge acquisition systems that can facilitate
codification of human expert knowledge into the knowledge base of a system. We have
worked on two such systems this year, both Ph.D dissertations, and describe them in this
section.

5.5.1 Dialogue Mechanism for Domain Knowledge Acquisition

This year a Ph.D. dissertation was completed that performed knowledge acquisition by en-
gaging an expert in a dialogue about which of several interpretations of new knowledge are
intended to be included in an existing knowledge base (11]. This work was described in detail
in Section 5 of the RADC NAIC 1986 yearly report. It will only be summarized here.

Knowledge acquisition requires an understanding of how information to be incorporated
into the system corresponds to information already known by the system. We built a system,
called KnAc that modifies an existing knowledge base by using heuristic knowledge about the
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knowledge acquisition process to anticipate modifications to the existing entity descriptions.
These anticipated modifications, or expectations, are used to provide a context in which to
assimilate the new domain information.

An often overlooked aspect of the knowledge acquisition process is the assimilation of
information presented by the domain expert into an existing knowledge base. The knowledge
engineer's task is modification of the expert system's knowledge base so as to reflect the do-
main expert's knowledge. To a large extent, this knowledge acquisition task may be viewed
as a recognition problem. All of the problems facing other recognition systems are present
here, including: noisy data (i.e., incomplete or inaccurate information), ambiguous interpre-
tations, and the need to produce intermediate results before all the data is available. Thus, a
significant portion of the interactive knowledge acquisition task is a matching problem: How
does the expert's description of the domain correlate with the description contained in the
knowledge base? How should the knowledge base be modified based on new information from
the expert? What should be done when the expert's description differs from the existing one?
KnAc implements this knowledge assimilation approach to knowledge acquisition.

5.5.2 An Acquisition Language for Specifying Constraints

We have begun work on a Ph.D. dissertation in the area of knowledge acquisition [131. This
system will update specification of plans through direct manipulation of interface icons and
use of a visual programming language.

This research work takes a Cognitive engineering approach to the problem of designing
an interface for the acquisition of planning/plan recognition data. Cognitive engineering is
the technical application of results and methods from Cognitive Science research, the domain
of inquiry that seeks to understand intelligent systems and the nature of intelligence.

We have investigated a theory of the human representation of action-oriented tasks and
have applied this theory to Al-planners. The model addresses those syntactic elements that
appear in the plan language of the Al-planner, including: the goal of the plan, the effects of
the application, the preconditions, the objects and the actors involved in the actions, and the
constraints among objects and/or objects and actors.

In computational terms, many representations are effective for representing plans. For
example, frames are equally good in representing actors, objects and actions. The slots of
the frames hold the values of these entities. Production systems have also been used to
describe plans. We focus our work on the explicit treatment of constraints, goals and effects,
or the formation and representation of any of those three. We take a hybrid approach to the
problem of knowledge representation and combine several systems and deal explicitly with
goals, constraints and effects.

Our goal is to implement an interface based on a plan specification language that can
be handled by novice users, and that requires only a minimal amount of time to be learned.
The language needs to be understood by a user who just looks at the code and explores its
features. We are attempting to attain tF.is objective by considering the human representation
of tasks and applying principles of direct manipulation to the "translation process" from
human knowledge to computer information.
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All elements of planning languages have to be addressed in this process. Our plan spec-
ification language is intended to be a syntactically complete substitute for traditional plan
language. Though plan languages of traditional systems differ in some aspects, they share
the common concepts described above.

Our plan language addresses constraints among the actions and objects involved in a
plan. These constraints differ considerably from static consistency constraints. Constraints
in plans are dynamic. They govern temporal bindings and restrictions. Like preconditions
they are usually expressed by prepositions. We handle dynamic constraints in a dynamic way
by letting users make constraints among elements of the plan rather than by stating these
constraints in a global expree ion.

5.6 Focus-of-Control Issues

Work is in progress as part of a Ph.D. dissertation to investigate evidence-based plan recog-
nition as a focus-of-control mechanism in plan recognition systems [41. The current work
develops a system that will address a frequent problem of existing plan recognition systems,
namely their inability to understand and interpret the evidence behind plan recognition de-
cisions. A plan recognition system of any sophistication and generality must be able to meet
certain requirements. It must:

1. Evaluate the level of belief and uncertainty in alternative interpretations.

2. Understand the reasons for beliefs.

3. Revise interpretation hypotheses as information accumulates.

4. Handle uncertain and incorrect data.

5. Integrate data from multiple sources.

We are developing a new approach to plan recognition which has these features. The key
to this approach is to view plan recognition as a process of gathering evidence to manage
uncertainty. In this way we are able to apply expert-level heuristic control knowledge and to
evaluate alternative interpretations.

In the proposed system, data is considered as a source of evidence for the plan hypotheses:
when data can be interpreted as part of a hypothesis it provides evidence for that hypothesis.
Evidential links are maintained between data and hypotheses the data supports. This pro-
vides the system with an explicit representation of the reasons to believe the interpretation
hypotheses. The use of an explicit, symbolic representation of evidence is important because
it makes possible explicit reasoning about control decisions.

By explicit, symbolic representations for evidence, we simply mean that we maintain ex-
plicit links between hypotheses and the reasons we believe the hypotheses. For example, when
dealing with vehicular monitoring, sources of evidence include terrain and weather informa-
tion. Access to det -led information about the evidence makes it possible for us to make use
of an important body of expert-level knowledge about the task: the sources of uncertainty in
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the evidence. In plan recognition, evidence is rarely conclusive. The sources of uncertainty
represent the reasons why evidence may fail to support a particular conclusion. For example,
acoustic sensor data may fail to support a vehicle because it is actually the result of a sensor
malfunction or sensor ghosting. Using this evidence, the control component can reason about
the best course of action for the interpretation system to take because it understands the
purpose of its actions: to try to resolve the sources of uncertainty in the hypotheses. An
independent, explicit representation of the evidence also makes it possible to represent the
relations between the hypotheses. Thus, though direct evidence for a hypothesis may not be
available, there may be sources of evidence for related hypotheses-like alternatives.

Knowing what evidence supports hypotheses, we can understand the sourcea of uncer-
tainty in the evidence and decide how best to resolve them. When evidence is summarized
in numeric degrees of belief, access to this sort of knowledge is lost.

We are building a system in which the system has access to the reasons for its beliefs in
order to reason intelligently about control decisions. Evidence provides uncertain support for
a hypothesis because there are conditions under which the evidence may fail to support the
hypothesis. Numeric rating functions gathered from experts typically summarize just such
knowledge-along with a priori likelihood judgements. Explicit information about the uncer-
tainties in evidence is a type of knowledge that we feel is very important for the development
of more sophisticated Al systems. It allows us to evaluate belief dynamically rather than
having to rely on a priori likelihoods since it is now possible to enumerate the sources of un-
certainty in evidence and to judge their likelihood in the current contexts. Control decisions
can be directed toward gathering the best evidence to resolve the most critical sources of
uncertainty. That is, we can manage uncertainty rather than just trying to resolve it because
we understand exactly what the sources of uncertainty are, which are most critical, and what
evidence is best. This applies whether or not the system can interact with its environment
to affect the evidence it has available. In any case, the system can direct its actions towards
best satisfying its goals given the evidence it has available.

5.7 Cooperative Problem Solving

We are working on several systems to provide an environment for cooperative problem solving
between intelligent agents. As part of these systems, intelligent agents (whether human or
machine) will be able to exchange reasoning information and knowledge, will be assisted in
making cooperative decisions, and will be able to learn new material, input by other agents.
These projects are described below.

5.7.1 A Framework for Multi-agent Planning

The POLYMER system described earlier is being used as a testbed to study processes of
cooperation and negotiation in a plan-based environment. This research has only just started,
but we are concentrating on the use of the explanation structures developed by the exception
handler as a basis for negotiation. We expect to implement some version of this this year.
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5.7.2 A System for Decision Support

A Ph.D. dissertation which provides graphical aids for decision making is nearing completion.
The system was described in detail in Section 5 of the RADC NAIC Annual Report 1986
and will only be summarized here.

ThinkerToy is a graphical environment for modeling decision support problems. It pro-
vides a tableau on which problems, such as landscape planning, service scheduling, and sta-
tistical analysis can be modeled and analyzed. It uses graphical icons, each associated with
physical properties, to replace mathematical relationships and properties. In this system
every object is a graphical entity and is directly manipulable. The system allows modeling
of scalar objects, arrays, charts, and terrain maps.

5.7.3 Cooperative Problem Solving

Work has begun on a Ph.D dissertation about the interactions between distributed and
cooperating knowledge-based systems. In this work, each system is considered an "expert"
and each is fairly autonomous but works within a network on a global problem. The areas
of expertise of the systems may overlap. The focus of this work is on the negotiation of
agreements between experts who propose conflicting solutions or partial solutions.

As there is often no way to make a global evaluation of solutions, the negotiation process
must itself be distributed among the experts. This work will evaluate both compromise
agreements and agreements that propose novel solutions in which both parties offer proposals
that differ significantly from the initial one.

5.7.4 Representing and Reasoning about Time

A master's thesis was completed this year that implemented a system to maintain a personal
schedule. The system schedules events, bumps events and reschedules events. It takes into
account the ranking of people involved in an event, ongoing projects affected by the event,
the status of ongoing projects, distances traveled, preparation time needed, and the personal
preferences of the user. The user gives the system an event to schedule, specifying the time
period, and the system uses the above constraints to schedule the event.

The system was meant to demonstrate the interaction of various types of considerations
that figure into scheduling decisions. It does not optimize the use of any of the data.

5.7.5 Intelligent Tutoring Systems

We have designed general purpose techniques for managing discourse in an intelligent tutor
1161. These techniques are being implemented in structures that dynamically reason about a
tutor's response to the student and that customize its generation of examples to the individual
student. The structures are flexible, domain-independent, and designed to be rebuilt, i.e.,
decision points and machine actions are intended to be modified through a visual editor
[17,181.
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The goal is to have the system respond fluidly to the user and to coordinate its utterances
in a more flexible manner than has been required for question/answer or summarization
systems.

We have also implemented a mechanism that enables a tutor to retrieve and modify
examples, tailoring them to the idiosyncrasies of the student and the curriculum.

The tools enable the tutor to make two kinds of control decisions: high-level decisions
determine which strategy to use in responding to the student and low-level choices that
determine which example to select next. Both control decisions are based on reasoning about
the student's knowledge, the discourse history, and the curriculum.

Decisions at the high level begin or terminate a teaching control strategy; a terminated
strategy is replaced with a more appropriate strategy if the student's response pattern has
changed [19. For instance, if a student shows evidence of misunderstanding an unfamiliar
situation, the tutor might replace the current strategy with the bridging analogy strategy,
which bridges the conceptual gap from the complex situation to a simpler and known one. A
library of such strategies will ultimately be available to the tutor along with reasons why it
should move from one strategy to another.

Decisions at the low level choose which example to present next. For instance, if the
student has made many errors, the tutor might present an example that differs only slightly
or perhaps only along a single dimension, from the prior example. On the other hand,
another situation might require presentation of a more complex (or more rich or more simple)
example. The specification of an example may include questions and problems presented to
the student. We intend to generalize the example generation mechanism to attempt to handle
all tutor-initiated interactions with the student.
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Abstract: We describe an architecture for providing intelligent assistance to the

programmer carrying out the process of programming. This architecture, based

on an AI planning paradigm, can provide both passive and active assistance.

Passive assistance, accomplished by plan recognition, is used to detect and avert

process errors. Active assistance, accomplished by planning, is used to automate

the programming process. A key issue in achieving appropriate levels of

assistance is the ability to capture complex domain knowledge in a planning

formalism. We illustrate two limitations in traditional hierarchical formalisms, and

present solutions based on the use of reta-plans and non-monotonic reasoning.
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1.0 Introduction

Development environments of today provide little assistance to the programmer with the
process of programming. The tasks of mapping programming goals into sequences of tool
invocations, revising plans when results are not as expected, and performing the required
- but mundane - housekeeping chores such as file management are carried out with only
rudimentary support. As new techniques are developed to automate some part of the
process, new tools are created or existing tools expanded. This leads to a situation where,
by definition, the process of programming comprises all the activities that cannot be fully
automated.

Even when full automation of the process is precluded, other forms of assistance are still
possible. Two approaches, based upon reasoning about the programming process, appear
promising. In one case, the programmer retains the initiative for performing the process,
issuing commands exactly as at present. A passive intelligent assistant monitors these
actions, measuring them against its (extensive but still incomplete) knowledge of the
process. In this mode, many types of process errors could be detected and averted. Such
an assistant would be an automated version of a colleague watching over the shoulder of a
programmer at work. In the second case, the programmer relinquishes control to the
intelligent assistant, specifying only goals to be achieved rather than the detailed commands
by which they are to be achieved. Here, an active intelligent assistant plans and executes a
sequence of commands using its knowledge of process actions; since its knowledge is
incomplete, the programmer must supply certain decisions which are beyond the scope of
the assistant. In this mode, a cooperative automation of the process is achieved.

1.1 Architecture for Intelligent Assistance

We have designed an architecture (diagrammed in Figure 1) that combines both of these
forms of assistance in order to provide the programmer a very powerful and flexible
support environment. Our approach is based on the use of Al planning techniques, which
offer a well-developed framework for reasoning about sequences of actions. Previous
applications of planning to software engineering have addressed the plans that underlie
programs [9,21]. When applied to the programming process, planning technology
represents one possible route towards "process programming" [14], a concept that is the
subject of current debate [11]. The GRAPPLE plan-based system that we are currently
developing [2,7] builds upon earlier work in intelligent assistant architectures [1,3,5,6].
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Figre 1: Architecture for
Intelligent Assistant
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Under a planning paradigm, knowledge of the process is expressed as operators defining
the legal actions of programming, together with a state schema defining the predicates that
describe the state of the programming world. A plan is a partial order of operators (with all
variables bound) that achieves a goal given an initial state of the world. The algorithms for
monitoring programmer actions are the algorithms of plan recognition, where a plan to
achieve some goal is identified incrementally from sequences of actions performed by the
programmer. The algorithms for carrying out a programmer goal are the algorithms of
planning, where a partial order of operators is generated to achieve the stated goal.

A major benefit of this approach is that the intelligent assistant is domain-independent.
Changing the library of operators and associated state schema is all that is needed to
accommodate alternative programming processes, different toolsets, and project-specific
policies. Enlarging the library of operators allows coverage of additional life-cycle phases
(and the all-important feedback loops among phases). The intelligent assistant can act at the
operating system command level and/or within a complex tool (by considering the
functions provided by the tool to be tools themselves.)
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1.2 Processes as Plans

As a test domain for this intelligent assistant, we are exploring the programming process as
it is currently carried out for a traditional programming language such as C, at the command
level under an existing operating system (UNIX"'), assuming accepted engineering
practice (including incremental development, source code control, bug report database, and
specialized test suites). A partial library of operators for this domain is sketched in Figure
2; these operators have been simplified for purposes of this example, but serve to indicate
the general nature of the approach. The state schema supporting these operators is
(partially) sketched in Figure 3, using the entity-relationship model of data [4] as the
graphical presentation; relationships and attributes correspond to the logical predicates used
in the operator definitions.

The operator definitions follow standard state-based, hierarchical planning approaches
[ 16,18,23]. In a state-based approach, each operator has a precondition defining the state
that must hold in order for the action to be legal, and a set of effects that defines the state
changes that result from performing the action. These coeclauses are augmented by a goal

UNIX is a registered trademark of AT&T Bell Laboratories.
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FIGURE 4: Example Hierarchical Plan Network
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achievement of certain states is partially ordered with respect to time. Some orderings are
dictated by the operator definitions: precondition states must always precede subgoals, for
example. Other orderings are imposed to resolve interactions between operators that could
destroy the plan. Orderings are propagated from level to level, but have been omitted to
simplify the figure.

Both planning and plan recognition involve building a complete plan network. This is done
by actions such as choosing operators to achieve states, instantiating these operators, and
resolving conflicts between newly revealed states and existing states. The strength of a
planning approach lies in this ability to handle conflicts that would otherwise destroy a
plan. For example, consider a situation where an operator has a two part precondition,
requiring that both A and B be true, and the only operator available for achieving B also
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achieves NOT A. Any plan that allowed the operator for achieving B to follow the operator
for achieving A would fail, due to this interaction of the operators. A viable plan must
require that the operator to achieve B precede the operator to achieve A. While reordering
operators solves a common type of interaction, other means of conflict resolution have also
been developed [16,18,23].

Planning techniques are needed when the chosen problem representation has rules that are
not decomposable (13], i.e., when solutions to parallel subproblems cannot be tackled
independently and trivially recombined. Some production rule systems assume
decomposability, thus avoiding the overhead of dealing with interactions. While such rule
systems are effective for providing some types of process automation for programmers
(101, interactions such as the precondition example described above cannot be handled.
Deleting files is a simple source of interaction; other interactions arise when multiple plans
are simultaneously in progress, as is often the case with programming work. For example,
when a programmer is both fixing a bug in a customer release and adding new functionality
in the latest version, different directories must be used to separate the two working sets of
source and object modules.

1.3 Assistance from a Planning Perspective

Together, planning and plan recognition make it possible to deliver a broad range of
services to the programmer. The planning perspective suggests ways that the specific
services can be accomplished:

Agendas and Summaries:
An agenda is the set of goals yet to be satisfied in a plan, and a summary is
the set of goals that have been satisfied. Either can be described at various
levels of abstraction, given the hierarchical nature of the plans. Both are
"intelligent" in that the system has the knowledge to interpret what they
mean: for example, a plan for carrying out an agenda item can be
constructed.

* Error Detection:
Three different classes of errors can be handled. Logistical errors represent
faulty planning by the programmer. Examples are executing an action
before its precondition is met, or undoing a previously satisfied
precondition before the relevant action has started. Housekeeping errors
represent errors of omission. Examples are keeping files in the "right"
directories, checking sources back into a source code control system,
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deleting extraneous files, and perhaps adhering to certain project-specific
policies. The final class of errors are substantive software process errors:
for example, violating constraints in operators such as making the wrong
choice of a baseline from which to develop a new system version.

Error Correction:
The error correction facilities amount to an "intelligent" do-what-I-mean
[19]. Types of corrections (related to the types of errors described above)
include reordering actions, identifying missing activities, supplying a plan
to satisfy a required state and substituting parameter bindings that satisfy
required constraints.

Query Support:
Queries as to either the state of the world or the state of the actions can be
handled, since both states are maintained to support planning functions.
Each state represents a "database" of information about current status and
past history.

Cooperative Automation:
The automation itself is achieved by planning. Cooperation is accomplished
by requesting programmer decisions on such issues as what parameter
bindings to use in operators, when to terminate iterated activities, or how to
select among alternative operators.

1.4 Achieving Intelligent Assistance

The architecture we have described is an ambitious one. While planning appears to be an
appropriate framework for reasoning about a process, the key is being able to capture and
utilize all the relevant process knowledge. If too little knowledge is captured, the intelligent
assistant will not be able to deliver substantive support, or the support will be rigid and
ultimately too constrictive to be useful. The challenge arises because the programming
process is at least as complex as any domain previously tackled for a planning application.
And certain aspects, such as the inherent "trial and error" nature of programming and the
fact that the intelligent assistant is not intended to be fully autonomous, are novel.

In the remainder of this paper, we discuss two problems in capturing appropriate levels of
software process knowledge. (In exploring how to represent this knowledge in a planning
formalism, we will also be exploring exactly what the knowledge is.) Both problems are
due to limits in the representational adequacy of existing hierarchical plan formalisms. The
first problem concerns the adequacy of operator definition languages. We illustrate the
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difficulties of capturing such relevant domain knowledge as how to recover when an
operator fails or when to use special case operators, and provide a solution based upon
meta-plans that dynamically transform plans. The second problem lies in the scope and
role of the domain state schema. We show how the schema can be extended to encompass
a deep model of programming process knowledge. Non-monotonic reasoning is then used
to compensate for partial knowledge of the extended state. Finally, we describe the
GRAPPLE project status and present some conclusions.

2.0 Renresenting Software Process Operators

Hierarchical plan systems, based on NOAH [16] and NONLIN [18], have strengths both
in their planning algorithms and in the nature of their operator definitions. When
describing a complex domain, the hierarchical approach is appealing because activities can
be defined at different levels of abstraction, with more or less detail as appropriate.
Another strength lies in the modularity of operator libraries: following the principles of
information-hiding, certain details can be restricted to a small number of operators, and, in
general, operators can be written without knowledge of the other operators in the library. In
complex domains, cases arise where appropriate expressive power is lacking in the basic
operator formalism; attempts to describe certain operators accurately can jeopardize the
library modularity, or fail outright. Consider the following problems.

2.1 Limits on Representational Power

Adding special case operators to a library may require that preconditions or subgoals of
existing operators be rewritten. For example, when testing a system that is intended to fix
certain bugs, the programmer should run the official testcases associated with those bugs,
in addition to those testcases that would otherwise be selected. One solution is to write a
separate operator covering all testing needed when bugs are being fixed; its precondition
restricts its applicability to systems intended to fix bugs. Now there are two operators for
testing that are intended to be mutually exclusive. Therefore, the normal operator for
testing must specify in its precondition that it is not applicable to cases where bugs are
being fixed'.

t One could institute a fixed preference strategy to select the operator with the most specific
precondition that can be satisfied. However, in general this is overly restrictive - it would
prevent a car buyer from financing his purchase by selling stock to raise funds because
takine out a car loan is the most narrowlv aotolicable ooerator.
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In other situations, existing operators must be rewritten in artificial ways. Consider testing
a system that is about to be released to a customer;, such testing should include running the
testcases in the regression test suite2 (again, in additional to normally selected testcases).
The precondition for this special operator concerns the existence of a goal to release the
system; while the goal formula is expressible using domain predicates, the fact that a goal
with this formula is currently instantiated is not expressible in domain terms. The only
recourse is to write separate operators with artificially different goals. Then, operators (like
build) that have testing subgoals will be affected. Thus, the designer of the operators must
produce not only a normal test operator and a test-for-release operator, but also a normal
build operator and a build-for-release operator, to ensure that the right type of testing is
performed in all cases.

Expressing special cases with this brute force approach, already attended with
disadvantages, breaks down entirely when multiple special cases affect a single operator;,
the combinatorics are intolerable from the designer's perspective. Special cases are not
guaranteed to be simply additive with respect to the normal case. At worst, separate
operators must be provided for all combinations of special factors.

In dealing with recovery from operator failure, there are problems both in connecting the
right recovery operator with a failure situation, and in simply expressing the recovery
strategy itself. Sometimes special operators are used for failure recovery, and only for
failure recovery; for example, one of the actions for dealing with a compilation failure due
to bugs in the compiler is to report the compiler bug. Report-tool-bug can be written as an
operator, but how will such an operator get instantiated? Missing are the constructs
indicating what goals (and therefore what operators) should be instantiated when a failure
occurs. At other times, the recovery strategy may involve executing some normal operator
in a special way. If the build operator fails because the system being built is faulty (as
would be the case if the linker detected programming errors), then one recovery strategy is
to restart the build process using the faulty system as the baseline from which to edit.
Expressing such a strategy requires access to the variable bindings of operator instances;
again, this is beyond the scope of domain predicates.

2 Regression testing is performed to ensure that bugs have not been introduced into
functions that were previously shown to work correctly.
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2.2 Extending Representational Power

The ideal solution would be a single formalism that significantly extends representational
power. In the past, limitations have been tackled on a case-by-case basis, introducing
special operator-language constructs for each case. McDermotts policies [12] and the error
recovery language of SIPE [24] are two examples. What if we abandon the notion of pre-
defining all operators, and instead applied transformations to instances of operators within
a plan to create variations in response to special circumstances? Transformations are
operations on some world state; in this case, the world state is the plan network.
Therefore, such transformations can be formalized as meta-operators and synthesized into
meta-plans. This approach has the desired generality; it also adds to the role of meta-plans,
which have previously been used to implement control strategies [17] and capture domain-
independent knowledge (221.
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2.3 An Example

Consider a transformation that implements the requirement to do regression testing before a
release. When expressed precisely, the transformation affects an instance of test occurring
as part of the expansion of release. To be entirely safe, one additional restriction should be
given: that the system being tested is the same as the system being released. This will
allow other testing instances to occur in the same expansion (such as running a testcase to
help decide what editing changes are needed), while ensuring that regression testing is
required on the right one. Expressing this condition requires access to the dynamic
correspondence between the variable names used in the two operators. The BEFORE case
of Figure 5 shows one situation in which this transformation is applicable.

Assuming the test operator of Figure 2, the effect of the transformation is to add an
additional subgoal to run the regression test cases. The formula defining the new subgoal
is supplied explicitly in the transformation - it need not have appeared previously in the
plan network. Only the one operator instance is modified; the basic operator definition for
test is unchanged. The results of applying this transformation are shown as the AFTER

Figure 6: A Meta-Operstor Example

METAOPERATOR rogre1slone A u..

GOAL appiemgd-Weegios -otoieInsme, ?hmt.op)

PRECOND In9unco.of(?t.top, test) AND
meta(?t-op, ?d-op) AND

uIu..sf of(?rln-op, nefsou) AND
mrn-.dpa -lnme(systm, ?r.,,

s ysln, ?le*op) AND
NOT applod-to(rUrson.boforo-re e, ?tst-op)

EFFECTS NEW *tue-4tano ?rogrnoi
NEW eukgoelwntry ?rsgrwbgoe
NEW iterant spe ?ftwte-info
ADO pwt-of(?regrIone, ft.-op)
ADO Inutmnwe.oI(?mrWenIon, ?me ubgo.I
ADo It o(?rgr.eugsul, ?ft.nfW.o)
ADD aurc*(?regrwselo ntmtpbn)
ADD role(?rsgrisoh, subgoa)
ADD pfoec-lofn(?rgrnal , notrotect)
ADO uMlefutio?regremeon, unknown)
ADD formuhl(?rgr-ubgoael,

Wui&en(?Ay~m, ? ,.~ce))
ADO formula(?itwstinfo,

a m @V I- a-i eutergcsse))
ADD applIed-o(rmgresnn-beforo-raem, tntg-p)

5-A-12



case in Figure 5. The transformation is expressed formally in GRAPPLE notation in

Figure 6.

2.4 Power of Meta-plans

The software domain is particularly rich in opportunities for expressing domain knowledge
in transformations. Some additional examples that demonstrate the generality of the
transformational approach are as follows:

In a multi-user system, when the number of users logged-in is below a
certain threshold, then commands may be submitted for foreground
execution rdher than to a background queue. One transformation, applying
to all operators utilizing the background queue, can be written in lieu of an
additional version of each such operator.

* Recovering from failed operators includes the chore of deleting extraneous
files. One transformation could identify certain files created by operators in
the expansion of a failed operator and instantiate goals to delete them. This
transformation applies one change (instantiate a goal with specific variable
bindings) many times (for each selected file).

* The conservative editing style of frequently saving a snapshot of the file
being edited also involves eventually deleting the intermediate snapshots.
This too is a complex transformation, because the deletions cannot be
specified until after the identity of the satisfactory version is known.

SPogamme generally follow a set of rules about how files are allocated to
directories. However, in the heat of activity, a file may be created in the
"wrong" directory. A transformation could trigger on this and instantiate a
goal to move the file to the proper directory. Such transformations
reestablish desirable domain states, in the manner of McDermott's primitive
policies [12].

* An operation copying one file to another is used expressly for the purpose
of preventing conflicts between two subsequent actions, one of which will
modify the file and the other of which will use the original form of the file.
Copy can be written as a normal domain operator, but as in the case of
operator failure, some connection still remains to be made between the goal
of copy and a situation when it is appropriate to instantiate that goal. A
transformation can be written to do this; the precondition for the
transformation is that an adverse interaction between two planned actions
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has been detected. Here a transformation is used to augment the domain-
independent forms of untangling operator interactions by defining a domain-
specific strategy.

A well-established strategy for dealing with the compiler having blown up
when directed to compile at its highest optimization level is to try again with
optimization turned off. If this results in a successful compilation, the
programmer will settle for a load module which is only partially optimized,
even if performance testing was planned. This transformation should both
rephrase the goal to lower the optiization required and instantiate a goal to
repeat the performance testing when a fully optimized load module can be
produced. This is an instance of McDermott's notion of rephrasing a goal
when no plan can be constructed to achieve it.

If editing a source module consists of cosmetic changes only, then an
alternative to recompilation is simply to acquire (and place in the appropriate
directory) the object module of the previous version (assuming no include
modules were also changed). However, it is bad practice to do this on a
final release to a customer. Only by expressing this in a transformation can
we ensure that good practice is followed. In this case the goal is rephrased
to take advantage of special circumstances.

Several projects can share the same generic operator library, if each of them
implements their project-specific requirements as meta-operators. For
example, one project can require that a particular analysis tool be run before
a system build is considered finished, without affecting whether other
projects also choose to use the same tool in the same way.

In summary, the primary advantage of this method is expressive generality in a single
formalism, as compared with a collection of ad hoc operator language extensions. Any
aspect of an operator definition (such as preconditions, subgoals, constraints, or effects),
as well as any aspect of an operator instance (such as bindings of variables or ancestor
operator instances) can be accessed or modified; complete technical details appear in [8].
The transformational approach also addresses practical problems in providing a complete
library of operators. Because knowledge of exceptions is partitioned from knowledge of
normal cases, the two issues can be tackled separately. The process of writing operators is
further improved because multiple transformations can apply to a single operator, thereby
preventing combinatorial explosion in numbers of operators.
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3.0 Renresenting Software Process State

3.1 Towards a Deeper Model

Whether expressed in operators or meta-operators, the knowledge available to the

intelligent assistant is deceptive - it is not as great as it might appear. Achieving

substantive support without rigidity requires a still deeper understanding of the domain.

Consider a simple example. The build operator of Figure 1 contains no constraints on the

selection of the baseline from which a new system version is to be developed. In the
absence of constraints, the intelligent assistant must forgo opportunities for both error

detection and automation; that is, the plan recognizer will not be able to validate a selection

made by the programmer, and the planner will not be able to supply a selection

automatically. The typical situation could be covered by a constraint requiring that the

baseline be the most recent system version. But, use of this constraint results in rigidity

because there are times when the constraint is inappropriate. For example, the current

customer release is the appropriate baseline when making a bug fix for quick turnaround

back to the customer, in order to avoid releasing new code that has not yet been adequately
tested.

In reasoning about the programming process, programmers employ a rich model comprised

of laws that govern and explain what bugs are, how they occur, why and how systems are

built incrementally, and why and how systems consist of modular components. These

laws address both surface knowledge directly observable from primitive actions (as

captured in the domain state of Figure 3), as well as knowledge which is not directly

observable, and may not be readily available to the intelligent assistant. For example,

reasoning about baseline choices involves (among other factors) a notion of purpose: is the

new system version to be main line development or a prototype? When the building of a

new system version starts, its purpose is most likely not identifiable. Acquiring the

missing information by the simple expedient of querying the user is not a solution: it would

be too invasive, and would have the effect of significantly reducing user productivity.

This issue of partial knowledge is not an obstacle to achieving deeper domain

understanding. Rather it presents an opportunity for furthering the goal of having an

assistant that is independently intelligent. After all, programmers regularly give advice to
one another - even though the advisor has incomplete knowledge of the precise state of
the advisee. To capitalize on this opportunity, it will be necessary to do more than
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formalize the programming process laws and make the corresponding extensions to the
domain state. We must, in addition, select reasoning mechanisms that allow plausible
inference in the presence of partial information.

3.2 An Example

As an example, consider a domain state extended by adding a specification entity along
with its attributes and relationships, in order to reason about baseline choices in the build
operator. The extension to the model is shown in Figure 7. There we do not use the term
"specification" in any formal sense, but rather as acknowledgment that every system
version has a set of criteria it is expected to (but may not) meet; these criteria may not even
exist as an on-line textual file, let alone in any more structured epresentation.

The ideas about a specification that we wish to capture are expressed as axioms3, given in
Figure 8. The principal notion is that each specification (except an initial one) is defined in
terms of another specification (using the baseline relationship). If two specifications have
the same baseline, then only one of them can be the main line of development (purpose is

3 Although not mentioned previously, axioms are also given for the basic state schema of
Figure. 3. For example, axioms would be used to require that an object module be
comniled from exactly one source module and that a bugcannot be reported fixed in a load
modiule that predates the load module the bug was frst Tound in. Such axioms are treated
as constraints on values in the world state. If a constraint is violated, then it is an indication
that there is an error in plan recognition or planning, indicating the need to backtrack to
other choices of operators or vanable bindings.
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Figure 6: Some Axioms on Extended State

AI: IF hoo-eps(eyl.specl) AND hae-spec(eyalapeol) THEN Each sy-te has a uniqu apecification.
oqual~ael soel)

AJI: IF bsfoaetpo)THEN Only a ape. which Is extendable and of bInowpie
e&tba( p extindable) AND fuee~peOlomp~e ncie on h e the beesibse of another spec.

A3: IF oo.4 sapeolapeo) AND purpees(apeolmai-dev) THIN The perpese of a "me -0 he Okde" only N he
purpoesepee0.inaln-devl becaine has a proe of mab-dew.

A4: IF belnapoapo)AND purposs(spoollprotetyp.) THEN If the purpoe of a apes Is prototype. thwn amy
purpessiapeol"Prettype) apee for which Nt Is the baseline mest else have

a Purpose of prototype; end. sallorty for a
AS: IF bae 0 spool apesO AND purpoesapelOattlay-ousteor) purpe of stily..ustomr.

THEN purpoesosl1.Astlety-customer)

AII: IF baselns(spssllapeo) AND boslln@sep..2,apeO) I there Is a fork Indwfpsl no More than one
AND NOT equal~spesapsoM THEN branch am have a purpoe of mb-de.
NOT (purpeee~ope..almn-dev) AND purpos*sep**.msht-d~v))

A?: IF basethm(spsellapeoo AND hao-ape.(eyellpecOl) AND The purpose of a epse ganonet be otiy.ese
NOT outmrrlseeelunlse th e yslem of Mo baseline epee was
THEN NOT parpoee(apee1.aet~afy-euoteor) released to the easterner.

AD: IF NOT purpeee(sps1.ma-dev) THEN Only a aPsN abase puee Is min-de am have
luartloo(speol'InoerPh"t) oompleee function.

£S: IF bosae-weraisnfeyelfeyell) AND hae-opso(*yal~apeo) AND If -na systm I the ee-rals. of anoetsr. than
has ap -- yel.pell) THEN bsothnepeelsapeo0) ) the apee of the hat mwst he the baeline of the

@p00 of the seond.

£16: IF perps(sosl~Astlefy-oustoner) AND basolh~espool~spo 9 the Pupose of a spas I* sefMy-ustmer. then
AND hoo-opeo(eyelspeol) AND has-epe.(eyelpc4I No oIt mus et reae IA theD customer as
AND auoso.utmrrfasoe~y)THEN the siosasser to the ays I d ofR baseline spee.

main-dev); only the main line of development can lead to achieving the ultimate
specification (function is complete as opposed to incomplete). If a specification does not
represent a main line of development, then either it is a prototype in the sense of throw-
away code (purpose is prototype) or it is an attempt to make "minor" improvements in the
Current customer release (Purpose is satisf-customer).' Eventually lines of development
that are not the main line will die out (status is deadend as opposed to extendable).

With the introduction of the specification, we have necessarily entered the realm of three-
valued logic (in particular, the strong system due to Kleene, described in [20]). The third
truth value, unknown, is used to represent cases of incomplete information. This is exactly
as expected: while we know that every system version has a unique specification (axiom
Al), we may not know any of the attributes of that specification nor which other
specification (if any) is its baseline.

4 For purposes of this example, we assume that there are no other reasons for foring
development. We fuirther assume that joins do not occur.
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The axioms of Figure 8 are the direct expression of the laws that must be satisfied in a valid
software process. However, they can be viewed from another perspective - as a set of
rules for deducing attributes and relationships of specifications. Unfortunately, from this
perspective, the rule set is deficient: there are cases where the timing of deductions is too
late, and cases of incomplete and non-deterministic rules. Axiom A2 allows the deduction
that a specification is extendable, at the time it is selected as the baseline for another
specification. However, it is preferable to decide if a specification is extendable before it is
selected as a baseline, precisely in order to validate the selection; thus, axiom A2 (the only
axiom dealing with status) fires too late. While there is a rule (axiom A4) for forward
propagation of a purpose of prototyping, there is no rule for determining when the first
instance of prototyping has occurred. Finally, some rules, such as A6, are non-
deterministic, ruling out some choices without ruling in a single remaining choice.

With such a rule set, the intelligent assistant can only record implications of programming
actions; in fact, with this particular rule set, contradictions cannot be identified at all (but in
general, this will not be true). The ability to form independent judgements in a timely
fashion is lacking. This is hardly satisfactory! In order to achieve more aggressive
behavior, the intelligent assistant must make default assumptions about the attributes of
specifications when there is supporting evidence for such defaults. These assumptions
may have to be retracted at a later date when new evidence contradicts the default.

This is exactly the kind of plausible inference which is possible with non-monotonic
reasoning, in particular the default logic of Reiter [15]. In Figure 9 we give some example
default rules that augment the (monotonic) axioms to remedy the problems described
above. A rle of the form A WITH CONSISTENT B YIELDS C 5 means that if A is true
and B is consistent with all other known facts and axioms, then C may be assumed to be
true. For example, the rule D3 captures the notion that any fork in development meant
purely to improve upon the current customer release is likely to deadend after one step; this
default will rule out the choice of this specification as a baseline for another specification
when used in conjunction with axiom A2. The rules D1 and D3 implement reasoning of
the form "X is more likely than Y", while rule D2 implements reasoning of the form "if X
holds, then Z is evidence for Y".

5 We have departed from the standard format for default rules because it breaks down

AMB
when A, B, and C are lengthy expressions. The standard format is:

C
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Figure 9: Default Rules on Extended State

0l: baeellne(epeol,peo0) AND baeellne(epeo2,speco) If there Is a fork In development, starting
AND NOT equal(epeolspea2) AND has-epec(esyO,speO) from a system which wee not customer
AND hae-speo(eyelepeol) AND hae-epeo(*y82,speo2) AND releaed, the msume that the first
NOT oustomer.rleaee(eye) AND poetdat..(sye2,sysl) (chronological) fork It a prototype and the
WITH CONSISTENT purpoee(epeo2,maln-dev) AND econd Is main development. (Generally,
purpoee(epeol prototype) prototyping precedee produotlon develop-
YIELDS purpoee(epecmaln-dev) AND purpoee(epeol,prototype) ment; a purpoe of satisfying the oustomer

Is already excluded by A7.)

D2: baeellne(epoel,speo0) AND baeellnoe(peol,pe0) AND I there Is a fork In development,
NOT equal(epeol,speoo) AND hae-epeo(yes0,epec0) AND starting from a asytem which
AND haeepeo(eyel,epeol) AND hae-•peo(eya2,peo2) AND wee customer relesed. and them Is a bug
ouetomer-refoee(eye) AND paetdate(aye2,ayal) AND reported agalnst that system which has
Im-for(yenIm) AND flmrt-found-In(bugl,lmO) AND high Importance to the Weer, the aeeume
value-to-ouetomer(bugl,orltloal) that the aecond fork hem a purpoem
WITH CONSISTENT purpoee(speo2,estlefy.oustomer) of setisfying the ousaomer, remaining
YIELDS purpose(spel,satlefy-ouetomer) agnostic about the purpoee of the first. (The

existence of euch a bug In "evidence" to
eupport Interpreting the purpoee to be
eatilfy-customer.)

D3: purpose(epel,satlefy-oustomer) A epee whoe purpose Is satlefy-oustomer Is
WITH CONSISTENT tatue(epeol,deadeed) unlikely to be the baeline for another epea.
YIELDS etat ue(epeoldeadend)

Figure 10 shows an example of reasoning with the rules and axioms to reach a
CONCLUSION from a GIVEN situation. In the CONCLUSION, the fact that spec2 has
spec0 as its baseline is due to axiom A9; the facts about the purposes of spec2 and specl
are due to rule D1; and, the fact that specO has a purpose of main-dev is due to A3 (after the
application of D1). If the GIVEN situation were to include the fact that the purpose of
specO is main-dev, then the reasoning would be unchanged, except that A3 would no
longer be invoked. If the GIVEN situation were to include the fact that the purpose of
specO is prototype, then rule DI would be blocked (it is not consistent that spec2 have a
purpose of main-dev when specO has a purpose of prototype, by axiom A3); but in this
case, no default rule is needed because A4 decrees that the purposes of both spec2 and
spec 1 must be prototype.

3.3 Comments

In this simple example, we have shown how programming process laws are captured in
axioms applying to an extended domain state, and how default rules compensate for the fact
that the extended state may be incomplete. The reasoning made possible by this example is
not limited to selecting/validating baseline choices. After a baseline choice is made, we
have, either by monotonic or non-monotonic means, gathered quite a bit of information
about a specification. This information can be used to confirm the choices of test cases and
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type of specification appropriate for the next system version. The synergy is greater when
the laws and state model are extended further. Knowledge can be added about the
computation defined by a load module and the path through that computation taken by a

particular test case. This knowledge can be used to make assumptions about the

persistence of bugs through system versions, the blocking of one bug by another, and
evidence that bugs have been fixed or new bugs found.

The explicit expression of programming process laws allows reasoning fromfirst
principles. That is, no set of rules specifically addresses legal choices of baselines as an
independent issue. Rather, there are rules that relate this choice to a deeper model
involving specifications, and additional rules that allow reasoning within this deeper model.
The nature of the default rules determines the degree of certainty in this reasoning; with a
suitable set of default rules, the assistant will occasionally draw faulty (but correctable)
conclusions, as a result of reasoning independently from the programmer with incomplete
information.

The process laws are not universal to all software processes. Because they capture
constraints to be satisfied if a particular sequence of activities is a valid way to carry out
part of a process, the laws are an integral part of the definition of a process. However,
differences between two processes are more likely to be accommodated by changes in the
operator library than by changes in the process laws. Two very similar processes might
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share the same set of laws, with the differences reflected exclusively in the operator/meta-
operator library, two somewhat similar processes would share many but not all laws; and,
two less similar processes would share only a few laws.

4.0 GRAPPLE Project Status

We are building a testbed for experimentation with the various components of the
GRAPPLE intelligent assistant architecture. An initial version of the plan recognizer has
been implemented; it uses a plan formalism [7] that we have engineered to meet the
demands of complex domains. GRAPPLE is not tied to a particular software environment;
rather, it accepts command streams transcribed from actual terminal sessions or fabricated
for experimental purposes. The implementation runs on Texas Instruments Explorer m

workstations, and is written in Common Lisp and Knowledge Craftm (chosen for its
facilities for context management, object schema, and integrated Prolog features). Efforts
are underway to enlarge the library of software process operators and to implement support
for meta-operators. Our current research focus is on the role of the deep model and
reasoning from first principles.

5.0 Conclusions

We have described a plan-based approach to supporting the programmer carrying out the
process of programming. The types of support that can be provided include generation of
agendas and summaries of process status, detection and correction of a wide range of
process errors, and cooperative automation of process activities. The use of planning
technology has multiple advantages: ability to provide both active and passive support,
separation of domain-dependent knowledge in operator libraries fiom domain-independent
knowledge in the planning algorithms, and techniques for handling destructive interactions
among sub-plans. However, the success of a plan-based approach is dependent on
capturing knowledge of a complex process in a planning formalism. We have identified
two issues in representational adequacy of traditional planning formalisms, and have
shown that two techniques (meta-plans and non-monotonic reasoning) can be used to
significantly extend representational power.

Knowledge Craft " is a trademark of Carnegie Group Incorporated. Explorerm is a
trademark of Texas Instruments Incorporated.

5-A-21



At the same time, we have explored the breadth and depth of knowledge that programmers
have of the programming process. Many examples of this knowledge have been given,
covering such questions as what programming goals are, how individual tools are used,
when special cases arise, how to recover from different types of failures, and whatfirst
principles knowledge is relevant. In showing that a planning formalism is capable of
expressing and utilizing such knowledge, we have demonstrated that a plan-based approach
is very well-suited to supporting the programming process.
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Appendix 5-B

Building Tools for Tutorial Discourse1
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Abstract

We have designed general techniques for managing discourse in an intelligent tutor. These
techniques are being implemented in structures that dynamically reason about a tutor's
response to the student and customize its generation of examples to the individual student.
The structures are flexible, domain-independent, and designed to be rebuilt, i.e., decision
points and machine actions are intended to be modifed through a visual editor. In this
article, we discuss these formal reasoning structures and describe how they are being applied
to improve the response of intelligent tutors for physics education.

1 Reasoning about Tutoring Response

Effective tutoring requires sophisticated and dynamic reasoning about the selection of tutoring

strategy. Choices, such as which path to take through the curriculum and which examples

to generate, will affect the tutor's response to an individual student. Conversational actions

produced by an intelligent tutor and responses from students will change the state of the

discourse, and the tutor must decide dynamically how to interpret and act on student actions.

'This work was supported in part by the Air Force Systems Command, Rome Air Development Center,
Griffie AFB, New York, 13441 and the Air Force Office of Scientific Research, Boiling AFB, DC 20332 under
contract No. F30602-8-C-0008. This grant supports the Northeast Artificial Intelligence Consortium (NAIC).
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Hence a desideratum on the design of an intelligent tutor is that it respond fluidly to the user

and that it coordinate its utterances in a more flexible manner than has been required for

question/answer or summarization systems.

The techniques we have developed improve a tutor's ability to dynamically reason about dis-

course and to refine its selection of appropriate remediation activities such as example presen-

tation or question asking.

For instance, we have developed an example generation formalism motivated by the need to

provide a rich simulation environment to encourage student activity and exploration in new

domains. We want students to manipulate concepts and examples *on many levels, from many

angles, and with facility and spontaneity. [Students] must be able to travel freely through

the environment, to experiment with its items, shift the level of concern from detail to broad

overview and vice versa, and be able to ask questions' [Michner (Rissland), 1978]. In order

to provide such rich simulation environments, we have developed a framework for representing

knowledge, i.e., concepts, examples, and questions, presentations, and rules about using con-

cepts, based on the role that the particular knowledge plays in understanding the domain in

general and the theory behind the domain in particular.

In our systems, a partial ordering is imposed on information such as examplW or presentations

and a way is defined for the tutor to intelligently pass through the space to present this infor-

mation to the student (Figure 1). In this way we support students in testing their intuitions

about the domain. For instance, we can present incrementally more complex or more simple

examples based upon student or tutor request. The epistemology we have developed is not

complete nor exhaustive, yet we believe it begins to provide knowledge about those elements

in a domain that are used when experts do their work and when they explain their knowledge.
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Figure 1: Spaces Defined as a Partial Ordering on Objects

In the past, networks and production rule formalisms have been used to identify admissible in-

structional strategies and examples (e.g., Cerrn & Breuker, 1981; Clancey, 1982). However, such

formalisms were often domain-dependent and restricted to a narrow set of didactic responses.

The process models we have developed are domain independent, ideally enabling a tutor to

transition from one domain to another. The mechanisms allow the tutor to move between

situations dynamically, to track discourse contingencies, and to consider discourse alternatives.

The knowledge bases and control structures we have built are modular, object-oriented, and

extendable; they are designed to be rebuilt.

Fundamental to our perspective is the view that tutoring -conversation and the presentation

of examples are motivated by general rules (principles) of tutoring and discourse. Such rules

are incompletely understood; they are the focus of attention for many researchers, including

ourselves and others [Murray et al., submitted AIED Journal; Clement, 1983; Grosz & Sidner,

1985; Reichman, 198.5 1. Cognitive results from such studies are being used to inform the

process models we build. They also serve as a basis of our theory of tutorial discourse.
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In the next section we describe the discourse management mechanisn we have developed to

dynamically guide a tutor's choice of response. In the following section we describe the example

generation system that tailors examples to the need of the individual student.

2 Discourse Management

We have built a discourse management mechanism to facilitate context-dependent interpreta-

tions of machine responses [Woolf & Murray, 19871. This discourse manager uses a taxonomy

of frequently observed discourse sequences to provide default responses for a machine tutor. It

also uses state variables to make choices between alternative discourse sequences. The architec-

ture employs echema, or collections of discourse activities and tutoring responses, as shown in

Figure 2 to direct discourse transitions. These schema are derived from empirical research into

tutoring, including studies of teaching and learning [Brown et al., 1986; Littman et al., 1986],

misconception research [Clement, 1982, 1983; Stevens et al, 1982], identification of felicity laws

in teaching [van Lehn, 1983], and general rules of discourse structure [Grosz & Sidner, 1985].

We call the space of possible discourse sequences a .utoring ACtion .Iran*ition Jjetwork (TA CTN),

2 [McDonald et al., 1986]. The machine response is generated by traversal through the formal

structure expressed by arcs and nodes. Arcs are defined as predicate sets, which track the state

of the conversation, and nodes provide actions for the tutor. The outer loop of the discourse

manager first assesses the situation indicated by the arcs, resolving any conflicts between multi-

ply satisfied predicate sets, and then directs the system's other components (e.g., the underlying

domain expert component, the language component, or the student model) to carry out the

action indicated by the node.

2Rhyma with ACT-IN
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Discourse control consists of passage through the arcs and nodes of the schema, with the

number and type of schema depending on context. For example, if the student's answer is

correct (Figure 2A) new schema, notably Evaluation and Correct Answer schema (Figure IB),

will be activated. However, if the student's answer is incorrect, up to six schema might be

traversed in sequence, including possibly three schema activated by the Remediation Schema

(Figure 2B) as shown in Figure 2C, Teach by Consequence, Teach by Example, and Teach by

Guidance. The exact number of schema depends on the tutor's assessment of student error,

i.e., whether it was a simple slip, not a simple slip, or not a simple slip-consequence ezists.

In the next section we provide a brief example of how this discourse planning framework is

being implemented in a series of physics tutors and in the following section describe the tutoring

structure in more detail.

2.1 The Statics Tutor

We are building science tutors as part of the Exploring Systems Earth (ESE) consortium.3

The science tutors provide interactive simulations whose aim is to encourage students to work

with 'elements" of physics, such as mass, acceleration, and force. The goal is to aid students in

developing problem-solving skills, knowledge about physics concepts, and intuitions to facilitate

learning about knowledge and skills.

In these tutors, students explore simulations, such as the one shown in Figure 3, called the

crane boom problem. In this example, students are asked to identify forces and torques on a

crane boom and wall such that the boom will remain in equilibrium, i.e.,there will be no vertical
"ESE is a group of universities working together to develop intelligent science tutors. The schools include the

University of Massachusetts, San Francisco State University, and University of Hawaii.
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Figure 3: Simulation Presented to the Student: Statics

or horizontal movement. Students must draw appropriate force vectors to solve the problem

through vector diagrams or equations.

The Exploration Schema in Figure 2A provides the main control loop for the tutor's interac-

tions about this and other physics problems. It schedules tasks, which might be items from

a top-level curriculum list,.or sub-goals generated by earlier tasks. Associated with each task

is information about how to present the problem situation, what question(s) to ask, which

knowledge is assumed of the student, etc.

For example, if a student had provided the force vectors indicated by heavy vectors in Figure 3a,

the solution would be incorrect because a force vector is missing (located at the wall and pointing

upwards). The tutor compares the student's response with the correct one and activates the

Remediation Schema in Figure 2C. The consequence of the student's actions are indicated in

Figure 3b and the conversation produced by the tutor is shown in Figure 4.
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situation: - incorrect answer
action: [grain of truth acknowledgment

T: The beam does experience forces in each place you have shown and in the directions you
have shown.

situation: - not simple slip
and consequence exiata

action: [teach by consequence]

T: Here is what the beam would look like if it experienced the two forces you indicated (beam
is shown pulling away from the wall).
T: Is this OK or would you like to reconsider your answer?
S: It's OK. situation: - incorrect answer

action: [teach by example]
T: Consider a situation in which a roller skate wheel is attached to the left end of the beam.
What would happen to the beam then?
S: It would fall because it would roll down the wall.

situation: - correct answer
action: [compare answers]

T: Compare the two situations-with and without the roller. Do you want to reconsider either
of your answers in fight of this comparison?
S: No. situation: - incorrect answer

action: [teach by guidance]
T: You are missing a force somewhere on the beam. Do you want another hint?

Figure 4: Conversation Between Tutor and Student
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2.2 Representational Power

TACTN structures have the look of conventional transition graphs of "nodes" and "arcs" as one

would find in ATNs [Woods, 1970], yet they are defined in terms of "actions" and "situations"

[McDonald et al., 1986] as one would find in a production system. The motivation to modify the

ATN architecture was based on the observation that ATNs were designed for natural language

parsing and thus are non-deterministic. 4

Non-determinism has no counterpart in natural language generation, which requires a plan-

ning rather than a parsing formalism [McDonald et al., 1986]. Any action in a TACTN can

be taken deterministically. For instance, any transition, Teach by Consequence, Teach by Ex-

ample, or Teach by Guidance, might be taken locally without the need to wait for a global

interpretation. Discourse generation requires choosing between alternative actions, not alter-

native interpretations, placing it in the realm of a planner, not a parser. Since we were not

using all the capacity provided by ATNs, we decided to modify the architecture.

Elements from both production systems and network formalisms have been incorporated into

our new architecture. Situations, located on arcs, are associated with actions, located on nodes,

in the manner of a production system, and discourse history is encoded in arcs and nodes, in the

manner of a network system. Every situation/arc implicitly includes as one of its constituent

predicates the action(s)/node(s) from which it came. Thus, if an arc originated in a particular

action, there is a tacit predicate included in the arc's history that the previous node's action

'Nodes in the original ATN represented accepted definitions for incoming tokens while arcs represented tests

made on those incoming tokens. Non-determinism was motivated by uncertainty, or the need to wait for an

accumulated global interpretation before the system could be confident about the local interpretation of each

token being scanned.
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must have just taken place. The single notational framework has the flexibility of a production

system and the record-keeping and sequencing ability of a network system by virtue of its

context.

A pure production system used for discourse manager cannot retain and use a large amount of

contextual knowledge to handle complex shifts in dynamic conversation. For example, GUIDON

[Clancey, 1982] was a tutor based on a set of situation action rules that were driven by chaining

backwards from goals. It provided flexibility to respond dynamically to changing discourse

circumstances. However, as there was no provision for sequencing situation action chains ex-

cept by using ad hoc state variables, GUIDON retained very little contextual knowledge. In

TACTNs, the act of chaining to arcs from actions provides just such a sequencing mechanism.

A problem arises if multiple paths lead to a node, in which case the tutor does not know which

path was taken to move to the node. Thus, we rely on the TACTN author to permit this only

when the histories of the arcs, in terms of discourse situation and student model predicates, are

equivalent.

Arcs Define Situations Arcs in the discourse structure are defined by a set of predicates

that track the student and discourse from the perspective of the system. Arcs correspond to

discourse situations. For example, in Figure 2C the arc simple slip is a compound predicate

that is true under two conditions: (1) the current topic is factual and the student has had

medium success with it in the past, or (2) the topic is conceptual and the student has had

high success with it. In a sense, situations are abstractions over the state of the system or

student knowledge, expressing generalized conditions such as student takes initiative or student

is confused.

The definition of arcs as a structural and logical combination of predicates in a boolean formula
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provides a powerful tool for knowledge engineers. Modifying predicates, and therefore arcs,

allows fine-grain changes on individual predicates to impact greatly on the system's reasoning

ability and to result in consequential changes to the tutor's discourse activity.

Within this structure, several arcs might define nearly equivalent situaticns as in the case

when two arcs share one or more predicates. At such time, a conflict between arcs will be

resolved through global or local (associated with specific nodes) conflict resolution strategies.$

One solution is to order the arcs in the set according to their specificity and to execute the

first triggered arc. In this way, the most specific subsuming situation will be preferred over

other situations with which the arc shares predicates. However, we prefer to evaluate all the

arcs, since incomparable situations (i.e.,situations whose sets of predicates are disjoint) are

likely. Additionally, incomparable arcs may indicate situations that the tutor should respond

in parallel, rather than in a way that excludes situations that "lose" against other situations.

For example, suppose that students ask many questions after giving a wrong answer, and

suppose that they also ask several seemingly random questions. One tutoring convention says

that answering students' questions should take priority; another says that random questions

should be discouraged. In such a case a non-conventional resolution mechanism must be used

to resolve the conflict.

Nodes Define Actions Nodes correspond to actions available to the system; they define

alternative conversations and tutoring strategies. Nodes differ in the actions they perform and

in the manner they present tasks to students. Shifting actions to the nodes, as we did for

TACTNs, instead of leaving them on the arcs, as was done for ATNs, facilitates the notation

aConflict resolution in this sense Is analogous to what happens in a production system when the left-hand

sides of more than one rule are satisfied.
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of expanding abstract actions into more concrete substeps. Abstract actions are nodes that are

to be expanded and refined one or more times before taking on a form that can be exec-uted.

For example, the node Evaluation Schema (Figure 2a) is an abstract node whose expansion led

to a second abstract node called Remediation Schema (Figure 2b). On the other hand, the

node Present Task (Figure 2a) is not an abstract node, it represents an immediately executable

action. Action expansion is an activity of the discourse manager. This notion of abstract

planning borrows principally from Sacerdoti [1974 and Stefik [1981].

2.3 Evaluation of the Discourse Management Mechanism

In building this discourse mechanism and modifying its basic ATN architecture, we have in-

creased the functionality of our earlier domain-dependent formalism iWoolf & McDonald, 1984].

The goal was to allow a tutor to remain flexible while cooperatively engaged in conversation

and to continually adjust the discourse to real-time changes engendered in the system either by

the tutor or the user. This mechanism allows the tutor to recognize the possibility of multiple

discourse paths arising asynchronously depending on current context.

In addition to this discourse mechanism, we have built an example generation tool that enables

the tutor to tailor examples to a particular student. The tool is discussed after a motivating

example and exploration of alternative teaching strategies.

3 The Thermodynamics Tutor

As part of the set of interactive and monitored simulations built by the Exploring Systems

Earth, ESE consortium (Section 2.1), we are implementing a thermodynamics tutor to improve a
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Figure 5: Topics in Thermodynamics

student's intuition about energy, energy density, entropy and equilibrium. Like the statics tutor,

this tutor monitors and advises students and provides examples, analogies, or explanations

based on student actions, questions, or responses.

In this tutor the goal is to teach the sub-net of topics shown in Figure 5 as a precursor to

discussing the second law of thermodynamics. 6 The tutor presents these concepts at the atomic

level [Atkins, 19821 and provides a rich environment through which the principles of equilibrium,

entropy, and thermal diffusion can be observed and tested.

The student interacts with a simulation that depicts collections of atoms transfering heat to one

another through random collision (Figure 6). The student can create areas of "high" energy

atoms, indicated by dark squares, and can monitor the flow of energy of the atoms through

the regions. As the system moves toward equilibrium, areas of atoms can be monitored and

'The second law stat s that when all the components of a proce. are taken into consideration, entropy of a

system either remains constant or increases.
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Figure 6: Simulation Presented to the Student: Thermodynamics

analyzed. In this way, several systems can be constructed, each with specific areas of high

energy and associated observation regions. Concepts such as temperature, energy density, and

thermal equilibrium for each observation region can be plotted against each other and against

time. Thermodynamic principles can be observed visually through action rather than statically

through formula; heat transference can be observed through random collision and entropy as a

function of initial system organization.

At any time the student might modify the number of collisions per unit time, which would

correspond to the temperature of the system, and the shape of the observation regions. Changes

in these parameters will cause dependent changes in the system.

All student activities, including questions, responses, and requests, are used by the tutor to

formulate its next teaching goal and activity. Each student activity is used to reason whether

to show an extreme example, or a near-miss one, or to give an analogy, or to ask a question. We

are now studying student misconceptions and common errors in thermodynamics and statistics
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in order to refine the tutor's response.

4 Example Selection Strategies

To illustrate the importance of example selection for tutoring, we discuss two selection strate-

gies in this section. Currently, only the second strategy, incremental generalization, has been

implemented in the thermodynamics tutor described above.

Bridging analogies [Murray et al., submitted] is used when a student has already exhibited

misunderstanding of a concept, determined by presenting a relatively difficult case of a concept.

Given evidence of a misunderstanding the tutor introduces carefully chosen examples in an effort

to teach the concept. First the tutor finds an anchor, or simple case that the student seems

to comprehend. Then it presents examples that repeatedly "split the difference" between the

most difficult example of the concept the student understands, and the simplest example of the

concept that the student misunderstanda. The tutor explicitly asks the student to compare and

contrast these two examples, thus engendering a sense of cognitive dissonance until the student

sees the similarity in the two examples and changes his mind about the misconceived concept.

For instance, assume the student's intuitions are wrong about whether a table pushes up on

books placed on top of it. In this case a convenient anchor, for which the student's intuitions

are probably correct, is to ask whether one's hand pushes up on the books when they are placed

on top of the hand. In the knowledge space, the relevant examples are organized in an example

space according to their attributes, and presumably the anchor and the original problem are

"distant" from each other along some feature dimension(s) in this space. The bridging strategy

is to establish the student's understanding of the anchor, then find an example which is part way

"between" the anchor and the original problem in the example space: this is called the bridge.
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The tutor first establishes the analogy between the anchor and the bridge, then establishes the

analogy between the bridge and the original problem, which brings the understanding over to

the original. If there is difficulty in transferring understanding from the anchor to the bridge, or

from the bridge to the original, the entire process may be applied recursively. Various control

strategies for recursive bridging are possible, depending on where the bridges are relative to the

endpoints of the network.

Incremental generalization is a second selection strategy that differs from the bridging analogy

strategy because it works "forward" from a simple understood topic and attempts to generalize

the student's knowledge to include qualitative variants of the original example in the same

concept. In contrast, the bridging analogy is oriented towards understanding a particular goal

example.

Consider an example from the thermodynamics tutor described above. While teaching energy

density, the tutor might first present a 'start-up example" [Michner (Rissland), 19781 that shows

two medium sized regions of atoms with random distributions of energy and asks which has the

greater energy density. Assuming the student's answer was correct, the tutor might test the

extent of the student's understanding of the concept by varying feature dimensions along sub-

ranges that are irrelevant to energy density (Figure 7). Thus, the tutor would be generalizing

the student's understanding of the concept. For instance, the tutor might present patterned

energy distributions to show that energy density is independent of pattern (Figures 7A, 7B,

7C, and 7D). It might also display a system of smaller or larger sized regions that have the

same energy density (and thus less or more total energy) as the randomly distributed medium

system, to show that energy density is normalized by volume (area in the simulation) (Figures

7E and 7F). Within the feature dimension that is being varied, the strategy is to present feature

values that are "closer" to those of the start-up example first, working gradually to the extreme
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values, thus allowing the student to incrementally generalize the concept. For instance, after

generalizing energy density to a regular but uniform (non-random) distribution of energy, the

tutor might compare uniform density in one system to another in which all the energy is in one

corner of the cube.

Incremental generalization has been implemented in the thermodynamics tutor, as discussed in

Section 3 above. The tutor has the potential of exploring all "paths- along feature dimensions

from the start-up to their extreme values. A variety of "search" strategies for incremental

generalization are possible, as the algorithm leaves open the choice of which feature dimension

to vary at any given time. Making these choices will be predicated on the state of a qualitatively

rich student model.

5 Example Generation Tool

The second tool for managing tutorial discourse is an example generation mechanism that

implements the incremental generalization strategy described above. This mechanism enables

a tutor to retrieve and modify examples, tailoring them to the idiosyncrasies of the student

and the curriculum. Again, this is a general and domain-independent mechanism that can be

built into other tutoring systems and applied to other domains. The tool enables the tutor to

make two kinds of control decisions: high level choices that determine which strategy to use

in selecting examples and low level choices that determine which example to select next. Both

control decisions are based on reasoning about the student's knowledge, the discourse history,

and the curriculum.

Decisions at the high level begin or terminate a teaching control strategy; a terminated strategy

is replaced with a more appropriate strategy if the student's response pattern has changed. For
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instance, if a student shows evidence of misunderstanding an unfamiliar situation, the tutor

might replace the current strategy with the bridging analogy strategy to bridge the conceptual

gap from the complex situation to simpler and known ones. A library of such strategies will

ultimately be available to the tutor along with reasons why it should move from one strategy

to another.

Decisions at the low level choose which example to present next. For instance, if the student

has made many errors, the tutor might present an example that differs only slightly or perhaps

only along a single dimension, from the prior example. On the other hand, another situation

might require presentation of a more complex (or more rich or more simple) example. The

specification of an example may include questions and problems presented to the student. We

intend to generalize the example generation mechanism described below to attempt to handle

all tutor-initiated interactions with the student.

Our goal has been to allow the teaching expert to define example selection strategies through

general and qualitative, not quantitative rules. We want the machine to respond to directives

such as "When the student is in this discourse situation, present more complex examples."

This is to be contrasted with situation specific rules such as: "If the student answers question 5

correctly, then present example 32." The problem with the latter kind of specification is that it

is responsive only to local information, i.e., which problem was presented and how the student

responded. It ignores situation abstractions derived from a sequence of interactions. It also

forces the author into a tedious level of detail.
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5.1 Traversal of Explicit Example Spaces

Our initial approach to the problem of providing flexible selection and presentation of examples

was to place examples in lattice-like spaces designed for the purpose and to traverse these

spaces with algorithms representing different example selection strategies (see Figure 1). We

encountered some problems in this approach.

The example spaces were defined in terms of the attributes of examples which are relevant

to tutoring thermodynamics. For example, when tutoring the concept of energy density, the

size, energy pattern, total energy, and energy density of the systems presented are relevant

considerations. These feature dimensions define an example space when their values are ordered.

Since the pedagogical relevance of feature dimensions differs between topics, a different example

space was constructed for each topic. Tutoring strategies were then expressed as algorithms

for moving through these spaces. For example, incremental generalization was an algorithm

initialized with a pointer to the startup example, which moved this pointer along one feature

dimension at a time, in the direction of increasingly "complex" values, the movement of the

pointer being controlled by measurements of the student's progress. Bridging analogies was to

be implemented in a manner similar to that described in Murray et al. submitted].

We found that in constructing the example spaces, we had to take into account the tutoring

strategy that was to use them. This reduced the strategy-independent utility of explicit ex-

ample spaces. An undesirable result was that control information was partially encoded in the

structure of the space, and partially in the algorithm for traversing it. A second reason for

abandoning this approach was the difficulty of taking into account considerations other than

the example selection strategy encoded in the traversal algorithm. Decisions which impacted

on example selection had been made prior to invocation of the traversal algorithm. Thus what
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was intended to be an independent example generation module would have had to look back

at other data structures outside itself. A third problem was that the system was limited to

using the examples described in the example spaces. To utilize generated examples would have

required giving it the ability to insert new examples into the example spaces automatically. If

it could do this, it would know enough about the pedagogical utility of examples to do without

explicitly represented spaces.

5.2 Example Selection Specialists

The preceding approach did not take into account the variety of considerations that impact on

choosing the next example at any given point in the tutor-student interaction. This suggested

a more direct representation of these considerations, as recommendations or requests produced

by a collection of knowledge-source-like entities called example selection specialists. ' These

entities or specialists each make recommendations that are dealt with all at once, allowing

them to be prioritized and handled with more facility than if their effects were heterogeneously

produced. A mechanism for generation of new examples is provided, and these examples may

be added to the example base without difficulty.

Example selection specialists are provided by the expert tutor. Each specialist tests the states

of the student and discourse models, producing requests as needed to deal with the consider-

ation the specialist was written to handle. For example, one specialist requests that the next

example be relevant to the current curriculum topic and another implements the incremental

generalization strategy by proposing that the next example have a slightly more extreme value

along a given feature dimension than the previous example. A third watches for the appearance

7In our current approach, all sources of control knowledge for example selection (the low-level deciions

mentioned previously) are represented in this uniform manner.
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of a "mis-ku" (representing a misconception) in the student model, and if one is seen, proposes

that the current agenda be suspended while remedial tutorials are given. A fourth may try

to avoid boredom on the part of the student by requesting that certain salient features of the

examples be varied.

A request consists of a request expression, the name of the requesting specialist, and the strength

of the request. The expression consists of specified bindings of values to feature dimensions,

optionally combined with connectives. Currently, AND, OR, NOT, MEMBER, and SATISFICE

(to be described) are implemented. These expressions direct the actions of the retriever and

modifier.

5.3 Strategic Phases and Priority

Requests may conflict and the relative importance of the considerations embodied in the dif-

ferent specialists may change as a function of the current situation. Because of this, conflict

resolution between requests must be sensitive to the current tutoring strategy. The current

implementation uses strategic phases, similar to those used in a planner for a medical expert

system [Cohen et al., 1987]. The condition of a strategic phase is a function of state variables in

the global student and discourse models. Only one strategic phase is active at a time. Among

other things, the strategic phase specifies a prioritization of the example generation special-

ists. Thus the example generation specialists become "terms" in a meta-level control language

which decides on the relative importance of these specialists for the situation recognized by the

condition of the phase.

5-B-22



IF-NEEDED: function of one argument, an example, which computes the value

of the example on this feature dimension.

VALUE-DEPENDS-ON: List of feature dimensions which cannot be modified without

also modifying the value on this feature dimension. These are the

dimensions referenced by IF-NEEDED in its computation.

TO-MODIFY: Function of two arguments, an example and desired values for this

feature dimension, which either modifies the example and returns the value

used, or determines that it cannot modify the example (for domain dependent

reasons) and

returns NIL.

MODIFY-CHANGES: List of feature dimensions which TO-MODIFY changes the value

of.

Figure 8: Definition Slots for Feature Dimensions

5.4 Feature Dimensions and Modification

Modification of retrieved examples requires consideration of the interactions between multiple

feature dimensions. It may not be possible to modify a given feature without also modifying

others. For example, energy-density depends directly on total-energy and the area of the system.

Thus, modification is more than just setting a feature dimension slot to a new value. We need

to know how to carry out the modification, and what other features are modified.

To provide this information, feature dimensions are defined using the slots shown in Figure 8.

The if-needed method allows us to compute the value on a feature dimension as a function of
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other dimensions of the same example. The to-modify method embodies the specific knowledge

of how to modify examples, including modification of other feature dimensions besides the one

owning the method, as required. The value-depends-on and modify-changes lists are used for

goal protection in the modifier, to be discussed. Note that the feature dimension being defined

is always on these two lists.

We have analyzed the interdependencies of the thermodynamics feature dimensions, and have

identified those which are primary, in that they cannot be computed from other features, and

those which are derived, in that they can. Derived feature dimensions always have the if-needed

and value-depends-on slots defined; and as many feature dimensions as possible have the to-

modify and modify-changes slots defined. The values of derived features are always retrieved

using the if-needed methods. This permits us to modify examples by modifying only the primary

features using the to-modify methods, with the propagation of dependencies to derived features

occurring automatically. The advantage is that the modifier code need not contain any domain

dependent knowledge about the feature dimensions or their interdependencies.

5.5 Example Retrieval and Modification

The example generator operates within the context of a tutor that maintains the student and

discourse models. This includes updating the current topic and the current strategy before a

call to the example generator. These higher level control decisions affect the example generator

in that the example selection specialists are sensitive to the dynamic models, and the current

strategy is used to prioritize their requests.

Example generation begins by allowing the specialists to post their requests, which are then

prioritized as specified by the current strategy, but taking into account the strength of the
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requests. This results in a list of requests sorted by priority.

Retrieval is done using the SATISFICE command, which when given a list of requests directs

the Retriever to return the set of examples which satisfies as many of the requests as possible

in the order given, without letting the retrieved set go empty (requests that are not met by

any example are ignored). The Retriever need not be concerned with goal protection, since the

lower priority requests are allowed to operate only in the set of examples that already satisfy the

higher priority ones. One of the (equivalent) retrieved examples is then chosen as the current

example.

Before modification, the requests are normalized into a form in which each request is a disjunc-

tion of values for one feature dimension in order to simplify the goal protection algorithm and

to modify methods. The job of the Modifier is to take the current example, the normalized

list of requests, and a record of which of these requests were satisfied, and attempt to satisfy

those requests which were not satisfied by retrieval, where it can be done without violating

requests of higher priority. This is done by iterating over the requests in priority order, keeping

a protected-features list, which consists of the union of the value-depends-on slots of the fea-

tures whose values satisfy requests which have already been checked. The modifier allows the

to-modify method of the feature dimension referenced by the current request to run only if its

modify-changes slot does not intersect with the current protected-features.

Note that the Modifier is not concerned with how to change values on feature dimensions, or

with the fact that dependencies between dimensions require other dimensions be changed in

parallel. Its job is simply to determine whether it is OK to run the to-modify method for the

feature dimension referenced by a given request, and to record the results.

Modification allows us to tailor examples to the particulars of the current situation, filling out
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an example base of "seed" examples provided by the human expert as required to meet the

needs of an individual student. If the example was modified, the new example is recorded in the

example base. This saves processing if similar situations are encountered in the future. Then

the example is returned, to be interpreted by the user interface.

5.6 Status and Evaluation

The retrieval and modification tool described above has been completed in Common Lisp, along

with prototype versions of the remainder of the tutoring system in which it must operate. Full

evaluation of how well this approach supports the authoring of a tutoring system awaits more

complete implementation of the latter system. As of this writing the choice of what topic to

tutor next is made by fixed Lisp code that chooses a goal topic, such as energy density, and

initializes a topic stack with its prerequisites by visiting them in breadth first order. This will

be replaced by a more sensitive controller based on TACTNs. We are examining alternate

approaches for implementing a "diagnosis" component for construction of the student model.

The mechanism we have developed for retrieval and modification of examples is flexible and

extensible. As a first pass on implementing a robust example generation system, many features

require further elaboration. However, the language we have defined is flexible and expressive; it

separates representation from control and yet each example is built in terms useful for control.

The language is modular ano object oriented, allowing for either examples or selection strategies

to be added or changed without rewriting the representation or the control structure.

We are not yet certain about how to most profitably use the identified selection strategies.

Bridging is intended for domains in which anchors familiar to the student exist, and where

the student is already familiar with the feature dimensions involved (though not their proper
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values). Our intuitions are that incremental generalization will prove more appropriate for

domains that are new to the student. Neither strategy so far has dealt with how to teach

the negative instances which are close to the "edge" of the concept. However, this may be

a natural extension of how incremental generalization searches the example space; examples

could be incrementally modified, along the relevant feature dimensions to show how the values

of each feature affect the concept being taught.

6 Conclusions

A major research goal of this project has been development of mechanisms for selection and

application of discourse responses in tutoring. We have suggested that control of tutoring is

isomorphic to control of movement through a space of possible machine responses. In keeping

with that model, we have built several knowledge representations and control structures to test

how such an approach impacts upon development of human-like tutorial discourse.

Although we still think of example selection and discourse decisions as movement through

a space of objects, we have lately rejected an explicit representation of example spaces for

implementation. While there are virtues in approaching tutoring as traversal through space,

currently our tutor traverses a "virtual" space of tutoring alternatives.

Thus, though we have not settled on a final implementation technique, we have addressed the

following issues in development of discourse tools:

1. Representation: Actions of tutorial discourse are represented as nodes and predicates as

arcs in a network system. Examples are represented as objects in a partially ordered

space. Both representations express possible tutoring responses and both act as media
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through which the tutor can move.

2. Control: Rules control movement through the concept network, discourse network, and

example space. We are interested in evaluating the relative merit of these strategies and

in possibly moving our strategies from the status of algorithms to the level of a unified

theory of tutoring.

3. Cognitive Processes: Both representation and control have been developed based on in-

ferred expectations about tutor and student. A human tutor appears to follow implicit

rules of discourse and example presentation and a student appears to respond consistently

in terms of understood knowledge, explicit errors, and implicit misconceptions. We have

begun to represent these expectations as state variable predicates within student model

(i.e., student-knows.topic or student.is-unsure). Much work needs to be done to clarify

the underlying cognitive process. For instance we need to include more sophisticated com-

ponents into the model and to recognize how state variables can be interpretable through

observable student behavior and how they can be used to prescribe tutorial control.

Ultimately we intend to make the discourse framework and example retrieval systems accessible

to human teachers who will modify the knowledge and control structures through visual editors.

These visual editors will allow a teacher to use screen figures, similar to those in Figure 2 to

reconfigure the machine's response. This is consistent with our long term goal of reducing the

excessive time needed for building intelligent tutors by providing structures that can be easily

refined and rebuilt as new systems are tested. Both systems are designed to allow a wider

circle of authors, e.g., psychologists, teachers, curriculum developers, etc. to participate in the

process of implementing intelligent tutors.
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Chapter 1

Introduction

Problems which require the application of artificial intelligence techniques are distinguished

by their reliance on incomplete and uncertain knowledge. Plan recognition, the interpreta-
tion of data in terms of instances of particular plans, is just such a problem. Combinatorial
considerations generally make it impossible to enumerate all of the possible alternative in-
terpretations of the data. Of those interpretations which are considered, evaluation of the

relative likelihood of the alternatives is complex and uncertain. In many domains the data
may itself be incomplete and/or incorrect.

Previous approaches to plan recognition fail to address many of the issues necessary to
produce practical systems. In particular, they provide very limited methods for reasoning
about control decisions and for evaluating the appropriateness of alternative interpreta-
tions. Because of these concerns, we developed a focus-of-attention scheme for the POISE
project [61 which used heuristic knowledge to make the decisions about which hypotheses
to pursue. A major advantage of this system was the fact that it provided an explicit rep-
resentation of the (uncertain) assumptions upon which the control decisions were based.

This meant that when interpretation errors were discovered, the system could backtrack,
examine earlier decisions, reason about why they were made, and decide how to revise
them. While the explicit representation of this control information improved the control
process, the approach still suffers from a number of shortcomings. The most important
problems include: lack of flexibility for specifying heuristic control knowledge, confusion
of belief in an alternative with the decision to pursue the alternative, and little guidance
during the revision process.

This paper will develop a new approach to plan recognition which will address the
deficiencies of existing systems. The key to this approach is to view plan recognition as

a process of gathering evidence to manage uncertainty. Viewing plan recognition in this
way provides a framework within which to apply expert-level heuristic control knowledge

and evaluate alternative interpretations. Data is considered as a source of evidence for the
plan hypotheses: when data can be interpreted as part of a hypothesis it provides evidence
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for that hypothesis. Evidential links are maintained between data and hypotheses the
data supports. This provides the system with an explicit representation of the reasons
to believe the interpretation hypotheses. The use of an explicit, symbolic representation
of evidence is important because it makes it possible to explicitly reason about control
decisions. Knowing what evidence supports hypotheses, we can understand the sources
of uncertainty in the evidence and decide how best to resolve them. When evidence is
summarized in numeric degrees of belief, access to this sort of knowledge is lost.

We take a broad view of the class of plan recognition problems. A range of interpreta-
tion and situation assessment problems can be viewed as plan recognition problems. The
prototypical example is the interpretation of a series of actions as part of some overall task.

This ability is relevant to natural language understanding and computerized intelligent as-
sistants. Vehicle monitoring and related situation assessment problems may also be treated
as plan recognition problems. Here, the "plans" represent vehicle movements or missions
and are composed of characteristic sequences of sensor data rather than "actions." In all
of these interpretation problems the goal is to form a higher-level, more abstract view of
the data. In other words, to provide an appropriate context within which to understand

the data.

Plans specify the hierarchical relations between the data and more abstract views of
this data. Although the form and specification of plans varies with the application domain,

plans are composed of sets or sequences of subplans. For example, a, plan for processing a
form is composed of steps for filling the form out and then sending it on to the appropriate
office. In the case of vehicle monitoring, a vehicle plan might be composed of subplans
which represent sets or sequences of radio and radar emissions which identify the vehicle

and its purpose. Plan recognition then, involves the interpretation of sets of subplan

instances as (perhaps partial) instances of more abstract plans.

Plan recognition is a complex and uncertain process:

* In general, there are multiple, ambiguous interpretations for
each subplan or sequence of subplans.

" Ambiguity is compounded in domains which admit multiple, concurrent plans
since the subplans may be interleaved.

" For some applications, interpretation must be done in real-time, relying on
preliminary and partial plan data to make "best guesses" about the complete plans.

" Since computational considerations generally preclude constructing all the
possible interpretations, there is actually uncertainty whether any of the
system's interpretation hypotheses are correct.
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" The volume of data may be so massive as to preclude complete examination.

" Data may also be missing, uncertain, and/or incorrect.

As a result of these factors, plan recognition systems must be designed to deal with
many uncertainties. We feel that intelligent plan recognition systems must be able to:

" Evaluate the level of belief and uncertainty in alternative interpretations.

" Understand the reasons for beliefs.

" Encode and apply heuristic control knowledge.

" Revise interpretation hypotheses as information accumulates.

" Handle uncertain and incorrect data.

" Integrate data from multiple sources.

" Actively control data accumulation.

" Reflect system goals in control decisions.

Since there will generally be a number of alternative interpretati3ns of any set of data,
it is crucial to have some method for evaluating the relative merits of the alternatives.
Evaluation has often been accomplished as an implicit part of the control scheme. This is
undesirable because it limits potential control strategies to pursuing only the most believed
alternatives. Combinatorial and real-time considerations make focus-of-attention strategies
crucial. Expert-level heuristic control knowledge can be used if a proper framework is
available for encoding it and applying it. However, since control knowledge is fallible and
since data may be missing or in error, interpretations should be able to be revised as data
is incrementally accumulated.

The final three requirements represent extensions to the normal notion of plan recogni-
tion, but have broad applicability nonetheless. In most domains, there are several sources
of knowledge which a human expert would use to support his interpretations. Plan recog-
nition systems have typically failed to make use of multiple sources of evidence despite
its advantages in dealing with uncertain, incomplete, or incorrect data. For example, in
aircraft monitoring applications there would be data from several types of sensors as well
as information about terrain and air defenses. Active control could be used to greatly
reduce processing effort and system uncertainty when possible. In an aircraft monitoring
system some sensors may automatically produce data while others may be controlled by
the interpretation system. In an intelligent assistant, the system may prefer to query the
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user rather than waiting for additional data to resolve uncertainties. The goals the inter-
pretation process in a domain need not always be the same. An aircraft monitoring system
may be trying to protect a sensitive installation or may simply be trying to monitor all
air traffic. It may be under time constraints or it may not. The system should adjust
its operation to best meet the specific goals-monitoring all aircraft or only the potentially
hostile ones, for instance.

We believe that the plan recognition requirements outlined above can be met by view-
ing plan recognition as a process of gathering evidence to manage uncertainty. The key
characteristics of the approach are:

e Plan, subplan relations are treated as uncertain, evidential relations.

* Evidence and sources of uncertainty are explicitly represented.

• Heuristic control decisions are based on the sources of uncertainty
in the hypotheses and the need to manage uncertainty.

Treating plan, subplan relations as evidential relations rather than as absolute goal,
subgoal relations means viewing these relations as uncertain inferences. This approach
helps to address several of the limitations of existing plan recognition systems. An eviden-
tial reasoning system can now be used to provide a representation of the evidence for the
alternative hypotheses. This allows their relative likelihoods to be evaluated independent
of the control decisions. Reasoning about control decisions can be easily extended to all
stages and levels of the interpretation process because the abstraction of any hypothesis
is simply an inference. In particular, we need not wait for the construction of top-level
plan hypotheses before applying focusing knowledge. Incomplete, uncertain, and incorrect
data are naturally accommodated as they simply result in additional sources of uncertainty
which can be resolved by gathering sufficient additional evidence. Different types of data
can also be easily accommodated because they simply represent different sources of evi-
dence for the interpretations. Revision is a natural part of the accumulation of evidence
as conflicting data produces uncertainties which the system can represent and resolve.

By explicit, symbolic representations for evidence, we simply mean that we maintain
explicit links between hypotheses and the reasons we believe the hypotheses. Sources of ev-
idence include subplan hypotheses and knowledge such as terrain and weather information.
Access to detailed information about the evidence makes it possible for us to make use of
an important body of expert-level knowledge about the task: the sources of uncertainty
in the evidence. In plan recognition, evidence is rarely conclusive. The sources of uncer-
tainty represent the reasons why evidence may fail to support a particular conclusion. For
example, acoustic sensor data may fail to support a vehicle because it is actually the result
of a sensor malfunction or sensor ghosting. The control component can now reason about
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the best course of action for the interpretation system to take because it understands the

purpose of its actions: to try to resolve the sources of uncertainty in the hypotheses. An

independent, explicit representation of the evidence also makes it possible to represent the

relations between the hypotheses. Thus, though direct evidence for a hypothesis may not

be available, there may be sources of evidence for related hypotheses-like alternatives.

Active control of data accumulation is possible since the control process explicitly

considers the sources of uncertainty in an interpretation and can direct the action of data

sources to produce evidence to resolve the uncertainty. Of course, the amount of control

the interpretation system can exercise over the evidence it has available will depend on the

domain. For example, in vehicle monitoring applications, the operation of a radar sensor

can be tuned in order best resolve uncertainty in a particular aircraft ID or location. As

system goals change, the importance of different uncertainties changes. When evidential

support is summarized numerically it is impossible to consider the context in making

control decisions. Maintaining an explicit representation of evidence makes it possible to

accommodate varying system goals because beliefs and decisions can be made sensitive

to the goal context. The criticality of the uncertainties can be judged in relation to the

current state and purpose of the system.

Chapters 2 through 4 motivate this work by examining existing approaches to control,

evidence, and plan recognition. Chapter 2 is an introduction to control issues as they

relate to plan recognition. An overview of existing approaches to representing and using

evidence is contained in chapter 3. Chapter 4 presents the plan recognition and related

interpretation problems which motivate this research. POISE, the Distributed Vehicle

Monitoring Testbed, and several other plan recognition systems are examined. In chapter 5
we present our preliminary view of how evidence and uncertainty should be used in plan

recognition systems. Finally, chapter 6 summarizes the goals of this research.
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Chapter 2

Control

One of the major problems facing any AI system is the control problem: what should the
system do next? An Al system can be viewed as proceeding through a sequence of states
as it runs and, in general, there will be several possible actions which could be taken in
each of these states. This results in a sequence of choice points for the control component.
For example, the control problem for several Al paradigms includes:

Search -which path to pursue.

Plan Recognition -which interpretations to pursue (focus-of-attention).

Production Systems -which satisfied production to "fire" (conflict resolution).

Problem-Solving -which subgoal to work on next.

An important characteristic of Al problem domains is the uncertain and incomplete

nature of the knowledge available for problem solving. Thus, control decisions in AI
systems are uncertain because the systems will not have complete, correct information
which would allow them to choose the right action to take at each decision point. The
control component will have to decide the "best" action to take at each decision point based
on inexact, heuristic knowledge. Even if more "exact" decision procedures are available
for Al problems, the data and knowledge upon which these decisions would be based will
be uncertain, incomplete, and/or incorrect: models of the state of the world, models of
the state of the problem solving, applicability of operators, etc.

Because of the uncertainty inherent in Al control decisions, problem solving systems
must be designed to cope with uncertainty and the resulting incorrect decisions. A number
of different approaches to managing this uncertainty have been used in Al systems: using
domain-dependent heuristic knowledge to guide the decision process, pursuing multiple
alternatives (delaying decisions), backtracking to revise decisions when inconsistencies de-
velop, and opportunistic control with likelihood measures, etc. The appropriate approach

depends on the characteristics of the problem-solver and of the application domain.
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Regardless of the approach taken to managing uncertainty, as problem solving proceeds,

additional knowledge is accumulated which can be used to reduce the uncertainty in the

control decisions. Unfortunately, traditional Al systems have suffered from what Doyle has

termed the "fatal flaw" of "inaccessibility of control information" [18] due to the implicit

nature of most reasoning. This leads to problems which Doyle labels the "inexpressibility of

control information" and the "inexplicability of actions and attitudes." Because programs

are unable to reason explicitly about why they should or should not take particular actions,

it is impossible to encode and maintain sophisticated heuristic control knowledge. Likewise,

it is impossible for programs to reason about how to revise their decisions in the face of

new evidence since they cannot understand why they did or did not take particular actions.

In the next two sections we will discuss control in Al problem-solvers in terms of two

distinct processes: the process of making (the initial) control decisions and the process of

revising control decisions. The use of meta-rules and dependency-directed backtracking

will be presented as examples of intelligent approaches to control and revision. These

techniques have had a strong influence on this work so it is instructive to examine their

limitations.

2.1 Control Decisions

Control decisions in AI systems have typically been made in a two stage process. Davis

[1 31 terms these two stages the "retrieval" stage and the "refinement" stage. The re-

trieval stage determines the actions which may plausibly be taken given the current state

of problem-solving. Typically, this stage is implemented using some kind of knowledge

indexing scheme appropriate to the characteristics of the problem. A number of differ-

ent retrieval/indexing paradigms have been used in Al problem-solvers: data-directed,

goal-directed, difference-directed, etc. In general, however, such retrieval strategies do

not produce a single permissible action at each choice point. That is, indexing schemes

alone cannot be used to select the single, correct action to take due to the uncertain and

incomplete nature of knowledge in Al systems. Some additional decision procedure must

be applied to select the single action to be taken. This is the purpose of the refinement

stage-also known as the conflict resolution stage in a production system.

Al systems have often used simple, static refinement procedures. For example, conflict

resolution schemes in production systems have selected the "first" rule satisfied, the rale

using data most recently added to the database, or the most "specific" rule. A more sophis-

ticated approach to refinement involves the use of numeric ratings or certainty/likelihood

factors. In these schemes, ratings or weights are computed for each of the alternatives from

the retrieval stage and the most highly rated alternative is chosen. Ratings can be based

on various attributes of the relevant alternatives and hae included subjective strength
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of belief, utility, salience, and a priori probabilities. Numeric approaches provide a more

dynamic control than is possible with static approaches since a number of characteristics

of the particular relevant data can be considered.

Neither static nor numeric approaches are suitable for use with a truly intelligent control

system, however, because they lack explicit knowledge about their decisions. In particular,

the intelligence that can be applied to the revision of decisions is severely limited by the

implicit nature of the decision process. Static refinement approaches do not explicitly

consider any characteristics of the alternatives-their choices are based on fixed, implicit

selection criteria. In this situation, it is difficult to see how any revision process could

perform better than a blind search. For example, suppose a decision based on the "most

recent data" criteria proves to be incorrect. Presumably this decision criteria has been used

due to certain assumptions about the nature of the problem solver and/or domain. Since

these assumptions are not explicitly considered in the refinement process, they cannot

be considered during the revision process. It is impossible now to reason about how to

proceed. Should the alternative using the next most recently created data be pursued-is

the basis of the decision still sound and applicable? Or, does the failure of the decision

indicate that the criteria is invalid? Perhaps it is then appropriate to pursue the alternative

based on the oldest data or, perhaps, the age of the data has absolutely no relevance to the

correctness of the decision. Without more explicit knowledge about the decision criteria

it is impossible to say.

Numeric refinement approaches are not substantially better than static approaches with

respect to intelligent control and revision. Their "reasoning" is implicit in their rating

calculations and so is unavailable for introspection. Suppose, for example, that ratings are

based on the "quality" of the data and the "quality" of the inference rule to which the

data is applied. It'is impossible to distinguish between an alternative rated highly due to

good data and a mediocre inference rule and one which is rated highly due to mediocre

data and a good inference rule. All a revision process has to work with is the final numeric

rating which condenses the relevant factors-it cannot consider them separately. This makes

it impossible to assign blame for failures and take this knowledge into consideration by

examining how alternatives are related to the failure. Should inferences based on the same

data be tried next because the inference rule is likely the cause of the failure or should this

same data be avoided because it was likely the cause of the failure?

Davis 1131 and others have advocated viewing the process of making control decisions as

a problem solving task in itself. A body of meta-knowledge including heuristic information

about the domain and the (object-level) actions would be used to guide the refinement

process. Such a refinement process can "reason" about the control decisions by considering

a number of different control criteria in the decision process. For a production system,

the addition of meta-level knowledge might take the form of a set of meta-rules with
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a meta-rule interpreter. The meta-rifles wou ld be applied during the conflict-resolution

stage of the production system to select a single object-level rule to be fired. For example,

a meta-rule from [131 for the domain of stock analysis is:

IF the LEI index has been climbing steadily for the past several months

AND there are rules which mention recession in their premise

THEN it is likely (.7) that these rules will not be useful.

While meta-level knowledge embodied in the form of meta-rules allows a system to

explicitly consider various characteristics of potential actions, it is clear that many of

the control problems we have discussed are still present. In particular, when several meta-

rules may be applicable, their advice is typically combined by resorting to numeric ratings.

Now, however, we are right back where we started since the object-level factors explicitly

considered by the meta-rules are lost in the conversion to numeric ratings. About all that

has been gained is a more modular representation for the numeric ratings calculations.

In particular, this approach does not provide enough depth or structure to the meta-

knowledge and the way it is applied to allow the integration of distinct, but relevant

information. Davis 1131 recognizes these problems and states that there may be "situations

where the rationale behind an argument is as important a factor as its strength." For

example, the meta-rule given above limits the use of certain (object-level) stock analysis

rules in a particular context. Implicit in this meta-rule is the assumption that a recession is

unlikely under the specified conditions and the knowledge that a great deal of processing

will be required to recognize this fact. Meta-rules which give conflicting orderings for

decisions may be doing so based upon conflicting assumptions about the occurrence of a

recession. If the recession assumptions were made explicit, it would be possible to use

additional evidence about the likelihood of a recession to resolve the conflicting rankings.

Such knowledge could be available either from "external" sources (the user, a backtracking

process, or meta-meta-rules) or from other meta-rules which assume that a recession is or

is not likely. Even if it were not available, the conflicting rankings could be recognized

as alternatives to be resolved as additional evidence is accumulated by the system. This

information could then be used to focus and control the system.

2.2 Revising Control Decisions

The uncertain nature of control knowledge means that systems will make errcr - in their

control decisions. When a contradiction occurs or a dead end is reached duril'g problem

solving, it is necessary to revise some control decision(s). I. general, this requires deter-

n :ning which decisions were responsible for the ditficulty, retracting these decisions and

their consequences, and making new decisions. However, retraction can be handled in
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different ways depending on the characteristics of the domain and the characteristics of

the control scheme.

Actual retraction of an action may not be required because the application of an in-

correct action does not preclude a successful subsequent search for the solution. Systems

that exhibit this characteristic are known as commutative. For example, the application

of a "wrong" theorem in a theorem-proving system simply results in the derivation of

facts which are useless with respect to the goal of proving the desired fact. The derived

facts are still true statements and will not prevent the derivation of the desired result
by the application of the "correct" theorems. Nonetheless, a "revision" process is still

required to determine which results are useless in order to "prune" the search space and
avoid combinatorial explosion in the search, e.g., uncontrolled antecedent deductions in a

theorem-proving system. This points up the fact that though answer generation is com-
mutative in such systems, control of problem solving is not due to resource limitations

[371. In other cases, retraction of actions might not be required because multiple paths
were pursued by the problem solver, e.g., exhaustive, breadth-first, or beam searches.

Again, a revision procedure is required in order to assign blame for the failure and prune
the search space in an appropriate manner. These approaches have limited applicability,

however. Exhaustive searches are seldom practical for AI problems due to combinatorial
explosion in search paths or cost of searching incorrect paths. Partial searches can only

avoid retraction if they can guarantee that they cover the correct solution-which can be

difficult.
With chronological backtracking the state/context of the system is switched to that

existing prior to the application of the decision being retracted. This retracts the deci-

sion and its consequences. Chronological backtracking is normally implemented so that

a contradiction causes the most recent control decision to be retracted. If the temporal

order of decisions is not of primary importance, however, the result is a blind, depth-first

search for the relevant decision(s). This is exceedingly inefficient because decisions which

are not responsible fot the inconsistency are unnecessarily withdrawn and reconsidered.
In addition to problems with exponential search complexity, much valuable information

is discarded in the context switches. This includes information about the inconsistency
which led to the retraction and about the paths which have already leen explored. In

certain domains, the best that can be done is to retract all actions back to tile point of
the incorrect action-i.e., each action depends on the previous action. Even in these cases,

information about the reason for retraction and the paths which had been explored can

be useful for determining which paths to explore next and how explore them.

Nonchronological backtracking is one response to the inefficiencies of chronological back-
tracking. In its purest form, nonchronological backtracking involves examining all deci-

sions, identifying the source of the inconsistency, and choosing an alternative. Thus, only
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those decisions which could he responsible for the problem need be withdrawn and re-

considered and only the affected aspects of the state/context need to be retracted. This

greatly reduces the search space, although complexity is still exponential in the number of

relevant decisions.

The best understood implementations of nonchronolozical backtracking involve a tech-

nique known as dependency-directed backtracking. In order to make use of this technique,
dependency records are used to link conclusions with their antecedents. This results in

a dependency network which is stored and maintained by a reason maintenance system

or RMS 117,421. An RMS is a domain independent, syntactic database subsystem for

representing propositional deductions and maintaining their consistency. Statement jus-

tifications, in the form of dependency links, can be traced back from the inconsistent

statements to locate the set of statements upon which the inconsistent statements depend.

Certain statements are usually considered to be premises or assumptions. The RMS is

able to change its belief in these statements in order to affect belief in deduced statements
and eliminate the inconsistency.

Dependency-directed backtracking is an implementation of the concept of nonchrono-

logical backtracking, but the two terms are often confused and used interchangeably 144,52].

This results in nonchronological backtracking appearing to be better understood than it
is and dependency-directed backtracking appearing more general than it is. Winston 52I

even supplies an "algorithm" for nonchronological backtracking which is similar in style

to that provided for chronological backtracking. Unfortunately, unlike the chronological

backtracking algorithm, the nonchronological backtracking "algorithm" cannot be imple-

mented. In particular, it does not explain how relevant decisions are to be located, how

to go about revising the relevant decisions once located, nor how to proceed with problem
solving once the inconsistency is eliminated.

The class of problems to which dependency-directed backtracking can be applied is

limited. It is best suited to problems where an explicit constraint network can be con-
structed such as constraint satisfaction problems and theorem-proving problems. From the

point of view of control, the major conceptual failing of dependency-directed backtracking

is that it separates control into two disjoint subsystems. The conventional system control

component, or problem solver, is here only responsible for the initial control decisions. Re-
vision is handled by the database through the dependency-directed backtracking routines.

Dividing the problem solving responsibilities makes it difficult to coordinate control. This

leads to a number of problems which will be discussed below.

Because reason maintenance systems only represent propositional deduction, instanti-

ation of facts becomes a major con'ol issue. If dependency-directed backtracking is to
automatically and independently revise assumptions, the normal control process must ef-

fectively pursue all possible alternatives in order to be able to explicitly instantiate them

5-C- 13



in the dependency network. Doyle [171 recognizes that this is impossible in domains which
involve many alternatives (or domains where alternatives are expensive to compute-see

chapter 4), but his proposed solution involves an external process which must somehow be
coordinated with the backtracking process. This coordination is difficult to achieve because
separating responsibilities for control separates decisions from decision points and decision
processes. It is unclear, then, how to re-examine a "decision point" and restart the decision
process because the decision point is not explicitly represented in the dependency network
in connection with the decision alternatives. This is the reason for what deKleer [16] calls
the unouting problem-it is difficult to pursue previously abandoned problem solving paths
because the states of the problem solver are not represented in the RMS.

Because dependency-directed backtracking is part of a domain independent subsystem,
it is a purely syntactic process, unable to reason about the semantics of a situation when
revising decisions. The normal control component of the problem solver must precompute
all control information which might be required by the backtracking process and store it
within the dependency network. Nonmonotonic dependencies are used to encode sets or
sequences of alternative assumptions [17]. These predetermined sequences are then used to
revise assumptions without regard to the semantics of the inconsistency. Recording control
information in the dependency network means that dependency network dependencies not
only record logical deductive relationships, i.e., reasons for believing some facts based
on belief in certain other facts, but also control choices. This confuses the role that
nonmonotonic justifications play in the nonmonotonic logic notion of default reasoning.
Also, the use of little or no intelligence in the revision process severely limits the value
of dependency-directed backtracking in real world problem domains. deKleer [161 reports
that for qualitative reasoning, RMSs are very inefficient. The reasoner spends most of its
processing time backtracking because it must still perform an exhaustive search on the

relevant assumptions and revision of the database for each possibility takes a substantial
amount of time.

RMS dependencies are typically used to represent only logical deductions, but logical
deductions are not the only relations between beliefs and facts which need to be repre-
sented. Non-logical inferences, evidential relations, causal connections, etc., will be needed
in order to locate relevant assumptions and to reason aboutt their consequences during
the revision process. Of course, relations other than logical deduction can be recorded in
an RMS by simply including a node to represent the relation among the justifications of

a conclusion. However, the semantics of such relations are not understood by the back-
tracking process and so cannot be used to guide revision. Only one iMin of non-logical

inference, nonmonotonic or default inference [17I , can be represented as an integral part
of the RMS/dependency-directed backtracking formalism.

Even when explicit dependencies link decisions it is not always obvious which decisions
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are "relevant" to eliminating the contradiction. In the planning example in (521, deci-
sions are not independent because of interacting constraints on system resources. When
constraints are violated, it is easy to follow dependencies to locate those decisions which
are (directly) relevant to the contradiction because of their use of the violated resource.
However, these "relevant" decisions are not independent of other decisions with which they
share resources. To develop a completely consistent plan may require withdrawing certain
of these "irrelevant," but related decisions (a problem which is ignored in the text). How
is this to be done without resorting to exhaustive, exponential search?

Finally, it must be noted that the recognition of a "contradiction" or a "dead-end"
might involve major problem solving activity of its own 1301. The constraint satisfaction
problems to which dependency-directed backtracking has been applied have tended to
gloss over the difficulties involved in detecting contradictions and attributing reasons for
the contradictions. A measure of developing uncertainty could play an important role in

forewarning of these "contradictions."
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Chapter 3

Evidential Reasoning

One approach to problem solving in uncertain domains is to apply evidential reasoning

techniques. In this chapter we will survey techniques which have been used to represent

evidence and belief. The purpose of the chapter is not to examine these approaches in

detail, but rather to provide a review of their strengths and weaknesses as they relate to

plan recognition. The presentation is divided between those techniques which use numeric

representations of evidence and those which use symbolic representations.

Evidential reasoning has typically been applied to Al problems using the parallel cer-

tainty inference approach. Inferences are made using two fairly independent processes:

conclusions are first derived as if they result from deductive (certain) inferences and then

the degree of belief in the conclusion is computed. Computing the degree of belief in the

conclusion requires the use of two combining functions. Propagation combining functions

adjust the belief in a conclusion to reflect the belief in the premise and the characteristics

of the deduction. Pooling combining functions determine the belief in a conclusion which

is deduced by multiple independent inferences.

Al systems using evidential reasoning techniques have most commonly involved classi-

fication or diagnosis problems. In these problems, evidence is being accumulated to select

the most likely hypothesis out of a fixed set of alternatives. The fact that all three of

the numeric techniques discussed below rely on the existence of a fixed set of alternatives

makes it clear why their application has been limited. Plan recognition, for instance, does

not fit into the classification framework. Hypotheses are created dynamically as part of

the evidence gathering process and can be modified by the very evidence gathered to sup-

port the hypotheses. Hypotheses are also frequently interrelated. Because of this, it is

questionable whether existing numeric approaches to evidential reasoning are applicable

to plan rezognition. Symbolic representations of evidence while not inherently limited to

diagnosis have primarily been applied in this area and so offer little guidance for the use

of symbolic evidence in plan recognition.
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3.1 Numeric Evidence

By numeric systems of evidence, we mean those systems which represent their belief,

evidence, and/or uncertainty in terms of one or more numbers. Al systems have used a

variety of ad hoc numeric rating schemes. However, we focus here on three formal or semi-

formal evidential reasoning systems: Bayesian probability, the Dempster-Shafer Theory of

Evidence, and the MYCIN certainty-factor model.

Bayes' theorem provides one approach to pooling evidence. In a system based on Bayes'

theorem, a single degree of belief would be attached to each hypothesis. These degrees

of belief would then be treated as probabilities and Bayes' theorem used to compute the
conditional probability of a conclusion given the set of evidence hypotheses. Bayes' theorem

has a formal basis in probability theory, but suffers from many deficiencies in relation to its

use in an evidential reasoning system: large amounts of data about a priori conditional and

joint probabilities are required, but rarely available for domains of interest, the complete

set of hypotheses must be known in advance, and these hypotheses must be independent.

The Bayesian approach is unable to distinguish between uncertainty and ignorance
because it forces probability to be assigned to singleton sets of the possible conclusions.

The Dempster-Shafer theory [251 rectifies this problem by allowing belief to be assigned to
any subset of the possible conclusions. Thus if we have evidence which results in a degree of

belief x in one conclusion, but no other evidence is available, we can represent our ignorance

in the belief in each of the other conclusions by assigning the remaining belief to the subset

consisting of these conclusions. This representation also allows us to represent the amount
of uncertainty of a hypothesis. Since the evidence not supporting a conclusion need not

support the negation of the conclusion, a belief interval is produced which is bounded by

the belief in the conclusion and its plausibility-the extent to which the evidence allows

one to fail to doubt the conclusion. Despite these advantages, the Dempster-Shafer theory

still requires that the set of hypotheses under consideration be mutually exclusive and

exhaustive. In addition, the computations required by the Dempster-Shafer theory can

become intractable under certain conditions.

One of the major problems with both the Bayesian and Dempster-Shafer approaches
is that subjective degrees of belief data used in Al systems does do not, represent true

probabilities and so these approaches are not applicable. The MYCIN certainty-factor

approach [471 was developed as a model of how the kind of non-probabilistic and unfor-

malized reasoning typically carried out by experts could be captured in a computerized
reasoning system. In the case of expert knowledge, the data acquired is highly subjec-

tive and uncertain and it's impossible to explore the all of the conditional probabilities
and interrelationships of the hypotheses. The certainty-factor model recognizes these facts

and avoids the problems through use of a simplified, approximate application of Bayes'
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theorem.

The intelligence in numeric systems is in the specification of the combining functions.

That is, in the process for computing the numbers. Control schemes based on numeric

evidence schemes simply select the best rated alternative. As was discussed in section 2.1,

a numeric approach to representing evidence means that the control scheme cannot be flex-

ible and dynamic since the reasoning behind the numeric ratings is unavailable. Typically

numbers representing expert judgements are a combination of many different factors. For

example, in MYCIN, rule qualifications included information about a priori probabilities,

causal connections, and utility. This brings up the question of representational adequacy.

Numbers do not provide adequate knowledge about situations to allow intelligent control

decisions to be made because they only implicitly represent the many different factors

relevant to the situations. Doyle [21J has suggested that the inference qualifications repre-

sented by the numeric factors be explicitly represented as part of the specification of the

inference rule.

3.2 Symbolic Evidence

In response to the deficiencies of numeric representations of evidence, symbolic represen-

tations of evidence have been developed. This approach has received far less research

attention than have numeric systems. Therefore, the work presented here does not con-
stitute the kind of formalized methods developed for numeric approaches to representing

evidence. Instead, it has served to define the complex problems which much be solved in

order to use symbolic evidence effectively. The discussion of endorsements summarizes the

main arguments for symbolic representations of evidence and the problems which must

be solved to use such systems effectively. MUM, a system under development which uses

symbolic evidence for the control of medical diagnosis, represents a recent approach to

heuristic reasoning about uncertainty.

Numeric degrees of belief implicitly represent summaries of the reasons for believing
and disbelieving the conclusions and the inference rules to which they are connected. As we

have discussed in sections 2.1 and 3.1, the fact that the numbers hide the reasoning which

has produced them severely limits the reasoning that can be done with them. Systems

are unable to treat different kinds of evidence differently or to treat evidence differently

in different contexts since the only characteristic which is accessible is how much it is

believed. Numbers simply do not pr',vide a rich enough representation to support the kind

of reasoning that people use to function effectively in the face of uncertain knowledge.

The theory of endorsements 19,101 is one response to the limitations of numeric evi-

dence through the use of symbolic representations of evidence. Endorsements are explicit

representations of the factors which affect one's certainty in a conclusion. Cohen stresses
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the distinction between reasoning under uncertainty in numeric systems as opposed to the

potential for reasoning about uncertainty using a system of endorsements. Since so much

more can be known about the evidence, heuristic knowledge can be brought to bear to

discount the effect of the uncertainty in a particular context. Reasoning about uncertainty

is a knowledge intensive process in which domain specific heuristic knowledge is applied

to make the best control decisions given the evidence and the situation. For example, a
set of endorsements may be sufficient for one goal, but not for another-in which case the

decision could be made to attempt to gather more evidence.

A system which represents evidence symbolically isn't straightforward to develop. If

more sophisticated reasoning about evidence is to be done then much more knowledge

is required. A system of symbolic evidence doesn't make this any easier-what it does is

make it possible to represent and apply such knowledge. Each domain will have a char-
acteristic set of endorsements and a set of methods for reasoning with the endorsements.

These methods must include rules for ranking sets of endorsements, rules for combining
endorsements (to replace the pooling and propagation combining functions), and rules for
resolving and discounting uncertainty. This involves a great deal of information because

instead of the uniform, global approaches for dealing with evidence in numeric systems,

heuristic reasoning about uncertainty must take into account the characteristics of the

context and the particular evidence involved.

MUM (Management of Uncertainty in Medicine) [II] is a medical diagnosis and consul-

tation system which is designed to manage the uncertainty inherent in medical diagnosis.

MUM generates workups for chest and abdominal pain. This involves taking histories,

asking for physical findings, ordering tests, and prescribing trial therapies. Control deci-
sions are made by reasoning about features of evidence and sources of uncertainty in order
to minimize uncertainty or its consequences. The architecture is "based on the idea that

managing uncertainty and controlling a complex knowledge system are manifestations of

a single task, namely, acquiring evidence and using it to solve problems."

MUM uses a number of different kinds of knowledge. The most basic type of knowledge

is data, which includes such things as personal and family history and test results. Data

must be abstracted through interpretation functions to become evidence. Interpretation
functions are essentially belief curves that relate data attributes to evidence or belief in

evidence. For example, data about the number of cigarettes smoked per day is abstracted to
evidence about the smoking category of the patient: non-smoker, light-smoker, moderate-

smoker, or heavy-smoker. In other cases, data is related to belief in a single form of

evidence, as duration of chest pain is abstracted to belief in classic-anginal-pain.

Evidence can be characterized by a number of features such as cost to obtain, reliabil-
ity, and roles. Roles represent the relations evidence can play with respect to evaluating
belief in hypotheses. MUM recognizes seven roles: confirming, disconfirming, support-
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ing, detracting, triggering, and modifying. The roles which relate directly to belief in

a hypothesis are realized in the non-numeric degrees of belief used in MUM: confirmed,
strongly-supported, supported, unknown, detracted, strongly-detracted, and disconfirmed.

Evidence plays a triggering role when it focuses attention on a particular hypothesis. Mod-
ifying evidence does not affect belief in a hypothesis so much as it alters the way diagnosis

of the hypothesis proceeds. Evidence can play multiple roles with respect to hypotheses.
For example, most triggering evidence is also supporting individually or in combination
with other evidence. Collections of evidence which occur regularly and play particular

roles with respect to hypotheses are grouped into clusters. Systems which use represen-

tations of belief need to be able to combine evidence and propagate belief. MUM uses
combining functions which are local to each evidence and disease cluster to accomplish
these functions. By doing this instead of using some global, general function, an expert
can precisely specify how belief in evidence affects the belief in a cluster.

Strategic knowledge consists of heuristic knowledge for focus-of-attention and actions for
gathering pertinent evidence. Strategies are represented as rules and include the following
components: conditions for selection of the strategy, focus policies, and planning criteria.
Focus policies guide the choice of disease hypotheses to focus on based on plausibility,
criticality, or ability to provide alternate/differential explanations for symptoms of the
hypotheses. Planning criteria use cost, roles, and diagnosticity (ability to differentiate
alternatives) of the potential evidence to control actions to gather evidence.

More recent work on MUM takes advantage of the fact that for medical diagnosis the

inference net from data to diagnosis is static and predetermined. As was discussed above,
this is not the case for plan recognition. Medical diagnosis is much more a matter of
template matching than is plan recognition. This is not, of course, to say that medical

diagnosis is any easier than plan recognition since there are still many uncertainties in the

domain. It simply suggests that techniques for control in MUM are unlikely to be directly
applicable to plan recognition tasks.
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Chapter 4

Plan Recognition

We include a broad range of interpretation and situation assessment applications within

the class of plan recognition problems we are studying. The classic example of plan recog-

nition is the interpretation of a series of user actions as particular steps in a task instance.
This capability is important for natural language understanding systems which must in-
terpret descriptions of user activities or as part of an intelligent assistant such as POISE
(see section 4.1). Situation assessment applications such as vehicle monitoring may also
be treated as plan recognition problems. Here, for example, the plans describe v~hicle

movements or missions and the plan "steps" specify characteristic sensor data and other
evidence. What is common to these various applications is the goal of producing a higher-
level, more abstract view of the data. These interpretations then provide an appropriate

context within which to understand the data.
Plan specifications define the hierarchical relations between the data and more ab-

stract views of the data. Although the exact form and specification of plans varies with
the application domain, all plans are composed of subplans. These subplans are then fur-
ther decomposed into subplans. The decomposition continues until the subplans represent

available data. For example, an office domain plan for processing a form may be composed
of steps for filling out the form and then sending it to the appropriate office for verificati a.

These steps are further decomposed until they correspond to the actions that a user ,I-y
take using an automated office system. An aircraft monitoring plan might represent a par-
ticular kind of mission in terms of vehicle movements and states. The vehicle movements

and states would be expressed in terms of of radio and radar emissions necessary to identi-

fying them. The exact form for specifying plans depends on the domain. The subplans of
a plan may be explicitly specified in a hierarchical script-like framework or may be more

loosely related through goal and subgoal relations depending upon the application. Each
plan also has an associated set of parameters. Plan constraints then define the legal sub-

plan instantiations of a given plan inst-tiation based on various attributes of the subplan

parameters. Thus, different forms may be sent to different offices for verification during
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processing and different vehicles will have different emissions characteristics.

Plan recognition is the kind of complex, uncertain process which requires the application

of Al techniques. The major factors which complicate plan recognition are:

" In general, there are multiple, ambiguous interpretations for

each subplan or sequence of subplans.

* Ambiguity is compounded in domains which admit multiple, concurrent plans

since the subplans may be interleaved.

" For some applications, interpretation must be done in real-time, relying on

preliminary and partial plan data to make "best guesses" about complete plans.

" Since computational considerations generally preclude constructing all the

possible interpretations, there is actually uncertainty whether any of the
system's interpretation hypotheses are correct.

" The volume of data may be so massive as to preclude complete examination.

" Data may also be missing, uncertain, and/or incorrect.

There is typically insufficient constraint information associated with a plan instantiation to
be able to eliminate all but the one correct interpretation from consideration. Of course, the

situation improves rapidly if all subplan instances are associated with a single plan since

constraint information would accumulate rapidly. However, in many domains multiple,
concurrent plan instantiations may occur. For example, users may temporarily suspend
a task to start another while waiting for a form to be verified in an intelligent assistant

application or multiple vehicles may need to be simultaneously monitored in a vehicle mon-

itoring system. Many applications also require that interpretation be done in real-time-i.e.,
as the data is being received. An intelligent assistant must try to understand user actions

as they are taken if it is to provide maximum assistance and vehicle monitoring is typically

required to provide immediate feedback such as in air traffic control. This greatly increases

the possi- interpretations for a sequence of actions since plan instantiations must be rec-

ognized from fragments of the plan and no potential partial plan instantiation may be

ruled out as it may be continued later. Becuse these characteristics call lead to a combi-
natorial explosion of the number of potential ambiguous interpretations for the data, it is
often infeasible to construct and evaluate every possible interpretation. Control schemes

must instead select and pursue only the "most likely" interpretations. Since these control

decisions are uncertain and may be incorrect, there is even the possibility that the correct
interpretations are not represented among the constructed hypotheses. Thus, the control
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process must not only choose the most likely hypotheses, but also decide if the hypothe-
ses cover the correct answer. In some domains, control must also be exercised over the
selection of what data to interpret. For example in vehicle monitoring, many sensors will
provide continuous output resulting in huge amounts of data for interpretation. Control of
data interpretation is even more critical when the data may be in error. The potential for
missing or incorrect data greatly increases the number of potential interpretations since
we may be uncertain about ruling out plans just because subplans are missing or because

constraints are violated.
In this chapter we will examine the POISE and DVMT applications which have moti-

vated this research as well as several other plan recognition systems. The final section of

the chapter discusses the characteristics that we feel plan recognition systems must have
to address the deficiencies of existing systems.

4.1 The POISE Intelligent Assistant Project

The POISE project [311 involved the development of an intelligent assistant for users of
compulterized systems. The project encompasses a number of different components. The
purpose of the plan recognition component is the development of a model of user activities
based on information supplied by another component which monitors the interactions
between the user and the computer. In this section, plan recognition in POISE will be
presented along with a discussion of the current control scheme and its deficiencies.

In POISE, possible user tasks are represented as hierarchies of script-like plans. Each
plan specifies its substeps using a shuffle grammar to denote the relative temporal ordering
of the substeps. Additional constraints specify valid values for the parameters of these
substeps. The POiSE plan recognition component uses these plan specifications to form
an interpretation of user actions. "Primitive" plan instantiations representing the actions
are passed to the recognition component by the monitor component. Choice points occur
following each newly monitored user action as the system must find an interpretation
which covers the latest action. Recognition must be done in real-time in order to provide

timely assistance to the user. Thus only partial plan instantiation data will be available
and no potential interpretations can be absolutely ruled out due to the possibility of their
being continued later. Typically, a user will be engaged in a number of tasks at the
same time since most tasks require many steps which take place over a period of time.
This means that the plan recognition component must also deal with multiple, concurrent
partial plans whose steps are interleaved. Errors made by the user must be considered
in the interpretation process. One of the important functions of an intelligent assistant
is the detection and correction of user errors. An unexpected action could be due to a

user error or it might be due to previous incorrect system interpretations. The recognition
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component must assign blame for errors and correct its interpretations when possible. If

the error originates with the user, the interface would be notified and a dialog might be

carried out to inform the user and correct the error.

Because of these complexities, constraint information contained in the plan specifica-

tions is seldom sufficient to fully disambiguate potential action interpretations. Neverthe-

less, the role of the plan recognition component in modeling user activities for an intelligent

assistant makes it crucial that the correct interpretations be rapidly and reliably formed.

In order to accomplish this objective, POISE uses heuristic knowledge to focus on the

most likely interpretations to be pursued. While the plans contain object-level knowl-

edge about how it is possible to accomplish various tasks, the focusing heuristics contain

meta-level knowledge about how people tend to carry out tasks. This heuristic knowledge

in effect supplements the knowledge in the plan specifications in order to disambiguate

the alternative interpretations. When faced with ambiguous interpretations for the data,

the heuristics are used to make assumptions about the most likely interpretations. Of

course, since these assumptions are based on heuristic knowledge, the system must include

methods for revising the interpretations as additional data is accumulated.

The original focusing algorithm developed for POISE examined all of the possible

interpretations for a new action, ordered them, and selected enough of the more likely ones

to cover all actions. The heuristic meta-knowledge was implicit in the part of the focusing

algorithm which ordered the alternatives. Procedural embedding of the heuristics means

that it's not obvious which heuristics have been applied. This caused major problems when

actions occurred which were inconsistent with the existing interpretations. This means
that the system had incorrectly interpreted some earlier action(s) and needs to backtrack:
identify its interpretation error, retract it, and correct it. However, the only information
available to the backtracking system was an (ordered) list of preferred interpretations-

the result of the focusing process. There was no information about how this ranking was

achieved, nor was there any information about which interpretations were alternatives

based on the control assumptions implicit in the focusing algorithm. Thus, there was no

way to reason about which interpretations were likely to be in error and the alternatives

to pursue instead. Consider for example, the plans I = a, b and J = b, c and the sequence

of actions, a, b, c. The system was unable to reason that the interpretations of action b as

occurring in plan I or in plan J (Iab vs. Jbc) were alternatives based on an assumption of

plans steps being unshared. Thus at this point in the interpretation process, the system
selected {Iab, Jbc} as the best interpretations rather than {Ia, Jbc} (which is more correct
based on the heuristics). Because it had no explicit record of the interpretation assumptions

it had made and the consequences of those assumptions, it would have been necessary
for such a system to resort to chronological backtracking in order to reach the correct

conclusion.
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The current approach to focusing [61 uses meta-level knowledge in the form of heuristic

rules similar to [131 (see section 2.1). These heuristic rules result in pairwise orderings

of interpretation alternatives which are explicitly recorded and serve as the basis of the

interpretation decisions. A list of meta-rules which justify the orderings are also recorded

using an RMS. Backtracking occurs when an action cannot be interpreted within the

existing task interpretations. Decisions relevant to the error are located and the heuristic

reasons for these decisions examined. If a meta-level heuristic rule results in what is deemed

an incorrect interpretation decision, then the rule is made inapplicable at the decision point.

The RMS then uses the heuristic justifications to make different assumptions about the

relative likelihoods of possible interpretations which results in an updated interpretation

decision.

While this focusing scheme has a number of advantages, some of the control diffi-

culties discussed in chapter 2 remain. Although the focusing mechanism makes use of

an RMS to record and enforce focusing assumptions, the RMS is not used for automatic

dependency-directed backtracking. Focusing in POISE is an example of a problem which is

not amenable to dependency-directed backtracking, but can be approached through some

form of nonchronological backtracking (as was discussed in section 2.2). Dependency-

directed backtracking cannot be used because of its requirement that all relevant knowl-

edge be instantiated in the dependency network so that inconsistencies can be detected

and eliminated. This would essentially require that all possible interpretations be pursued

and recorded-including those deemed unlikely. Avoiding this work, though, is exactly the

point of focusing because it is prohibitively expensive to pursue all interpretations and

because it dilutes the value of the system as an intelligent assistant. Thus, the nonchrono-

logical backtracking mechanism is external to the RMS. Relevant assumptions are located

by determining which control assumptions resulted in the elimination of task interpreta-

tions which could explain the current action and the heuristic focusing rules applied to the

revised view of the situation.

The focusing heuristics have been structured in a form like Doyle's reasoned assump-

tions [211: A UNLESS B ASSUME C. Encoding control knowledge in this way has a

number of drawbacks. We must explicitly state when and only when to make an assump-

tion or else inconsistent assumptions may be suggested. Having to precisely specify the

exact conditions makes the heuristics complex and difficult to accurately specify. In addi-

tion, such a representation is not modular since the addition of new heuristics may require

changes to the existing heuristics. Using.numeric ratings to resolve conflicting heuristics as

has been done for meta-rules (see section 2.1) is not acceptable since it eliminates the kind

of explicit representation of control knowledge which is required for an intelligent revision

process.

The heuristic control knowledge in POISE is only applied in a limited way to control
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the construction of interpretation hypotheses. For each new action, the system constructs
all possible interpretations for that action (given the existing interpretation assumptions)
in terms of top-level task descriptions before it applies any heuristic focusing knowledge.
While this approach seems satisfactory for an intelligent assistant for office automation, it

may not work in domains such as software engineering where many tasks are accomplished
with few primitive actions. This leads to a large branching factor and hence a very large
number of potential alternative interpretations. In this case it may be necessary to apply

heuristic knowledge to all plan levels during the construction of interpretation hypotheses.
It may even be desirable to limit the abstraction level at which data is interpreted until
sufficient data is accumulated to provide some level of certainty.

The current system confuses belief in hypotheses with the control decisions about how
to develop the hypotheses. Belief in an interpretation hypothesis is implicit in its mem-

bership in the set of currently "in-focus" hypotheses. This often forces the system to
prematurely commit to one of a set of alternative interpretations regardless of how tenu-
ous the evidence is. However, when there is a great deal of uncertainty over the proper

interpretations it might be better to pursue interpretations other than those that are cur-
rently most supported. This would give the system control over using a depth-first vs. a
breadth-first approach to pursuing hypotheses. An independent representation of belief in
hypotheses would also make it possible to provide more information to a user about the
relative level of belief and uncertainty in the alternatives. This same knowledge could be
used to guide and limit the revision process. Uncertain assumptions could be examined
first and revisions can be limited to those assumptions which are not strongly believed.

This is important since it is computationally infeasible to reconsider all interpretation de-
cisions when faced with a contradiction. It may in fact, be possible to recognize incorrect

decisions before a "hard" error is caused by evaluating the uncertainty in the system.

4.2 The Distributed Vehicle Monitoring Testbed

The Distributed Vehicle Monitoring Testbed (DVMT) 1121 is a research environment for
the evaluation of alternative designs for distributed problem solving networks. The vehicle
monitoring task involves the generation of maps of vehicle movements through some geo-
graphical area. Input data is provided by a set of acoustic sensors distributed over the area
to be monitored. Because of the distributed nature of the acoustic sensors, there can be

advantages to distributing the computational resources. This requires a problem solving
architecture which makes it possible for each node to work with only partial information
by communicating with other nodes and by coordinating its problem solving activities
with these nodes. The testbed simulates a network of nodes, each of which is a complete,

goal-directed blackboard system capable of functioning as a centralized vehicle monitoring
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system.

The vehicle monitoring task can be formulated as an interpretation task very similar

in character to plan recognition in POISE. The interpretation of acoustic sensor data in-
volves the use of a simple, four-level grammar (plan) representing vehicle tracks in terms of

characteristic acoustic sensor data. The data blackboard is divided along these four levels
of abstraction. At the lowest level of abstraction, the signal level, hypotheses correspond
to signal data received from low-level analysis of acoustic sensor data. The group level in-
volves collections of harmonically related signals-signals emanating from a common source
vehicle. Vehicles are represented as collections of groups associated with particular vehicle

types at the vehicle level of the blackboard. Finally, the pattern level involves collections

of vehicles with specific spatial relationships as well as single vehicles. At each level, hy-
potheses may represent single -locations or tracks covering a sequence of locations. The

grammar specifies relations between classes of hypotheses from one level to the next as
well as constraints such as vehicle velocity and acceleration. The goal of the DVMT is to
create pattern-level track hypotheses representing the vehicle movements being monitored

by the acoustic sensors.
Vehicle monitoring is an inherently uncertain task. The number of vehicles being

monitored is unknown. Constraints in the track grammar are fairly weak. Sensors can fail
to detect signals, malfunction and "detect" non-existent signals, or incorrectly determine
the location and frequency of signals. These factors result in large numbers of alternative
interpretations for a set of signal data-ambiguity and uncertainty which much be resolved

by the control process. The DVMT deals with this uncertainty through the use of an
opportunistic, goal-directed blackboard architecture. A goal-directed blackboard system
involves an extension of the typical HEARSAY II blackboard architecture to include a goal
blackboard. Goals are used to focus problem solving through subgoaling while maintaining

the advantages of opportunistic data-directed control common to blackboard systems.
Goals are created on the goal blackboard by the blackboard monitor in response to

the changes on the data blackboard-e.g., the creation of hypotheses. Goals explicitly

represent the system's intention to create hypotheses with particular attributes. The
insertion of goals on the goal blackboard results in the planner instantiating Knowledge
Sources (KSs) which might achieve the goals. The planner executes a KS's precondition

procedure to estimate whether the KS is likely to generate hypotheses to satisfy the desired
goal. Hypotheses are created by executing the Knowledge Source Instantiations (KSIs).

Knowledge Sources (KSs) are provided to abstract hypotheses from one blackboard level
to the next, create tracks from location hypotheses, extend tracks, and merge overlapping

tracks. KSs are also provided for internode communication of hypotheses and goals as part
of distributed problem solving.

Goals, KSIs, and hypotheses are assigned numeric ratings as they are created. Goal
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ratings are based on the ratings of the hypotheses which stimulated the creation of the

goal and on the ratings of supergoaLs (goals which have the goal being rated as a subgoal).

KSI ratings reflect both data-directed and the goal-directed components. A KSL rating is

a weighted sum of the rating of the goal which the KSI is to accomplish and the estimated
rating of the hypothesis the KSI will create. The scheduler uses this formula to rate

KSIs on the agenda and selects the most highly rated KSI for execution at each system

cycle. Hypotheses are rated as they are created by the executing KSs. The knowledge for

producing these ratings is one of the major engineering aspects of the testbed. Though
KSs may be independent in principle, the ratings functions associated with the KSs must
be consistent with each other if effective control is to result. Thus the reasoning about
control decisions is really being done during the engineering of the system rather than

during the running of the system.
As we've discussed earlier, systems which use numeric ratings are unable to explicitly

consider the evidence implicit in their numeric ratings. They cannot reason about which

actions are best for resolving their uncertainty since essentially all they know is the amount
of their uncertainty-not the source of the uncertainty. Much of the research on control for
the DVMT has dealt with focusing to avoid distraction from noisy and incorrect data (e.g.,

data due to ghost tracks and sensor failures). Since the likelihood of potential sources of
uncertainty in particular situations cannot be explicitly considered, these focusing mech-

anisms involve relatively unsophisticated, uniform methods. The DVMT is also unable to
reason about the relationships between actions and so may waste processing resources suc-
cessively pursuing actions which have the same purpose. For example, there are typically a

number of sequences of actions which can be used to extend a track hypothesis. Failure of
one approach (e.g., due to missing or garbled data) suggests that the other approaches will
also fail if they are seeking the same sorts of evidence. What is needed is an action which
will seek different sources of evidence to resolve the uncertainty. Processing may also be

wasted accumulating less critical evidence. A group-level hypothesis may be pursued by
interpreting additional signal data prior to examining more crucial evidence of the group's

possible inclusion in a vehicle track. Control should be able consider the purpose of actions

in relation to the goal-i.e., producing evidence of complete tracks.
A good deal of effort has been expended developing systems for uinderstanding and

explaining DVMT activities because numeric representations of evidence hide much of

the problem solving activity. It is difficult to determine why data was or was not used

and why hypotheses are or are not believed (beyond meaningless restatements of the
ratings). This sort of knowledge is important for users to have confidence in the system's

answers and to detect problem solving errors or situations which call for additional problem
solving knowledge. Since the ratings play such an important role in control it is not

surprising that they do not even really represent belief in the hypotheses, but include
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focusing information as well. For example, (potential) track extensions are always rated

more highly than their base tracks when they may, in fact, be less certain than a well-

supported base track. Finally, the simplistic numeric scheme being used is incapable of

representing more sophisticated evidential concepts such as uncertainty and conflicts. This

leads to the goal satisfaction problem: how to determine when the system is done-that is,

when it has found all the answer hypotheses.

A distributed approach to vehicle monitoring increases the need for intelligent control

which reasons about evidence and the best ways to obtain it. In a distributed problem

solving environment, no node has access to all of the signal data necessary to be able to

interpret vehicle movements. This requires communication between the nodes to request

and receive necessary data and evidence. However, communication involves cost, so it is

important for such systems to request and transmit only the most appropriate data for

reducing the overall interpretation uncertainty.

4.3 Other Plan Recognition Systems

A review of the Al literature reveals that other plan recognition work suffers from the

same limitations that our research addresses. In the all of the examples systems discussed

in this section, plan recognition is intended to provide an understanding of human goals

and intentions based on descriptions of actions such as would be available from a natural

language comprehension system.

Schmidt, Sridharan, and Goodson [45,461 present their plan recognition process as a

model of how humans understand others actions. Their process involves what they call a

hypothesize and revise strategy. This approach is motivated by their belief that humans

"do not use a strategy of heuristic search to explore a large space of possible interpretations

of a sequence of actions," but "explore only a few, usually only one, hypotheses at a time"

and are able to adapt the hypothesis to the observations "by a process of refinement and

revision." While this sounds very similar to our emphasis on revision, their use of revision

is very different. In their system, plans are very general structures which can account for

a large number of activities. As actions are interpreted, the revision process uses rules

indexed to classes of constraint violations to customize the instantiations of general plans

to the particular context. For example, a plan template for making and eating food will

not contain any specification of the particular implements to be used nor the possible se-

quences of actions to obtain and prepare the food. Action observations are used to bind

object variables to the particulars of the situation and to insert action hypotheses as ap-

propriate to the goals, subgoals, and prerequisites of the plan instantiations. This makes it

possible to deal with alternatives and errors in a way that has not been possible in POISE.

However, this generality comes at a cost. More general plans provide far fewer expec-

5-C-29



tations about future actions. Fewer expectations mean fewer constraints and thus greater
uncertainty. In the extreme, we could imagine this approach being taken with a single
completely general DO-ACTION plan consisting of an indeterminate number of substep
DO-ACTIONs. The result would be what (46] terms "postdictive" plan recognition. Such
an approach is inappropriate for plan recognition applications which require expectation
information-such as an intelligent assistant. If more specific plan templates are to be used,
however, there are several problems which must be solved, but which are not addressed
in [45,461. In particular, this system relies on the initial plan instantiation selected being
able to be modified to account for later actions. In general, though, there will be multiple
relevant alternative instantiations which must be considered. This work has no method for
selecting the correct initial plan instantiation (focusing), no method for evaluating belief in
alternative instantiations, and no method for shifting between plan instantiations should
later action observations completely invalidate an alternative.

In work by Wong [531, plan recognition is used to establish the context within which
actions described by English sentences are taking place. Contexts are hierarchies of
plan/script instantiation frames which can be used to fill in information not made ex-
plicit in the Engliab text. This work does address the problem of selecting the appropriate
contexts to some degree. Unfortunately, no explicit representation of evidence and uncer-
tainty is used so the "best validated" context instantiation is chosen based on an ad-hoc
heuristic measure. Contexts are deemed more likely when they involve the fewest number
of new plan instances and the fewest number of statements to establish context (links from
action descriptions to context instantiations). This heuristic is somewhat similar to the
"continued vs. started" heuristic in the existing POISE system, however this system has
no facility for reconsidering and revising its context interpretations. It can only perform
what Wong terms "first-impression" recognition as opposed to "contemplative" recogni-
tion. Wong recognises that this is a serious problem when initial context clues are weak
or when the initial context suggested is wrong and must be revised as additional data is
accumulated. Finally, there is little control in this system over the instantiation of scripts.
The recognition process is bottom-up from an action to all possible contexts-existing and
newly created. This approach is infeasible when a large number of potential contexts are
suggested as was discussed in connection with POISE.

Work by Allen (2] once again deals with the interpretation of natural language in
terms of the goals and intentions of human agents. Allen's system views utterances as
speech acts: actions as part of a plan. Rules about likely inferences are then used to
drive inferences from the utterance toward the goals and intentions of the speaker. The
search is considered to be through a space of partial plans with potential actions in each
state being represented by the applicable plan inference rules. Control is accomplished by
rating the alternative partial plans based on a number of heuristics. These heuristics refer
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to domain-independent relations between plans, their subplans, preconditions, and effects.

Ratings are produced from the heuristics using an ad-hoc system of weights. The system
is not a general plan recognition system as it is designed to work from a single utterance

rather than a sequence of utterances (although work to extend the framework has been

done since [38]). Because of this, there is never any need to reconsider interpretations.

This is fortunate since the system cannot support revision due to the ad-hoc and implicit

nature of the control rating scheme. Finally, the system relies on there being a very small

number of plans or goals which the user might be attempting to accomplish-the problems
and uncertainties of indexing into a large set of plans is ignored.

Work by Kautz [33,341 is concerned with the development of a general plan recognition
system. Kautz use-j a logic framework to specify plans in terms of a decomposition hier-
archy, a specialization hierarchy, and temporal and parameter constraints. Closed-world
assumptions are applied to the action hierarchy to produce the action taxonomy: a com-

plete description of the ways actions can be performed. Plan recognition is then viewed as
deductive inference based on the axioms representing the observed actions and the action

taxonomy. The framework handles incomplete and missing data in the sense that permis-
sible interpretations can still be determined. It cannot, however, reason about the data in

order to resolve uncertainty over partial or conflicting interpretations and so cannot deal
with data which is actually incorrect. This work is complementary to our own for it pro-
vides a precise, formal semantics for plan recognition in terms of permissible deductions. It

does not provide the basis for a practical plan recognition system, however, since it lacks a

framework for including the control knowledge necessary for making only likely deductions
and interpretations. The only focusing knowledge which the system can apply is the so-

called "simplicity constraint." This heuristic closely corresponds to the POISE "continued
vs. started" heuristic in its minimization of potential hypotheses although here it is given

a formal semantics in terms of circumsription. Kautz makes much of his system's basis
in logic and freedom from "probabilistic inference." However the simplicity constraint
represents heuristic knowledge which is applied without any explicit representation of its

application or its effect on the system's conclusions. Furthermore, since no general pur-
pose theorem proving techniques are capable of handling the inferences in this system, the
plan recognition system which is proposed for implementation has a very different flavor
from the formal work. In fact, the approach which is proposed is very similar to early

POISE control schemes: all of the potential top-level plans which might be supported by
the observed actions are created, ranked, and pruned to cover the actions. All observed
actions are automatically driven up to all top-level actions through all disjuncts without

any application of control knowledge. Focusing decisions are made implicitly through the

ranking and covering operations and must consider all possible interpretations of the data
at every cycle.
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4.4 Plan Recognition Requirements

In this chapter a number of plan recognition systems have been examined and their de-
ficiencies discussed. This final section recaps the major problems that must be solved in

order to develop intelligent plan recognition systems. The next chapter will introduce our

approach for solving these problems. We feel that an intelligent plan recognition system

must be able to:

" Evaluate the level of belief and uncertainty in alternative interpretations.

" Understand the reasons for beliefs.

" Encode and apply heuristic control knowledge.

* Revise interpretation hypotheses as information accumulates.

" Handle uncertain and incorrect data.

* Integrate data from multiple sources.

" Actively control data accumulation.

* Reflect system goals in control decisions.

Of the systems examined, only the DVMT has any ability to evaluate its level of belief
in interpretation hypotheses. A single number representation of belief cannot differentiate
between belief and uncertainty, however, and does not provide access to any of the reasons
for the beliefs. The POISE focusing system does contain a representation of its reasons for

making focusing decisions, but does not provide any measure of the belief or uncertainty of
the alternative hypotheses. Use of an independent evidential reasoning system has many
advantages. Knowledge of belief and uncertainty can be used by the focusing and revision

processes to develop efficient and sophisticated control schemes. Control need no longer

be limited to pursuing only the most highly rated/believed hypotheses, but may reason
about the best actions to take given the existing interpretations and data. Reasons for
beliefs can be used to justify system interpretations to users and to facilitate analyses oi

system performance. Existing plan recognition systems cannot explain why they believe

the current hypotheses, why they are still uncertain about them, and why they chose to

perform particular actions.
One of our major concerns in earlier work was the development of a framework for

representing and applying heuristic knowledge for focus-of-attention. This is an impor-

tant issue because of the ambiguity inherent in many plan recognition applications. It is

computationally infeasible to use a brute force approach and pursue all of the potential
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interpretations. Decisions must be made about which interpretation,- and data to devote

the system's limited processing resources to. The sort of commonsense and expert knowl-

edge that can provide this focusing is available if there is an appropriate framework within

which to encode and apply it. The existing systems that make use of heuristic focus-

ing knowledge have inadequate mechanisms for dealing with the amount of knowledge we

envision using.

It should be noted here that we intend heuristic control to be extended to all aspects of

the interpretation process. In existing systems, little attention has been paid to controlling

the actual steps in building potential interpretations. In POISE and the Kautz' system

for example,.data is abstracted to top-level plan instantlations before any sort of focusing

intelligence is applied. While this may be acceptable for some domains, it is not in general.

In the software engineering domain for POISE, it is easy to recognize lower-level plan

instances such as editing a file, but difficult to determine what top-level plan instance

these actions may be part of. This is because of the weakness of the constraints and the

large number of disjunctions in the plan library (editing a file can be a part of nearly every

plan). In such situations, constructing all possible interpretations for each action and then

eliminating those deemed less likely is impractical. Instead, the system needs to reason

about whether it is appropriate to abstract the current interpretations further based on

the degree of uncertainty over what they represent.

Any focusing scheme excludes interpretation alternatives based upon uncertain, heuris-

tic knowledge. Since additional evidence may show that incorrect focusing decisions were

made, such a scheme must include provision for revising its decisions and reconsidering

abandoned alternatives. Both POISE and the Kautz' system provide some revision ca-

pability. In the case of Kautz, since focusing consists of applying a single heuristic there

is little reasoning that can be done during the revision process. In POISE the problem

is that it is difficult to integrate the new knowledge with existing focusing knowledge to

control the revision process. Thus revision suffers from a lack of control knowledge for

focusing the revision process.

None of the example systems handle uncertain data in a satisfactory way. Data may

be uncertain because of noise or errors or because data is missing. Handling uncertain

data means more than simply making those inferences which are possible given missing

data or ignoring data which seems to be noise since it cannot be satisfactorily interpreted.

An intelligent plan recognition system should be able to reason about the nature of the

uncertain data-e.g., what data is missing or how that data has been garbled. In order to

fully comprehend a system's interpretations, users must have access to knowledge about

assumptions that underlie the interpretations.

One approach to handling uncertain data is to be able to integrate multiple forms

of evidence to reach interpretations. Existing plan recognition systems have limited their

5-C-33



evidence to that obtained from a single main source of input data. True vehicle monitoring

situations will require the integration of data from different types of sensors and other

intelligence sources. Just as there is knowledge beyond that contained in the plans which
can be used for control and focusing, there typically is additional knowledge which can

used as evidence for or against interpretation hypotheses. This sort of domain knowledge
is available to expert users to help resolve interpretation uncertainties. Such domain

knowledge, termed "first-principles" knowledge, has been investigated for its role in human
understanding of software engineering tasks.

In addition to the problems discussed above, there are two more areas of concern

which are best considered extensions to the view of plan recognition used by the existing

research systems. In any actual plan recognition application, the overall system will have
some purpose. Rather than use completely different systems tailored to the application it

should be possible to make the operation of the system sensitive to different goals. For

example, an aircraft monitoring system might be used for air traffic control and it might
also be used for military monitoring. The purpose of military monitoring applications may
be for the protection of certain installations. In this case it would be less important to

form complete models of the environment than it would be to focus on aircraft which could

pose a threat. Thus the goal of protecting the installation should be able to influence the
interpretation process of the aircraft monitoring system.

Another extension involves active control over the gathering of data. In vehicle moni-
toring, for example, sensors might be under the control of the interpretation system. The
system could then adjust sensor characteristics to gather the kind of data that would best

resolve its uncertainties. Active control might also be used in an intelligent assistant such

as POISE by allowing the system to interact directly with the user to gather information.
Active control of data gathering could greatly enhance the efficiency of an interpretation

by allowing the system to gather the most useful data. The degree to which this is possi-
ble will depend upon the domain. In an intelligent assistant there would be only limited
opportunities for the system to actively pursue information.
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Chapter 5

Evidence-Based Plan Recognition

In this chapter we introduce our view of evidence-based plan recognition. The first section

outlines the basic elements of the approach and explains how they allow us to address the

plan recognition requirements of section 4.4. In the Taxonomy section, the various kinds of

knowledge necessary for such a system are examined along with instances from the POISE

and DVMT domains. Finally, an example of evidence-based plan recognition using the

vehicle monitoring domain is presented.

5.1 The Approach

By evidence-based plan recognition, we mean that plan recognition should be treated as a

process of gathering evidence to manage uncertainty. Uncertain interpretation hypotheses

must be "proved" by collecting appropriate additional evidence. This is a unique view of

the plan recognition process. Typically, plan recognition systems have used a "constraint

satisfaction" approach, with the input data providing the interpretation constraints. Of

the systems that were reviewed in chapter 4, only the DVMT could be described as accu-

mulating evidence. The DVMT uses an extremely limited concept of evidence, however,
and does not make explicit decisions about the uncertainties its actions are intended to

resolve. Extending the representation of evidence and using this representation as the basis

for control decisions makes it possible to develop a framework within which the purpose of

actions can be understood. Interpretation actions are taken in order to resolve particular

sources of uncertainty. Thus, the most appropriate action to take depends upon the most

"desirable" uncertainty to try to resolve and the "best" action to resolve it. A system

which reasons about its control. decisions in this way can truly gather evidence to manage

uncertainty rather than just accumulate evidence to re.qolve' uncertainty. The distinction

results from the existence of multiple system goals and the need to consider the tradeoffs

during the control process. The immediate effect of an action must be weighed against the
long term role of the action as well as other concerns such as execution time and safety.
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T- king this view of plan recognition, it is possible to develop a system which meets the
requirements outlined in section 4.4. The key characteristics of the approach are:

" Plan, subplan relations are treated as uncertain, evidential relations.

" Evidence and sources of uncertainty are explicitly represented.

" Heuristic control decisions are based on the sources of uncertainty
in the hypotheses and the need to manage uncertainty.

Treating plan, subplan relations as evidential relations simply means that we treat these
relations as resulting from uncertain inferences. By way of comparison, the constraint
satisfaction approach to plan recognition treats these relations as absolute grammatical
relations. Thus, instead of saying that a (grammatically correct) subplan instantiation
satisfies a subgoal of a plan instantiation, we say that it is evidence for that plan instan-
tiation. This gives us a better framework for dealing with the uncertainties inherent in
plan recognition. It now makes sense to use an evidential reasoning system which can
evaluate the level of belief and uncertainty in hypotheses based on the level of belief and

uncertainty in the evidence. Uncertain or incorrect data can easily be accommodated
since this possibility simply results in additional uncertainty for hypotheses relying on
such data. Multiple sources of evidence can be integrated because all evidence is treated
in a uniform fashion-i.e., as evidential inferences. Revision of interpretation hypotheses
is accommodated within an evidential reasoning framework because such a system is in-
herently nonmonotonic-the belief in the alternatives changes as evidence is accumulated.
"Inconsistencies" are represented as contradictory evidence and as such are simply another
source of uncertainty to be resolved.

By an explicit representation of evidence, we mean that evidential links are explicitly
maintained between symbolic representations of evidence and the representations of the
hypotheses that the evidence supports. This approach makes it possible to reason about
more aspects of the evidence than simply its "strength." Knowledge of the kinds of evi-
dence underlying beliefs makes it possible to understand the sources of uncertaintyv in the
beliefs. Evidence provides uncertain support for a hypothesis because there are conditions
under which the evidence may fail to support the hypothesis. Numeric rating functions
gathered from experts typically summarize just such knowledge-along with a priori likeli-
hood judgements. Explicit information about the sources of uncertainty in evidence is a
type of knowledge that we feel is very important for plan recognition. One of its advantages
is that it makes it possible to evaluate belief in specific contexts rather than having to rely

on general, a priori judgements. For example, missing data in a track of limited length is
an important source of uncertainty while missing data in a very long track is insignificant.
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The major advantage of sources of uncertainty knowledge is that it provides the perfect
basis for making control decisions. Since the goal of plan recognition is to "prove" hypothe-
ses by resolving uncertainty, a sophisticated control process must be able to understand
the sources of uncertainty in the hypotheses and reason about the best actions to take to
resolve them. Thus sources of uncertainty are used to elucidate control choices by a process
which determines which goals remain unsatisfied due to excessive uncertainty, what the
sources of that uncertainty are, and what actions could provide evidence to resolve the
uncertainty. Note that the "actions" we refer to here involve the way the interpretation
system pursues its hypotheses as opposed to the "domain actions" that the system may be
trying to interpret. Interpretation actions include the interpretation of data and hypothe-
ses to produce evidence for higher-level hypotheses. Managing uncertainty means that the
system must be sensitive to the various goals of the application. Since the purpose of the
different actions is now understood, a variety of factors can be weighed during the decision
process. For example, the facility protection goal in a vehicle monitoring application results
in increased importance being placed in resolving any uncertainty in the identity of po-
tentially hostile vehicles. Active control of data accumulation is also easily accommodated
in a system which reasons explicitly about uncertainty. Understanding what information
would be most effective at reducing its uncertainty, such a system might choose to actively
gather the evidence rather than waiting passively for data to constrain its interpretations.
In domains where this is possible, the set of interpretation actions could then be extended
to include methods for interacting with the environment in order to affect the data which

is gathered.
Sources of uncertainty information also provides an ideal framework for specifying and

applying heuristic control knowledge. Heuristic focusing and control knowledge simply
represents expert knowledge about methods for dealing with uncertainty. POISE focusing
heuristics, in effect, specify what alternatives to gather additional evidence for based on
implicit decisions about evidence and uncertainty represented in the rule antecedents. For
example the "continued vs. started" heuristic is really saying that it is best to look for
additional evidence for the in-progress hypothesis since, implicitly, it has accumulated more
evidence. Using a system for representing evidence and uncertainty, such a heuristic can be
generalized in two stages. First, we can imagine a heuristic which says to "pursue the most
believed hypothesis." This form is advantageous because there no longer needs to be a large
collection of heuristic focusing rules which might offer conflicting advice. The same level of
reasoning must be done, i.e., figuring out which alternative has the most evidence for it, but
0is reasoning can be done in a more logical way as part of the evidential reasoning system.
The problem with this form of the heuristic is that it still requires qualifications specifying
exactly when it's not best to pursue the most believed hypothesis. This is because pursuing
the most highly believed alternative-while usually the best way to gather evidence-may

5-C-37



not always be the most effective way to resolve particular interpretation uncertainties.

Selecting the correct decision depends upon an understanding of the purpose of the action
as well as the characteristics of the situation. Thus an alternative method for capturing

this focusing knowledge is a scheme for deciding what actions can potentially provide
the best evidence based on resolving the relevant uncertainties. Again, it's not that any

less knowledge is needed to be able to reason effectively in this way, it's simply that a
framework keyed to interpretation uncertainties provides a logical, modular framework for

the specification and application of expert focusing knowledge. Actions are taken for the
purpose of resolving particular uncertainties so it makes sense to identify which actions

are best for which uncertainties.

5.2 Taxonomy

In this section we present a taxonomy of the knowledge that must be part of an evidence-

based plan recognition system. This taxonomy represents a first attempt at generalizing
and categorizing the knowledge being investigated for the research domains. In addition
to general descriptions of the knowledge, example knowledge from the POISE and DVMT

domains is included.

5.2.1 Hypotheses

Hypotheses represent plan instantiations for which evidence has been gathered-i.e., for
which we have some level of belief or disbelief. In order to control the creation of hypothe-es

we must be able to represent just the level of plan hypothesis that the evidence actually
supports. This means that hypotheses at any level of abstraction must be treated in it

uniform fashion. Most existing plan recognition systems force hypotheses to be abstracted

to top-level plans-through multiple levels of uncertain disjunctions-regardless of whether

there is sufficient evidence to guide the process. This is because of the special role top-level
plans play in these systems. Hypothesis uniformity is also important for the integration

of evidence from a variety of sources since this evidence might support hypotheses at any
level of plan abstraction.

Hypotheses are complex structures. They include evidence and parameter information.
Evidence is represented by an explicit link between the evidence and the hypothesis it

supports or detracts from. Because of the uniformity requirements, hypotheses consistent
with the constraints of a higher-level hypothesis are represented as just another source of

evidence for the higher-level hypothesis-rather than as part of some special grammatical
relation. However, the evidential links must still include information about the type of
evidential inference represented and the role that the various pieces of evidence play in
the inference (see section 5.2.2). The sources of uncertainty in each evidential inference
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are represented as symbolic tags on the evidential links. Sources of uncertainty are not
propagated, but are accessible by tracing the evidence hierarchy. Uncertainty in tile exact
values of hypothesis parameters is represented by maintaining the range or set of possible

values.
One of the key characteristics that distinguishes plan recognition from diagnosis prob-

lems is the fact that evidence not only justijies the plan recognition hypotheses, it also
refines them (see chapter 3). That is, we don't simply gather evidence to decide our belief,
we gather it to define exactly what it is we believe as well. Plan definitions not only specify
what is valid evidence for the plans, but also specify how the plan parameter values are

related to the characteristics of the evidence. For example, in vehicle monitoring, group-
level hypotheses not only provide evidence for vehicles, but also define the vehicle type and

position. One consequence of the fact that evidence refines hypotheses as it supports them
is that the addition'of evidence generally modifies a hypothesis. This leads to the need for
multiple "copies" of a developing hypothesis and a control process which considers when

to deal with uncertainty by making copies. Uncertainty is no longer simply a question of
whether or not evidence supports a hypothesis, it is also now a question of exactly what
the correct hypothesis is.

5.2.2 Evidence

By evidence, we mean the reasons to believe or disbelieve hypotheses. As discussed earlier,
we view subplan instances as (uncertain) evidence for plan instances. Rather than summa-
rize the "quality" of this evidence numerically, however, we maintain explicit links between
the evidence and the supported hypotheses. This makes it possible to understand why the

evidence fails to conclusively prove the hypotheses by giving us access to the sources of
uncertainty in the evidence-that is, the reasons the evidence may fail (see section 5.2.4.).

Viewing plan, subplan relations as evidential relations means that we view plan def-
initions as specifications of the valid evidential inferences, {Ai} =* B, where the Ai are
sources of evidence and B is a plan. Plan inferences are uncertain, evidential inferences
rather than deductive inferences because the existence of the evidence, {Aj}, is not suf-
ficient to guarantee the conclusion, B. These inferences are in fact a form of abductive

inference [71: if x causes y and y is true then hypothesize x. Plan definitions can be viewed
as statements that if plan B occurs then the data {Aj} will (be catised to) occur. Thus B is
an explanation for {Ai). Of course, abductive inferences are merely plausible inferences as
there may be other explanations for the same data. In addition to this basic uncertainty,
plan recognition inferences are uncertain for other reasons as well. For instance, plans

must typically be inferred based on incomplete, partial evidence. That is, plan B may
be hypothesized based on evidence {Ai} where (Ail C {A). A complete discussion of
uncertainty may be found in section 5.2.4.
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There are two ways to go about resolving the uncertainty in plan hypotheses resulting
from these evidential inferences:

1. Gather additional evidence to directly resolve the uncertainty in the inferences.

2. Gather independent evidence for the supported hypotheses.

Explicit representation of the evidential links makes it possible to understand what the
remaining sources of uncertainty are in an inference and gather evidence to resolve these
sources of uncertainty. For example, a hypothesis B, based on the evidence {Ai} (where

{Ai} C (A.} above) is uncertain because only part of the conditional evidence is being

used to make the inference. Thus, uncertainty in B could be resolved by accumulating the

rest of the evidence {A.}. There are typically a number of sources of uncertainty for each
source of evidence. Each of these sources of uncertainty will then have a characteristic set

of sources of evidence which can be used to resolve the uncertainty.
Independent evidence for this same hypothesis B, requires that there are additional

ways to infer the plan, e.g., {D} * B. Then the evidence {Di} can be used to lend

further support to B and so resolve uncertainty in the hypothesis. It should be noted that

evidence is not necessarily independent just because it is based on a separate inference

axiom. Instead, what must be true is that the independent evidence must not include
the same sources of uncertainty as the old evidence. For example, if evidence from radar

scanning and radio emissions detection can both be affected by the same kind of weather
conditions (and affect the interpretation in the same way) then one could not be used to

resolve uncertainty based on the other.
In POISE and the DVMT, plan inferences are based on partial conditional evidence.

A plan for Purchasing Items may be inferred from the occurrence of a Receive-Purchase-

Request plan in POISE. Likewise, a vehicle may be inferred from a single group hypothesis.

In each case, the recognition systems pursue these hypotheses by trying to complete the set
of subplan instantiations for the hypotheses. Neither POISE nor the DVMT use multiple

sources of evidence which could be used to develop independent evidence for the hypothe-

ses. For example, POISE could interrogate the user as to the correctness of the plan for

Purchasing Items while the DVMT could make use of data from other types of sensors to
support vehicle hypotheses.

As well as the supportive evidential inferences described above, the system must also
handle negative evidential inferences-i.e., inferences which detract from belief in hypothe-

ses. Some negative evidence may result from what we term direct negative inferences-that
is, from inference axioms of the form {Ai} = -.B. These inferences are not based on ax-

ioms which result from the standard plan definitions, but on additional evidential axioms
which may be specified. Most negative evidence, however, results from inferences which

are based on the standard plan definitions. Viewing the plan definitions as statements that
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if plan B occurs then the data {Ai} will (be caused to) occur, it is clear that this is equiv-
alent to inferences of the form: -{Ai} => -'B. Thus evidence gathered for an alternative
interpretation of evidence Ak in an inference {Ai} =* B acts as negative evidence for the
plan hypothesis B.

One issue for systems which use explicit, symbolic representations of evidence is how
to go about evaluating the level of support provided by the evidence. The level of support
provided by evidential inferences depends on the likelihood of the sources of uncertainty
holding true. In conventional numeric evidential reasoning systems, this evaluation is made
using a priori knowledge and is fixed in a degree of belief rating. While the exact same
information that is used in the numeric combining functions could be used to evaluate the
explicit evidential representation, it is possible to do much better if additional knowledge
can used to examine the particular situation. The likelihood of inferences can in part
be evaluated based on the strength of the constraints which validate the inference. The
strength of constraints varies with the particular inference axiom and with the premise
evidence, i.e., {Ai} C {A} as above. For example, each successive vehicle track extension
provides additional support for a vehicle track hypothesis. That support is not uniformly
additive, however, because little or no support is provided until the number of correlated
signals reaches some sort of -minimum, support provided by a single extension is much
smaller than the corresponding fraction of belief in a fairly long track, and the length
of complete tracks varies. Belief is not just some more complex, fixed function of track
length either as it would be in a numeric reasoning system. This discussion highlights the
differences between the sources of uncertainty and the factors which can used to evaluate
likelihood. Sources of uncertainty are the reasons that evidence may fail while uncertainty
factors can be used to judge the likelihood of failure.

5.2.3 Data

We use the term data to refer to externally generated information which can serve as
a source of evidence for interpretations. The other sources of evidence are the plan hy-
potheses themselves since they provide evidence for higher-level hypotheses. All sources
of evidence must be processed, or "interpreted," before they become evidence. This in-
volves evaluating the plan constraints and deciding how to represent any uncertainties.
For example, radar data may support an existing vehicle hypothesis or it may support a
new vehicle hypothesis. The exact representation of this uncertainty is a heuristic control
decision which must be made during the interpretation process.

Both POISE and the DVMT use only single sources of interpretation data. In POISE,
data consists of primitive plan hypotheses representing abstracted views of the actions
taken by the user. The recognition of tasks then requires the interpretation of these
primitives through several levels of plan hypotheses. Data in the DVMT consists of signal
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hypotheses which simulate the result of low-level processing of acoustic sensor output. Each
signal hypothesis represents a perceived environmental source and includes the following
information: frequency, position, time of detection, and a numeric belief rating. Data must

be interpreted through several levels in the plan grammar before it provides evidence for
vehicle track hypotheses.

While the DVMT has used small amounts of simulated data, a real-world vehicle mon-

itoring system would generate such large amounts of data that it would be infeasible to
consider all of the data. However, since most of this data results from noise or irrelevant
signal sources, failing to examine and interpret all of the data can have little effect on the
uncertainty of the system. This is in marked contrast to POISE where all data must be
interpreted even if it turns out to be an erroneous action on the user's part. This suggests
the need for some kind of system parametrization to account for the role that data plays in
driving the interpretation process. In the DVMT, the examination of data must be strictly
controlled based on its potential for providing evidence for the developing interpretations.

User actions in an intelligent assistant, on the other hand, drive the interpretation process.
The different roles that data plays in different applications can be accounted for through
the use of system goals (see section 5.2.7).

5.2.4 Uncertainty

Most evidence is inconclusive. That is, it does not confirm or disconfirm a hypothesis,
but merely supports or detracts from the hypothesis. The reason for this is that the
evidence is uncertain-there are conditions under which the evidence may fail to support
the conclusion. These conditions-the reasons that evidence can fail-are what we term the
sources of uncertainty in the evidence. One of the important advantages of our approach
is that we make it possible to understand exactly what the sources of uncertainty are in

the evidence for a hypothesis. This allows the control process to reason about the best
ways to resolve the system's uncertainty by considering the reasons for that uncertainty.

We view plan definitions as specifications of the valid evidential inference axioms for the

plan recognition application. The form of these axioms is, in effect, {A, I # B, where the

A, are sources of evidence and B is the supported plan. Inferences based on the axioms are
uncertain, evidential inferences rather than deductive inferences because the existence of
the conditional evidence, {A,}, is not sufficient to guarantee the conclusion, B. Hypotheses
are further compromised by the fact that inferences must often be based on partial evidence.

That is, a plan of type B will typically be hypothesized based on evidence (Aj) where
{Al} C {Ail. Partial evidence may be used because the application requires incremental
plan recognition for real-time recognition or because of computational considerations such

as the complexity of evaluating the constraints to recognize valid inferences.
Given the hypothesis B based on the inference {A,} => B, where the axiom is {Ail =- B
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and {Ail C {Ail, there are the following potential classes of uncertainty sources in the

hypothesis:

* The premise evidence may be uncertain-i.e., some Ak is uncertain
because it is also based on uncertain evidence.

e There may be alternative interpretations for the evidence-i.e.,
for some Alin{A3 ) the correct inference is At =: C.

* The inference may be based on partial premise evidence-i.e., {Ail {Ail.

* It may be uncertain whether the evidence satisfies the inference axiom
(meets the constraints)-that is, it is uncertain whether {Ail c {Ail.

e The inference axioms may themselves be uncertain-that is,
the correctness of {Ail => B is uncertain.

The actual instances of sources of uncertainty for each source of evidence in a domain
fall into these classes. For instance, acoustic sensor data in the DVMT provides uncertain

support for an environmental signal hypothesis because it may result from sensor malfunc-
tion. That is, a source of uncertainty in the evidential link between acoustic sensor data
and a signal hypothesis is the potential alternative interpretation of the data as resulting
from a sensor malfunction. Likewise, a signal hypothesis may support a group hypothesis

(and so eventually a vehicle hypothesis), but it may also fail to support it because the sig-
nal actually is noise-the correct (alternative) interpretation of the signal is as noise rather
than as part of a group. A group hypothesis may support a vehicle hypothesis, but until
the complete set of groups for the vehicle support the vehicle hypothesis, it is uncertain.
Because of sensor resolution, the exact values of acoustic data parameters such as position
and frequency are uncertain. This can result in uncertainty over whether a particular
evidential inference is valid. Track hypotheses may represent actual vehicle tracks, but
might also result from correlated noise or ghost data. While with likelihood of the track
increases as the length is increased, there is always some degree of uncertainty from the
fact that there is no set definition of a "complete" track. POISE never considered data
errors, but a real-world intelligent assistant would have to be able to deal with user errors.
User errors can be handled by making them a source of uncertainty in the data.

In a sophisticated plan recognition system with access to many sources of evidence,
sources of uncertainty are used to drive the control process by selecting actions which

result in evidence to resolve the important sources of uncertainty in the interpretations. For
example, uncertainty due the possibility of sensor malfunction may be resolved (or at least
partially resolved) by ordering diagnostics to be run on the sensor. Noise due to weather
or terrain factors might be ruled out by checking weather conditions and the terrain. Of
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course, uncertainty due to partial premise evidence is one of the most prevalent sources of

interpretation uncertainty and one which is not terribly amenable to sophisticated evidence

gathering. However, because this source of uncertainty can be explicitly considered it may

still be possible to improve evidence gathering: some incompleteness may not be very

significant in the overall support of a hypothesis, the support provided by various (still

incomplete) extensions may be stronger than others, and alternative, independent evidence

may provide a less expensive resolution.

The sources of uncertainty in an evidential link may be represented in different ways

depending on the type of uncertainty and what is most appropriate for future action. One

way is to do it in a manner similar to the parallel-certainty inference approach (see chap-

ter 3). Attached to the evidential links are symbolic statements which qualify the links

with information about why they are uncertain. When uncertainty results from alternative

interpretations, it may be more desirable to represent the alternative interpretations ex-

plicitly as hypotheses. Alternative interpretations are then connected with the links which

specify that they are alternatives. This makes it easier to reason about pursuing evidence

for the alternatives.

As was mentioned in section 5.2.1, hypothesis parameter values can also be uncertain.

These uncertainties result from parameter uncertainties in the evidence, e.g., resolution un-

certainty of acoustic sensors for frequency and position, and from incomplete evidence with

which to define the parameters. Parameter uncertainty is represented by representing the

potential range or set of supported values for the parameters. Copying of hypotheses when

parameters are refined eliminates the need to understand the exact relationship between

the evidence and parameter values since the values need never be revised. However, some

understanding of the connections are required to evaluate the relative likelihood of the

various values and to choose appropriate evidence to resolve the parameter uncertainties.

5.2.5 Actions

The control process eventually involves a decision about the next action for the interpre-

tation system to take in order to generate additional evidence. Actions may involve the

interpretation of existing data or hypotheses. For example, looking for additional evidence

for a hypothesis in the acoustic sensor data being automatically collected or abstracting

previously created hypotheses to check if they support a valid answer. These interpreta-

tion actions must be distinguished from the domain "actions" that the system is trying

to interpret. Interpretation actions do not involve an interaction with the environment.

However, in some domains, evidence-gathering actions may be extended to involve active

processes to accumulate external data. For example, a vehicle monitoring system might be

able to make specific requests for data from particular sensors. It depends on the nature

of the domain as to how active the interpretation system may be in gathering evidence.
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In some applications such as intelligent assistants, the ony "action" that the system may

be able to take is to wait for more data to be generated and provided to it.

The actions being referred to above are what we term evidence-gathering actions since

they involve the generation of evidence for the interpretations. The system also takes other

actions-control actions-as part of the process of making a decision about which domain

action to take. Control actions include the identification of additional evidence relevant to

resolving a partial evidence uncertainty and locating relevant data to be used to develop

the desired evidence. For further information on control actions see section 5.2.8.

5.2.6 Relations

The plan recognition process involves the creation and consideration of interpretation

hypotheses. These hypotheses are not always independent, but are related in that be-

lief/disbelief in one affects the belief/disbelief in another. For example, a hypothesis can

be an extension of another hypothesis. Evidence against an extension may or may not be

evidence against the original hypothesis depending on whether it is really evidence against

the plan instantiation or just against this particular extension of the instantiation. How-

ever, evidence against a hypothesis is always evidence against any extension hypotheses.

Hypotheses may also be related as alternatives either through the interpretation of the

same data or because they are based on inconsistent problem solving situations. In this

case, evidence for a hypothesis is evidence against its alternative and vice versa. The

existence of alternatives increases the level of uncertainty in a hypothesis.

POISE plan instantiation hypotheses may be related by being alternatives or by one

being an extension of the other. Hypotheses are alternatives when they cover overlapping

steps and they are not assumed to share the steps. Alternatives may also be recognized

based on domain knowledge such as that in the "first-principles" knowledge mentioned

above or through dependence on conflicting assumptions. For example, there may be

knowledge that makes it unlikely that two plan instantiations could occur simultaneously

or that one plan would be carried out soon after another. These relations must be explicitly

recorded since they affect belief and uncertainty in the hypotheses and since evidence

must be propagated over these relations. When one hypothesis represents an extension

of another hypothesis with additional step data they are not alternatives in the sense

given above since belief and evidence propagates differently between such hypotheses and

since control strategies proceed differently. In particular, extensions enhance belief in a

hypothesis, but control will generally proceed to explore the extensions.

Relations between hypotheses play an important role in the interpretation process in

a vehicle monitoring system and yet a representation of these relations is absent from the

current DVMT. In particular, the existence of a number of alternative extensions for a

track hypothesis results in a good deal of uncertainty in the true track position which
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can be eliminated by exploration of the alternatives. For example, given a fairly good
length track hypothesis with several possible extensions, our belief in the correctness of
the track might be high without high belief in any one of the extensions due to the number
of alternatives. The best control approach would be to try to reduce the uncertainty in the
least expensive manner. This might suggest a breadth-first development of the alternatives
rather than the depth-first approach which the DVMT would pursue. The DVMT would
proceed depth-first because it has no knowledge of the alternatives and the uncertainty
they cause. Instead, any single point extension which succeeds would be rated more highly
than the unextended track despite the fact that a single point extension would do little to

reduce the uncertainty.

5.2.7 Goals

The primary responsibility of the control component is to try to satisfy the system goals.
For example, the overall system goal may be to determine all and only those answers that

can be supported by available data. This goal is what we might call an "uncertain goal"
since its satisfaction will always be uncertain due to the inconclusive nature of evidence.

Instead of saying these goals are satisfied, we will say that they are sufficiently satisfied
or not as evidence is accumulated. What constitutes an acceptable answer is specified
by answer and evidence constraints which express the desired system goals. The answer
constraints specify the acceptable plan instances including plan types and parameter values
while the evidence constraints specify accptable hypothesis and parameter uncertainties.

Thus the top-level control process must evaluate the suitability of the existing evidence in
terms of the remaining uncertainties in order to determine whether the system constraints
are met. If the goals are not yet satisfied, the control component must decide which
uncertainties to resolve and how to resolve them.

Since the number of answers supported by the data is uncertain, an integral part of
satisfying this system goal is the determination that all acceptable answers have been
found. The explicit inclusion of this control goal is important because it affords a natural
way of including certain types of evidence and uncertainties which are awkward to apply

in the process of constructing answers. It also affords a metric for judging when processing
is complete. This is crucial for situation assessment tasks like vehicle monitoring where
processing of all data is impossible due to the huge volume of data being generated by
many sensors.

Other applications may be handled by changing the overall system goals. An intelligent
assistant application such as POISE would require that all data (from the user) be covered
by an interpretation. Monitoring aircraft to prevent an attack would mean specifying

that answers consist only of attack plans. In addition the system goals may also include
resource constraints. For example on interpretation costs such as elapsed time, processing
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time, and safety concerns. These goals affect the choice of actions to take by influencing

the desirability of goals and actions.

5.2.8 Control Strategies

As was discussed in section 2.1, control decisions are typically made in a two stage process
which first identifies actions relevant to satisfying the goal and then chooses the best action
to take next. In our approach, relevant actions are identified through a planning process
based on the evidence gathering view of plan recognition. This planning process makes use
of the explicit knowledge of the sources of uncertainty in the hypotheses both to elucidate
the relevant control choices. Sources of uncertainty information is important because it
is just these uncertainties which must be resolved by the plan recognition process. That
is, the purpose of the actions taken by the plan recognit*ion system is to resolve these

uncertainties. Each type of evidence has its characteristic uncertainties and each type of
evidence can be used to resolve particular uncertainties. The planning process begins by
evaluating the problem solving goals to identify those goals that remain unmet due to
insufficient evidence. These sources of uncertainty in the solution goal are then used to
identify the types of domain evidence that should be gathered. Methods for gathering this
evidence are then created and refined. Note that control plans should not be confused
with the domain plans which the system is attempting to interpret.

Control plans are elaborated to the point of choosing the next "domain action." That
is, actions which create evidence about the domain. Plans are generally not elaborated
beyond the next step because the outcome of the actions is uncertain. Planning is basically
a top-down process which reflects the desirability of classes of actions to solve the problem.
However, at the lower levels of the process, planning is driven by the available data and
so reflects the feasibility of the actions. This results in a control strategy which integrates
both data-directed and goal-directed components. However, control is not "opportunistic"

since it does not key on data to select appropriate goals. Typically, opportunistic control
has relied on simplistic measures of data "goodness" to select appropriate actions. Since
we believe that the "goodness" of data can only be judged relative to a particular goal,

opportunistic control would require the capability of recognizing when data was good and
what goal it was good for.

Since the planning process typically results in a number of ways in which the system
goals can be pursued, an additional focus-of-attention process is used to select the single
action to take next. This focusing process relies on the encoding of heuristic knowledge
about the best ways to pursue goals and gather evidence. We believe that the goal refine-
ment based on sources of uncertainty knowledge provides the perfect structure for applying

focusing heuristics. Conventional approaches to heuristic focusing tend to suffer from the
problem of conflicting heuristics (see section 2.1). The specification of the heuristics is
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so general that multiple heuristics with conflicting suggestions apply at the same time.

We believe that this problem can be overcome by using a hierarchical framework-based

on the refinement structure-within which to encode and apply the focusing knowledge.

Heuristics are then indexed according to the exact class of situations to which they apply.

This amounts to extending the heuristics to include sufficient information about the basis

of the heuristics to resolve conflicts by understanding which better applies. For example,
in a DVMT-like vehicle monitoring system we could imagine the following two focusing

heuristics regarding the selection of acoustic sensor data: prefer well-sensed (loud) signal
data and prefer data at times with small numbers of clusters (potential sources). While
these heuristics may seem to offer conflicting advice in many instances, once we understand
the reasoning behind them we see that they actually apply in different situations based on

the purpose of the data interpretation (see section 5.3).
Heuristic knowledge is indexed via a tree which is a static abstraction of the potential

control plan graphs. Nodes in this tree represent the various sources of uncertainty, evi-
dence, and classes of data which may be encountered in the domain. Heuristics are then
associated with the nodes in this tree which represent the situations and data characteris-

tics about which the heuristics make ordering suggestions. The heuristics mentioned above

do not conflict because though they both refer to acoustic sensor data characteristics, they

do so on independent paths of the heuristics tree. The well-sensed data heuristic, for
instance, is associated with the purpose of resolving hypothesis parameter uncertainties

like position and frequency-that is, it is associated with acoustic sensor data in the path
below the goal of resolving uncertainty in parameters. The cluster heuristic is associated
with acoustic sensor data also, but on a different path in the tree associated with resolving

hypothesis existence uncertainty. One big advantage of this approach is that heuristic
knbwledge can be applied during the refinement process rather than after it. As plans are

being refined, it is possible to examine the heuristics tree at each step and see whether there

are any applicable heuristics which would allow us to prune refinement paths. Of course,
since it is impossible to tell whether there actually are any actions to carry out selected
goals, this sort of pruning requires that the refinement be augmented with a backtracking

scheme.
We view focusing as a task for expert-level heuristic remioning hoth in selecting the

uncertainty to pursue and in determining how to pursue it. Expert knowledge is based
on a broad understanding of the domain. It involves knowledge of what evidence can

be most easily gathered and how evidence affects the uncertainties in the various goals.

Note, though, that control decisions must take into account the long-term effects of the

actions rather than just the immediate effects. This is what makes the process so difficult
and forces the system to rely on expert-level heuristic control knowledge. It is essentially

hopeless to try to make an "objective" cost/benefit analysis because it's impossible to
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objectively assess the long-term effects of actions. For example, in a vehicle monitoring

system we might reason thtat it makes little sense to accumulate evidence for a precise

track position before accumulating evidence to resolve whether the track represents a

vehicle of interest (a potential answer) or not. It may also be that much of the evidence

for resolving uncertainty in a vehicle hypothesis will also be useful for resolving vehicle

ID and position. From these considerations we could conclude that evidence to resolve

uncertainty in whether a hypothesis represents an actual source should be gathered next-

even if actions to resolve uncertainty in position might look better in some immediate

sense.

5.3 An Example

IbO

6a
2bO

5a

4a
0 0

3a

2a
* *5b

la

96b

Figure 5.1: Acoustic Sensor Data Clusters

In this section we will present a very simple example which illustrates the l)aic operations

of the sort of system we envision. A problem which is often used with the DVMT 1221

will be examined. The acoustic sensor data for this example is shown in figure 5.1. Two

potential, intersecting vehicle tracks are contained in the data. Data points la through

6a, track a, represent the "correct" track while those of track b represent "ghost" data.

The plotted data points consist of clusters of signals. Clustering is common practice for

facilitating the handling and analysis of acoustic sensor data 1241 and this approach has

recently been taken with the DVMT 1221. In fact, there will typically be various types of
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automatic, low-level processing which can be done on raw data to assist the interpretation
process. For example, clustering tends to group signal data from a single source and
hence can guide the selection of data for interpretation when the task is to confirm the
existence of a given potential source. Additional information such as the number of clusters
(and thus likely sources) at a given time and the potential connecting clusters might also
be computed automatically for use by the interpretation process. The example will be
examined from batch mode, i.e., the system has access to all of the data and must decide
what data to focus on and interpret. Real-time interpretation would proceed in a similar
fashion except that the system would have less flexibility in choosing from existing data
and skipping around in time, but more flexibility from its ability to actively direct the
evidence gathering process. The example will only make use of the given acoustic sensor
data in order to form its interpretation, however, methods for making use of addtional
sources of evidence will also be discussed.

As described in section 5.2.8, in our approach potential control decisions are accom-
plished through the refinement of the system goals into hierarchical control plans. These
plans represent the decisions which must be made in order to identify the evidence gath-
ering (domain) actions to be taken. The advantage of the hierarchical refinement of the
plans is that heuristic focusing knowledge can be applied at each level in the hierarchy
to explicitly reason about the best control approaches to expand and examine. This is in
contrast with the Control BlackBoard approach in which all decisions are made implicitly
through the rating of actions (both control and domain). And-or graphs can be used to
represent the two aspects of control planning: hierarchical refinement and elaboration over
time. Planning operators are defined for each type of plan which can be used to refine the
plan or to elaborate it over time when appropriate. Plan elaboration is usually limited to
the next step since the outcome of a step may affect the choice of later actions or even
eliminate these actions (in the case of failure of an earlier action).

The general goal form of this problem is: find all (and only those actual) answers.
This goal is made specific in terms of a set of answer and evidence contraints. The an-
swer contraints specify the connection between domain hypotheses and goal answers-i.e.,

they define which domain hypotheses represent answer evidence. In this example, track
hypotheses represent answer evidence. In other situations, answers rnay be required to

be higher-level plan instantiations representing the purpose of vehicle rnovernents or may
be limited to particular subsets of tracks such as those for vehicles which pose a threat.
Evidence contraints specify acceptable evidence for goal satisfaction. Here they state that
for all space-time of interest, we want to be sufficiently sure that the space is covered with
an answer or with a non-answer (to be sure all answers are found). Just what is meant by
"sufficiently sure" is specified in terms of acceptable residual sources of uncertainty in the
answer evidence.
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Figure 5.2: Initial refinement of problem solving goals.

The refinement of the system goal is accomplished by examining the current situation
to determine the uncertainties in the goal which must be further resolved in order to meet
the evidence constraints. This process is represented in figure 5.2. Initially, the system
goal is unsatisfied because there is too much uncertainty over the possibility of additional
answers (here, actually uncertain if any answers). Thus, the system posts a subplan to
resolve this uncertainty. This subplan is further refined by determining the source of the
uncertainty. At this point, the uncertainty exists because there is no evidence. A subplan
is posted which directs the system to gather evidence to resolve this (no evidence) source
of uncertainty. Refining this subplan involves determining potential types of evidence
that can resolve this source of uncertainty. There are two basic types of evidence that
can be used to resolve this uncertainty: evidence of additional (potential) answers and
evidence to exclude answers (negative evidence). Subplans representing these evidence
options are posted, effectively representing the possible strategies for meeting the system
goals. Further refinement, then, involves the selection of appropriate actions to take to
gather this goal evidence by gathering evidence for domain hypotheses.

At any level in the refinement process, there may be heuristic focusing knowledge which
is applicable. For example, it may be that there is a heuristic that says to prefer negative
evidence to potential answer evidence. This is reasonable since negative evidence call limit
the work that the system must do by eliminating a portion of the answer space from further
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consideration. Also actions that can gather negative evidence generally also can produce
potential answer evidence. If there was such a heuristic, it could be used at this point to
focus the planning process by limiting the subplans which are initially refined. Of course
most heuristics will probably require more specific information about the characteristics
of the available data and so would not be applicable at this level in the planning process.
Instead, additional information would be required from further plan refinement before
decisions could be made.

Answer
Evidence

Create Perform
Evidential Evidential

Data Inference

Evidence Evidence

Bottom-up Top-down

Data Inference

Figure 5.3: Partial plan refinement to create answer evidence.

Further refinement of the control plan now involves determining how to create the
desired answer or non-answer evidence. For the purpose of illustrating the control process,
we will concentrate on developing answer evidence at this point in the example. Answer
evidence requires the creation of a track hypothesis so a subplan is created to represent
this goal-see figure 5.3. Creating a hypothesis means performing an evidential inference
to support the hypothesis. This in turn requires that there be evidential data to perform

the inference from. Thus the refinement of the create track hypothesis plan is a multi-step

plan which is represented in figure 5.3 as and nodes in the plan. The subplan to create
evidential data is further refined in order to determine how to create the data. A major
decision in this process is whether to pursue the data in and top-down or in a bottom-up
fashion. At this point in the processing, heuristic focusing would select bottom-up pursuit
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of the data because the goal hypothesis, the track, does not contain any information that

would help to focus a top-down approach.

Select
Data

Time,

Cluster,

Datum1

Figure 5.4: Partial plan refinement to select data.

Working bottom-up, the control process must first select or create evidential data to

be used in creating evidence via plan abstraction. Concentrating on the only data we are

assuming is available, the acoustic sensor data, refinement to select data involves indexing

into the data through a number of stages-see figure 5.4. These refinement levels depend

on how the data characteristics can be accessed and which are usefuil for making focusing

decisions. For example, the data sets which contain the fewest number of clusters (and

hence potential sources) are ranked more highly for producing evidence of potential answers
since there are less possibilities to be resolved. This results in the selection of the clusters

at either 3a or 4a. On the other hand, if the goal were to resolve uncertainty in a vehicle

position or type, then data sets containing clusters with well sensed (loud) signals might be

preferred. The reasoning here being that louder signals tend to be more accurately sensed,

but are not inherently more likely to represent sources of interest-consider, for instance,

high-flying aircraft or battlefield conditions. In the existing POISE focusing framework
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the heuristic knowledge here would have to be represented as two rules: prefer data at
times with fewer clusters and prefer better sensed (louder) signals. These heuristic rules
would then conflict and POISE had no methods for resolving the conflict. By indexing our

knowledge to the purpose of the actions, this conflict is avoided in the new framework. The

cluster density may be specified as the primary metric when trying to develop evidence of
potential answers while the signal strength is the primary metric for resolving vehicle ID
and position uncertainties.

The decision sequence finally results in choosing to interpret a signal in the 3a cluster.

The choice of 3a over 4a and the choice of signal in the cluster may be made randomly if
there are no distinguishing characteristics (such as signal strength, etc.). The interpreta-

tion process must deal with the uncertainties in what is represented by the data. Because
of this uncertain connection between data and what it represents, we choose to add an ad-

ditional abstraction level to the DVMT hierarchy: the acoustic sensor data level. This level

represents the data as received from the sensor and as such contains no uncertainties-the
data is whatever it is. What is uncertain is just what the data represents about the envi-

ronment. Each data point may represent a single environmental signal, multiple (closely
spaced) signals, or no signals at all (noise/sensor malfunction). Likewise, we are uncertain

about the actual frequency and position of signals represented by the data points because
of the resolution limitations of the sensor.

Once data has been selected, the select data plan is complete. This causes the plan
to be updated (by the updating operator associated with the plan) so that the infer evi-

dence subplan is now active. Since there may be a number of ways to interpret data, the
interpretation process must be guided by heuristic control knowledge. Thus, the plan to
infer evidence must be further refined before action can be taken. Decisions must be made
about which whch uncertainties to pass along, how to represent these uncertainties, and

what hypotheses to create. As always, focusing heuristics are able to reference the control

context in order to determine the most appropriate decisions for the situtation. For ex-

ample, because of the lack of (existing) evidence regarding proper frequency and position

and the fact that the signal strength was very low, it makes sense to reserve judgment and

pass along these uncertainties. Thus the result of the interpretation process is a signal
level hypothesis which is uncertain in frequency and position.

The result of the evidential inference is the creation of a signal-level hypothesis con-
nected by an evidence link to the supporting data. This is the lowest level link in figure 5.5
The hypothesis is uncertain-that is, it is uncertain whether the signal hypothesis represents

an actual environmental signal-because the data may be the result of sensor malfunction.

This uncertainty is represented by attaching appropriate symbolic tags to the evidence
link which stand for the sources of uncertainty in the evidence (these are not shown in

figure 5.5). Acoustic sensor data support for a signal hypothesis includes the sources of
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Figure 5.5: Evidential support for track hypothesis.

uncertainty: sensor-noise and sensor-ghost. Uncertainty in the parameter values of the
signal hypothesis is represented by range values for the parameters. For example, the sen-
sor resolution characteristics tell us that the actual frequency of the environmental signal

is within one frequency class of the sensor data so the signal hypothesis frequency is f ± I
where f is the acoutic data signal frequency class.

. The creation of a signal hypothesis satisfies the evidence creation step of the bottom-up
evidence gathering plan. This causes the plan to be updated so that the newly created

hypothesis can be used to pursue the desired track evidence-see figure 5.6. Of course, in a

real-time vehicle monitoring system other sources of evidence would typically have become
available in the intervening period and would also have to be evaluated relative to the

new hypothesis. For example, if radar data required active accumulation there would be a
delay between the data request and the availability of the data. Thus it would be possible
for radar data requested before the last cycle to be available at this point and be preferred
to the just created signal data.

Updating the bottom-up evidence gathering plan produces two new subplans: one to
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Figure 5.6: Partial plan refinement following hypothesis creation.

create further evidence from the newly create hypothesis and one to resolve uncertainty
in that hypothesis. The signal hypothesis is uncertain due to the uncertainty in its sup-
porting evidence. Because of the explicit recording of evidence and its associated sources
of uncertainty, the control process can consider exactly why hypotheses are uncertain and
what actions are appropriate to resolve the uncertainty. This is the sense in which the
sources of uncertainty information is used to drive the control process. The sources of the

uncertainty in the signal hypothesis are the potential (alternative interpretations) of the
acoustic sensor data as sensor noise or sensor ghosting. Thus planning how to resolve un-
certainty in the correctness of the hypothesis requires gathering evidence to resolve these
sources of uncertainty-if actions are available to accomplish this. For example, we could

imagine an action of running diagnostics on the sensor to determine the possibility that
the sensor is malfunctioning.

On the other hand, the focusing heuristics may suggest that it is more appropriate
to pursue this hypothesis further before accumulating additional evidence. The result of

interpreting a signal hypothesis is the creation of a group hypothesis. Creation of a group
hypothesis causes the bottom-up evidence gathering plan to be updated in much the same
way as after the creation of the signal hypothesis. In particular, there is uncertainty over
whether the signal is part of a group or not (it may simply be a solitary signal), over the

group class because of the frequency uncertainty in the signal, and over the position of
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the group because of the position uncertainty in the signal. Because additional sources

of evidence for the group exist, heuristic focusing knowledge may suggest that accumu-

lating additional evidence for the group hypothesis is preferable to further abstraction.

The sources of uncertainty in the group hypothesis are from incomplete signal evidence

(no evidence of the other signals making up the group), uncertainty over the support of

the existing signal hypothesis (it may not be part of a group), and the uncertainty in

the supporting signal hypothesis itself. The incomplete signal evidence uncertainty can

be resolved by attempting to generate additional, appropriate signal hypotheses. Poten-

tial acoustic data to abstract is identified through the cluster relation with the already

abstracted datum.

Eventually, a vehicle hypothesis will be created from this group and then a track

hypothesis will be created from the vehicle hypothesis. The resulting levels of evidential

support are represented in figure 5.5. Explicit links are maintained between representations

of data or hypotheses and the hypotheses this evidence supports. Associated with each

evidential link is information about the type of the inference (i.e., the role the evidence

plays in support of the hypothesis) and the sources of uncertainty in the inference. Since

uncertainty in the track hypothesis results from uncertainty in the evidence supporting the

track, the sources of uncertainty information associated with the evidential links explicitly
represents the sources of uncertainty in the track hypothesis. Thus, "proving" the track

hypothesis correct means planning how to resolve the uncertainty in the track hypothesis

by identifying actions which can resolve these sources of uncertainty. The sources of

uncertainty in the track evidence result from the incomplete set of vehicle hypotheses

supporting the track and from the uncertainty in the vehicle hypothesis due to the sources

of uncertainty in its supporting evidence.

The track hypothesis satisfies part of the answer goal in that it is of the correct plan

type to be an answer. This resolves the problem solving goal uncertainty as to whether the

acoustic signal evidence is capable of supporting a valid answer or not. However, additional

evidence must still be developed to satisfy the evidence constraints by sufficiently "proving"

the hypothesis and by sufficiently refining hypothesis' parameters such as position and
vehicle type. The high-level portion of the control plan as it exists following the creation

of a potential answer hypothesis is shown in figure 5.7. The partial vehicle evidence

uncertainty is resolved by generating additional vehicle hypotheses to support the track-

i.e., tracking the vehicle. The planning process makes use of the plan constraints to refine

the plans in order to limit the actions and data which are deemed relevant. In tracking,

constraints can be used to limit the data to he examined based on frequency class and

position.

At this point, the track could be extended using time 2 data or time 4 data. Since only

a single cluster is potentially applicable at time 4 the focusing heuristics would probably
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Figure 5.7: Partial plan refinement once potential answer created.

select this as the data to use for the next extension of the track. This process would
continue until the track is deemed to have sufficient supporting evidence to meet the
evidential constraints. This may or may not require the construction of a "complete"
track. If it does not and a complete track is required of valid answers then tracking would
continue-driven by the valid answer problem solving goal. In this example, tracking is
quite straightforward because the focusing process directed the crucial time 3 and time
4 data to be used to construct the basis of the track. This segment is incompatible
with the "b" track extensions because of kinematic constraints. Thus, there is never the
possibility of multiple, alternative extensions here. In general, however, there will be
alternative extensions for hypotheses. Alternatives are identified by "alternative links"
set up between the extension hypotheses. Alterntive relations represent a general type
of negative evidential relationship which can exist between any two hypotheses. That is,
evidence for one of the alternatives is considered as evidence against the alternative and
vice versa. The addition of this negative evidence causes conflict uncertainty which must
be resolved by resolving uncertainty in the alternative extensions.

Even when only acoustic sensor data is used to form the interpretations, it need not
always be used in the same way. For example, as additional evidence is gathered for the
track, confidence in the correctness of the track and the vehicle type increases. At some

point, it may become reasonable to generate less certain, but also less expensive evidence by
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abstracting directly from a data cluster to a vehicle hypothesis (using a different evidence-

generating KS). This evidence would contain some rather significant sources of uncertainty
were it to be considered as a solitary inference because the consistency of the frequency

information would not have been established. However, in the overall track hypothesis
these sources of uncertainty may be of little consequence and are offset by the advantages

of faster processing. This same sort of option occurs with other sources of evidence such
as radar. Resolution can be controlled by varying the power and scan speed with the
tradeoffs being the risk of missing certain targets and limited coverage area.

To fully meet the system goal of creating all and only the correct hypotheses, the

system must also investigate space-time not covered by the "a track in order to develop
evidence that there are no additional answers. Unlike real acoustic sensor data, there is
little "noise in this simple example. In general, acoustic sensor data would probably not

be the best possible source of negative answer evidence because it tends to be relatively

noisy. To produce negative evidence, acoustic sensor data is interpreted differently than
when producing potential answer evidence. An entire time slice is interpreted at once

with the absence of any data clusters producing direct negative evidence for vehicles and

clusters producing direct (but very uncertain) evidence of vehicles. Any vehicle hypotheses

produced would be a source of uncertainty in the system goals since they would fail to

meet the evidential constraints. The system must resolve these uncertainties by gathering
additional evidence to determine whether this evidence represents an answer or not.

TakTrack _xr Track __ Track 1 . Track I

-.... .. .- ---
Vehicle Vehicle Vehicle Vehicle3a 4a 5a ] 5b

Figure 5.8: Alternative tracks due to shared vehicle hypothesis.

In the example, this means that the system would have to examine the "b" track

data to produce sufficient evidence that this data does not support an answer track. The
exact negative evidence generated depends upon the order in which the system pursues
the alternative interpretations of this data. What is clear is that any tracks involving

"b" data would have to include "a" data from times 3 and 4 in order to be extended
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and completed. However, attempting to extend a "b" track into these areas causes the

system to recognize the "b" and "a" tracks as alternatives because they share vehicle

evidence. This results in an alternatives evidential relationship being set up between the

"a and "b" track hypotheses. Figure 5.8 shows such a conflict resulting from one potential

track construction scenario. The addition of this conflicting negative evidence to the tracks

results in an additional source of uncertainty which must be resolved by resolving the other

sources of uncertainty in the hypotheses. Since the "a" track is well supported, this conflict

causes little additional uncertainty and so it is probably best to resolve the uncertainty in
the "b" tracks by trying to extend them. However, there are no possible track extensions

for the "b" tracks here because the constraints on the vehicle kinematics prohibit these
tracks from containing both 3a and 4a data. This extension failure is an additional source
of strong negative evidence for the "b" tracks. Of course, this negative evidence is still
somewhat uncertain since the possibility of missing data at times 3 and 4 is a source of
uncertainty for extension failure evidence. Should the combination of negative evidence

from the "a track and from the extension failure not be deemed sufficient proof against
the "b" tracks then additional actions would be needed to try to resolve the uncertainty.

These actions would involve pursuing the sources of uncertainty in both the positive and
negative evidence for the "b" segments. For example, by gathering additional evidence for
the "a" track, resolving whether the "b" segments fit the criteria for sensor ghosts of the

"a track, and postulating missing data.
The control reasoning in this example can be more involved than in the standard DVMT

since it can be made to rely heavily on domain knowledge about evidence and uncertainty.
This is exactly the point of this work: basing control on a process of accumulating explicit,

symbolic evidence to manage and resolve uncertainties makes it possible to reason in more
detail about control decisions. In this example, heuristic control knowledge greatly limits
the amount of work that is done by focusing the problem solving process on the data which
is the most promising for meeting the goals. The DVMT spends a great deal of effort

building and re-building track segments for the "b" data without recognizing the crucial
role of data at times 3 and 4 and without recognizing the redundancy of its actions (this

problem has been addressed in a different manner in recent work 1221). Our approach also
provides a better basis for understanding the solution. This is a particularly problematic

example for the DVMT since the "solution" track data is weaker than the "ghost" track

data. In the DVMT, constraints on vehicle kinematics are used to eliminate the ghost track
from consideration. Since we wish to consider the possibility of mis-sensed and missing
data the problem becomes more difficult. Postulating missing data at time 3 and/or 4,

it is possible to complete the "ghost" track. While this alternative could presumably

be eliminated from consideration by "tuning" the procedure for weighing evidence, in

real problems there would be other sources of evidence to" resolve this uncertainty. For

-C-60



example, it seems extremely unlikely for there to be no sign of the actual vehicle at these

times and complete signal data for the incorrect track. These would be considered as

strong sources of evidence in resolving the missing data track extension alternative. In

any case, by maintaining an explicit record of evidence, uncertainties, and assumptions,

our system provides a basis for understanding the remaining sources of uncertainty in the

interpretation.
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Chapter 6

Conclusion

This document describes a plan recognition framework which addresses the limitations of
existing plan recognition systems. A plan recognition system of any sophistication and
generality must be able to meet the requirements laid out in section 4.4. Our approach
seems to have all of these qualities. However, evidence-based plan recognition requires
the development of techniques which are of more general Al interest as well. The key
characteristics of our approach include:

* Evidence and sources of uncertainty are explicitly represented.

" Heuristic control decisions are based on the sources of uncertainty
in the hypotheses and the need to manage uncertainty.

These techniques could be exploited by many systems if their use was better under-
stood. A system must have access to the reasons for its beliefs if it is to be able to reason
intelligently about control decisions. An explicit representation of the sources of evidence

makes it possible to understand the sources of uncertainty in the beliefs. Evidence provides
uncertain support for a hypothesis because there are conditions under which the evidence

may fail to support the hypothesis. Numeric rating functions gathered from experts typ-
ically summarize just such knowledge-along with a priori likelihood judgements. Explicit
information about the uncertainties in evidence is a type of knowledge that we feel is very
important for the development of more sophisticated Al systems. It allows us to evaluate
belief dynamically rather than having to rely on a priori likelihoods since it is now possi-
ble to enumerate the sources of uncertainty in evidence and judge their likelihood in the
current contexts. Control decisions can be directed toward gathering the best evidence
to resolve the most critical sources of uncertainty. That is. we can manage uncertainty

rather than just trying to resolve it because we understand exactly what the sources of that
uncertainty are, which are most critical, and what evidence is best. This applies whether
or not the system can interact with its environment to affect the evidence it has available.
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ANTICIPATION OF MODIFICATIONS
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Directed by: Professor Victor R. Lesser

Knowledge bases for expert systems are typically constructed and refined us-

ing information obtained through a series of dialogs between an expert in the

application domain and a knowledge engineer. The assimilation of this informa-

tion into an existing knowledge base is an important aspect of the knowledge

engineer's task. This assimilation process requires an understanding of how the

new information corresponds to that already contained in the knowledge base

and how the existing information must be modified so as to reflect the expert's

view of the domain.

This work describes a new approach to knowledge acquisition and presents a

system, KnAc, which implements this approach. KnAc modifies an existing knowl-

edge base using information obtained during a discourse with a domain expert.

Heuristic knowledge about the knowledge acquisition process enables KnAc to

anticipate modifications to existing entity descriptions. These anticipated mod-

ifications, or ezpectationa, are used to provide a context in which to assimilate

the new domain information.
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CHAPTER 1

INTRODUCTION

The desire of knowledge, like the thirst of riches,

increases ever with the acquisition of it.

- LAURENCE STERNE, Tristram Shandy (1760)

As artificial intelligence systems move out of the laboratory and attempt to

confront real-world applications, the need for large, potentially complex knowl-

edge bases becomes clear. The creation and maintenance of these knowledge

bases has proven to be a severe bottleneck in the development of these "intel-

ligent" systems. Identifying the necessary knowledge, both domain-specific and

more general "world" knowledge, providing a representation capable of describ-

ing its salient features, extracting this information from the appropriate "do-

main experts", and assimilating this information into an existing knowledge base

have each proven to be a formidable task. This work addresses these issues and

presents a system, KnAc, which offers solutions to the knowledge assimilation

aspect of this knowledge acquisition problem.

As the process of transferring knowledge from a domain expert into an expert

system's knowledge base becomes a more substantial portion of the system's total

development cost, several approaches are being examined to automate this labor-
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intensive task. These approaches either provide the knowledge engineer with

better tools, provide an automated intermediary between the domain expert and

the knowledge base, or allow the expert to access the knowledge base directly.

The lines between these approaches is not always distinct; as knowledge base

tools become more sophisticated, they may better approximate the role played

by the knowledge engineer.

The desire to make the knowledge base more accessible to the domain expert

has resulted in more perspicuous knowledge representations, improved tools for

editing and viewing knowledge structures, checks for consistency and complete-

ness, etc. While these are certainly desirable steps, they focus on the tools for

knowledge acquisition, often with little regard for the process involved. In this

dissertation, the expertise required to perform the knowledge acquisition process

is examined and a testbed for refining this expertise is presented.

§1. Knowledge Acquisition as Knowledge Assimilation

Consider the typical means by which knowledge bases are currently con-

structed. This usually involves a series of dialogs between an expert, or experts,

in the application domain and a knowledge engineer familiar with the target

expert system. The knowledge engineer's task is the modification of the expert

system's knowledge base so as to reflect the domain expert's knowledge. The

goal of this work is to understand and automate the knowledge engineer's ability

to assimilate the information provided by the domain expert into an existing

knowledge base.

To a large extent, this knowledge acquisition task may be viewed as a recogni-
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tion problem. Specifically, "data" provided by the expert must be integrated into

an appropriate knowledge base context. All of the problems facing other recog-

nition systems are present here as well, including: noisy data (i.e., incomplete

or inaccurate information), ambiguous interpretations, and the need to produce

intermediate results before all the data is available. Thus, a significant portion of

this interactive knowledge acquisition task is a matching problem: How does the

expert's description of the domain correlate with the description contained in the

knowledge base? How should the knowledge base be modified based on new in-

formation from the expert? What should be done when the expert's description

differs from the existing one?

This matching process, while in some ways similar to that found in most

recognition or interpretation systems, displays certain characteristics unique to

knowledge acquisition. In particular, since the goal of a knowledge acquisition

dialog is the modification of the knowledge base, the information provided by

the domain expert often will not completely match the existing entity descrip-

tions. The matching process must be modified so as to be able to recognize and,

where possible, anticipate these discrepancies. KnAc accomplishes this through a

(modifiable) set of heuristics about various aspects of the knowledge acquisition

process.

§2. The KnAc System

KnAc was developed to implement this knowledge assimilation approach to

knowledge acquisition. It was initially designed to assist in the construction of

knowledge bases for the POISE [CLLH82] intelligent interface system. These

knowledge bases use a frame-like representation, described more fully in Chap-
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ter 3 Section §3., to describe taik., objects and relationihips in the application

domain. POISE's initial knowledge bases, for the office automation and software

engineering domains, were created by hand from interviews between a knowledge

engineer and the appropriate domain experts. Transcriptions of these interviews

were examined and the results served as the basis of the KnAc system.

KnAc obtains, through a user interface, entity descriptions (e.g., tasks, objects,

etc.) from the domain expert. These descriptions are compared with descriptions

selected from the existing knowledge base. If any existing descriptions sufficiently

match those provided by the expert, within the context of anticipated modifi-

cations, the modifications implied by any discrepancies between them are made

to the existing entity descriptions. This matching process requires the ability

to compare fairly complex knowledge structures, such as the event and object

descriptions found in POISE, and to evaluate the results of such comparisons

in the framework of a knowledge acquisition dialog. KnAc contains a structure

matcher and match evaluator designed for this purpose.

The anticipation of modifications to the existing knowledge, used in the selec-

tion of potential matches for the expert's descriptions and in the evaluation of the

resulting comparisons, results from KnAc's understanding of the knowledge ac-

quisition process. This understanding is captured in the form of heuristics about

several aspects of the task. Specifically, the system contains heuristics which

predict modifications based on cues about the knowledge acquisition discourse,

the state of the existing knowledge base, and previously made modifications.

KnAc generates expectations based on these heuristics and determines which are

viable at a particular time based on their certainty, the extent to which they

have already been satisfied, and the passage of time and/or the change in state

of the knowledge base since the expectations were generated.
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§3. Outline of the Dissertation

KnAc's view of knowledge acquisition as knowledge assimilation is presented in

the following chapter. This approach is compared with other attempts to address

the knowledge acquisition problem. The assimilation process is compared with

other relevant work on matching and recognition/interpretation systems.

To provide a context in which to study the knowledge acquisition process,

interviews recorded during the development of an office automation knowledge

base for the POISE system [CL84] were examined. Analysis of these interviews,

and of the resulting modifications to the knowledge base, formed the basis of the

KnAc system. The interviews themselves are described in Chapter 3 along with

examples of the type of changes to the knowledge resulting from these interviews.

The architecture of the KnAc system, described briefly above, is presented in

detail in Chapter 4. The system's functionality is illustrated with an example

derived from the knowledge acquisition dialogs in the office automation domain.

The assimilation of the domain expert's information into the existing knowl-

edge base requires the ability to compare knowledge structures. The process of

comparing these descriptions in a manner suitable for the knowledge acquisition

task and the evaluation of the resulting matches are described in greater detail

in Chapter 5.

A major factor enabling KnAc to assimilate new information is its ability to

anticipate modifications to the existing knowledge base. These anticipated mod-

ifications, or "expectations", are generated from a collection of heuristics about

the knowledge acquisition process. The method by which these expectations are

generated and managed is presented in Chapter 6.
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As a testbed for knowledge acquisition, many facets of the KnAc system may

be customized by the user. The ways in which the system can be tuned and

the means for observing and evaluating the resulting changes in the system's

performance are described in Chapter 7. The results of assimilating a portion of

the knowledge acquisition discourse contained in Appendix A are also presented.

Finally, the contributions made by this work and the status of the KnAc

system are summarized in Chapter 8. An evaluation of the system's performance

is presented and directions in which this work may be extended are described.
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CHAPTER 2

AN APPROACH TO KNOWLEDGE ACQUISITION

The term "knowledge acquisition" has been used to describe a variety of ap-

proaches to acquiring information for expert systems.' Some involve the creation

of new knowledge bases; others permit incremental additions or debugging of an

existing one. Some acquisition systems are simply syntax-driven tools to help

the knowledge engineer enter new information; others autonomously deduce what

information to add.

The approach taken by this work is described in the following section. Related

approaches to knowledge acquisition, and techniques similar to those used by

KnAc, are presented in Section §2.

§1. The KnAc Approach

Knowledge acquisition systems vary in both their objectives and in their

methodologies for accomplishing these objectives. This section describes the

goal of the KnAc system and present a high level view of the approach taken

towards satisfying it.

1The term has even been used to describe the acquisition of information from such knowledge
bases (e.g., [BBD86]).
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§1.1 The Goal

To understand the portion of the knowledge acquisition task addressed by the

KnAc system [Lef85], consider the typical means by which knowledge bases are

constructed, namely, through dialogs between a domain expert and a knowledge

engineer (see Figure 1). In these dialogs, the knowledge engineer attempts to

encode information about a particular application domain as provided by an

expert in that domain. The knowledge engineer understands the representation

scheme used by the knowledge base and has complete access to its contents,

but does not have expertise in the application domain. The domain expert, on

the other hand, need not be aware of the representation or the extent of the

expert system's knowledge base. The goal of this work is the automation of

the knowledge engineer's role in modifying the expert system's knowledge base,

through dialogs with the domain expert, so as to reflect the expert's view.

Note that the expert's goal is not to modify the knowledge base (as in Fig-

ure 4) - this is the knowledge engineer's (or KnAc's) role. Rather, the expert

simply presents information (e.g., tasks, objects, constraints, etc.) about the ap-

plication domain. This information must be integrated into the existing knowl-

edge by the knowledge engineer.

If the role of the knowledge engineer is viewed as an interface between the do-

main expert and a knowledge base, this interface may be thought of as a layered

system. Neither the layers closest to the domain expert (e.g., a natural language

front-end, a discourse manager, a graphical interface) nor those at the knowl-

edge base end (e.g., knowledge base accessor functions) are the primary focus of

this project; rather, KnAc addresses those layers responsible for modifying the

knowledge based on the information provided by the expert and for determining
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what additional information needs to be obtained. Accepting and presenting

this information in a "user friendly" format (natural language, graphics, etc.)

is beyond the scope of this project; a natural language parser/generator along

with a discourse manager, tuned to knowledge acquisition dialogs and the office

automation domain, is being developed concurrently (see [WPML841).

The separation of the KnAc system from a particular style of user interface, be

it natural language or graphics or some other type of interface, and from a partic-

ular knowledge base representation is intended to 1) maintain a degree of system

portability and 2) bound the scope of the project to those issues directly con-

cerned with the acquisition process. The degree to which the acquisition system

depends upon the front-end and knowledge representation scheme is discussed in

Chapter 4.

§1.2 The Methodology

KnAc's primary function is to compare an expert's view of a domain against

that contained in an existing knowledge base and to modify the knowledge base

so that it better reflects the expert's perspective. To accomplish this, KnAc must

be able to match partial entity descriptions (e.g., tasks, objects, etc.) provided

by the expert to those in the knowledge base, recognize the discrepancies between

the two and make the implied modifications.

In order that KnAc be able to engage in a dialog with the expert, the system

must attempt to integrate new information as it is presented. Though some

ambiguity may be resolved by delaying the interpretation, the system would not

be able to provide timely feedback (e.g., questions, warnings, etc.) if it waited

to "post-process" the entire dialog.
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The matching problem faced by the system is similar to that found in other

recognition systems: "noisy" data (i.e., incomplete or inaccurate) must be in-

tegrated into an appropriate (possibly ambiguous) context. Because KnAc is a

knowledge acquisition system, however, the problem is more subtle. Rather than

trying to match its input against a "library" of templates (i.e., descriptions of

tasks, objects, relations, constraints, etc.), the system is using the information

provided by the expert to modify its existing knowledge (i.e., its templates).

Perfect matches are not the goal - knowledge acquisition implies modifications

to the existing knowledge base. Thus, differences between information coming

from the expert and that already known to the system are necessary for these

modifications.

Thus, the KnAc system faces a unique type of matching problem. In com-

paring information from the expert with that in the knowledge base, the best

matches are not necessarily those with the fewest differences, since these dif-

ferences may represent desired modifications to the knowledge base. If such

modifications can be anticipated, however, the best matches would be those con-

taining the fewest unezpected differences. Hence, the KnAc system must provide

the capability for such context dependent matching and a means of anticipating

modifications. These subsystems are described in detail in Chapters 5 and 6.

§2. Related Approaches

As the need to construct substantial knowledge bases has become apparent,

systems to simplify this task have been developed. In general, knowledge acqui-

sition involves using the information obtained from some source to modify some

body of knowledge. There is, however, great variation in the sources of informa-
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tion, the methods of obtaining it, and the use(s) to which it is put. Consider the

following dimensions along which knowledge acquisition systems may vary:

" What types of information are provided? Some knowledge acquisition sys-

tems provide a convenient way for the user to explicitly modify the knowl-

edge base (e.g., TKAW [KBJD86]). Others may be told about the ap-

plication domain through examples or training sequences (e.g., SEEK2

[GWP85]) or through normal use of the target expert system (e.g., LEAP

[MMS85]) and deduce the appropriate modifications. Some systems cor-

rect, or assist the user in correcting, errors in the knowledge base (e.g.,

Teiresias [DL82]). These errors may either be detected by the user or by

the system itself.

" At what point in the ezpert system's life cycle does the knowledge acqui-

sition occur? Knowledge acquisition systems may be used as early as the

initial developmmnt stage of an expert system (e.g., to select an appropriate

representation scheme, algorithm or control strategy) or as late as helping

the end-user interact with the finished product. They can aid in the initial

building of a knowledge base or in the refinement of an existing one (e.g.,

SEEK2, MOLE [EEMT86]).

* How is the knowledge provided? A knowledge acquisition system may be a

passive tool used by knowledge engineer, or it may actively extract informa-

tion from a domain expert. This may involve an interactive dialog between

the user and the system (e.g.,Teiresias, TKAW), filling in knowledge struc-

tures (e.g., [MMW85]), providing or evaluating examples of correct and/or

incorrect results, or replying to a series of questions from system.
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" How much autonomy does the sygtem haveF At one end of the spectrum

are tools that assist the knowledge engineer in modifying and debugging

a knowledge base. At the other extreme are systems that autonomously

modify a knowledge base using either examples (cases), consistency (or

other) constraints, or other "learning" techniques.

" Where does the system get its "ezpertise"? How much does the knowl-

edge acquisition system have to know about the application domain to

provide assistance? How much knowledge about the knowledge represen-

tation is required? Must it "understand" the expert system's functionality

and objectives? Finally, what should it understand about the knowledge

acquisition process itself?

The following sections present a brief view of some approaches to knowledge

acquisition, their treatment of these issues, and their relevance to this work.

In addition to these alternative approaches, several other projects, while not

directly addressing the issue of knowledge acquisition, relate closely to KnAc's

approach. For instance, work on partial matching of complex structures, intelli-

gent interfaces, dialog controllers and computer-based tutoring systems all have

some bearing on this project.

§2.1 Knowledge Base Refinement

Attempts to make expert systems more robust and capable of "common

sense" reasoning have lead to the need for significantly richer knowledge bases.

This endeavor has lead to more powerful knowledge representation languages and

more sclh-sticated knowledge structure editors.

Perhaps the most ambitious attempt at constructing a complex knowledge
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base is being undertaken by the CYC [LPS86] project. As part of a decade-long

attempt to encode the contents of a one-volume encyclopedia, a rich but general

knowledge representation based on RLL tGL80] and KRIL [BW77 has been de-

veloped and a knowledge acquisition methodology specified. This methodology

provides a means of entering new structures via a "frame" editor that guarantees

that the structure is completely and consistently specified by guiding the expert

through the slots of the new structure. It also provides a Copy&Edit facility to

permit new knowledge to be defined in terms of existing entities.

This philosophy of using the existing knowledge to assist in the acquisition

of new information is very much in line with that of the KnAc project. As stated

in [LPS86],

"As the size of the knowledge base grows, it becomes increasingly

likely that one can find a match that's close enough to result in a

large savings of time and energy and consistency."

While the likelihood of such a match existing increases with the size of the knowl-

edge base, it is unclear that one's ability to find this match will also increase. The

CYC project recognizes the difficulties posed by such a large knowledge base:

"The expert makes most of these connections by pointing to related

frames, as s/he navigates through 'knowledge space.' This navigation

can be implemented simply by a Zoglike network of menus or less

simply by using three-dimensional graphics, joysticks, helmets, and

even less simply by employing artificial personae as guides."

As an "expert" in the process of knowledge base modification, KnAc may be seen

as playing the role of "knowledge base guide".
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Though KnAc and CYC have similar goals, their approaches are somewhat

different. While CYC's "application domain" (e.g., the contents of an encyclo-

pedia and the common sense knowledge required to understand it) causes some

blurring of the distinction between "domain experts" and "knowledge engineers"

(or "knowledge enterers", to use their terminology), the knowledge acquisition

process consists of people actively editing the knowledge base. The CYC system

presents tools to aid in this modification. With KnAc, on the other hand, the

domain expert is more insulated from the knowledge base. It is the system that

bears the responsibility for integrating the expert's knowledge.

Another potentially powerful technique mentioned in the CYC work (as well

as in [Car83]) is the idea of using analogiej to determine what entities to modify

and how to change them. While analogies, per se, are not used explicitly in

KnAc, this technique is closely related to idea of "context-dependent matching"

discussed in Chapter 5 Section §2.2.

Another approach to updating a system's knowledge base relies on a debug-

ging paradigm. It assumes that the user is attempting to correct a problem in the

existing system. Teiresias [DL82] is a knowledge acquisition system developed for

updating MYCIN's [Sho761 knowledge base. It enables a human expert to mon-

itor and correct the performance of the underlying expert system. It helps the

user identify the cause of an error by providing a means of tracing back through

the system's actions that led to the error. Teiresias then allows the expert to

add or modify the information necessary to correct the error.

While both Teiresias and KnAc assist in the process of updating an expert

system's knowledge base, Teiresias is built around the idea of debugging an error

in the existing knowledge; it is only invoked when an error has been identified.

While errors (inconsistencies, missing information ("holes"), constraint viola-
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tions, etc.) are one means of anticipating modifications to the knowledge base,

they are not the only means. The KnAc approach does not confine the acquisition

process to be error-driven. This permits the acquisition system to be used dur-

ing the initial development of the knowledge base, not just to debug an already

functioning system.

Furthermore, Teiresias does not address the question of what modifications

should be made to the knowledge base. This task is left almost entirely to the

human expert. The error must be identified by the uaer, and the uier must

provide the correction. One of the major goals of this work, on the other hand,

is the ability to decide how to modify the knowledge.

Finally, much of the aid that Teiresias provides is guiding the user through the

knowledge base in order to identify and correct a known error. Though" Teiresias

is not confined to the knowledge representation structure used by MYCIN (pro-

duction rules), much of its power seems possible because of this relatively simple

structure. It is not clear that this approach would do well in an environment with

more complex structures nor that the power inherent in such structures would

be taken advantage of.

The MORE knowledge acquisition system [KNM85 uses a somewhat more

sophisticated domain model. It attempts to build and strengthen the set of rules

used in the MUD diagnostic system [KM85], by obtaining rules and weights from

the user, checking for "weakness" in the diagnostic capabilities of a set of rules,

and detecting potential inconsistencies in the numeric values assigned by the

user. Instead of simple condition-action pairs (i.e., production rules), MORE's

domain model contains hypothese, jymptorn, condition., linki, paths, testi and

attribute.. By having this additional semantics as part of the knowledge represen-

tation, it can use more sophisticated strategies such as differentiation (to acquire
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a distinguishing symptom for a pair of hypotheses) and symptom dijtinction (to

refine symptoms) to increase the diagnostic power of the knowledge.

As with Teiresias, MORE uses the state of the existing knowledge base to

determine what modifications are necessary. Since the state of the knowledge is

one of the means by which KnAc generates expectations, the strategies used by

MORE are of interest to this work. Since KnAc is not restricted to acquisition for

diagnostic systems, however, not all of these strategies are directly applicable.

Some of KnAc's "state of the knowledge" heuristics are similar to the techniques

used by MORE.

§2.2 Learning and Teaching

Though the boundary between "learning" and "knowledge acquisition" is

sometimes blurred, a distinction may be drawn between systems that autono-

mously modify a body of knowledge and those in which an external source is

responsible for such change. The types of learning of particular interest to this

research may be described as "learning by being told" and "learning by asking".

Whereas systems such as Lenat's AM [DL82] concentrated on autonomous

learning (discovery), we are more concerned here with the interactive process of

extracting information from a human expert. While KnAc is not concerned with

autonomous learning per se, the techniques that enable such learning to occur

are of definite interest. Examination of an existing knowledge base to detect

incompleteness or inconsistencies (or other "areas of interest") provide another

powerful means by which KnAc may anticipate knowledge base modifications.

Between completely autonomoun and totally passive learning systems are

those in which the learning component is given a set (or sets) of examples (or
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"cases") from which it must generate appropriate modifications. LEX [MUB82],

for instance, acquires and modifies its set of heuristics by generating test prob-

lems for its underlying expert system to solve and then analyzes the solution

path taken. This approach requires several complex components: 1) a "problem

solving" module which is actually part of the underlying system rather than part

of the knowledge acquisition system, 2) a "critic" which analyzes the solution,

3) a "generalizer" which modifies the knowledge base according to the critic's

analysis, and 4) a "problem generator" which is responsible for providing test

cases that will (gradually) expand the system's knowledge base.

Whereas systems such as SEEK2 [GWP85], another system for refining a set

of rules, require a data base of cases, the LEAP system [MMS85] gets its training

examples from the normal use of its underlying VLSI design expert system. In a

given situation, the expert system provides the user with a set of options based

upon its existing set of rules. If the user chooses to override these options, LEAP

recognizes this as a potential learning situation. It formulates a new rule to

capture the user's action and then generalizes this rule using an "explain-then-

generalize" strategy. The "explanation" capability is based on a model of the

domain theory.

A similar approach is taken by Odysseus [Wil86] which attempts to debug

and refine a knowledge base for the Heracles [Cla85] expert system (a generalized

version of NEOMYCIN [Cla84]). This system observes the normal problem solv-

ing behavior of the domain expert and attempts to justify the expert's actions

based on its existing knowledge base. Note that this "justification" relies only

upon the existing rule-base; it does not attempt to generate new rules by relying

on a deeper "domain model". Further, Odysseus is not trying to directly match

the expert's action to something in its knowledge base; rather, it is trying to
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justify the action by constructing a plausible "line of reasoning". If it determines

that no such justification can be generated, it attempts to select the portions of

the knowledge base responsible for the failure.

Although these systems approach knowledge acquisition from a somewhat

different direction than does KnAc, both they and KnAc compare the expert's

knowledge (either as deduced from the expert's actions or as presented to the

system) with the existing knowledge base and infer the required modifications

from the resulting differences. Because of the different underlying knowledge

representations, the manner in which the expert's information is presented, and

the assumptions made about how knowledge is to be used, the processes by which

these differences are detected and the necessary modifications inferred diverge.

These systems tend to work with rule-based knowledge; the differences (between

the expert's and the system's view) usually arise from the failure of the system,

via chaining of these rules, to produce the desired (i.e., the expert's) results.

KnAc, on the other hand, tries to compare the expert's model of the domain with

the system's, using the general frame-structure matching techniques described in

Chapter 5.

From a very different perspective on learning, the knowledge base may be

viewed as a network of highly interconnected concepts. Thus, the recent revival

(and apparent success) of low-level, autonomous learning in networks of simple,

interconnected processing elements (e.g., [Bar85]) raises interesting possibilities

for autonomous learning. Part of the knowledge base modification process could

occur on a distributed, localized fashion. This approach, however, is not currently

part of the KnAc project.

Work in intelligent tutoring systems (Woo831 provides an interesting parallel

to the problem of knowledge acquisition. In both cases, a dialog between a human
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and an intelligent system takes place for the purpose of transferring knowledge.

In tutoring systems, the system is the "expert" and the human is the "student";

knowledge acquisition reverses these roles. By examining the teaching strategies

used in tutoring systems, some insights into the way in which the domain experts

may present information were developed.

Finally, Piaget's studies of the learning process in children should also be

considered. An important theme throughout his work is the role of aisimila-

tion and accommodation in the learning process. He defines asaimilation quite

broadly as "the integration of any sort of reality into a structure." (Pia64] This

existing structure may "remain unaffected or else be modified to a greater or

lesser degree by this very integration." [Pia7l] The modification or restructuring

of the existing knowledge is what Piaget calls accommodation.

Though no claim is made for the psychological validity of the type of "knowl-

edge assimilation" that occurs in KnAc, the overall concept is very much in the

spirit of the assimilation process described by Piaget. KnAc's attempt to match

new information to what is already known and to integrate this new information

into existing knowledge structures in order to improve the quality and breadth

of a knowledge base nicely mirrors Piaget's view of assimilation as described in

(BHR75]:

"Assimilation involves a thought process and a degree of mental anal-
ysis. The subject has to recognize that the new situation has similar
features to the past experience and he then thinks about the new in
terms of the past... Assimilation strengthens knowledge gained by
previous experience; it is the integration of any sort of reality into a
thought structure, and it is this assimilation which seems to me to
be fundamental in learning."
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§2.3 Knowledge Base Interfaces

Intelligent interfaces and knowledge acquisition systems are related in several

ways. A knowledge acquisition system may be thought of as an interface be-

tween a domain expert and a knowledge base. More traditionally, however, user

interfaces may be viewed as a translation between a user's desired action and

an underlying system's equivalent functionality. There is generally some type of

mapping used to accomplish this. Knowledge acquisition in these systems often

consists of modifying these mappings. The importance and difficulty of this task

increases as these structures become increasingly complex.

Consul [Wil8l] is an interface system designed to simplify a user's interaction

with a collection of software tools. It contains descriptions of the user's actions

and of the tools' functionality. By providing a mapping between a user's view

of an action and the system's (i.e., the collection of tools') actual capabilities,

Consul finds the appropriate tool actions needed to carry out a desired user

action.

Consul contains a knowledge acquisition facility to allow the user to provide

additional descriptions of tools and user actions. When these descriptions are

added to the system, they must be interactively classified into Consul's knowledge

base. This must be done without assuming expertise on the part of the user

with regard to the internal workings of the Consul system or the content of its

knowledge base. The system guides the user through a classification dialog by

using the structure and content of the knowledge base. It shields the user from

the internal representation of these tool/action descriptions and is able to prompt

the user by making use of the information already known to the system. KnAc

attempts to take this one step further and strives to relieve the user of the task
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of integrating the domain knowledge presented.

Another interface between a user and a set of tools is the POISE system

[CLLH82I. Rather than modeling tool invocations, POISE contains descriptions

of what a user might try to accomplish in a particular domain. Its domain model

includes descriptions of tasks, objects, relationships, constraints, and goals. KnAc

was originally developed to assist in expanding POISE's description library.

Adding information to a system with a knowledge base formalism as rich as

POISE's is more complex than generating new production rules. However, this

same richness enables the acquisition system to take advantage of the semantics

embedded in the knowledge representation without having to be aware of the se-

mantics of a particular application domain. With task descriptions, for example,

KnAc can make use of the relationship between a task and its sub-tasks without

having any inherent knowledge about specific tasks for a particular application.

§2.4 Knowledge Acquisition Dialogs

Several existing expert systems use a knowledge acquisition dialog to build

or modify their knowledge bases [Ben83,DL82]. Most of these systems, however,

tend to place the initiative either entirely in the knowledge acquisition system

or in the domain expert. In the first case, the dialog tends to be quite rigid

and stylized (e.g., obtaining values for fields of fixed data structures). In the

latter case, the system will accept and respond to individual user commands and

requests, but is completely passive.

The KLAUS system [HH80] also uses a dialog to augment its knowledge

base and addresses many of the same issues as KnAc does. These include: 1) a

"learning by being told" approach to knowledge acquisition, 2) the use of mixed-
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initiative dialogs with a domain expert unfamiliar with the the knowledge rep-

resentation system, 3) the integration of the information provided by the user

into the existing knowledge base, and 4) recognizing (and requesting) "missing"

information.

KLAUS places a heavy emphasis on the natural language capabilities of the

system and on the simultaneous acquisition of linguistic and conceptual informa-

tion. Its knowledge base is a class (or part-of) hierarchy, represented in a first-

order logic. The knowledge acquisition, therefore, is a classification problem; it

attempts to correctly locate new concepts in the knowledge "tree", obtaining the

necessary distinctions and refinements from the user.

A dialog manager developed for the Aquinas knowledge acquisition work-

bench [KB861 places greater emphasis on the interaction between the user and

the system than on the natural language aspects of the discourse. By examin-

ing how experts used the Aquinas system to construct knowledge bases, a set

of heuristics was developed. A hierarchy of heuristics for knowledge acquisition

is proposed and includes categories such as temporal reaaoning, complezity of

the knowledge base, knowledge base problems, user preferences, etc. Although

the more detailed levels of the hierarchy appear specifically aimed towards the

Aquinas system (e.g., heuristics involving "rating grids"), the more general cate-

gories overlap to a large extent with the heuristics used by KnAc. (See Appendix B

for the complete listing of KnAc's heuristics. The similarities of heuristics (or at

least classes of heuristics) developed for knowledge acquisition systems for two

very different types of knowledge bases bodes well for the domain (and knowl-

edge representation) independence of these heuristics. Exploring the extent to

which these heuristics must rely upon the particular target system (or application

domain) is one of the goals of this work.
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Approaching the problem from a somewhat different tack, [BBD86] examines

discourses in which users interact with an intermediary in order to acquire infor-

mation from a knowledge base. It attempts to construct a model of the (human)

intermediary by analyzing these "knowledge elicitation" discourses. Recognizing

that not all the required information is provided explicitly by the user during

the discourse, other sources of knowledge (e.g., a user model, structure of the

discourse, etc.) are explored.

While KnAc is not concerned with natural language discourses per se, it is

clear that the structure of these discourses between the domain expert and the

intermediary, be they in natural language or some other format, is a potentially

rich source of information about the knowledge acquisition process. The extent

to which this information may be used by KnAc depends primarily on the so-

phistication of the discourse manager (see Chapter 4 Section §6.) being used.

Because KnAc is not currently integrated with a very sophisticated front-end,

minimal discourse information is available to the system. (See Appendix §3..)
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CHAPTER 3

INTERVIEWING THE DOMAIN EXPERT

KnAc's approach to knowledge acquisition is modeled after interviews between

a domain expert and a knowledge engineer. As part of the ongoing development

of POISE's knowledge base, a series of interviews between a domain expert in

the office environment (i.e., the department's principal clerk) and a knowledge

engineer familiar with the POISE system were conducted. These interviews were

examined to gain insight into the types of knowledge base modifications being

made and to explore the knowledge engineer's role.

This chapter describes the set of interviews examined, shows how they were

formally modeled, traces a portion of one such interview, and presents the im-

plications of these interviews for automated knowledge acquisitinn.

§1. The Interviews

In order to understand the various techniques used to acquire information

under different circumstances, several types of knowledge acquisition interviews

were conducted. They varied in the scope and complexity of the information

being sought, the extent of the interviewer's prior knowledge of the task to be

learned, and the degree of initiative taken by the interviewer. By obtaining
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a collection of different approaches to interviewing the domain expert and an

understanding of when to use each of these techniques, an intelligent knowledge

acquisition system can better tailor its strategy to individual situations.

Three interviews have been examined to date. The first concerns the funding

of graduate students; the second, presented in Section §4., concerns reimburse-

ment for travel expenses; the third involves the hiring of a new faculty member.

One dimension along which the three interviews varied was the complexity

of information being sought from the domain expert. The first interview was

intentionally broad in scope. It attempted to codify an entire process rather

than a particular individual's (here, the principal clerk's) task. In the latter

interviews, the emphasis was placed on the clerk's role in the execution of the

procedure.

In order to examine a dialog involving less clearly defined objectives, as is

common early in the building of an expert system's knowledge base, the inter-

viewer did not know the topic of the third interview beforehand. This interview

displayed characteristics of pattern-matching recognition as the interviewer tried

to find an appropriate context in which to assimilate the information provided

by the clerk, and then appeared to be goal-directed in an attempt to confirm (or

deny) hypothesized contexts.

In this series of interviews, the extent to which the interviewer maintained

the initiative was also observed. The first interview was fairly broad in scope and

the domain expert tended to control the dialog with minimal guidance supplied

(or required) by the interviewer. In the second and third interviews, because a

specific role was to be defined, the interviewer needed to exert more control in

order to acquire this information.
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§2. Modeling the Interview

To guide the initial development of the KnAc system, a methodology for ex-

amining these interviews was needed. By viewing the interviews as a means

of transforming the knowledge base from one "state" to another (presumably

more complete or correct) one, a series of such states could be modeled in terms

of POISE's knowledge representation formalism. The modifications occurring

between successive states could then be enumerated and the possible causes for

these modifications explored. This approach provided the insights into the knowl-

edge engineer's role in these acquisition dialogs that formed the basis of the KnAc

system.

Since it was not possible to monitor the knowledge engineer's mental state

during the course of a knowledge acquisition dialog, the knowledge engineer was

debriefed before and after several of the interviews. This provided an initial

domain model (i.e., the knowledge engineer's view of a portion of the domain

prior to a particular interview); the knowle ,Ie engineer's modified version of the

knowledge base served as a final model. The interview was then segmented to

provide intermediate knowledge base states.

The issue of how to segment the interview in a reasonable fashion arose.

Since the objective was to identify and understand the modifications made to

the domain model, the granularity with which the "interim states" were selected

depended upon the size of the changes to be examined. Segmenting the inter-

view at each ply of the discourse (that is, at each change of speaker) was often

too large a granularity; a single "question" or "answer" ma. contain too many

relevant modifications. (Occasionally, the reverse is true: a speaker may convey

little useful information during a p!y.) Manually segmenting the dialog (i.e., rec-
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ognizing "chunks" that result in changes to the knowledge base) even without

an exact understanding of the desired types of changes, was not difficult. The

automation of this segmentation process is examined in Chapter 6 Section §3.

§3. The Representation Formalism

The objective of the knowledge acquisition process is the formulation of a

model of the expert's task in the formalism of the target expert system. The first

step in our approach to understanding this process was to use this formalism not

only for the final results of the interview, but for initial and interim models of the

task as well. This presumes that the expert system has some initial model of the

task (and its associated goals, subtasks, tools and objects) which may be refined

as the interview progresses. The initial and interim models are often incomplete,

inconsistent or incorrect. If these are to be described in the same language as

the final model, the target formalism must permit such "imperfect" descriptions.

The POISE system provides a rich language [CL82] for describing procedural

tasks, their goals, and the objects they utilize. It incorporated both a procedural

an,' an object-c ntered view of these tasks. In the domain of office automation,

for example, tasks such as communicating information (e.g., via electronic mail)

and filling out forms are described, as well as the relevant objects involved, such

as messages, forms, and mail systems.

The procedural descriptions are hierarchical, with each description's Is clause

containing the temporal ordering of its constituent procedures (using an extended

shuffle expression grammar [BW82). Attributes and objects related to the pro-

cedure are defined in the WITH clause and constrained in the COND clause. The
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PROC PURCHASE-ITEMS

DESC "Procedure for purchasing items with non-state funds."

IS (RECEIVE-PURCHASE-REQUEST

' (PROCESS-PURCHASE-ORDER I
PROCESS-PURCHASE-REQUISITION)

' COMPLETE-PURCHASE)

WITH ( (Purchaser = RECEIVE-PURCHASE-REQUEST.Form.Purchaser)

(Items = RECEIVE-F URCHASE-REQUEST.Form.Items)

(Vendor = RECEIVE-PURCHASE-REQUEST.Form.Vendor-name))

COND (for-values Purchaser Items Vendor-name
(eq RECEIVE-PURCHASE-REQUEST.Form

PROCESS-PURCHASE-ORDER.Form

PROCESS-PURCHASE-REQUISITION.Form

COMPLETE-PURCHASE.Form))

PRECONDITIONS -

SATISFACTION (for-values Purchaser Items Vendor
(exist COMPLETE- PURCHASE.Form))

Figure 5: A POISE Procedure Specification

PRECONDITION and SATISFACTION clauses defined the state of the "world" (i.e.,

the semantic database) before and after the procedure occurred. Figure 5 shows

an example of a POISE procedure taken from the purchasing domain.

POISE represents objects in a frame-like semantic database based on SRL

[WF83]. The descriptions include attributes of the objects, pointers to the pro-

cedures in which they are used, and specialization/generalization links to other

objects. Although the formal representation of objects was never completely

specified in the POISE project, a more uniform representation for its event and

object descriptions was explored in [BC85].

The POISE representation formalism was slightly modified for use with the
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KnAc system. Most of the modifications were made in order to organize the infor-

mation in a more uniform and a more perspicuous manner. These modifications

include:

* Representing events, objects and relationships uniformly. In KnAc, events,

objects and relationships are all specializations of the more generic knowl-

edge structure knac-structure. This permits most portions of the acquisi-

tion process to handle all of these structures in a uniform manner and only

provide special techniques for the unique aspects of each.

" Distinguishing between is-a and part-of hierarchies. In POISE, the Is

clause of event structures contained the steps (i.e., sub-events) that com-

prised each event. Specializations of an event were represented as an event

that contained the more general event as its only step. For instance,

RECEIVE-PURCHASE-REQUEST contained RECEIVE-INFORMATION in its IS

clause and had a COND clause that constrained the information received to

be a purchase-request. The existence of two distinct fields in KnAc, gener-

alizations and parts, eliminates the confusion between the components of

an event (or object or relationship) and its generalizations.

* Treating relationships as full-fledged entities. In POISE, relationships were

considered to be fields of an event (or object). They were not entities in

their own right and the descriptions was somewhat ad hoc. KnAc promotes

relationships to an equal footing with events and objects, permitting richer

(and more uniform) relationship descriptions.

" Grouping all constraints within each description. Various fields of each

structure description may be viewed as collections of constraints. In an

event, for example, the temporal-relationships are constraints on the order-
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ing of the steps of that event; the definitions contained in the attributes

field may be viewed as equality constraints; the pre- and post-condition 1

are constraints on the state of the knowledge base at a particular time; the

constraints field is a catchall for any other constraints. While KnAc permits

these constraints to be specified separately for the sake of perspicuity, it

(internally) gathers them together in order to maintain consistency among

the various types of constraints. (Chapter 5 Section §1.2 discusses KnAc's

handling of constraints.)

* Providing a "version" mechanism. Although POISE permitted event or

object descriptions to be instantiated in multiple contexts, it made no pro-

vision for multiple versions of the descriptions themselves. The modification

of these descriptions during the knowledge acquisition process requires a

mechanism for maintaining multiple versions of each description.

Thus, all descriptions in KnAc's knowledge base are specializations of the

generic KNAC-STRUCTURE. As shown in Figure 6, each structure contains fields 2

that: identify the structure (name, icon, synonyms, description); locate the struc-

ture in an IS-A hierarchy (generalizations, specializations); locate the structure in

a PART-OF hierarchy (parts, part-of); define features of the structure (attributes);

constrain various aspects of the structure (constraints). Information about each

slot, or facets, constrain the values permitted in each field. These facets restrict

the type and number of values permitted and declare whether such values are

required.

In addition to the fields common to all knac-structures, event descriptions,

shown in Figure 7, contain temporal relationships and causal relationships among

'KnAc'S post-conditiona correspond to POISE's satisfaction clause.

'Italicised fields are for KnAc's internal use only.
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Field Facets

name (multiple-value? nil)
(required? . t)

icon (multiple-value? nil)

synonyms (multiple-value? t)

description (multiple-value? nil)
(range. string)

creation-time (multiple-value? nil)
(required? . t)
(range. number)

la.s t- modification- time (multiple-value? nil)
(required? . t)
(range. number)

generalizations -

specializations -

parts

part-of

attributes

attribute-names -

constraints

Figure 6: KNAC-STRUCTURE Description
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their sub-events (i.e., their parts). While it would be possible to include these

under the more general heading of constraints, they often play such a crucial

role in the processing of events that this distinction, originally made by POISE,

was maintained. Events also contain pointers to associated objects, that is, those

object entities manipulated by or manipulating this event. The pre- and post-

conditions contain constraints on the state of the knowledge base necessary for

the event to begin and upon its completion, respectively. Additionally, the gen-

eralizations, specializations, parts and part-of fields are constrained to contain

events.

In addition to the generic knac-structure information, an object description,

shown in Figure 8, contains spatial relationships among its parts and pointers to

associated events. The generalizations, specializations, parts and part-of fields

are constrained to contain objects.

A relationship description, shown in Figure 9, contains the name of the inverse

and converse relationships, where applicable, restrictions on the domain and the

range of the relationship, an associated demon, and a description of the algebraic

properties of the relationship. These properties are used in the comparison of

constraints and are described more fully in Chapter 5 Section §1.2.

§4. A Knowledge Acquisition Interview

This section examines a knowledge acquisition interview extracted from a se-

ries of discussions between a POISE knowledge engineer and the Computer and

Information Science department's principal clerk. (See Appendix A for a com-

plete transcript of this interview.) Prior to this interview, POISE's knowledge
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Field Facets

generalizations (range. event)
(multiple-value? . t)
(cardinality . *event-superclass-count*)

specializations (range. event)
(multiple-value? . t)
(cardinality . *event-subclass-count*)

parts (range. event)
(multiple-value? . t)
(cardinality . *event-step-count*)

part-of (range. event)
(multiple-value? . t)
(cardinality . *event-step-of-count*)

attributes (multiple-value? . t)
(cardinality . *event-.attri bute-name-count*)

constraints (multiple-value? . t)

temporal-relationships (range. temporal-relationship)
(multiple-value? . t)

causal-relationships (range. causal-relationship)
(multiple-value?. t)

associated-objects (range. object)
(multiple-value?. t)
(cardinality . *event-object -count*)

precondition (multiple-value? . nil)

postcondition (multiple-value? . nil)

Figure 7: EVENT Description
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Field Facets

generalizations (range object)
(multiple-value? . t)
(cardinality. *object -generalization-count*)

specializations (range. object)
(multiple-value? . t)
(cardinality . *object-instance-count*)

parts (range. object)
(multiple-value? . t)
(cardinality . *object-part-count*)

part-of (range. object)
(multiple-value? . t)
(cardinality . *object-part-of-count*)

attributes (cardinality . *object-descriptor-name-count*)
(multiple-value? . t)

spatial-relationships (range. spatial-relationship)
(multiple-value? . t)

associated-events (range. event)
(multiple-value? . t)
(cardinality . *object-event-count*)

Figure 8: OBJECT Description
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Field Facets

generalizations (range. relationship)
(multiple-value? . t)
(cardinality . *relationship-general-relationship-count*)

specializations (range. relationship)
(multiple-value? . t)
(cardinality . *relationshp-specific-relationship-count*)

part-of (range. relationship)
(multiple-value? . t)
(cardinality . *relationship-containing-relationship-count*)

parts (range. relationship)
(multiple-value? . t)
(cardinality . *relationship-contained-relationship- count*)

attributes (default-value. (domain range))
(cardinality . *relationship-descriptor-name-count*)
(multiple-value? . t)

algebraic-properties (multiple-value? . t)
(cardinality . *relationship-property-count*)

inverse (range. relationship)
(multiple-value? . nil)

converse (range. relationship)
(multiple-value? . nil)

domain-facets (multiple-value? . nil)

(range. object)

range-facets (multiple-value? . nil)
(range. object)

demon (multiple-value? . nil)

Figure 9: RELATIONSHIP Description
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base contained information about generic office tasks such as filling out forms,

and sending and receiving mail. It also contained descriptions of tasks and ob-

jects used in purchasing goods (such as desks and computers), as well as some

basic knowledge about "traveling" (such as descriptions for airlines, hotels and

expenses). The purpose of this interview was to add information about being

reimbursed for business related travel.

To examine the interview and the resulting changes to the knowledge base,

the dialog is divided into time frames and the content of each frame is repre-

sented in terms of the knowledge base formalism. Recall that domain expert

is describing a portion of a particular domain (e.g., how to get reimbursed for

travel) rather than actively trying to modify a knowledge base. Thus, the type

of information presented is of the same form as that already in the knowledge

base. The translation from the natural language dialog to this representation

formalism was carried out manually.

The "travel reimbursement" interview began as follows:

CLERK: "O.K. - on travel. The proper way of doing it, if it's

out of state, is that a travel authorization should be is-

sued before the trip."

This dialog fragment translates, approximately, into the structures shown

in Figure 10. As a result of this information, the knowledge engineer added a

TRAVEL-AUTHORIZATION object and an ISSUE-TRAVEL-AUTHORIZATION event to

the knowledge base. The object was recognized as a specialization of FORM and

the event as a specialization of the event AUTHORIZE. In addition, the initial

description of the event TAKE-A-TRIP-AND-GET-PAID, shown in Figure 11, was

modified to include the new event as its first step and to contain the additional
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EVENT EVENT-i

STEPS: (ISSUE-TRAVEL-AUTHORIZATION TAKE-A-TRIP)

TEMPORAL-RELA TIONSHIPS:
((ISSUE-TRAVEL-AUTHORIZATION before TAKE-A-TRIP))

CONSTRAINTS: ((DESTINATION outside-of STATE))
ATTRIBUTES: ((TRAVELER ... ) (DESTINATION ...))

EVENT ISSUE-TRAVEL-AUTHORIZATIONI IEVENT TAKE-A-TRIPI

OBJECT TRAVEL-AUTHORIZATION

Figure 10: Discourse Manager Output (Frame 1)

EVENT TAKE-A-TRIP-AND-GET-PAID

STEPS: (TAKE-A-TRIP GET-REIMBURSED)

TEMPORAL-RELATIONSHIPS:
((TAKE-A-TRIP before GET-REIMBURSED))

CONSTRAINTS: (...)
ATTRIBUTES: ((TRAVELER ... ) (COST ... ) (DESTINATION ...

Figure 11: Knowledge Base Event (Frame 1)

constraint. The modified event description appears in Figure 12.

The clerk continues:

"It can be set up afterwards, but accounting likes to have it in before

the trip is taken."

The interviewer was told that issuing a travel authorization consists of, at

least in part, sending the authorization to the accounting department. A new

procedure was created to describe this and a step was added to the ISSUE-TRAVEL-

AUTHORIZATION procedure. The new entities are shown in Figure 13 and the

modified knowledge base entities appear in Figure 14.

The clerk then explains:
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EVENT TAKE-A-TRIP-AND-GET-PAID

STEPS: (ISSUE-TRAVEL-AUTHORIZATION TAKE-A-TRIP

GET-REIMBURSED)

TEMPORAL-RELATIONSHIPS:
((TAKE-A-TRIP before GET-REIMBURSED)
(ISSUE-TRAVEL-AUTHORIZATION before TAKE-A-TRIP))

CONSTRAINTS:
((DESTINATION out ide-of STATE)

ATTRIBUTES: ((TRAVELER ... ) (COST ... ) (DESTINATION ....

Figure 12: Modified Knowledge Base (Frame 1)

EVENT SEND-TRAVEL-AUTHORIZATION-TO-ACCOUNTING

OBJECT TRAVEL-AUTHORIZATION F OBJECT ACCOUNTING

Figure 13: Discourse Manager Output (Frame 2)

"And what you do is list: 1) your destination; 2) the date you plan

on leaving; 3) the date you are returning; 4) how you plan on going

- whether it's plane, bus, private car or whatever; 5) your estimated

expenses, and how much of a reimbursement you're getting - whether

it's a set amount or whether it's full; 6) the purpose of the trip, and,

of course, the account that the money is going to come out of. Then

the traveler has to sign that, and, if it comes out of a grant, the P.I.

(must sign it); if it's state funds then the department head signs it,

but we never get state travel funds. So it had better :ome out of a

grant or a trust fund."

EVENT ISSUE-TRAVEL-AUTHORIZATION

STEPS: (SEND-TRAVEL-AUTHORIZATION-TO-ACCOUNTING)
ATTRIBUTES: ((TRAVEL-AUTHORIZATION ... ))

Figure 14: Modified Knowledge Base (Frame 2)
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Here, the interviewer was told the details about filling out a travel authoriza-

tion form. This resulted in the modification of the description of the TRAVEL-

AUTHORIZATION form and the creation of a procedure for filling one out. This

procedure was added (to the beginning) of the ISSUE-TRAVEL-AUTHORIZATION

procedure and establishes the appropriate attribute relationships. A new ob-

ject was mentioned, a TRUST-FUND, which is a possible source of money. New

conditions were also revealed (e.g., the traveler's name must be sent to account-

ing). This constraint arose from the consistency requirements in the modified

ISSUE-TRAVEL-AUTHORIZATION procedure.

This is translated as shown in Figure 15; the knowledge base modifications

appear in Figure 16.

§5. Analysis of the Acquisition Process

By representing the knowledge acquisition dialog as a series of knowledge

base states, the resulting modifications could be examined and the underlying

reasons for these modifications could be explored. The knowledge engineer may

be influenced, for instance, by the source of the information being acquired, the

type of information, its form, the reasons for acquiring it, and what is already

known. An understanding of what caused these modifications to the knowledge

base forms the basis of KnAc's expertise in knowledge acquisition. This section

examines what knowledge is available to guide such an acquisition system, how

this knowledge may be used and what may be accomplished with it.

Four types of modifications to the knowledge base appeared in the protocols

examined: creation of new concepts, deletion of existing ones, and the modifi-
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cation of existing entities by the addition or removal of portions of them. It

is common, especially early in the development of a knowledge base, or when

extending its scope, for gaps to exist in the interviewer's understanding of the

domain. A gap may consist of a missing event, object, etc. and is remedied

by the creation of an appropriate entity. For example, in the first segment of

the interview in Section §4., the concept of a TRAVEL-AUTHORIZATION had not

been included in the knowledge base; a TRAVEL-AUTHORIZATION object and an

ISSUE-TRAVEL-AUTHORIZATION event had to be created.

Often, parts of the interviewer's domain model proved to be incomplete or

inaccurate. Incorrect information had to be removed; incomplete descriptions

had to be supplemented. When the ISSUE-TRAVEL-AUTHORIZATION event was

recognized as the first step of the event TAKE-A-TRIP-AND-GET-PAID, that lat-

ter description had to be modified to include the former event as a step, and

constraints had to be added to reflect its temporal position in the task.

In trying to explain the knowledge engineer's modifications, it became clear

that the modifications were generated for widely varying reasons. Some mod-

ifications were based on the state of a portion of the knowledge base. For in-

stance, where it could be determined that steps of an event were missing, or

that constraints were inconsistent, the expected addition or modification would

ensue. In the third frame, for example, it was recognized that the SEND-TRAVEL-

AUTHORIZATION-TO-ACCOUNTING event had an (potentially) unsatisfied precon-

dition (i.e., the existence of a TRAVEL-AUTHORIZATION form). This gap is filled

by the addition of the event FILL-OUT-TRAVEL-AUTHORIZATION (which guaran-

tees the existence of the form as a postcondition) as a first step.

Other changes seemed to depend more on the modifications that preceded

them. If a step was added to an event, a temporal constraint might follow (e.g.,
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the addition of ISSUE-TRAVEL-AUTHORIZATION to TAKE-A-TRIP-AND-GET-PAID);

when an entity was created, it was often incorporated into an already existing

entity (as SEND-TRAVEL-AUTHORIZATION-TO-ACCOUNTING was added to ISSUE-

TRAVEL-AUTHORIZATION) or further described (such as the listing of the parts

of a TRAVEL-AUTHORIZATION object).

As described above, knowledge bases get modified for various reasons. For

the initial development, or a change of application domain, large amounts of new

information were usually required. Debugging errors in the knowledge often re-

sulted in modifications to existing knowledge. Customization of the knowledge

for individual users or roles added specialized instantiations of task and object

descriptions. By determining the reasons a particular knowledge acquisition dia-

log (or a part of one) is occurring, the ability to anticipate modifications can be

refined.

The information already contained in a knowledge base greatly influenced

the acquisition of additional information. By providing a context within which

to incorporate the information obtained from the expert, the interpretation of

incomplete, potentially ambiguous data was better constrained. Furthermore,

incompleteness or inconsistency in the knowledge indicates potential areas on

which to focus the acquisition process.

Another consideration in determining how to modify the knowledge was the

source of the information. Because different sources may vary in their reasons

for providing the information, the types of information they provide, and the

resulting modifications, the handling of such information might be different if

it comes from a knowledge engineer constructing the knowledge base, an expert

in the application domain, an end-user of the expert system, or another expert

system.
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Last, but certainly not least, the discourse itself provided some insight into

what was to be modified. During the discourse, reference was often made to

entities already known to the system; focusing on these referenced entities (such

as the TAKE-A-TRIP event in the first time frame) provided a context in which

to better understand the new information. Matching entities referred to in the

discourse to those already in the knowledge base is often non-trivial (such as rec-

ognizing the unspecified event in the first time frame, EVENT-l, as TAKE-A-TRIP-

AND-GET-PAID); Chapter 5 discusses this matching problem. Other "discourse

cues" [WPML841 included explicit topic information ("O.K. - on travel.") and

context shifts.

These various sources of knowledge acquisition wisdom are all exploited to a

greater or lesser degree by the KnAc system. The resulting knowledge acquisition

heuristics are presented in Chapter 6.
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[ EVENT FILL-OUT-TRAVEL-AUTHORIZATION

A$OCIA TED- OBJECTS: (TRAVEL-AUTHORIZATION)

EVENT FILL-IN-FORM-FIELD t
CONSTRAINTS: ((FIELD --- destination))

EVENT FILL-IN-FORM-FIELD

CONSTRAINTS: ((FIELD = departure-date))

EVENT FILL-IN-FORM-FIELD
CONSTRAINTS: ((FIELD = return-date))

EVENT FILL-IN-FORM-FIELD
CONSTRAINTS: ((FIELD = estimated-ezpensei)) I

EVENT FILL-IN-FORM-FIELD

CONSTRAINTS: ((FIELD = reimbursement)) I
EVENT FILL-IN-FORM-FIELD

CONSTRAINTS: ((FIELD = purpoae-of-trip)) I
I EVENT FILL-IN-FORM-FIELD

CONSTRAINTS: ((FIELD = source-of-funds))

EVENT FILL-IN-FORM-FIELD

CONSTRAINTS. ((FIELD ---travel.jignature))

[OBJECT TRUST-FUND OBJECT GRANTI

(OBJECT P.I. OBJECT DEPARTMENT-HEAD

RELATIONSHIP IMPLIES
DOMAIN: (SOURCE-OF-FUNDS = GRANT)

RANGE: (APPROVAL-SIGNATURE = P.I.)

Figure 15: Discourse Manager Output (Frame 3)
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OBJECT TRAVEL-AUTHORIZATION

PARTS: (DESTINATION DEPARTURE-DATE RETURN-DATE

ESTIMATED-EXPENSES REIMBURSEMENTS
PURPOSE-OF-TRIP SOURCE-OF-FUNDS

TRAVEL-SIGNATURE)

EVENT ISSUE-TRAVEL-AUTHORIZATION

STEPS: (FILL-OUT-TRAVEL-AUTHORIZATION

SEND-TRAVEL-AUTHORIZATION-TO-ACCOUNTING)
TEMPORAL-RELATIONSHIPS:

((FILL-OUT-TRAVEL-AUTHORIZATION before
SEND-TRAVEL-AUTHORIZATION-TO-ACCOUNTING))

Figure 16: Modified Knowledge Base (Frame 3)
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CHAPTER 4

THE KNAC SYSTEM

This chapter describes the functionality and architecture of the KnAc system.

The knowledge acquisition protocol presented in Chapter 3 is used to illustrate

the system's operation.

At a high level, KnAc operates by comparing descriptions provided by the

domain expert (and translated by the discourse manager) with entities selected

from an existing knowledge base. Where the expert's descriptions can be de-

termined to match existing entity descriptions, any discrepancies between them

may imply modifications that need to be made to the existing description. If

desired, the expert is consulted to verify any such changes. Descriptions sufli-

ciently different from the existing entities are assumed to be new and are added

to the knowledge base.

Matching the entity descriptions provided by the expert against those in

the knowledge base requires syntactically comparing the structures to determine

similarities and differences, evaluating the likelihood of them possibly matching,

and determining to what extent the modifications required to make them match

are expected. Determining the "expectedness" of these implied modifications

relies on the ability of the system to anticipate such changes. These expectations

result from a set of heuristics about the knowledge acquisition process.
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Figure 17 presents an overview of the KnAc system. During each cycle of the

KnAc system, descriptions of domain entities are accepted from the user (1)' and

compared with entities in the existing knowledge base (2). (Figure 18 contains a

portion of this knowledge base.) These candidate entities (3) are selected based

on KnAc's expectations of changes to the knowledge base. The comparisons (4)

are evaluated both in terms of how well they match and the extent to which

the differences between them were expected (5) within the context of the match.

Once the best matches are selected, "he implied modifications (6) are made to

the existing entity knowledge base (7), after being verified with the user (8), if

necessary. Expectations of further modifications are generated from a variety of

sources, including the information obtained from the discourse (9), the state of

entities in the knowledge base (10), previously made modifications (11) and the

state of the acquisition process.

The following sections describe the major components of KnAc the system. To

illustrate the system's functionality, the recognition of the task described by the

user (EVENT-i) as a modified version of the existing TAKE-A-TRIP-AND-GET-PAID

task and modification of the existing description is presented. Specifically, Sec-

tion §1. describes the selection of candidate matches from the existing knowledge

base; Section §2. presents the process used to compare the user's descriptions

with the existing entities and how this matching process is tailored to support

knowledge acquisition; Section §3. describes the two phases required to evalu-

ate the results of this comparison; Section §4. shows how the knowledge base

gets modified as a result of the matches; finally, Section §5. explains how KnAc

generates and manages expectations.

'The parenthesised numbers in this paragraph (e.g., (1)) refer to Figure 17.
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Figure 18: A Portion of the Knowledge Base

§1. Selecting Match Candidates

As will become clear in Section §5. and Chapter 6, a set of expectations of

knowledge base modifications is generated by the KnAc system during its dialog

with the domain expert. The primary us f e expectations is during the

evaluation of match results. They are also used to select candidates from the
knowledge base against which to compare the discourse entities.

Each expectation contains a target" entity which wiln be affected by the

modification. Since the set of these targets" is all the entities that the system

expects to be referred to by the expert, these targets are selected as likely can-

didate match entities. The certainty of the expectation is used as a rating of the

candidate.

Thresholding on the certainty of the expectations may be used to reduce the
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number of candidates. Since it is possible for an entity to be the target of more

than one expectation, the maximum certainty value is used. (See Chapter 6 for

a discussion of the rating of related expectations.)

For the initial frame of the discourse, since no interaction with the expert has

yet occurred, there are no previous modifications to the knowledge base from

which to generate expectations. Thus, only expectations based on the discourse

and on the state of the candidate entities are possible. Once the topic of the

discourse has been introduced ("O.K. - on travel."), for example, heuristic

HD12 ("Entities close to specified topics are likely to be referenced or modified. ")

produces expectations such as:3

Exp2l: Expecting (certainty 0.100):

HOD: ?ACTION ?Value to/from the

?Field field of Take-a-trip-and.get-paid

Derived from Travel and HDI.

Match candidates are derived from this set of expectations. Here, thp system

produces the following:

Candidate Rating Candidate Rating
TRAVEL 0.3 DRIVE 0.2
FLY 0.2 MAKE-A-IESERVATION 0.2
PAY 0.2 GO-SOMEWHERE 0.2
TAKE-A-TRIP 0.2 TRAVELER 0.2
DESTINATION 0.2 souacz 0.2
SEND-INFORMATION 0.1 REQUEST-Ih FORMATION 0.1

TAKE-A-TRIP-AND-GET-PAID 0.1 KNAC-STRUCTURE 0.1
EVENT 0.2

Each of these candidate entities are examined for completeness and consis-

2 See Appendix B for a complete listing of the heuristics.
"Values beginning with a question mark (e.g., ?Field) are variables.
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tency. Any entities found to be incomplete or incorrect (i.e., inconsistent) will

result in expectations being generated. For example, reference to a non-existing

entity COST in the event TAKE-A-TRIP leads H_S6 ("Referred to entities should

eist. ") to produce:

Exp69: Expecting (certainty 0.800):

MOD: CREATE the Knac-structure Cost

Derived from Take.atrip and HS6.

The lack of parts (i.e., steps) in the event FLY causes HS2 ("Fields with too

few components will be augmented. ") to produce:

Exp93: Expecting (certainty 0.480):

MOD: ADD ?Nev-part<is-a-knac-stracture-p> to the

Parts field of Fly

Derived from Fly and H-S2.

An unsatisfied precondition in the step GET-REIMBURSED of the event TAKE-

A-TRIP causes H_S3 ( "Unsatisfied preconditions will be satisfied. ") to produce:

Exp83: Expecting (certainty 0.480):

MOD: ADD ?New-step<is-n-event-p> to the

Parts field of Takeo-atrip-and-get-paid

Derived from Tak-atrip-andgot.paid and HS3.

Exp84: Expecting (certainty 0.480):

MOD: ADD (Before ?nev-step<is-an-event-p> get-reimbursed)

to the Constraints field of Tako-a-tripandget.paid

Derived from Takeoa-trip-and.get-paid and HS3.
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§2. Comparing Entity Descriptions

In order to determine how to incorporate the information provided by the

domain expert into an existing knowledge base, the entity descriptions provided

by the expert must be compared to those descriptions already contained in the

knowledge base. This requires a means of comparing two entity descriptions.

This comparison process differs in several ways from a typical pattern matcher.

Since the "goodness" of the match depends not only on how well the two entities

match, but also on how they differ (as the following section explains), the com-

parison process must return this "difference" information as well. Thus, instead

of a match simply succeeding or failing, the following match results are possible:

Equal: The user's description exactly matches the candidate knowledge base

entity;

Related: The user's description matches an existing knowledge base entity that

is related (i.e., linked) to the candidate entity;

Different: After being (recursively) compared to a specified depth, the user's

description does not match the candidate entity;

Comparable: The user's description partially matches the candidate entity.

The entity descriptions are structures of various types (e.g., eventi, objects,

etc.) consisting of fields each of which may contain zero or more values. (Chap-

ter 3 Section §2. contains a description of the representation language.) If two

entities are of the same type, they are compared on a field-by-field basis. 4 Since

4 Even entities of different types are compared using only the fields they have in common.
This permits recognising the similarities between an object and an event, for instance, such as
between TRAV3L-AUTHORIZATION and PILL-OUT-TRAVEL-AUTHORIZATION.
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the values in a field may be pointers to other entity descriptions, the matching

process is recursive. The depth to which this comparison process is taken before

deciding the entities are different is specified as a system parameter.

The comparison process for each field depends on the syntax and semantics

of that field. For the knowledge representation used in this knowledge base, and

for most other frame-like representations, each field may be viewed as either a set

of elements or as a collection of constraints. For example, the parts field consists

of a set of pointers to other entity descriptions; the temporal relationships field

(of an event) contains a collection of temporal constraints on the parts of that

event.

Determining how two sets of elements match and differ is fairly straightfor-

ward. In addition, the likelihood of one set being modified so as to match the

other may also be determined by considering the size of the sets and range of

their elements. Comparing constraints is somewhat more difficult. Parts of this

process may be mechanized, however. First, sets of constraints involving the

same relationship (such as (TAKE-A-TRIP before GET-REIMBURSED) and (ISSUE-

TRAVEL-AUTHORIZATION before TAKE-A-TRIP)) may be compared using the "al-

gebraic" properties (i.e., its transitive, reflexive and symmetric properties). The

matching algorithms used by KnAc are described in detail in Chapter 5.

For the match between EVENT-1 and TAKE-A-TRIP-AND-GET-PAID (see Fig-

ures 10 and 11 in the previous chapter), for instance, the match proved comparable

and resulted in the following field matches:'

SFor brevity, reflet" constraints (e.g., A = A) are not shown and only one of each pair of
symmetric constraints is included.
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GENERALIZATIONS:

Sets match completely.

They share: { EVENT }.

SPECIALIZATIONS:

Sets trivially match.

PARTS:

Sets partially match (rating 0.333); 3.6, match likelihood.

They share: { TAKEATRIP }.

ISSUETRAVELAUTHORIZATION } appears only in first entity.

{ GET-REIMBURSED } appears only in second entity.

PART-OF:

Sets trivially match.

ATTRIBUTE-NAMES:

Sets partially match (rating 0.250); 0.2% match likelihood.

They share: ( DESTINATIONS }.

{ ACTOR } appears only in first entity.

COST TRAVELER } appear only in second entity.

CONSTRAINTS:

Constraints were CONSISTENT.

Match rating 0.048;

They share: (DESTINATIONS = TAKEATRIP.DESTINATIONS)

Additional constraints in second entity:

5-D-54



(ISSUE-TRAVEL...UTHORIZATION BEFORE GET-R.PEIMBURSED)

(TAKE-..1.TRIP BEFORE GET-.REIMBURSED)

(ACTOR a GET..REINBURSED .RECIPIENT)

(ACTOR a TRAVELER)

(COST - GET.REIMBURSED.AMOUNT)

(COST = TAKE-.A-.TRIP.COST)

(GET-.REI4BURSED . MOUNT = TAKE-.A-.TRIP .COST)

(GET-.REIMBURSED .RECIPIENT - ISSUE..TRAVEL-.AUTNORIZATION. ISSUEE)

(GET-.REIMBURSED.RECIPIENT - TAKE-.A..TRIP .TRAVELER)

(TRAVELER -GET-.REIMBURSED.RECIPIENT)

(TRAVELER a ISSUE..TRAVEL-.AUTHORIZATION. ISSUEE)

(TRAVELER a TAKE..A..TRIP.TRAVELER)

Additional constraints in first entity:

(ISSUE-.TRAVEL-.AUTORIZATION BEFORE GET-.REIMBURSED)

(ISSUE-TRAVEL-.AUTNORIZATION BEFORE TAKE-ATRIP)

(DESTINATION OUTSIDE STATE)

(ACTOR =GET-.REIMBURSED.RECIPIENT)

(ACTOR = ISSUE-.TRAVEL-.AUTHORIZATION. ISSUEE)

(ACTOR - TAKE-.A-.TRIP.TRAVELER)

(ACTOR - TRAVELER)

(ISSUE-.TRAVEL-AUTHORIZATION.ISSUEE a GET-.REIHBURSED .RECIPIENT)

(ISSUE-TRAVEL-..UTHORIZATION. ISSUE! TAKE-.A-.TRIP .TRAVELER)

(TRAVELER - ISSUL-TRAVEL-AUTHORIZATION. ISSUEE)

ASSOCIATED-OBJECTS:

Sets trivially match.
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§3. Evaluating Matches

In most recognition systems, the quality of a match is determined by how

much (in relative or in absolute terms) two structures have in common. For a

knowledge acquisition system, this is insufficient. Given KnAc's model of knowl-

edge acquisition, information provided by the domain expert results in modifica-

tions to existing knowledge. This implies that differences between the expert's

descriptions and those in the knowledge base are not only possible, but crucial

to the acquisition process.

Therefore, in addition to the degree of fit, another metric for evaluating

matches is necessary. This is accomplished in KnAc by providing a context-

dependent matching process. Since differences recognized by the matcher im-

ply modifications to one (or more) of the entity descriptions, KnAc provides a

context for evaluating such matches by attempting to anticipate these modifica-

tions. Thus, differences between the descriptions do not necessarily detract from

a match; only unanticipated differences do.

Consider the match results shown in the previous section. The match be-

tween the task description provided by the expert and the description of TAKE-

A-TRIP-AND-GET-PAID is far from perfect. Because of these discrepancies, the

context independent rating assigned to this match (as described in Chapter 5

Section §2.1) is only 0.271. However, many of the modifications implied by the

differences are anticipated by KnAc's expectations. Consider the "extra" step

(ISSUE-TRAVEL-AUTHORIZATION) in the expert's description of the task. This

difference implies the modification:

HOD1516: ADD Issue-travelauthorization to the

Parts field of Take-a-trip-and-get-paid
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This modification is anticipated by expectations resulting from, respectively,

the small number of steps in the existing event description, an unsatisfied pre-

condition in the GET-REIMBURSED step, and the proximity (in the knowledge

base) of TAKE-A-TRIP-AND-GET-PAID to the stated topic of discourse (TRAVEL):

Exp145: Expecting (certainty 0.230):

MOD: ADD ?Now-part<is-a-knac-structure-p> to the

Parts field of Takea-trip-and-get-paid

Derived from Takeoa-trip-and-got-paid and HS2.

Exp83: Expecting (certainty 0.307):

MOD: ADD ?Nev-step<is-an-event-p> to the

Parts field of Take-a-trip-and-get-paid

Derived from Take-a-trip-and-get-paid and H_S3.

Exp21: Expecting (certainty 0.100):

MOD: ?ACTION ?Value to/from the

?Field field of Takeo.atrip-and.get-paid

Derived from Travel and HDI.

The details of both phases of this match evaluation process are presented in

Chapter 5.

§4. Modifying the Knowledge Base

Once the best matches for the expert's descriptions have been determined, the

modifications implied by the differences between the expert's description and the
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existing description may be used to update the knowledge base. For descriptions

failing to match any existing entity descriptions, new entities are generated.

Depending on the degree of autonomy given to the KnAc system, each match may

be verified with the expert, each modification may be verified, only unexpected

modifications (from selected matches) may be checked, only modifications that

add information may be made, or the system may be permitted to make all the

implied changes.

Given the match between EVENT-i and TAKE-A-TRIP-AND-GET-PAID, for ex-

ample, the modifications include:

MOD1516: ADD Issuetravelauthorization to the

Parts field of Take.a-trip.and.get.paid

MODiSIS: ADD Actor to the

Attribute-names field of Take.atrip.and.get.paid

MOD1521: ADD (Before issue-travel.authorization get-reimbursed)

to the Constraints field of Take-a-trip.and.get.paid

Rather than destructively changing the actual structure descriptions con-

tained in the knowledge base, KnAc uses a "context" mechanism to create mod-

ified copies of the original structures. These contexts are organized as a tree,

which permits the inheritance of descriptions from previous (parent) contexts

and the existence of alternative (sibling) interpretations.

A context mechanism is provided for two reasons. First, the assimilation of

the expert's information into the existing knowledge base is a heuristic process

subject to incorrect interpretations. By establishing a new context for each
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discourse frame, backtracking to an earlier part of the acquisition dialog merely

requires "popping" the context stack to the appropriate point in the discourse.

The second advantage of having a context mechanism is the ability to main-

tain multiple views of the knowledge base. If the information provided by the

domain expert is intended to correct or augment the existing knowledge in a

global fashion, the resulting changes should apply to all future references to the

modified structures. However, if the information is provided in order to customize

the descriptions for a particular individual (or role or department, etc.), then the

changes should only be made within that context. Maintaining the original and

the modified structure descriptions in separate contexts permits different views

of the knowledge base.6

§5. Generating Expectations

As was seen earlier in this chapter, KnAc attempts to anfi ipate modifications

to an existing knowledge base in order to better interpret the domain expert's

descriptions. These expectations are generated using a set of heuristics that

capture some of the knowledge engineer's expertise. These heuristics are based

on the state of the knowledge base, the discourse, recent modifications, and the

knowledge acquisition strategies being used.

The heuristics are, in essence, production rules that generate expectations

when they run. The "trigger" for each rule depends on the class of heuristic.

State heuristics are activated by the recognition of inconsistencies or holes in

Assimilating the modified descriptions as specializations of the original one is another viable
approach. However, backtracking, a potentially important part of the knowledge acquisition
process, would not be quite as straightforward.
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the knowledge base descriptions. Discourse heuristics rely on explicit discourse

queues from the discourse manager (such as "topic" information) and on refer-

ences to known entities. Modification heuristics are triggered by changes made

to the knowledge base. Acquuition itrategy heuristics7 depend on the state of

the knowledge acquisition session. A complete explanation of how expectations

are generated from these heuristics and of how they are maintained is presented

in Chapter 6.

§6. Interfaces to the System

KnAc must be able to access the expert system's knowledge base in order to

create, delete, read and modify the structures contained therein. In order to min-

imize its dependence on a particular expert system, most of KnAc's mechanisms

were designed to be extremely general. Only the actual structure access function

code and the state "completeness" and "consistency" code must be customized

for different knowledge representations. In addition, the set of knowledge acqui-

sition heuristics may require modification for use with a different expert system.

Similarly, KnAc should not be restricted to a particular set of tools with which

it may interact with the domain expert. The system requires a set of entity

descriptions (in the language of the knowledge base on which it is working) and

"discourse" information from the interface. While the examples presented herein

have assumed a natural language frontend and discourse manager, such as POISE

used within its "help" facility (see [DW83], [McD83] and [WPML84]), nothing

in KnAc depends on this type of interface. A graphic procedure specification and

display tool (such as the one designed for POISE's knowledge structures) could

'These are not currently used.
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provide another type of frontend to the KnAc system.
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CHAPTER 5

MATCHING FOR KNOWLEDGE ACQUISITION

As part of the knowledge acquisition task, information presented by the do-

main expert must be compared with that already in the knowledge base. This

may be viewed as an interpretation task, but presents certain challenges unique

to knowledge acquisition. Specifically:

I. Generality: Since the KnAc system is intended to operate with various

knowledge bases, each containing a variety of knowledge structures, the

matching mechanism needs to either be sufficiently general or must be easy

to customize.

2. Varying matching criteria: The criteria for determining whether two

structures match changes with the context in which the match is being

made. The same results may be judged acceptable or unacceptable under

different circumstances.

3. Using mismatches: Typically, interpretation systems need only deter-

mine whether or not structures match and are not concerned with how

matches fail. Some systems utilize these mismatches to backtrack to a

"correct" interpretation. However, for knowledge acquisition, mismatches

do not always indicate failure; they may indicate required knowledge base

modifications.
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This chapter examines how these requirements affect the matching process

and presents KnAc's solutions to these additional demands. Specifically, Sec-

tion §1. describes the generic matching techniques used by KnAc and how they

may be augmented for particular knowledge structures; Section §2. presents the

two-pass technique KnAc uses to evaluate the results of these matches.

§1. Match Techniques

When various frame-based knowledge representations were examined, such

as those found in POISE, Knowledge Craft, ART and KEE,' several types of

structures proved to be ubiquitous. The two most common structures were sets

of elements and collections of constraints. In the representation used by KnAc

for example, the steps field in an event description contains a set of the names

of the constituent events. Similarly, the part-of, specializations, generalizations

and attributes2 fields each contain a set of elements. Though the semantics of

the different fields vary, the matching algorithm presented in Section §1.1 may

be used to syntactically compare each of these fields.

On the other hand, the contrainta, temporal-relations hips, preconditions,

poatcondition. and attribute definition fields of eventa each contain a collection

of constraints. Again, though their semantics vary, each may be compared as

described in Section §1.2.

'Knowledge Craft, ART and KEE are registered trademarks of Carnegie Group Inc., Inference,
and IntelliCorp, respectively.

2 Currently, the attributes field contains both the names oi the event attributes and their
definitions. The attribute names are handled by the set-matching mechanism, while the attribute
definitions are treated as "equal" constraints.
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§1.1 Set Matching

Perhaps the simplest means of comparing two sets of elements uses the (ab-

solute or relative) size of the intersection of the sets as a metric of how well they

match. A more sophisticated approach may consider the extent of the mismatch

between the two sets (e.g., the contmat model in [Tve77l) to determine how "dif-

ferent" they are. A third consideration, unique to knowledge acquisition, is the

possibility of the sets being modified so as to match.

If there exists a means for comparing a pair of elements of the sets,3 the

extent to which the sets match may be expressed as the ratio of the size of the

intersection to the size of the union of the sets. This metric, known as Jaccard's

coefficient, is but one of several approximately equivalent measures of similarity.

(See [vR791, pp. 38-39.) Formally:

J 1 if Set, = Set2 =0
match-rating = Sett otherwise.ISet, U Set2] terie

Thus, the match-rating for the steps field of events TAKE-A-TRIP-AND-GET-PAID,

which contains TAKE-A-TRIP and GET-REIMBURSED, and EVENT-i, which con-

tains ISSUE-TRAVEL-AUTHORIZATION and TAKE-A-TRIP, is:

match-rating

{TAKE-A-TRIP}I

I{ISSUE-TRAVEL-AUTHORIZATION TAKE-A-TRIP GET-REIMBURSED}

- 1/3

In general, each of the two sets may contain elements not found in the other

3This may be non-trivial. If each element is itself a "structure" like the one that contains the
aforementioned set, the comparison process must be applied recursively.
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set. If the "extra" elements in the first set are added to the second set, the

first set will subsume the second. In order for the two sets to completely match,

however, the extra elements in each set must be added to the other.4 For example,

adding ISSUE-TRAVEL-AUTHORIZATION as a step in TAKE-A-TRIP-AND-GET-PAID

and adding GET-REIMBURSED as a step in EVENT-1 would make the sets match.

The likelihood of such modifications depends on the particular structures

being modified. When adding a step to an event, for example, the likelihood

that the event will contain another step and that the additional step will be of

the type specified must be considered. Thus, the expected magnitude of each set

and the possible range of values for its elements must be taken into account.

To compare two sets, say Set, and Set2 , each of whose typical size and range

of elements is known, the following notation is introduced:

A :Elements in Seti
Ezi Elements exclusive to Seti
Mi =Typical magnitude of Seti
X. :Range of an element of Set,

,j :--Intersection of the ranges of

Set, and Setj _= R n Rj
Si := Available slots in Seti _= Mi - IEjI

The probability of all the eztra elements in Set, fitting into the available positions

in Set 2 is:

P (Ez fits into S2)

= JJ P(Ez, (n) fits into S2)

4This takes only the addition of elements to these sets into account and ignores the possibility
of the deletion or replacement of elements.
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-P(1 (Ezi (n) doesn't fit any remaining slot in Set 2 ))

n=1

I (i- (P(Ez (n) doesn't fit each remaining slot)(# of -.aining slot)))

If the range R1 or R2 is empty, the probability of an element from Set1 fitting a

slot in Set 2 is 0. Otherwise:

P (Ezi (n) fits into S2 (m))

= P (the Set1 element is in the intersecting range) x

P (the Set2 slot is in the intersecting range) x

P (the element matches the slot, if both are in the intersection)

= P(Ezxi(n)E R1, 2 ) x P(S 2 (m)E R1 ,2 ) x

P ((Ezi (n) = S2 (m)) I {Ezi (n), S 2 (m)} E R1,2 )

lR1, 21 JR, .2  1
- IR11 - R21 X R1,21

1R1,21
lR1 x ,R21

If a potential match is to succeed, all of the extra elements in each set must

be added to the other set. Therefore, the probability of a match is:

P (match) P (Ezi fits into S2) x P (Ez fits into Sl)

1.,1 - 1 IRI2xIR) I ×
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For the sets described above, the following values may be used:'

E -- {ISSUE-TRAVEL-AUTHORIZATION TAKE-A-TRIP}

E 2  {TAKE-A-TRIP GET-REIMBURSED}

Ez: ISSUE-TRAVEL-AUTHORIZATION

E 2  GET-REIMBURSED

Mi :=4
Ri :- list of travel-related entities
Rij :- list of travel-related entities
S1  =2
S2 :=2

Thus,

S 102-n+

P (match) 1- X 10

,=I((10 x 10

-- (1 _ (.9)2) X (1 _ (.9)2)

0.036

Because these probabilities reflect the likelihood to both the entity descrip-

tions provided by the domain expert and the ones already in the knowledge base,

the values tend to be quite low. If only modifications to the knowledge base struc-

tures are considered, so that the modified knowledge base structures subsume,

but need not exactly match, those provided by the expert, significantly higher

match probabilities result.

5 For each field in a structure, the range for elements in the field and the typical size of the
field may either be specified as facets of that field or may be inherited along specified links.
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§1.2 Constraint Matching

While comparing (or combining) arbitrarily constrained sets of entities is a

difficult problem often requiring substantial domain knowledge, two sets whose

members are (pairwise) related by a common relation may be compared in a

purely mechanical fashion.' This section describes a mechanism for comparing

such constrained sets; the mechanism is independent of the particular relation,

requiring only a description of the algebraic properties of the relation.

Consider, for example, the temporal relationships field of an event. It contains

pairs of (sub)events related by temporal ordering relations, (e.g., BEFORE, AFTER,

DURING). In addition to the explicitly stated constraints, others may be inferred

from the semantics of the particular relation; if event-I occurs before event-2 and

event-, occurs before event-3, then the constraint stating event-I occurs before

event-3 may be inferred.

The comparison of two sets of constraints is greatly simplified if all the implicit

constraints are made explicit. In order to perform this constraint propagation,

the only required description of the relation is whether it is reflexive, symmet-

ric and/or transitive, and whether any of these properties are prohibited. For

a set of entities (e.g., a, b, c), the term non-reflexive may be defined to describe

a relation such that (a -, a), meaning the relation from a to a, cannot be true.

Similarly, non-symmetric and non-transitive are defined to prohibit ((a -+ b)

A (b --+ a)) and ((a --+ b) A (b -- c) A (a -- c)), respectively. Note that the non-

symmetric property differs slightly from the more common anti-symmetric

property which states ((a -+ b) A (b - a)) => (a = b). The temporal relation

6The current system checks each relation separately; it does not handle interaction between
different relations, though it is able to combine relations with their inverses. For instance, before
and after constraints are handled together.
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before, for example, is non-reflexive, non-symmetric and transitive; EVENT-

A cannot occur before itself, EVENT-A cannot occur before EVENT-B if EVENT-B

occurs before EVENT-A, and if EVENT-A occurs before EVENT-B and EVENT-B

occurs before EVENT-C, then EVENT-A occurs before EVENT-C.

Propagating Constraints

As was seen with temporal relationships, not all of the valid relationships

may have been expressed explicitly. In order to simplify the determination of

consistency and the combining of these constrained sets, all implicit relations are

made explicit by propagating the constraint. If Ej indicates that the relation

(vari --* varj) holds, the reflexive, symmetric and transitive closures may be

generated as follows:

1. If the constraint is reflexive, V(i)Ei,i;

2. If the constraint is symmetric, V(ij)Eij =I Ei,j;

3. If the constraint is transitive, V(i,j, k)Eij A Ej,k = E,h.

By representing the constrained variables as a n x n matrix C, where n is

the number of variables, the propagation of reflexive and symmetric constraints

is implemented in a straightforward manner. Propagating transitive constraints

is accomplished by generating a matrix M, such that:

M = C+ C2 +...+ C" -1 .

Matrix M represents the transitive-closure of the constraint over the variables.'

(See (AAM81], pp. 196-197.)

'Since only whether or not a constraint holds for a pair of variables is of interest, the entries
in the matrices may be restricted to boolean values. Thus, the "+" operator may be treated as
a logical-or.
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Consider the following sets of relations constrained by the temporal relationship

before (<):

Relations 1: b < c Relations 2: <
d< b

c<ddb

The resulting matrices are:

a b c d
a b d

abe

Matrix 1: b - - Matrix 2:

d - - -

d

After propagating the before constraint, which just requires generating the tran-

sitive-closure of the above matrix since before is only transitive, the matrices

contain:

a b c d
/ 4 / I a b d

ab

Matrix-tc 1: b - v Matrix-tc 2:
b -

d - - I
Once the constraint has been completely propagated, violations of non-reflexive,

non-symmetric and non-transitive constraints may be checked. Specifically, in-

consistencies exist if:

1. The constraint is non-reflexive A (3 (i) I E,i);

2. The constraint is non-symmetric

A (3(i,j) ((i # j)A EA j A E,,));
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3. The constraint is non-transitive

A (3 (i,j,k) I ((i 9 j # k) A Ej A E, A E,A)).

Thus, neither set of relations shown above is inconsistent, since neither the

non-reflexive nor the non-symmetric properties have been violated.

After applying the above procedures to each set (to assure internal con-

sistency), the two -ets may be compared by combining the sets and then ap-

plying the above procedure to the combined set. A matrix representing the

combined sets be may generated by expanding the matrix for each set to a

IV U V21 x IV U V1 matrix, where V and V2 are the variables in each of the

original sets.

Expanding and combining the above matrices produces:

ab c d
abe

Combined-matrix: b - .

c -

d -

The transitive-closure of the combined relations is:

abed

a- //

Combined-matrix-tc:, - ¢ .

c-vvv/

d- %/ v

This resulting set is, therefore, inconsistent. Both the non-reflexive and the

non-symmetric properties are violated (by {b < b, c < c, d < d} and {b < c < b,
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b < d < b, c < d < c } respectively). Note that the relations "responsible" for

the inconsistencies have not been detected, merely those inconsistent relations

that resulted.

If the second set of relations is changed so that

a<b{a d

Relations 1: 1b < c Relations 2:{

c<d 
Ib<d

the following (consistent) matrix would result:

a b c d

a - vj

Combined-matrix-tc: b - -

dC- - - -

Compacting Constraints

To simplify the processing of a set of constrained variables, information im-

plicitly contained in the constraint was made explicit by generating the appro-

priate closures of the set. The results, therefore, may contain information that

is redundant, given the constraint. To minimize the modifications made to the

knowledge base or the information supplied to the domain expert, these results

may be expressed more succinctly by removing this inherent information; this is

done by generating the appropriate "opensures".s

'The term "opensure" is being used to describe a set that is conceptually opposite to that of
a "closure". The correct pronunciation is obtained by placing one's tongue firmly in one's cheek.
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Let us define the opensure (0) of a set of constrained variables (C) as a subset

of C with the smallest possible cardinality such that Closure(0) = C. More than

one such subset may exist. If an ordering is imposed on the variables in C, e.g.,

lexicographic, the following algorithm will produce a unique solution.

The algorithm that generates the opensure must assure that:

1. If the constraint is reflexive, V(i) Eij ;

2. If the constraint is symmetric, V(ij) I (i < j) Ei

3. If the constraint is transitive,

V(i,j, le) I (i 3 j A j $ k A Ejj A E,,) ih

Again, by making use of the matrix representation of the constrained set to

generate the opensure, the removal of information resulting from reflexive and

symmetric properties is straightforward: remove elements from the diagonal and

the lower-left half of the matrix, respectively. This information can be "recov-

ered" from the remaining matrix and a knowledge of the constraint's properties.

The removal of the information resulting from transitive closure is a more inter-

esting problem.

Perhaps the easiest way to understand the solution is to recast the informa-

tion as a directed graph, where element Ei now indicates a directed arc from

node, to nodej. The above matrix may be represented as the following graph:
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If the constraint in question is non-reflexive, there can be no nodes in the graph

that point directly to themselves (i.e., there are no cycles containing exactly one

node). If it is non-symmetric, there can be no cycles containing two (or more)

nodes. If the constraint is either reflexive or symmetric, the above opensure op-

erations will remove cycles of one or more than one nodes. If the constraint is

neither reflexive nor non-reflexive (or it is neither symmetric nor non-symmetric),

the graph may contain cycles. First, the case of an acyclic, directed graph is ex-

amined and then the handling of such cycles will be discussed.

The following algorithm generates the transitive opensure of the acyclic con-

straint set, C:

1. Find the set of minimum nodes (those which are pointed to by no other

nodes) in C; call this set M and its members m, ... m .

2. For each m, find the set of nodes {n, ... nj} in C such that m - n. This

set, N, is the set of nodes to which m connects.

3. For all ni,nj E N, select those iij such that ni --* nj does not hold. This

set of nj's, call it P, is the set of "closest" nodes to m. Include m -* p,

for all p E P, in the opensure and recursively apply steps 2 and 3 from all

nodes in P.

Since there are no cycles in the above graph, this algorithm may be used.

The set of minimum nodes in the graph is {a}. The set of nodes to which a is

connected is {b, c, d}. Of this set, only b is not pointed to by another member of

the set; thus, the set of nodes "closest" to a is {b}. Applying this procedure to

b, produces {c}; for c, {d}. Thus, the resulting graph is:
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If the graph contains cycles, it may be preprocessed to remove the cycles and then

processed as described above. Cycles containing exactly one may be handled triv-

ially: these constraints, located on the diagonal of the matrix, are removed from

the set and placed directly into the opensure unless there is another (multi-node)

cycle that contains this node.

Cycles containing exactly two nodes may be handled by designating one arc of

the pair as "forward" and the other as "backward". (Since a (possibly arbitrary)

ordering has been assigned to the nodes, this designation is simple.) Removing

the set of "backward" arcs removes all two-node cycles. The (now) acyclic graph

may be processed as above, the (also acyclic) graph comprised of the set of

"backward" arcs processed in the same way, and the two results combined. It

is readily seen that any cycles containing more than two nodes are reduced to a

set of two-node cycles in the transitive closure and the above method is therefore

applicable.

Changing the constraint to not-after (:5), i.e., before or at-the-aame-time

(which permits, but does not require, symmetric relations), and modifying the

second set of relations such that:

Relations 1: b _< c Relations 2: b < d
c< d d< b

produces the closure:
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a b C d

The symmetric opensure divides the symmetric pairs, producing:

a d

The transitive opensure then reduces each graph separately and then combines

them to produce:
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Merging Sets of Constraints

Since the goal of knowledge acquisition is the modification of the existing

knowledge base to include new information, an existing constrained set may

need to be modified to include additional relations. If both the existing set and

the set of additions are consistent, both internally and with each other, the new

relations may simply be added to the existing ones. However, this may not

produce a minimal set of relations and may involve adding more information

than is necessary.

Consider two sets of relations, S, and S2, whose members are related by a

transitive constraint, such as "before":

S = {(a- b)}

S2 f- {(a -, c)(b -- c)}

Note that adding S2 to S, would add superfluous information; adding (b --+ c)

alone would suffice.

Determining the minimal set of relations that need to be added is, in general,

a non-trivial problem. Simply adding the "new" relations, or even the opensure

of these relations, is not necessarily the minimal solution. The correct solution

requires generating the set of "additional relations" while keeping in mind the

set to which it will be added.

In order to minimize this (additional) set, the opensure of the propagated

relations that contains a maximum number of those already in S, must be found.

From the viewpoint of the directed graph representation, the opensure must

be generated while preserving a specified set of links. Since the only part of

the opensure procedure that provides any leeway as to what relations are kept
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or discarded is the removal of "symmetric" information, it is there that the

algorithm must be modified. Given a symmetric pair of relations (e.g., 1(a -

b)(b -+ a)}, and a set of relations to preserve, the selection of which to remove

may no longer be arbitrary (or lexicographic); the appropriate relation must be

selected. If one relation of the pair is in the set of relations to preserve, the other

should be removed; if both are in the set, either may be removed.

If neither relation need be preserved, the choice may still not be arbitrary;

the choice may affect which other relations get removed. Consider the cycle

formed by the three symmetric pairs of relations resulting from a = b = c, namely

{(a = b)(b = a)(a = c)(c = a)(b = c)(c = b)}. (Ignore the reflexive relations (e.g.,

(a = a)) for now.) If {(a = b)(b = c)(a = c)} are kept, (a = c) will be removed

when the transitive opensure is generated. If, instead {(b = a)(b = c)(a = c)}

are chosen, (a = c) will remain and (b = c) will be removed. Therefore, in

selecting between (a = b) and (b = a), any relations involving a or b that should

be preserved must be considered.

In the case described above, selection of the wrong relation will result in a

cycle. To avoid this, the relation (a --+ b) is not selected if, for some M, both

(z- a) and (b z) must be preserved. If both (z -- a) and (z -- b) (or both

(a - z) and (b . z)) are to be kept, either (a --+ b) or (b -* a) may be selected,

but in either case, one of the two desired relations will be eliminated. If none

of the above situations apply, there may be, at most, one relation adjacent to

(a -- b) that is to be preserved. If it involves a (i.e., either (z -. a) or (a --+ z)),

(a - b) may be discarded, and vice versa for b.
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Rating Constraint Matches

For each field of a structure containing constraints, the constraints are grouped

by relationship (as described above) and the match for each relationship is rated.

The values for all the relationships are averaged and this is used as the rating

for that field. For each relationship in the field, if the two sets of constraints are

found to be consistent, the match is rated as follows:

Rating = lConstraints in commonf
t Resulting constraintsi

Consider the match between the con.trainta' fields of EVENT-I and TAKE-A-

TRIP-AND-GET-PAID. EVENT-1 contains the constraints:

(EQUAL ACTOR ISSUETRAVELAUTHORIZATION.ISSUEE)

(EQUAL DESTINATIONS TAKEATRIP.DESTINATIONS)

(EQUAL ISSUETRAVELAUTHORIZATION. ISSUEE TAKEATRIP. TRAVELER)

(OUTSIDE DESTINATION STATE)

(BEFORE ISSUETRAVELAUTHORIZATION TAKEATRIP)

while TAKE-A-TRIP-AND-GET-PAID contains:

(EQUAL COST TAKEATRIP.COST)

(EQUAL DESTINATIONS TAKE.ATRIP.DESTINATIONS)

(EQUAL TRAVELER TAK-_ATRIP.TTRAVELER)

9 As part of the initialisation of structures, the attribute definitions (where provided), the tem-
poral relationships (for events) ard the constraints specified in the constraints field are merged.

This allows consistency to be maintained for all the constraints specified for the structure.
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(EQUAL TAKE.ATRIP. TRAVELER GETREIMBURSED. RECIPIENT)

(EQUAL TAKEATRIP. COST GETEIMBURSED. AMOUNT)

(BEFORE TAKEATRIP GET-REIMBURSED)

The constraints are grouped according to their relations (i.e., equal, out-

side and before) and each group is rated separately. Out of seven equal con-

straints, there is one constraint in common, (EQUAL DESTINATIONS TAKE-A-

TRIP.DESTINATIONS). Thus, the rating for the equal constraints is 1/7. Since

neither the before nor the outside relations share any constraints, the average

over the three relations is about 0.048.

§1.3 Structure-specific Matching

Consider now how two event structures may be compared. Recall that event

consist of fields containing generalizations and specializations of the event, events

that comprise and contain this event, temporal relations between sub-events, at-

tributes, constraints on these attributes, associated objects, and pre- and post-

conditions. We may compare the two events on a field-by-field basis using the

general matching techniques described in the previous section. The generaliza-

tions, ipecializations, parts, part-of, attribute names and aiaociated-object fields

may be treated as sets of entities and compared with the generic set comparison

technique of Section §1.1. The constraints, temporal-relationships, attribute def-

initions and pre. and post-conditions are sets of constraints and can be handled

by the constraint comparison mechanism of Section §1.2.

In addition to applying these generic matching techniques to specific fields of

a particular type of structure, the matching procedure for each structure type

may be customized in two ways. First, the way in which the results of matching
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individual fields are combined (as described in Section §2.) and the heuristics

used to anticipate modifications may vary with the type of structure; second,

structure-specific matching techniques may be added as needed.

When matching events, for instance, an implicit consumer/producer relation-

ship among its steps may contribute to an evaluation of the structure's complete-

ness. That is, each step may require resources made available by earlier steps

in the event. Examining the pre- and post-conditiona of each step can reveal

such dependencies. If the pre-condition of an event step cannot be determined

to be satisfied by the post-conditions of any earlier steps nor contained as a

pre-condition of the event itself, then the possibility of an "unsatisfied precon-

dition" is raised. This condition allows potential modifications to be inferred as

explained in Chapter 6 Section §1.1.

§2. Match Evaluation

In addition to the extent to which the expert's entity description matches

(or differs from) an existing knowledge base entity, how they differ, and whether

these differences are expected, must be considered to determine the acceptability

of the match. Thus, the match evaluation procedure relies, in part, on previously

generated modification expectations.

In this section, a two-pass match evaluator is described. The first pass uses

just the "degree of fit" of the two entities. This is a typical evaluation technique

and provides a quick, inexpensive means of pruning the set of possible matches.

The second pass takes the context in which the comparison is made into account.
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§2.1 Context-Independent Match Evaluation

Context-independent match evaluation provides a straight-forward way to

determine the quality of the matches and to eliminate those that seem very

unlikely. Using the results of the matching process described in Section §1., a

numeric value is assigned to each match. Those failing to exceed a specified

threshold are removed from consideration. 10

The matching procedure determines if two entity descriptions (i.e., the ex-

pert's and one in the knowledge base) are equal, related, comparable or different.

Matches deemed equal are assigned a maximum value of 1; those that are differ-

ent receive a minimum value of 0. Entities which are recognized as being related

matches are assigned a low value (currently, 0.2), to reflect the small chance that

the expert's description is intended to match the target knowledge base entity,

despite matching an entity related to it. For comparable matches, the evaluation

consists of assigning a value to each match on a field-by-field basis and then

averaging these values over all the fields.

The value used for each field match depends on the type of match involved.

For set matches, the probability of a match (see Section §1.1) is the value used.

For constraint matches, the consistency of the sets of constraints determines the

value: inconsistent sets yield 0, while consistent sets use the match rating (see

Section §1.2). Trivially consistent matches (i.e., fields that contain no information

in either structure) are not assigned a value and are not averaged into the overall

match value.

For the match between EVENT-1 and TAKE-A-T RIP-AND-GET-PAID. the non-

1 Alternatively, a fixed number of the top-rated matches may be maintained, clustering tech-
niques may be used, etc.
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trivial field matches are rated as follows:

Field Rating

generalizations 1.000

parts 0.036

attribute-names 0.002

constraints 0.048

Match Rating 0.271

The values thus obtained for the potential matches for EVENT-1 were:

Entity Result Rating

TAKE-A-TRIP-AND-GET-PAID comparable 0.27

MAKE-A-RESERVATION comparable 0.24

TRAVEL comparable 0.24

KNAC-STRUCTURE related 0.20

TAKE-A-TRIP related 0.20

EVENT related 0.20

DESTINATION comparable 0.12

SOURCE comparable 0.12

GO-SOMEWHERE comparable 0.10

SEND-INFORMATION comparable 0.09

PAY comparable 0.05

TRAVELER comparable 0.04

DRIVE comparable 0.04

FLY comparable 0.04

REQUEST-INFORMATION comparable 0.03
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§2.2 Context-Dependent Match Evaluation

Differences between a domain expert's description of an entity and a de-

scription already existing in a knowledge base may imply modifications to the

existing description. By anticipating such modifications, these differences may

contribute to, rather than detract from, a potential match. These expectations

form a context in which the entity comparison may be evaluated.

The modifications implicit in the match results must first be made explicit.

To resolve differences resulting from set mis-matches, the addition or removal of

the "extra" elements to or from the appropriate fields is necessary. Similarly,

for consistent constraint matches, additional constraints may have to be added

or removed. These modifications are compared to the current set of expected

modifications to better evaluate the matches that produced them.

In Frame 1, the potential modifications to TAKE-A-TRIP-AND-GET-PAID that

would result if it were matched to EVENT-1 include:

MOD1516: ADD Issuetravel-authorization to the

Parts field of Take-a&trip-andget-paid

MOD1518: ADD Actor to the

Attribute-names field of Take.a-tripand-getpaid

MOD1521: ADD (Before issue-travel-authorization get-reimbursed)

to the Constraints field

of Take-a-trip-and-get-paid

Some of these modifications were anticipated. For MOD1516, for instance, the
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following expectations were available:

Exp2l: Expecting (certainty 0.100):

MOD: ?ACTION ?Value to/from the

?Field field of Take.a.tripand-get.paid

Derived from Travel and HDI.

Exp83: Expecting (certainty 0.480):

MOD: ADD ?Nev-step<is-an-event-p> to the

Parts field of Take-a-trip-and-get-paid

Derived from Takeoa-trip.and.get.paid and HS3.

Exp145: Expecting (certainty 0.360):

MOD: ADD ?Nev-part<is-a-knac-structure-p> to the

Parts field of Take-a-trip-andget.paid

Derived from Take-a.trip.and.got.paid and HS2.

The context-dependent rating of a match is a measure of the extent to which

the discrepancies between the descriptions can be accounted for. To determine

this, the degree to which each modification implied by these discrepancies is

expected must first be .alculated. A pattern matcher is used to compare each

modification to the modifications predicted by each of the currently expected

modifications. Since a modification may be anticipated by multiple expectations,

its "expectedness" can be described as a function of the certainties of these ex-

pectations. It is desirable that the expectedness of the modification 1) is at least

as great as the certainty of the most certain applicable expectation, 2) increases

as the number of applicable expectations increases, 3) is not dependent on the
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order ini which the expectations are considered, and 4) is in the range [0,11. If C,

is the certainty of the igh expectation and Ei is the expectedness from the first i

expectations, then the expectedness may be defined as:

E. = 0 if i= 0

1E,... + C,(1 - Bi-,..) otherwise.

Thus, for modification MOD1516 above, its expectedness is:

El= 0.360

E2= 0.360 + 0.480(1 - 0.360)

-, 0.667

E3 - 0.667 + 0.100(1 - 0.667)

;t 0.700

The extent to which each field's match differences were anticipated is found

by computing the average of the expectedness of the resulting modifications for

that field. For the pazrts field match between EVENT-i and TAKE-A-TRIP-AND-

GET-PAID, for example, the resulting modifications are:

M0D1516: ADD Iusuo-.travol-.authoization to the

Parts field of Take-.a-.trip..aad-.get..paid

MOD151T: REMOVE Get-reimbursed from the

Parts field of Tako-.a-.trip..azd-.got..paid

The expectedness for these modifications is 0.700 and 0.100, respectively. The

expectedness for the parts field, therefore, is 0.400.
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A slight refinement is added for constraint match fields. Since the constraints

are grouped according to their relations before being compared (e.g., the "be-

fore" constraints are compared separately from the "equal" constraints), this

additional structure may be used to evaluate the constraint fields expectedness.

The average expectedness for each relation is found separately and these are then

averaged to obtain expectedness for the constraint field. This prevents a large

number of constraints for one relation from completely overwhelming the results

of constraints from another.

For the conitrainta field, three relations were involved: before, outside and

equaL The before constraints resulted in four modifications:

MOD1521: ADD (Before issue-travel-athorization got-reimbursed)

to the Constraints field

of Take-a.trip-and-get.paid

MOD1522: ADD (Before issutravel-authorization takea.trip)

to the Constraints field

of Take_ a.trip.and.get.paid

MOD1640: REMOVE (Before issuetravel-authorization get-reimbursed)

from the Constraints field

of Take-a.trip-and-get.paid

MOD1541: REMOVE (Before take.a.trip get.reimbursed)

from the Constraints field

of Take-a.trip-and.get-paid
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The expectedness of these modifications is 0.532, 0.100, 0.100 and 0.100, respec-

tively. Thus, the average expectedness of the before modifications is 0.208. Sim-

ilarly, the average expectedness for the both the equal and outside modifications

is 0.100. Thus, the average expectedness for the constrainti field is 0.136.

However, the expectedness of a field's modifications does not take the overall

likelihood of the field match into account. The expectedness of each modification

resulting from two poorly matching fields may be high, for instance, but the poor

quality of the match should not be ignored. Therefore, the context-dependent

field match rating is obtained by scaling the expectedness of the field's modifica-

tions by the context-independent rating of the field match. For this match, the

context-dependent field ratings are:

Field Rating

generalizations 1.000

parts 0.133

attribute-names 0.055

constraints 0.007

Match Rating 0.299

The dependent values for the best matches for EVENT-1 are:

Entity Rating

TAKE-A-TRIP-AND-GET-PAID 0.30

MAKE-A-RESERVATION 0.17

TRAVEL 0.17

Thus, the ambiguity as to the best match for EVENT-1 resulting from the

initial context-independent match process (resulting in ratings of 0.27, 0.24 and

0.24, respectively, for the above candidates) was largely resolved by examining
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the degree to which the resulting modifications were expected.
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CHAPTER 6

GENERATING AND MANAGING EXPECTATIONS

KnAc provides a context in which to interpret information provided by a do-

main expert by anticipating modifications to an existing knowledge base. These

anticipated modifications are called ezpectations and are derived from KnAc's

heuristic information about the knowledge acquisition process. (See Appendix B

for a complete listing of KnAc's heuristics.) This chapter describes how these

expectations are generated, how they are used to provide a context in which

matches may be evaluated, and how they ranked and managed.

§1. Generating Expectations

In order to anticipate modifications to a knowledge base, KnAc contains a

body of knowledge acquisition expertise. This expertise is in the form of a col-

lection of heuristics culled from the analysis of knowledge acquisition protocols

between a knowledge engineer and a domain expert. (See Chapter 3.)

Each heuristic contains, in addition to a name and description, a type, a

condition, an expectation and a specificity. The current set of heuristics may be

divided into four types. The first is based on the state of the knowledge, both

that already contained in the knowledge base and new information provided by
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the expert. The second type depends on modifications previously made to the

existing knowledge base. The third type makes use of a model of the discourse

process, while the fourth incorporates knowledge about teaching and learning

atrategies.

A heuristic's condition determines whether the heuristic is applicable in a

particular context. The actual form of condition is determined by the heuristic's

type. For instance, modification heuristics are triggered by changes to the knowl-

edge base and therefore contain templates of modifications as their conditions.

The template is compared, via a pattern matcher, to an actual modification; if

the match succeeds, variables in the template are bound to values in the ac-

tual modification. These variables are used in the generation of the resulting

ezpectations.

Consider the modification heuristic shown in Figure 19. The condition will

only be satisfied when compared to a modification of type "add" and whose target

(i.e., the structure being modified) is an "event".' If the condition is satisfied,

the heuristic will generate an expectation anticipating the addition of a temporal

relationship to the modified structure, ?eventl. This relationship will involve

the newly added step, step1, and some other unspecified step, step2.

Each heuristic also assigns a certainty and an effective-time-frame to the

expectations it generates. These are used to maintain a set of the most relevant

expectations and are discussed further in Section §2.

The remainder of this section describes KnAc's current set of knowledge ac-

quisition heuristics and shows how they are used to generate expectations. No

claims are made for the completeness or the optimality of this particular set of

'Pattern variables may be specified as either ?X or ?(X pred), where pred is a predicate on
the variable that must be satisfied.
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(create-heuristic h..m4a
:description-string "Parts of Events are usually temporally

constrained after being introduced."
type 'modificat ion
Specificity 'specific
condition (make-modification

:action-type 'add
:field 'parts
:value '?stepl
:target '?.(eventi is-an-event-p))

expectation (add-expectation
:cause 'h-.m4a
:source '?eventi
:modification
(make-modification

:action-type 'add
:field 'constraints
:value 'C,?(temporal-relation

is -a-t emporal-relationship-p)
9'?stepi
,? (step2 is-azi-event-p))

:target '?eventl)
eoffective-time-frame 'fade
certainty '?rating))

Figure 19: A Modification Heuristic
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heuristics. Since it is expected that this set will be modified, both as a result of

improved understanding of the knowledge acquisition process and through the

addition of domain specific heuristics, KnAc allows heuristics to be added (or

removed) in a straight-forward way.

§1.1 State of the Knowledge

Since one of the basic objectives of a knowledge acquisition system is to ob-

tain complete and correct information, any partial or erroneous information is

likely to be modified. The detection of missing or erroneous information must

rely heavily on the underlying knowledge representation system. However, many

of the shortcomings of a knowledge base, and the modifications they imply, may

be expressed at a level that is not dependent on the particular knowledge repre-

sentation. Thus, most of KnAc's state-based heuristics rely on some knowledge

base mechanism to determine incompleteness and inconsistencies, but are not

dependent on any particular mechanism.

Consider a simple state heuristic relying on the detection of missing information:

Heuristic S6: Referenced entities should ezist.

If a description from the expert (or an existing entity description) contains a

reference to an entity not already contained in the knowledge base, the addition

of such an entity may be expected. The context in which the reference is made

will often provide restrictions about the anticipated entity. For instance, if the

unknown entity is referenced as a step of an event, then the facet information

for this field, inherited (in this case) from the generic event description, requires

that the new entity must also be an event. Where the type of the new structure

cannot be determined from the available information, the most general type,
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knac-structure, is used. For instance, TAKE-A-TRIP-AND-GET-PAID contains an

attribute COST which is not a known knowledge base entity. Thus, an expecta-

tion is generated:

Exp82: Expecting (certainty 0.800):

MOD: CREATE the Knac-structure Cost

Derived from Take-a-trip-andget.paid and HS6.

A heuristic that relies more heavily on the completeness-checking ability of

the underlying knowledge base system is:

Heuristic S2: Fields with too few components will be augmented.

This heuristic states that if information is detected to be missing, the addition

of that information may be expected. Missing information may be detected in

various ways. One simple approach compares the number of entries in a field

of a knowledge structure with the field's expected cardinality. If the field is de-

termined to contain too few values, additional values (of the appropriate type)

will be expected. The expected field size may come, in order of specificity, from

meta-information about a given field of a given entity, via inheritance from a

generalization of the entity, from the default information for the type of the en-

tity, or from an overall field default size. This size information may be static

or determined dynamically by the system. An expectation generated by this

heuristic is:

Exp146: Expecting (certainty 0.360):

MOD: ADD ?Nv-part<is-a-knac-structure-p> to the

Parts field of Take.a-trip-and.getpaid
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Derived from Takeoa-trip.and.get.paid and HS2.

Whereas the quantitative analysis of the size of structure fields is a very

generic means for inferring missing information, other methods may be more

structure dependent. Missing steps in an event may be detected by assuming a

consumer/producer relationship between steps of a task. In particular, a step in

a plan may take place in order to produce something (a result, a resource, etc.)

required by a subsequent step. Therefore, if the precondition of a step 2 is not

satisfied by the previous steps in that event, it may be because a step responsible

for satisfying that condition is missing. Thus, an unsatisfied pre-condition in a

step of an event may result in the expectation of adding another (temporally

constrained) step to that event. This is captured by:

Heuristic S3: Unsatijfled step preconditions will be j.atisfied.

The unsatisfied precondition in the GET-REIMBURSED step of the event TAKE-A-

TRIP-AND-GET-PAID results in:

Exp84: Expecting (certainty 0.480):

MOD: ADD ?New-step<is-an-event-p> to the

Parts field of Takeoa.trip.and.getpaid

Derived from Take.a.tripandget.paid and HS3.

Exp85: Expecting (certainty 0.480):

MOD: ADD (Before ?nev-step<is-an-event-p> get-reimbursed)

to the Constrainvs field

of Take-a.trip.andgetpaid

Derived from Take-a-tripand.get.paid and HS3.

2Remember, each step in an event is itself an event, (potentially) with pre- and post-c.nditions.
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Actually, an event step with an unsatisfied precondition may imply several

other problems as well: 1) there may be a missing or incorrect pre-condition in

the (parent) event, 2) an earlier step may be missing or contain an incorrect

post-condition, 3) the unsatisfied pre-condition may be extraneous or incorrect,

or 4) the temporal ordering of the event steps may be wrong. Each of these

explanations may also be used to generate expectations.

In addition to obtaining missing information, any incorrect information de-

tected in the knowledge base is likely to be corrected. For instance, most knowl-

edge base systems contain some mechanism for maintaining consistency. Perhaps

the simplest such mechanism is some form of type-checking the structures in the

knowledge base. One heuristic uses such errors to anticipate changes to values

that violate range restrictions:

Heuristic S4: Attribute values must be within ipecified ranges.

Other heuristics generate expectations upon detecting cardinality conflicts and

required values that are not present.

To generate state-based expectations appropriate for a particular time frame,

the candidate match entities are checked for completeness and consistency. For

the integration of the new information in the first time frame, the following state-

based problems were discovered for the event TAKE-A-TRIP-AND-GET-PAID:

Unbound-reference to DESTINATIONS in Attributes field (1.00)

Unbound-reference to COST in Attributes field (1.00)

Insufficient-values in Attribute-names field (0.25)

Insufficient-values in Specializations field (1.00)

Insufficient-values in Generalizations field (0.67)

Insufficient-values in Part-of field (1.00)
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Insufficiont-values in Parts field (0.75)

Precondition-is-not-satisfied for part GET-REIMBURSED (1.00)

When the state-based heuristics are applied to this information, the following

expectations result:

Exp82: Expecting (certainty 0.800):

MOD: CREATE the Knac-structure Cost

Derived from Take.a-trip.and.get.paid and HS6.

Exp83: Expecting (certainty 0.800):

MOD: CREATE the Knac-structure Destinations

Derived from Take.a-trip-and.get.paid and HS6.

Exp84: Expecting (certainty 0.480):

MOD: ADD ?Nov-step<is-an-event-p> to the

Parts field of Take-atripand.get.paid

Derived from Take-a-trip.and-get-paid and HS3.

Exp85: Expecting (certainty 0.480):

MOD: ADD (Before ?nev-step<is-an-event-p> get-reimbursed)

to the Constraints

field of Takeoa-trip.andget-paid

Derived from Take-a-trip-and-get.paid and HS3.

Exp146: Expecting (certainty 0.360):

MOD: ADD ?Nev-part<is-a-knac-structure-p> to the
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Parts field of Takea-trip.and-get.paid

Derived from Take-a.trip.and.got.paid and HS2.

Exp147: Expecting (certainty 0.480):

MOD: ADD ?Ne-part<is-a-knac-structure-p> to the

Part-of field of Take-a-trip-and.get.paid

Derived from Take.a-tripand-get.paid and H_S2.

Exp148: Expecting (certainty 0.320):

MOD: ADD ?Nev-part<is-a-knac-structure-p> to the

Generalizations field

of Take-a-tripandget-paid

Derived from Take-a-trip-andget.paid and HS2.

Exp149: Expecting (certainty 0.480):

MOD: ADD ?Ne-part<is-a-knac-structure-p> to the

Specializations field

of Takoatrip-and.get-paid

Derived from Take-atripand.get.paid and HS2.

ExpI50: Expecting (certainty 0.120):

MOD: ADD ?Nev-part<is-a-knac-structure-p> to the

Attribute-names field

of Takea-trip.and.get-paid

Derived from Takeoatrip.andget.paid and HS2.
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§1.2 Modification Heuristics

Although a dialog between a domain expert and a knowledge engineer often

contains occasional shifts in context, a certain continuity is generally present.

Information provided by the expert is usually related to some other recently

discussed information. Therefore, any resulting modifications to the knowledge

base may be used to anticipate additional changes.

When an entity is added to the knowledge base, for instance, further descrip-

tion of the entity and of how it fits in with the existing knowledge are often

forthcoming. Two heuristics that capture this are:

Heuristic MI: Detailed information usually follows the introduction of a new

entity.

Heuristic M2: Contezt information usually follows the introduction of a new

entity.

For instance, when the event ISSUE-TRAVEL-AUTHORIZATION is added to the

knowledge base, the following expectations are generated:

Exp271: Expecting (certainty 0.600):

MOD: ADD ?Nov-valuo<(lambda (lst)

(is-a target-type))> to the

Generalizations field

of Issue-travel-authorization

Derived from Issue.travel-authorization and HM2.

Exp272: Expecting (certainty 0.600):
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MOD: ADD ?Nev-value((lambda (lit)

(is-a target-type))> to the

Part-of field of Issue-.travel-.authorization

Derived from Isue-..travl-authorization and H_.M2.

Exp276: Expecting (certainty 0.600):

MOD: ADD ?Nev-value<#'(lambda (val)

(is-a? val 'event))> to the

Parts field of Issue-.trav.l-authorization

Derived from Issue-.travel-authorization and H-...

Exp277: Expecting (certainty 0.600):

PiOD: ADD ?Nev-value<#'(lambda (val)

(is-a? val 'event))> to the

Specializations field

of Isue.travel-.authorization

Derived from Issue-.travel-authorization and H-.M1.

Exp278: Expecting (certainty 0.600):

MOD: ADD ?Nev-value<is-a-knac-structuxe-p> to the

Attribute. field of Issue-.travel-authorization

Derived from Issue-.travel-authorization and H..M1.

Similarly, when information is added to an existing entity, this new informa-

tion usually gets constrained in some manner.

Heuristic M3: Attributes are uadly cone trained after being introduced.

5-D-100



Heuristic M4: Parts are usually constrained after being introduced.

Heuristic M5: Adding two parts to an entity usually implies a relation between

them.

Adding the step ISSUE-TRAVEL-AUTHORIZATION to the event TAKE-A-TRIP-AND-

GET-PAID results in:

Exp264: Expecting (certainty 0.022):

MOD: ADD (?Relation<is-a-relationship-p>

issue-travel-authorization

?part2<(lambda (part)

(is-a? part 'event))>) to the

Constraints field of Take-atrip.andget.paid

Derived from Take.atripand.getpaid and H_M4.

Exp265: Expecting (certainty 0.001):

MOD: ADD (?Relation44<is-a-relationship-p> actor

?attribute45<is-a-knac-structure-p>) to the

Constraints field of Take-a-trip.and.getpaid

Derived from Take-atrip.and.get.paid and H_M3.

Exp266: Expecting (certainty 0.600):

MOD: ADD (?Relation46<is-a-relationship-p> issue-time

?attribute47<is-a-knac-structure-p>) to the

Constraints field of Issue-travel-authorization

Derived from Issue-travel-authorization and H_M3.
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Exp267: Expecting (certainty 0.600):

MOD: ADD (?Relation48<is-a-relationship-p> issues

?attribute49<is-a-knac-structure-p>) to the

Constraints field of Issue-travel-authorization

Derived from Issue-travel-authorization and HM3.

Exp268: Expecting (certainty 0.600):

MOD: ADD (?RelationSO<is-a-relationship-p> issuer

?attribute5l<is-a-knac-structure-p>) to the

Constraints field of Issue-travel-authorization

Derived from Issuetravel-authorization and HM3.

It is possible to add structure (or even entity) dependent heuristics in order to

provide more focused (and therefore more highly rated) expectations. Consider,

for instance, two more specific versions of Heuristic M4:

Heuristic M4a: Parts of Eventa are usually temporally constrained after being

introduced.

Heuristic M4b: Parts of Objects are usually spatially constrained after being

introduced.

Thus, the following more specific expectation is also produced:

Exp263: Expecting (certainty 0.036):

MOD: ADD (?Temporal-relation<is-a-temporal-relationship-p>
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issue-travel-authorization

?step2<is-an-event-p>) to the

Constraints field of Take.a.trip-and.get.paid

Derived from Take-a-trip-and-get-paid and H_M4A.

Though the removal of an entity from the knowledge base is not a frequent

occurrence, any entity containing a reference to the deleted entity may expect a

modification to the field that contains this reference.

Heuristic M6: Pointers to an Entity wuually change if the entity i' deleted.

Finally, one last modification heuristic captures the idea of continuity in a

very general way:

Heuristic M7: Recently modified entities may be referenced or modified again.

The modifications to TAKE-A-TRIP-AND-GET-PAID produce the rather vague ex-

pectations:

Exp225: Expecting (certainty 0.011):

MOD: ?ACTION2 Take-atrip-and-get.paid to/from the

?Field2 field of ?Entity2

Derived from Take-a-trip-and-get-paid and K_M7.

Exp226: Expecting (certainty 0.011):

MOD: ?ACTION2 ?Value2 to/from the

?Field2 field of Take-atrip.and.get.paid

Derived from Take-a-trip-and.get.paid and H_MT.
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§1.3 Discourse Heuristics

Research on the analysis of discourses in general, and of knowledge acquisi-

tion discourses in particular, provide another potential of means of anticipating

modifications [Gro78I. Information provided by the discourse manager concern-

ing the state of the discourse may provide clues about what to expect in the

upcoming portions of the dialog. Specifically, information about the topic (and

subtopics) of a discourse, changes in context, implicit ordering or relevance of a

group of entities, and disambiguation of anaphoric references may all be provided

by an appropriately sophisticated discourse manager.

Until KnAc is integrated with such a frontend, however, it is not relying on

the availability of such information. Therefore, only basic discourse information,

such as the topic(s) of the discourse and entity references, is presumed available.

Heuristics using this information include:

Heuristic D1: Entities close to specified topics are likely to be referenced or

modified.

Heuristic D2: Referenced entities are likely to be modified or referenced again.

Upon being informed by the discourse manager that the (first) topic of dis-

course is TRAVEL, expectations of reference or modification to knowledge base

entities semantically close to TRAVEL are generated. The certainty of each ex-

pectation decreases as the distance from the topic entity increases. These expec-

tations include:

Exp2i: Expecting (certainty 0.100):

MOD: ?ACTION ?Value to/from the
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?Field field of Take-a-tripandget.paid

Derived from Travel and HD1.

Exp22: Expecting (certainty 0.100):

MOD: ?ACTION Take-atrip.and.getpaid to/from the

?Field field of ?Target<is-a-knac-structure-p>

Derived from Travel and HD1.

Similarly, when the entity TAKE-A-TRIP is referenced during the discourse,

expectations of reference to nearby entities are generated, including:

Exp205: Expecting (certainty 0.245):

MOD: ?ACTION ?Value to/from the

?Field field of Take-atrip.and.get.paid

Derived from Takea.trip and HD2.

Exp206: Expecting (certainty 0.245):

MOD: ?ACTION Take-a-trip-and.get.paid to/from the

?Field field of ?Target

Derived from Take-a-trip and HD2.

S1.4 Acquisition Strategy Heuristics

Computer-based tutoring and automated learning are two areas of research

concerned with understanding and describing teaching/learning techniques and

strategies. Most knowledge acquisition systems assume a particular strategy and
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either force it upon the domain expert (in systems that maintain the initiative)

or provide tools tailored to the strategy (in more passive systems).

Different acquisition strategies will result in obtaining different types of infor-

mation from the user at different times. For instance, an approach in which the

acquisition system maintained the initiative and drove the acquisition process in

a top-down fashion would produce a very different scenario than a system where

the expert presented cases (examples) to the system. The resulting state of the

knowledge base may be similar; the modification process would vary.

If the acquisition strategy were known, either by selecting one a priori or by

dynamically recognizing it, heuristics particular to that strategy could provide a

means of anticipating modifications. At this time, no such heuristics are being

employed by KnAc.

§2. Managing Expectations

As more information is presented by the expert and more modifications to

the knowledge base result, KnAc is able to generate ever larger numbers of ex-

pectations. As the number of expectations grow, the system's ability to focus

decreases. Therefore, some method of ranking and pruning the set of expecta-

tions is needed.

§2.1 Rating Expectations

Each expectation generated by the system has an associated "certainty". This

value is assigned when the expectation is generated and may be updated during

subsequent time frames. The initial value is a function of the heuristic and the
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data from which the expectation arises. Since the certainty of an expectation

depends on how it was generated, each heuristic specifies its own function for

calculating this value. ([GC86] describes the importance of localizing such func-

tions.) Heuristic D1, for example, which generates candidate matches based on

discourse topics, assigns a certainty that is related to the (semantic) distance

between the topic and the candidate. Heuristic 52, which uses "holes" in the

knowledge to infer the addition of information, relies on the certainty that the

information is missing.

In addition to the heuristic's certainty metric, each heuristic has an associated

specificity. The more specific a heuristic is, the more certain we may be of the

result. Thus, the resulting expectation's certainty is scaled by the heuristic's

specificity. This accounts for the greater certainty of an expectation produced

by heuristic M4a (which applies to Events) than a corresponding modification

produced by heuristic M4 (which applies to any type of structure).

Interactions between expectations could also be used to modify these certain-

ties. Mutually consistent expectations, for instance, might increase the certainty

of each; conflicting expectations might decrease the certainty. Rather than taking

this approach, however, KnAc uses this information when evaluating the extent

to which a (potential) knowledge base modification is supported by expectations

(see Chapter 5 Section §2.2). This permits the inter-expectation support or con-

flict to be evaluated in the context of a particular modification.

§2.2 Pruning Expectations

Once expectations have been assigned a certainty value, the set may be pruned

at the end of each time frame, either by thresholding at a specified certainty level
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or maintaining a fixed-size set of the highest ranked ones. Two further factors

may affect the duration of individual expectations: its effective time frame and

its level of satisfaction.

Some expectations are applicable only at the time they are generated; others

are always applicable; still others become more or less relevant with the passage

of time. To capture this idea, each heuristic assigns a time duration function to

the expectations it generates. These functions describe when the expectation is

valid and include:

fade: The expectation is most relevant when it is generated and degrades with

time. The rate at which it degrades may (optionally) be specified.

increase: The more time that passes without this expectation being satisfied,

the more significant it becomes. The rate at which it increases may (op-

tionally) be specified.

until: This expectation is only relevant until some condition (or absolute time)

occurs.

while: This expectation is relevant while some condition is true.

after: This expectation only becomes valid after some condition occurs.

for: This expectation remains valid for a prescribed time after its creation.

always: 3 This expectation remains valid forever.

never: 4 This expectation is never valid.

3For efficiency, expectations with an azfter time duration function reset the expectation's func-
tion to always once the specified condition becomes true.

'Similarly, until and for expectations are reset to never when the specified condition becomes
true.
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After each frame, the time duration function of all current expectations are

checked. This may either directly result in the removal of some expectations or

may modify their certainty and thereby place them below the current threshold.

Expectations may also be removed if they, or their alternative expectations,

are satisfied. If an anticipated modification occurs, the expectation of that mod-

ification may no longer be needed. However, a choice of whether an expectation

persists or expires upon being satisfied is available via the expectation's persia-

tence field. (Allowable values are "one-shot" and "endure".)

§3. Frame Segmentation Revisited

In Chapter 3 Section §4., the division of the dialog into time frames was

briefly discussed. Without better metrics to guide the division, "convenient"

size chunks were selected without much consideration of their content. Choosing

time frames containing too little or too much information causes different types

of problems.

Consider the addition of the step ISSUE-TRAVEL-AUTHORIZATION to the event

TAKE-A-TRIP-AND-GET-PAID. This results in the creation of an expectation of a

temporal constraint between the new step and an existing step in the plan. How-

ever, since the addition of that temporal constraint occurs in the same discourse

frame as the addition of the step, the expectation is not generated in time to

support the addition of the constraint.

Reducing the size of the time frames may appear to be the solution. This,

however, fails in two ways. First, it will produce an increased number of time

frames that contain no useful information (from KnAc's point of view). More
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importantly, the information is not always presented in the "correct" order, either

by the expert or as the output of the discourse manager. Furthermore, the

optimum order in which the information is integrated is dependent upon the set

of heuristics being used. The addition of a step and a temporal constraint on

that step may not even be mentioned explicitly in the discourse. Thus, expecting

that the information arrive from the discourse manager/parser in the "correct"

order is not a reasonable approach.

A fairly simple mechanism is available for overcoming this difficulty. If a

match (or set of matches) is assumed to be (potentially) correct, the resulting

modifications may be simulated to determine the resulting expectations. These

expectations may then be used to re-evaluate the matches under consideration.

It is important to note that, without getting fairly sophisticated, this method

will provide only an approximation of truth. For instance, poor matches may

tend to lend support to themselves or the results of a match may cause the match

itself to be demoted.

An alternate approach, the one currently used by KnAc, delays the resolution

of ambiguous matches until the more certain matches are made. The expecta-

tions from the more certain matches are then available to re-evaluate the less

clear ones. While this approach misses intra-structure expectations, such as the

addition of the step implying the addition of a constraint, it captures many of

the expectations between entities within a discourse frame. For example, the

recognition of TAKE-A-TRIP as an existing knowledge base description generates

expectations that support the match of EVENT-1 to TAKE-A-TRIP-AND-GET-PAID.
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§4. What's in a Modification?

In previous sections, modifications to a knowledge base were discussed. In

this section, these modifications are more formally defined. Each modification

consists of one of four types of action (create, delete, add or remove), a target

knowledge base entity, a value, and (for add and remove) a field name. The

information contained in these fields is:

create: The target field contains the name of the entity to be created and added

to the knowledge base. The value field contains a partial specification of

the new entity.

delete: The name of the entity to be deleted from the knowledge base is the

only information specified.

add: The name of the entity to be modified, the name of the field and the value

to be added to that field are specified.

remove: The name of the entity to be modified, the name of the field and the

value to be removed from that field are specified.

The granularity of modifications and expectations was deliberately kept quite

small. Each modification describes the creation or deletion of a single entity, or

the addition or removal of a single value to or from a field. Each expectation is

of a single modification.

Alternatively, each modification could have contained several values, e.g., the

addition of several steps to an event. Another scheme could have maintained sim-

ple modifications and permitted expectations to include multiple modifications.

Either of these schemes would reduce the number of expectations generated,
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but increase the complexity of generating, evaluating, maintaining and utilizing

them.

The tradeoff is between intra- and inter-expectation processing. Consider two

modifications, M1 and M2. If both were expected by a single expectation (i.e.,

the conjunct of M1 and M2 was expected) and only one occurred, the system

would require a scheme for representing partial fulfillment (satisfaction) of the

expectation. Such problems may be avoided by having M1 and M2 anticipated

by separate expectations. The cost, however, arises when M1 and M2 are dis-

juncts instead of conjuncts; the fulfillment of one expectation should must signal

the fulfillment of the other. This is accomplished by providing each expectation

with a list of alternative expectations; in any of the alternatives are satisfied, so

is that expectation.
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CHAPTER 7

SYSTEM EVALUATION AND CUSTOMIZATION

The goal of the KnAc system is to assimilate information from a domain

expert into an existing knowledge base by matching this new information to

existing knowledge structures. The existing structures must then be modified to

conform to the information provided by the expert. For the discourse fragments

on which the system has been tested, appropriate matches were usually selected

and the necessary modifications suggested. In the following section, these results

are presented and KnAc's facilities for examining and evaluating the system's

performance are described.

The KnAc system is intended to be a testbed for knowledge acquisition and

has been designed to permit experimentation with and evaluation of various

factors which may contribute to its success. This experimentation includes both

customizing portions of the KnAc system and modifying the "world" with which

it interacts. Specifically, KnAc permits modifications to its knowledge acquisition

heuristics, to its generation, management and use of expectations, to its matching

and match evaluation procedures, and to the knowledge base representing its

world model. The latter sections of this chapter describe how each of these

aspects of the system may be modified and how the effects of such changes may

be observed and measured.
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§1. Evaluation of Match Results

When information from the domain expert corresponds to an existing entity

in the knowledge base, the goal of the KnAc system is to identify the appropriate

structure and make the necessary modifications to it. If the expert is describing a

entity new to the knowledge base, KnAc still attempts to find the "closest" known

structure. Because no oracle is available in the current system, KnAc's selection

of the best match (or matches) cannot be automatically evaluated. Thus, as

experimentation with knowledge acquisition heuristics and the pruning of the

resulting expectations has proceeded, the resulting matches were always checked

(manually) to assure that the system was performing reasonably.

To permit the monitoring of these matches, KnAc provides a summary of the

matches selected in each discourse frame and, if desired, obtains confirmation

of its results from the user. The results for the first five discourse frames are

summarized in Figures 20 and 21. (See Appendix C for a more detailed account

of the results from these discourse frames.)

In the first discourse frame, no satisfactory matches were found for the object

TRAVEL-AUTHORIZATION or for the event ISSUE-TRAVEL-AUTHORIZATION so they

wt - (correctly) presumed to be descriptions of new entities. The event TAKE-

A-TRIP was recognized as already being in the knowledge base. There were

several close syntactic matches for the specified (but unnamed) event EVENT-i.

Expectations generated from the discourse topic of "travel" and from missing

information in the candidate entities allowed the "context dependent" match

evaluation to correctly select TAKE-A-TRIP-AND-GET-PAID as the best match.

In the second discourse frame, the newly created TRAVEL-AUTHORIZATION

was mentioned, reinforcing the system's interest in that portion of the knowl-
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Frame I

TAKE.ATRIP already in KB
No match found for ISSUETRAVELAUTHORIZATION
No match found for TRAVEL-AUTHORIZATION
EVENT-1 matches TAKEATRIPANDGETPAID (0.285)

closest: 0.27 0.30 TAKEATRIPANDGETPAID
0.27 0.20 VISIT

0.24 0.17 MAKEARESERVATION
0.24 0.17 TRAVEL

Frame 2

TRAVEL-AUTHORIZATION ACCOUNTING already in KB
No match found for SENDTRAVELAUTHORIZATIONTOACCOUNTING

Frame 3

GRANT FILLOUTFORMFIELD DESTINATION DEPARTMENT-HEAD
already in KB

No match found for FILLOUTTRAVELAUTHORIZATION
No match found for SIGN-FORM

closest: 0.28 0.17 TAKEATRIPANDGETPAID
0.26 0.22 ISSUETRAVELAUTHORIZATION
0.24 0.17 TAKEATRIP

0.24 0.17 VISIT
0.22 0.14 TRAVEL

No match found for DEPARTURE-DATE
No match found for RETURN-DATE
No match found for TRUST-FUND

No match found for STATE-FUNDS
No match found for P-I

closest: 0.42 0.25 TRAVELER
No match found for MEANS-OF-TRANSPOR1
No match found for PLANE
No match found for BUS

No match found for PRIVATE-CAR

Figure 20: Selected Matches for Discourse Frames 1 through 3
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Frame 4

DESTINATION DEPARTURE-DATE MEAL PRIVATE-CAR
FILLOUTFORMFIELD already in KB
No match found for FILLOUTTRVELVOUCHER

No match found for TRAVEL-VOUCHER
No match found for COLLECT-RECEIPTS

closest: 0.24 0.20 SIGN-FORM

0.24 0.17 VISIT
No match found for TAXI

closest: 0.31 0.17 PRIVATE-CAR
0.31 0.16 BUS
0.31 0.16 PLANE

No match found for RECEIPT-FOR-HOTEL
No match found for RECEIPT-FOR-PLANE

Frame 5

SECRETARY already in KB
EVENT-2 matches COLLECT-RECEIPTS (0.442)

closest: 0.49 0.40 COLLECT-RECEIPTS
No match found for EVENT-3

closest: 0.30 0.25 COLLECT-RECEIPTS
0.23 0.17 SIGN-FORM

No match found for SUPPLYTRAVELINFORMATION
No match found for GIVERECEIPTSTOSECRETARY

Figure 21: Selected Matches for Discourse Frames 4 through 5
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edge base, and the known structure ACCOUNTING was also mentioned, caus-

ing the system to focus on that area as well. The new event SEND-TRAVEL-

AUTHORIZATION-TO-ACCOUNTING was added and its references to ACCOUNTING

and TRAVEL-AUTHORIZATION further reinforced the systems areas of focus.

Several new entities were added in the third frame, most of which had no close

matches in the existing knowledge base. The system did suggest TRAVELER as a

possible match for P-I (i.e., a principal investigator) because both are people and

because of its focus on entities related to travel. The best syntactic match for the

SIGN-FORM event was TAKE-A-TRIP-AND-GET-PAID because of the references in

this instance of SIGN-FORM to a "traveler" and a "p.i.". The context dependent

matching preferred the more appropriate event ISSUE-TRAVEL-AUTHORIZATION.

In the forth discourse frame, the closest matches to the new object TAXI are

PRIVATE-CAR, BUS and PLANE, all introduced in the previous frame. The context

dependent rating slightly favors PRIVATE-CAR because it was mentioned again

in this discourse frame. The rather strange selection of SIGN-FORM and VISIT as

being close to the event COLLECT-RECEIPTS occurs because of the involvement

of forms in the first case and the mention of a HOTEL-RECEIPT in the second.

In the final frame shown here, two unnamed events are introduced. The event

COLLECT-RECEIPTS was selected as the best match for both of them. However,

it was correctly judged (by both the context independent and dependent match

ratings) to more closely match EVENT-2. If the binding of EVENT-3, which

contains EVENT-2 as its second step, were delayed (as discussed in Chapter 6

Section §3.), the system would attempt to match EVENT-3 to an event containing

both TAKE-A-TRIP and COLLECT-RECEIPTS.
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§2. Examining the Justification for a Match

In order to understand why KnAc selected (or did not select) a particular

match, the system allows inspection of the match results at various levels of

detail. Recall that a match is selected based both on the degree of similarity

between a structure described by the domain expert and one already in the

knowledge base and on the extent to which the modifications implied by the

differences between the two descriptions have been anticipated. Modifications are

anticipated through invocations of KnAc's knowledge acquisition heuristics. The

match between the entity EVENT-1 1 described in the discourse and TAKE-A-TRIP-

AND-GET-PAID existing in the knowledge base may be explored by displaying

information such as that shown in Figures 22 and 23.

To understand the ratings assigned to a structure match (i.e., the "syntac-

tic" context independent rating and the expectation guided context dependent

rating), the slot-by-slot matches must be considered. Figure 22 shows such a

display for the events EVENT-1 and TAKE-A-TRIP-AND-GET-PAID. For each slot,

in addition to the match ratings for that slot, the similarities and differences are

also described. The differences imply modifications and the heuristics that have

generated expectations which anticipate these modifications are listed.

In order to observe the system's anticipation of these modifications at a finer

level of detail, the display shown in Figure 23 lists the modifications required

to resolve each of the differences between the structures and the expectations

that predicted these modifications. For each expectation, the display contains

its certainty, the heuristic which produced it, and the "data" from which it was

derived.

1The complete descriptions of the entities appear in Figures 10 and 11 in Chapter 3.
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EVENT-i vs. TAKEATRIPANDGETPAID

comparable [independent - 0.271, dependent = 0.299)

GENERALIZATIONS: [1.000 ] 1.000)

Sets match completely.
They share: {EVENT}.

PARTS: [0.036 / 0.146]
Sets partially match (rating 0.333); 3.6% match likelihood.
They share: {TAKEATRIP}.
{ISSUETRAVELAUTHORIZATION} appears only in first entity.
{GET.REIMBURSED} appears only in second entity.
Expectations of implied modifications resulted: {HD2 HS2 HS3}

ATTRIBUTE-NAMES: [0.002 / 0.039]
Sets partially match (rating 0.250); 0.2% match likelihood.
They share: {DESTINATIONS}.
{ACTOR} appears only in first entity.
{COST TRAVELER} appear only in second entity.
Expectations of implied modifications resulted: {HD2}

CONSTRAINTS: [0.048 / 0.009)
Constraints wore CONSISTENT.
Match rating 0.048;
They share: (DESTINATIONS - TAKEATRIP.DESTINATIONS)
Minimum additions to the first are:

(TAKEATRIP BEFORE GET-REIMBURSED)
(COST - GETREIMBURSED.AMOUNT)
(GETREIMBURSED. AMOUNT - TAKEATRIP. COST)
(GETREIMBURSED.RECIPIENT - TRAVELER)
(TRAVELER - ACTOR)

Minimum additions to the second are:
(DESTINATION OUTSIDE STATE)
(ISSUETRAVELAUTHORIZATION BEFORE TAKEATRIP)
(ACTOR - ISSUETRAVELAUTHORIZATION. ISSUEE)
(ISSUETRAVELAUTHORIZATION.ISSUEE - GETREIMBURSED.RECIPIENT)

Expectations of implied modifications resulted: {HD2 HS3}

Figure 22: Justification for a Structure Match in Frame 1
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-PARTS: (0.036 / 0.146J
Sets partially match (rating 0.333); 3.6% match likelihood.

They share: {TKE_.A_.TRIP}.
{ISSUE_.TRAVEL_.AUTHORIZATION} appears only in first entity.
Implied modifications:
MODII156: ADD Issue-.travel-.authorization to the Parts field of

Take ..a-.trip-.and..get-.paid (certainty: 0.036)
Expected: 0. 332(average) 0. 480(maximum) 0. 719(independent)

Expl9: Expecting (certainty 0.157):
MOD: ?ACTION ?Value to/from the ?Field field of

Take-.a-.trip-and.get-.paid

Derived from H_.D2 and TAKE-.A-.TRIP already in KB (1.000).

Expll4: Expecting (certainty 0.480):
MOD: ADD ?Nev-step<is-azi-event-p> to the Parts field of

Take-.a-.trip-and-.get.paid
Derived from H_.S3 and

STATE: PRECONDITION-IS-NOT-SATISFIED for
entity TAKE-.A..TRIP-k.ND..GET-.PAID
Field: PARTS Values: (GET-.REIMBURSED).

Expl69: Expecting (certainty 0.360):
MOD: ADD ?Nev-part<is-a-knac-structure-p> to the Parts

field of Take-.a-.trip-.and..get-.paid
Derived from H_.S2 and

STATE: INSUFFICIENT-VALUES (certainty 0.750) for
entity TAXLA-TRIP-AND-.GET-.PAID.

Field: PARTS Values: 3/4.

(GET-.REIMBURSED) appears only in second entity.
Implied modifications:
MODII57: REMOVE Get..reimbursed from the Parts field of

Take-.a-.trip-.and..get..paid (certainty: 0.036)
Expected: 0. 157(average) 0. 157(maximu-) 0.157(indepandent)

Expl9: Expecting (certainty 0.157):
MOD: ?ACTION ?Value to/from the ?Field field of

Take-.a-.trip-.and..get ..paid
Derived from H_.D2 and TAKE.A-.TRIP already in KB (1.000).

Figure 23: Support for the "Parts" Field Match

5-D-120



§3. Knowledge Acquisition Heuristics

Since KnAc's knowledge acquisition heuristics serve to anticipate modifications

to an existing knowledge base, their performance may be measured in terms of the

effectiveness of the expectations they produce. Because there may be interactions

within a set of heuristics, the effectiveness of both the individual heuristics and

of the entire set should be considered.

The performance of each heuristic may be evaluated in terms of how often it

is invoked, how many of these invocations successfully produce expectations and

how many expectations are produced. A "local" and a more "global" measure

of the quality of the resulting expectations may be obtained from the system's

"certainty" in the expectations and the extent to which they are (eventually) ful-

filled. Specifically, the factors considered in evaluating a heuristic's performance

are:

" Contezt specificity: In order for a heuristic to produce expectations, its

conditions must be satisfied Heuristics with more specific conditions will

be successfully invoked less often. The contezt apecificity of a heuristic is the

percentage of invocations in which the heuristic's conditions are satisfied.

A heuristic that is too specific may never get successfully invoked; one that

is too general may flood the system with poor quality expectations.

" Number of ezpectations per invocation:2 A successfully invoked heuristic

can produce one or more expectations. Since controlling the explosion

of expectations is a major task in the KnAc system, those heuristics that

2Because of the way in which the satisfaction of conjunctive constraints is determined, the
number of "invocations" of those heuristics whose condition contains such constraints is not
counted correctly. Currently, this affects heuristics H-5, H-5A, and H_5B.
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produce a large number of expectations, or those whose production goes

up as the discourse progresses, may need to be identified.

" Certainty of resulting ezpectations: The "certainty" of the expectations

produced by a heuristic depend on the quality of the data on which it is

invoked and on the specificity of the heuristic (as described in Chapter 6

Section §2.). The average certainty of the resulting expectations, while not

necessarily a valid measure of their eventual usefulness (see "Accuracy" be-

low), is still an important measure. A heuristic that consistently produces

expectations of low certainty may be getting invoked only on data in which

the system has little confidence. Further, these low certainty expectations

will tend to be overpowered by higher rated ones, thereby decreasing the

overall contribution of the heuristic.

" Accuracy of resulting ezpectations: Since expectations attempt to antic-

ipate subsequent modifications to the knowledge base, an expectation is

"fulfilled" if the anticipated modification actually occurs. The accuracy of

a heuristic is the percentage of expectations it has produced that have, at

a given point in time, been fulfilled. Since, at any point, some expectations

that will eventually be fulfilled have not yet been, this measures understates

the heuristic's true accuracy.

The above measurements of the heuristics' performance may be aggregated

over time and over classes of heuristics. By plotting the above values against

time (measured in discourse frames), changes in a heuristic's performance as the

discourse progresses may be observed. Displaying the performance of classes of

heuristics over time may reveal patterns that are not as apparent in the perfor-

mance of individual heuristics. The most obvious groupings are by heuristic type
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Times Times Success Avg. no. Avg. exp Accuracy
called ok rate of exps certainty of exps

HD1: 67 1 0.01 21.00 0.17 0.00
HD2: 67 66 0.99 14.64 0.09 0.03
HMI: 164 24 0.15 3.00 0.31 0.01
H-M2: 164 24 0.15 2.00 0.31 0.02
H-M3: 164 25 0.15 1.00 0.32 0.00
HM4: 164 17 0.10 1.00 0.28 0.00
HM4A: 164 15 0.09 1.00 0.43 0.00
HM4B: 164 2 0.01 1.00 0.64 0.00
HM5: 5 0 0.00 - - -

HM5A: 5 0 0.00 - - -

HM5B: 5 0 0.00 - - -

HM6: 164 0 0.00 - - -
HM7: 164 164 1.00 2.00 0.15 0.05
HS2: 711 469 0.66 1.00 0.21 0.01
H-S3: 711 3 0.00 2.00 0.13 0.17
HS4: 711 0 0.00 - - -

HS6: 711 I79 0.25 1.00 0.35 0.00

Figure 24: Heuristic Statistics through Discourse Frame 5

(e.g., discourse, state, modification), but other groupings may be produced as

desired.

The statistics of heuristic performance through discourse frame 5 (shown in

Figure 24) begin to reveal different characteristics among the heuristics being

used. For instance, heuristics D2 ("Referenced entities are likely to be modified

or referenced again. "), M7 ("Recently modified entities may be modified again or

referenced. ") and S2 ("Field with too few components will be augmented. "), being

rather broad in scope, are responsible for most of the expectations produced.

Heuristics such as M4A ("Parts of Everts are usually temporally constrained after

being introduced. ") are somewhat more focused, producing fewer expectations,

but "ith higher certainties. Because many correctly anticipated modifications
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Figure 25: Number and Certainty of Expectations from Heuristic S2

have not yet been made to the knowledge base, the measured accuracy of all of

the heuristics is still very low.

The performance of a heuristic can change as the discourse progresses. This

can be seen for heuristic S2 (described above) in Figure 25. As more entities

in the knowledge base are brought into focus (i.e., are considered as potential

matches for the discourse entities), incompleteness and inconsistencies in these

entities are recognized. Those structure slots suspected of containing too few

values caus, heuristic S2 to generate expectations of values being added to those

slots. However, as the set of potential match candidates grows, the system's

confidence in each of these entities decreases. Because the certainties of the

expectations produced by heuristic S2 depend on the ratings of these entities,

the certainties of the resulting expectations also decrease. Figure 25 shows this

increase in the heuristic's productivity and the corresponding drop in the average

certainty of its expectations.
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In addition to considering the performance of individual heuristics and classes

of heuristics, the effectiveness of an entire set of heuristics muy also be considered.

In order to reveal interactions between heuristics, the assimilation of the discourse

may be performed with one or more heuristics deactivated. If similar expectations

result, the removed heuristic(s) may have been contributing little or providing

only redundant information. If certain expectations are missed and the removed

heuristic was not responsible for these expectations in the initial assimilation,

an implicit dependency among the heuristics may be inferred. Such ablation

experiments have not yet been performed.

§4. Expectations

As described in Chapter 6 Section §2., controlling the growth of the num-

ber of "current" expectations (i.e., the set of expectations considered relevant at

a given time) is an important part of the KnAc system. If too many expecta-

tions are allowed, the system's ability to discriminate among potential structure

matches diminishes, since most of the implied modifications will be supported by

some expectation(s). Furthermore, the system's performance is degraded, both

in terms of results and speed of execution. If too few expectations are permit-

ted, the "correct" matches may missed because necessary modifications were not

anticipated.

In order to evaluate the system's management of expectations, KnAc permits

the display of the number of expectations created in each time frame (both the

complete set and those selected as "curi nt"), the cumulative totals up to a given

discourse frame, and the average certainties of the expectations for each frame.

(Figure 26 shows these statistics for discourse frames 1 through 5.) Expectations
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Threshold Total Current Quality Accuracy
Frame 1 0.15 262 112 0.48 0.03
Frame 2 0.15 472 294 0.40 0.03
Frame 3 0.15 1378 589 0.32 0.02
Frame 4 0.15 1907 927 0.27 0.03
Frame 5 0.15 2148 732 0.29 0.01

Figure 26: Expectation Statistics (Frames 1 through 5)

may be viewed individually or may be grouped based on attributes such as the

type of modification involved, the heuristic causing it, the data on which it was

invoked, or the target knowledge structure or field.

Controlling the number of "current" expectations, using the expectation cer-

tainty threshold and the (default) rate of decrease of expectation certainty (for

those expectations whose certainty fades with time) is still more of an art than

a science. While the system has been under development, these parameters have

been set so that number of expectations considered has been kept fairly high.

The rationale for this has been that it is easier to understand the system's per-

formance if excess "data" were available rather than trying to explain "missed"

matches based on expectations that were not considered. The cost of this deci-

sion has been very slow system performance. More recent experiments have been

conducted with more severe expectation thresholds.

Figure 27 shows the rate of growth in the total number of expectations pro-

duced by the system and in those selected as "current" for the first five discourse

frames. The expectation certainty threshold was set at 0.15 and the rate at

which certainties were degraded each frame (for those expectations designated

to "fade") was 0.2.

5-D-126



t
2000 t

E
X
P t
E
C
T
A c
T
I c
0 c
N t
S

t c
c

0 iI iI

1 2 3 4 5

DISCOURSE FRAME

Figure 27: Total and "Current" Expectations

While ezpectation management successfully prunes away a large number of

lower rated expectations, the number remaining is still quite high. This large

number of expectations is one of the major factors contributing to extremely

slow system performance. Raising the expectation certainty threshold or, to a

somewhat lesser extent, increasing the rate of "fade" causes the system to fail to

anticipate certain modificationa crucial to recognizing some of the "appropriate"

matches in the sample discourse. Therefore, in order for the overall system perfor-

mance to be significantly improved, either fewer expectations must be produced

or the selection of "correct" expectations must become more sophisticated.
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§1. Evaluation of Match Results

When information from the domain expert corresponds to an existing entity

in the knowledge base, the goal of the KnAc system is to identify the appropriate

structure and make the necessary inoditications to it. If the expert is describing a

entity new to the knowledge base, KnAc still attempts to find the "closest" known

structure. Because no oracle is available in the current system, KnAc's selection

of the best match (or matches) cannot be automatically evaluated. Thus, as

experimentation with knowledge acquisition heuristics and the pruning of the

resulting expectations has proceeded, the resulting matches were always checked

(manually) to assure that the system was performing reasonably.

To permit the monitoring of these matches, KnAc provides a summary of the

matches selected in each discourse frame and, if desired, obtains confirmation

of its results from the user. The results for the first five discourse frames are

summarized in Figures 20 and 21. (See Appendix C for a more detailed account

of the results from these discourse frames.)

In the first discourse frame, no satisfactory matches were found for the object

TRAVEL-AUTHORIZATION or for the event ISSUE-TRAVEL-AUTHORIZATION so they

were (correctly) presumed to be descriptions of new entities. The event TAKE-

A-TRIP was recognized as already being in the knowledge base. There were

several close syntactic matches for the speciri(d (Ii, ,irim;,ied) (.ve.nt rEVErNT- 1.

Expectations generated from the discourse .opic (of "travel" aid frm, inissing

information in 'he candidate entities all(bwed the "context (lependent" match

evaluation to correctly select TAKE-A- II' P P :1 I'\ I rm s ths liest. match.

In the second discourse frame, the newly created TRAVEL-AUTHORIZATION

was mentioned, reinforcing the system's interest in that portion of the knowl-
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Frame 1

TAKEATRIP already in KB
No match found for ISSUETRAVELAUTHORIZATION
No match found for TRAVEL-AUTHORIZATION
EVENT-1 matches TAKE_ATRIPAND-GETPAID (0,285)

closest: 0.27 0.30 TAKEATRIPANDGETPAID

0.27 0.20 VISIT
0.24 0.17 MAKEARESERVATION

0.24 0.17 TRAVEL

Frame 2

TRAVEL-AUTHORIZATION ACCOUNTING already in KB
No match found for SENDTRAVELAUTHORIZATIONTOACCOUNTING

Frame 3

GRANT FILLOUTFORMFIELD DESTINATION DEPARTMENT-HEAD

already in KB
No match found for FILLOUTTRAVELAUTHORIZATION
No match found for SIGN-FORM

closest: 0.28 0.17 TAKEATRIPANDGETPAID
0.26 0.22 ISSUETRAVELAUTHORIZATION
0.24 0.17 TAKEATRIP

0.24 0.17 VISIT
0.22 0.14 TRAVEL

No match found for DEPARTURE-DATE
No match found for RETURN-DATE
No match found for TRUST-FUND
No match found for STATE-FUNDS

No match found for P-I
closest: 0.42 0.25 TRAVELER

No match found for MEANS-OF-TRANSPORT
No match found for PLANE
No match found for BUS
No match found for PRIVATE-CAR

Figure 20: Selected Matches for Discourse Frames 1 through 3
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Frame 4

DESTINATION DEPARTURE-DATE MEAL PRIVATE-CAR

FILLOUTFORMFIELD already in KB
No match found for FILLOUTTRAVELVOUCHER
No match found for TRAVEL-VOUCHER

No match found for COLLECT-RECEIPTS

closest: 0.24 0.20 SIGN-FORM
0.24 0.17 VISIT

No match found for TAXI
closest: 0.31 0.17 PRIVATE-CAR

0.31 0.16 BUS
0.31 0.16 PLANE

No match found for RECEIPT-FOR-HOTEL
No match found for RECEIPT-FOR-PLANE

Frame 5

SECRETARY already in KB
EVENT-2 matches COLLECT-RECEIPTS (0.442)

closest: 0.49 0.40 COLLECT-RECEIPTS
No match found for EVENT-3

closest: 0.30 0.25 COLLECT-RECEIPTS
0.23 0.17 SIGN-FORM

No match found for SUPPLYTRAVELINFORMATION
No match found for GIVERECEIPTSTOSECRETARY

Figure 21: Selected Matches for Discourse Framnes 4 through 5
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edge base, and the known structure ACCOUNTING was also mentioned, caus-

ing the system to focus on that area as well. The new event SEND-TRAVEL-

AUTHORIZATION-TO-ACCOUNTING was added and its references to ACCOUNTING

and TRAVEL-AUTHORIZATION further reinforced the systems areas of focus.

Several new entities were added in the third frame, most of which had no close

matches in the existing knowledge base. The system did suggest TRAVELER as a

possible match for P-I (i.e., a principal investigator) because both are people and

because of its focus on entities related to travel. The best syntactic match for the

SIGN-FORM event was TAKE-A-TRIP-AND-GET-PAID because of the references in

this instance of SIGN-FORM to a "traveler" and a "p.i.. The context dependent

matching preferred the more appropriate event ISSUE-TRAVEL-AUTHORIZATION.

In the forth discourse frame, the closest matches to the new object TAXI are

PRIVATE-CAR, BUS and PLANE, all introduced in the previous frame. The context

dependent rating slightly favors PRIVATE-CAR because it was mentioned again

in this discourse frame. The rather strange selection of SIGN-FORM and VISIT as

being close to the event COLLECT-RECEIPTS occurs because of the involvement

of forms in the first case and the mention of a HOTEL-RECEIPT in the second.

In the final frame shown here, two unnamed events are introduced. The event

COLLECT-RECEIPTS was selected as the best match for both of them. However,

it was correctly judged (by both the context independent and dependent match

ratings) to more closely match EVENT-2. If th I~illdin " I4vIN'-3, whicil

contains EVENT-2 as its second step, were delayel (as discussed in Chmpter 6

Section §3.), the system would attempt t match F FNT-3 t al event containing

both TAKE-A-TRIP and COLLE("T-RI'V I' I',
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§2. Examining the Justification for a Match

In order to understand why KnAc selected (or did not select) a particular

match, the system allows inspection of the match results at various levels of

detail. Recall that a match is selected based both on the degree of similarity

between a structure described by the domain expert and one already in the

knowledge base and on the extent to which the modifications implied by the

differences between the two descriptions have been anticipated. Modifications are

anticipated through invocations of KnAc's knowledge acquisition heuristics. The

match between the entity EVENT-1 1 described in the discourse and TAKE-A-TRIP-

AND-GET-PAID existing in the knowledge base may be explored by displaying

information such as that shown in Figures 22 and 23.

To understand the ratings assigned to a structure match (i.e., the "syntac-

tic" context independent rating and the expectation guided context dependent

rating), the slot-by-slot matches must be considered. Figure 22 shows such a

display for the events EVENT-1 and TAKE-A-TRIP-AND-GET-PAID. For each slot,

in addition to the match ratings for that slot, the similarities and differences are

also described. The differences imply modifications and the heuristics that have

generated expectations which anticipate these modifications are listed.

In order to observe the system's anticipation of these modifications at a finer

level of detail, the display shown in Figtre 2:1 li. Ili timiica-tions re(Iuired

to resolve each of the differences between the strtctthres a]nd the expectations

that predicted these modifications. For each expectall.ti, the display contains

its certainty, the heuristic which prod,,';. I I:t "p1aa'" frm, which it was

derived.

'The complete descriptions of the entities appear in Figures 10 and 11 in Chapter 3.
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EVENT-1 vs. TAKEATRIPAND.DGETPAID

comparable [independent = 0.271, dependent = 0.299]

GENERALIZATIONS: [1.000 / 1.000)
Sets match completely.

They share: {EVENT}.

PARTS: [0.036 / 0.146)
Sets partially match (rating 0.333); 3.6% match likelihood.
They share: {TAKE_A_TRIP}.
{ISSUETRAVELAUTHORIZATION} appears only in first entity.
{GETREIMBURSED} appears only in second entity.
Expectations of implied modifications resulted: {HD2 HS2 HS3}

ATTRIBUTE-NAMES: [0.002 / 0.039]
Sets partially match (rating 0.250); 0.2. match likelihood.

They share: {DESTINATIONS1.
{ACTOR} appears only in first entity.
{COST TRAVELER} appear only in second entity.
Expectations of implied modifications resulted: {HD2}

CONSTRAINTS: [0.048 / 0.009]
Constraints were CONSISTENT.
Match rating 0.048;
They share: (DESTINATIONS = TAKEATRIP.DESTINATIONS)
Minimum additions to the first are:
(TAKEATRIP BEFORE GET-REIMBURSED)
(COST - GETREIMBURSED.AMOUNT)

(GETREIMBURSED.AMOUNT = TAKEATRIP.COST)
(GETREIMBURSED. RECIPIENT = TRAVELER)
(TRAVELER = ACTOR)

Minimum additions to the second are:
(DESTINATION OUTSIDE STATE)
(ISSUETRAVELAUTHORIZATION BEFORE TAKEATRIP)
(ACTOR = ISSUETRAVELAUTHORIZATIOH.ISSUEE)

(ISSUETRAVELAUTHORIZATION. I'"- - ('.1T REIMBURSED.RECIPIENT)
Expectations of implied modifications resulted: {H_D2 HS3}

Figure 22: Justificition for a Structure Match in Frame 1
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PARTS: [0.036 / 0.146]

Sets partially match (rating 0.333); 3.6% match likelihood.

They share: {TAKE.ATRIP}.
{ISSUETRAVELAUTHORIZATION} appears only in first entity.

Implied modifications:
MOD1156: ADD Issue-travel-authorization to the Parts field of

Take-a-trip.and-get.paid (certainty: 0.036)
Expected: 0.332(average) 0.480(maximum) 0.719(independent)

Exp19: Expecting (certainty 0.157):
MOD: ?ACTION ?Value to/from the ?Field field of

Take-atripand.get _paid
Derived from HD2 and TAKEA.TRIP already in KB (1.000).

Exp114 Expecting (certainty 0.480):
MOD: ADD ?New-step<is-an-event-p> to the Parts field of

Take-a-trip-and-get-.paid
Derived from H_S3 and

STATE: PRECONDITION-IS-NOT-SATISFIED for
entity TAKEATRIPANDGETPAID

Field: PARTS Values: (GET-REIMBURSED).

Exp169: Expecting (certainty 0.360):
MOD: ADD ?Nev-part<is-a-knac-structure-p> to the Parts

field of Take-a-trip-and.get.paid
Derived from H_S2 and

STATE: INSUFFICIENT-VALUES (certainty 0.750) for
entity TAKEATRIPANDGETPAID.
Field: PARTS Values: 3/4.

{GETREIMBURSED} appears only in second entity.
Implied modifications:
MOD1157: REMOVE Get-reimbursed from the Parts field of

Take-a-trip-and-get-paid (certainty: 0.036)
Expected: 0.157(average) 0.157(maXimum) 0.157(independent)

Exp19: Expecting (certaint' o.i7):

MOD: ?ACTION ?Value to/from th- ?F.ielI field of
Take-a-trip-and-get-paid

Derived from HD2 and TAKEATRIP already in KB (1.000).

Figure 23: Support for the "Parts" Field Match
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§3. Knowledge Acquisition Heuristics

Since KnAc's knowledge acquisition heuristics serve to anticipate modifications

to an existing knowledge base, their performance may be measured in terms of the

effectiveness of the expectations they produce. Because there may be interactions

within a set of heuristics, the effectiveness of both the individual heuristics and

of the entire set should be considered.

The performance of each heuristic may be evaluated in terms of how often it

is invoked, how many of these invocations successfully produce expectations and

how many expectations are produced. A "local" and a more "global" measure

of the quality of the resulting expectations may be obtained from the system's

"certainty" in the expectations and the extent to which they are (eventually) ful-

filled. Specificaiy, the factors considered in evaluating a heuristic's performance

are:

" Contezt specificittv In order for a heuristic to produce expectations, its

conditions must be satisfied. Heuristics with more specific conditions will

be successfully invoked less often. The contezt specificity of a heuristic is the

percentage of invocations in which the heuristic's conditions Lire satisfied.

A heuristic that is too specific may never get successfully invoked; one that

is too general may flood the system with poor quality expectations.

* Number of ezpectations per invocation:2 \ s-u'essfilly invoked letiristic

can produce one or more expectatioms. Since controlling the explosion

of expectations is a major task ihi tI,. 1f "\..v.ten. iWchose heuristics that

'Because of the way in which the satisfaction of conjunctive constraints is determined, the
number of "invocations" of those heuristics whose condition contains such constraints is not
counted correctly. Currently, this affects heuristics H 5, H 5A, and H 5B.
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produce a large number of expectations, or those whose production goes

up as the discourse progresses, may need to be identified.

" Certainty of resulting ezpectationi: The "certainty" of the expectations

produced by a heuristic depend on the quality of the data on which it is

invoked and on the specificity of the heuristic (as described in Chapter 6

Section §2.). The average certainty of the resulting expectations, while not

necessarily a valid measure of their eventual usefulness (see "Accuracy" be-

low), is still an important measure. A heuristic that consistently produces

expectations of low certainty may be getting invoked only on data in which

the system has little confidence. Further, these low certainty expectations

will tend to be overpowered by higher rated ones, thereby decreasing the

overall contribution of the heuristic.

" Accuracy of requlting ezpectations: Since expectations attempt to antic-

ipate subsequent modifications to the knowledge base, an expectation is

"fulfilled" if the anticipated modification actually occurs. The accuracy of

a heuristic is the percentage of expectations it has produced that have, at

a given point in time, been fulfilled. Since, at any point, some expectations

that will eventually be fulfilled have not yet been, this measures understates

the heuristic's true accuracy.

The above measurements of the heuristics" pwrr,,riwm'ie rinY be aggregated

over time and over classes of heuristics. By plot.ting the above vales against

time (measured in discourse frames), changes in a heiiristic's performance as the

discourse progresses may be observe'd. I 'k ,I-,v.i! th. p.r',,riviniw.e of classes of

heuristics over time may reveal patterns that are not as apparent in the perfor-

mance of individual heuristics. The most obvious groupings are by heuristic type
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Times Times Success Avg. no. Avg. exp Accuracy
called ok rate of exps certainty of exps

H D1: 67 1 0.01 21.00 0.17 0.00
H D2: 67 66 0.99 14.64 0.09 0.03
HMl: 164 24 0.15 3.00 0.31 0.01
HM2: 164 24 0.15 2.00 0.31 0.02
H..M3: 164 25 0.15 1.00 0.32 0.00
H M4: 164 17 0.10 1.00 0.28 0.00
H M4A: 164 15 0.09 1.00 0.43 0.00
H.M4B: 164 2 0.01 1.00 0.64 0.00
H-M5: 5 0 0.00 - - -
H-M5A: 5 0 0.00 - - -
HM5B: 5 0 0.00 - - -
H M6: 164 0 0.00 - - -
HM7: 164 164 1.00 2.00 0.15 0.05
H.S2: 711 469 0.66 1.00 0.21 0.01
H-S3: 711 3 0.00 2.00 0.13 0.17
H-S4: 711 0 0.00 - - -
H S6: 711 179 0.25 1.00 0.35 0.00

Figure 24: Heuristic Statistics through Discourse Frame 5

(e.g., discourse, state, modification), but other groupings may be produced as

desired.

The statistics of heuristic performance through discourse frame 5 (shown in

Figure 24) begin to reveal different characteristics among the heuristics being

used. For instance, heuristics D2 ("Referenced entities are likely to be modified

or referenced again. "), M7 ("Recently modificd u,,ili,.i ii-,a! ih, ,,idified again or

referenced.") and 52 ("Field with too few componcnI.q will bc augnim.ntcd. "), l)Cing

rather broad in scope, are responsible rGr m,,ist of the expectations produced.

Heuristics such as M4A ("Parts of Ee.fr.l.. ,,,., u.,usll Im iporally constrained aftcr

being introduced. ") are somewhat more focused, producing fewer expectations,

but with higher certainties. Because many correctly anticipated modifications
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Figure 25: Number and Certainty of Expectations from Heuristic S2

have not yet been made to the knowledge base, the measured accuracy of all of

the heuristics is still very low.

The performance of a heuristic can change as the discourse progresses. This

can be seen for heuristic 52 (described above) in Figure 25. As more entities

in the knowledge base are brought into focus (i.e., are considered as potential

matches for the discourse entities), incompleteness and inconsistencies in these

entities are recognized. Those structure slots suspected of containing too few

values cause heuristic S2 to generate expectations of values being added to those

slots. However, as the set of potential match cmid'idal.v's grf,,rs. the system's

confidence in each of these entities decreases. Iiecaiuse the certainties of tile

expectations produced by heuristic S2 depend on the ratings of these entities,

the certainties of the resulting expech'tn01,,- :,I,:,, ,l,',r';s'. Figure 25 shows this

increase in the heuristic's productivity and the corresponding drop in the average

certainty of its expectations.

5.D-138



In addition to considering the performance of individual heuristics and classes

of heuristics, the effectiveness of an entire set of heuristics may also be considered.

In order to reveal interactions between heuristics, the assimilation of the discourse

may be performed with one or more heuristics deactivated. If similar expectations

result, the removed heuristic(s) may have been contributing little or providing

only redundant information. If certain expectations are missed and the removed

heuristic was not responsible for these expectations in the initial assimilation,

an implicit dependency among the heuristics may be inferred. Such ablation

experiments have not yet been performed.

§4. Expectations

As described in Chapter 6 Section §2., controlling the growth of the num-

ber of "current" expectations (i.e., the set of expectations considered relevant at

a given time) is an important part of the KnAc system. If too many expecta-

tions are allowed, the system's ability to discriminate among potential structure

matches diminishes, since most of the implied modifications will be supported by

some expectation(s). Furthermore, the system's performance is degraded, both

in terms of results and speed of execution. If too few expectations are permit-

ted, the "correct" matches may missed because necessary modifications were not

anticipated.

In order to evaluate the system's manageict il, of expectatiorls, KnAc permits

the display of the number of expectations creat$ed in each time 'rame (both the

complete set and those selected as "cnirr '"). I It,. ,,,,,, ilative to,.ias ui1p to a given

discourse frame, and the average certainties of the expectations for each frame.

(Figure 26 shows these statistics for discourse frames 1 through 5.) Expectations
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Threshold Total Current Quality Accuracy
Frame 1 0.15 262 112 0.48 0.03
Frame 2 0.15 472 294 0.40 0.03
Frame 3 0.15 1378 589 0.32 0.02
Frame 4 0.15 1907 927 0.27 0.03
Frame 5 0.15 2148 732 0.29 0.01

Figure 26: Expectation Statistics (Frames 1 through 5)

may be viewed individually or may be grouped based on attributes such as the

type of modification involved, the heuristic causing it, the data on which it was

invoked, or the target knowledge structure or field.

Controlling the number of "current" expectations, using the expectation cer-

tainty threshold and the (default) rate of decrease of'expectation certainty (for

those expectations whose certainty fades with time) is still more of an art than

a science. While the system has been under development, these parameters have

been set so that number of expectations considered has been kept fairly high.

The rationale for this has been that it is easier to understand the system's per-

formance if excess "data" were available rather than trying to explain "missed"

matches based on expectations that were not considered. The cost of this deci-

sion has been very slow system performance. More recent experiments have been

conducted with more severe expectation thresholds.

Figure 27 shows the rate of growth in the 1.,, al uutiber 4r exl'ctati-lts pro-

duced by'the system and in those selected as "current" for the first five discourse

frames. The expectation certainty thre,.ldfId wns st. at. 0.15 and the rate at

which certainties were degraded each [raint (for those expectations designated

to "fade") was 0.2.
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Figure 27: Total and "Current" Expectations

While ezpectation management successfully prunes away a large number of

lower rated expectations, the number remaining is still quite high. This large

number of expectations is one of the major factors contributing to extremely

slow system performance. Raising the expectation certainty threshold or, to a

somewhat lesser extent, increasing the rate of "fade" causes the system to fail to

anticipate certain modifications crucial to recognizing some or the "appropriate"

matches in the sample discourse. Therefore, io ,rder ror tu, -w'erall system perfor-

mance to be significantly improved, either fewer expectations must be produced

or the selection of "correct" expecta-ti,s t,,i, Ic-m. mrre sophisticated.
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§5. Rating of Structure Matches

In addition to the effects of expectations and the heuristics which produce

them, the selection of a best match is also affected by the match evaluation pro-

cess. The way in which KnAc combines its slot-by-slot match results to determine

an overall structure match value can be modified to better reflect the (seman-

tic) importance of particular structure slots. If, in a particular representation

and application domain, strong matches in certain slots prove to be a better

indicator of a correct structure match than do other slots, the structure match

evaluation function can be modified so as to place more emphasis on those slots.

For instance, a match in the generalizations slot (implying that the two struc-

tures belong to the same class) may prove more significant than a match in the

constraints slot. Experimenting with these weights permits the significance of a

match in each slot of the knowledge structure to be evaluated.

§6. Content and Format of the Knowledge Base

The acquisition process is also affected by both the content of the knowledge

base and the representation used to encode it. KnAc was designed to be applicable

to a variety of frame-based representations. This was accomplished, in part, by

isolating the acquisition process from the semaifli's 4, th. k.ilwh.dge descrip.io)n

frames. For instance, though the structitre mahc'hing ;nd tuatch evaltiation, the

inheritance of field values, the determination of semantic "closeness" within the

knowledge base, and certain acqisition h.1,,ri,1 ie*. ;r :d l w-etdent on particular

structures with particular fields, the field-specific aspects of these components

were parameterized to simplify the transition to another representation and to
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permit experimentation within the current one.

The "completeness" of the knowledge base can also affect the character of

the knowledge assimilation process. If little domain knowledge is available, such

as early in the construction of a knowledge base, or little relevant information is

known, as when extending a knowledge base to a new domain, KnAc is less able

to locate structures into which the new domain information can be assimilated.

On the other hand, as the knowledge base becomes more complete, the problem

shifts to one of being able to choose from among the many potential matches.

By using the context mechanism described in Chapter 4 Section §4. to exclude

portions of the existing knowledge, KnAc allows experimentation with knowledge

bases at varying stages of completion.
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CHAPTER 8

CONCLUSIONS

The work presented here has attempted to address one aspect of the knowl-

edge acquisition process. In this final chapter, the goals of this work are reviewed,

the successes and the shortcomings are examined, and the still unanswered ques-

tions are explored.

§1. What KnAc Attempted

Through the examination of a series of knowledge acquisition dialogs, one

aspect of the knowledge engineer's role in the development of knowledge bases

for expert systems became clear: the ability to assimilate information provided

by a domain expert into an existing body of knowledge. This task required being

able to correlate this new information with existing entity descriptions, recognize

the differences between the new and the existig dlecrilitiins. nd aplpropriatcly

modify these descriptions based on these differen'es. The l K" systern atternited

to automate this portion of the knowledge acytisitiitl process.

In order to automate this process. :I, if. t,r II*lrtsiatl(iing (r the reasoning

used by the knowledge engineer was required. Since this model of the knowledge

engineer was likely to be only partially correct and subject to much revision, KnAc
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was designed to make such changes as simple as possible. Thus, this knowledge

was encoded as a set of heuristics to which additions, deletions or modifications

could be made without requiring other changes to the system. This allows KnAc

to be used as a testbed for refining, through experimentation, a collection of

knowledge acquisition techniques.

In addition to isolating the system from the parti :ular set of knowledge ac-

quisition heuristics being used, KnAc also addressed the issue of how closely tied

a knowledge acquisition system must be to the knowledge representation scheme

of the target expert system. As the investment in the building of knowledge

bases becomes a very significant fraction of the cost of expert system develop-

ment, the need for reusable knowledge bases becomes ever more apparent. Since

a consensus on the ultimate knowledge representation scheme has not yet been

reached, knowledge acquisition tools developed for a particular representation

will become obsolete with the passing of that representation.

Two factors were considered in order to insulate KnAc from its target knowl-

edge representation. First, although a knowledge acquisition system must cer-

tainly interact with the knowledge base it is modifying, an effort was made to

keep the interface between then clean. This does not guarantee that KnAc can be

ported directly to another expert system using a different knowledge representa-

tion; there are some dependencies between the representation and the acquisition

process. For instance, heuristics developed fr mt. kiwi,.,Ige a;,se may rely on

information that a different representation cannitg pr(,vi(e. 1hmvever, by keeping

the internal workings of KnAc separate frm those of the knowledge representa-

tion, such a transition is made easi'r.

The second factor considered in designing KnAc to be applicable to vari-

ous knowledge representations was the choice of a target representation for its
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initial development. The target formalism, as described in Chapter 3, was de-

signed to be fairly general and representative of a large class of frame-based

representations. Though this formalism is neither the intersection nor the union

of these representations, a dilemma facing the designer of any implementation-

independent system, it is intended to contain many of the salient features of this

class of representations. Thus, it was intended that this initial system would

handle at least some of capabilities provided by most such representations.

Another dimension in which KnAc is designed to be generic involves the in-

terface between KnAc and its users. A lesson learned from POISE, a conceptual

ancestor of KnAc in addition to its target expert system, was the distinction be-

tween what information is obtained from (or presented to) the end user and the

manner in which this information is obtained or presented. In addition to the

conceptual clarity this separation provides, it serves to delineate the scope of

this project and provides a clean interface to whatever frontend is most appro-

priate (or available) for a given application. While the example presented herein

described the domain expert interacting with KnAc through a natural language

discourse, nothing in the KnAc system (except for certain knowledge acquisition

heuristics) depends on such an interface; a graphic interface (or menu-driven or

whatever) would serve just as well.

§2. Where KnAc Succeeded

This work has made several contribittins t,, the state of automated knowl-

edge acquisition for expert systems. ir:. :t ,'.,.i p.pr,,clut I,, kr wiedge actiii-

sition was proposed and developed. Though a fundamental part of the current

conventional knowledge base development process, the issue of automatically lo-

5-D-146



cr-ting and appropriately modifying existing knowledge to conform to the domain

experts descriptions has received little, if any, emphasis.

This approach has necessitated a new twist on conventional pattern (or struc-

ture) matching techniques. The fairly generic methods described herein for "set"

and "constraint" matching are tailored to the knowledge acquisition application.

In particular, they have shifted the emphasis from the traditional "How well do

two structures match?" to "How well could they match?".

The likelihood of such matches can only be evaluated in a particular context.

If future modifications to the knowledge can be anticipated, the significance of

specific match discrepancies can be weighed. This work has developed the con-

cept of "expectations" of such modifications and has shown how various aspects

of the knowledge acquisition process may be tapped to produce them.

Specifically, a set of knowledge acquisition heuristics were culled from a series

of (human) protocols and were used by KnAc to anticipate such modifications.

This set, though by no means complete, has been significantly modified and

refined as a result of experimentation with the KnAc system.

Finally, a demonstration system has been implemented and provides a means

of further experimentation. Though the system has shortcomings (see the fol-

lowing section), it has served as a valuable tool for investigating variations to the

matching (and match evaluation) process, the Crr rind rctmient ,r the expecta-

tions generated, and the knowledge acqptisitii heirisfics.
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§3. Where KnAc Failed

Though this work has taken steps towards understanding one aspect of knowl-

edge base development, it has not, unfortunately, solved the knowledge acquisi-

tion crisis. Its shortcomings may be divided into two classes: 1) failure of the

implementation of the KnAc system to provide the functionality proposed by this

approach, and 2) failure of this approach, no matter how well implemented, to

address the problems posed by knowledge acquisition.

The implementation's shortcomings, while not conceptually significant, are

more readily apparent and have served to limit the system's usefulness, even

on an experimental basis. For instance, though KnAc has been designed to be

independent of a particular front-end (i.e., interface to the domain expert), to

date, this has been taken too literally: Currently, there is no convenient means

for interacting with the domain expert. Knowledge acquisition dialogs have been

hand-parsed to obtain simulated output from a discourse parser. Even if a front-

end existed, the current implementation is too slow to be used in "real-time".

(The assimilation of a several sentence "discourse frame" takes several minutes.)

Other issues straddle the boundary between "implementation details" and

"conceptual flaws". Consider, for instance, the question of system initiative. In

a philosophy shared with its ancestor, POISE, KnAc allows a complete spectrum

of system vs. user initiative. The system generaI es 'x p,-fI i,,s ,f ifformali,,n to

be provided by the domain expert. The sysltii is capablh 44 r( 'iainifg passive

and using these expectations to assiniiate whatever informatimn is provided.

Alternatively, it may use these expecl;i i,. I-, itid,,vr,,graI, Oil- expert. Jist as

a (human) knowledge engineer has these options, so has KnAc . However, this

begs the question of deciding the appropriate level of system initiative for a
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given situation. Since this problem is at least as difficult as the issues addressed

herein, it is summarily dismissed.

On the conceptual side, this work set out to examine a very particular model

of the knowledge acquisition process. Specifically, this model assumes that the

domain expert presents the domain information to the knowledge engineer, whose

task is to integrate this information into a knowledge base. It assumes that

the domain expert need not be aware of the form (or even the content) of the

target knowledge base and the knowledge engineer need not be familiar with the

application domain. The role of the domain expert is to provide information

about the domain, not to actively modify the existing knowledge base.

This view was chosen not because it is believed to be the only "correct"

approach to knowledge acquisition. Rather, it was selected because 1) it is a

reasonable model of what currently occurs, 2) it has not been examined before,

and 3) it seems to be a useful component for an overall knowledge acquisition

system. It was studied in isolation for pedagogical reasons; the virtues and

limits of 'this approach were better seen by separating it from other knowledge

acquisition techniques.

Attempting to replicate some of the knowledge acquisition discourse using

this system has proven to be, at times, awkward. While this does not necessarily

imply a failure of this approach, either conceptually or as an implementation,

it emphasizes that this is only part of the total slItih. I pr tic, the. abve

assumptions are often relaxed. The demarcations bchvtwec'i Ohe domain expert,

the knowledge engineer and the knowledge ba se becoyie hirred: The knowledge

engineer acquires some familiarity with, fw I, ;,Pica,-;t .fw ,tiairi; the dofraiil ex-

pert infers portions of the (incorrect) model contained in the knowledge base and

attempts to modify them. Since not all of the actions taken by the knowledge
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engineer (or the domain expert) are easily predicted or explained by this model,

the need to integrate this approach with other knowledge acquisition techniques

becomes apparent.

§4. Where to from Here?

This work represents a first step towards an intelligent knowledge acquisition

system that would assimilate domain information provided by a user into an

expert system's knowledge base. Much work remains before such a system is

realized. Some of this work involves extensions and improvements to the tool

described herein. The integration of this tool with other knowledge acquisition

tools is also highly desirable, while the addition of a more practical interface

between the user and the KnAc system is needed before the system can be truly

useful. Finally, the application of the techniques developed for this work to other

domains and knowledge representations is being considered.

Extensions to the system itself include: 1) capturing more aspects of the

knowledge engineer's expertise through additional knowledge acquisition heuris-

tics; 2) extending the target knowledge representation to more explicitly include

formalisms other than "frames", such as production rules and logic; 3) improved

efficiency to allow real-time interaction. The integration of this tool with a

knowledge base structure editor (i.e., a know,,l," w'qltisiti,'m uat h priiits

direct manipulation of the knowledge structures) slo,,J(d prodllre a powerfIII corn-

bination. This would combine KnAc's knowledge of what information to modify

with a very straightforward means ,, ':", ilvin1, h,,i. lo ,fiidify it. Other tra-

ditional approaches to knowledge acquisition, such as consistency checkers and

error-driven systems, could easily augment KnAc by serving as additional sources
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of "expectations".

Though this system was developed primarily for the construction and modifi-

cation of knowledge bases, other applications of this technology are possible. For

instance, the use of these knowledge acquisition techniques during the running

of the underlying expert system in order to dynamically acquire needed infor-

mation is being considered. Many of the techniques applicable to an explicit

knowledge acquisition dialog (e.g., integration of new information, determining

knowledge base inconsistencies, etc.) could also be useful for implicitly obtaining

and incorporating this "run-time" data.
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APPENDIX A

KNOWLEDGE ACQUISITION INTERVIEW

Introduction: This interview of the COINS department's principle clerk

concerns the completion of travel vouchers for travel undertaken during the course

of studies or research for students or professors at UMass at Amherst. All travel

must be work related.

START OF INTERVIEW

Interviewer: So today is November 8th, and we're doing our second in-

terview with Barbara Gould. This interview concerns vouchers for

travel, i.e., reimbursement for business expenditures.

Clerk: O.K. - on travel. The proper way of doing it, if it's out of state, is

that a travel authorization should be issued before the trip.

time frame 1

It can be set up afterwards, bIj ,,. im, m,,, lik.,: I- ha , il ii beftore

the trip is taken.

time frame 2
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And what you do is list: 1) your destination; 2) the date you plan

on leaving; 3) the date you are returning; 4) how you plan on going

- whether it's plane, bus, private car or whatever; 5) your estimated

expenses, and how much of a reimbursement you're getting - whether

it's a set amount or whether it's full; 6) the purpose of the trip, and,

of course, the account that the money is going to come out of. Then

the traveler has to sign that, and, if it comes out of a grant, the P.I.

(must sign it); if it's state funds then the department head signs it,

but we never get state travel funds. So it had better come out of a

grant or a trust fund.

time frame 3

Then once the traveler is back, we have a voucher form that we have

to fill out - which gives a detailed account of your trip: 1) the date you

left, 2) where you went, like say, you're going to take a plane, then

it would be from Amherst to Bradley - there's mileage here - right

now it's at 20 cents a mile. Then, let's say, you went to Washington,

D.C., you'd list Bradley to Washington. You have to keep receipts for

trains, no, sorry for planes and for the hotel. If it were to a conference,

then the registration fee, and, if you drove your car own car, you have

to have the odometer reading, starting and ending. Meals are a set

rate. You don't need to keep receipts fr I hOwl. l;ixi. I hey (IO.

need receipts - they take your word fo)r it..

tittleq rr':,- -lq I

When you come back, you submit to whoever's doing the voucher for

you, all the receipts you have, and then plan on spending a couple of
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minutes with that person. So she can figure your trip out. Go over

the trip and its details. So she can get all she needs to know.

time frame 5

The time you leave, the time you came back, determines what kind of

meals you are allowed to get. You have to leave at a certain time in

order to be entitled to breakfast, and have to come back at a certain

time in order to be entitled to supper.

time frame 6

In-state travel is different, in that you don't have to have the travel

authorization. So when you come back, you just notify your secretary

and she fills out the form.

time frame 7

If you go on a trip of a duration of less than 24 hours, you are not

entitled to the lunch. Cause, I guess, they figure, you're going to have

lunch anyway. If you leave 2 hours before your regular starting time,

you are entitled to breakfast. If you come back 2 hours after your

regular ending time, you are entitled to stopper.

time frame 8

Oh, your meals right now, depettitg ,,, yir i,i, th're's different

rates. The ones like the professors are: $2.50 for breakfast, ah $2.00

for breakfast, $3.00 for dinner, $6.00 for supper.

5-D-154



time frame 9

Your people, who do not have a union, it is now $4.00 for lunch, $7.00

for supper.

time frame 10

You can get a travel advance. There's two ways of doing that.

time frame 11 --

If it's a professor, and he's getting less than $700, he can go to the bur-

sar's office. Once his travel authorization is filled out and approved,

he can collect a cash advance from them.

. . .. time frame 12 .

If you are a student, you can get it directly from the grant that's

paying your travel, but you have to give us at least a week's notice

in order to get the paperwork processed.

time frame 13

Then the money comes directly froni dic grni.f. ',,'ll g'. a. check

from your account. So it takes, if yott're hicky, yoi n.i gel. it, within

a week. It really shouldn't take loger fit. that..

time frame 14
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Once you get back, you have to file your voucher. If your advance

was more than what you actually spent, then you have to pay the

university back what you didn't spend.

... .... time frame 15

Interviewer: How about like airplanes? Does the person who's going on

the trip make his own airplane reservation?

time frame 16

Clerk: I never make any. I think some of the grant secretaries make them

for their professors. Janet does it for Ed. I suppose if your boss asks

you to, you have to. As a rule, anyone I handle makes his own.

time frame17 1

Interviewer: So I get the impression, that the person who's going to go

on the trip, you know, they contact the P.I., and then they go to the

secretary who handles that particular grant, and then that secretary

wil forward something to the accounting office.

time frame 18

Clerk: Right.

Interviewer: O.K.

Clerk: The authorization, then once they're back we do the voucher. We

have to do the disbursement schedule and then we do the voucher.
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time frame 19

Interviewer: Who, does the accounting office, then issue the check to pay

the person?

time frame 20

Clerk: Right, if they got an advance the check has to go directly to the

bursar's office. This is an advancement office.

time frame 21

The check, on the disbursement schedule, we address it c/o bursar's

office, the check will go to the bursar's office.

--- time frame22 .

They will take what's been given as an advance and then send the

traveler the remaining money, if it's more. If it's less, then they notify

the traveler that they owe money.

time frame 23----------

Interviewer: Does accounting simply make sur" dil. IPm douti. sp,.lld rt,rv

money than you have left, or do they niake sure that thtis is a legiti-

mate expenditure?

time frame 24
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Clerk: Oh, well, I've never known any authorization to be refused. Suppos-

edly if it's on a grant, then it's supposed to be grant related, but I've

never known them to refuse. Just say you're going to a conference

and they usually accept it. I suppose if the accountant felt that the

trip really had nothing to do with the grant, then they might refuse

it, but I've never known that to happen.

time frame 25

Interviewer: O.K.

Clerk: As far as trust fund money is concerned, then they have to get

approved by Dr. Riseman. Then if he says O.K., you can take it

out of the department trust fund. Then it's approved, you know, go

ahead and do it.

time frame 26

Interviewer: Well, this is a lot easier than the other one. I really like ...

Clerk: Yeah, well, the interview part is easy, but the vouchers can be real

tricky, cause people don't do what they say they were going to do, or

they put in a little personal trip along sid-f 4 iH

time frame 27

So you have to explain everytiig ,, I li,. v , hr. So thn. when the

people over there get a hold of it, they can say "O.K., he didn't charge

hotel, cause it was personal", or that his airplane ticket didn't match
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with the amount he's getting reimbursed, cause he went someplace

in addition and he is just charging the fare that a round trip ticket

would normally be to his destination.

time frame 28

Interviewer: So that these forms are pretty much free form, i.e., they allow

you to explain what really happened, rather than trying to fit it into

slots.

time frame 29

Clerk: Yeah, they want you either to explain on the front or, I usually write

a long description on the back. There's one column in here that has

to be explained on the back or the front, saying what the expenses

were for.

time frame 30

And, of course, your receipts have to be submitted with it. You have

to give the original receipts.

time frame 31

Interviewer: O.K.

Clerk: And another thing - say a professor wxvits to take his wife ahlng,

the hotel will be billed for two p'ople. We then need 1 statement

from the hotel stating what the si~igl,, ,moti ral,, w, uid be, and that's

all they will get reimbursed. They don't get reimbursed for their

spouse's half.
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time frame 32

Or sometimes, a student, rather a couple of students, will go to to a

conference. They will share a room. In that case, we get two bills, or

try to get two bills from the hotel stating, you know, and just split it

in half.

time frame 33

Sometimes, the hotel will refuse to do that and so in that case, they

(accounting) will accept a Xerox copy for one of the vouchers, and

you just explain on the back that they shared a room with so-and-so,

and that the original is attached to voucher number such-and-such.

time frame 34

But, it's not that difficult, you know it's just a pain in the neck. Well,

if they do what they're supposed to do, they're fine, but ...

Interviewer: I think this will be a great example of "O.K., it's never done

the way it's supposed to have been done, how are we going to handle

this?" Great, I think that's it.
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APPENDIX B

KNOWLEDGE ACQUISITION HEURISTICS

This appendix contains the knowledge acquisition heuristics currently be-

ing used by the KnAc system. Each heuristic description tells when the heuris-

tic is applicable, what expectations result when it is invoked, how specific the

heuristic is, and its rationale. Note that variables (denoted by ?variable or

?variablo<predicate>) contained in a heuristic's condition clause are bound

when the heuristic is applied; these bindings are used in the generation of the

expectations.

§1. State

The heuristics contained in this section use the state of the information in

the knowledge base to anticipate modifications.

Heuristic S2

If a field of an entity is determined t', c,,i airi Im,', 'ew values, additional values
(of the appropriate type) will be e'xpe 1 Th... -l .... "t't f,'!I size may comime, in
order of specificity, from meta-inforniati,m ahiiI a givcm field 4f a given entity,
via inheritance from a generalization of the entity, from the default information

for class of the entity, or from an overall field default size. This size information
may be static or determined dynamically by the system.
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H_S2 is a MODERATE specificity, STATE heuristic.

Its rationale is:

"Fields vith too few components will be augmented."

It is triggered by:
ENTITY STATE: INSUFFICIENT-VALUES (certainty ?CERTAINTY) for

entity ?ENTITY<IS-A-KNAC-STRUCTURE-P>.
Field: ?FIELD Values: ?VALUES

It results in:
(ADD-EXPECTATION

:MODIFICATION
(MAKE-MODIFICATION

:ACTION-TYPE 'ADD
:FIELD '?FIELD
:VALUE '?NEW-PART<IS-A-KNAC-STRUCTURE-P>
:TARGET '?ENTITY)

:EFFECTIVE-TIME-FRAME 'FADE

:CERTAINTY '?CERTAINTY)

Heuristic S3

Each event may have a pre-condition and a post-condition that must be sat-

isfied when the event is begun and finished, respectively. Each step in an event,

being itself an event, may have a pre- and post-condition. A step's pre-condition

may be satisfied either by the post-condition of an earlier step in the plan or may

be a pre-condition of the (parent) plant. When neither of these situations can be

deduced, it may imply that a step is missing.

H_S3 is a MODERATE specificity, STATE heuristic.
Its rationale is:

"Unsatisfied step preconditions will be satisfied."

It is triggered by:
ENTITY STATE: PRECONDITION-IS-NOT-SATISFIED

(certainty ?CERTAINTY) for
entity ?ENTITY<IS-AN-EVENT-P>.
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Field: PARTS Values: ?VALUES

It results in:
'C, (ADD-EXPECTATION

:MODIFICATION
(MAKE-MODIFICATION

ACTION-TYPE 'ADD
:FIELD 'PARTS
:VALUE '?NEW-STEP<IS-AN-EVENT-P>
:TARGET' ?ENTITY)

:EFFECTIVE-TIME-FRAME 'FADE
:CERTAINTY "?CERTAINTY)

,(ADD-EXPECTATION
:MODIFICATION

(MAKE-MODIFICATION
:ACTION-TYPE 'ADD
:FIELD 'CONSTRAINTS
:VALUE '(BEFORE ?NEW-STEP<IS-AN-EVENT-P>

,(FIRST '?VALUES))
:TARGET "?ENTITY)

EFFECTIVE-TIME-FRAME 'FADE
CERTAINTY '?CERTAINTY))

Heuristic S4

Type-checking is provided by most knowledge bases. If the value of an at-
tribute is not in its permitted range, for example, a modification may be expected.

H..S4 is a SPECIFIC specificity, STATE heuristic.
Its rational, is:

"Attribute values must be within specified ranges."

It is triggered by:
ENTITY STATE: VALUE-RANGE-CONFLICT (certainty ?CERTAINTY)

for entity ?ENTITY<IS-A-KNAC-STRUCTURE-P>.

Field: ATTRIBUTE- V AT.1Fi
Values: (?ATTRIB11*h -,VALUE 7RANGE)

It results in:
(ADD-EXPECTATION
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MODIFICATION

(HAKE-MOD IFICATION
:ACTION-TYPE 'REMOVE

:FIELD 'ATTRIBUTE-VALUES
:VALUE '(?ATTRIBUTE ?VALUE))

:EFFECTIVE-TINE-FRAME
'(UNTIL IS-A?

(GET-ATTRIBUTE-VALUE ?ENTITY ?ATTRIBUTE)

(GET-ATTRIBUTE-RANGE ?ENTITY ?ATTRIBUTE))

:CERTAINTY '?CERTAINTY)

Heuristic S6

If the user refers to an entity not contained in the knowledge base, the addition

of this entity is expected.

HS6 is a SPECIFIC specificity, STATE heuristic.
Its rationale is:

"Referenced entities should exist."

It is triggered by:
ENTITY STATE: UNBOUND-REFERENCE (certainty ?CERTAINTY)

for entity ?ENTITY<IS-A-KNAC-STRUCTUREP>.
Field: ?FIELD

Values: (?NEW-ENTITY ?ENTITY-TYPE)

It results in:
(ADD-EXPECTATION

:MOD IFICATION
(HAKE-MODIFICATION :ACTION-TYPE 'CREATE

:FIELD 0)
VALUE '?ENTITY-TYPE

:TARGET '?NEW-E'TITY)

EFFECTIVE-TIME-FRAME 'FADE

CERTAINTY '?CERTAINTY)
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§2. Modifications

A series of modifications to the knowledge base are often related. Hence, the

occurrence of one such modification may result in the expectation of others. The

heuristics in this section capture this intuition.

Heuristic Ml

After creating a new entity, the addition of its subparts, attributes and spe-
cializations may be expected.

HMI is a MODERATE specificity, MODIFICATION heuristic.
Its rationale is:

"Detailed information usually follows the
introduction of a new entity."

It is triggered by:
MODI: CREATE the (?Entity-type) ?Entityl

It results in:
(LET ((TARGET-TYPE (TYPE-OF (STRUCTURE-EVAL '?ENTITY))))

(MAPC-CONDCONS
#'(LAMBDA (FIELD VALUE-PREDICATE)

(ADD-EXPECTATION
:MODIFICATION
(MAKE-MODIFICATION

:ACTION-TYPE 'ADD
:FIELD FIELD
:VALUE

(MAKE-PATTERN-VAR
:NAME 'NEW-VALUE
:PREDICATE VALUE-PREDICATE)

:TARGET '?ENTITY1)
:EFFECTIVE-TIME-FRAME 'FADE
:CERTAINTY '?RATT1V1 )

'(PARTS SPECIALIZATIONS ATTRIBUTES)
'((LAMBDA (VAL)

(IS-A? VAL ',TARGET-TYPE))
(LAMBDA (VAL)
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(IS-A? VAL ',TARGET-TYPE))

IS-A-KNAC-STRUCTURE-P)))

Heuristic M2

An entity is usually hooked into those entities of which it is a part or into
appropriate generalizations.

HM2 is a MODERATE specificity, MODIFICATION heuristic.
Its rationale is:

"Context information usually follows the

introduction of a now entity."

It is triggered by:

MOD2: CREATE the (?Entity-type) ?Entityl

It results in:
(LET ((TARGET-TYPE (TYPE-OF (STRUCTURE-EVAL '?ENTITYI))))
(MAPC-CONDCONS
#'(LAMBDA (FIELD)

(ADD-EXPECTATION
:MODIFICATION
(MAKE-MODIFICATION

:ACTION-TYPE 'ADD
:FIELD FIELD
:VALUE

(MAKE-PATTERN-VAR
:NAME 'NEW-VALUE
:PREDICATE

'(LAMBDA (VAL)
(IS-A? VAL ',TARGET-TYPE)))

:TARGET ' ENTITY1)
:EFFECTIVE-TIME-FRAME 'FADE
:CERTAINTY '?RATING))

'(GENERALIZATIONS PART-OF)))
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Heuristic M3

Constraints on the range of an attribute or its relations to other attributes
are often provided after the attribute is added.

H_M3 is a MODERATE specificity, MODIFICATION heuristic.
Its rationale is:

"Attributes are usually constrained after
being introduced."

It is triggered by:
MOD3: ADD ?Attribute to the Attribute-names field

of ?Entityl<is-a-knac-structure-p>

It results in:
(ADD-EXPECTATION

-MODIFICATION
(MAKE-MODIFICATION

:ACTION-TYPE 'ADD
:FIELD 'CONSTRAINTS
:VALUE
'(, (GENVAR RELATION IS-A-RELATIONSHIP-P) ?ATTRIBUTE
,(GENVAR ATTRIBUTE IS-A-KNAC-STRUCTURE-P))

:TARGET '?ENTITYI)
:EFFECTIVE-TIME-FRAME 'FADE
:CERTAINTY '?RATING)

Heuristic M4

The relationships of a new part of an entity to existing parts are often added
following the addition of the part. This includes temporal relationships between
steps of an Event and spatial relationships betf i.,, - irt.s ,F ai ()Iject.

H_M4 is a MODERATE specificity, MODIFICATION heuristic.
Its rationale is:

"Parts are usually constrained after being introduced."

It is triggered by:
MOD4: ADD ?Partl to the Parts field

of ?Entityi<is-a-knac-structure-p>
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It results in:
(LET ((PART-TYPE (TYPE-OF (STRUCTURE-EVAL '?ENTITYI))))

(ADD-EXPECTATION
:MODIFICATION

(MAKE-MODIFICATION
:ACTION-TYPE 'ADD
:FIELD 'CONSTRAINTS
:VALUE

'(?RELATIONcIS-A-RELATIONSHIP-P>
?PART1

(HAKE-PATTERN-VAR
:NAME 'PART2
:PREDICATE

'(LAMBDA (PART)
(IS-A? PART ',PART-TYPE))))

:TARGET '?ENTITY1)
EFFECT IVE-TIHE-FRAME 'FADE
CERTAINTY '?RATING))

Heuristic Ma

This is an Event-specific version of heuristic M4.

HM4A is a SPECIFIC specificity, MODIFICATION heuristic.
Its rationale is:

"Parts of Events are usually temporally
constrained after being introduced."

It is triggered by:
MODS: ADD ?Stepi to the Parts field

of ?Eventi<is-an-event-p>

It results in:
(ADD-EXPECTATION

:MODIFICATION
(HAKE-MODIFICATION

:ACTION-TYPE 'ADD
:FIELD 'CONSTRAINTS
:VALUE

'(?TEMPORAL-RELATION<IS-A-TEMPORAL-RELATIONSHIP-P>
?STEPI ?STEP2<IS-AN-EVENT-P>)



:TARGET P?EVENTI)
EFFECTIVE-TIME-FRAME 'FADE

:CERTAINTY '?RATING)

Heuristic M4b

This is an Object-specific version of heuristic M4.

HM4B is a SPECIFIC specificity, MODIFICATION heuristic.
Its rational. is:

"Parts of Objects are usually spatially
constrained after being introduced."

It is triggered by:
MOD6: ADD ?Piecei to the Parts field of

?Obj oct 1<is-an-obj ect-p>

It results in:
(ADD-EXPECTATION

:MODIFICATION
(HAKE-MOD IFICATION

.ACTION-TYPE 'ADD
:FIELD 'CONSTRAINTS
* VALUE

'(?SPATIAL-RELATION<IS-A-SPATIAL-RELATIONSHIP-P>
?PIECE1 ?PIECE2<IS-AN-OBJECT-P>)

:TARGET '?OBJECTI)

EFFECTIVE-TIME-FRAME 'FADE
:CERTAINTY "?RATING)

Heuristic M5

This is a more constrained version of hetiristic Nil.

HMS is a MODERATE specificity, ti1lr'ATrtflf heuiristic.
Its rational, is:

"Adding two parts to an entity usually
implies a relation between them."

5-D-169



It is triggered by:
(AND

MOD7: ADD ?Partl to the Parts field
of ?Entityl<iu-a-knac-structure-p>

MODS: ADD ?Part2 to the Parts field
of ?Entityi<is-a-knac-structure-p>)

It results in:
(ADD-EXPECTATION

:MODIFICATION

(MAKE-MODIFICATION
ACTION-TYPE 'ADD

:FIELD 'CONSTRAINTS
:VALUE

'(?RELATIONi<IS-A-KNAC-RELATION-P>
?PART1 ?PART2)

:TARGET '?ENTITY1)

:EFFECTIVE-TIME-FRAME 'FADE
:CERTAINTY '?RATING)

Heuristic M5a

This is an Event-specific version of heuristic MS.

H_.M6A is a SPECIFIC specificity, MODIFICATION heuristic.

Its rationale is:
"Adding two steps to an event usually implies

a temporal relation between these steps."

It is triggered by:
(AND
MOD9: ADD ?Stepl to the Parts field

of ?Ev~nt1<is-an-event-p>
MODlO: ADD ?Step2 to the Parts field

of ?Eventl<is-an-event-p>)

It results in:

(ADD-EXPECTATION
: MODIFICATION

(MARE-MODIFICATION
ACTION-TYPE 'ADD

5-D-170



:FIELD 'CONSTRAINTS

: VALUE
'(?TEMPORL-RELATIONI<IS-A-TEMPO1L-RELATIONSHIP-P>

?STEPi ?STEP2)

:TARGET '?EVENT1)
:EFFECTIVE-TIME-FRAME 'FADE
:CERTAINTY '?RATING)

Heuristic M5b

This is an Object-specific version of heuristic M5.

H_M5B is a SPECIFIC specificity, MODIFICATION heuristic.
Its rationale is:

"Adding two parts to an object usually implies

a spatial relation between these steps."

It is triggered by:
(AMD
MODlI: ADD ?Piecel to the Parts field

of ?Obj ect 1<is-an-obj ect-p>
MOD12: ADD ?Piece2 to the Parts field

of ?Objectl<is-an-object-p> )

It results in:
(ADD-EXPECTATION

:MODIFICATION
(MAKE-MODIFICATION

: ACTION-TYPE 'ADD
:FIELD 'CONSTRAINTS
: VALUE

'(?SPATIAL-RELATIONI<IS-A-SPATIAL-RELATIOINSHIP-P>
?PIECE1 ?PIECE2)

:TARGET '?OBJECTI)
:EFFECTIVE-TIME-FRAME 'FADE
:CERTAINTY "RATING)
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Heuristic M6

Any entity containing a reference to a deleted entity may expect a modifica-
tion to its field that contains this reference.

H_M6 is a MODERATE specificity, MODIFICATION heuristic.
Its rationale is:

"Pointers to an Entity usually change if the
entity is deleted."

It is triggered by:
MOD13: DELETE ?Entityi<is-a-knac-structure-p>

It results in:
(ADD-EXPECTATION

:MODIFICATION

(MAKE-MODIFICATION
:ACTION-TYPE 'REMOVE
:VALUE '?ENTITY1
:TARGET '?ENTITY2<IS-A-KNAC-STRUCTURE-P>
:FIELD '?FIELD)

:EFFECTIVE-TIME-FRAME 'FADE
:CERTAINTY '?RATING)

Heuristic M7

Since several modifications to an entity often occur together, one modification
to a particular entity makes that entity a likely candidate for other modifications.
Basically, this is the same principle used in caching.

H_M7 is a VAGUE specificity, MODIFICATION heuristic.
Its rationale is:

"Recently modified entities may be
modified again or referenced."

It is triggered by:
MOD14: ?ACTIONI<(LAMBDA (ACTInlrH

(NOT (EQL ACTION 'DELETE)))>
?Valuei to/from the ?Field1 field
of ?Entityl<is-a-knac-structure-p>
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It results in:
(CONDCONS

(ADD-EXPECTATION

MODIFICATION

(MAKE-MODIFICATION
.ACTION-TYPE '?ACTION2

:TARGET 17ENTITYI

:FIELD '?FIELD2
:VALUE '?VALUE2)

EFFECTIVE-TIME-FRAME 'FADE
:CERTAINTY '?RATING)

(COIDCONS
(ADD-EXPECTATION

:MODIFICATION

(MAKE-MODIFICATION
ACTION-TYPE '?ACTION2
:TARGET '?ENTITY2
:FIELD '?FIELD2
:VALUE '?ENTITY1)

EFFECTIVE-TINE-FRAME 'FADE
:CERTAINTY 'mRATING)

0))

§3. Discourse

The discourse between the domain expert and the knowledge engineer (or

KnAc), whether it be via "natural language" or another type of interface, provides

certain cues from which information may be anliciprltifed. The more sophisticated

the disecourse manager, the larger the set of stidi rs thfl, it. c-an detect.. Since

K"Ac's current interface is quite primitive, the cuirret set of discoitrse heutristics

is minimal.
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Heuristic D1

If the discourse manager is able to determine the topics of a discourse, the
portions of the knowledge base most likely to be of interest are probably near
these topics.

HDI is a VAGUE specificity, DISCOURSE heuristic.

Its rationale is:

"Entities close to specified topics

are likely to be referenced or modified."

It is triggered by:

?TOPIC<IS-A-KNAC-STRUCTURE-P>

It results in:

(MAPC-APPEND
* '(LAMBDA (EACH-CLOSE-ENTITY-INFO)

(LET* ((EACH-CLOSE-ENTITY
(FIRST EACH-CLOSE-ENTITY-INFO))

(DISTANCE (REST EACH-CLOSE-ENTITY-INFO))
(MAX-DISTANCE (1+ *DEFAULT-SEARCH-DISTANCE*))

(ENTITY-CERTAINTY
( (- MAX-DISTANCE DISTANCE) MAX-DISTANCE))

(EXP-1

(ADD-EXPECTATION
:MODIFICATION

(MAKE-MODIFICATION
:ACTION-TYPE '?ACTION

:FIELD '?FIELD
:VALUE '?VALUE
:TARGET EACH-CLOSE-ENTITY)

:EFFECTIVE-TIME-FRAME
'(WHILE MEMBER '7TOPIC *TOPICS*)

:CERTAINTY ENTITY-CERTAIINTY))

(EXP-2
(ADD-EXPECTATION

:MODIFICATION
(MAKE-MODIFICATIn fli

:ACTION-TYPE 'FAcTIUIT
:FIELD '?FIELD

:VALUE EACH-CLOSE-ENTITY
:TARGET '?TARGET<IS-A-KNAC-STRUCTURE-P>)
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:EFFECTIVE-TIME-FRAME
'(WHILE MEMBER '?TOPIC *TOPICS*)

:CERTAINTY ENTITY-CERTAINTY)))

(CONDCONS EXP-1 (CONDCONS EXP-2 C)))))
(FIND-CLOSE-ENTITIES '?TOPIC))

Heuristic D2

There is generally some degree of continuity in a discourse. An entity is
usually not referenced and then never mentioned again. Thus, referenced entities
are likely candidates for future reference or modification.

H_D2 is a VAGUE specificity, DISCOURSE heuristic.
Its rationale is:

"Referenced entities are likely
to be modified or referenced again."

It is triggered by:
?DISCOURSE-MATCH<(LAMBDA (VAR)

(TYPEP VAR 'DISCOURSE-MATCH))>

It results in:

(LET ((KB-ENTITY
(DISCOURSE-MATCH-KB-ENTITY ?DISCOURSE-MATCH))

(MATCH-RATING
(DISCOURSE-MATCH-RATING ?DISCOURSE-MATCH)))

(WHEN KB-ENTITY

(MAPC-APPEND
#'(LAMBDA (EACH-CLOSE-ENTITY-INFO)

(LET* ((EACH-CLOSE-ENTITY
(FIRST EACH-CLOSE-ENTITY-INFO))

(DISTANCE (REST EACH-CLOSE-ENTITY-INFO))
(MAX-DISTANCE

(1+ *DEFAULT-SEARCH-DISTAJCE*))

(ENTITY-RATING
(U (- MAX-DISTANCE DISTANCE)

MAX-DISTfirr11
(CERTAINTY (COIBIIIE-CERTAIHTIES

MATCH-RATING ENTITY-RATING))
(EXP-1

(ADD-EXPECTATION
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:MODIFICATION

(MAKE-MODIFICATION
:ACTION-TYPE '?ACTION
:TARGET EACH-CLOSE-ENTITY
:FIELD '?FIELD
:VALUE '?VALUE)

:EFFECTIVE-TIME-FRAME 'FADE

:CERTAINTY CERTAINTY))

(EXP-2
(ADD-EXPECTATION

:MODIFICATION
(MAKE-MODIFICATION

:ACTION-TYPE '?ACTION
:TARGET ?TARGET
:FIELD '?FIELD

:VALUE EACH-CLOSE-ENTITY)

:EFFECTIVE-TIME-FRAME 'FADE

:CERTAINTY CERTAINTY)))

(CONDCONS EXP-1 (CONDCONS EXP-2 0))))
(FIND-CLOSE-ENTITIES KB-ENTITY))))
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APPENDIX C

SAMPLE KNAC RESULTS

This appendix contains the results of running the KnAc system on the dis-
course shown in Appendix A. For each discourse frame, a portion of the discourse
was parsed, by hand, into the descriptions shown. These descriptions were com-
pared to the indicated candidate knowledge base structures. Where no similar
structures are found, the new descriptions were added to the knowledge base.
Where sufficiently similar structures were identified, the ensuing modifications
were made.

§1. FRAME-i

Interviewer: So today is November 8th, and we're doing our second
interview with Barbara Gould. This interview
concerns vouchers for travel, i.e., reimbursement
for business reimbursement for business

expenditures.

Clerk: O.K. -- on travel. The proper way of doing it, if
it's out of state, is that a travel authorization

should be issued before the trip.

------ Discourse structures-------

{ EVENT: Event-i

CONSTRAINTS: ( (EQUAL ACTOR IS"T-F TnAVI.F AITTHORIZATION.ISSUEE)

(EQUAL DESTINATIOIIS TAKE_ATRIP.DESTINATIONS)
(BEFORE ISSUETRAVELAUTHORIZATION TAKEATRIP)
(EQUAL ISSUETRAVELAUTHORIZATION. ISSUEE

TAKEATRIP. TRAVELER)
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(OUTSIDE DESTINATION STATE) )

ATTRIBUTES: ( (DESTINATIONS TAKEATRIP.DESTINATIONS)
(ACTOR ISSUETRAVELAUTHORIZATION. ISSUEE) )

PARTS: ( ISSUETRAVELAUTHORIZATION
TAKEATRIP )

GENERALIZATIONS: ( EVENT )

TEMPORAL-RELATIONSHIPS: ( (ISSUETRAVELAUTHORIZATION BEFORE

TAKE.ATRIP) ) }

OBJECT: Travel-Authorization

PARTS: ( GRANT
DESTINATION
DEPARTURE-DATE
RETURN-DATE
TRUST-FUND
STATE-FUNDS
DEPARTMENT-HEAD
P-I
MEANS-OF-TRANSPORT )

GENERALIZATIONS: ( FORM )

ASSOCIATED-EVENTS: ( FILLOUTTRAVELAUTHORIZATION

SIGNFORM<i>
SIGNFORM<2>
SENDTRAVELAUTHORIZATIONTOACCOUNTING ) }

EVENT: TakeATrip

ATTRIBUTES: ( (DESTINATION NIL (RANGE LOCATION))
(TRAVELER NIL (RANGE PERSON)) )

PART-OF: C EVENT-3
EVENT-1 )

GENERALIZATIONS: ( EVENT ) }
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{ EVENT: IssueTravelAuthorization

ATTRIBUTES: ( (ISSUER NIL (RANGE PERSON))

(ISSUEE NIL (RANGE PERSON))
(ISSUE-TIME NIL (RANGE . TIME)) )

PART-OF: ( EVENT-i )

GENERALIZATIONS: ( ISSUE )

ASSOCIATED-OBJECTS: ( TRAVEL-AUTHORIZATION ) }

------ KB Candidates-------

0.300 TRAVEL
0.240 TAKEATRIP
0.200 DESTINATION

0.200 SOURCE
0.200 MAKEARESERVATION
0.200 PAY
0.200 GO-SOMEWHERE

0.200 DRIVE
0.200 FLY

0.200 TRAVELER
0.200 EVENT
0.196 TAKEATRIPANDGETPAID
0.196 VISIT

------ Selected matches-------

TAKEATRIP already in KB

No match found for ISSUETRAVELAUTHORIZATION

No match found for TRAVEL-AUTHORIZATION

EVENT.-i matches TAKEATRIPANDGET-PAID (0.285)
closest:

0.27 0.30 TAKE_A_TRrXA.IGET_PA1D
0.27 0.20 VISIT
0.24 0.17 MAKEARESERVATION
0.24 0.17 TRAVEL
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- Performed modifications -

MOD174: CREATE the event Issue.travel-authorization

MOD175: ADD Issue-time to the Attribute-names field
of Issue-travel-authorization

MODI76: ADD Issues to the Attribute-names field
of Issue-travel-authorization

MOD177: ADD Issuer to the Attribute-names field

of Issue-travel-authorization

MODI78: ADD (Issuer nil (range . person)) to the Attributes
field of Issue-travel.authorization

MODI79: ADD (Issues nil (range . person)) to the Attributes
field of Issue-travel.authorization

MODI8O: ADD (Issue-time nil (range . time)) to the Attributes
field of Issue-travel.authorization

MODI8I: ADD Event-i to the Part-of field
of Issue-travel-authorization

MOD182: ADD Issue to the Generalizations field
of Issue-travel-authorization

MOD183: ADD Travel-authorization to the Associated-objects
field of Issue-travel.authorization

MODS31: CREATE the object Travel-authorization

MODS32: ADD Form to the Generalizations field
of Travel-authorization

MOD533: ADD Issue-travelauthorizntio to the Associated-events

field of Travel-auth,'ri7ation

MOD1154: ADD Issue-travel-authorization to the Parts
field of Take-atrip-and.get-paid
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Mod certainty: 0.036
Expected: 0.332(avg) 0.480(max) 0.719(ind)

MODI156: ADD Actor to the Attribute-names field of
Take-a-trip-and-get-paid

Mod certainty: 0.002

Expected: 0.157(avg) 0.157(max) 0.157(ind)

MOD1262: ADD (Outside destination state) to the

Constraints field of Take-a-trip-andget.paid

Mod certainty: 0.048

MOD1263: ADD (Before issuetravel-authorization take.atrip
to the Constraints field of Takea-trip-and.get-paid

Mod certainty: 0.048

MOD1264: ADD (Equal actor issue-travel-authorization.issuee) to
the Constraints field of Take-a-tripand.get.paid

Mod certainty: 0.048

MOD1265: ADD (Equal issue-travel-authorization.issuee
get.reimbursed.recipient)

to the Constraints field of Take-a-tripandget.paid
Mod certainty: 0.048

§2. FRAME-2

Clerk: It can be set up aftervards, but accounting likes to

have it in before the trip is taken.

------ Discourse structures-------

{ OBJECT: Accounting

GENERALIZATIONS: ( DEPARTMENT )

ASSOCIATED-EVENTS: ( SENDTRAVELAUTHORIZATIONTOACCOUNTING ) }

{ OBJECT: Travel-Authorization
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PARTS: ( GRANT

DESTINATION

DEPARTURE-DATE
RETURN-DATE
TRUST-FUND
STATE-FUNDS
DEPARTMENT-HEAD
P-I

MEANS-OF-TRANSPORT )

GENERALIZATIONS: ( FORM )

ASSOCIATED-EVENTS: ( FILLOUTTRAVELAUTHORIZATION
SIGNFORM<I>
SIGN.FORM<2>
SEND.TRAVELAUTHORIZATIONTOACCOUNTING ) }

{ EVENT: SendTravelAuthorizatio_.ToAccounting

CONSTRAINTS: ( (EQUAL INFORMATION 'TRAVEL-AUTHORIZATION)
(EQUAL RECIPIENT 'ACCOUNTING) )

ATTRIBUTES: ( (SENDER NIL (RANGE . PERSON))

(RECIPIENT 'ACCOUNTING)
(INFORMATION 'TRAVEL-AUTHORIZATION) )

GENERALIZATIONS: ( SEND-INFORMATION )

ASSOCIATED-OBJECTS: ( TRAVEL-AUTHORIZATION

ACCOUNTING ) }

------ KB Candidates-------

0.480 TRAVEL-AUTHORIZATION

0.480 ISSUETRAVELAUTHORIZATION
0.384 VISIT

0.384 EVENT
0.384 TRAVELER

0.384 FLY
0.384 DRIVE
0.384 GO-SOMEWHERE
0.384 PAY
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0.384 MAKEARESERVATION
0.384 SOURCE

0.384 DESTINATION
0.384 TAKE_1ATRIPANDGETPAID
0.384 TAKEATRIP
0.288 TRAVEL
0.240 ACCOUNTING
0.196 UNIVERSITY
0.196 DEPARTMENT
0.196 OBJECT

0.196 FORM

------ Selected matches-------

TRAVEL-AUTHORIZATION ACCOUNTING already in KB

No match found for SENDTRAVELAUTHORIZATIONTOACCOUNTING

------ Performed modifications-------

MOD1555: CREATE the event Send-travel-authorization-toaccounting

MOD156: ADD (Equal information 'travel-authorization) to the
Constraints field of
Send-travel-authorization-to-accounting

MOD1557: ADD (Equal recipient 'accounting) to the Constraints
field of Send-travel-authorization-toaccounting

MOD1558: ADD Information to the Attribute-names field of
Send-travel-authorization-to-accounting

MOD1559: ADD Recipient to the Attribute-names field of
Sond-travel-authorization_-to-acounting

MOD1560: ADD Sender to the Attribute-names field of

Sendtravel-authorizationto-accounting

MOD1561: ADD (Sender nil (range . rs(n)) E:o the Attributes field
of Send-travel-authorization-to-accounting

MOD1562: ADD (Recipient 'accounting) to the Attributes field of
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Send.travel-authorization-to-accounting

MOD1563: ADD (Information 'travel-authorization) to the Attributes
field of Send-travel-authorization-to-accounting

MOD1564: ADD Send.information to the Generalizations field
of Send-travel-authorization-to.accounting

MOD1565: ADD Travel-authorization to the Associated-objects
field of Send-travel-authorization-to-accounting

Expected: 0.192(avg) 0.192(max) 0.656(ind)

MOD1566: ADD Accounting to the Associated-;objects field of

Send-travel-authorization-to-accounting
Expected: O.192(avg) O.192(max) O.192(ind)

§3. FRAME-3

Clerk: And what you do is list: ) your destination; 2) the
date you plan on leaving; 3) the date you are
returning; 4) how you plan on going - whether it's
plane, bus, private car or whatever; 5) your

estimated expenses, and how much of a reimbursement
you're getting - whether it's a set amount or
whether it's full; 6) the purpose of the trip, and,

of course, the account that the money is going to
come out of. Then the traveler has to sign that,

and, if it comes out of a grant, the P.I. (must sign
it); if it's state funds then the department head
signs it, but we never got state travel funds. So it
better come out of a grant or a trust fund.

----- Discourse structures-------

EVENT: Sign-Form

CONSTRAINTS: ( (EQUAL SIGNEE 'TRAVELER)
(EQUAL SIGNEE 'P.I.) )

ATTRIBUTES: ( (SIGNEE 'TRAVELER)
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(SIGNEE 'P.I.) )

PART-OF: ( FILLOUTTRAVELAUTHORIZATION )

GENERALIZATIONS: ( EVENT )

ASSOCIATED-OBJECTS: ( TRAVEL-AUTHORIZATION) }

{ OBJECT: Private-Car

ATTRIBUTES: ( (START-ODOMETER-READING NIL (RANGE NUMBER))
(END-ODOMETER-READING NIL (RANGE . NUMBER)) )

GENERALIZATIONS: C OBJECT ) }

{ OBJECT: Bus

GENERALIZATIONS: ( MEANS-OF-TRANSPORT ) I

{ OBJECT: Plane

GENERALIZATIONS: MEANS-OF-TRANSPORT ) }

{ OBJECT: Means-Of-Transport

PART-OF: ( TRAVEL-AUTHORIZATION )

SPECIALIZATIONS: TAXI
PLANE

BUS

PRIVATE-CAR )

GENERALIZATIONS: C OBJECT ) I

{ OBJECT: P-I

PART-OF: ( TRAVEL-AUTHORIZATION )

GENERALIZATIONS: ( PERSON ) I

{ OBJECT: Department-Head
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PART-OF: ( TRAVEL-AUTHORIZATION )

GENERALIZATIONS: ( PERSON ) I

OBJECT: State-Funds

PART-OF: ( TRAVEL-AUTHORIZATION )

GENERALIZATIONS: ( MONEY )

OBJECT: Trust-Fund

PART-OF: ( TRAVEL-AUTHORIZATION )

GENERALIZATIONS: ( MONEY

{ OBJECT: Return-Date

PART-OF: ( TRAVEL-AUTHORIZATION )

GENERALIZATIONS: ( DATE ) I

OBJECT: Departure-Date

PART-OF: ( TRAVEL-VOUCHER )

GENERALIZATIONS: ( DATE )

OBJECT: Destination

PART-OF: ( TRAVEL-VOUCHER)

GENERALIZATIONS: ( LOCATION ) I

OBJECT: Grant

PART-OF: ( TRAVEL-AUTHORIZATION )

GENERALIZATIONS: ( MONEY )

{ EVENT: SignForm<2>
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CONSTRAINTS: ( (EQUAL SIGNEE 'P.I.) )

ATTRIBUTES: ( (SIGNEE 'P.I.) )

PART-OF: ( FILLOUTTRAVELAUTHORIZATION )

GENERALIZATIONS: ( EVENT )

ASSOCIATED-OBJECTS: ( TRAVEL-AUTHORIZATION) }

{ EVENT: SignForm<i>

CONSTRAINTS: ( (EQUAL SIGNEE 'TRAVELER) )

ATTRIBUTES: ( (SIGNEE 'TRAVELER) )

PART-OF: ( FILLOUTTRAVELAUTHORIZATION )

GENERALIZATIONS: ( EVENT )

ASSOCIATED-OBJECTS: ( TRAVEL-AUTHORIZATION) }

{ EVENT: FillOutFormField<7>

CONSTRAINTS: C (EQUAL FIELD 'PURPOSE) )

ATTRIBUTES: C (FIELD 'PURPOSE) )

PART-OF: ( FILLOUTTRAVELAUTHORIZATION )

GENERALIZATIONS: ( EVENT ) }

{ EVENT: FillOutFormField<6>

CONSTRAINTS: ( (EQUAL FIELD 'REIMBURSEMENT) )

ATTRIBUTES: ( (FIELD 'REIMBURSEMENT) )

PART-OF: ( FILLOUTTRAVELAUTIIUP.IZAIUII

GENERALIZATIONS: ( EVENT ) }
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{EVENT: Fill..Out_.FozmField<5>

CONSTRAINTS: ((EQUAL FIELD 'ESTIMATED-EXPENSES))

ATTRIBUTES: ((FIELD 'ESTIMATED-EXPENSES))

PART-OF: ( FILL.OUT-.TRAVEL-.AUTHORIZATION)

GENERALIZATIONS: ( EVENT)}

{EVENT: Fi11..Out-.FormField<4>

CONSTRAINTS: ((EQUAL FIELD 'MEANS-OF-TRAVEL))

ATTRIBUTES: C(FIELD 'MEANS-OF-TRAVEL) )

PART-OF: ( FILL-.OUT..TRAVEL-.AUTHORIZATION)

GENERALIZATIONS: ( EVENT ) I

{EVENT: Fill..0ut.Form..Field<3>

CONSTRAINTS: C(EQUAL FIELD 'RETURN-DATE))

ATTRIBUTES: C(FIELD 'RETURN-DATE) )

PART-OF: ( FILL-.OUT-.TRAVEL-.AUTHORIZATION)

GENERALIZATIONS: ( EVENT)}

{EVENT: Fill-Out..Form-Field<2>

CONSTRAINTS: ((EQUAL FIELD 'DEPARTURE-DATE))

ATTRIBUTES: ((FIELD 'DEPARTURE-DATE) )

PART-OF: ( FILL-OUT-TRAVEL-.AUTHORIZATION)

GENERALIZATIONS: ( EVENT ) I

{EVENT: Fill-Out.Form..Field<1)



CONSTRAINTS: ((EQUAL FIELD 'DESTINATION))

ATTRIBUTES: ((FIELD 'DESTINATION) )

PART-OF: ( FILL-.OUT-.TRAVEL.AUTHORIZATION)

GENERALIZATIONS: ( EVENT ) )

{EVENT: Fi11..Out.Travel-.Authorizat ion

CONSTRAINTS: ( (SAME-.AS FORM-FILLER 'TRAVELER)
(IMPLIES

(SAME-AS REIMBURSEMENT. SOURCE 'STATE-FUNDS)
(SAME-AS AUTHORIZER 'DEPARTMENT-HEAD))

(DIFFERENT-.THAN REINBURSEMENT. SOURCE
'STATE-FUNDS))

ATTRIBUTES: ( (FORM-FILLER NIL (RANGE PERSON))
(AUTHORIZER NIL (RANGE PERSON)))

PARTS: CFILL-.OUT-.FORM-.FIELD<l>
FILL-OUT-.FOR1'LFIELD<2>
FILL-.OUT-.FOR-FIELD<3>
FILL-OUT-.FORM-FIELD<4>
FILL-.OUT-.FORM-.FIELD<S>
FILL-.OUT..FORM-.FIELD<6>
FILL-OUT-FORM-.FIELD<7>

SIGN-.FORM<1>

SIGN-.FORM<2>)

GENERALIZATIONS: ( FILL_OUT_.FORM)

ASSOCIATED-OBJECTS: ( TRAVEL-AUTHORIZATION
TRAVELER
REIMBURSEMENT I

----KB Candidates -------

0.480 SEND-.TRAVEL-.AUTHORIZATIOIT'rL.)ACCWJNlTI HG
0.384 FORM
0.384 OBJECT
0.384 DEPARTMENT
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0.384 UNIVERSITY
0.384 ACCOUNTING

0.384 TRAVEL-AUTHORIZATION

0.384 ISSUETRAVELAUTHORIZATION
0.384 VISIT
0.384 EVENT
0.384 TRAVELER

0.384 FLY
0.384 DRIVE
0.384 GO-SOMEWHERE

0.384 PAY
0.384 MAKEA..RESERVATION

0.384 SOURCE
0.384 DESTINATION
0.384 TAKEATRIP
0.384 TAKEATRIPANDGETPAID
0.288 TRAVEL
0.240 DEPARTMENT-HEAD

0.240 GRANT

----- Selected matches-------

GRANT FILLOUTFORMFIELD DESTINATION DEPARTMENT-HEAD already in KB

No match found for FILLOUTTRAVELAUTHORIZATION

No match found for SIGN-FORM

closest:
0.28 0.17 TAKEATRIPANDGETPAID
0.26 0.22 ISSUETRAVELAUTHORIZATION
0.24 0.17 TAKEATRIP
0.24 0.17 VISIT
0.22 0.14 TRAVEL

No match found for DEPARTURE-DATE

No match found for RETURN-DATE

No match found for TRUST-FUND

No match found for STATE-FUNDS
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No match found for P-I

closest:
0.42 0.25 TRAVELER

No match found for MEANS-OF-TRANSPORT

No match found for PLANE

No match found for BUS

No match found for PRIVATE-CAR

------ Performed modifications-------

MOD2613: CREATE the event Fill-outtravel-authorization

MOD2614: ADD (Same-as form-filler 'traveler) to the Constraints
field of Fill-out-travel-authorization

MOD2615: ADD (Implies (sameas reimbursement.source 'state-funds)
(sameas authorizer 'department-head))

to the Constraints field of

Fill-out-travel-authorization

MOD2616: ADD (Different-than reinbursement.source 'state-funds)
to the Constraints field of

Fill-out-travel-authorization

MOD2617: ADD Authorizer to the Attribute-names field of

Fill-out-travel-authorization

MOD2618: ADD Form-filler to the Attribute-names field of
Fill-out-travel-authorization

MOD2619: ADD (Form-filler nil (range person)) to the Attributes
field of Fill-out-travel-authorization

MOD2620: ADD (Authorizer nil (r ng,- pers,,n)) to the Attributes

field of Fill-out-travel-authorization

MOD2621: ADD Fill-out-form-field<l> to the Parts field
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of Fill.-out-.travel-.authorization
Expected: O.192(avg) O.192(max) Q.192(ind)

M0D2622: ADD Fill-out-.form..field<2> to the Parts field of
Fill-out-.travel-authorizat ion

Expected: O.192(avg) O.192(max) O.i92Cind)

M0D2623: ADD Fill..out-form-.field<3> to the Parts field of
Fill-out.travel-authorization

Expected: 0. l92Cavg) 0.192Cmax) 0.192(ind)

M0D2624: ADD Fill-.out-.formfield<4> to the Parts field of
Fill-.out.travel.authorizat ion

Expected: O.192(avg) O.192(max) 0. 192(ind)

MO0D2625: ADD Fill-.out.formfield<5> to the Parts field of
Fill..out-.travel.authorization

Expected: 0. 192(avg) O.192(max) 0. 192(ind)

M0D2626: ADD Fillout-form..field<6> to the Parts field of
Fill-.out.travel-.authorizat ion

Expected: 0. 192(avg) 0. 192(max) 0. 192(ind)

M0D2627: ADD Fillout-form-.field<7> to the Parts field of
Fill-out-.travel-authorizat ion

Expected: O.i92(avg) 0.i92(max) 0.192(ind)

M0D2628: ADD Sign-.form<i> to the Parts field of
Fillout-travel,.authorization

M0D2629: ADD Sign-.form<2> to the Parts field of
Fill-.out-.travel-.authorizat ion

M0D2630: ADD Fill-out-form to the Generalizations field of
Fill-.out..travel-.authorizat ion

M0D2631: ADD Travel-authorization to the Associated-objects
field of Fill-out-trmrl %iith-~rization

Expected: 0.192(avg) o1.192( ma,,) ').192(ind)

M0D2632: ADD Traveler to the Associated-objects field of
Fill-.out-travel-authorization
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MOD2633: ADD Reimbursement to the Associated-objects field of

Fill-out .travel-authorizat ion

MOD3476: CREATE the event Sign-form<i>

MOD3477: ADD (Equal signee 'traveler) to the Constraints field of
Signdform<1>

MOD3478: ADD Signee to the Attribute-names field of Sign-form<I>

MOD3479: ADD (Signee 'traveler) to the Attributes field of
Sign-form<i>

MOD3480: ADD Fill-out-travel-authorization to the Part-of field of
Sign-form<1>

MOD3481: ADD Event to the Generalizations field of Signform<1>

MOD3482: ADD Travel-authorization to the Associated-objects field
of Sign-form<1>

Expected: O.192(avg) O.192(max) O.192(ind)

MOD3983: CREATE the event Sign-form<2>

MOD3984: ADD (Equal signee 'p.i.) to the Constraints field of
Sign-form<2>

MOD3985: ADD Signee to the Attribute-names field of Sign-form<2>

NOD3986: ADD (Signee 'p.i.) to the Attributes field of

Sign-form<2>

MOD3987: ADD Fill-out-travel-authorization to the Part-of field of
Sign.form<2>

MOD3988: ADD Event to the Generalizations field of Sign-form<2>

MOD3989: ADD Travel-authorizati,, t,,, the Asociated-objects field

of Sign-form<2>
Expected: O.192(avg) O.192(max) O.192(ind)
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MOD4496: CREATE the object Departure-date

MOD4497: ADD Travel-authorization to the Part-of field of
Departure-date

Expected: O.192(avg) 0.192(max) 0.192(ind)

MOD4498: ADD Date to the Generalizations field of Departure-date

MOD4892: CREATE the object Return-date

MOD4893: ADD Travel-authorization to the Part-of field of
Return-date

Expected: O.192(avg) O.192(max) O.192(ind)

MOD4894: ADD Date to the Generalizations field of Return-date

MODS288: CREATE the object Trust-fund

MOD5289: ADD Travel-authorization to the Part-of field of
Trust -fund

Expected: O.192(avg) 0.192(max) O.192(ind)

MODS290: ADD Money to the Generalizations field of Trust-fund

MOD5711: CREATE the object State-funds

MOD5712: ADD Travel-authorization to the Part-of field of

State-funds
Expected: O.192(avg) 0. 192(max) 0. 192(ind)

MODS713: ADD Money to the Generalizations field of State-funds

MOD6137: CREATE the object P-i

MOD6138: ADD Travel-authorization to the Part-of field of P-i
Expected: 0.192(avg) 0.I192(maz) O.192(ind)

MOD6139: ADD Person to the Generp.i.7., n field of P-i

MOD6531: CREATE the object Means-of-transport

MOD6532: ADD Travel-authorization to the Part-of field of
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Means-of-transport

Expected: O.192(avg) O.192(max) O.192(ind)

MOD6533: ADD Plane to the Specializations field of

Means-of-transport

MOD6534: ADD Bus to the Specializations field of
Means-of-transport

MOD6535: ADD Private-car to the Specializations field of
Means-of-transport

MOD6536: ADD Object to the Generalizations field of
Means-of-transport

Expected: O.157(avg) O.157(max) O.157(ind)

MOD6993: CREATE the object Plane

MOD6994: ADD Means-of-transport to the Generalizations field of
Plane

MOD7372: CREATE the object Bus

MOD7373: ADD Means-of-transport to the Generalizations field of
Bus

MOD7751: CREATIL the object Private-car

MOD7752: ADD Means-of-transport to the Generalizations field of

Private-car

§4. FRAME-4

Clerk: Then once the traveler is back, we have a voucher
form that we have to fill out - which gives a
detailed account of your tri- I) th date you left,

2) where you went, like say, you're going to take a
plane, then it would be from Amherst to Bradley -
there's mileage here - right now it's at 20 cents a
mile. Then, let's say, you went to Washington, D.C.,
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you'd list Bradley to Washington. You have to keep

receipts for trains, no, sorry for planes and for
the hotel. If it were to a conference, then the
registration fee, and, if you drove your car own
car, you have to have the odometer reading, starting

and ending. Meals are a set rate. You don't need

to keep receipts for that. Taxis -- they don't need

receipts -- they take your word for it.

------ Discourse structures-------

{ OBJECT: Private-Car

ATTRIBUTES: ( (START-ODOMETER-READING NIL (RANGE . NUMBER))
(END-ODOMETER-READING NIL (RANGE . NUMBER)) )

GENERALIZATIONS: ( OBJECT ) }

{ OBJECT: Receipt-For-Plane

ATTRIBUTES: ( (COST NIL (RANGE . MONEY))
(FLIGHT) )

GENERALIZATIONS: ( RECEIPT )

ASSOCIATED-EVENTS: ( EVENT-2
COLLECT-RECEIPTS ) }

{ OBJECT: Receipt-For-Hotel

ATTRIBUTES: ( (COST NIL (RANGE . MONEY))
(HOTEL NIL (RANGE LODGING)))

GENERALIZATIONS: ( RECEIPT )

ASSOCIATED-EVENTS: ( EVENT-2
COLLECT-RECEIPTS ) }

{ OBJECT: Taxi

ATTRIBUTES: ( (COST NIL (RANGE.. MONEY)) )
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GENERALIZATIONS: ( MEANS-OF-TRANSPORT ) }

OBJECT: Meal

ATTRIBUTES: ( (COST NIL (RANGE . MONEY)) )

GENERALIZATIONS: ( OBJECT ) }

EVENT: Collect-Receipts

GENERALIZATIONS: ( EVENT )

ASSOCIATED-OBJECTS: ( RECEIPT-FOR-PLANE

RECEIPT-FOR-HOTEL ) }

{ OBJECT: Departure-Date

PART-OF: ( TRAVEL-VOUCHER )

GENERALIZATIONS: ( DATE ) }

OBJECT: Destination

PART-OF: ( TRAVEL-VOUCHER )

GENERALIZATIONS: ( LOCATION ) }

EVENT: FillOutFormField<9>

CONSTRAINTS: ( (EQUAL FIELD 'DESTINATION) )

ATTRIBUTES: C (FIELD 'DESTINATION) )

GENERALIZATIONS: ( EVENT ) }

{ EVENT: FillOutFormField<8>

CONSTRAINTS: ( (EQUAL FIELD 'DFrPATTTnF-nATE) )

ATTRIBUTES: ( (FIELD 'DEPARTURE-DATE) )

GENERALIZATIONS: ( EVENT ) I
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PARTS: ( DESTINATION

DEPARTURE-DATE )

GENERALIZATIONS: ( FORM )

ASSOCIATED-EVENTS: ( FILLOUTTRAVELVOUCHER )

EVENT: FillOutTravelVoucher

CONSTRAINTS: C (EQUAL MILEAGE-RATE 20-CENTS-PER-MILE)
(SAME-AS FORM-FILLER 'TRAVELER) )

ATTRIBUTES: ( (MILEAGE-RATE 20-CENTS-PER-MILE)
(FORM-FILLER NIL (RANGE . PERSON))

(AUTHORIZER NIL (RANGE . PERSON))
(DEPARTURE-DATE NIL (RANGE . DATE))

(DESTINATION NIL (RANGE LOCATION)) )

PARTS: ( FILLOUTFIELD<8> )

GENERALIZATIONS: ( FILLOUTFORM )

ASSOCIATED-OBJECTS: ( TRAVEL-VOUCHER
TRAVELER

REIMBURSEMENT ) }

----- KB Candidates-------

0.800 FILLOUTTRAVELAUTHORIZATION
0.480 PRIVATE-CAR

0.480 BUS
0.480 PLANE

0.480 MEANS-OF-TRANSPORT
0.480 P-I
0.480 STATE-FUNDS
0.480 TRUST-FUND

0.480 RETURN-DATE
0.480 DEPARTURE-DATE

0.480 SIGNFORM<2>
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0.480 SIGNFORM<1>

0.384 DEPARTMENT-HEAD
0.384 GRANT
0.384 SENDTRAVELAUTHORIZATIONTOACCOUNTING
0.384 FORM
0.384 OBJECT

0.384 DEPARTMENT
0.384 UNIVERSITY
0.384 ACCOUNTING

0.384 TRAVEL-AUTHORIZATION
0.384 ISSUETRAVELAUTHORIZATION
0.384 VISIT

------ Selected matches-------

DESTINATION DEPARTURE-DATE MEAL PRIVATE-CAR
FILLOUT.FORMFIELD already in KB

No match found for FILL.OUTTRAVELVOUCHER

No match found for TRAVEL-VOUCHER

No match found for COLLECT-RECEIPTS

closest:
0.24 0.20 SIGN-FORM
0.24 0.17 VISIT

No match found for TAXI

closest:
0.31 0.17 PRIVATE-CAR

0.31 0.16 BUS
0.31 0.16 PLANE

No match found for RECEIPT-FOR-HOTEL

No match found for RECEIPT-FOR-PLANE

---Performed modifications-

M0D8873: CREATE the event Fill-out-travel-voucher

MOD8874: ADD (Equal mileage-rate 20-cents-per-mile) to the
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Constraints field of Fill-out.travel-voucher

MOD8875: ADD (Same-as form-filler 'traveler) to the
Constraints field of Fill-out-travel-voucher

MOD8876: ADD Destination to the Attribute-names field of
Fill-out-travel-voucher

Expected: 0.192(avg) 0.192(max) 0.347(ind)

MOD8877: ADD Departure-date to the Attribute-names field of
Fill-out-travel-voucher

Expected: 0.192(avg) 0.192(max) 0.656(ind)

MOD8878: ADD Authorizer to the Attribute-names field of

Fill-out-travel-voucher

MOD8879: ADD Form-filler to the Attribute-names field of
Fill.out-travel-voucher

MOD8880: ADD Mileage-rate to the Attribute-names field of
Fill-out-travel-voucher

MOD8881: ADD (Mileage-rate 20-cents-per-mile) to the Attributes
field of Fill-out-travel-voucher

MOD8882: ADD (Form-filler nil (range . person)) to the Attributes
field of Fill-out-travel-voucher

MOD8883: ADD (Authorizer nil (range . person)) to the Attributes
field of Fill-out-travel.voucher

MOD8884: ADD (Departure-date nil (range date)) to the Attributes
field of Fill-out-travel-voucher

MOD8885: ADD (Destination nil (range location)) to the
Attributes field of Fill-out-travel-voucher

MOD8886: ADD Fill-out-field<8> tr% th- rr field of
Fill-out-travel-vow0'h- ,

MOD8887: ADD Fill-out.form to the Generalizations field of
Fill-out-travel-voucher
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M0D8888: ADD Travel-voucher to the Associated-objects field of

Fill-out.travel-voucher

MOD8889: ADD Traveler to the Associated-objects field of
Fill.out-travel-voucher

MOD8890: ADD Reimbursement to the Associated-objects field of
Fill-out-travel-voucher

MOD9471: CREATE the object Travel-voucher

MOD9472: ADD Destination to the Parts field of Travel-voucher
Expected: 0.192(avg) O.192(max) 0.347(ind)

MOD9473: ADD Departure-date to the Parts field of Travel-voucher
Expected: O.192(avg) O.192(max) 0.656(ind)

MOD9474: ADD Form to the Generalizations field of Travel-voucher
Expected: 0.157(avg) 0.157(max) 0.784(ind)

MOD9475: ADD Fill-out-travel-voucher to the Associated-events
field of Travel-voucher

MOD9741: CREATE the event Collect-receipts

NOD9742: ADD Event to the Generalizations field of

Collect-receipts

MOD9743: ADD Receipt-for-plane to the Associated-objects field of
Collect-receipts

MOD9744: ADD Receipt-for-hotel to the Associated-objects field of
Collect.receipts

MOD9993: CREATE the object Taxi

MOD9994: ADD Cost to the Attribut-n-m- fiold of Taxi
Expected: 0.157(avg) 11. r(mo:.) ',.157(ind)

MOD9995: ADD (Cost nil (range . money)) to the Attributes field of
Taxi
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MOD9996: ADD Means-of-transport to the Generalizations field of

Taxi
Expected: O.188(avg) O.192(max) 0.810(ind)

MOD10217: CREATE the object Receipt-for-hotel

MOD10218: ADD Hotel to the Attribute-names field of
Receipt-for-hotel

MOD10219: ADD Cost to the Attribute-names field of
Receipt-for-hotel

Expected: 0.157(avg) 0.157(max) 0.157(ind)

MOD10220: ADD (Cost nil (range money)) to the Attributes field
of Receipt-for-hotel

MOD10221: ADD (Hotel nil (range . lodging)) to the Attributes
field of Receipt-for-hotel

MOD10222: ADD Receipt to the Generalizations field of
Receipt-for-hotel

MOD10223: ADD Collect-receipts to the Associated-events field of
Receipt-for-hotel

MOD10534: CREATE the object Receipt-for-plane

MOD10535: ADD Flight to the Attribute-names field of
Receipt-for-plane

MOD10536: ADD Cost to the Attribute-names field of

Receipt-for-plane
Expected: 0.157(avg) 0.157(mex) O.157(ind)

MODiO37: ADD (Cost nil (range money)) to the Attributes field
of Receipt-for-plane

MOD10538: ADD (Flight) to the At'-tibuites fi.-ld of
Receipt-for-plane

MOD10539: ADD Receipt to the Generalizations field of
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Receipt-for-plane

MOD10540: ADD Collect-receipts to the Associated-events field of
Receipt-for-plane

§5. FRAME-5

Clerk: When you come back, you submit to whoever's doing
the voucher for you, all the receipts you have, and
then plan on spending a couple of minutes with that
person. So she can figure your trip out. Go over the
trip and its details. So she can get all she needs
to know.

------ Discourse structures-------

OBJECT: Secretary

GENERALIZATIONS: ( PERSON ) }

EVENT: GiveReceiptsToSecretary

ATTRIBUTES: ( DESTINATION SECRETARY )

PART-OF: ( EVENT-2 )

GENERALIZATIONS: ( SENDINFORMATION ) I

{ EVENT: SupplyTravelInformation

ATTRIBUTES: ( DESTINATION SECRETARY )

PART-OF: ( EVENT-2 )

GENERALIZATIONS: ( SEND-INFORMATION ) }

EVENT: Event-3

CONSTRAINTS: ( (BEFORE TAKEATRIP EVENT-2) )
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PARTS: ( TAKE-ATRIP
EVENT-2 )

GENERALIZATIONS: ( EVENT )

TEMPORAL-RELATIONSHIPS: ( (TAKEATRIP BEFORE EVENT-2) ) }

EVENT: Event-2

CONSTRAINTS: ( (BEFORE GIVERECEIPTSTOSECRETARY

SUPPLYTRAVELINFORMATION) )

PART-OF: ( EVENT-3 )

PARTS: ( GIVERECEIPTSTOSECRETARY
SUPPLYTRAVELINFORMATION )

GENERALIZATIONS: ( EVENT )

ASSOCIATED-OBJECTS: ( RECEIPT-FOR-HOTEL

RECEIPT-FOR-PLANE )

TEMPORAL-RELATIONSHIPS: ( (GIVERECEIPTSTOSECRETARY BEFORE

SUPPLYTRAVELINFORMATION) ) I

----- KB Candidates-------

0.800 TRAVEL-VOUCHER
0.800 FILLOUTTRAVELVOUCHER
0.512 FILLOUTTRAVELAUTHORIZATION
0.480 RECEIPT-FOR-PLANE
0.480 RECEIPT-FOR-HOTEL

0.480 TAXI
0.480 COLLECT-RECEIPTS

0.384 SIGN-FORM

0.384 PRIVATE-CAR
0.384 BUS
0.384 PLANE

0.384 MEANS-OF-TRANSPORT
0.384 P-I
0.384 STATE-FUNDS

0.384 TRUST-FUND
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0.384 RETURN-DATE

0.384 DEPARTURE-DATE

0.384 GRANT
0.384 DEPARTMENT-HEAD
0.384 SENDTRAVELAUTHORIZATIONTOACCOUNTING

0.384 FORM
0.384 OBJECT
0.384 DEPARTMENT

------ Selected matches-------

SECRETARY already in KB

EVENT-2 matches COLLECT-RECEIPTS (0.442)

closest:
0.49 0.40 COLLECT-RECEIPTS

No match found for EVENT-3

closest:
0.30 0.25 COLLECT-RECEIPTS

0.23 0.17 SIGN-FORM

No match found for SUPPLYTRAVELINFORMATION

No match found for GIVERECEIPTSTOSECRETARY

------ Performed modifications--------

MOD11371: ADD Give-receiptsto-secretary to the Parts field of
Collect-receipts

Mod certainty: 0.093
Expected: 0.261(avg) 0.480(max) 0.890(ind)

MOD11372: ADD Supply-travel-information to the Parts field of
Collect-receipts

Mod certainty: 0.093

Expected: 0.261(avg) 0.480(max) 0.890(ind)

MOD11373" ADD Event-3 to the Pat' ,.I fie1d ,,f Collect-receipts
Mod certainty: 0.344

Expected: 0.261(avg) 0.480(max) 0.890(ind)
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MODl1576: CREATE the event Event-3

MOD11577: ADD (Before take-atrip event-2) to the Constraints

field of Event-3

MOD11578: ADD Take.atrip to the Parts field of Event-3

MOD11579: ADD Event-2 to the Parts field of Event-3

MOD11580: ADD Event to the Generalizations field of Event-3

MOD11581: ADD (Take.a-trip before event-2) to the

Temporal-relationships field of Event-3

MOD11849: CREATE the event Supply-travel-information

MOD11852: ADD Destination to the Attribute-names field of

Supply-travel.information
Expected: 0.192(avg) O.192(max) O..192(ind)

MOD11853: ADD Destination to the Attributes field of

Supply-travelinformation
Expected: 0.192(avg) 0.192(max) 0.192(ind)

MOD11855: ADD Event-2 to the Part-of field of

Supply-travel-information

MOD11856: ADD Send-information to the Generalizations field of
Supply-travel-information

MOD12225: CREATE the event Give-receiptsto.secretary

MOD12228: ADD Destination to the Attribute-names field of
Give-receipts-to-secretary

Expected: 0.192(avg) 0.192(ma-) 0.192(ind)

MOD12229: ADD Destination to the Attributes field of
Give-receipt sto -s-rat -.

Expected: 0.192(avg) i' (ma:z) 0.192(ind)

MOD12231: ADD Event-2 to the Part-of field of
Give-receipts-to-secretary
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M0D12232: ADD Send-information to the Generalizations field of
Give-.receipt u..to...ecretary

M0D12603: ADD (Before give..rceipts-.to-.secretary

supply-.travel-.information) to the
Constraints field of Collect-.receipts

Mod certainty: 0.000
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ABSTRACT: We present a general approach to augmenting the representational

power of hierarchical plan formalisms. In complex domains, this additional

power is needed to capture knowledge dealing with such issues as special cases of

operators and strategies for recovering when operators fail. We describe

limitations inherent in operator definitions and show that they can be overcome by

expressing domain knowledge as transformations on plans. These trans-

formations reformulate a (partially developed) plan, tailoring it rather than

contributing directly to its completion. Since transformations are operations on a

world state representing the plan network, they can be formalized as meta-

operators and synthesized into meta-plans. The advantage of this approach is

expressive completeness as compared to introducing special-cae constructs into

the operator definition language.

5-E-1



1.0 Introduction

Planning and plan recognition systems derive their power from having general-purpose

algorithms that bring domain-specific knowledge to bear;, their power is directly related to

the extent of the domain knowledge that can be supplied. A limiting factor on providing

this knowledge is the representational adequacy of formalisms for defining domain

operators. Particularly in the case of complex domains, there are problems in capturing

relevant domain knowledge such as how to recover when an operator fails or when to use

special case operators. The challenge is to provide this knowledge in a way that is tractable

both to the planning algorithms and to the author of the domain operators.

We encountered these issues as part of designing and developing an intelligent assistant,

named GRAPPLE, based on a plan recognition and planning paradigm [1,2,3,5,61.

GRAPPLE provides passive assistance by monitoring user actions, performing plan

recognition to detect and correct errors in the user's plan; it provides active assistance by

cooperative generation of plans to meet user-stated goals. The test domain for GRAPPLE

is software development [8], specifically programming performed in a traditional language

such as C. A partial library of (simplified) operators for this domain is sketched in Figure

1. These operators have the usual clauses stating goals, preconditions, effects (generally, a

superset of the goals), and constraints. Primitive operators correspond to the atomic

actions in the domain; complex operators have subgoals that decompose the operator into

simpler steps.

1.1 Limits on Representational Power

Hierarchical plan systems, based on NOAH [12] and NONLIN [14], are particularly

appropriate for handling the operator libraries of complex domains. The use of non-

primitive operators allows activities to be defined at multiple levels of abstraction, with

more or less detail as appropriate; this provides an orderly approach to covering all domain

activities. The modularity of operator libraries facilitates several aspects of working with

large numbers of operators. Following the principles of information-hiding[ 11], certain
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OPERATOR build OPERATOR release

GOAL: status(?system,built) GOAL: status(?system.released)
PRECOND: true PRECONO: status(?systembuilt)
SUBGOALS: created(?systemnbaseline) CONSTR: current-releass(?C)

status(?eystemcomplied) EFFECTS: SET status(?system,reieased)
status(?systemlinked) DELETE current-release(?€)
status(?system.tested) SET current-rslease(?system)

EFFECTS: SET status(?system,bullt) SET customer-release(?system)

OPERATOR link
OPERATOR test GOAL: status(?syetem,Iln ksd)
GOAL: statue(?system,teated) PRECONO: status(7systom,compiled)
PRECOND: true EFFECTS: NEW load-module 7Im
SUBGOALS: unit-tes(7system.ready) SET status(?system,linkod)

unit-tests(?systemnrun) ADD Im-for(?systom,?lm)
EFFECTS: SET status(?system,tested) SET tlme(?system,?time)

Figure 1: Relaioinahips

A Partial Library of Build satisfies precondition of Release
Simplified Software Link satisfies subgoal of Build

Process Operators Test satisfies subgoal of Build

details can be encapsulated in one or a few operators; later, if those details must change, the

effects are local, not global. Great flexibility is obtained if the decomposition of operators is

always stated in terms of states to be achieved, not directly in terms of the operators that

achieve those states; the operators of Figure 1 follow this style. The advantage is that when

a new operator, satisfying a state required in other operators, is added to the library, the

existing operators do not have to be modified to mention the new operator. This capitalizes

on the fact that operators are potentially applicable in any context where their goals match

the preconditions or subgoals of other operators. In general, operators can be written

without knowledge of the other operators - either those operators that achieve the same or

similar states, or those operators that require particular states in their decomposition.

In complex domains, cases arise where appropriate expressive power is lacking in the

operator formalism; attempts to describe certain operators accurately can jeopardize the

library modularity, or fail outright. We discuss several such problems, using examples of

special cases of operators and failure recovery strategies taken from the software

development domain, in the remainder of this section.
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Adding special case operators to a library may require that preconditions or subgoals of

existing operators be rewritten. For example, when testing a system that is intended to fix
certain bugs, the programmer should run the official testcases associated with those bugs,
in addition to those testcases that would otherwise be selected. One solution (that keeps
testing considerations local to the set of testing operators) is to write a separate operator

covering all testing needed when bugs are being fixed; its precondition restricts its

applicability to systems intended to fix bugs. Now there are two operators for testing that

are inte-ded to be mutually exclusive. Therefore, the normal operator for testing must
specify in its precondition that it is not applicable to cases where bugs are being fixed1.

To accommodate other types of special cases, existing operators may have to be rewritten
in artificial ways. Consider testing a system that is about to be released to a customer, such
testing should include running the testcases in the regression test suite2 (again, in additional
to normally selected testcases). The precondition for this special operator concerns the
existence of a goal to release the system; while the goal formula is expressible using

domain predicates, the fact that a goal with this formula is currently instantiated is not
expressible in domain terms. The only recourse is to write separate operators with
artificially different goals. Then, operators (like build) that have testing subgoals will be

affected, defeating the aim of encapsulating testing considerations within the testing
operators. Thus, the designer of the operators must produce not only a normal test

operator and a test-for-release operator, but also a normal build operator and a build-for-
release operator, to ensure that the right type of testing is performed in all cases.

Expressing special cases with this brute force approach, already attended with

disadvantages, breaks down entirely when multiple special cases affect a single operator,
the combinatorics are intolerable from the designer's perspective. Special cases are not

1 One could institute a fixed preference strategy to select the operator with the most specific
precondition that can be satisfied. However, in general this is overly restrictive - it would
prevent a car buyer from financing his purchase by selling stock to raise funds because
taking out a car loan is the most narrowly applicable operator.

2 In software engineering, regression testing is performed to ensure that bugs have not
been introduced into functions that were previously shown to work correctly.
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guaranteed to be simply additive with respect to the normal case. At worst, separate

operators must be provided for all combinations of special factors.

In dealing with recovery from operator failure, there are problems both in connecting the

right recovery operator with a failure situation, and in simply expressing the recovery

strategy itself. Sometimes special operators are used for failure recovery, and only for

failure recovery; for example, one of the actions for dealing with a compilation failure due

to bugs in the compiler is to report the compiler bug. Report-tool-bug can be written as an

operator, but how will such an operator get instantiated? Missing are the constructs

indicating what goals (and therefore what operators) should be instantiated when a failure

occurs. At other times, the recovery strategy may involve executing some normal operator

in a special way. If the build operator fails because the system being built is faulty (as

would be the case if the linker detected programming errors), then one recovery strategy is

to restart the build process using the faulty system as the baseline from which to edit.

Expressing such a strategy requires access to the variable bindings of operator instances;

again, this is beyond the scope of domain predicates.

1.2 Extending Representational Power

These problems have previously been tackled separately on a case-by-case basis,

introducing special operator-language constructs covering selected cases and providing

domain-independent strategies that can be tailored in fixed ways. McDermott's policies

[10] represent one approach to the issue of matching special case operators to the

appropriate ckrcumstances. These policies derive their power from the fact that the NASL

language allowed the writer to use plan-oriented constructs, such as <policy> IMPLIES

(TO-DO <task> <operator>) or <policy> IMPLIES (RULE-OUT <operator>), in addition

to domain-oriented constructs. Recovery from failure of operators is addressed in SIPE

[16]. There, a special error recovery language is defined; domain-independent strategies,

such as reactivating a goal (RETRY in SIPE terms), are parameterized to allow deployment

in operator-specific ways.
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In this paper we describe a single formalism that extends the representational power of

hierarchical planning paradigms. Our approach is based on abandoning the notion of

predefi, hig at! operators; instead, we define transformations to be applied to instances of

operators within a plan to create variations in response to special circumstances.

Transformations are operations on some world state; in this case, the world state is the plan

network. Therefore such transformations can be formalized as meta-operators and

synthesized into meta-plans. This approach has the desired generality; it also adds to the

role of meta-plans, which have been previously use to implement control strategies [13]

and to capture domain-independent knowledge [15].

The primary advantage of this method is expressive generality, as compared with a

collection of ad hoc operator language extensions. Any aspect of an operator definition

(such as preconditions, subgoals, constraints, or effects), as well as any aspect of an

operator instance (such as bindings of variables or ancestor operator instances) can be

accessed or modified. The transformational approach also addresses some practical

problems associated with developing and maintaining a complete library of operators.

Because knowledge of exceptions is partitioned from knowledge of normal cases, the two

issues can be tackled separately. The process of writing operators is further improved

because multiple transformations can apply to a single operator, thereby preventing

combinatorial explosion in numbers of operators.

In the remainder of the paper, we introduce the transformational approach with some

specific examples from the software development domain. Then, we discuss how the

transformations are formalized and expressed as meta-operators; both the state description

and required operator constructs are covered. Finally, we present status and conclusions.
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2.0 Transformations on Plans

2.1 Plans As Networks

The basic data structure of a planner or plan recognizer is a hierarchical plan network as

first developed in NOAH[12]. An example of such a network (using some of the plans of

Figure 1) is given in Figure 2. There, a vertical slice through a network covering three

hierarchical levels is shown, with the highest level at the top of the figure. Downward

arrows between levels connect desired states with operators chosen to achieve them. Such

FIGUE 2:Example Hierarchical Plan Network

KKE

An operator with
the name A.

an operator (either
syatema precondition.

subgol. or effect
Compled uiltof the operator)

defined by the
yetem.....given formula.
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:o* sate at one level

and an operator
at a lower level,
where the goal of

Toot the operator
K E achieves the state.

I TY:t~dTemporal constraint
SYSCM U....between two
TestsRunatates. Indicating

that state C must
______________________________follow state a.
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instantiated operators consist of additional states describing the internals of the operator:

preconditions, subgoals, and effects. Arrows within levels show how the achievement of
certain states is partially ordered with respect to time (some orderings are specified by the

operator definitions and other orderings are imposed to resolve interactions). Orderings are
propagated from level to level, but have been omitted to simplify the figure.

Both planning and plan recognition involve building a complete plan network. This is done

by actions such as choosing operators to achieve states, instantiating these operators, and

resolving conflicts between newly revealed states and existing states. Each such action can
be thought of as taking the plan network one step closer to completeness. In contrast, a
transformation will reformulate the current state of the network, with the effect of changing

the solution set that will be pursued to complete the network. Such a reformulation is

necessary either because the existing state of the network does not accurately reflect special

circumstances or because other actions have reached a dead end (for example, a plan failure
has occurred). Reformulating the network represents a permanently- instantiated objective

of the planner/recognizer. Thus, the execution of (top-level) transformations will be data-

driven: they will be applied whenever the current state of the network indicates an

opportunity to do so.

2.2 Example: A Special Case

Software development is an example of a domain where a large part of the knowledge
about how actions are carried out is concerned with special cases. Consider a

transformation that implements the requirement to do regression testing before a release.

When expressed precisely, the transformation affects an instance of test occurring as part of
the expansion of release. To be entirely safe, one additional restriction should be given: that
the system being ,ested is the same as the system being released. This will allow other
testing instances to occur in the same expansion (such as running a testcase to help decide
what editing changes are needed), while ensuring that regression testing is required on the
right one. Expressing this condition requires access to the dynamic correspondence
between the variable names used in the two operators. The BEFORE case of Figure 3
shows one situation in which this transformation is applicable.
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FIGURE 3: Implementing Regression Testing Before Release
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Assuming the test operator of Figure 1, the effect of the transformation is to add an

additional subgoal to run the regression test cases. Ile formula defining the new subgoal
is supplied explicitly in the transformation -- it need not have appeared previously in the

plan network. Only the one operator instance is modified; the basic operator definition for

test is unchanged. The results of applying this transformation are shown as the AFTER

case in Figure 3.

~2.3 Example: Failure Recovery

Software development is also a domain where there are many causes of failure, including

system problems, tool problems and programmer error. In particular, given that much

work is carried out on a trial-and-error basis, failures due to programmer error are to be
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expected frequently. Consider the case of the link operator failing to produce a load
module because errors made by the programmer were detected. In fact, decisions about
recovery from this failure are not made at the local level of the link operator, a link operator
failure implies that the parent operator has failed, and the appropriate recovery strategy is

dictated by what that parent operator is.

The parent operator will usually be the build operator. If the build operator has failed and

the system that was built is faulty, one recovery scenario is to go through the whole build

process again; but, instead of starting from the same baseline used in the original build

instance, this new build instance will start with the faulty system as the baseline. That is,

the new build instantiation will use as the binding of its baseline variable the binding of the

system variable from the failed build instantiation.

These strategies can be expressed in two separate transformations. The first transformation
applies to instances of link that have failed; its effect is simply to mark the parent operator
instance as failed. The second transformation applies to instances of build that have failed;
its effect is to create a new instantiation of the build operator, and to fix the binding of the
baseline variable in that instantiation to be equal to the binding of the system variable from
the "superseded" instantiation of build. This is shown in Figure 4.

2.4 Other Examples

The software development domain is particularly rich in examples that demonstrate the
generality of the transformational approach. Some additional generic uses of
transformations, beyond representing special cases and straightforward failure recovery

strategies, are these:

Transformations can be used to maintain desirable domain states in a flexible
manner (McDermott used policies this way[lO]). That is, whenever an
undesirable state obtains, a goal can be posted to reestablish the desired state.
This is more forgiving than preventing the undesired state absolutely. As an
example, programmers generally follow a set of rules about how files are
allocated to directories. However, in the heat of activity, a file may be created
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Figure 4: Recovery From Failure of Link and Build
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in the "wrong" directory. A transformation could trigger on this and
instantiate a goal to move the file to the proper directory.

One method of handling an adverse interaction between operators for
achieving parallel goals is to place temporal constraints on the order in which
the operators are executed. This method has the advantage of being domain-
independent, but there may be domain-dependent techniques as well. These
can be captured in transformations whose preconditions are that adverse
interactins between two planned actions have been detected. In the software
domain, the operator that copies the contents of one file into another can be
inserted into a plan to correct some types of interactions. However, some
explicit clue, such as a transformation, is needed to ensure that copy is
considered for handling interactions.

Transformations can be used to apply shortcuts in just those situations where
the shortcut is safe. A shortcut amounts to substituting one goal which is
"easier" to achieve for another which is "harder" to achieve. The safety of the
shortcut may involve the context in which the goal is instantiated, so the meta-
level constructs of the transformation are doubly necessary. In the software
domain, if editing a source module consists of cosmetic changes only, then an
alternative to recompilation is simply to acquire (and place in the appropriate
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directory) the object module of the previous version (assuming no include
modules were also changed). However, it is bad practice to do this on a
release to a customer. Only by expressing this in a transformation can we
ensure that good practice is followed.

In some cases when operators fail, the recovery strategy may involve
rephrasing the goal in order to proceed with the overall plan. In these cases, a
failure indicates that the goal itself (in all its detail) cannot be accomplished;
but there may be a related goal that will suffice. A transformation, whose
precondition is that an operator failed to achieve its goal and whose effects are
to substitute a different goal for the original goal, can express this strategy. A
software example arises if the compiler blows up when directed to compile at
its highest optimization level. A well-established strategy is to try again with
optimization turned off. If this results in a successful compilation, the
programmer will settle for a load module which is only partially optimized.

Transformations can apply to a specific operator (such as the test operator
examples given earlier), or to any operator having a particular characteristic,
such as a specific goal or subgoal formula. They can also apply to arbitrary
characteristics of operator definitions, such as any operator having a particular
type of parameter or parameter binding. In a multi-user system, when the
number of users logged-in is below a certain threshold, then commands will
be submitted for foreground execution rather than to a background queue.
Suppose all operators representing CPU-intensive commands are written with
an explicit parameter set for background execution. Then, one
transformation, applying to any operator utilizing the background queue, can
handle foreground/background selection. This transformation saves the
author of operators from writing an additional version of each CPU-intensive
operator.

The examples of transformations given so far are relatively simple, most often
requiring one operation on the plan net. However, transformations can be
arbitrarily complex. In the software domain, recovering from failed operators
includes deleting extraneous files. One transformation could identify certain
files created by operators in the expansion of a failed operator and instantiate
goals to delete them. This transformation applies one change (instantiate a
goal with specific variable bindings) many times (for each selected fiie).

Another complex transformation in the software domain applies to the
conservative editing style of frequently saving a snapshot of the file being
edited; here the intermediate snapshots must eventually be deleted. This is a
complex transformation involving two separate (but related) changes in the
plan nec: one change instantiates goals to save snapshots, and the other
ch'nge instantiates goals to delete all but the desired version.
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A final use of transformations is to allow sharing of a generic operator library
among several applications, where each application has special requirements.
In the software domain, several projects can share a generic operator library,
if each expresses project-specific policies as transformations. Then, one
project can require that a particular analysis tool be run before a customer
release, without affecting whether other projects use the same tool in the same
way.

3.0 Formalizing the Transformations

Because transformations are operations on the plan network, they can be formally

represented as meta-plans, synthesized from meta-operators. Meta-plans are not a new

idea. Procedurally-implemented meta-plans were introduced by Stefik[13] to pursue

control issues in planning. Declarative meta-plans were defined by Wilensky[15] in order

to share knowledge between a planner and a plan recognizer. Neither of these meta-plan

systems was used to modify operator instances by adding new subgoals, changing

constraints and so forth. Meta-plans that could modify steps or change parameter bindings

were defined for a natural language dialog understanding system[9]. In these meta-plans,

the modifications were meta-plan parameters which were bound from information in the

utterances.

3.1 The Meta-level State Schema

The meta-level state schema covers most of the internal data structures used in planning.

The entity-relationship (ER) model of data [4] provides a useful way to visualize such a

complex state schema. In the ER model, there are entities which have attributes and

participate in relationships with other entities. There is a straightforward translation

between the ER model and predicate calculus, whereby relationships and attributes

correspond to predicates. Semantic constraints can be expressed as axioms in predicate

calculus. Other axioms can be used to define additional predicates and to define appropriate

functions.
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The ER diagram of the meta-level state schema is given in Figure 5. The oniects and

relationships shown are representative, not exhaustive. The schema describes operators as

they are defined in the GRAPPLE formalism, and addresses the requirements of plan

recognition (the context in which we are currently implementing the meta-plans).

The state schema for the meta-plans contains objects and predicates organized into three

subspaces: operator library, plan network, and the domain state. The operator library

subspace describes all components (preconditions, effects, etc.) of all operators, and their

formulas and (static) variable names. The plan network subspace describes the hierarchy

of operator instances: their dynamic status (started, completed, failed...), their internal

... ...... .ii i iiii iii~ i iii i~i~ i. ....iii!i l........... . i ...
Figurei 5: Meta-L-vel State Schema
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states and status (pending, achieved, protected...). Also associated with operator instances
are the dynamic name scopes and variable binding information needed to evaluate operator

formulas. The domain state represents the truth value of all domain predicates. Additional

predicates cross subspace boundaries, relating operator instances back to their definitions,

and operator instances to the domain predicates they affected.

The state schema is designed so that it represents a single choice from among the competing

interpretations of a series of actions. Thus, if an operator can achieve the subgoals of two

other operators, this will be represented using two states, each in a separate context.

During recognition, there will usually be multiple contexts that are active; an important

component of the recognizer comprises strategies for focusing among these alternatives, as

well as for selecting the operations applied to an alternative. Thus we make the same

distinction as in [13] between operations in planning space and the control strategies by
which those operations are selected. The transformational meta-operators add to the

number of operators subject to control decisions.

3.2 Meta-operator Constructs

Because the transformations are complex, expressing them as operators requires a language

engineered for "real-world" use. Clearly, effects of operators must be able to create new

objects (for example, a new subgoal instance). Some transformations (such as the one to

delete extraneous files) require a facility for iterating subgoals: that is, for repeatedly

achieving a subgoal formula over a set of bindings. Conveniently, all the needed facilities

were already available in the formalism we designed to handle the complex domains

anticipated for GRAPPLE [7]. No new facilities (except a keyword to distinguish between

operators and meta-operators) were needed.

The transformation for regression testing before release is shown as a meta-operator

(expressed in GRAPPLE notation) in Figure 6. This will be a top-level operator assuming

that its goal does not match the precondition or subgoal of other meta-operators; therefore,

it will be executed when its precondition becomes true. That will happen when there is an

instance of test whose ancestor is an instance of release AND when the system variables of
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Figure 6: Meta-operator for Regression Testing

(METAOPERATOR regressions-befors-release

(GOAL applled-to(regressons-before-release,?test-op))

(PRECOND (STATIC Instance-of('?tust-op,test) AND
ancestor(?test-op,?rel-op) AND
lnstance-of(?rel-op,release) AND
aarn.-dynamlc-name(system,?rsI-op,

systefi ,?test-op) ) AND
NOT applled-to(regresslons-before-release,

?test-op) ) )

(EFFECTS (NEW state-Instance ?regressions)
(NEW subgoal-entry ?regr-subgoal)
(NEW Itoraton-spc ?Iterate-lnfo)
(ADD part-of(?regresslons, ?test-op))
(ADD Instance-of(?regressions, ?regr-subgoal))
(ADD ltorator(Wegr-subgoal, ?Iterate-lnfo))
(ADD source(?regresslons, metaplan))
(ADD role(?regresslons, subgoal))
(ADD protection(1regressions, not-protected))
(ADD satisfaction(?regressons, unknown))
(ADD forniula(?regr-subgoal,

tested-on(?syst1m, ?regr-eas.)))
(ADD formnula('?lterste-Info,

ki-rgreslon-sulte(?rsgr-cas.))
(ADD applled-to(regresslons-before-release,

?test-op)))

both Operators correspond (e.g., are mapped to the same dynamic name). The precondiuin
carries the keyword STATC, meaning that no explicit attempt should be made to render it
true. A state in which the trasformation precondition is true is diagrammed in Figure 7.
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Figure 7: Example Meta-level State Satisfying
Precondition of Transformation
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Performing the transformation is simply a matter of realizing the effects of the meta-

operaior in this case, because there are no subgoals to be achieved. These effects are all
directed at creating a new state instance as part of the test operator instance. The new state

instance has a supporting subgoal entry that defines the state formula and, since it is an

iterated subgoal, the iteration formula. Note that the meta-operator contains these formulas

explicitly; they consist of domain predicates and variable names in the static name scope of
the test operator definition. After the transformation has been executed, the precondition

will no longer be true for this instance of tes; thus, this transformation is not meant to be

applied more than once to the e saesituation. The state shown in Figure 7 becomes the

state diagrammed in Figure 8 after the transformation is applied; changes are highlighted.
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Figure 8: Meta-level State after Transformation

release:

operator instance-of ?rel.op:

?dn34=23 ?d34,.. map - I -
bindings namescope prn
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dn34, 

name

_________________ ?test-op:
test: onstance-oT5

tested-onpato
(?sysiem,?regr.case)

forrator instneo-regressionssie:plidt

?r(?regrboase)

in-ragregresn-ions-

itertio-spe orulabef ore-
release:
me ta-op

The transformation exporting the failure of the link operator to its parent operator is shown

in Figure 9, to show how a goal for failure recovery is expressed.
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Figure 9: Meta-operator for Link Failure

(METAOPERATOR propagate-link-fallure

(GOAL status(?Ilnk-op,failure-processed))

(PRECOND (STATIC status(?Ilnk-op, failed) AND
Instance.-of(?lnk-op,lInk) AND
query(?ilnk-op, faulty(?system)) ))

(CONSTRAINTS (parent(?link-op,?parent-op))

(EFFECTS (DELETE status(?parent-op,in-progress))
(DELETE status (?link-op,falled))
(ADD status(?paront-op,falled))
(ADD status(?llnk-op,failure-processed))))

4.0 Status and Conclusion

Transformational meta-plans provide a powerful means of capturing and applying

additional domain knowledge, which is key to achieving more powerful planning systems.

Defining domain knowledge about special cases and failure recovery via meta-operators

provides an expressively complete approach, which obviates the need for special-purpose

language extensions. This approach also expands the role that meta-planning plays in a

planning architecture. The resulting transformations represent a special class of operations

on plan networks: operations that reformulate a network rather than solve it. As an

additional benefit, this approach eases the writer's task of providing thorough coverage of

domain actions. We are currently implementing the transformations as part of the

GRAPPLE plan recognizer. This implementation uses Knowledge CraftTM and capitalizes

on its facilities for context management, object schema, and integrated Prolog features. We

are continuing to explore the role of deeper domain knowledge in planning systems, with

particular emphasis on its relationship to control.

Knowledge CraftM is a trademark of Carnegie Group Incorporated.
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Appendix 5-F Multiple Knowledge Sources in Intelligent Teaching Systems

Multiple Knowledge Sources
in Intelligent Teaching

Systems

Beverly Woolf, University of Massachusetts

Patricia A. Cunningham, The Hartford Graduate Center

ntelligent teaching experts contributing
systems are emerg- their teaching and learn-
ing as a possible ing knowledge. The con-
solution to the cept of knowledge base

nation's large training as community memory
problem in government, reflects the fact that
academy, and industry. knowledge is often dis-
But since the few systems tributed, incomplete, and
that have been built were acquired incrementally-
customized for specific especially in tutoring
applications, few guide- systems where the
lines or tools exist for domain expert, cognitive
building intelligent scientist, and teaching
teaching systems. As a expert are typically not
result, building such sys- the same person.' Expe-
tems remains a black rience with commercially
art-a pretechnology successful expert systems
requiring considerable such as RI2 and the Dip-
experimentation and meter Advisor 3 suggests
effort while producing that using knowledge
minimal results. In addi- from a single expert can
tion, existing systems produce systems foreign
show intelligence within to other system uscrs-
a narrow specialization, systems having concep-
Like other expert sys- tual holes. In the case of
tems, tutoring systems the Dipmeter Advisor,
display varying levels of the expert model solved
expertise.' In every case, problems in an uncom-
an intelligent tutor has Model: Mother Theresa, 1981. mon way, creating blind
less breadth of scope spots in the knowledge
and flexibility than does its human counterpart. Incor- base.' lb develop a community memory for tutoring
porating community expertise could increase the systems, we need to create a framework within which
limited competence of current tutors.

We believe that intelligent tutoring systems can be An earie wnaoa of thi snice appear in the Pvumdlngs of A. Aen-
designed using a community memory, with multiple con Anmdcion oIAnUr~ InteWe. Sesatt l. WI.. July 19"7
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teaching experience and domain wisdom can be saved, required for building intelligent teaching systems.
We must be able to (1) modify this framework, and (2) However, each additional hour of instruction for
augment it as time passes. preintelligent systems also required about 200 hours of

We will study the development of three intelligent programmer preparation. Domain or teaching knowl-
tutors, describing how lessons about acquiring knowl- edge must be implicitly defined in the very question or
edge from multiple experts were applied toward build- explanation for which the knowledge is intended. This
ing each system. In particular, we will look at tools led to systems that could not automatically query stu-
and methodologies for knowledge acquisition that dents about concepts that had been previously
might be transferred to other systems. We will first defined.
describe the role of computers in education, and then In comparison, intelligent tutors are designed to
examine our three case studies in detail. Finally, we make their knowledge explicit and uncommitted,
will extrapolate from these systems possible tools and thereby utilizing a single piece of knowledge in many
criteria for building intelligent tutors. ways. For example, by explicitly representing a concept

such as force or acceleration, a physics tutor should
have some flexibility in the use of that knowledge-
and should be able to test students about the concept,

",ptr i e c i describe the concept, demonstrate it within a simula-
tion, and answer questions about it.

Education is in trouble. Tough classroom problems,
lack of public support, and inappropriate policies
have left educators engaged in an uphill battle to
reverse deficiencies in student learning and teacher Case stuies
training. This dilemma has fostered sometimes
unrealistic expectations on the state of intelligent The following three example tutors all required mul-
tutoring systems; hardware and software potential tiple sources of knowledge expressing their knowledge
have led to exaggerated stories about the possible explicitly. From these case studies, we will attempt to
achievements of an as yet undeveloped technology, derive tools and methodologies that can be used to

As Figure 1 illustrates, innovation in computer tech- acquire knowledge for the next intelligent tutor gen-
nologies can be viewed as an S-curve measuring the eration.
relationship between the effort put into improving a
product or process and the results one gets back from RBT for teaching complex industrial processes. The
that investment.' Preinteligent tutoring systems, or first tutor is fully implemented, tested, and now being
computer-aided instructional systems, are at the end used for training in nearly 60 industrial sites across
of their S-curve (Figure la); consequently, increased America. It is still being augmented based on formal
effort brings little additional performance. Expert sys- evaluations of student response to the system. RBT
tems (Figure lb) are beginning to emerge from the low (the recovery boiler tutor) was built for a kraft recov-
part of their S-curve as uniform and easy-to-use tech- ery boiler-the type of boiler found in paper mills
nologies like Al shells are developed, speeding produc- throughout the United States.'
tion and performance. Intelligent tutoring systems Built by the J.H. Jansen Company and sponsored
(Figure Ic) are at the beginning of their S-curve; thus, by the American Paper Institute, RBT provides multi-
they require substantial effort and new tools before pie explanations and tutoring facilities tempered to the
they can produce substantial results. individual user (a control room operator). The tutor is

Preintelligent tutoring systems achieved high per- based on a mathematically accurate formulation of
formance in many areas by encoding built-in commit- the boiler and provides an interactive simulation com-
ments regarding how their knowledge would be used.SA plete with help, hints, explanations, and tutoring (see
These systems represented knowledge implicitly within Figure 2).
the specific command that determined (and thus Students can initiate any of 20 training situations,
predefined) system input/output. As a result, each sys- emergencies, and operating conditions-or they can
tern required excessive development time. ask that an emergency be chosen for them. Students

The first hour of computer-aided instruction typically can also accidentally trigger an emergency as a result
required about 200 hours of programmer preparation- of their actions on the boiler. Once an emergency has
an amount possibly exceeded by the preparation time been initiated, students are encouraged to adjust
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Figure 1. The S-curve of three computer technologies: (a) computer-aided instruction technology; (b) expert
systems technology; (c) Intelligent tutoring systems technology.
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Figure 2. A sectional view of the recovery boiler.

meters and perform actions on the simulated boiler to in progress that will lead to combustion process deteri-
solve the emergency. The system challenges student oration if no action is taken. As students change set-
operators to solve new problems while the system point controllers and request information about the
monitors and advises those operators. RBT can recog- boiler, the tutor selectively discusses the optimality of
nize optimal, less than optimal, and clearly irrelevant their actions and suggests how they might better focus
actions. Operators can continue their freewheeling or their actions or utilize their data. An important fea-
purposeful problem-solving behavior while the tutor ture to note about this dialogue is that at any point
offers help, hints, and explanations-plus providing during the simulated emergency there are many
tutoring advice when needed or requested. Operators actions that operators might take and, as the problem
are expected to observe the impact of their actions on worsens, an increasing number of actions that they
the simulated boiler and to react before the tutor should take to correct the operating conditions. Thus,
advises them regarding potential problems. an immediate and correct response might require only

one action, such as rodding the primary air ports. But
An example dialogue. In the example interaction a delayed response causes the situation to worsen,

below between student and tutor, a partial blackout is requiring the addition of auxiliary fuel.

5-F-3



Meters indicate that CO, S02, and 02 readings are which was loaded with the specific emergency. These
abnormally high. An alarm buzzer sounds, beginning questions do not provide the basis of the tutor's
the following dialogue: knowledge representation, which is described else-

where.7 Operators can request meter readings, physical
Tutor: What action are you going to take? and chemical reports, and dynamic trends of variables
Student: Check smelt spout cooling water. (see Figure 4). All variables are updated in real time
[The student's action does not result in a

change in the boiler., every 1 or 2 seconds.
Tutor: It looks as though the liquor isn't In addition to providing information about the
burning.., explicit variables in the boiler, RBT provides reasoning
Student: Help. What is going on? [The stu-

dent requests help.] tools designed to aid students in reasoning about
Tutor: A partial blackout is occurring and implicit processes in the boiler. One such tool is com-
this causes TRS, CO, S02, and 02 to
increase. Steam flow and steam temperature posite meters (shown on the left sides of Figures 2
are dropping. I think part of the bed is not through 5) recording the state of the boiler using syn-
burning. thetic measures for safety, emissions, efficiency, and
Student: Rod the primary air ports. [A small reliability of the bailer. The meter readings are calcu-
improvement in the boiler readings can be
observed.] lated from complex mathematical formulas that would
Tutor: Your action is correct; however, at this rarely (if ever) be used by operators to evaluate the
time rodding alone is not effective...
Student: Raise the liquor temperature. [The boiler.
student's action does not reverse the emer- For instance, the safety meter is a composition of
gency and a new alarm buzzer sounds.) seven independent parameters including steam pres-
Tutor. Rodding the air port apparently was
not enough to undo the blackout. sure, steam flow, steam temperature, feed-water flow,
Student: Increase the oil fuel supply. [The drum-water level, firing-liquor solids, and combusti-
student's action reverses the emergency.l bles in the flue gas. Meter readings allow students to
Tutor- That solved the problem aright. make inferences about the effect of their actions on
Good thinking.

Analysis of the problem: You had a partial the boiler using characteristics of the running boiler.
blackout caused by plugged primary air ports These meters are not presently available on existing
and a cold bed. Partial blackouts can be
effectively treated through a combination of pulp and paper mill control panels; however, if they
rodding the primary air ports and adding prove effective as training aids, they could be incorpo-
more heat. The problem can be avoided by rated into actual control panels.
keeping the air ports clean. Other reasoning tools include trend analyses (see

This dialogue was not actually produced in natural Figure 5) and animated graphics such as shown in the
language; student input was handled through menus Figures above. Animated graphics provide realistic and
and tutor output produced by cutting text from dynamic drawings of the several boiler components
emergency-specific text files loaded when the emer- such as steam, fire, smoke, black liquor, and fuel.
gency was invoked. Operator interactions are handled Trend analyses show how essential process variables
through a hierarchy of menus enabling such activities interact in real time by allowing operators to select up
as checking for a tube leak or rodding the smelt spout to 10 variables including liquor flow, oil flow, and air
as well as selecting the alarm board or control panel flow-and to plot each against the others and against
board. time-

While the simulation of the recovery boiler is run- Each student action, be it a set-point adjustment or
ning, operators can view the boiler from many direc- a proposed solution, is recorded in an accumulated
tions and can focus on several components; for response value reflecting overall operator scores and
example, the fire bed in Figure 3. The tutor provides how successful (or unsuccessful) operator actions have
assistance through visual clues such as a darkened been and whether actions were performed in sequence
smelt bed, acoustic clues, ringing alarm buzzers, tex- with other relevant or irrelevant actions. This accumu-
tual help, explanations, and dialogues. Operators can lated value is not presently used by the tutor, but the
request up to 30 process parameters on the complete notation might be used to sensitize the tutor's future
panel board, view an alarm board (not shown), change responses to student records. For instance, if operators
20 set points, and ask menu questions such as "What have successfully solved a number of boiler emergen-
is the problem?" "How do I get out of it?" "What cies, the accumulated value might be used to temper
caused it?" and "What can I do to prevent it?" These subsequent tutoring so that it is less intrusive. Simi-
questions are answered by cutting text from a file larly, if student performance has been poor, the
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accumulated value could be used to activate more rarely seen situations. In this way, experienced opera-
aggressive responses from the tutor. tors frequently become partners with novice operators

RBT has been well received and is presently used in as they work together to simulate and solve unusual
actual training in the control rooms of pulp and paper problems.
mills throughout the US. Formal evaluation has RBT was developed on an IBM PC AT with 512K-
begun. However, informal evaluation suggests that byte RAM, enhanced graphics, and a 20M-byte hard
operators enjoy the simulation and handle it with disk. It uses a math coprocessor, two display screens
extreme car They behave as they might in actual con- (one color), and a two-key mouse. The simulation was
trol of the pulp mill panel-slowly changing parameters, implemented in Fortran and took 321K bytes; the tutor
adjusting meters through small intervals, checking was implemented in C and took lOOK bytes. Although
each action, and examining several meter readings we tried to implement the tutor in Lisp, we found
before moving on to the next action. Experienced and extensive interfacing and memory problems, including
novice operators alike engage in lively use of the sys- segment size restrictions (64k), incompatibility with
tern after about a half-hour introduction. When the existing Fortran simulator, and addressable RAM
several operators interact with the tutor, they some- restrictions (640K).
times trade "war stories," advising each other about 7b circumvent these problems, the tutor was devel-
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Figure 5. Trends selected by the operator.

oped in C, with many Lisp features implemented in C oped by Gattegno for teaching arithmetic) to generate
such as functional calls within the parameters of C linguistic situations in which new words such as
functions. Meter readings and student interactions in nouns, verbs, and adjectives are associated with mean-
the simulation were transferred between Fortran and C ing. On the screen, a rod is shown playing various
through vectors passed between the two programs. roles; for example, it is used as an object to be given or

taken by a student, or it is used to brush teeth. As a
Caleb for teaching a second language. Our second new rod is presented, students theorize about what sit-

intelligent tutor teaches languages based on a power- uation is being represented, offer their conjectures,
ful pedagogy called the "Silent Way"-a method and revise their hypotheses as the situation demands.
developed by Caleb Gattegno that uses nonverbal Students respond by typing a phrase to describe the
communication within a controlled and artificial envi- situation in the text window. If the picture of a rod
ronment to teach second languages.' Learning a "sec- appears while the words una regleta are displayed, stu-
and" language differs from acquiring a "first" dents type una regleta (as seen in Figure 6a). If students
language (as a child does). Children learning a first theorize that a new word such as blanca describes the
language must acquire linguistic competence such as size of the rod, they can later change that definition if
the ability to associate meaning with sound, to make (in fact) the new word defines the color of the rod (see
transformations, and to derive rules from observations Figure 6b). Meanwhile, students will have learned to
and experimentation. Persons who have learned a first write the word, spell it, and place it correctly in a sen-
language have this linguistic competence and the tence (see Figure 6c). They will have classified the
Silent Way capitalizes on their ability by providing a word as a descriptor and will have invented phrases
directed environment engaging them in new, but using it. Making and correcting hypotheses is central
analogous, linguistic experiences. The directed discov- to language learning. Learner refinement of word
ery environment engages students in an active learning meaning (that is, by a closer and closer approximation
process. of expert ability) is one way to achieve linguistic

In Figure 6a, the tutor presents a new piece--a rod mastery.
located in the center box. The student responds by The tutor does not display words except to mention
typing the word for the new piece at the cursor. In Fig- once, and only once, each new word in the target lan-
ure 6b, the student invents a new phrase by combining guage. The tutor provides minimal pieces of the new
old pieces with the new one. In Figure 6c, the tutor language where piece is defined to be a phoneme, syl-
corrects a student who places the adjective before lable word, or phrase (see Figure 7). Pieces are aspects
(rather than after) the noun. of the language that students can't invent, such as

The tutor teaches Spanish by using graphical vocabulary and pronunciation. The tutor communi-
representations of Cuisenaire rods (originally devel- cates silently, using icons, edit signals, and the rods-
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Figure 6. A system for teaching second languages.

Theme Pieces Potential misconceptions
1. Noun a rod, una regleta word order/agreement
example respon.:b. ufa rag/eta

2. Adj white, blanca word order/agreement
grey, gris
striped, listada
dotted, punteada

example response: una reg/ae blanca
3. Conj and, y word order/use in series
example response: una reg/eta gris y una regleta blanica - una reg/eta gris,
una reg/eta blanca. y ufla regleta negra,

4. Numbers two, dos -s word order/agreement
three, tres -s
one, una

example response: dos regletas blancas y tres regletas negras
5. Noun deletion one, blank use in series/agreement

ones
example response: una regleta ros y una blanca -dos reg/etas blancas y tres negras

6. Verb + direct take, tome word order/agreement
object

example response: torn. una regleta gris - tome una regleta gris y tres b/Incas
7. Verb + indirect give me, dame word order/pronou n/ag reementI/case

object
example response: dame una rag/eta blanca dame tres reg/etas negras y dos blencas

8. Prono !n It/them, la/las word order/pronoun/agreement/case
example response: tome una reg/ata blanca y dame/a tome tres reg/etas negras y damoes

Figure 7. Themes and pieces In the Spanish curriculum.
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Label Idea to get across Icon

go it is your turn to do something blinking cursor
wait tutor busy, don't worry about Mac watch

nothing happening
attention tutor about to do something new sound
signal OK let student know his response is happy face

OK
signal error let student know he has error sad face/Mr. Yuk

puzzled/repeat say/do again (unintelligible puzzled face/again sign
response)

more say/do more (incomplete hand pull
response)

help help is available -,

dictionary list of words already covered book shape
throw out extra stuff, do not need Mac trash can
stop save and quit = good bye hand waving bye/stop sign
pause take a break/stop timer coffee cup
take icon for mouse action grasping hand
give icon for mouse action open hand

pacing regulator slow down or speed up speedometer
frustration student emotional state thermometer
gauge
error correcting word processing techniques highlight/blinking cursor/placement arrows/fade in line

Figure 8. Communication icons in Caleb.

only "speaking" to provide words that students have occur, students are not deluged with entire sentences,
not yet heard. Figure 8 lists icons used to represent nor are they provided a correct model to imitate.
these gestures, edit signals, and pantomime. These Instead, the precise location of the error is pointed
icons are used by the tutor, who plays the role of an out, as in Figure 6c, so that students may correct it
orchestrator and monitor rather than that of an infor- themselves. The goal is to to let students develop their
matioa, giver, own sense of correctness or inner criteria for the new

With the introduction of verbs, action becomes pos- language.
sible For example, the tutor prompts for a command The tutor monitors student input for correctness. A
by indicating a hand taking two white rods in the fault-tolerant parser filters "noisy" input so that some
graphics window. The student types the command errors are ignored and some are treated, depending
Toma dos regletas blancas ("Take two white rods") upon the situation. When the tutor treats an error,
and the tutor performs the action. only the piece. noun, verb, or adjective that needs cor-

So that students both produce and understand lan- recting is pointed out and students edit their input.
guage, the tutor triggers two kinds of response: word- Regarding the presentation order of new material,
oriented responses typed at the keyboard, and action- the tutor makes decisions based on w;iether it's teach-
oriented responses performed with the mouse and pic- ing the current piece, old piece, or old theme (see Fig-
tured objects. An example of the latter is the tutor giv- ure 7). It uses five contexts to determine the number of
ing the command Toma dos regletas blancas ("Take times students should practice the piece. In the intro
two white rods"). Students respond by using the context, for example, the tutor simply presents the
mouse to take two pictured white rods with a grasping- first example on the list of examples associated with
hand-shaped cursor. each piece. When the tutor is in the practice context,

The non-verbal communication (that is, pantomime the example source remains the same and the tutor
such as gestures, nods, and hand signals) of a Silent marches down the list in a fixed order. In the more
Way tutor are used to teach students to recognize practice context, examples are chosen randomly from
when it is their turn to produce a sentence, when the the piece example list. In the review context, examples
tutor is about to say something, when the tutor expects are taken from an example pool of either the current
more than students have produced, when an error theme or Id themes. In the error context, examples
needs correcting, or how to get help when they are stuck, come from the list associated with the error itself.

Errors are produced as students test and revise their This system is implemented on a Macintosh and a
theories about the language. When an error does Sun.
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ESE for teaching thermodynamics. A third tutor
built by Exploring Systems Earth-three universities iillmillo~ l
working together to develop intelligent tutors-ESE is ime

now in the early stages of implementation. This third
tutor is one of a set of tutors that use interactive and
monitored simulations for teaching elementary physics 311111ll
at high school and college levels. The goal is to put
students in direct contact with physics elements such
as mass, acceleration, and force Students pursue vari-
ous activities, such as changing the position or veloc-
ity of bodies in a celestial mechanics simulation, while
viewing dependent changes in the size, speed, and
position of orbit to improve their intuition about
physical concepts. Each tutor monitors and advises
students while providing examples, analogies, or
explanations based on student actions, questions, or
responses.

The tutor we are working on addresses the second Figure 9. Systems moving towards equilibrium.
law of thermodynamics-the law stating that heat
cannot be absorbed from a reservoir and completely
converted into mechanical work. This law is taught at
the atomic level using a rich environment through Klaus Schultz is ESE's domain expert, and Tom
which the principles of equilibrium, entropy, and ther- Murray the domain and teaching expert. Craig Lant,
mal diffusion can be observed and tested. 9 Students Paul Duquette, and Miguel de Campos are the
are shown (and are able to construct) collections of environmental experts. The three universities compris-
atoms that transfer heat to one other through random ing Exploring Systems Earth are the University of
collision (see Figure 9). Massachusetts, San Francisco State University, and

Students can create areas of high-energy atoms, the University of Hawaii.
indicated by dark squares, along with variously
shaped regions within which the system can be ana-
lyzed and monitored. Several systems can be con-
structed, each with specific areas of high energy and T nee f mutiple-experts
associated observational regions. Concepts such as
temperature, energy density, and thermal equilibrium Observations about the participation of experts in
for each observational region can be plotted against building these and other intelligent tutoring systems
each other and against time. Students can then suggest that multiple experts must work on system
observe thermodynamic principles, such as heat trans- design and implementation."" Much knowledge is dis,
ference through random collision and entropy as a tributed, subjective, unorganized, and misunderstood.
function of initial system organization. No one human can supply the knowledge required-

Students can modify system temperature, the num- knowledge including environmental, teaching, cogni-
ber of collisions per unit time, and the shape of the tive, and domain expertise.
initial "hot" region at any time. Changes in these Given the complex and heterogeneous nature of
parameters will cause dependent changes in the sys- knowledge required, we need methodologies and tools
tem. The tutor uses all student activities-including to transfer teaching and learning knowledge from each
questions, responses, and requests-to formulate its expert to the system under construction. Currently,
next teaching goal and activity. It uses student actions few such tools exist.
to determine whether to show an extreme or near-miss Expert system shells contain a framework for build-
example, whether to give an analogy or to ask a ques- ing knowledge bases about concepts and rules, and for
tion. It bases its lessons on an ordered sequence of making inferences about them. Shells make building a
topics. To refine the tutor's response, we are now tutor simpler to write." .

2 However, we need more spe-
studying student misconceptions and common errors cific tools for designing and storing tutoring knowl-
in learning thermodynamics and statistics. edge, and shells are limited in this respect. They are
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frequently based on production rules .,d are limited (4) Environments should isolate key "tools" for
in representing history and dependency of the tutoring attaining expertise in the domain. The economics
interaction. Also, they inadequately represent tutoring tutor provided and monitored student use of key tools
and misconception knowledge-such as how to reason for performing economic experiments. 7 The RBT
about teaching strategies, how to update and assess tutor provided process parameter graphs tracing trends
student models, how to select a path through domain over time, and used abstract meters to help operators
concepts, and how to remediate for misconceptions, reason about complex processes-thereby enabling

them to make inferences about the effect of their
The environmental expert. The first expert needed actions (see Figures 2 through 5).

to build an intelligent tutor is the environmental (5) Environments must maintain physical fidelity:
expert. This person often uses a majority of system Fidelity measures how closely simulated environments
memory' to provide an envelope within which students match the real world.' a High fidelity identifies a sys-
and system interact. The environment provides specific tem as almost indistinguishable from the real world.
tools and operators for solving domain problems or The RBT tutor presents a mathematically exact dupli-
for performing domain activities. cate of the industrial process. It models and updates

Environmental, teaching, cognitive, and domain over 100 parameters every two seconds. Visual compo-
expert contributions interact strongly with each other- nents of the industrial process such as alarm boards,
especially that from the environmental -,pert. For control panels, dials, and reports are duplicated from
example, a system asking students to record entrance the actual control room.
and exit angles for light rays in an optics experiment (6) Environments should be responsive, permissive,
implies that the environment supplies such measuring and consistent.' 9 They should target applications
devices, based on skills people already have (such as moving

The following criteria for developing tutoring envi- icons) rather than forcing people to learn new skills.
ronments have begun to emerge: By responsive, we mean that student actions should

(1) Environments should be intuitive, obvious, and have direct results-that students need not perform

fun. Student energy should be spent learning the rigid sets of actions in rigid and unspecified order to
material, not learning how to use the environment. 3  achieve goals. By permissive, we mean that students
For example, to indicate errors, express feelings, or may do anything reasonable and that multiple ways
convey meaning, the second language tutor's visual should exist for taking action. By consistent, we mean
activities (see Figure 6) mimic the human Silent Way that moving from one application to another (for
teacher's gestures, facial expressions, and rods. Each example, from editing text to developing graphics)

should not require learning new interfaces. All toolsicon ise des ened telge , nambios, and tshould be based on similar interface devices, such asmake use of student intelligence, experience, and pl-onmnso igeaddul os lcs

resourcefulness. pull-down menus or single and double mouse clicks.
(2) Environments should record not only what stu- No environment is appropriate for every domain:

dents do but what they intended to do, might have for- We must study each domain to determine how experts
4 Efunction in that domain, how novices might benavegotten to do, or were unable to witinments differently,d E and how novices can be helped to

should provide a "wide bandwidth" within which attain expertise.
multiple student activities can be entered and ana-
lyzed. For example, the Pascal tutor developed by
Johnson and Soloway processed and analyzed an The teaching expert. Acquiring sufficient and cor-
entire student program before offering advice." rect teaching expertise is a long-term problem for

(3) Environments should be motivated by teaching builders of tutoring systems-in part because sophisti-
and cognitive knowledge about how experts perform cated knowledge about learning, teaching, and domain
tasks and the nature of those tasks. For example, knowledge remain active areas of research in most
Anderson performed extensive research with geometry domains. For the machine tutor, designing decision
students before developing his geometry tutor inter- logic and rules to guide tutorial interaction is a process
face," and Woolf et al. incorporated knowledge from of successive iteration-a process that can be
experts with more than 30 years exiF;rience working improved continuously.
with boiler operations before building the RBT Tools to facilitate inclusion of long-term teaching
interface.' knowledge are just beginning to emerge. For example,
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Figure 10. A framework for managing tutoring discourse.

we have developed a framework for managing dis- rebuilt; response decisions and machine actions,
course in an intelligent tutor that reasons dynamically explicitly represented in the system, can be modified
about discourse, student response, and tutor moves through a graphics editor. Appropriate machine
(see Figure 10). 2: This is a flexible and domain- response can be assessed and continuously improved
independent framework that is portable to various through the editor. In the long term, we intend to
machine tutors. Also, it can be rebuilt-decision make this reasoning process available to human
points and machine actions are modifiable for fine- teachers, who can then modify the tutor for use in a
tuning system response. classroo~i.

The framework reasons about which pedagogical No single teaching strategy is appropriate for every
responses to produce and which alternative discourse domain: Each domain and each student must be
moves to make. It custom-tailors feedback to students assessed to determine an appropriate teaching strategy.
in the form of examples, analogies, and simulations. For example, Anderson et al. built geometry and Lisp
Discourse schemas have been defined as collections of tutors that respond immediately to incorrect student
discourse activities and response profiles. Discourse is answers. 1 These authors argued that they needed
planned by passage through the schemas. The number immediate computer feedback to avoid fruitless stu-
and type of schemas selected depend on context. dent effort. They suggested that erroneous solution

We used empirical criteria to define these schemas: paths in geometry and Lisp might be so ambiguous
Tutoring responses were analyzed from empirical and delayed that errors would not be recognized by
studies of teaching and learning,2 3 other responses students if tutor therapy were delayed.
appeared as effective teaching strategies in research on This pedagogy is opposite to that used by Cunnin-
misconceptions in physics,24 ' others obeyed felicity gham et al.8 and Woolf et al.' These tutors were pas-
laws, 26 and still others obeyed general rules of dis- sive (not intrusive) advisors. Their strategy was to
course structure.2 72=' General rules and fundamental subordinate teaching to learning, allowing students to
remediation strategies have been incorporated into our experiment while developing hypotheses about the
discourse schemas and included in our teaching domain. They guided students toward developing stu-
framework, dent intuitions, but did not correct students so long as

By continuously adjusting to real-time changes in student performance appeared to be attaining a pre-
either the knowledge base or the user, the discourse cise goal.
framework allows the tutor to remain flexible while In industrial settings, particularly, trainees must
cooperatively engaged in conversation. The framework learn to generate multiple hypotheses and to evaluate
views discourse as navigation through a set of possible their performance based on how their actions affect
discourse situations (see Figure 10). We are now using the industrial process. No human tutor is available
this framework to improve the physics tutor's response during normal boiler operation. Thus, the machine's
to idiosyncratic student behavior. The structure is teaching strategy encouraged students to trust their
preliminary in the sense that it's designed to be own observations about the industrial process-
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helping them to learn through animated simulations, ing student attempts to solve emergencies. It shows
trend analyses, and real-time, dynamicallv updated students their false paths and gives reasons behind
meters. In addition, textual dialogue (1) assured that particular rule-of-thumb knowledge used to solve
operators would extract as much information as possi- problems. RBT also provides students with various
ble from data, and (2) established a mechanism to examples from which they can explore problem-
redirect them if they did not. solving activities-showing students their own paths,

preferred paths, and (perhaps, in time) their own
The cognitive expert. At present, the role of the underlying cognitive processes. Simply elucidating

cognitive scientist is incompletely understood; in part, these operational problem-solving components in a
this researcher seeks to discover how people learn and domain, and the rules applying to their use, is not
teach in a given domain. For example, cognitive sufficient to understand how one learns in a new
science research in thermodynamics will enable sys- domain. By using such knowledge, however, a tutor
tems to recognize common errors, tease apart probable can help students learn how to learn. We are compil-
misconceptions, and provide effective remediation. ing such data and expect that it (along with cognitive
Cognitive science research provides the tutor with a studies) will elucidate some processes behind problem-
basis for selecting instructional strategies. The impor- solving behavior.
tance of addressing common errors and misconcep-
tions in physics is well documented, and the tutor's The domain expert. An in-house domain expert is a
intelligence hinges on making that knowledge critical requirement for building intelligent tutoring
explicit."s systems. By "in-house," we mean that the domain

We want a tutoring system to help students (1) to expert must join the project team for anywhere from
generate those hypotheses that are necessary precur- six months to several years while domain knowledge is
sors to expanding their intuition, and (2) to develop being acquired. Less commitment than that-that is,
their own models of the physical world, while dis- any role less than that of full-fledged team member-
covering and "listening to" their own scientific intui- suggests a less-than-adequate transfer of domain
tions. To do this, we rely on work done by cognitive knowledge
scientists, who study how students reason about In the tutors described above, domain experts were
qualitative processes, how teachers impart propaedeu- (and are) integral to the programming effort. The pro-
tic principles (or the knowledge needed for learning grammer, project manager, and director of RBT were
some art or science),2' and what tools are being used themselves chemical engineers. More than 30 years of
by experts working in the field. theoretical and practical knowledge about boiler

For example, the cognitive science experiments that design and teaching strategies were incorporated into
must be performed to build our thermodynamics tutor the system. Development time for this project would
include (1) investigation of real-world tools currently have been much longer than 18 months if these experts
used by physicists, (2) examination of studies that had not previously identified the boiler's chemical,
focus on cognitive processes used by novices and physical, and thermodynamic characteristics and col-
experts, and (3) comparison of novice with expert lected examples of successful teaching activities.
understanding of physics problems. Cognitive science An instructor holding an ESL graduate degree
can define such knowledge-knowledge that eluci- (English as a second language) developed the second-
dates actions taken by experts to make measurements language tutor. This instructor (the second author of
or perform transformations in a domain. We call this this article) has more than seven years teaching experi-
"heuristic knowledge" and define it as knowledge ence. She has used the Silent Way to teach intensive
aboui how to solve domain problems. Heuristic English courses to foreigners living in America, and to
knowledge differs from procedural knowledge in that train Nepali language instructors who in turn taught
it adds neither content nor concepts to the domain, Nepali to future American Peace Corps volunteers.
but describes actions taken by experts using their con- The physics tutor is being built after more than 18
ceptual and procedural knowledge. Such knowledge, months of work with member physicists and
rarely included in tutoring systems, must be included astronomers. In addition, potential users of the system
if tutors are to monitor student problem-solving (high school and college physics teachers) are con-
activities and experiential knowledge about how to tributing environmental and teaching knowledge
work in the field. Their overall effort produced more than 100 pages of

RBT articulates this knowledge by explicitly record- rules, processes, screen designs (including help activi-
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ties about physics), and cognitive studies (identifying source for either domain or teaching knowledge. Text-
educational goals, potential errors and misconcep- books rarely contain the commonsense knowledge-
tions) before any code was built, the know-how used by expert tutors or professionals in

For domain knowledge, expert shells can be used the field-to help choose a next-teaching strategy or
effectively. Anderson" used Grapes3" to represent the solve difficult problems. Books tend to present clean,
rules programmers use for solving problems, to uncomplicated concepts and results. To teach or solve
describe Lisp functions, and to represent higher level real-world problems, tutors must know messy but
programming goals. He used buggy rules to represent necessary details of real and perceived links between
misconceptions that novice programmers often concepts and unpublished rules of teaching and
develop during learning. Streibel et al.' 2 used OPS5 to learning.
write rules for genetic problem solving and to encode
teaching strategies.

Based on the various expert systems that have been
built, the following criteria for acquiring domain
knowledge are well understood: ntelligent tutors can neither cure all educational

problems nor totally answer the dilemma facing
(1) Domain experts should be true experts-if pos- education. They seem incapable of achieving

sible, the best in the field.' Dendral, for example, an the very difficult, let alone the impossible.
expert system for generating and testing hypotheses However, they do provide exciting possibilities-and
about chemical structures and spectroscopic data, was of these, one of the most exciting is that of providing a
built by a team including Joshua Lederberg (a Nobel- community memory for teaching and learning
prize-winning geneticist), Carl Djerassi (a world-class research. This community memory would provide a
expert on mass spectral analysis), and other profes- focus for articulating distributed knowledge in an
sional chemists and computer scientists.31  intelligent tutor. It would include recent as well as

(2) Domain experts are expensive. Gaining the historical research about thinking, teaching, and
attention of knowledgeable people in any domain is learning. Evaluating such an articulation would, in
expensive and time consuming. However, the willing- itself, contribute to education-and ultimately, to
ness and availability of such experts to participate is communication between experts.
critical to the knowledge-engineering process. Assign- .Compiling diverse research results from environ-
ing the expert role to someone of lesser ability (or mental, teaching, cognitive, and domain experts is cur-
worse, to persons with "time on their hands") might rently hampered by the lack of explicit methodologies
doom a project to failure. On the other hand, enthusias- and technologies to help authors transfer their knowledge
tic support from funders and supervisors-including to a system. This article has specifically addressed the
sufficient allocation of resources, human and issues of what further knowledge we need and where
otherwise-are prerequisite to success. we should apply human and financial resources to

(3) Certainly, individual domain experts can have build future intelligent tutoring systems.I
incomplete knowledge or conceptual vacuums. Multi-
ple experts are needed for testing and modifying
domain knowledge throughout the tutor's life.

(4) Similarly, domain knowledge can be overly dis-
tributed.'"0 That is, knowledge can be spread so
diffusely among different research projects and
experts as to leave any system unfinishable that uses
only a single expert (or even several experts). Thus Acknowledgments
domain knowledge must be acquired incrementally
and must be prototyped, refined, augmented, and This work was supported in part by the Air Force
reimplemented. The time needed to build a tutoring Systems Command, Rome Air Development Center,
system "should be measured in years, not months, and Griffiss AFB, New York-and by the Air Force Office
in tens of worker years, not worker months."' of Scientific Research, Boiling AFB, the District of

(5) Domain knowledge found in textbooks is Columbia-under contract No. F30602-85-C-0008.
incomplete and idealized.' In an intelligent tutoring This contract supports the Northeast Artificial Intelli-
system, textbooks are inappropriate as a primary gence Consortium.
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Representing complex knowledge in an intelligent machine tutor
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Knowledge representation remains a serious issue for rcsarchers of intelligent tutoring systems. Two areas of knowledge
representation that are particularly difficult are domain and teaching knowledge. This article discusses and gives example
solutions to these knowledge cngin-cring issues and also addresses issues that relate to up-sealing existing intelligent tutoring
technology to practical levels so that tutoring systems can be brought into the real world.

Key words: intelligent tutoring systems.

La representation de connaissances pose toujours des problbmes serieux aux chercheurs travaillant sur les systtmcs tuteurs.
intelligents. Dcux domaines de repr6sentation de connaissanccs particulibtrn'nt difficilcs sont ccux lits -" la connaissance du
domaine ct i la connaissance pdagogique. Cet article disutc ces problmcs de gi.nie cognitif en apportant quelques excmples
de solutions. II s'intdressc enlin aux probltmcs A rdsoudre pour aincner la technologie des systimcs tutcurs intlligents i4 un
niveau pratique suffisant pour qu'ils sortent du laboratoirc.

Mots clts: systmes tuteurs intclligents.
(Traduit par la revue]

Cumpui. Inilt. 3. 45-5 (1987)

I. Introduction textbooks, were insufficient to enable a system to observe

Intelligent teaching systems are designed to represent both errors. assist in recognizing misconceptions. and provide

the concepts to be taught to the student and how a student custom-tailored remedial action. Careful representation of

might learn those concepts. Intelligent tutoring systems clearly domain knowledge required at least an investigation into an

differentiate the components of the teaching process; thus, expert's understanding of the laws of the domain, possibly

knowledge of the student (Johifson and Soloway 1984: Miller divided into classifications such as concepts. procedural rules.

1982) is separated from knowledge of the domain (Stevens et and ineta-rulics by which the concepts were used. heuristics (or

al. 1982) and both of these types of knowledge arc separated rules of thumb) to use the rules, and simulation rules to

from strategies about how and what to teach (Clancey 1982: graphically implement the data. This breakdown is not the

Woolf and McDonald 1984a.b). Given this wealth of knowl- "best" nor the only way to parcel domain knowledge. but it

edge, often encoded in the form of hundreds of "if-then" serves as an indication of the complexity of knowledge

rules, such systems perform fine-grained reasoning about a required in building an intelligent tutoring system.

student and his progress. Codification of this tacit knowledge To illustrate the complexity of domain knowledge in a

and transmission of this knowledge to the computer is what strong intelligent tutor, we describe the Recovery Boiler Tutor

enables the intelligent tutor to represent what the student (RBT). a tutor built for a kraft recovery boiler, which is a type

knows and to provide guidance in a form such that the student of boiler found in paper mills throughout the United States

remains in control of the interaction. A distinction is also often (Woolf el al. 1986).' RBT provides multiple explanations and

madc between "strong" and "weak" tec hing systems. A tutoring facilities tempered to the individual user. a control

strong teaching system solve the %n problem it prcsents to rooni operator. The tutor is based on a mathematically accurate

the student and a weak on does not. Thus, in addition to fonnulation of the boiler and provides an interactive simulation

recognizing errors, recording missing answers. and correcting complete with help, hints, explanations, and tutoring (Fig. I).!

errors, which a "weak" system can do, the strong system
additionally solves the problem in order to be able to assist the
student when he gets "stuck" during a partial solution. To do 'RBT was built by .. Janscn Co. Inc.. Steam and Powcr Engi-
this. a strong teaching system nees additional "expert" system ers. Woodinville (Seattle). Washington and sponsored by The
knowledge in addition to the knowledge listed above. Ameican Paper Institute. a nonprolit trade institution for the pulp.

paper. and paperboard industry in the United States. Energy Materials
This paper provides example solutions to two knowledge Deparment, 260 Madison Avenue. New York. NY. R)016.

representation issues: domain and teaching knowledge. The :RBT was developed on an IBM PC AT (512KB RAM) with
paper demonstrates how complex knowledge and increased cnlhanced graphics and a 20MB hard disk. It uses a math co :.occssor.
research into teaching and learning arc necessary to make two display screens (one color). and a two-key mouse. 'he simulation
further progress in the developmnt of intelligent teaching was implemeinted in Fortran andl took 321KB; the tutor was imple-
systems. iented in C and took ItNIK8. Although we tried to implement the

tutor in Lisp. we found extensive interfacing and memory problems.
2. Knowledge of the domain including segnent size rcstrictions (64K). incompatibility with the

existing Fortran simulator. and addressable RAM restrictions (W.JlK).
Historically, the first knowledge issue addressed by 'o circumvent these problems the lutor was devcIljd in C with

r.searchers of intelligent tutors was knowledge of the domain, many Lisp features impicimcntd in C. such as functional calls within
As tutoring systems developed, the more powerful systems the parameters of C functions. Meter readings and student interactions
required more sophisticated knowledge of the domain. For in the simulation were transierred hetwcn Fortran and C. through
example. lists of concepts and rules, such as those found in vcctors passed between the two programs.
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occoV I[Noic: A partial blackout is in progrcss and it willI lead to deterioraiii
Ismol the comnbustioni process it tit? achoin is taken. Meier'% indicaie ih:u

__ __ 2_ _ CO. SO . and 0: readings arc anormially high.

in ror [An alarm buzzer sounds.1
ruo: What action are you goinlg to take'!

opnon7s losi Student: Cheek smelt spout cooling water Student's action doies not
464. 7 result in a change: in the. boiler

lutor: It loiks ws though ili: liquor isill burning...
a..Student: Help. Whait is. going oil'! [Studeiit requests hlocp. I

'Rotor: A partial blackout is% occurrinig and this causes IRS. (.
SO.. aiid 0. it) increase:. Steat (low and steamt tcinperaiurc
ire droippinig. I think part of tie NAd is ntit huriime

IsmStudent: Rd lie primuary air lsinl. I A siuall inpriveiin III lite
boiler rcadings can be observed.]

FoG. 1. Selected view of the recovery boiler. Tutor: Your action is corrct. however. at this time radding alone is
. no( effectivc...

A student can initiate any of 20 training situations. cimergen- Student: Raise the liquor tenuperaiurc. [Student's action does nix
cies. or operating conditions, or he can ask that an emtergenicy ltr:reverse the emergency and a new alarn huzzer sound%. I
be chosen for him. Hc can also accidently trigger an enter- luo: Ruoding the air ptin apparently was not enouugh to undo file

blackout.gency as a result of his actions on the boiler. Once an emcr- Student: Increase the oil fuel supply.. [Student's action reverses the
geney has been initiated. the student is encouraged to adjust eiuiergency.]
mecters and performn actions on the simiulated Noiler- to solve the 'ruir: That solved tIhe problem atrigut Good thioiking.

Tegoanc bidnyh.yse a ocaleg h tdn Analysis of the problem: You had a partial blackout caused by plugged
opeo o soblv in n e ryblem whil itorallng anestdcont primary air ports and a cold bed. Pirnial blackout can be effectivelyoperator is actons. Thobem syitem ontrn c an d reonie optial treatcd through a combination of rodding the primary air porns andmeriting upon hi cin.Tesse a eonz pia. adding more heat. The problem can he- avoided by keeping the air

less than optimal. and clearly in'elevant actions. The operator ports clean.
continues his freewheeling or purposeful problem-solving
behavior while the tutor offers help, hints. explanations, and Fia. 2. Dialogue between tutor and operator
tutoring advice when needed or requested. 1'hc operator is
expected to observe the impact of his actions on the simulated ers), textual help. explanations. and dialogues (such as that
boiler and to react before the tutor advises him about potential illustrated in Fig. 2). The operator can request up it) 30 process
problems. parameters on the complete panel board (Fig. 5). view an

An example interaction' between the student and the tutor is alarm board (not shown), change 20) sctpoits. and ask mnenued
shown in Fig. 2. As the operator changes setpoint controllers questions such as "What is the problem?". "How do I get out
and requests information about the boiler, the tutor selectively of it'?". "What caused it'!" and "What can I do to prcvent
discusses the optimality of his actions (we show how below) it'?"." The operator can request meter readings. physical and
and suggests how he might better focus his action or better chemical reports. and dynamic trends of variables. All vari-
utilize his data. An important feature to note about this ables are updated in real time (every I or 2 see)0.
dialogue is that at any point during the simulated emergency In addition to providing information about the explicit vant-
there are a large number of actions an operator might take and. ablcs in the boiler. RBT provides reasoning tools designed it)
as the situation worsens, an increasing number of actions that aid a. studcnt in recasoning, about implicit processes in the
he should take to correct the operating condition. Thus, an boiler. One such tool is composite meters (left side of Fig. I
immediate and correct response might require only one action, and 4 through 6). which records the state of the boiler using
such as rodding the primary air ports. but a delayed response synthetic measures for safet '. emissions. effi'ieucs'. and
causes the situation to worsen and requires the addition of' reliabilityv of the boiler. The meter readings are calculatcd from
auxiliary fuel. complex mathematical formulale that would rarely, if ever. be

The operator's interacetions with the tutor are uuade through a used by an operutor himself to evaluate the boiler, For
hierarchy of menus, two of which are shown in Fig. 3. Menu A instance, the safety meter is a composition of seven indepcn-
allows an operator to select a physical activity lo be performed dent parameters. including steamn pressure. steam flow, steami
on the boiler, such as checking for a tube leak or rodding the temperature. feedwater flow, drum water level, tiring liquor
smelt spout. Menu B allows the operator ito select a particular solids, and combustibles in the flue gas. Meter readings allow
computer screen, such as the alarmi board (or control panel a student t)o make inferences bo~ut lte effecti oh his actions oil
board. the boiler using characteristics of the running bhoiler.'

While the simulation of the recovery boiler is running. the Other reasoning tosols include trend analyses. see Fig. 6. and
operator can view the: boiler Iroin many directions and canl animated graphics. such as shfown on boiiler figures. TIrend
focus on several components. -such as the lire bed illustrated in
Fig. 4. The tutor provides assistance through visual clues (such "Ilist tour quecstons arc anuswered by cutting tekt lriiin a lif
as a darkened smelt bed). acoustic clues (ringing alarmn buzz-' which was loaded with tile speccilic viiiergeilcy. It"ic-. s 1e1111 uetmi ti

notn provide the basis oft the: tutor's knowledge neprestnattion. which
Trhc dialogue ut Fig. 2 was t) actually prodtuced in natural will be doiussed below.

language student input was handled Iinioui iswnmis (Fig - 3and tutor 'nflicmters are nl preseLtit ly ;ivjamue oni es ising lmiliantI liatl'
output proced by cutting texSt triiits ciiurgcnc y -slicilic text i ics mill contnit panels; homwever. it they prove cl lcctivc I% Itaiingii ,mlds
loade-d when Ithe emergency was evoked, they could be incor-Airated into1 actual coiuirot pflln'
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(A) (13)

binat are You Going to Do
___________________ What 0 ocu Want To Do

Determine sore* of dilution Lo tbie
CheCk Instrumentation Lookall a*t ~ control

usea potal auilar Mab;u adut ert'

Rmg i4Wguns Sod: *emstatus

Ptiliurgunsod s ~ thing

Rod primary air ports Eamine report

Cheeki smelt *Pout Cooling waeter Soto analysis & Quit

Start standby feedwater pumps Change NOT'% mods
Retoe water flow to deaorator Nothing

ouat

FIG. 3. Mcnus to selcct tasks to be performed on the boiler.
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FtG. 4. Focused view of the fire bed. FIG. 5. The complete control panel.

analyses show how essential process variables interact in real -icu
time by allowing an operator to select up to 10 variables, flm--mGS
including liquor flow, oil flow, air flow, etc., and to plot each
against the others and against time. Animated graphics provide
realistic and dynamic drawings of the several components of
the boiler, such as steam, fire, smoke, black liquor, and fuel.

Student actions are recorded in an accumulated response _______ * .

value, reflecting an operator's overall score and how sue- "IIe
cessful, or unsuccessfirl, his actions have been and whether - - -

actions werc performed in seqlucneec with other rtelevant or
irrelevant actions.'"LMLI _________

2.1/. Ml tiple represrentatons of domain knowledge &-___ 1t'-1 0im wse.

In order to describe RBT. we represented several facets or FtG. 6. Trends %elected by the operator.
domain knowledge, including concepts. rules, and learning
strategies specific to the domain. Such knowledge was spec-
ified in excruciating detail before the tutor was built. This a framei or other data structure that encodes default values
knowledge is divided into three categories: conceptual. pro- within an explicit set or attributes for each concept. Such a data
cedurall. and heuristic knowledge. structure expresses information about both the attributes of a

Conceptual knowledge includes data, concepts. and relation concept and the relationship between concepts.
between concepts in t domain. This knowledge has tradi- Procedural knowledge includes the reasoning used to solve
tionally been the primary domain knowledge represented in a problems in the domain. This knowledge has traditionally been
tutoring system. In many systems. concepts are represented by included only in teaching systems that reason about proxcdural

tasks, such as solving arithmectic problems (Burton and Brown

Ilsis accumulated value I.- not presently used by th tuor bu h 1982) or simulating the operations of a steam engine (Forbus
notation might be used to senitize the tutor's future responses it) th and Stevens 1981) and has typically been mtissing from sys-
student's record. For instance, if the operator his sucessfully solved tcms based on simulations. In fact, as recognized by Hollan
a number of boiler ergencies. the ,accumulated value might be used et cal. ( 1984) and Forbus and Stevens 0198 1). simuilations must
to temper subseqluent tutoring so that it is le,.s intrusive. Similarly, if a also incorporate tutoring and muilst explain the qlualitative pro-
student's pisi1 pertormance has heen poonr. th. iumulated value cesses hehind the physical process in the simulation.
cannot be used to wcivate rmor aggressive respurises from the tutor. Heurixtic kniswiledge includes actions taken hy an expert to
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make measurements or perform transformations in the domain. ti.t will "'retrolit' existent formulas. consider alternative solu-
It defines those operations used to solve problems in the field tion paths. and. if possible. create new procedures to explain
and is part of an expert's experiential knowledge about the the phenomenon. Such techniques of modilying existent rules
domain. Such knowledge differs from procedural knowledge should be taught to students. Kuhn suggests that Icarning tt)
in that it does not add content to the domain, nor does it recognize, apply, and reject operant (procedural) laws of
actually access content in the domain: rather, it adds knowl- nature is a prerequisite for "doing" science.
edge about how to solve problems in the domain and therefdre Because it is involved with strategies for solving a problem.
describes actions taken by the expert while using conceptual heuristic knowledge must also point to the prerequisite knowl-
and procedural knowledge. This knowledge has rarely becn edge that a student should know beforc he can solve the
included in tutoring systems. but must begin to be included if problem. Such "preknowlcdgc," and the way the machine
tutors are to monitor their student's problem-solving activities, investigates it. is contained in the student model, which will be

briefly discussed in the next section.
2.2. Learning how to learn

Using heuristic knowledge can begin to help a student learn 2.3. Domain knowledge in RBT
how to learn. A tutor with heuristic knowledge can show false In RBT. concepts and processes were represented in multi-
paths taken by the student and can begin to give reasons behind ple ways, some proccdurally, some declaratively, and sonic in
the particulars of rule-of-thumb knowledge used to solve prob- both ways. To a small degree heuristic knowledge was also
lems. For example, a tutor can provide with a variety of represcnted. For example, emergencies in the steam boiler
examples from which a student can explore a large space of were first represented as a set of mathemiatical formulac so that
problem-solving activities. The student's path through the process parameters and meter values could he produced accu-
activities and strategies can be traced; so the tutor can begin to rately in the simulation. These same emergcncies were then
define properties of the underlying cognitive process. We can- encoded within the tutor's knowledge base as a Iramelike data
not derive deep properties of Icaring and problem solving structure with slots for preconditions, optimal actions, and
simply by elucidating the steps taken to solve problems. conditions for solution satisfaction so that the tutor could
Nevertheless. if we compile problem-solving data. along with evaluate and comment upon the student's solution.
cognitive studies, we can begin to elucidate some processes RBT can recognize and explain
underlying a student's problem-solving behavior. • equipment aiJ process flows.

Philosophers of science believe that heuristic knowledge, * emergencies and operating problems as well as normal
unlike conceptual and procedural knowledge, is best acquired operating conditions.
through experience and working examples illustrating aspects * solutions to emergencies and operating problems.
of the phenomenon (Kuhn 1970). Educators and cognitive • prcees, for implemecnting solutions, and
scientists have observed that students benefit from numerous - tutoring strategies for assisting the student.
hours spent solving problems. Yet, there is nearly a total This knowledge was organized into four modules: inulugima.
absence of information about which strategies and heuristics knowledge base. student miodel, and instructional strategies.
actually work. how a student learns from doing homework, or The simulation uses a mathematical foundation to depict
what precisely is learned from doing homework (see Larkin processes in a boiler through meter readings and four animated
(1982) for some innovative studies along this line), views of the boiler. It reacts to more than 100 process param-

The computer helps explain the process of learning from eters and generates dynamically accurate reports of the ther-
examples by recording the student's behavior when confronted mal, chemical, and environmental performance of the boiler
with examples of increasing complexity which are also linked (not shown) upon request. An alarm board (not shown) repre-
by cognitive similarities. For example, RBT provides tools sents 25 variables whose button will turn red and alarm sound
with which a student can build his own example emergencies. when an abnormal condition exists for that parameter. The
It simulates the newly made examples to "work" or "fail'" simulation is interactive and inspectable in that it displays a
according to the laws of the science domain. The student's ".real time" model of its process, yet allows the student to
ability to use rules of science in the simulation will in part "stop" the process at any time to engage in activities needed to
predict his ability to work outside the simulation and within the develop his mental models (Hollan et al. 1984). The operators
complex industrial site. who tested RBT mentioned that they liked being able to stop

Kuhn states the process to ask questions or explore boiler characteristics.
If a student working on a problem inadvertently triggers a

A student cannot, it is said. solve problems at all unless he has second problem, the least serious problem, as defined by the
first learned the theory and some ruies for applying it. Scientific engineer, will be placed on a stack and held in abeyance while
knowledge fit is said] is embedded in Lhs= and rulcs; problems
are supplied to gain facility in their application. I have tried o the student is coached to solve the more serious problem. Alter
argue. howcver. that this localization of the cognitive content of the more serious problem is solved, the student is coached to
science is wsfg.. Aftet the student hw done many problems. he solve the remaining one. Thus, the simulation provides facili-
may gain only added facility hy solving mre. But at the start and ties for handling multiple instan*iations of cni'rgencics.
for some time alter, doin! pndmlems is learning conequenlial One advantage of a formal representation of the prx:css is
things aMt nature. In the absnce or such examples, the laws the availability of a "database" of possible worlds from which
and theories he has previously learned would have little information based on typical or previous moves can be fed into
empiical content fKuhn 1970: cmpha.sis mine]. the simulation at anytime (Brown et al. 1982) and a solution

found. In this way, a student's hypothetical cases can be
Kuhn (1970) points out that scientific breakthroughs often proposed, verified, and integrated into his mental model of the

result from a scientist's need to solve unique problems for boiler.
which no existent rule applies. Given amn)mlous data, a scien- The knowledge base contains procedural knowledge about
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emergencies, called icnarto.s. and it includes preconditions. questions and how to /cus on the appropriate issue. The
postconditions. and solutions for cach. Scenarios are repre- system should act as a partner. not as a disinterested. uncool-
sented in framelike text files. For example. in Lisp notation, a mitted, or uncooperative speaker. E'fctive comnmunication
true blackout would be described as with a student does not mean natural language processing (this

preconditions: has been achieved t) sonic degrcc in systems such as WIlY

(or (<= blackout-factor I) (Stevens et al. 1982) and SOPHIE (Brown et al. 1982)
(< heaLinput 5000)) Rather, effective communication requires looking beyond the

postconditions: spoken words and determining what the tutor and student
(or (increasing O,) should be communicating about (Collins et il. 1975). This

(decreasing stcamllow) problem becomes acute when the student org :i/es and talks
(increasing TRS) about knowledge in a way that is diftrent froin the way the
(increasing CO) expert organizes and presents it.
(increasing SO,)) Few systems have been effective in the way% they commum-

solution satisfaction: cate with the student. GUIDON (Clancey 1982) is an exccp-
(and (= blackout-factor I) tion that carries on a flexible dialogue with the student based

(> heat-input 5200)) on inferences made about his knowledge. It .,lccts among
alternative dialogues based on inferences about the student's

Scenarios in RBT represent successively more serious prob- previous interactions and inferences about his current inforana-
lems. For instance, a smelt spout pluggagc is represented in tion. GUIDON can switch its discussion to any topic listed on
terms of several scenarios depending on whether the solution an AND/OR graph. representing the rules of the expert sys-
requires rodding the spout. applying a portablc auxiliary ten. and can respond io a student's hypothesis using a variety
burner, removing the liquor, or a combination of all three. of techniques, one of which is "entrapment." which forces the
Again, formalized knowledge of the domain made it easy to student to make a choice leading to incorrect conclusions.
represent and evaluate graduate scenarios, as well as multiple thereby revealing some aspect of his (mis)understanding.
operator actions. In this section we describe our experience in building teach-

The efficiency of the student's action is evaluated both ing knowledge into two distinct systems. the Recovery Boiler
through the type of action performed, such as whether the Tutor and the Meno-tutor. The latter system extended our
student increased 0. or increased steamflow for a true black- exploration of tutoring issues into the arena of discourse man-
out, and the effect of that action on the boiler. Thus, if an agement and understanding. As a precursor to discussion of
inapopriate action nevethe ,ss resulted in a safe boiler, the these tutors, we briefly describe the student model and the role
student would be told that his action worked, but that it was not discourse plays in prescribing teaching knowledge.
optimal. For example, a partial furnace blackout requiring
manual rodding of the air delivery system can be alleviated by 1. 1. Knowledge of teaching in RBT
shutting down the boiler. However, this is an expensive and The student model is an essential component within the
unwarranted action and the student will be advised to use an knowledge of teaching. It contains the system's knowledge of
alternative approach. the student and must be defined in sufficient detail before the

Heuristic knowledge in RBT is expressed by articulating the system is built to be able to be dynamically updated while the
steps involved in using detailed operant laws and by explicitly system runs. The student model should not be a simple subset
defining the operations performed at the time of a failure. of domain knowledge; it should contain common errors and
Simply elucidating these operational components and the misconceptions specific to the domain as compiled by domain
applicable rules is not sufficient for learning. For this reason, experts, teachers, and cognitive scientists.
the tutor also provides tools for a student to reason about the In the Recovery Boiler Tutor, the student model records
complex process. These tools include graphs to demonstrate actions carried out by the student in solving the emergency or
the relationship of process parameters over time. meters to operating problem. It recognizes correct as well as incorrect
measure safety, emissions, efficiency, reliability, and safety. actions and identifies each as relevant, relevant but not
and interactive dialogues to tutor the operator about the on- optimal, or irrelevant. In RBT. the tutor compares the sti-
going process. RBT records every use of these tools and every dent's actions with those specified by the knowledge base and
operation performed by the student. uses a simplified differential model to recognize and comment

about the difference between the two.
3. Knowledge of teaching Remediation in RBT is designed to guide without leading.

The second theoretic issue to be addressed in building For example, if a partial blackout has bLen simulated, the
sophisticated tutoring systems is the representation of teaching black liquor solids are less than 58%, and the operator adjusts
knowledge. In addition to being an expert system that solves the primary air pressure, the tutor might interrupt with a
problems in the domain, a tutoring system must also teach a message such as
student how to solve those problems in the domain. Because "Primary air pressure is one factor that might contribute to
teaching a topic is often more difficult than "knowing" the blackout, but there is another more crucial factor - try
same topic, a teaching system must be more complex than an again.
expert system. The expert tutoring system will monitor a or
student's behavior. advise him. respond sensitively to his have overlooked a major contributing lactor to hlack-"Youhaevrhkc ao otiuigltrtoba-
answers, suggest new activities, and anticipate future actions outs."
ba.cd on inferences ah'iut his current activities. o

Building such te'aching knowledge is critical to dcvcloptenl "l'eaching knowledge in RII' contanns the decision logic and
of the tutor. I'he machine should ktnow Iw to isk the,: right rules to guide the tutor'. intervention in the operator's actions.
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In designing the instructional strategy of the tutor, the intent 3.2. Knttcdifc ,/ tf'a(hiti, t, o ,tho-ir
was to "'subordinate teaching to lharnin'" and it) allow the Meno-tutor places more machine intelligence in service to
student to experiment while developing his own criteria about the choice ainong tutoring strategies. It reasons about the wov
boiler emergencies. Thus. the tutor guides the student, hut the system communicates with the student and the Inpics' that it
does not provide a solution as long as the student's pertor- chooses based upon a model olfthe student's goals, the domain
mance appears to be moving closer to a precise goal. complexity, and the current discourse history (Wooll and

Represented as if/then rules based on a specilic emergency McDonald 1984a.1): Woolf 1984). Meno-tutor uses a student
and a specific student action, the instructional rules are model, an annotated domain, and a representation of tutorial
designed to verify that the student has "asked" the right ques- planning to custom-tailor its response to the student. both in
tions and made the correct inferences about the saliency content and form.
of his data. Special precautionary messages are added to the Meno-tutor was able to respond in two domains. reasoning
most specific tutor responses to alert an operator when a full- about rainfall and programming loops in Pascal. In the rainfall
scale disaster is imminent. Responses are divided into three domain, the student model was based on cognitive research o)n
categories: student misconceptions about rainfall (Stevens ci al. 1982) and

Redirect student: "Have you considered the rate of increase in the domain of Pascal we used groups of programming errors

of O"," developed empirically (Bonar 1982a.h- Johnson and Soloway
"If what you suggest is true, then how would you explain 1985). Extensive testing and videotaped interviews of correct
the low emissions reading?" and incorrect programming strategies yielded high-level pro-

Synthesize data: "Both 0! and TRS have abnormal trends." cedural plans that are supposcdly used by experts to transform
"Did you notice the relation between steam flow and problem descriptions into prograiis.
liquor flow'?" A major thrust of Meno-tutor research has been to develop

Confirm action: "Yes. it looks like rodding the ports worked the control and data structures needed to plan responsive dis-

this time." course such as that observed in human tutoring Mcno-tutor
(Woolf 1984) is a "generic" tutor, in that it is not committed by

The tutor selects a response from each category in an design to a single tutoring approach or tutoring doiiain
attempt to address the operator's action, his presumed ability Rather, it provides a general framework within which tutolilig
to solve the problem. and the need to encourage him to con- rules can be delined and tested. ]is knowledge of the tw
tinue to generate hypotheses. Evidence from other problem- domains, in !*act, is shallow.
solving domains, such as medicine (Barrows and Tamblyn We contrast our work with older tutoring and discourse
1980). suggests that students generate multiple (usually 3-5) systems (Brown i l. 1982 Burton and Brown 1981. Mann
hypotheses rapidly and make correct diagnoses with only two et al. 1977. McKeown 1980) that were "rtrieval-orinted
thirds of the available data.7  While we placed emphasis on choosing among alternative

The RBT was designed to be a partner and cosolver of responses that guide the learner based on what the tutor know'%
problems with the operator, who is encouraged to recognize about him. other systems have placed emphasis on retrieving a
the effect (or lack of same) of his hypotheses and to experiment correct answer. Such systems sought to produce a correct
with multiple explanations of an emergency. No penalty is answer independent of the user's knowledge or current history
exacted for slow response or for long periods of trial-and-error More recent interface and tutoring systems (Finin 1983.
problem solving. This is because learning requires more Wilensky 1982; Clanccy 1982) have begun to tailor their
exploration and more time than does performance of known responses to the user and to discourse context.
activities. In the real world the penalty for slow responses and As an example of discourses produced by the Mcno-tutor.
incorrect action is clear and often painful. This approach is we present Fig. 7. These discourses were originally produced
distinct from that of Anderson et al. (1985) and Reiser e't al. in human-to-human tutoring situations (Stevens e. al. 1982).
(1985). whose geometry and Lisp tutors immediately acknowl- Meno-tutor reproxluced the actual text and high-level transi-
edge incorrect student answers and provide hints. ThesL tions in these and twelve other discourses that were used to
authors argue that erroneous solution paths in geonetry and "reverse engineer" the mechanism of the tutor. That is, we
Lisp are often so ambiguous and delayed that the source of the analyzed the common transitions and speech patterns used in
error might not be recognized for a long time. if at all. and then these discourses and then defined the structures ad knowledge
it might be forgotten. They argue that imnlediate computer necessary for a machine tutor to have a similar tiodel of the
tutor feedback is needed to avoid fruitless effort. student and to make the sane transitions. For example, in the

The trainee in an industrial setting must learn to evaluate his lirst of' the two discourses, the system recognized that the
own performance from its effect on the industrial process. I I/ student made two wrong answers and it interred that his/her
she should learn to trust the process to provide as nuch knowledge was limited.' It then judged thai the question
feedback as possible. In RBT we provide this l'edback answer approach, which had been used until then, was inelhCc-
through animated simulations. trend analyses, and "real-time" five and should be changed and that a new topic, the "Japan
dynamically updated meters. The textual dialogue from the Current." should be discussed because it supplies a donminant
tutor provides added assurance that the operator has extracted influence in the region's climate. 1The system decided to supply
as much information as possible fron the data and it estab-
lishes a mechanism to redirect him if he has not (Burton and the additional data in a descriptive. rather than an Interrogative

Brown 1982; Goldstein 1982).

'Medical students have been tound to ask Nt'hA otl their qucstions 'I1's not that those answers were simply 'wrong.'" rallr that the
while searching for new data and obtain 75"hi ot their signiticant reflect reasinable default assumptions ah)ut the weather im "northern
information with in the irst It0 min after a problem is stated (Barrows states.'" An attempt io probe the student's default assumptions is made
and Tanblyn 1980). in the second discourse.
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Tutor: Do you know what the climate is like in Washington and I PROGRAM L.ESSONIINPUT. Ourpu'r:
Oregon'? 2 VAR

Student: Is it cold'? 3 SUM.GRADES ,SrUDENTS:INrEGER:
Tutor: No. it is rather mild. Can you guess about the rainfall ther'? 4 MEDIAN:REAL;
Student: Normal. I guess. 5 BEGIN
Tutor: Well. the Japan current. which starts in south eastern 6 SUM:-0.

Pi.cilie. goes along the coast ol' Japan and across the North 7 S'I'UI)I'NIS: - 0it
Iaislic ending up oil lit coast ill Washington iand Oregoni. At REAIGRAI):i't;
How do you think that current allucts the cliiate there? 9 WHILE GRALES>t IX)

Student: It's probably rainy. It) BEGIN
T1utor: It is indeed very wet. there arc rain forests in both Wash- I I SUM: - SUM - (RAI)ILS

ington and Oregon. What does that tell you about the tern- 12 STUDENTS: = STUDENTS + I;
perture of the Japan current? 13 GRADES: =GRADES+ I:

Student: It's warm. - should be READIGRAI)I'Si:

Tutor. Do you think it rains much in Oregon? 14 END:

Student: No. I5 MEDIAN: = SUM/STUDENTS:
Tutor: Why do you think it doesn't rain much in Oregon'? 16 WRITELN

Student: Because the neighboring states arc dry. 17 (THE MEDIAN GRADE IS' ENDIANX31

Tutor: The neighboring states are dry. but, you cannot generalize I8 END

from tha. In fact. it does rain a lot in Oregon. Can you Ftc;. 8. A studen Pascal program.
guess what causes the rain there'?

Student: Well. there are high mountains in the region and the states
border the P.eilic Ocean. about misconceptions. In the first discours., nicta-ruls were

Tutor: Yes. The Pacili%: borders Oregon. How do you think it is triggered alter all topics were discussed, either all questitis
involved in the heavy rainfall there'? had been answered correctly or the student was provided with

Student: O'ean air rises and co)ls upon reaching the land. remediation by the tutor. In the second discourse, however. the
Tutor: 'That is right. rules were nodilied to eliminate that requiremcnt, with the

result that both rule% were triggered and the discussion quickly
Ft(;. 7. "l'wo discourses produced by Mcno-tutor. centered on the students misconceptions.

In addition to producing a variety of tutoring styles by
style, because the student seemed confused and might prolit changing the meta-rules, we explored the tutoring space avail-
from the addition of supplemental data.' able to Meno-tutor by substituting a new domain knowledge

The first discourse was generated by Meno-tutor in such a base in place of the knowledge about rainfall. Using the same
way that all of the decisions, topics, and tutoring styles avail- teaching mechanism and a knowledge base about elementary
able to the system were explicit and modifiable by the authors. PASCAL looping constructs," we demonstrated the power 01
Modifying discourse decisions allowed us to generate addi- isolating reasoning about tutoring strategies from reasoning
tional discourses moving beyond the "reverse-engineering" of about the knowledge to bec tutored. One reason for this was I
this first discourse. The "tutoring space" defined by our appa- see if the tutoring component could be interfaced with a dif-
ratus allowed us to vary the domain and the particulars of the ferent expert knowledge base and a different language gener-
rules. For example. the second discourse in Fig. 7 was based ator in order to teach a new subject and even "speak" in a new
on the same domain as the first, but was done in an alternative language. If our modularization was effective (we speculate).
tutoring style, brought about by modifying the "meta-rules" we could combine a Pascal knowledge base and, say. a Chi-
that govern whether the tutor first explores the student's fron- nese language generator with the tutoring component. and the
tier or probes his/her misconceptions immediately as soon as resulting system could interrogate a student in Chinese and
the first mistake is observed, teach him about programming in Pascal. The difference in

Two meta-rules (see Sect. 3.3) were nodificd to achieve this domain and language realization should force ri) changes in
second discourse. As explained in the next section, meta-rulc the tutoring component, though of course it might be quite
can move the tutor to change its tutoring strategy. In the first inappropriate in China to use the samen mix and structure tit
discourse, the meta-rules in question were used conservatively tutoring strategies as in the English language version iol the
such that probing a student's misconceptions was implementecd system.
only after several topics were completely discussed and the The program depicted in Fig. H was actually suhmitted h a
tutor had sonic confidence in the student's knowledge or lack novice programiner and the discourso shown in Fig. 1) %.;1s
of same. In this discourse, however, the two ineta-rules were actually generated by the original Mcno-tutor with the indi-
triggered after a single incorrect answer, thus shifting the locus cated changes to the expert knowledge base.
of the discourse abruptly to a discussion of misconceptions at The changes required to produce each discourse .tre
the beginning of the discourse. described in Woolf (194). Though the nuntber 1' dliscourses

The modified rules caused the tutor to question the student
"Mcno--utor was originally developed as part tl a larger rcearmh

*Mctio-tutor has been devlp"d without a lull-scale natural lan- efft directed at building an oi-li: run-time suppt n syst em hr
guage unde riander or generator. 'he conwcptual equivalent otf a novice Pascal users tSoloway e' Id. 1 I I Bonar 19821; Ilonar and
student's input is led by hand to the tutor ti e.. what would have been Soloway 1915). As a pan ti tlls, etior, a Rue Iinder was developed
the output il' a naiural language comiprehensioin ystell) ald lhe that detected run-timle sci ntic errtrs il ito le Pascal prigrait s
output is produced by standard inrcnocntal replacetme'nt techniques. (Bonar 11)82a.h and passd this inloriation o il it Meno-tlulor hIlc
We have not yet wwkcd with MUMBLE (McI) oald im.11). our Bug Finder could identily tle type ol error and the line titihr% i
surfaice language generator, because we haven't yet invested in build- related variables. It was used tir three wtwoers ot classes ti0 several
ing a large enough knowledge base to make the linkup usetul. hundred students at th tilniver ity ol Mas'achus:tts.

5-G-7



Ditourc PrtJuced Using a PASCAl. ala Bas response. At the lowest level. a irtlic is selected to Implement
Tutor: You know that GRADES. in line 9. is a control variable the strategy. For example. i1 the strategy involves questiningfo r the WHILE G Enpn? the student, the systenm can choose front half-a-dozen alter-
Student: YC WI natives. e.g.. it can question the student about ;I specific topic.

Tutor: Does that mean that GRADES should bc the dependency betweet topics. or the role o a suhtopic.
(a) Initiated before the loop? Again, after the student has given his answe., the system can
(b) Added into SUM within the lto)p? choose from among eight ways to respond. e.g.. it can correct
(c) Modified within the loop? the student. elaborate on his answer, or alternatively. barely
(d) Both (a) and (c) acknowledge his answer.

Student: C The tutoring component presently contains 40 states, each
Tutor: You seem to understand about the control variable of the organized as a LISP structure with slots for functions that are

WHILE loop. Now let's talk about some txhcr command run when the state is evaluated. The slots deline such thines a%
statements.
What do you think READ (GRADES) in line h does with the specifications of thc text to be uttered, the next state to co
the value of GRADES'? to, or how to update the student and discourse model. I'hc

(a) Reads all values of GRADES at one tirm. DMN is structured like an augmented transition network
(b) Reads in a single value of GRADES. (ATN); it is traversed by an iterative routine that stays within a
(c) Assigns several new input values to GRADES. predetermined space of paths from node to node.

Student: A The key point about this control structure is that its paths arc
Tutor: Then do you think thai GRADES : = GRADES + I not fixed; each default path can be preempted at any time hy a

updates the next of those values'? "meta-rule" that moves Meno-tutor onto a new path. which Is
Student: Yes ostensibly more in keeping with student history or dis:ours
Tutor There is your misconception. Adding one to a variable is a history. The action of the meta-rule corresponds functionally

common way to step through a range of values. But it cannot
apply here because your READ instruction in line 8 to the high-level transitions observed in human tutoring. Fig-
retrieves only a single value. You should replace line 13 ure I I represents the action of two meta-rules. one each at the
with a second call to READ (GRADES). strategic and tactical level. The ubiquity of the meta-rules---thc

fact that virtually any transition between tutoring states (nodes)
FIG. 9. Meno-tutor discussing errors from the program of Fig. 4. may potentially he prccmpted-rcpresents an impolrtant devia-

tion from the standard control mechanism ofl an A'N F~or-

produced is still small, the fact that our architecture allowed us mally, the behavior of Meno-tutor could be represented within

to produce varied, but still quite reasonable, discourse as we the definition of an ATN; however, the need to include arcs for

changed the particulars of just a few rules, substantiates the every meta-rule as part of the arc set of every state would miss

overall effectiveness of our design. the point of our design.
The system presently contains 20 meta-rules: most originate

3.3. The discourse management network from more than one state and move the tutor to a single, new
The primary mechanism used by Meno-tutor to customize state. The preconditions of the meta-rulcs determine when it is

discourse to the individual student was the discourse manage- time to move off the default path and into a new tutoring state.
ment network (DMN). Meno-tutor separated the production of Meta-rules examine such data structures as the student model
tutorial discourse into two distinct components: the tutoring (e.g., Does the student know a given topic?). the discourse
component which contains the DMN and the surface language model (e.g., Have enough questions been asked on a given
generator. The tutoring component made decisions about what topic to assess whether the student knows it?). and the domain
discourse transitions to make and what information to convey model (e.g.. Do related topics exist?). Two rcta-rules are
or query; the surface language generator took conceptual speci- described in an informal notation Fig. 12.
fications from the tutoring component and produced the natural
language output. These two components interface at the third 3.4. Summary of teaching knowledge
or tactical level of the DMN as described below The knowl- This brief description of teaching strategies in RBT and

edge base for the tutor was a KL-ONE network supplied by the discourse management in Meno-tutor has illustrated the kind of
author and annotated with pedagogical information about the complex teaching knowledge a tutoring system must have to

relative importance of each topic in the domain, make inferences about how to teach in addition to the system's

The tutoring component is best described as a set of decision knowledge about the domain. the two systems provide a view
units organized into three planning levels that successively of the tutoring space available to an intelligent systent and

refine the actions of the tutor (Fig. 10). The refinement at each demonstrate how tiuch knowledge is needed to plan and gen-
level maintained the constraints dictated by the previous level crate responsive tutoring discourse in an intelligent tutor. The
and further elaborated the possibilities for the system's actions, key point about the teaching strategies and discourse manage-
At the highest level, the discourse is constrained to a specific ment is the need fr flexibility. strategies must be multiple and
tutoring pedagogy that determines, for example. how often the linked to complex nolels ol the student and the manager must
system will interrupt the student or how often it will probe him receive its motivation. justilication. and guidance from
about misconceptions. At this level a choice is made between inferences made abot the student and the ongoing discourse.
approaches that would diagnose the student's knowledge
(tutor) or introduce a new topic (ntrmuce). At the second 4. Evaluation
level, the pedagogy is refined into a strategy. specifying the Of the systems described above. only RBT has left the
approach to be used. The choice here might be between explor- laboratory and is now being used for training in more than
ing the student's competence by questioming him, or by 40 industrial sites. The tutors have been placed in the control
describing the facts of the topic without requesting any noms pulp and paper mills throughout the U.S. Formal eval-
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SI-EXPLORE - a strategic incta-rule Certainly. the wealth o1 kno ledcge that would enable us t)
From: tcach-data huild intelligent tutors is Iinot yt availahle. In this aItiic we
To: explorc-compctcncy have suggested ways to acquire domain and tutoring knowl-
Description: Moves thc tutor to begin a scrics of shallow questions edge. Further research into sophisticated Al techniques cou-

about a variety ot topics pled with carelul attention it) detail and intuitions about teach-
Atidcliun: The present topic is complete. h tutor ha little con- ing and learning are needed if we are to itiake substantialfidencc in its asscssrrwnt of the student's knowledge.

Behavior: Generates an expository shift from detailcd examination of progress in building machine tutors.

a single topic to a shallow examination of a variety of topics on the
threshold of the student's knowledge. Acknowledgements

T6-A.IMPLICITLY - a tactical meta-rule The author thanks Jeremy Metz. Bradford Leach, and the

From: explicit-incorrect-acknowtedgcmenc A.P.I. Recovery Boiler Committee for their encouragenent

To. implicit-incorrect-acknowlcdgemcnt and support in the building of RBT.
Description: Moves the tutor to utter a brief acknowledgcment of an This work was supported in part by the Air Force Systems

incorrect answer. Command. Rome Air Dcvclopmcnt Center. Grifliss AFB. NY
Activuton: The wrong answer threshold ha.s been reachcd and the 13441 and the Air Force Oflice of Scicntilic Research. Bolling

student seems confused. AFB, DC 20332 under contract No. F30602-85-C-0008. This
Behavior: Shifts the discourse from an explicit correction of the contract supports the Northeast Artilicial Intelligence Con-

student's answer to a response that recognizes but does not dwell on sortium (NAIC).
the incorrect answer

FIG 12. Informal notation of meca-rules. ANDERSON, J.. BoYLL. C.. ANt) Yosr. G. 1985 'he geometry tutor
Proceedings of the International Joint Confcrcncc on Aitilicial
Intelligence. Los Angeles. CA.
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Chapter 1

Problem Definition

In contemporary work environments, individuals are responsible for carrying out complex
and detailed tasks. These tasks often involve multiple interrelated steps as well as com-
munication and cooperation with other employees or agents. For example, a mortgage
officer in a bank is responsible for ascertaining relevant information from a prospective
home buyer, filling out the necessary forms, and coordinating activity with other agents
such as the bank assessor and the head of the mortgage department. A useful application
for a hierarchical nonlinear planner [46,51,53] is as an "intelligent assistant" [6,10] for in-
dividuals such as the mortgage officer just described. In the modern office, computerized
tools are already in place to support an office worker's activities. A planner can be used
to plan out the typical procedure to accomplish an office worker's task, automating much
of the tool usage and thus reducing the level of complexity to be managed by the human.
We note that such a problem-solving environment can be viewed as cooperative due to the
following features inherent in the environment:

" The planner is generally not a stand-alone system. An individual's task often
cannot be fully automated. Frequently the user must incrementally supply salient
information that will guide the planning process and impose constraints on further
development of a plan for a task goal.

" The user initiates planner activity. The user invokes the planner for assistance
as an automated tool when possible. The user and planner are cooperating in an
attempt to achieve a common goal, namely the achievement of the goal of the task
(see Figure 1.1).

" Planning is interactive. The planner relies upon the user to make control decisions
as well as to provide missing information necessary to continue the planning process.

" Planning and execution are interleaved. A common mode of control in a hi-
erarchical planning system is typified by the ezpand-criticize loop used by NOAH
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GOAL

PLANNER USER

Figure 1.1: A cooperative planner

[46]. In that and other similar planners, a complete level of the plan is expanded and
criticized at a time, and all execution takes place only after the plan is completely
expanded. In an interactive environment, such as an office, often the planner must
wait for the user to execute an information-providing action before it can continue
planning. Primitive actions by the user may constitute the execution of steps in the
plan. In addition, the planner may execute any primitive actions in the evolving plan
whose preconditions are satisfied; these actions may provide information necessary in
order to predict what the user should do next towards accomplishing the task. There-
fore, the paradigm for planner control in a cooperative planner involves interleaving
planning actions with execution, and is better characterized by a pick-(ezecute or
ezpand) [32] cycle than ezpand-criticize.

The execution of a developed plan must be monitored for success. It is important to
recognize disturbances to the context upon which the success of the plan depends. For
example, if the T-bill rate changes while a mortgage is being processed, the mortgage
officer will have to recalculate monthly payment requirements and check them against
the applicant's salary. In addition, the mortgage officer or buyer may initiate actions
which are not consistent with the system's view of the current task. For example, if the
mortgage officer phones the buyer with some information instead of mailing it out, it
should be recognized that the mortgage officer may have chosen an alternative route for
communicating required information. As just illustrated, often an unanticipated action
taken by an agent executing a task is relevant to the plan in some way, and should be
interpreted accordingly. Realistically, exceptions and interruptions during the execution
of a plan are common occurrences, and an "intelligent assistant" should react to new
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information as it becomes available during plan construction and execution.
Current approaches to exception handling in planning have focused on "reactionary"

tactics whose primary purpose is to restore the plan to a consistent state. While gen-
eral replanning techniques are helpful for "recovering" from a problem introduced into
a plan, these methods do not attempt to investigate if there are underlying reasons for
the exception that may explain how it could be incorporated into the current plan. A
general replanning approach is insufficient for an interactive environment since it does not
consider the role of the user in generating a possibly valid exceptional action. In this
proposal, we present an approach towards an intelligent handling of the types of excep-
tional occurrences that arise in an interactive planning framework. The overall goal of our
approach is to develop a planning architecture which is robust when encountering unan-
ticipated contingencies. In other words, our planning system will be designed to "reason"
about exceptional occurrences as they arise, and to include them as part of an evolving
plan whenever possible. In addition, we hope to show that future system performance can
benefit through exception handling. Specifically, the intelligent handling of an exception
can result in the acquisition of new knowledge about performing domain tasks.

The remainder of this proposal is broken down as follows: The notion of an ezception
which can arise in a cooperative problem-solving framework is discussed in chapter 2,
and a taxonomy of exceptions which are possible is presented. Chapter 3 reviews the
work which has been done in the area of exception handling in planning, and discusses
the limitations of current approaches in handling the class of exceptions that arise in a
cooperative planning framework. In chapter 4, we propose a new approach which attempts
to establish the possible roles of an exception within the current plan. This approach will
be implemented in a system called SPANDEX1. Chapter 4 also includes a comparison
on the SPANDEX approach with the current ezplanation-baaed learning paradigm. The
design of the component which reasons about the role of the exception in an evolving
plan is outlined further in chapter 4, illustrated by some of the algorithms which will
guide the reasoning process. A detailed example taken from the domain of real estate is
presented in chapter 5, which demonstrates how two specific exceptions would be handled
by SPANDEX. We conclude this proposal with a review of our research goals and a outline
of the implementation of this research.

'System for Planning AND EXception handling.
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Chapter 2

Exceptions

No matter how carefully a plan in conceived, it seems that something frequently goes
wrong during its execution, or an unexpected contingency arises which throws the plan
awry. Human planners do not always anticipate correctly. People change their minds, or
opportunistically revise the plan mid-execution. People also tend to attempt short-cuts
while performing a task, or vary their usual methods. In addition, human beings are prone
to error or misjudgement. Consequently, the class of exceptional occurrences1 that arise in
the cooperative planning framework described is diverse and not sufficiently represented
by a set of arbitrary predicates that simply indicate world state changes, as is done by
some current systems for replanning [54].

Cognitive and empirical studies have suggested various categorizations of human errors
that occur during the execution of a plan [27,44,43]. Upon further analysis, some of these
so-called "erroneous" actions can be "declassified" as errors and recognized as purposeful
actions which actually are consistent with the plan. It is useful to distinguish between the
manner in which an error is manifested and the actual motivation behind an erroneous
action. Hollnagel refers to this dichotomy as the phenotype (the way an action appears and
is detected) and the genotype (the cognitive basis or cause) of an "action not as planned"
[27]. In addition to these two dimensions of unanticipated actions, another aspect to
examine is the impact that the unanticipated action has on the current plan. We consider
all three characteristics of exceptions in the taxonomy and discussion that follows.

2.1 Taxonomy

One distinction that can be made among exceptions is between "failures" and "surprises"
[38]. A failure corresponds to the most typical type of planning exception in which new
information introduces a problem in the plan, preventing its success. A surprise is a more

'Throughout the remainder of this paper, exceptional occurrences will often be referred to as ewceptions.
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positive event, denoting the provision of information which may allow a shortening or
simplification of the plan. Beyond this simple classification of "harmful" versus "helpful"
exceptions, we distinguish between unaccountable ezceptions and accountable ezceptions.
Unaccountable ezceptions correspond to unexplained changes in world state brought about
by the actions of unknown agents2 . This is the class of exceptions typically addressed
by existing replanning systems [54,26]. For example, a system that is planning a travel
itinerary may have to contend with the effects of an earthquake which has forced the
cancellation of a scheduled train. The procedure which attempts to revise a traveller's
travel plan in light of this unexpected event would not (and should not) attempt to establish
an unknown agent's motivation behind an exception.

In an interactive planning system, exceptions can also be generated by the actions
of known agents such as a user. In particular, a user may perform an action which is
inconsistent with system predictions. An unanticipated action may be an error. Our belief,
however, is that more commonly an unanticipated user action represents an action which
is semantically valid in the current plan context. This belief is based on the assumption
that users behave purposefully when performing an action; their behavior is not simply
random. In addition, a user is assumed to be acting towards the same common goal as
the planner, and therefore a cooperative relationship between the system and user can
be assumed, whereas no such assumption could be made when analyzing the action of an
unknown agent3 .

A plan action can occur which is not predicted, but nonetheless valid. This is possible
for a number of reasons. The original activity description provided by the system de-
signer may simply have been incomplete. It is also possible that the system was originally
provided with an incorrect activity description. Another reason why such actions may
not have been predicted originally is that information about the task may be distributed
throughout the domain model but is not represented at a level which is readily accessible
to the planner. In other words, it may be the case that the algorithms guiding plan expan-
sion do not "notice" semantic links between different action or object descriptions, which if
analyzed might provide definitions of alternative methods for accomplishing a given task.
The plan expansion algorithms are not designed to take all semantic relationships into
account during expansion is because the combinatorics of such a computation at every
goal node expansion would be prohibitive. The expansion algorithms are meant to create
plans which represent the typical methods for accomplishing a task.

We have defined the categories of accountable exceptions which can arise in a coop-
erative planning framework, using a nonlinear hierarchical planner similar to NOAH and

2An unknown agent is an agent for which the system has no model, and therefore is unable to reason
about that agent's behavior, in contrast to known agents who are agents (such as users) that are represented
within the system.

3 Note that unlike unaccountable exceptions, exceptions generated by known agents can be retracted,
since users can revise their actions during interaction with the system.
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NONLIN [46,51]. Since the behavior of such a system is interactive, user actions are in-
terpreted within the context of two dynamic structures: a plan network which has been
partially expanded by the planner, and an ezpected actions list which contains anticipated
user actions. The types of exceptions defined by this behavioral perspective are as follows4 :

1. Out-of-order action. The user performs an action that should occur later in the plan.
In other words, the user may have skipped one or more steps in the plan.

2. Repeated action. The user performs an action that has already been performed in
the plan, and is not expected to occur again.

3. Action not in plan. The user performs an action which is not expected at all in the
plan.

4. Ezpected action, wrong parameter. One or more parameters of an expected action
are incorrect. The incorrect parameter may result in two different types of constraint
violation:

(a) Activity constraint violation. The incorrect parameter violates a constraint
posted in the plan. Constraints are of two types:

i. Static. A static constraint in the activity class definition is violated.
ii. Dynamic. A constraint that was posted dynamically on the partial activity

description associated with the activity instantiation is violated.

(b) Object constraint violation. The parameter causes a violation in an object as-
sociated with the plan. Object constraints are of two types:

i. Static. A static constraint in the object class definition is violated.

ii. Dynamic. A constraint that was posted dynamically on the partial object
description associated with the plan instantiation is violated.

5. User assertion. The user provides the description of a state which is to be asserted
in the world model. This new state may have an effect on the current plan. A user
assertion is modeled as an unexpected action with the assertion as its main effect.
It models a state which the user has become aware of, though it is not directly
associated with a monitorable action.

In the following section, we discuss the special nature of accountable exceptions in a
cooperative planning framework, which is provides much of the incentive for our approach
to exception handling presented in the chapter 4.

4Note that our "behavioral" perspective corresponds to the "phenotypical" view of Hollnagel [27], and
the elements of our taxonomy are similar to his "simple phenotypes."
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Figure 2.1: Knowledge Distribution in a Cooperative Planning System

2.2 Semantics of exceptions

Accountable exceptions are particularly important in a cooperative planning framework,
since they often embody intent on the part of an intelligent agent who is attempting to
accomplish a task. Thus, there is good reason to assume that the user had some reason for
performing this action, and it is quite likely that the unexpected action is somehow related
to the current task. Note that the same can not be said for unaccountable exceptions;
they are generated by unknown agents who do not share the system goals.

In general, we assume that users are knowledgeable about the activities for which they
are responsible. Thus, in some sense, they are viewed as experts regarding their tasks;
and as humans possess knowledge bases about the domain which are generally much less
bounded than the initial system domain knowledge (see figure 2.1). Thus, we believe
that many accountable exceptions are representative of that portion of domain knowledge
which is available to the user, but is unavailable (at least initially) to the planner. In
our approach, we are attempting to close the gap between planner and user knowledge
through ezception-driven dijcovery. In other words, we would like to be able to focus on
user-generated exceptions as a way to gain insight into determining a more complete set
of plans for accomplishing a task than that originally known explicitly by the planner.

In addition to additional domain knowledge that the user may have, the user also may
know about general planning principles that the planner does not consider. For example,
the user may be motivated to take a short-cut while accomplishing a task in order to save
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time. Perhaps following an alternative route towards the accomplishment of a plan goal
would save the organization some money, another general policy which implicitly guides
the behavior of an agent. In general, it would be desirable to acquire and model policies
of the domain and motivationj on the part of the various known agents as a further step
towards the ability to understand exceptions that arise during plan execution monitoring.
Some motivations a user may have when initiating an exceptional action are the following5 :

* The user may intend a short cut of the standard method for achieving the goal of
the task.

* The user may intend to substitute this action for the actual action anticipated,
because of knowledge he may have about alternatives.

" The user may be performing an action which is laying the groundwork for a later
step.

" The user may know some information which may be helpful and eliminate the
necessity for some of the actions in the plan.

s The user may intend partial achievement of an expected action, which he will
need further steps to complete.

The user may know that the current situation is a special case, and the usual

constraints on how the task should be done should be relaxed.

Of course, there is always the possibility that the unexpected action initiated by the user
is simply an error, but our initial belief is that all plausible rationalizations of the action
should be considered before we assume that an error has occurred. In the next chapter, we
review the work that has been done in the area of error and exception handling, and then
continue this proposal by outlining our approach which addresses the special concerns of
an interactive planning system.

SNote that this classification corresponds to a subset of all possible genotypes [27] of erroneous actions
since these are the motivations designated as "contributing" towards the goals of the plan, and do not reflect
erroneous judgement or behavior.
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Chapter 3

Related work

In this chapter, we review other work which is related to our problem and approach. First,
we discuss the achievements and limitations of general replanning approaches. Research in
caae-baed reajoning and ezplanation-based learning is also reviewed, since these are two
paradigms which are relevant to our view of how exceptions may be reasoned about and
learned from.

3.1 General replanning approaches

A number of researchers have recognized the importance of plan execution monitoring
and the need to recover from situations where events do not proceed as planned [46,54,50].
Most of these systems are not concerned with unexpected events generated by an intelligent
agent such as a user. These systems focus on different aspects of the execution monitoring
problem, ranging from the introduction of verification strategies to detect execution results
[181 to general sets of replanning techniques which are invoked in response to a detected
problem [54]. In preface to a review of these systems, it is important to note that the
techniques they provide are primarily relevant to the class of exceptions which we designate
as unaccountable, since the problem states of concern are not produced by the volitional
action of a known agent in the system and therefore usually unexplainable.

In Hayes' robot travelling system [26], replanning is invoked in response to a plan failure,
which is defined as the absence of an expected effect of an action, or the recognition of an
unexpected event outside of the control of the robot agent. The basic approach taken is to
selectively eliminate only the parts of the plan that have been violated by the failure, and
to reinvoke the original planning procedure to reconstruct a plan from the earlier point.
The major claim of this system is that the plan is "efficiently" reconstructed, and avoids
redoing unaffected parts of the original plan.

Nearly ten years later, Wilkin's SIPE system [53,54] continues in this vein, providing
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a general replanning capability which is invoked in response to unexpected state changes.
Like Hayes' system, one of the most significant aims of the replanning module in SIPE is
the capability to recover from a unexpected event during plan execution monitoring, while
retaining as much of the original plan as possible. SIPE provides a number of general
replanning actions which can be invoked within the definitions of more powerful domain-
specific error-recovery instructions. In SIPE, an unexpected situation is represented by an
arbitrary state predicate which is entered into the system at an arbitrary point during the
execution. The predicate is treated as a new "fact" to be reconciled with the rest of the plan
and is inserted into the current plan network as a mother-nature node, nomenclature which
underscores the arbitrary and external nature of the disturbance to the plan. Problems
introduced into the plan by this new state are computed by the problem recognizer and the
types of problem recognized determine which of the eight general replanning actions are to
be invoked. The problems which may be recognized include conditions such as purpose not
achieved, future precondition no longer true, or previous phantoms not maintained. The
particular type of problem thus identified triggers the invocation of one or more general
replanning actions such as reinstantiate (to get a new binding for a variable), or retry (to
reachieve a goal node that was previously achieved and now violated).

Sacerdoti also recognized the need to anticipate unexpected events caused by outside
forces during plan execution monitoring [46]. Upon the detection of a discrepancy in the
world model, NOAH would engage the user in a dialogue to verify the parts of the plan
leading up to the error in order to pinpoint the source of problem. Once pinpointed,
NOAH would plan for new actions to recover from the problem state while maintaining
as much of the original plan as possible. In addition the implementation of this type of
error recovery, Sacerdoti raises the possibility of exceptional states being introduced by an
internal agent, such as a system apprentice using a planning system. A human apprentice
may provide misinformation about the real world to the system, perhaps necessitating
interaction with the user to ensure that the execution of the plan is monitored accurately.
While the design and implementation of NOAH did not actually address the issue of user-
generated exceptions, it was one of the earliest pieces of work in planning to recognize the
need for a more sophisticated handling of this issue.

In all of the above systems, the replanning techniques provided do not attempt to reason
about failing conditions or possible serendipitous effects of the exception. These methods
simply make use of the explicitly linked plan rationale to detect problems and determine
what violated goals need to be reachieved. This type of replanning is "reactionary" tactic
used to recover from problems introduced in a plan by events which cannot be reasoned
about. Such a general replanning approach should be reserved for handling exceptions
generated by unknown agents. The basic replanning approach must be extended to handle
the special cases that arise during interactive planning, involving the participation of one or
more intelligent agents. Exceptions generated by known agents can be handled by a more
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constructive approach which attempts to explain the exceptional behavior. Replanning,
as described above, would be inappropriate in these cases, since its primary philosophy is
to counteract the effects of an exception, which in effect would attempt to achieve goals in
a fashion that the user deliberately chose not to pursue. Thus the philosophy of general
replanning, as presented here, is fundamentally inconsistent in a "cooperative" planning
environment.

3.2 Case-Based Planning

An emerging focus in current planning research is on the reuse of old plans during new plan
construction [1,3,21,22,521. Applying old plans to novel situations is a type of case-based
reasoning [45,25,29] which is currently a topic of much interest in the artificial intelligence
field. Although our work is directly aimed towards the handling of exceptions as they may
arise when dealing with an incomplete knowledge base in an interactive system, we share
some of the goals and the techniques of these approaches which make use of past plans.

A case-based approach to planning which pays particular attention to failures is ex-
emplified by Hammond's CHEF system [21,22,23,24]. Past plans are indexed by the goals
they achieve as well as by failures encountered. In CHEF, a failure is noticed when com-
paring the results of a plan simulation with expected results. If an expected goal is not
among the simulation results, or if an "undesirable" state is reached, a failure has occurred,
and a causal explanation of the failure is extracted from the simulation trace. Elements
of this causal ezplanation are then used as indices for the retrieval of appropriate plan
repair strategies to patch the plan. The memory of the failure is recorded by marking the
actual features of the initial situation which are associated with the failure. The major
thrust of this work is to show that potential failures in new planning situations can be
avoided through anticipation. The anticipation of failures is triggered by the activation of
memories of past failures.

Hammond thus relies on a strong causal model of the domain to debug plans which
are imperfect and to assign credit to the features at fault. Since organizational procedures
have causal information associated with the temporal ordering restrictions, we can employ
a similar approach in categorizing problems in the plan network which are caused by the
occurrence of an exception. The construction of a causal explanation such as that used
by CHEF is a crucial element needed to understand the relevance of a user-generated
exception to the goals of the ongoing plan. However, there is an important difference
between the approach taken in CHEF and our focus in SPANDEX. CHEF does not do any
analysis of the actual operators used in a plan, and does not include plan operators in the
abstraction hierarchy used to determine plan similarity. Similarity in CHEF is determined
from the comparison of features of plan situations alone, which are abstracted from the
goal inputs. We are concerned with understanding relationships between observed and
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expected actions as well as the actual objects involved in the plan. CHEF pays little
attention to the procedural structure of a plan, and the operators of a plan seem quite
divorced from the objects which they manipulate. We have taken a more integrated view
of plan operators, objects, and agents, and our activity descriptions are quite complex.

Tenenberg's [52] work on the use of abstraction in planning can also be considered
to be a case-based approach. This research develops an algorithm to constrain search
for a new plan by making use of condensed old plans, in the form of plan graphs. This
work demonstrates a recognition of the utility of a generalization hierarchy of both plan
operators and domain objects when constructing a new plan. Our work takes a similar
tact in making use of taxonomic links as a primary semantic resource to explore when
encountering an exceptional action or object. Like Tenenberg, we also see this approach as
one which provides savings in search complexity. Whereas Tenenberg constrains the search
using an abstract plan graph condensed from an earlier plan, we constrain our search for
a "consistent" plan by constraining our search to the knowledge closely related to either
the expected action or the exceptional action.

Alterman's planner PLEXUS [1] implements an approach which emphasizes the struc-
ture of background knowledge as an important means for altering old plans to fit new

situations. Alterman's adaptive planner treats failing steps of a plan as representative of
the category of activity that should be performed, and thus traverses generalization and

specialization links in order to find a step which fits in the new situation. We make similar
use of the static library of domain activities and objects, by exploring the relationships
between unexpected actions and object parameters and those used in a stereotypical plan
for the task. Alterman concentrates on resolving any of four identified types of situation
differences that can arise in trying to refit an old plan to a new situation: failing precon-
ditions, failing outcome, differing goals, and step-out-of-order. These classes of situation

difference are similar to our behavioral taxonomy of exceptions, although they are in a
sense an amalgamation of both exception class and resulting problems.

Whereas the similarities between our work and Alterman's are numerous, our goals
differ. Alterman is attempting to construct a new plan for a known novel situation, while
we are in a sense trying to recognize an ongoing modification of an existing plan. Also,
while we assume a great deal of initial knowledge about the domain we are operating under

the premise that our knowledge may be incomplete. Alterman, on the other hand, seems
to assume a knowledge-intensive environment which is complete. An additional difference
is that in Alterman's work, the planner is responding to new constraints imposed by the
"situation," whereas in our environment, the planner must respond to unusual actions by
the user and is inherently performing some recognition. In our approach, we would like
to take advantage of having intelligent agent(s) "in the loop." Alterman hints at the fact
that his system is an interactive one, yet the user seems to be a passive agent and is not
engaged in a dialogue to provide guidance during the construction of the new plan.
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3.3 Explanation-Based Learning

Much work has been published recently under the rubric of ezplanation-based learning1 .
The goal of the explanation-based learning approach is to construct an ezplanation for a
novel concept, and then to generalize the explanation of the specific instance into a more
general and operational concept definition. More formally, explanation-based approaches
apply a domain theory and a goal concept to a single training ezample to construct an
ezplanation as to how the training example is an instance of the goal concept. Techniques
are then applied to transform the specific explanation into a more general specification of
the learned concept.

The work being done by DeJong et. al.[13,14,15] is particularly relevant to our work
in handling exceptions during plan execution. DeJong's ezplanatory schema acquisition
(ESA) is couched in problem-solving terminology rather than being presented from the
more typical theorem-proving viewpoint. This orientation is more compatible with our
planning perspective, incorporating preconditions, effects, goals, and motivations. The
entities used by their systems are actions, states, and objects; similar to our activities,
objects, relationships, and states. The general goal of ESA is to construct and generalize
an explanation for an observed novel sequence of problem-solving operators. DeJong often
refers to his approach as learning by observation [15], a term which could also be applied to
our approach which "notices" an exceptional action during plan execution monitoring, and
attempts to construct an explanation for the role of that action in the plan. In addition,
DeJong addresses the need to infer missing steps. This is similar to the determination
of activity that potentially may have occurred "off-line," which is a technique used in
SPANDEX in response to an action-out-of-order exception (see section 4.3.2). However,
our work differs from DeJong et. al's in the following ways:

1. Our planning paradigm is an interactive one, so plans are developed and executed in
an incremental fashion. Therefore, we do not have a full-fledged detailed sequence
of actual plan operators invoked from which to construct an explanation.

2. We are often unable to construct a complete explanation for an exceptional problem-
solving strategy taken by the user and must resort to negotiation in order to acquire
truly new information to complete the explanation. In other words, we are not as-
suming a complete knowledge base to start, and in addition to the use of explanation
as a method for restructuring the knowledge base (DeJong), we also provide for the
acquisition of completely new knowledge about the domain.

Consistent with our presupposition, Rajamoney et. al [42] also initially assume an
incomplete and incorrect model of the domain. Similarly, they use the observation of an

11 am using the term ezplaatio*-baed leaning to subsume other approaches designated as explanation-
bated generalization, an~lptic learning and other similar paradigms.
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unexpected effect in the world model as an opportunity to extend and debug the domain
knowledge of the system. Their approach is to hypothesize known processes which might
have caused the inconsistency, and to use directed experimentation to question the beliefs
which fail to support the existence of these processes. This approach differs from the
approach taken in SPANDEX in that it addresses only the type of exception which may be
generated by an underlying "agent-lesm" process. In SPANDEX, we take a more behavioral
viewpoint, and are interested in handling the cases arising in an interactive planning system
where intelligent agents actually carry out much of the execution of the task.

In the next chapter, we propose the architecture of SPANDEX for handling exceptions
as they arise in an interactive planning framework. We then show how our approach can
be mapped into the explanation-based perspective, and highlight the novel aspects of our
approach which are not easily mapped into EBL terms.
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Chapter 4

A new approach for handling
exceptions

The basic notion guiding our approach is to use the class of a detected exception together
with a heuristic determination of user intent, to select among a set strategies which attempt
to discover a role for the exception in the current plan, if one exists. Otherwise, the system
will attempt to negotiate directly with responsible agents in an effort to require additional
explanatory information, or replan if necessary.

A proposed architecture (SPANDEX) designed to accommodate exceptional occur-
rences is shown in Figure 4.1. Several of the modules are similar to those described in
other hierarchical planners, specifically [54]. We have extended a basic planning model to
include additional modules to address exception handling. Exceptions are detected by the
ezecution monitor and classified by the ezception clasaifier. Violations in the plan-caused
by the introduction of an exception are computed by the plan critic. Exceptions generated
by unknown agents (generated by world in the diagaram) are handled by the replanner.
The replanning approach we have adopted is similar to that of [54], where one or more of
a set of general replanning actions is invoked in response to a particular type of problem
introduced into a plan by an exceptional occurrence. For interactive planning, we extend
the set of general replanning actions to include the insertion of a new goal into the plan.

The ezception analyst applies available domain knowledge to construct ezplanations1

of an exception. Its primary function is to determine the relationships and compatibility
of the actual events to the expected actions, goals and parameters. The particular entity
relationships investigated by the exceptior analyst are determined by the type of internal
exception. The exception analyst may be triggered by both unaccountable and accountable
exceptions, although it is primarily used for accountable exceptions (resulting from the
actions of agents in the diagram). A more formal view of the role of the exception analyst,

1A more precise definition of what constitutes an explanation is given in section 4.5.
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along with details about algorithms which guide the search process is discussed in section
4.2.

The paradigm of negotiation [19] has been used as a model for reaching an agreement
among agents on a method for accomplishing a task. We propose to use negotiation for
establishing a consensus among agents who are affected by an exception. We distinguish
between effecting and affected agents with regard to the occurrence of an exception. The
effecting agent is that agent who has caused the exception. An affected agent is one whose
interests are influenced (either positively or negatively) by the exception. Affected agents
are those who are "responsible" for the parts of the plan where problems are detected by
the plan critic. An unknown agent can never be an affected agent, since the system has
no model of an unknown agent's interests or behavior.The negotiator determines the set
of affected agents and uses the information provided by the exception analyst to complete
and choose among explanations as well as to suggest changes to be made to the original
plan.

Using information provided by the exception analyst about relationships between actual
and expected values, the negotiator initiates an exchange between the effecting agent and
the affected agents. The negotiator and plan critic execute in a loop in which the plan critic
analyzes changes suggested by the negotiator to detect any problems introduced. This loop
is exited when no further problems are detected by the plan critic and all affected agents
are satisfied. The negotiator also directs the acquisition of information from the user, if
required to complete an explanation constructed by the exception analyst. The output
of the negotiation phase is one or more verified explanations, and possibly changes that
should be made to the current plan or static plan library.

The ezplanation generalizer produces a generalized form of the verified explanation(s),
if possible, using taxonomic information in the knowledge base. This new knowledge about
domain activities, along with suggested changes to the knowledge base resulting from
negotiation, is passed to the knowledge baie modifier. Thus, a successful negotiation can
result in a system which has "learned," that is, the static domain plans may be augmented
with knowledge about the exception and thus the system has an enhanced capability to
handle future similar exceptions.

Once an exception has been handled in this fashion, control is returned to the planner
to continue plan execution and generation.

4.1 Representation

The general approach just presented obviously requires a rich knowledge base about the
domain. Procedural, structural, and causal information are all important aspects of do-
main knowledge, and should be represented. In SPANDEX, we have chosen a uniform
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object-based representation of activities, objects, agents and relationihips2 [6]. An inte-
grated abstraction hierarchy (see Figure 4.3) combined with a powerful constraint language
facilitates the representation and use of more sophisticated knowledge about plans, such
as the policies of McDermott [32]. The reasoning process used by the exception analyst
exploits this object-based representation. Similar approaches have been used by Alterman
[1] and Tenenberg [52] to represent old plans that are adapted to new situations.

The major features of our representation are tazonomic knowledge, aggregation, de-
composition, resources, plan rationale and relationships. Each of these is defined and
illustrated using an example from the domain of house-purchasing, shown in Figures 4.2
and 4.3. Figure 4.2 depicts a partially expanded procedural net fragment which repre-
sents the portion of a house-buying task which remains after a house has been selected for
purchase. Figure 4.3 shows a portion of the domain knowledge relevant to this task.

Any complex entity can be viewed as a composition of several other objects as well as
an aggregation of properties. An abstract activity object which can be decomposed into
more detailed substeps has a steps property containing a partial ordering of more detailed
activity steps. Decomposition of a domain object into other objects is expressed as a set
of object types named in a parts property. The aggregation of all properties of either
an activity or domain object, including decomposition information, constitutes the object
definition.

All entities are represented in a type hierarchy, with inheritance along is-a links be-
tween types and their subtypes. Entities inherit the properties and constraints of their
supertypes. For example, a mortgage-application-form has various fields which are inher-
ited from the more general form object, and obeys the constraint stating that it can be
manipulated by an apply type of activity (inherited from application-form). Activities
inherit the preconditions and effects of their supertypes, as well as decomposition infor-
mation. For example, any apply activity may be decomposed into an activity of type
go-to-place followed by fill-out-form. Apply-for-mortgage is a subtype of apply and thus
inherits and specializes this decomposition. Apply-for-mortgage also inherits the effect of
pending(application-form).

An activity has an associated set of effects which are asserted upon its completion.
Effects are represented as predicates on domain objects. The goal of the activity is a dis-
tinguished main effect and is used for matching during plan expansion. An activity schema
also includes a declaration of the types of domain objects it may manipulate. The inverse
of this resources property is the manipulated-by property expressed in domain objects to
indicate which types of activities may affect them. The union of an activity schema with
the descriptions of associated object types provides a rich semantic representation of the
domain, incorporating objects and operators.

21n the remainder of the paper, we refer to plan descriptions as activities and objects of the domain
simply as ojects.
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Causal knowledge is represented by goal properties and purpose links. Goals are of a
global nature, in that they relate an activity to a representation of its intent; that is, they
state what this activity accomplishes regardless of the context of the current procedural net.
Purpose links may be placed between two plan substep nodes in both static and dynamic
plan representations, to indicate that a substep of a plan produces a state required for the
proper execution of a later substep, much like NONLIN's goal structure [51]. The purpose
links prove to be particularly important in determining whether or not an exception can
easily be incorporated into an existing plan.

Arbitrary relationships may also exist between domain objects. For example, a seller
relation may be depicted between an individual and a certain house, expressing the fact
that someone is selling a particular house. A special type of relationship which may exist
between two objects is a transformation relation, which contains a procedural attachment
for producing the correct instance of one type of object associated with the instance of
the second object type. For example, the abstract class object address may be related
to telephone-number through a special transformation specification which indicates that a
phone call using a phone-number may produce the corresponding address.

4.2 Exception analyst

The exception analyst is the component of the SPANDEX system that is responsible for
constructing explanations for an exception. It is invoked in the context of a partially
expanded and executed plan network, a set of expected actions and goals, an unexpected
occurrence, and the current state of the world model. Its task is to produce explanations
of the unexpected occurrence within the provided context. There are three classes of
explanations which can be produced by the exception analyst:

* Complete explanations. In a complete explanation, the relationships verified by
the exception analyst are logically sufficient to explain the role of the exception in
the plan. Complete explanations are obviously the most desirable explanations and
search paths which may result in a logically complete explanation are pursued before
all others.

* Partial explanations. In this type of explanation, verification is made of certain
leading indicators3 among entities pertinent to the expected and unanticipated oc-
currences, but these leading indicators alone are not logically sufficient to completely
explain the exception. Additional conditions need to be verified, or missing infor-
mation must be acquired from agents in order the complete the explanation. Partial
explanations constitute explanation skeletons which must be massaged further if no
complete acceptable explanations are produced.

3These are discussed further in the following section.
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* Null explanations. A null explanation is essentially a failed complete or partial
explanation. For example, if a key subclass relationship is searched for and found
not to exist, a null explanation can be constructed which consists of this failed test.
Null explanations may be fallen back on by the negotiator when all else fails. The
assumption of an incomplete database allows for the possibility that an agent may be
able to specify the existence of an initially absent key relationship, and thus activate
the previously null explanation.

The exception analyst may be formally regarded as providing intelligent search. In other
words, given: a) a set of axioms and heuristics which define how planning is performed, and
b) explicit and available domain knowledge, a search space is defined for the generation of
valid plans. The plans which exist in this constrained space represent stereotypical plans for
accomplishing a given task goal. In a knowledge-rich environment, it may be the case that
knowledge is scattered throughout the various parts of the knowledge base which would
justify other valid plans for the given task. These plans may not have been in the initial
plan space because of the constraints imposed by the standard plan generation process.
The exception analyst intelligently extends the space mearched for valid plans. It does
this by looking in the knowledge base for relationships between the unexpected occurrence
and the current plan which might justify the role of the exception in the plan. This
activity is constrained by the determined exception class and suggested motive. Formally,
this amounts to a relaxation of plan axioms that were used during the initial plan
expansion.

The behavior of the exception analyst is guided by some general principles derived from
the type of the exceptional occurrence. A action-out-of-order exception, for example, may
imply that the user may be attempting a short-cut, while an action-not-in-plan exception
may be eventually recognized as an intentional substitution of the unanticipated occurrence
for the expected step. The exception analyst performs a controlled exploration throughout
the knowledge base which is guided by the current state of the procedural network as well
as the type of exception which has occurred. If a number of strategies are possible, the
least costly is attempted first. In the following section, we present algorithms for handling
the various types of exceptions, illustrating (where relevant) with the example scenarios
relevant to the example represented in Figures 4.3 and 4.2 in section 4.1.

4.3 Exception analyst algorithms

When an exception occurs, the first task faced by the system is to determine the exception
type by invoking the exception classifier. If the user has provided the system with a user
assertion, the exception classifier recognizes this immediately, and the exception analyst is
invoked to treat this unusual occurrence as an action-not-in-plan. It is also easily apparent
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when an unezpected parameter exception occurs, since the user step type will match one of
the expected actions or goals, and the parameter mismatch is what triggered the recognition
of the exception. Repeated-step exceptions are also detected in a straightforward manner.

In the remaining cases, the most difficult detection task for the exception classifier
is to designate the unusual user action as one potentially meant as a later step in the
plan (out-of-order) versus a step not expected in the plan at all. The reason why this
task may be difficult is that the plan network is usually only partially expanded (pending
information which will be derived from later user actions) and it is not immediately clear
what actions will eventually make up the plan at the most primitive level. Therefore,

the exception classifier will have to try and fit the exception into a viable extension of the
current plan network by performing a search through possible expansions of the incomplete
plan network. Note that this is largely a plan recognition task (we are attempting to choose
among alternative expansions with incomplete knowledge), and thus is fraught with the
associated combinatorial and backtracking considerations.

Once the classification of the exception has been completed by the exception classifier,
the exception analyst determines if the exception may somehow contribute to the plan
being developed. The exception analyst constructs the set of viable explanations for pos-
sible roles of the unusual occurrence. The process by which the exception analyst searches
for explanations is guided by the class of exception, which was just determined. In the
remainder of this section, we sketch the algorithms which define this search, discussing the
exception types on a case by case basis.

4.3.1 Action Not in Plan

If a user action occurs which is not expected anywhere in the plan, the exception analyst
attempts to establish whether this unexpected action contributes to the pending task in
any way. The fundamental assumption is that the unexpected action is related to some
step in the remainder of the plan.

The unexpected action may be related to one of the currently expected steps or to
another plan step which is predicted later in the plan expansion. The actual contribu-
tion made by this exceptional occurrence can be at an arbitrary level of abstraction and
granularity within the task. In other words, an action may take the place of an expected
action, satisfy the precondition of a later action, or eliminate the necessity of an entire
sequence of pending or future actions 4. The effects of the actual action are compared
with the preconditions, effects, and goals of other nodes within the procedural net. The
exception analyst looks for the potential contributions by incrementally a) extending the

4This possibility may be actualised by allowing the unexpected action to replace the activity which
contains an expected action, since all other steps of that replaced activity would no longer be necessary.
Also, note that the idea of a single unanticipated occurrence corresponding to a string of expected steps
represents an example of the class of phenotypes that Hoilnagel refers to as comples.
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locality of focus (as defined by the level of abstraction) and b) decreasing requirements on
the completeness of the explanation. The control of the exception analyst while searching
for complete explanations is illustrated by the following algorithm:

1. Can the exceptional action be substituted for an expected action? If either of the
following criteria are met, a substitution should be allowed:

(a) The goals of the expected and unexpected actions match. The unexpected
action achieves the same world state as an expected action.

(b) The exceptional action is a specialization of an expected action, and thus is
sufficient to accomplish at least what the expected action would have accom-
plished.

(c) Effects of the exceptional action exactly match those of the expected action.

(d) The intersection of effects of the exceptional and expected actions are exactly
those effects of the expected action which have purpose links to later plan steps.

2. Does the exceptional action allow a .implification of the remainder of the plan?

(a) If the action can be substituted for a later step in the plan (established by the
above method), treat the exception as an out-of-order action (below) and record
the substitution of the matching actions.

(b) Do any of the effects of the exceptional action match with an unachieved effect
which is the purpose for a later plan step? If so, a later precondition is satisfied;
note that the precondition is now a phantom, but do not modify expectations.

3. Does the unexpected action allow an entire hierarchical wedge to be removed from
the plan?

If the exceptional action results in the satisfaction of a higher-level goal, the steps
comprising the expansion of that goal may no longer be necessary. The exception
analyst determines the parent node of the expected action. If the goal of this paren4
node is achieved by the effects of the exceptional action, then the following is done:
Check to see if the effects of each of this parent's children (excluding exceptional
action itself) are now true. If none of the unachieved effects have purpose links to
steps occurring after the parent node, then a substitution is allowed. The exceptional
node is incorporated in the procedural net, and the expected action, its parent and
siblings are considered to be achieved.

If none of the above criteria are met, then it is not possible to easily integrate the
exceptional action into the existing plan network by replacing part of the plan network

5-H-27



with the representation of the unexpected action. It is still possible, however, that the
unexpected action constitutes a partial contribution to a pending plan goal, and partial
explanations may be constructed. We are not focusing on this case at the moment, but we
initially propose repeating the above procedure, looking for features such as the leading
indicators outlined in the section on unezpected parameter exceptions.

4.3.2 Out-of-order action

If the action is judged to be an out-of-order plan step, there are two possibilities to consider:

1. The original ordering may have been specified as a preference, but there are no strict
dependencies between the effects and preconditions of actions. In order to determine
if this is the case, the exception analyst must examine the causal structure of the plan.
Specifically, if there are no purpose links between the actual step and an intervening
step which has not been performed, the ordering may be relaxed.

2. The intervening steps between the expected and actual actions are no longer nec-
essary. This may be because the goals of the intervening steps may have been ac-
complished in some "offline" fashion. A procedure is invoked to attempt to prove
(deduce) that the goals of the intervening steps have been accomplished. If this is not
successful, control is passed to the negotiator, which involves the user in an attempt
to verify the goals of the intermediate steps.

4.3.3 Unexpected parameter exceptions

Unexpected parameter values can cause constraint violations. Since parameter values are
usually objects themselves, the exception analyst is invoked to determine what relation-
ships exist between the object provided as the actual parameter value and the object which
was ezpected as the parameter value.

There are a couple of different cases when parameter discrepancies may arise. Often,
an action may have been placed on the expected-actions-list with some of its parameters
bound to known values, and other of its parameters unbound, pending information to be
derived from a user action. Thus, we may have a case where the user action monitored by
the system provides the system with a value for the unbound parameter, but the values
provided for the other ("known") parameters are inconsistent. In this case, the exception
analyst must compare two instance objects, which may or may not be of different types.

A different case arises when an action is predicted to occur, and the parameter types
are also predicted, but not the actual values (an information-getting action). The user
action may provide a binding for the the parameter(s) in the form of an object instance
specification whose type does not match the type predicted. In this case, the exception
analyst must determine the compatibility of the two type specifications.
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A third situation in which a parameter discrepancy may arise is during an attempt to
substitute an unexpected action for an expected action (see the section above on unex-
pected action exceptions). An unexpected action may be found to be a specialization of
an expected action, or otherwise related in a way that would allow the action to be sub-
stituted. It may, however, be the case that the parameters do not match. This type of
discrepancy may involve the analysis of two type specifications, two instance specifications,
or the specification of a type and an instance.

For all of the cases just described, the exception analyst attempts to determine what
relationships exist between the expected parameter type (or value) and the unexpected
parameter type (or value). Note that the first two of the relationships specified may
constitute complete explanations in this regard, while the remainder can only be viewed as
leading indicators, since they represent significant relationships that can form the basis of
an explanation, but are not sufficient alone as an explanation. The relationships examined
by the exception analyst in this case are the following ':

1. The type of the unexpected instance may be a specialization of one of the expected
instance types, and may be substituted.

2. If we are comparing two object types, it may be that the unexpected type is a
specialization of the expected type. This type of discrepancy is easily resolved, since
the specialized object has all the properties of the expected object, and thus is
sufficient. (It may be the case, however, that this object has additional properties
which may be problematic in the plan; the plan critic must check this).

3. The two objects may both be manipulated-by activities which belong to a common
activity superclass. If so, they probably are utilized in similar fashions.

4. Both may be instances of the same type. It is possible that the two instances may
be substituted for one another.

5. The type of the unexpected instance may subsume the type of one of the expected
instance types. The system should determine what the properties of the expected
parameter type are missing, and determine through negotiation whether these prop-
erties are necessary. If not, the more general form of the object should have been
specified initially.

6. The unexpected parameter type may subsume the expected parameter type. That
is, it is not specific enough. The system should determine what the properties are

5Note that when comparing objects as opposed to activities, we do not focus on effects or goal similarities,
since these are only relevant for activity descriptions. The specialisation hierarchy and other arbitrary
relationships are explored in more detail. Also, this classification of relationships subsume a previously
defined classification of similarity offered by Simpson [49].

5-H-29



of the expected parameter type that are missing, and determine through negotiation
whether these are necessary properties. If not, the more general form of the object
should have been specified initially.

7. The unexpected parameter object may be part-of the expected parameter. We could
go into negotiation to ask the user for a specification of the other parts, or see if the
operation (action) can be performed on the part alone.

8. The unexpected parameter object may contain the expected parameter type. The
exceptional action may have been a "slip," we can derive the expected parameter
value from the unexpected one.

9. There may be some other relationship between the unexpected and expected param-
eter types. The semantics of this relationship (at least the mappings) are available in
the system knowledge base; the exception analyst can determine the expected object
type from the unexpected object type. The negotiator can then ask the user if this
is what he meant.

10. The two objects may be siblings in the object hierarchy. If so, the exception analyst
constructs the set of features unique to the expected object, since the lack of these
features in the object actually provided as the parameter value may be problematic.
Negotiation must determine if aspects missing or extraneous in the unexpected object
are problematic.

11. The discrepancy between the two parameters may result from differing quantities
of the object type. If so, an excess may or may not be allowable. The semantics
associated with the underlying data type are particularly important when handling
quantity discrepancies, since commonsense reasoning may be required. For example,
if the go-to-bank step was supposed to result in withdrawing 50 dollars, emerging
with 100 may not be problematic, but baking a cake in a 450 degree oven when the
recipe calls for 350 degrees may have unsatisfactory results.

Once the exception analyst has investigated the above relationships, a set of possible
partial explanations has been constructed. Only rarely is an explanation complete enough
to assume as correct without further information and verification from the user (perhaps
the only case is straight specialization). The negotiatior is handed the set of partial
explanations to "discuss" with the user. These explanations may have been ordered by a
heuristic rating scheme to represent the likelihood of validity. The information acquired
during negotiation establishes whether the exceptional parameter should be allowed.
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4.4 Negotiator

The negotiation process is used to verify or complete the explanation of the exceptions
encountered during the execution of activities. The primary goal of the negotiator module
is to ascertain that the plan network has been returned to a consistent state, and all
affected agents have agreed upon any changes that were made during the handling of
an exception. By "consistent," we mean that if an exception has occurred, at least one
acceptable explanation has been formed and verified, and the outstanding goals of the plan
cannot be shown to be unachievable. The activity of the negotiator has three general
phases:

1. The agent who caused the exception and the agent who are affected by the excep-
tion are identified. In the general case, there may be multiple affected agents, but
oftentimes the only affected agent is the effecting agent himself.

2. The negotiator moderates an exchange between the affected and effecting agents to
establish a consensus about one of the possible explanations. In general, depending
on the completeness of the explanations, the nature of this phase of the negotiator
is one of two possible types:

(a) Verification. When one or more complete explanations are found, they are
presented to the affected agents (after possibly being ranked) to choose and
verify the most acceptable explanation. Again, in the case where a single agent is
both the effecting and affected agent, this phase defaults to asking that agent to
choose among the potential explanations constructed by the exception analyst.
This kind of negotiation will lead to a generalized explanation which represents
a reorganization of existing domain knowledge.

(b) Guided acquisition. When no complete explanations are found, the exception
analyst provides the negotiator with a search trace of the examined entities and
relationships which failed to support potential explanations of the exception.
Using this trace, the negotiator carries out a directed query with the affected
agents in an attempt to acquire missing information which could constitute an
explanation. This mode of negotiation can result in new domain knowledge.

3. The negotiator must determine what changes should be made to the current plan
network and/or static activity and object library in response to the handled exception
and explanation. Again, all affected agents must agree on the changes to be made.

sNote that this is very different from requiring that the outstanding goals be shown to be achievable,
since we are making an allowance for the case in which there is no known plan to achieve the remaining goals,
but in a setting relying so heavily on user interaction, we cannot detect this with the limited information
available mid-execution.
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4.5 Our Approach as a form of Explanation-Based

Learning (EBL)

There are numerous similarities between the goals and perspectives of the explanation-
based learning approach and the approach we take in SPANDEX. In a sense, the method-
ology we propose in SPANDEX is a type of explanation-based learning. We can map
SPANDEX into the general explanation-based learning perspective in the following man-
ner:

1. Goal concept. In EBL, the goal concept is defined as a goal state, which is an
incomplete world state specification. In SPANDEX the goal concept is also a goal
state, but it has a slightly different role in the explanation process (see the section
below which discusses the explanation.

2. Domain theory. In EBL, the domain theory consists of objects with properties,
inference rules for inferring more about object relationships and properties, and
problem-solving operators (activities). In SPANDEX the domain theory consists of
the same types of entities. However, our inference rules are not represented explicitly
as rules; rather such rules are embedded in actual object definitions in the object
hierarchy. SPANDEX also has access to knowledge about agents, motivations, etc.
Another difference is that the representation used by SPANDEX provides a richer
constraint language to be used in schema definitions than the constraint vocabulary
which seems to be available in the EBL systems previously reviewed.

3. Single Training Example. In EBL, the single training example is a sequence
of operators (with some operators potentially missing) that represents the observed
problem solving behavior of an agent. Similarly, in SPANDEX, the example is also
an observed sequence of primitive actions which have been performed. Specifically,
an example in SPANDEX is an ordered token string of action instantiations which
thus far have been either executed by the planner or performed by the user, including
the exceptional action as the last token. In the standerd EBL approach, the observed
sequence is given as a single input representing a complete plan. In contrast, SPAN-
DEX is given only a partial sequence of primitive operators, as an indication of the
incremental nature in 'which SPANDEX "observes" and attempts to "understand"
the problem-solving behavior of an agent.

4. Explanation. In EBL, the explanation is an "operator sequence that solves a prob-
lem, together with an annotation which captures how the effects of one operator
match the preconditions of another." An explanation includes expansion matching
choices, and is meant to justify how the precondition of each operator is achieved,
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and how the goal is achieved. Operators and states which don't "causally" support
goal are eliminated. Thus, in EBL, an explanation is really a sort of proof of how the
observed operator sequence solves the initial problem. In SPANDEX, at the point
where an exception is encountered, we do not yet necessarily have in hand a complete
sequence of primitive steps which define the final plan. Thus we cannot absolutely
prove the the goal will actually be met. In SPANDEX, we attempt to use explanation
to show that the observed partial action sequence (including the exception) can be
part of at least one possible plan network which is consistent with achieving the goal
concept. That is, as far as we can tell, this sequence of actions can fit into a plan
network which can achieve the goal concept, though not necessarily the current plan
network without alteration.

In SPANDEX, an explanation is contructed within the context of a current plan
network, which is a complete plan specification with goal and activity nodes at
varying levels of abstraction and predicted action nodes highlighted. A SPANDEX
explanation is a new tree-like plan network which contains at the leaf level the token
string of observed and performed actions (the initial training example). The inner
nodes of the plan-network tree are nodes which are the more abstract specifications
of the primitive plan steps, as well as unexpanded goal nodes. The root node of the
explanation structure is the goal concept. This explanation structure contains causal
links and is annotated with the justifications of the role of the unexpected action in
the evolving plan. The previous state of the plan network may be referred to in
the annotations, in order to express justifications such as which step in the previous
plan network was replaced, what previous steps are no longer necessary due to the
unexpected action, etc.

5. Result. The end result for both the EBL and SPANDEX approaches is a general
schema of which the instance is just an example. The primary focus in the EBL
work is on techniques for generalization, while our initial focus in SPANDEX is to
develop a set of techniques for constructing different types of explanations. We do,
however, recognize the need for generalization techniques in order to learn through
the handling of exceptions, and perhaps will make use of existing methods such as
those used by the EBL approach.

In summary, the goals we are trying to achieve in SPANDEX can be mapped fairly
closely into an explanation-based learning perspective. However, we have identified the
following as novel aspects to our problem and approach:

1. Our planning model is one of incremental planning and execution. Planning and
execution are interleaved.
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2. Our planning system is interactive, and this interface design imposes a cooperative
framework upon the users and the system.

3. We assume an incomplete domain theory, and suggest the paradigm of negotiation to
extend the theory. Negotiation supplements the more bounded task of reorganizing
existing knowledge through automated explanation construction (shared in common
with EBL).

4. We introduce agents as an important component of the planning model. Motivations
for unusual agent behavior are identified. Negotiation must take place between agents
regarding an "explanation."

5. We rely heavily on an abstraction/generalization hierarchy of activities (and objects)
to construct the explanation of an exception. EBL does not seem to use this type
of information explicitly during explanation construction, though similar reasoning
seems to play a role during the generalization process.

In the next section, we present detailed examples of the detection and explanation of
two of the possible exception types: an action-not-in-plan and an unezpected-parameter
exception which causes a static object constraint violation. We give examples of structures
used during explanation construction and show how the knowledge base may be examined
by the exception analyst.
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Chapter 5

Example

The taxonomy of exceptions developed in chapter 2 and the reasoning principles outlined in
chapter 4 are further illuminated in this section through the provision of a detailed example.
Our example domain is the world of real-estate; specifically the activities involved in buying
a house. This domain was chosen not only because of its familiarity, but the activity
of purchasing a home is one which is described naturally in terms of both procedures
and goals, involves several active agents, and is likely to be fraught with exceptional
occurrences. The procedure for buying a house is both simple enough for most people
to understand and is complex enough to demonstrate the different types of exceptions that
can arise and how they might be handled.

In the discussion of the following example scenarios, the reader should refer back to
Figures 4.2 and 4.3 on page 20 in section 4.1 to regain familiarity with the overall task
decomposition and domain entities.

5.1 Scenario 1: Action-Not-in-Plan

Suppose that the buyer has selected a house to buy, and the purchaae-and-sale-agreement
has been signed. The system next expects the buyer to go about obtaining a mortgage,
an activity whose first step is to go-to-bank. Now, suppose that the execution monitor
instead detects that the buyer's actual action was to .ell-itock. Since the actual action
is not among the expected-actions set, an exception has occurred. Further examination
by the exception classifier reveals that the aell-atock action does not fit into any of the
possible plan expansions of future steps, so it is not an out-of-order step. The sell-stock
action is thus classified as an action-not-in-plan exception. An instance of an ezception
record (see Figure 5.1) is created to store information about the exception, and is attached
as an annotation to the node representing the actual action sell-stock1.

The plan critic is then invoked to determine the effects of the exceptional action on the
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LABEL: exception-record1

EXCEPTIONAL-ACTION: sell-stock
EXCEPTION-TYPE: action-not-in-plan

PRECONDITION: true

PROTECTED-STATES-VIOLATED: nil
EXPLANATIONS: explanation-recordl

Figure 5.1: The exception record for Scenario 1

current procedural network. It is invoked with a specification of the effects of the actual
action and performs the following two actions:

1. The precondition of the action performed by the user is checked. If it is not true,
that information is entered into the ezception-record. (In this case, the precondition
of the sell-stock action, namely, that stock exists, is true.)

2. The effects of the actual action are examined in the context of the current proce-
dural net to determine whether the assertion of the specified states will violate any
protected states. If so, these violations are entered into the ezception-record. (In
this particular case, no protected states are violated.)

The exception analyst is invoked to search for explanations that would establish why
a sell-stock action could be a valid action at this point in the plan. One heuristic guiding

the search for explanations when an action-not-in-plan exception occurs is that the agent
is attempting an alternative way of accomplishing the goal of either:

" An expected action, or

" An activity whose status is in progress.

The exception analyst forms a candidate-list by merging the expected-actions-list and

a computed list of the in-progress activities. Each element of this list is compared to the

actual action to determine substitutability, according to the tests specified in section 4.3.1.

In the current scenario, the sell-stock action is first compared to the nearest2 action

on the candidate-list, specifically the go-to-bank action. There is no significant taxonomic

'An activity is considered to be in progress if one or more of the steps in its expansion is on the ezpected-
da ,u-lift.

2The nearest action to an actual action is defined to be a primitive action which is among the ezpected-
actiou-liet. The level of "nearness" decreases as we climb up the hierarchy representing the order of expan-
sions which preceded the primitive level nodes.
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Figure 5.2: Portion of domain object hierarchy

relationship between the two actions, nor is there an overlap of the effects of the two
actions. Comparison of the actual sell-atock action proceeds to the next nearest action
on the candidate-list, the in-progress activity apply-for-mortgage. Again, no significant
relationships emerge. Sell-itock is next compared to get-mortgage, which is another in-
progress activity which subsumes apply-for-mortgage. There is no taxonomic relationship
between these two activities, but the goals of the two activities are clearly related. Both
activities goals establish the existence of some resource, namely funds in the case of get-
mortgage, and redeemed-stock in the case of the sell-stock action. Since the goal predicates
are the same, it remains to be checked whether a significant relationship exists between the
parameters of the two goal statements. The exception analyst notes that redeemed-a tock is
a specialization of liquidated-assets, which in turn is a specialization of funds (see Figure
5.2) and thus "having redeemed-stock" is a sufficient operationalization of "having funds."

The above reasoning process represents the construction of one complete explanation of
the role of an unexpected aell-stock at this point in the plan. Other possible explanations
were examined and determined to be invalid3 . All explanations investigated, both valid and
invalid, are stored in the exception-record, within separate attached emplanation records.
An explanation record contains the relationships and inferences that are central to the
explanation. One completed record for the Jell-stock scenario is shown in Figure 5.3.

In addition to recording the logical or heuristic basis for the semantics of the explana-
3The failed equivalency tests between the sell-stock action and go-to-bank and applj-for-mortgage actually

represent potential explanations, although invalid given currently available information.
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LABEL: explanation-recordl
EXCEPTION: exception-recordl
EXPLANATION-SUMMARY: (TYPE: step-substitution;

JUSTIFICATION: specialization

(Type: goal-parameters; Values:
redeemed-stock, funds))

PRIMARY-PLAN- substitute(seil-stockl, get-mortgagel)
MODIFICATION:

PLAN-MODIFICATION-SIDE- deactivate(go-to-bankl, apply-for-mortgagel,
EFFECTS: receive- mortgage-approval1)

Figure 5.3: Explanation-record for Scenario 1

tion, the exception analyst must also determine what changes may have to be made to the
current procedural network structure in order to accomodate the exceptional action. In the
case of the current scenario, since the equivalency of the get-mortgage action and the sell-
stock action has been determined, the desired change is to substitute a node representing
the sell-stock action for the node representing get-mortgage. However, since get-mortgage
is a complex activity which is "in-progress," the expansion which is subsumed by this node
must be eliminated from the procedural network. In other words, since the buyer has sold
his stock as a method for obtaining funds, he is no longer expected to follow through with
any of the steps involved in obtaining a mortgage. Therefore, the nodes which are sub-
sumed in the hierarchical plan network wedge which is headed by get-mortgage (go-to-bank,
apply-for-mortgage, receive-mortgage-approval) must be deactivated. This information
is also stored in the explanation-record, and will be used by the routines which perform
the actual modification of the procedural network, if explanation is later verified.

Once the set of explanations are constructed, the negotiator will engage the involved
agents in a dialogue to either:

" Select one of the completed explanations, or

" Elicit more information from an agent to establish the validity of one of the partial
explanations.

In this scenario, the buyer is the only agent involved in this exception, and chooses the
explanation represented by explanation-record1 as a valid explanation. The underlying rea-
son for the exception was an intended substitution, since the buyer intends to purchase the
house with his own funds rather than assuming a mortgage. The procedural network mod-
ification routines are then invoked to make the changes to the current procedural network.
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Goal node:

exists(funds)

I achieves

Activity node:
sell-stock1goal: exists(redeemed- stock)
exception- annotations:

exception-recordl
explanations: [

explanation-recordli

explanation-record2

Figure 5.4: New procedural net, with attached explanation

The final explanation of the exceptional scenario consists of the new procedural network,
incorporating the exceptional aell-stock action, which itself is annotated with ezception-
recordl (containing pointers to explanation records including ezplanation-recordl ) (see
Figure 5.4).

5.2 Scenario 2: Expected action, inconsistent param-
eter

Having illustrated the actions of the system upon encountering an action-not-in-plan ex-
ception, we now give an example of a case where the action type observed is as expected,
but a parameter inconsistency is detected. In this scenario, suppose that the buyer is at the
stage of filling out a purchase-and-oale-agreement and is executing the step fill-out-form-
field-1, where the value of the field is constrained by the form object to be an address.
Now suppose the action token observed by the execution monitor is of the correct type but
the parameter provided by the buyer is actually "545-0609," which is a phone-number. An
exception of type unezpected-parameter has occurred. This exception is further classified
as one which causes a static object constraint violation since the address field of a form
object has an attached constraint specifying that the value must be of type address, and
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Activity: Contact-someone

- (subclass)

Activity: Call Activity: Write
manipulates: manipulates:

objct:phoe-nmb[ object: address

(m mb r I I

phone-numberi object: person object: form
545-0609 address: type is fieldl: type is

phone: type is [Z

Figure 5.5: Fragment of knowledge base relevant to phone numbers and addresses

it is this constraint which has been violated.
Information about domain objects in the knowledge base is represented in a variety

of ways. Objects such as phone-numbers and addresses are represented as structured
entities, with well-defined fields and constraints. The activities which manipulate these
objects can be found by following links, so the ways in which these objects are used can
be easily determined. In addition, other links may specify the domain objects which
these particular objects may be part of or related to (see Figure 5.5). The task of the
exception analyst upon the detection of an unetpected-parameter exception is to explore
the connections between the unexpected and expected parameter objects in an attempt to
discover a significant relationship which would justify the parameter inconsistency.

An intuitive explanation for this exception might be that the action of the buyer was
a careless "slip" - that he meant to supply the address but inserted the phone-number by
mistake, because of its close association. One approach might be to ask the agent to verify
the suspected error, and revise his action. This tactic might be tried first, to save more
costly explanation construction and verification.

Assuming that the agent does not acknowledge an error, the first hypothesis to pursue
in an attempt to explain an exception of this type is the following: perhaps the unex-
pected parameter value was meant as a replacement for the expected value. The exception
analyst pursues a number of paths in an attempt to substantiate this. The simplest ex-
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planations are investigated first. For example, perhaps a phone-number is a specialization
of the address object, and is thus sufficient, as was deduced in Scenario 1. This is an
invalid explanation, however, as can be seen by examining Figure 5.5. Other taxonomic
relationships are investigated to establish partial explanations that might be completed
and verified though additional processing and negotiation. For example, if an address

could be shown to be a specialization of a phone-number, or if both objects were shown to
be subclasses of a common object, it could be suggtted that a more general object type
(e.g. the telephone object or the common parent object, respectively) should have been
provided in the form object's field constraint specification, rather than address. However,
again, as can be noted by the reader, attempts to establish these relationships fail and
thus the corresponding partial explanation structures are marked as invalid (become null
explanations).

An alternative approach that would bypass interaction with the agent is for the excep-
tion analyst to investigate if the address can be deduced from the phone-number supplied,
perhaps through a search of the people objects with the target phone-number and then
retrieving the appropriate address from the person instantiation which produces a match.
This search however, may be quite costly, and is thus only done in cases where the number
of objects containing the field in question can be ascertained to be below a fixed limit. In
this case, we may assume that the number of people instantiations in our knowledge base
exceeds the limit, yielding a preference for attempting other remaining strategies first.

The actual usage of the objects in question is examined next, in hopes that the unex-
pected parameter object and that which was expected have a similar function within the
plan. The following information can be gathered by the exception analyst:

Telephone-numbers are used by the call activity, while addresses are used by
the write activity. Both the write and call activities are specializations (level
of nearness = 1, since they are at the same level of abstraction) of a more
abstract method-of-contact activity. In other words, both of these objects are
used by activities which are very similar in function.

Intuitively, we can assume that the buyer filling out the form was supposed to supply an
address, so as to facilitate later attempts to contact him while the sale of the home is being
negotiated. However, the buyer may be in the process of relocating and can only be reached
by phone at his work number. The action of filling out the purchase-and-sale-agreement

with a phone-number instead may have been an intentional action to supply the real-estate
office with an alternative method of contact. This explanation is thus encoded into the
exception-record and explanation-record shown in Figures 5.6 and 5.7, respectively.

When permitting the violation of a static object constraint, as is suggested by this
explanation, an important consideration is that later steps of the plan may access the
address field of the form involved and unexpectedly find a phone-number. For example,
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LABEL: exception-record2
EXCEPTIONAL-ACTION: fil-out-form-field1 (type phone-number)

EXCEPTION-TYPE: unexpected-parameter, static violation
PRECONDITION: true
PROTECTED -STATES- VIOLATED: nil
EXPLANATIONS: explanation-record2

Figure 5.6: The exception record for Scenario 2

LABEL: explanation-record

EXCEPTION: exception-record

EXPLANATION-SUMMARY: (TYPE: parameter-substitution;
JUSTIFICATION: similar-function

(Type: step-parameters; Values: phone-number,
address))

PRIMARY-PLAN- substitute(fiU-out-form-fieldl(phone-number,
MODIFICATION: address)

PLAN-MODIFICATION-SIDE- attach-usage-demon(forml, field1)
EFFECTS:

Figure 5.7: Explanation-record for Scenario 2

once the purchase-and-sale-agreement has been signed by the seller, the real estate agent
may want to mail a copy to the buyer, and will be confused when "545-0609" is retrieved as
the address for sending the copy. Such future accesses must be warned of the inconsistency,
so that procedures which may applied to the unexpected value (in this case, U.S.-mail)
can be modified accordingly (e.g. the buyer must be called to come pick up the copy,
rather than having it sent out). This special treatment is exemplified by the side-effect
listed in 5.7 specifying the attachment of a demon to the form object in question4 .

Again, as in the first scenario, once the potential explanations have been constructed,
control is passed to the negotiator to determine which of the explanations should be cho-
sen or explored further, and what changes to the procedural net or knowledge base are
necessitated.

4Other techniques for accomodating exceptions to constraints in databases, such as those described by
Borgida [5], may be investigated for our use when handling this type of exception.
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Chapter 6

Research plan

6.1 Review of the problem and our goals

At this point in this proposal, it may be helpful to review the motivating forces for the
SPANDEX architecture and approach which we have presented. The following are the
important aspects of our problem:

" The real world often does not operate in a "typical" fashion. It is difficult the
anticipate all the possible ways of performing a task goal, and the environment is
often dynamic. A goal that is largely overlooked in current planning systems is to
be able to handle unexpected contingencies as they arise in a planning framework[9].
Current planners are too "breakable" in the face of unexpected events.

" Intelligent agents involved in plan execution are often important parties in a planning
framework, and are frequently overlooked. The behavior of agents should be ana-
lyzed critically, especially when it is inconsistent with system expectations. Agents
who interact with the system are important sources of knowledge for refining an
incompletely specified domain.

* Agents perform purposeful actions; their behavior is seldom random. Previous sys-
tems have not addressed the notion of attempting to understand "erroneous" agent
actions within a planning framework. Replanning is a reactionary approach that
is not sufficient for sophisticated explanation of unusual occurrences and the corre-
sponding modification of plans.

* A domain model that is the initial input to a planner is often incomplete and incor-
rect. Intelligent agents have effectively unlimited knowledge bases, but the knowledge
is dispersed and not explicitly accessible. One way to have the system perform as
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if it has access to what the user knows is to monitor and analyze exceptional user
behavior.

In response to the characteristics discussed above, we would like to provide a "flexible"
intelligent assistant to help agents perform tasks. The system should be able to go beyond
"reactionary" approaches when encountering unexpected events or states, and attempt
to understand possible intent behind the exception and how it might be incorporated
into a consistent plan. This work constitutes an attempt to bridge the gap between the
knowledge guiding system behavior, and that guiding agents' behavior. The eventual goal
is to have the system domain model better approximate the domain model of the intelligent
agents.

Therefore, the goal of this research is to demonstrate that we can continue the planning
and execution of a task in a consistent and uninterrupted fashion upon encountering an
exception, with the help of the following:

" a careful look at the types of exceptions that can occur in an interactive planning
framework,

" an understanding about what motivates users to perform actions which are different
from system expectations,

" a rich integrated representation for domain activities and objects, and

* a set of algorithms for control exploration of that representation to find meaningful
"explanations" for exceptional behavior.

Furthermore, we would like to show that this approach produces a planning system
which is less brittle and more efficient than previous planners which adopt a simpler re-
planning approach when encountering exceptional occurrences. Finally, we hope to demon-
strate that this approach produces a system which "learns" about alternative ways to com-
plete task goals, and is able to use this new knowledge during future planning activities.

6.2 Demonstration of thesis

In this section, we outline the aspects of this overall design which we expect to implement,
and discuss ways of evaluating the approach.
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6.2.1 Implementation

We will build a system called SPANDEX1 which will demonstrate the approach we have
presented for handling exceptions. At this point, we are not focusing on the implemen-
tation of the replanning or plan critic modules. We are assuming behavior in this regard
which is typical of [54]. We are also not concentrating on a detailed design or implemen-
tation of the negotiator, since the negotiator alone is a substantial project. In the initial
stages of the implementation, we will be concentrating on the exception classifier and the
exception analyst. Later stages will deal with the implementation of the module which
will incorporate changes into the existing knowledge base, as suggested by the output of
the negotiation phase. The SPANDEX system will be implemented using KEE on a Texas
Instruments Explorer.

Our planner

The SPANDEX system is part of a comprehensive planning system (POLYMER), the ker-
nel of which is largely implemented [11,12]. POLYMER is a system designed to support
the activities of decision-making, communication, and information manipulation that are
inherent in a cooperative work environment. The object-management subsystem (OMS)
contains detailed knowledge about the domain activities, the objects they create and ma-
nipulate, and the people or "agents" who are responsible for their execution. The OMS
is object-oriented since entities have procedural attachments which are inherited through
abstraction hierarchies. The planner is interactive, treating the user as an active agent in
planning decisions, and user actions incrementally provide constraints to guide the plan-
ning process. The activity description language used by POLYMER is based on formalisms
used by other planning systems [8,10,53]. The representation provides mechanisms to ex-
press causality and includes a general looping mechanism for expressing different forms of
iteration. The details of the POLYMER planner and OMS can be found in [31].

The basic cycle of POLYMER for a single user is as follows:

1. A goal is posted by the application (upon encountering a user action).

2. The planner expands the goal into a partial ordering of activities and subgoals,
constructing the set of actions which can occur next in the form of an ezpected-
actiona-liet.

3. The execution monitor selects an action from the ezpected-actiona-liat and sends a
message to an active-object (to the user if it is an action which must be performed
by the user, otherwise to a tool object).

ISystem for Planning AND EXception handling
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4. The execution monitor compares the actual action taken with the set of actions
on the ezpected-actions-list, and if a match is not found, the exceptional handling
mechanism is invoked.

5. Once an explanation has been negotiated successfully (or if a match was found from
step 5 above), control is returned either to: a) Step 3 if more actions remain on the
ezpected-actions-list, or b) Step 2 otherwise.

Exception classifier

We should mention that we are not concerned the issues involved in the actual monitoring
of user actions or world state changes. SPANDEX assumes that an action or state change
has been detected, and all system activity proceeds from the point where SPANDEX is
invoked with a well-formed formula or an action token which is inconsistent with the
planner's expectations.

In the implementation of the exception classifier, we expect some of the exception
types to be classified in a straightforward fashion, specifically the unexpected-parameter,
user-assertion, external exception, and repeated-step exceptions. However, distinguishing
out-of-order exceptions with action-not-in-plan exceptions is less trivial. We will need an
efficient strategy that will most likely involve an unintelligent expansion to produce an
approximate computation, and we will have to provide for the possibility of inaccuracies.

Exception analyst

The implementation of the exception analyst will incorporate:

1. A set of heuristics for mapping from an exception class (as determined by the excep-
tion classifier) to probable intents on the part of the user,

2. A set of heuristics for mapping from (exception-class, intent) pairs, as determined in
(1), to search paths to guide the determination of the relationship of the exception
to the current plan. We will need precise methods for controlling the search for
explanations. Paths which may result in complete explanations should be pursued
first, but when there are many possible paths to pursue (for example, if there are
several expected actions to consider, or if the network encompasses many levels of
expansion which may need to be considered), we will need to establish cut-off points.

3. A set of algorithms which operationalize the search strategies suggested in (2). These
search strategies correspond to a taxonomy of explanation types. The execution of
the appropriate algorithms will result in the creation and completion of exception-
records and explanation-records to record the results of the processing. Before the
actual implementation begins, we need to better formalize the types of explanations,
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based on the examples given in chapter 5. This will be done in tandem with a more
complete design of the basic explanation-record and exception-record data structures.

Explanation Generalizer

After the initial prototype has been built which constructs explanations for exceptional
occurrences, we will need a method for generalizing a verified explanation to provide the
system with the capability to learn from experience. We are looking critically at existing
algorithms from current work on explanation-based learning and generalization and will
attempt to adapt them to handle SPANDEX explanations.

Knowledge base modifier

As already mentioned, we are bypassing the actual implementation of the negotiation
module, and will concentrate on attempting to integrate the changes which result from
negotiation into the existing knowledge base. These changes fall into two classes:

* An exception may be justified by the gathering of information which was already in
the knowledge base. In this case, the information about how the plan was accom-
plished may be better represented for future use so that the deductive process need
not be repeated. The output of the negotiator, in this case, is simply the appropriate
agents' verification of information discovered by the exception analyst.

" When the exception analyst was unable to deduce a complete explanation of an
exception, further information may be acquired from the relevant agents via the
negotiator. This new information should be reflected in the knowledge base through
addition or change.

In either case, we are assuming that the negotiator has provided us with the appropriate
changes to be made to the knowledge base, along with an indication of whether they reflect
newly acquired or inferred knowledge. There are several issues involved in making changes
to complex knowledge bases and ensuring the proper propogation of changes, which we
plan to investigate [4].

6.2.2 Experimentation

We plan to investigate system performance by monitoring its behavior on a set of scenarios
from the real estate domain. We intend to conduct a series of interviews with a mortgage
officer in a local mortgage institution. The initial interview will concentrate on extracting
an initial set of typical plans for processing a mortgage application, embodying the set of
domain action primitives. Successive interview(s) will be aimed towards gathering a set of
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realistic scenarios that demonstrate exceptions and interruptions that can occur during the
mortgage process, including exceptional behaviors on the part of the mortgage institution,
assessor, prospective buyer, seller, etc. This discussion of exceptional behavior will also be
used as a metric regarding the completeness of our taxonomy of exception types.

6.2.3 Goals

The following are the goals which we would like to achieve in this implementation:

" The exception classifer should always be able to classify an action which doesn't
match one of the expected actions into an exception type in our taxonomy.

" Our approach should be demonstrated to succeed when simple replanning would fail.

* The heuristics used by the exception analyst to select among its strategies for re-
solving exceptions should demonstrate an improved efficiency over a blind "try-
everything" method. In other words, an explanation for the exception should be
discovered with less search when using the heuristics than when a more random
approach is employed.

" The exception analyst should be able to apply knowledge which is dispersed through-
out the knowledge base to explain an exceptional scenario which defies the more
explicit activity description.

6.2.4 Beyond the initial prototype

In addition to the initial prototype which will implement the exception classifier and the
exception analyst, the remaining time and energy will be devoted in the following direc-
tions:

" We need to develop strategies for knowing when and how to generalize an expla-
nation. As part of this, it must be determined when static knowledge should be
changed (as opposed to the dynamic plan network instantiations) and which features
should be abstracted from the explanation for generalization. We are examining
other approaches for adaptation to this work.

" Any changes which result from the negotiation process should be made to existing
domain knowledge in such a way that the knowledge base remains consistent.

" The approach outlined thus far generally assumes that inconsistent behavior on the
part of an agent is generally purposeful. However, we also know that humans are
prone to making errors, and a more extensive approach would consider models of
errorful behavior as well.
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* The negotiator module is a substantial part of the system which will remain to be
designed in detail and implemented.

* We are initially considering the analysis of an exception in the context of a single
overall task. It is much more complex to consider the analysis of the exceptional
behavior in the context of multiple ongoing tasks which are being multiplexed among
the agents, and this would be an issue to address in the future.

6.2.5 Implementation schedule

This final section contains the schedule we have established for the implementation of this
research. The elements of functionality which are designated by the numbers in Figure 6.1
are the following:

1. Data structure definition

(a) Explanation structures

(b) Exception records

(c) Explanation type hierarchy

2. Exception classifier (simple version, without search)

3. Exception analyst algorithms - Phase 1 (a subset)

4. Exception classifier (with search strategies)

5. Exception analyst algorithms - Phase 2 (more complex algorithms included)

6. Facility to handle the completion of partial and null explanations

7. Interface

(a) Show explanations

(b) User choice

(c) Completion of explanations

8. Generalization

9. Knowledge base modifier

10. Experimentation
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Abstract

This paper discusses design issues for intelligent tutoring systems, and
suggests a general and extendable architecture for program control and
knowledge representation. The main focus is on how discourse, teaching,
and diagnostic rules, along with the information needed to implement these
rules, can be acquired, represented, and coordinated. First, the state of the
art in ITS design, important problems, and research goals are discussed.
Then, a rule-based, goal-driven architecture is suggested which facilitates
an evolving knowledge base, intelligent planning of tutoring actions, dy-
namicly shifting between different tutoring styles, and the maintenance of
student and discourse models. Finally, the principles underlying knowledge
acquisition and the identification of design constraints are discussed, and a
step-by-step methodology is given. Selected sections of the paper serve well
as an introduction to, or review of, the important design issues in ITS.
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Chapter 1

INTRODUCTION

1.1 ITS systems state of the art

It has been proposed and verified in limited instances that computers have
the potential to act as powerful intelligent tutors-to have an expert level
understanding of the the knowledge in their domain, an understanding of
the pedagogical aspects of that domain, and an ability to tailor instructional
actions, on the fly, uniquely for different students and different instructional
contexts (Wenger 85, Clancey 86, Sleeman & Brown 85). It is also becoming
increasingly clear that computer tutors can provide instructional environ-
ments, such as graphic simulations and large structured data bases, that
are not obtainable without the use of computers (Burton 86 and diSessa
86). Research in ICAI (Intelligent Computer Aided Instruction) has made
significant progress over the last 10 years, but thus far very few ITS's (In-
telligent Tutoring Systems, synonymous here with ICAI) have been built
which have the scope and the robustness to have been tested extensively in
actual academic settings. This is not surprising, considering the complexity
of the tutoring problem, which requires state of the art AI methodologies
in knowledge representation and acquisition, control, communication, inter-
faces, and machine learning. Each attempt to use a new ITS system on
students uncovers new problems or questions for the pedagogical and cogni-
tive theories in the domain used. All this not withstanding, several sectors
of our society, strapped with severe educational and training problems, anx-
iously await the maturation of the field, and more concrete evidence that it
can soon deliver the promise of its touted potential.
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1.2 A common ground is needed

The issues facing the builders, designers, and evaluators of ITS systems are
many and complex. As the number of ITS systems being proposed and built
increases, so does the need for a common ground on which to exchange ideas
and results. It is much too early to expect substantial commonality amongst
the philosophical and strategic approaches in such theoretically alive areas
as pedagogy, knowledge representation, and student modeling, but it is not
premature to move tGward some common terminological frameworks and
guidelines with which to exchange and critique the various theories, tactics,
and computer systems in ITS research.

1.3 Purpose of the architecture

This paper has two purposes: first, to present a general control and knowl-
edge representation architecture for ITS systems. And second, to provide
methodological guidelines for designing ITSs and analyzing ITS needs in any
domain within the framework of the architecture.

The architecture proposed in Chapters 4 through 6 is in part an attempt
at generalizing and synthesizing the implicit and explicit components of
existing tutoring systems. Some of its features suggest reatively new ways to
use existing AI technologies in ITS design. The architecture can be viewed
as a "shell" within which to encode the specific information for arbitrary
tutoring systems. As such, it is a step toward an authoring system tool for
building ITSs.

This is a report on work in progress, and some of the ideas herein are
under-constrained. The architecture has not yet been fully implemented,
and the details presented in this paper are sure to evolve as we implement
it. It is hoped that the issues raised and the solutions proposed will be a
useful starting point for further research, even if some of the details fall be
the wayside. As an attempt at looking at the "big picture" of ITS design,
it focuses on how knowledge is used to control the actions of the system,
and on how to modularize the various components within a framework that
encourages well structured communication between them. As such, parts of
this paper may also serve as an introduction to the important issues in the
field, and an overview of the state of the art in ITS system design.
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1.4 Purpose for the guidelines

Even if a generalized ITS shell or authoring system (as suggested above)
existed, it would be difficult to utilize it effectively. The difficulties of speci-
fying,with computational precision, domain knowledge and tutoring knowl-
edge for such a system are prohibitive for all but the most experienced
research teams (given the current state of the art). Two things are needed
to ameliorate this problem: an authoring or knowledge acquisition interface
which makes it feasible to have pedagogical and domain experts (as opposed
to computer scientists) take a larger part in the design of the knowledge
base, and methodological guidelines or accepted lore about the analysis of
an instructional domain to produce an ITS specification. Chapters 7 and
8 propose such methodological guidelines. (We do not address the issue of
knowldge acquisition interfaces directly in this paper.)

1.5 Overview of the paper

The intended audience for this paper are those involved in ITS research.
We assume the reader has had some introduction to the field of intelligent
tutoring systems, the more popular ITS systems described in the literature
(see Sleeman & Brown 82 and Wenger 86), and an acquaintance with basic
artificial intelligence concepts such as frames, production rules, inheritance,
etc. (see Barr, Cohen, & Feigenbaum 82, Winston 84B). It is not intended
to extol the virtues and potentials of Intelligent Tutoring Systems, though
they are numerous and exciting. We assume the reader is familiar with the
potential and proven capabilities and refer her to (Sleeman & Brown 82,
Wenger 86, or Yazdani 86). Following is an overview of the chapters with
suggestions for the reader.

Chapter 2
A discussion of the issues and problems in the field which motivate
the rest of the paper. If you agree with the tenant that a general
architecture is needed, this chapter could be skimmed.

Chapter 3
Gives a top level "systems view" of tutoring; an analysis of the hu-
man act of tutoring or teaching in terms of its functional components
and the kinds of information exchanged between those components.
The control and knowledge representation issues introduced here are
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expanded in later chapters. The chapter should be light reading by
those familiar with various ITS systems. For those less familiar with
the field it may provide a good introducition.

Chapter 4
Knowledge representation issues. A description of the contents of the
component data bases, and some design considerations; a bit more
technical than the previous chapters. A passing familiarity with AI
knowledge representation issues is assumed.

Chapter 5
An analysis of top level control issues; goal specifications of a tutoring
session, including such elements as teaching goals, curriculum, and
learning environments. No AI knowledge is needed.

Chapter 6
An analysis of the dynamic, low level control issues; components for
dynamic decision making aspects of tutoring systems. We proposes a
general control architecture for coordinating the types of information
discussed in chapters 4 and 5. This is the most technical chapter. A
passing acquaintance with AI control issues is helpful, but some of the
issues are explained in detail. (The sections on disadvantages of vanilla
rule-based control architectures may be skipped by those familiar with
these issues.)

Chapter 7
A suggested methodology for tutoring system design. Chapters 4
through 6 were concerned with the knowledge representation and con-
trol structures containing the tutoring expertise. This chapter shows
how the requirements of the various components of the system con-
strain the design process. A suggested scheduling of design activities
is given. It is not a technical discussion, but assumes familiarity with
the components of the architecture introduced in previous chapters.

Chapter 8
A knowledge engineering analysis of the factors, assumptions, and
principles behind tutoring system design decisions, giving examples
from existing systems. A methodology is suggested for analyzing the
requirements of an arbitrary domain to generate overall goals and con-
straints for an ITS.
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Chapter 9
Conclusion. Summary of the major points, and a summary of which as-
pects of the paper are considered contributions. Finally, some thoughts
on the future (of ITSs).
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Chapter 2

BACKGROUND

We will not attempt to provide the reader with a summary of ITS research
projects and issues (see Sleeman & Brown 82 and Wenger 85). In this
chapter we will first list some of the problems facing researchers in the
field, which the paper addresses. Next we will list research goals motivated
by these problems. Finally we will outline the solutions and suggestions
addressed in this paper.

2.1 Problems and issues

2.1.1 ITS systems often have little pedagogical foundation

Many ICAI systems (synonymous with ITS's) have been built which incor-
porate little understanding of how successful humans tutors teach. Such pro-
grams are designed from the intuitions of a small number of AI researchers,
often without collaboration with an expert teacher working in the field, and
without extended testing of the tutoring strategies or assumptions implicit
in the system on real students early in the design phase. Brown et. al.
(page 279 of Sleem-n & Brown 85): "...the work that went into SOPHIE II
and SOPHIE III L. explanation put the cart before the horse. We had no
adequate theory of what it meant to understand a circuit and hence no well
defined "target" model of what we wanted the student to learn." Clancey,
in (Clancey 86 page 43) says "The student's knowledge (was) very different
from MYCIN." Then he goes on to explain new insights in the organiza-
tion and use of expert knowledge in the MYCIN-GUIDON- NEOMYCIN-
HERACLES series of Al programs. But he says little about the process of
learning the expert's knowledge. So far none of the tutors in the GUIDON
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series have been shown to work with students, suggesting the same problems
articulated by Brown above.

2.1.2 Each new system is built from scratch

Many intelligent tutors are being built and proposed, most of them de-
signed from scratch. It is rare to see the control or knowledge representation
schemes from one research group being used by another. General guidelines
for ITS system design do exist, such as identifying the major components
(student model, domain model, etc.- see Yazdani 86), but there are few
specific guidelines on how to implement these components. Systems for or-
ganizing tutoring rules have been proposed (Clancey in Sleeman & Brown
85, Woolf 84A, Anderson, Boyle, & Reiser 85), but these systems have not
been adopted. This may be due to the fact that they axe not presented in the
context of a generalizable system, or due to the tendency of Al researchers
to "roll their own" rather than incorporate existing methodologies.

2.1.3 Existing ITS systems have limited scope

The majority of ITS systems have been designed to teach in limited domains
and within limitea pedagogical styles. For example, SOPHIE could only
teach using a couple of electrical circuits, the BUGGY (Burton 82) and
SIERRA (Van Lehn 83) projects deal exclusively with the subtraction skill.
Focus on learning goals it the curricular level is rare (but see Anderson &
Reiser 85, and Shute & Borar 86). In most cases this is necessary because the
research efforts have focussed on difficult theoretical issues, such as student
modeling or qualitative simulation. But there is need for research on how
ITS systems can be used to teach (or help teach) entire curricula using a
variety of instructional environments and teaching styles.

2.1.4 ITS's are hard to evaluate

Current ITS systems are hard to evaluate comparatively (i.e. one to another)
(see Soloway & Littman 86). Very few have left the lab to be used on large
numbers of students where effectiveness can be evaluated statistically. The
pedagogical and psychological assumptions behind the rules used in tutoring
systems are largely implicit, and differ with each system (see Anderson,
Boyle, Farrell, & Reiser 84, Collins 77, and Larkin 83 for examples of rules
systems). This makes it hard to compare different systems, and hard to
evaluate why a system failed to teach (Was it due to shallowness of the
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domain knowledge representation, inadequacy of tutoring rules, or implicit
theoretical assumptions?)

2.2 ITS research goals

2.2.1 More pedagogical and psychological foundations

Pedagogical considerations should be the motivating factors for designing
ITS systems for specific domains. A theory of learning in the domain, and
priorities concerning what types of learning and knowledge are most impor-
tant for performance in the domain, should proceed the design of the tutor.
ITS system designers need to work closely with experts in teaching during
the design and evaluation phases of building an ITS. Ideally, the pedagog-
ical assumptions should have been verified to some extent before the effort
of building a tutoring system is expended (although it does appear to be
very difficult to get conclusive statistical results on any sufficiently specific
theory of lea:ning or teaching). Also, assumptions made about learning and
teaching in the domain should be made explicit, for the purposes of assign-
ing credit and blame after evaluative experiments, and so that the system
can be compared with other ITS systems. Each important design decision
and each high level tutoring rule should be annotated with the pedagogical
or psychological assumptions it embodies.

2.2.2 Flexible reusable ITS shells

The computer can provide unparalleled learning environments (Papert 80,
Burton 86). Instructional strategies found effective in human tutoring can
not be assumed to work in computer tutoring (although they must serve as
a starting point). It is not possible to fully evaluate the effects of these new
environments with off line testing. New environments or tutoring rules will
need to be reasearched to gain confidence concerning a system's teaching
potential. The goal of designing ITSs using sound pedagoly is hampered by
this lack of information about how people learn in these new environments.
ITS systems should be powerful enough to embody a variety of tutoring
strategies, and allow easy reconfiguration of these strategies in research set-
tings. Therefore, systems should be flexible enough to easily add or modify
domain knowledge, or even plug in a pedagogically similar domain. Systems
with this kind of generality facilitate research on computer aided learning,
ameliorate the problem of starting from scratch every time, and steepen the
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research learning curve.

2.2.3 Toward ITS authoring systems

It is not unreasonable, given the current state of the art, to design ITS
systems which can be configured, modified, and/or tweaked by domain or
pedagogical experts with training in AI concepts, but are essentially non-
programmers. We are a far cry from designing anything like an ITS author-
ing shell, but there is much we can do in the way of making the workings of
systems as transparent and modular as possible, in an effort to allow instruc-
tional experts to have a larger hand in ITS system design and evaluation.
Perhaps we should build systems as if they were to be used or maintained
by parties who are initially unfamiliar with the design decisions.

2.2.4 A more precise technical vocabulary

If, as is suggested above, designers of ITS systems routinely tried to consult
instructional experts, and performed case studies of learning and teaching
situations to verify the underlying assumptions of the tutoring rules used,
it would be a difficult and ill-defined task because we do not have a con-
cise vocabulary or ontology with which to discuss the principles involved in
designing tutors. Anderson (in Anderson 84) says: "Instruction in general,
and computer- based instruction in particular, is pretty much a black art."

If intelligent tutoring systems are to successfully emulate good human
tutoring, we need to computationalize the rules of effective instruction which
tutors know implicitly. A terminology with the required precision and com-
pleteness does not yet exist, but some are striving for one (Clancey 86B).
Clancey (in Clancey 85, page 309) stresses the importance of terminology
in the development process: "The very process of formalizing terms and re-
lations changes what we know, and itself brings about concept formation."
On the same page, he warns of "the difficulty of defining terms," echoing
the growing concerns of all Al knowledge representation research.

2.2.5 Tutoring entire topics, breadth and depth

There is a need for more ITS research on systems capable of a more curricular
focus, i.e. more focus on how to teach entire topic units or textbook chapters.
For example, traditional science courses include lectures, labs, homework,
discussion sessions, and exams, all within a (supposedly) well thought out
sequence to topics to be covered. Even though there may be much to be
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desired in the way science is traditionally taught, it is obvious that a variety
of environments and tasks are needed for significant learning in any field.

Students should be presented with several instructional styles and/or
learning environments in an attempt to teach concepts from several view
points. Most existing systems, since they attempt to teach a very limited
subject matter, use a limited number of tutoring rules and environments.

2.3 Solutions and recommendations addressed in
this paper

ITS research is not plagued with numerous fundamental problems, as the
above summary might suggest. In fact the field is making steady and ex-
citing progress along many dimensions (for example, modeling qualitative
reasoning, student plan recognition, and analysis of problem solving skill ac-
quisition). The problems listed above are given only to motivate the subject
of this paper: general architectures and guidelines for ITS design. Below we
preview the research goal solutions which are addressed in this paper:

2.3.1 A general ITS architecture is proposed

A general architecture is proposed that addresses the needs of managing
diverse types of domain-specific teaching knowledge and large sets of gen-
eral tutoring rules. The system is modular and flexible, and should help
with several issues. Modularity and re- usability will lessen the need to
design systems from scratch. Clearly distinguished functional components
will increase the effectiveness of evaluations and comparisons of systems,
and clarify issues in the design phase. Also, flexible rule systems will allow
experimentation with different configurations of tutoring rules and knowl-
edge representation. A clear organization of the types of information used
to drive the system should also make it easier for pedagogical experts who
are not computer scientists to take part in the design of tutors.

2.3.2 An analysis of the ITS design process

Suggestions are given for an organization of design activities. The organiza-
tion stresses the incorporation of sample tutorial dialogues (Chapter 7) and
a domain analysis making explicit the educational, pedagogical, and psy-
chological assumptions and goals of the research team (Chapter 8) which
for the basis for global and local design decisions.
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2.3.3 Some suggestions for terminological refinement

Interspersed throughout the paper are suggestions for more precise termi-
nology and ontology dealing with knowledge representation, control, and
design. Perhaps more important than the specific ontologies proposed, is
the idea that one is needed, this paper giving an example case.

5-1-17



Chapter 3

ITS-A SYSTEMS
PERSPECTIVE

3.1 The constructivist paradigm for learning

The "learner as container, teacher as filler" paradigm for instruction is giv-
ing way to a Piagetian inspired constructivist view (Piaget 72, Lawson 75,
Confrey 85, Von Glasersfeld 78). The constructivist view is that one learns
by constructing new knowledge from existing knowledge through the self-
regulatory processes of assimilation and accommodation. In assimilation
experiential information is incorporated into existing "schema" (patterns or
groupings of information). Accommodation is the modification of schema
(or instantiation of new schema) as a result of experiential information which
does not agree with existing schema. Learning is not a passive process of im-
printing incoming information in the brain, it is an active process of trying
to maintain equilibrium in a changing environment. If we believe, as most
educational psychologists and epistemologists do today, that learning is an
active process, then teaching can be seen as assisting a student in the learn-
ing process. This contrasts with the more didactic belief that knowledge
is "conveyed" or "given" to students, who, if they pay attention, passively
absorb it. In terms of the constructivist paradigm, teaching consists of: 1.
providing a motivating environment in which to learn, and/or 2. specific
guidance, helping the student "travel" from one knowledge state to a more
desired one. There is a range of strategies which span the spectrum from
passive learning environments to actively guiding the student, and we will
outline these in Chapter 5.
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3.2 Teaching vs. tutoring

For most of this paper we will be using the terms teaching and tutoring
interchangeably, but some discussion of these terms is warranted. Teaching,
often connoting an academic context, usually implies a structured environ-
ment, where the teacher has a predetermined sequence of instructional goals
and activities typically for the student to participate in or observe. The ac-
tivities are for a class of students and there is little opportunity to tailor the
activities or the teacher's discourse to individual needs. Tutoring connotes
a one-on-one situation with less structure and much more flexibility for at-
tending to individual needs. Often tutoring actions are motivated by what
the student says she is having trouble with. Intelligent tutoring systems try
to combine both teaching and tutoring. They can use a structured lesson
plan, which has high level goals determining an overall sequence of topics
to be covered and the activities the student will engage in; they can make
fine adjustments or refinements to these high level lesson plans according to
individual needs; and they can introduce activities or dialogues on the fly
to respond to the requests and instructional needs of individual students.
Hence forth in this paper, we will use both "tutoring" and "teaching" to
mean a combination of all of the above capabilities in computer or human
instruction.

3.3 Rules for tutoring

Wenger (86) equates tutoring with "knowledge communication", and defines
it as "the ability to cause and/or support the acquisition of one's knowledge
by someone else via the channel of a restricted set of communication op-
erations". ITS systems try to model the knowledge communication ability
of successful human tutors. If we are to build ITS systems that emulate
human performance, we must assume that human tutors behave according
to some implicit rules concerning what actions to take (or not take) in each
situation. In figure 1.1 we diagram how information describing the current
tutoring situation is used by the tutoring rules and updated by tutoring
actions. This schematic is not intended to have deep psychological validity,
but to suggest a way of organizing the information flow and control mecha-
nism of a computer tutor so as to account for behavior we observe in human
tutoring. The parts shown in this schematic can be found explicitly or im-
plicitly in all existing tutoring systems, and much of the terminology for the
components is fairly well accepted in the field.
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The tutoring rules are typically of the form "IF <Situation> THEN
<Action>", where the Situation specifies properties of the current tutoring
context, and the Action specifies the appropriate action to take for that situ-
ation. (Such rules are also called production rules or productions.) Concep-
tually, these tutoring rules can be thought of as a mapping from all possible
tutoring situations to all tutoring actions. The static information shown in
figure 1.1 represents the tutor's permanent knowledge about problem solv-
ing and teaching in the domain being taught. The dynamic information
represents constantly updated knowledge about the current situation, such
as the tutor's model of what the student knows, the structure of the cur-
rent discourse, and knowledge of the tutor's current instructional goals. The
Situation (also called the condition or antecedent of the rule) is typically a
complex combination of predicates, such as "if (the topic is just being in-
troduced and (the student did well on the last topic or the student has 90
percent of the prerequisite concepts for this topic)) then ..." For now we will
assume that the Action (also called the consequent of the rule) is the name
of a single action (i.e. the name of a procedure-in later chapters we will
intruduce more complicatd action patterns). The tutoring rules are scanned
to choose one whose Situation part best matches the current state of the
world, as represented in the static and and dynamic knowledge bases. (If
more than one rule matches, a "conflict resolution strategy" is invoked to
select one of them.) Then the Action named in that rule is executed. Some
actions may be invisible to the student (we can call these "virtual actions"),
such as deciding to change the focus of the discourse (without actually doing
it yet), and others will be evident to the student, such as deciding exactly
what the new focus will be, and making some utterance toward this new
focus. In either case the action will directly or indirectly result in the dy-
namic information being changed or updated. Then the process is repeated,
and typically a new action will be chosen since a different tutoring rule will
be chosen to match the information in the updated data base.

3.4 The expert model

It is clear that a tutoring system for some domain, say physics, which can
only ask questions about a domain and determine the correctness of the
student's answer, is inferior to a system which "knows" physics, i.e. has some
representation of physics concepts and problem solving procedures, and can
itself solve physics problems. Representing expert knowledge with sufficient
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detail and clarity to enable the tutor to be able to solve any problem which
it gives to the student (and explain itself as it does so) is quite difficult in
most domains. For some domains, the difficulties in building such an expert
may outweigh its advantages, and it may be pragmatic to concentrate on
the knowledge of how to teach the domain, rather than represent all of the
knowledge to be taught. Below are some benefits of including an expert
problem solving component:

" The student can ask unexpected questions about the domain, or ask
the tutor to solve all or part of a problem.

" Common student errors or misconceptions can be modeled as devia-
tions from the expert knowledge.

" The student's actions can be compared to what the expert would have
done. Given a wrong response, the tutor can try to pinpoint which
problem solving step or prerequisite knowledge that needs attention.

" An expert system can model expert problem solving behavior for the
student to observe and interrogate.

A teacher is more than an expert in her domain (in fact, being an expert
may not even be necessary in some cases), she is an expert at communicating
the knowledge of the domain. In the next chapter we discuss the importance
of including explanatory and pedagogical information in the domain model.

3.5 The student model

If tutoring is an attempt at helping the student "travel" from one knowledge
state to another, the tutor must know the student's current "location."
Consider an analogy of wanting to transport someone to Fort Worth. If
you arrange for them to have a plane ticket from Chicago to Fort Worth, it
is of no use if they currently reside in Miami. The analogy to instruction
seems obvious, but traditional education (using the "learner as container"
model) has often ignored this need to consider the initial knowledge state
of students before teaching, and the need to keep abreast of the students'
changing beliefs while teaching. Constructing an accurate and/or detailed
student model is perhaps the most difficult and important computer tutoring
system ability in terms of modeling human tutoring. In the next chapter we
will outline the types of knowledge which are needed for a student model.
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3.6 Knowledge acquisition

Designers of tutoring systems can have two complementary goals: to de-
sign innovative instructional environments/tools which would be impossible
without the use of a computer, and to incorporate the knowledge of good
human teachers into a system to achieve the level of instructional efficiency
possible if the teacher could teach each student individually. Both goals are
worthy foci of research. Designing innovative environments is more easily
attainable given the state of AI technology. This paper addresses the sec-
ond goal, modeling human tutoring, which tends to make stronger demands
on Al technology. The main theoretical issues are representing knowledge,
efficient use of the knowledge in controlling the system's actions, and trans-
ferring knowledge from the teacher or expert to a computer knowledge base.
This last issue is called knowledge acquisition.

Many different kinds and levels of knowledge are used by a human tutor.
The process of codifying this knowledge requires a more precise vocabulary
for describing the many facets of tutoring than is now available. Examples
of things for which we do not have accepted terminologies for are: types
of knowledge, categories of tutoring actions, types of problems (problem
solving problems), goals and functions of teaching, and types of examples
(examples of concepts, example problem situations, etc.). Terminological
precision is necessary because tutors make decisions based on the implicit
categories that the properties of the tutoring situation fall into. For example,
suppose a tutoring rule says "IF the information being taught is procedural
knowledge, THEN ..." There is an implicit assumption that all information
to be taught belongs in a "procedural" or a "non-procedural" category; or
perhaps the categorization has several groups, such as "procedural", "fac-
tual", and "conceptual."

It is preferable from a theoretical perspective for these categorizations
to indicate ontological commitments concerning the structure of knowledge
and actions themselves. It is acceptable, however, to invent taxonomies that
make it easier for the expert to describe his knowledge, and easier for the
computer to access its knowledge base. At various points in this paper we
will introduce terms for knowledge categories and system functional blocks-
ideas for slicing the worlds of knowledge and action with the two goals
above in mind. This will make the process of transferring the knowledge
from expert teacher to computer knowledge base more efficient, and less
ambiguous.

In chapters 4 thru 6 we intruduce a framework for representing declar-
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ative and control knowledge which should make knowldge acquisition more
tractable. In chapters 7 and 8 we outline a knowledge acquisition method-
ology for ITS.
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Chapter 4

KNOWLEDGE
REPRESENTATION

Many diverse types of knowledge are used in tutoring systems. In expert
system research much effort is spent on methods and models for representing
knowledge. Tutoring systems present even bigger challenges. Each unit of
knowledge to be taught (or unit of expert knowledge) must be associated
with knowledge of methods for explaining or teaching it, how it relates
padagogically to other knowledge, common errors seen when teaching it,
and so on. Ultimately, there will be much more of this extra knowledge
(which we will call pedagogical knowledge, and could be referred to as meta-
knowledge) than expert knowledge in a tutoring system. In addition to all
this the tutor needs knowledge about how to tutor and how to diagnose the
student.

In this chapter we present a general knowledge representation architec-
ture for tutoring systems. Figure 4.1 illustrates the functional components
of the tutor's data base. The static components, on the top row, can be
considered permanent knowledge (although this may not technically be the
case if such a system is implemented). The bottom row shows the dynamic
components, which are updated during the tutoring session. The Decision
Mechanism, which matches the tutoring rule conditions against the infor-
mation in the other data base components (shown as input data), will be
discussed in a later chapter. The Action mechanism will also be discussed
later.

Below we outline these contents and implementation issues for each of
the components of the tutor's data base.
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4.1 Representing domain knowledge

Some ITS systems have expert systems incorporated into their design. Tu-
toring can obviously be more effective if the tutor has an "expert's" knowl-
edge of the domain, i.e. an ability to solve problems in the domain. The
details of what kinds of domain knowledge needs to be represented, how it is
structured, and how it is transferred from a human expert to the computer
tutor's knowledge base depend on the peculiarities of the domain, but some
general guidelines can be given. Below are some of the important consider-
ations in designing a knowledge representation for a tutoring domain.

4.1.1 Types of knowledge

Different types of knowledge differ in the ways that they are learned and
used. For example, memorized facts and problem solving skills differ greatly
in how they are learned and used. The efficacy of our tutoring rules will
in part depend on the precision and accuracy of our language for catego-
rizing types of knowledge. This assumes that there is some (as yet mostly
unknown) useful mapping from types of knowledge to methods for teaching
each type (Clancey 86B and Chandrasekaran 85 have some relevant sugges-
tions, but our analysis will be along different lines). A general classification
of knowledge into facts, skills, and concepts is given below. Further refine-
ments, motivated by pedagogical factors, will be suggested in a Chapter 8.
Appendix B is an example of a more refined taxonomy, showing what such
a classification may look like, but which is ad-hoc. (Also, see Murray 86
for more detailed discussions of the categories below in the context of the
domain of elementary physics tutoring.)

Facts and skills. The Facts category roughly corresponds to our common
conception of discrete factual knowledge. Factual knowledge includes defi-
nitions, propositions, properties of things, and relationships between things.
Examples of factual knowledge are: the size and color of a ball, George
Washington's birthday, the definition of chemical equilibrium, the relative
heights of two houses, a mathematical formula, and whether or not two peo-
ple are neighbors. One can see from this example that it may be useful to
subdivide "facts" into sub-categories (but we will not do so).

The Skill category represents our knowledge of how to do things. Skills
are procedures, algorithms, guidelines, heuristics, etc., which have a sequenc-
ing of physical and/or mental actions associated with them. Examples of
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skills are: the long division algorithm, how to construct a geometry proof,
and how to buy groceries.

Concepts--Nexus and Deep. Concepts represent groupings of densely
interconnected knowledge of diverse types. Concepts can be visualized as
nodes in a semantic network of knowledge, or entities representing structural
relationships between other pieces of knowledge. The concept of gravity, for
example, includes formulas (facts), experimental knowledge about the effect
of gravity, skills for measuring the effect of gravity, knowledge of when to
apply the associated facts and skills, and intuitive knowledge from experi-
encing the effects of gravity. For the purpose of representing knowledge in
tutoring systems, we will make a distinction between two types of concep-
tual knowledge: Nexus Concepts, and Deep Concepts. Both Nexus and Deep
Concepts are representations in the computer tutor of knowledge which we
wish to teach to the student. Nexus concepts are represented completely in
the tutor, so that we can say that the computer "understands" the meaning
of the concept and can solve problems requiring its use. (By a computer
"understanding" the meaning of a concept, I mean nothing more than that it
can reason about it.) Deep concepts are those that we expect the student to
eventually learn, but which we do not, and/or can not represent with enough
computational precision to allow the tutor to solve the problems using the
concept. (The term "Deep" here refers to complex, deep understanding in
the human, so the computer actually has a "shallow" understanding of Deep
Concepts. I'm serching for a better term than "Deep.")

Some of the conceptual knowledge which people use to solve problems
is beyond the representational state of the art because of its complexity
or lack of definition. Clancey (86, pg. 301) says: "The totality of what
people know about a concept usually extends well beyond the schema that
are pragmatically encoded in programs for solving limited problems." Even
though a Deep concept can not be modeled effectively in an expert system,
we may be able to represent sufficient aspects of it to be able to teach
it, such as knowledge of how to teach it, examples of uses of the concept,
and specifications of behaviors that give evidence that students knows the
concept.

Both Nexus and Deep Concepts represent structural relationships be-
tween pieces of knowledge. Understanding a Nexus Concept is equivalent to
understanding all (or perhaps most) of its components and their relation-
ships which are represented in the computer. Understanding a Deep Concept
requires knowing more than the components and relationships explicit in the
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computer's rendition of the Deep Concept.
The distinction between these types of knowledge is not made in the

literature, probably because there has been little or no intelligent tutoring
of Deep concepts (but see Murray, Woolf, et. al. 86 for a recent attempt).

As an extreme example of a Deep concept, consider the concept of friend-
ship. As part of some tutoring session we may want to know whether our
student has this concept. We may be able to infer from some testing or
behavior that the student has the concept, but we can not represent "friend-
ship" precisely in a computer knowledge base. In contrast, we may be able
to specify all aspects of what it means to understand the concept of a FOR
loop in PASCAL programming. Such a concept would be a Nexus concept.
Whether a concept is of the Nexus or Deep type is not strictly a function
of the concept itself, but depends on whether we decide to (or can) capture
its meaning with computational precision in our domain knowledge base.

Expert vs. pedagogical knowledge. The domain model is an expert
system in the domain with copious information of explanatory or pedagog-
ical nature. Builders of expert system have come to appreciate that there
are many circumstances under which it is important that an expert sys-
tems not only arrive at an expert's solution, but that it do so in a way
which simulates a human expert's problem solving process. It is also now
an accepted maxim in expert system design that such systems be able to
explain how and why they take the steps they take as they pursue a problem
solution. For expert system builders this facilitates knowledge acquisition,
debugging, and upgrading of the programs (see Clancey 86A). If computer
tutors are to incorporate expert problem solvers, it is even more important
that these programs emulate human behavior and can explain their solution
steps (Clancey 82, and Brown, Burton, & deKleer 82).

We call "expert knowledge" the knowledge needed to solve a problem
in the domain. "Pedagogical knowledge" is additional knowledge needed
to explain, justify, or teach the expert knowledge. Knowledge about func-
tionality, purpose, causality, exemplars, prerequisites, etc. are included in
pedagogical knowledge, as well as annotations concerning learning difficulty,
importance, salience, and suggestions on how best to teach pieces of knowl-
edge. Pedagogical knowledge also includes common erroneous facts, buggy
procedures, and misconceptions associated with pieces of knowledge. As
mentioned above, a successful tutor is likely to need a high ratio of ped-
agogical to expert knowledge. In figure 4.1 the expert and pedagogical
components are shown as conceptually separate, but both types of informa-
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PEOAGOCAL EXPERT

FACTUAL

SKILL

OCEP CONCEPTS

NEXUS CONCEPTS

Figure 4.2: Categories of domain knowledge

tion will probably be interleaved in the same representational structure. In
fact, it may not always be dear where the boundary between them is, since
what constitutes information needed to solve the problem depends on one's
definition of an expert problem solution (for example, does it include some
explanatory information?). For more reading on "knowledge about knowl-
edge," see Clancey 86B, Rissland 83, diSessa 85, Flavell 80, and Claxton
85.

The distinction between fact, skill, and conceptual knowledge is orthogo-
nal to the distinction between expert and pedagogical knowledge. I.E. there
will be some expert and pedagogical component for all knowledge, whether
facts, skills, or concepts (see figure 4.2).
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4.1.2 The internal structure of domain knowledge bases

When domain knowledge is analyzed for the purpose of teaching, an overall
structure for that knowledge is often proposed. The structure is often hierar-
chical in nature. There are several dimensions over which one can construct
such a structure, and there are different reasons for wanting to explicitly
outline the structure of domain knowledge. For example, we may at some
point in a tutoring session want to specify that "Newton's Third Law" be
the next topic, and later another rule may refer to teaching "forces in static
equilibrium situations", which is a component of teaching "Newton's Third
Law". Here we need representations of different levels of generality. We may
also need to represent prerequisite levels, or levels of causality. We have no
suggestions here for synthesizing the various ways to structure knowledge
and the various uses for these structures, but it seems worthwhile to men-
tion several instances of domain knowledge analysis of structure. We do so
below.

Chi et. al. (81) and others have shown that one difference between
expert and novice approaches to physics is in how elements of problems
are classified. Novices tend to classify according to surface features, and
experts have something like a classification hierarchy indexed by non-surface
properties. This suggests that both relevant and (to the expert) irrelevant
factors must be represented in our expert knowledge base, so that non-
optimal student behavior can be recognized and responded to intelligently.

Carbonell & Collins (Carbonell 70), in the SCHOLAR project, found
it necessary to distinguish between "super-attribute", "super-part", and
"super-concept" links in representing geography knowledge in a seman-
tic network. Super-attributes link objects or concepts with important at-
tributes. Super-concepts show "a kind of" links, such a Peru is a country.
An example of a Super-part link is that Peru is a part of South America.

Stevens, Collins & Goldin (82) (the WHY system), and deKleer & Brown
(80) have investigated the causal and enabling interconnections between
facts and events. WHY's domain, meteorology, contains knowledge about
the workings of a physical process. In teaching any domain dealing with ex-
plaining the science behind physical mechanisms we may expect that causal
interconnections will be important. White & Frederiksen (86), in their elec-
tronics tutor, also teach causal relationships between physical mechanisms.
To contrast, Clancey's GUIDON (82) shows how information accumulated
during diagnostic problem solving can be represented in an evidential net-
work, with each new bit of information pointing back to the piece of infor-
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mation which supported its instantiation. Causal analysis of the system, i.e.
anatomical processes, is not taken into consideration.

Burton (82), in the BUGGY system, an analysis of subtraction skills,
found that the skills could be organized in a "skill lattice": a hierarchical
structure representing how subskills use, subsume, or mask other subskills.
Barr, Beard & Atkinson, in the BIP tutor for teaching BASIC program-
ming, use a "Curriculum Information Network" to relate tasks to domain
skills. The network contained information about which skills were prereq-
uisites of others (dependencies), and contained kind-of and component-of
relationships similar to the super-concept and super-part relationships in
Scholar.

Miller (82), in the Spade-0 system for teaching LOGO programming
skills, shows a hierarchical taxonomy for steps in planning or debugging
computer programs. Anderson's LISP tutor (Anderson & Reiser 85) and
Geneserth's (82) Macsyma Advisor encode problem solving knowledge (or
"planning" knowledge) in subgoal structures.

Goldstein's (82) WUB.SOB. tutor represents knowledge as procedural
rules which are interrelated by the relationships analogy, refinement, gener-
alization/specialization, and correction/error. It also incorporates phases of
successive refinement of domain knowledge, where succeeding phased pre-
dudes previous ones, approaching an expert's knowledge.

The above research indicates that the hierarchical or overall classification
structure of knowledge is used in various ways. Knowledge of subconcepts,
subskills, and prerequisites is used in diagnosing misconceptions and pre-
scribing remedial activities. The same knowledge can be used to direct the
presentation of new knowledge in a tutor's default teaching path. Hierar-
chically structured knowledge allows us to refer to groupings of knowledge
in tutoring rules and in tutoring session plans. For example, we can specify
to "teach about energy conservation", and the system can infer from the
hierarchy what sub-concepts must be taught. It is likely that several of
these organizational structures will have to be represented simultaneously
(in parallel) in an ITS knowledge base. Utilizing different organizational
structures during a tutoring session allows knowledge to be connected in
different ways, or approached from different angles.

4.1.3 Uses for domain knowledge

We will call each piece of knowledge that we wish to teach a "knowledge
unit", or KU (from Servi 86). As indicated in the above discussion on
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knowledge structures, some KU's may subsume lower level KU's. KU's may
represent a single fact, a single rule, a single step in a procedure, or compli-
cated concept or skill. The most important use of KU's is in representing
expert knowledge. Expert knowledge is emulated in order to show the stu-
dent the knowledge, to allow a simulation to exhibit that knowledge, or to
check a student's behavior against what an expert would do.

KU's can have several attributes associated with them besides those
which allow expert emulation. Examples of pedagogical information that can
be associated with each KU are: how to give examples of itself (see RLssland,
Valcarce, & Ashley 84, Lenat 79, and Murray et. al. 86); describing its
purpose, i.e. why know it or why use it; explaining when it should be used,
i.e. under what problem solving context; the ability to quiz the student
to determine if the student knows it; listing its prerequisite KU's; listing
the assumptions implicit in the KU; and revealing the source of the KU
knowledge, or an explanation/justification of how it was derived or inferred.

4.1.4 Object-oriented representations

We are using an object-oriented representation of the domain knowledge,
which affords several desirable characteristics (see Bonar 86, and Stefik &
Bobrow 85). In object oriented programming, data and procedures are com-
bined into entities called "objects." An object is a data type combined with
procedures (or operators) called "methods" specific to that data type. In
this programming paradigm, one "sends a message" to the object, rather
than calling a procedure. In our architecture, Knowledge Units, Examples,
Lesson Specifications, etc., are all types of objects. Each type of object has
methods associated with it for the bperations specific to it. For instance, dif-
ferent types of knowledge (J.e. sub-types of the Knowledge Unit type) may
have different procedures for evaluating misconceptions related to them.
One advantage of this formalism is "data-abstraction," meaning that the
use of a procedure associated with an object does not require that the user
know anything about the internal representation of the object (see Bonar,
Cunningham, & Schultz 86). Without object oriented programming we may
have to specify different diagnostic procedures (Diagnose-I, Diagnose-2, etc.)
for each type of knowledge. Using methods, we send the message "(SEND
knowledge-unit DIAGNOSE)", and the object receiving the message (the
knowledge unit) will have its own diagnostic procedure executed. KU's can
have methods such as "teach-me", "describe-me," "test-for-me," and "tell-
prerequisites." A tutoring rule can specify that an example of the current
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concept be given to the student, and the fact that different types of concepts
must use different procedures to give examples of themselves is taken care
of automatically.

Object oriented programming environments also have a mechanism for
hierarchical relationships, facilitates classification grouping and property in-
heritance. For example, the general class "KU" may have a method for
teaching its prerequisites. KU's may be in a hierarchy of categories of knowl-
dge, such as Facts, Skils, and Concepts. These categories will, by default,
inherit the "teach-prerequisites" method from the KU type. If, for example,
the way Factual knowledge teaches its prerequistes is different than the norm
(the default), we can define a new "teach-prerequisites" method associted
with Facts.

4.1.5 Mental models and qualitative reasoning

There has been much focus of late on qualitative reasoning processes and
understanding the internal mental representations people have of systems
(Gentner & Stevens Eds. 83). It appears that expert problem solvers in
mapy domains are able to picture, "run", or "envision" the workings of a
system using imagination alone. Given the initial conditions of the sys-
tem, the problem solver can "run" the model and make predictions about
its behavior. Furthermore, poor problem solving abilities can sometimes
be attributed to incorrect mental models (White & Frederiksen 86). Men-
tal models deal almost exclusively with qualitative knowledge. In fact, it
was research on the importance of qualitative reasoning which lead to the
current interest in mental models. Several studies have tried to explain
why students who could solve routine quantitative problems and do well on
academic exams in math and science course have much difficulty with non-
routine problems and problems which required assumptions and estimations
(Lockhead & Clement, Eds. 86). It was found that deficiencies in qualitative
understanding of these domains was a factor.

In tutoring systems, especially in technical domains, the importance of
qualitative reasoning and qualitative questions should be stressed. Unfor-
tunately, given the present state of the art, it is difficult to build computer
expert qualitative problem solvers (but see deKleer and Brown 82, Forbus
84). This is an instance where the "Deep concepts" mentioned above may
be needed. We want to teach qualitative knowledge, therefore we would
like to be able to refer to instances of this knowledge (KU's) in our student
model and our tutoring rules. The resulting representations for these Deep
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concepts merely "stand for" the concepts, and can not be used in an ex-
pert system to solve qualitative problems. Several existing tutoring systems
emphasize qualitative knowledge of physical systems and attempt to help
students build correct and robust mental models (Burton & Brown's (82)
SOPHIE, and Holland's STEAMER).

4.1.6 Novice domain models and moving targets

Two related issues will be discussed here. One is that an expert's represen-
tatiou of the knowledge in a domain may not be cognitively accessible by the
novice in the domain. The expert has arrived at an efficient and powerful
structuring for the many pieces of knowledge that comprise his expertise. It
may not be possible to teach this expertise directly in this "compiled" form;
attempts at teaching it may all be "over the student's head". In such a
case it is necessary to incorporate knowledge of how the expert built up this
knowledge from a novice state. Intermediate "non-expert" representations
of the domain knowledge may be needed.

The second, related, issue is that the student model is an evolving set of
knowledge (and mis-knowledge) pieces. .In order to diagnose student knowl-
edge we may need to represent successive levels of evolution from novice to
expert understanding. Goldstein's (82) genetic graph is an attempt at rep-
resenting the evolutionary connections between KU's. His Wumpus tutor
can focus its remedial interventions around an appropriate level of expertise.
Burton & Brown's WEST research (82) mentions adjusting the level of play
of a computer coach if the student loses consistently.

White and Frederiksen (86) discuss "model progression" in student's
understanding, and teaches successively more refined models of electric cir-
cuits. Anderson (83), in his ACT theory of cognition, proposes mechanisms
for "knowledge compilation", and suggests designing tutors which can adjust
their model of the student when separate pieces of knowledge are compiled
into efficient units.

4.2 Task and diagnosis specifications

In our proposed architecture we separate knowledge about specific tasks
from general (expert and pedagogical) domain knowledge because it is used
and represented differently. Tasks involve applications of domain knowledge
to specific situations.
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4.2.1 Tasks

Tasks are problems for the student to solve, presentations with examples
and questions to be given to the student, or other activities for the student
to observe or engage in. The tutor may give a student a task as a means
of teaching something, or as a means of diagnosing the students knowledge,
or both. Task specifications describe how the task is to be set up, and how
to interpret the student's behavior while she is engaged in the task. The
simplest example of a task specification is a question (a block of text) and a
description of correct answers to the question. An example of a more com-
plicated task specification is initial conditions for setting up an electronic
circuit simulation, complete with methods for analyzing the student's be-
havior relative to an expert's behavior. Task specifications can be arbitrarily
underconstrained, expecting many details to come from the current tutoring
context. For example, a task specification may set up a medical diagnostic
case such as in GUIDON, and look at the current tutoring context for what
disease the simulated diagnosis will diagnose.

4.2.2 Diagnostic specifications

The task specification can also contain information about how student be-
havior gives evidence for (or against) the existence of concepts or misconcep-
tions in the student model. We have noticed, in designing tasks and rules for
tutoring systems, that knowledge of how to diagnose a student's behavior is
most often specific to a particular task (as opposed to a general diagnostic
strategy). As a simple example: if the student answers "a" then increase
the confidence that she has concept X, and if she says "b" then increase the
confidence that she has misconception Y, or if she measures item C more
than 3 times, she is missing concept Z.

For diagnostic information that are general to many tasks would be
stored in the diagnostic tutroing rules (as opposed to in the diagnostic spec-
ification of a task).

Recall that diagnostic information can also be stored as pedagogical in-
formation in the domain model, provided it refers to a specific piece of
knowledge. For example, associated with a concept we might find a pointer
to a task that tests for that concept, or a more general description of behav-
iors that give evidence for (or against) that concept. So a task may point to
a concept, indicating that the task requires knowledge of that concept, and
a concept may point to a task, indicating how certain behavior in the task
is relevant to that concept.
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4.2.3 Simulation modules

We will assume that simulation modules and interface modules that can
interpret the student's raw behavior (such as mouse clicks, text typed in, and
operations performed to manipulate a simulation environment) exist outside
the tutoring system architecture described here. The task specifications
send information to these modules in a language understood by the specific
module, and the module communicates with the tutor in a language designed
for exchanging information with the student model, the domain model, and
the other parts of the tutor. Note that this architecture assumes that a
simulation is a component of the tutor that was designed after or along with
the pedagogical aspects of the tutor. This is to contrast with designing a
simulation first and trying to tuck the pieces of a tutor in around it.

4.2.4 Tasks as specific actions and instantiations of knowl-
edge units

One can think of the description of the task as an instantiation of knowledge
in the domain expert knowledge base. A task description may say that Frank
throws a 5 lb. ball into the air with an initial velocity of 10 m/sec, and then
ask several questions about this situation. A physics expert knowledge base
knows about projectiles, gravity, and how to answer questions such as the
one given, but it does not know about any particular situations, such as
the one with Frank and his ball. Particular problem situations are specified
in the task specification component. Our architecture also has components
called Tutoring Actions (discussed in a later chapter). Tasks can also be
thought of as instantiations of tutoring actions, or as specifications of general
tutoring actions. For instance, a tutoring action may be "give an example,"
or "start up the simulation," and a corresponding task would specify the
specific example given or parameters for the simulation.

4.3 Tutoring rules

Tutoring rules encode general knowledge about tutoring, communication
(discourse), and student diagnosis. They incorporate information about
what to do (for example: give an extreme case example, diagnose a mis-
conception, etc.), when to do it (for example: whether to ask the student
a question now, or not interrupt the student yet), and how to do it (for
example: what form an utterance will take). For the time being, we can
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picture the tutoring rules as production rules, i.e. as "IF...THEN" state-
ments, where the IF part specifies some state of the world, and the THEN
part specifies some action to take if the current context matches with the
IF part. (Note: In chapter 6 we introduce some modifications to this basic
rule formalism.)

Tutoring rules may contain information about how to teach or diagnose
knowledge in a domain, but, in contrast to the pedagogical knowledge in the
domain KB (knowledge base) and the diagnostic knowledge in the task KB,
tutoring rules are fairly general. For instance, a tutoring rule may describe
a state of the discourse where "giving an example of the correct concept" is
appropriate. The pedagogical information in the domain model would know
what the examples are for each concept.

In most ITS's the tutoring rules are not explicit, or are reported in vague
or general terms. As such, they are more like general tactics than computa-
tionally precise rules. In this paper we advocate incorporating tutoring rules
explicitly as production rules (or related structures as discussed in Chapter
6), which can be examined and modified by the designer. (See Woolf 84
for a theory of organizing the set of tutoring rules in an ITS in a network
structure.) Tutoring rules will be discussed in more detail in Chapter 6.

4.4 The student model

Here we will discuss the types of knowledge needed to model the student's
beliefs. For discussions on the complex tasks of diagnosing and modeling
the student, see Clancey 86B, Anderson, Farrell, & Sauers 84, VanLehn 86,
and Burton 82.

The student model usually contains an "overlay" (Goldstein 82) of the
expert components of the domain model, i.e. a copy of (or pointer to) the
KU's of the domain. These pointers can be annotated with information
about the estimated strength of that knowledge in the student, and the
uncertainty or reliability of the system's belief that the student has that
knowledge. An overlay student model might contain information such as
how often the KU was used, how often the student asked for help concerning
that KU, whether the major prerequisites of that KU are met, etc. Note
that some of this information is technically not a model of the student's
knowledge, but evidential data supporting components of the student model.

The relationship between expert KU's and mis-knowledge units in the
student model depends on the type of knowledge (whether fact, concept,
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skill, etc.). For example, facts which are properties of things can be missing
from the student model, or can exist with the wrong value. Representations
of erroneous Deep Concepts, called misconceptions, may be pre-defined in
the tutor, based on research on common misconceptions in a domain. Skill or
procedural knowledge has several mis-skil variations. A skill can be applied
correctly but in the wrong context, or it can be missing when needed, or it
can be applied when needed but not executed correctly.

Much was said in previous sections concerning the student model and
student diagnosis. To summarize: the student model may be a moving
target, evolving as the session progresses; sub-expert levels of knowledge
and "genetic links" may be needed to model student's knowledge; diagnostic
specifications may be associated with certain tasks, and diagnostic actions
may be pointed to from individual KU's; hierarchical organization of expel.
knowledge can indicate possible areas of weak subconcepts or subskills.

As mentioned earlier, expert knowledge may in some cases be too ad-
vanced for students to assimilate, and a representaiton of "novice" knowldge
may be needed. Novice knowledge, though not as general or precise as expert
knowledge, is more accessible. It can be used as an instructional stepping
stone, or for more precision in diagnosis (i.e. an overlay of the novice knowl-
dge units along with the expert KUs).

One advantage of representing the student model as a subset of the
expert knowledge (along with deviations from expert knowledge) is that the
student model can be "run" just like the expert model can. In so doing we
can make predictions, using our current model of the student, about how
she will behave given some task. These predictions can be used to generate
appropriate task parameters, or to check the validity of the student model
by comparing the prediction with the actual student response.

The student model can also contain more global descriptors of the stu-
dent's cognitive or affective state (i.e. not tied to specific KU's in the expert
model). For example: learning preferences, methods of tutoring that worked
well for this student, general confidence level, etc.

4.5 The discourse model

The discourse model is a dynamic representation of the current state of the
tutorial discourse, including information about what actions have transpired
during this (and perhaps previous) tutoring sessions. Compared to the stu-
dent model, which is a representation of what the student knows, the dis-
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course model represents what the student and the tutor have done. Perhaps
more important than a historical listing of significant events, are summary
or abstracted properties such as the total number of wrong answers in the
session, the number of changes in focus, how long ago the student asked for
help, etc. This summary information can be updated continuously, or the
history can be scanned backwards from the present to infer this information
when it is needed.

The discourse model remembers the context in which the actions it
records, or the behaviors observed, occur. For example, in Shute & Bonar
(86) behaviors are recorded for eventual matching with test conditions "are
all the simulation variables selected for recording in the student's notebook
only those actively changing?"

The vast majority of ITS's incorporate what we are calling the discourse
model into the student model, or have have no discourse model information
at all.

4.6 The control data base

The control data base holds information, mainly for "bookkeeping" pur-
poses, which is used by the decision mechanism, and which is not approprite
for the Student or Discourse Models. Among other things it allows for goal
driven dialogues, nested sub-goals, and schedueling of tutorial activities. It
will be discussed further in the chapter 6.

In summary, we have indicated many ways to slice up the knowledge
needed by an intelligent tutor. Since this framework has not yet been fully
implemented, it is only a first pass suggestion. Ultimately, there are two
criteria for deciding whether to make any given slice through the knowl-
edge, i.e. whether to define a given distinction between types of knowledge.
The first criterion is that the distinction must be referred to in the tutoring
rules (or in forseen tutoring rules). That is, each new category is introduced
because the designer encounters a tutoring tactic which distinguishes some
characteristics of the knowledge (i.e. a distinction should not be incorpo-
rated just because it is philosophically appealing to think of the knowledge
as falling into certain categories). For example, assume we have a category
of knowledge called "Rules." It is observed that an expert teacher interrupts
a student when he makes a mistake using "memorized" rules but not when
the student makes mistakes on "heuristic" rules. In order to incorporate
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this new rule into a system, we should subdivide the "Rules" category into
"Memorized Rules" and "Heuristic Rules." The second criterion is that the
distinctions made are defined precisely enough to be useful. for example,
we will need a clear definition of the difference between the Memorized and
Heuristic rules. As onther example, suppose that we find that in some do-
mains it is practically impossible to judge whether a piece of knowledge is a
fact or concept. In such a case it does no good to have a place to record this
distinction in the knowledge base, or to refer to this distinction in tutoring
rules.

4.7 The lesson specification

The lesson specification is a top level lesson plan, and/or a specification of
the high level learning goals for the tutoring session. In contrast with the
tutoring rules, which control the moment to moment local decisions of what
to do next during a tutoring session, the lesson spec outlines the sequence
of main sub- topics, activities, and tutoring styles to be used for a given
session or topic unit. The Lesson Spec will be discussed in more detail in
the next chapter.
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Chapter 5

LESSON-LEVEL
INSTRUCTIONAL
SPECIFICATION

5.1 Global and local planning in ITS's

The sequence of information presented by a computer tutor can be thought
of as being controlled at two levels: a global level and a local level. The global
level is the Lesson Specification, where the instructional designer specifies
curriculum level lesson structures and topics to be learned. At the local
level, decisions are made on the fly by the tutoring rules, regarding such
things as what examples to give, whether to present prerequisite materials,
etc.

The Lesson Spec includes a top level specification of the instructional
goals. Tutoring systems which are controlled only by local decisions made by
small grain size (i.e. very specific) rules may wander in their presentation of
material because the tutor is "near-sighted," i.e. has no overall goal or plan.
A high level (i.e. lesson level) goal specification enables a more focused and
consistent sequencing of main topics. The Lesson Spec not only specifies the
general content of units of instruction, but also an instructional environment
and pedagogical style, as we will outline below. Having such information in
the Lesson Specs enables multiple instructional environments and teaching
styles in a single tutoring session.
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5.2 Learning and teaching at different levels

One factor that adds to the difficulty of computationalizing the human tu-
toring process is that it is often not simply a one directional path through a
knowledge space; rather, the tutor switches focus between local and global
issues, giving perspective and then coming back to the details. Also, effec-
tive learning in many domains requires some kind of spiraling through the
knowledge space, going over the same material several times with different
perspectives. It is difficult to evaluate the success of many existing computer
tutors because they do not allow for various modes of instruction and multi-
ple passes though material. In most domains one can not expect significant
learning to take place with one pass. For example, doing effective problem
solving requires knowledge of basic factual knowledge, yet understanding of
the factual knowledge can only be obtained in a problem solving environ-
ment (or some other rich or realistic context)-a chicken-egg problem. The
solution often applied in the classroom or text book is a layered. approach
in which topics are gone over in several passes, with increasing detail or
increasing focus on application.

In a traditional science course a student may first skim the chapter or
read the introduction to get an overview. Then she reads the chapter and/or
goes to a lecture session to get introduced to the details of the new concepts.
Then she engages in homework, labs, and discussion sessions to construct a
more intimate grasp of the material, including interrelations between con-
cepts and meta,knowledge about the material. Finally the student tries to
put the instructional unit all together and synthesize it with previous ma-
terial by writing up lab experiments and studying for exams. Computer
tutors should likewise allow for several passes while learning a given topic,
and have different leaning environments available for the different passes.
Determining focus shifts at the global level can be done in the Lesson Spec.
Each pass through the material may require a different learning environment
and different tasks, and a different set of tutoring rules will be appropriate.
Note that the more intelligent our tutors become, the more they will be
able to infer things at the curriculum level. The extreme case is a system
which knows only the domain knowledge and the pedagogical characteristics
of that knowledge, and can decide on its own what the sequence of topics
and the appropriate tutoring modes are. However, for the near future we
should design systems that allow instructional specialists in the domain to
specify some of the global goal structure and tutoring modes.
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5.3 Tutoring Modes

One of the popular issues in ICAI research centers around how much control
the student should have over his learning environment, and, conversely, how
much control the tutor should have (see Papert 80 and Pea 83). The optimal
degree of control is a function of many things, including the learning task and
the type of "pass" through the learning material, i.e. whether the knowledge
is being introduced or used to solve problems. The real question is not which
strategies or instructional paradigm to use, but when to use each. This is
especially true in trying to design a computer tutoring system which will
have the flexibility to accommodate many domains and the instructional
styles of many instructional experts. A spectrum of student control from
exclusive student control to no student control is outlined below:

* Passive environments which embody the knowledge or properties of
the domain; the student has full control in experimentation and play
within some environment.

a "Coaching" environments which observe the student's actions, and
interrupt only when a mistake is made or a significant learning oppor-
tunity is missed.

* "Mixed initiative" environments where the tutor has a definite agenda
concerning what is to be learned, but the student has the ability to
interact to gather information or change the direction of presentation.
(This may be similar to "Socratic" teaching, but interpretations of the
Socratic method vary in the literature, so we don't use it here.)

* "Pedantic" environments in which the student has little control, and
the tutor presents material in a fairly lock-step fashion, similar to a
lecture or a programmed learning environment.

Styles of learning environments such as those outlined above vary along
several dimensions, including: 1. the amount of information needed about
the student (i.e. the complexity of the student model and diagnosis proce-
dure), 2. the degree of control which the tutor assumes, and 3. the types
of facilities which are available to the student for gathering information,
changing the direction of the instruction, and changing the parameters or
components of a simulation environment.

We propose a data structure called a "Tutoring Mode" (or just Mode)
which specifies the pedagogical characteristics of the learning environment
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by specifying a set of tutoring rules to be invoked and a set of facilities or
"Tools" available to the student. The set of tutoring rules which comprises
any mode will usually overlap with the set of rules in other modes, i.e. some
rules will be applicable to several modes. Examples of what is meant by
"tools" above are commands such as glossary, help, review, new topic, and
facilities such as meters, constructors, notebooks, etc. (and see Shute &
Bonar 86, and Cook 83). Following is a possible set of tutoring modes,
with their intended purposes and functions, which an ITS system may have
available to it. They are listed in an order suggesting the "several passes"
approach to learning mentioned above:

Summary/preview/or review
Highlight the learning objectives, usually in a context relating it to
other topic areas. The student can ask for list of prerequisites and
examples of the learning goals. The student can request questions
which test competence of the learning objectives. This mode could
be used as an introduction or conclusion/summary to an instructional
unit, or it could be used as a review.

Pedantic
Here the tutor "lectures" on a topic, or explains, or creates a situation
and solves it, giving explanations as it goes (as in the expert trouble
shooter of SOPHIE II (Brown, Burton, & deKleer 82)). The student
watches, and can interrupt to ask for a more detailed explanation of
something, or to ask a specific question about a value, a glossary item,
or a "what if" question, altering one of the situation parameters. This
mode, similar to what is usually termed a "tutorial", is a bottom
up teaching style; new information is introduced and built upon in a
systematic way (compare with "mixed initiative" below, which is top
down). Some uses of the Socratic teaching method is pedantic, since
the student's learning is directed by questions asked by the tutor.

Passive learning environment
The student is allowed to experiment and play without interruption in
a rich environment which embodies or simulates the objects, relation-
ships, rules, and/or structure of the domain. No intentional feedback
or diagnosis is given. Students can learn from their mistakes pro-
vided they can recognize mistakes and infer the cause of the mistake.
Since there is no guidance, the environment must be motivationally
stimulating. The student can ask questions about values or glossary
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information. If the domain is highly information oriented, the stu-
dent can browse through a data base. Examples of passive learning
environments are the LOGO programming environment (Papert 80),
and Schwarzt's Geometric Suppopser. Simulations without student
feedback are also passive learning environments.

Mixed initiative teaching
The student is allowed to construct his own situation, or he is provided
with one. His task is to solve a problem. The tutor has a quasi-rigid
specification of what it wants the student to learn, though it may be
deciding dynamically how best to tutor this information. The tutor
monitors each step closely and provides feedback, diagnostic questions,
or hints where appropriate (care must be taken not to interrupt too
often). The tutor tries to correct misconceptions. The student is al-
lowed to access a glossary, a calculator, an information "browser", and
other tools. She is allowed to ask "what if" questions in a limited way
(if they are not irrelevant to the current topic). This mode represents
"top down" tutoring. Familiarity (though not mastery) with the basic
facts, skills, and concepts is assumed. The tutor starts by presenting
a non- trivial problem solving situation, and prerequisite knowledge is
taught only as it is needed.

Coaching mode
This mode is appropriate for "informal learning environments" (Brown,
Burton, & deKleer 82), such as games and on- the-job training. Bur-
ton and Brown also call it a "reactive" learning environment, because
the student learns from her mistakes. The tutor analyses student work
in the background, interrupting only the student makes a sufficiently
serious mistake or misses a significant learning opportunity. Student
diagnosis, if it is done, is difficult in coaching modes, since the tutor
must be an expert problem solver in the domain, and recognize the
student's knowledge, misconceptions, and plans without interrogating
her. Coaching has been implemented with (Burton & Brown 82) and
without (Brown, Burton, & deKleer 82) student modeling.

Test-out
The student is given a problem and is given no assistance. He may have
limited access to tools such as a glossary or equation solver. Moving
on to the next topic requires success with the test-out.
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essan Specification components:

* Tutoring Mode

* instructional goals

* simulation or physical environment

* tools or features avail, to student

* prerequisite knowledge list

Figure 5.1: Lesson specification components

5.4 The Lesson Specification

The Lesson Spec specifies a sequence of main Topic Units (or phases of
teaching a topic). Each topic unit contains the following information (as
shown in figure 5):

" Specification of the "physical environment": This may set up a simu-
lation, or a particular arrangement of screen windows, etc.

" Specification of the tools or features available to the student: measur-
ing tools, help functions, information access functions, graphics tools.
These tools partially determine the degree of control the student has
over his environment.

" Prerequisites for this topic: Assumed knowledge and perhaps a pretest.
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SInstructional goals: A list of learning objectives for the student to
inspect (like a road map of what is expected), a set or sequence of
domain knowledge units to be learned, key examples to be presented
or problems to be solved.

" The Tutoring Mode: identifies a subset of the available tutoring rules
which is applicable to this topic unit. As we will see in the next
chapter, narrowing down the set of applicable tutoring rules improves
the process of searching for rules which match the current situation.

Here is an example of a Lesson Specification (its contents are not
intended to be realistic):

LESSON 5: Pressure in Liquids

Goals: know liquid-pressure concept; familiarize with
the boiler-tank simulation

Prerequisites: area & volme, force

Topic 1: Area & volume
Node: review
Facilities: glossary, knowledge browser

Topic 2: Force
Node: review
Facilities: glossary, knowledge browser

Topic 3: pressure-in-liquids
Mode: preview
Facilities: glossary

Topic 4: pressure-in-liquids
Mode: mixed-initiative
Environment: boiler-tank-simulation
Facilities: glossary, force-meter,

teach-in-more-detail-button

Topic 6: pressure-in-liquids
Node: pedantic
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Give-examples: olecula-interpretation-of-pressure
Facilities: glossary

Topic 6: Review pressure-in-liquids
Mode: wrap-up
Facilities: glossary, knowledge-base browser

Before starting Lesson 5 the tutor would check that the student has cov-
ered the prerequisites (or if that information is not available, give a pretest).
The lesson goals may be just a note for the instructional designer and stu-
dent to see why the lesson is being given, or could be used by tutoring
rules which use the information to make decisions. There are five Topic
Units in this Lesson Spec. The first two review previous concepts. The next
three teach the main concept, pressure in liquids, from different perspec-
tives. FIrst a preview of the topic is given, then there is an opportunity
to explore the concept and take measurements in a simulation environment,
and lastly there is a guided discussion on the topic. Note the specification to
use the molecular-interpretation- of-pressure. This shows how the instructor
can require specific tutoring actions from this global level. Most examples
given to the student will be presented on the fly as a result of specific tutor-
ing rules which draw upon information in the Domain and Task knowledge
bases.

To summarize, tutoring rules combined with pedagogical information in
the data bases dynamically determine tutoring actions at a local level, and
the Lesson Specification is used to organize tutoring from a global level, mak-
ing certain tutoring actions mandatory, and restricting the set of tutoring
rules applicable at a given time.
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Chapter 6

A GENERAL CONTROL
ARCHITECTURE

6.1 Program control issues

The main issues in program control are 1. how information is stored (repre-
sented), retrieved, and passed between component parts of the program, and
2. how the sequence of actions the program will take is determined. Previ-
ous chapters have outlined structure for representing the knowledge needed
in an ITS system. In this chapter we will introduce a control architecture
which directs the actions that the tutor takes based on the contents of the
these knowledge baes. This architecture is an attempt to systematize the
actions and functions of existing tutoring systems.

The proposed architecture is a rule based system with several embellish-
ments. Figure 6.1 shows an abstract view of the flow of information and
control to and from a "Decision Mechanism." Note that figure 6.1 includes
all the parts in figure 4.1 (the data bases) in a different conceptual structure,
emphasizing control rather than knowledge representation issues. (In figure
6.1 the tutoring rules and control data base are depicted separately from
the rest of the static and dynamic data bases in figure 4.1.) The tutoring
rules and the control data base are considered a part of the "Control Sub-
system." The Control Sub-system utilizes information from the "Knowledge
Sub- system' in determining which tutoring action to execute next. The
Control Sub-system then tells the "Action Sub-system" which action should
be executed. The Action Sub-system then executes the specified tutoring
sction, along with other actions which maintain the environment and data
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Figure 6.1: The flow of information and control

bases. Finally, control is returned to the Control Sub-system so that it can
select the next action. Thus control alternates back and forth between the
Control and Action Sub- systems.

Below we will discuss how the Control Sub-system is an embellishment on
standard rule based control architectures (which we will also call "simple" or
"vanila" rule based architectures). Then we vall expand uprn what happens
in the Action Sub-system. (Note: The next two sections can be skipped by
those familiar with Al production system architectures.)

6.2 Vanilla rule based control structures

Control in a rule based system (also called a "production system") is ac-
complished by matching "IF..THEN" rules to a data base of information.
The rules have the form "IF Situation THEN Action", where the Situation
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usually contains several conditions (also called "antecedents") which must
all be true for the rule to apply. The Decision Mechanism in a simple rule
based system has a "matcher" that checks all of the rules and determines
which ones apply (i.e. it looks for a match between the rule's antecedents
and the information in the data base). It then chooses one of the rules
that was successfully matched, and executes its Action (or "fires"). An al-
gorithm for choosing which of several equally matching candidates to fire,
called a "conflict resolution strategy," is needed. The optimal algorithm
varies among applications. Examples are: choosing the first rule that was
found to match, and choosing the rules whose antecedents are most specific
(for example: "if its a dog" is more specific than "if its an animal"). After
the rule fires, the state of the world has changed, a fact usually reflected by
a modification to the data base. The matching procedure starts again, and
this time a different rule should fire since the change in the data base causes
different rules to match it. Simply stated, the match-fire process is repeated
until the program terminates.

6.3 Advantages and limitations of vanilla rule based

control

6.3.1 Advantages

Because production rules have a simple, standard (or "canonical") form,
rule based systems are modular, flexible, easily modified, and their actions
are easily traced. These are desirable characteristics for our general tutoring
architecture, since a standard rule format will allow rules used in a tutoring
system to be easily modified and easily transported to other systems (see
Davis, Buchanan, & Shortlife 77). As mentioned previously, it is essential
that we can easily experiment with and modify tutoring rules.

Rule based systems also have an "opportunistic" flavor to them, in that
the flow of control is not rigid, as it is in programs where control is deter-
mined by procedures calling each other and passing parameters. Production
systems match the rule base with knowledge about the current circumstance
after every action. The system continually has its entire repertoire of rules
available to it, so it is always ready to respond to changing situations. In tu-
toring systems this opportunism enables the tutor to react to unpredictable
student behaviors.

Vanilla rule based control architectures have several disadvantages though,
and we note these below. These limitations become prohibitive as the rule
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base becomes large. Vanilla rule based systems with large numbers of rules
(or even a moderate number, say 50) are, for reasons given below, hard to
manage. These disadvantages are discussed to motivate the embellishments
to the simple rule architecture, which we will present later.

6.3.2 Confounding of different types of control information

Because of the simplicity of the control mechanism in vanilla rule systems,
different types of control information are treated identically. In complex
computer programs this can lead to an undifferentiated and baroque con-
glomeration of rules.

As an example, suppose that in some tutoring system an analysis of a
student's answer can lead to suspecting a student misconception. The tutor
checks the student model for previous evidence of that misconception in
an effort to confirm its suspicion. If this hypothetical tutor does not find
a "high" level of support it increases its level of suspicion, but otherwise
performs no visible action. Let's say that we, as system designers, want to
add a new rule. If there is "medium" level of evidence, the tutor should
ask the student directly if he thinks he believes the misconception. We
want the new rule to say "IF there is medium evidence for the suspected
misconception, THEN ask the student about it directly". However, to ensure
that the rule fires only when we want it to, the rule may have to say "IF
the context is one of trying to verify a suspected misconception, AND we
just checked the student model, AND there was medium evidence for the
suspected misconception, THEN ask the student directly if he thinks he
believes the misconception." There will be many rules which are intended to
fire only in specific contexts, yet they will be checked for a match after every
tutoring action, along with the entire rules base. In such cases antecedents
like the first two "ANDs" in the above example rule have to be put in the
rules to ensure that the system exhibits the type of structured program flow
we get with programming languages, where fixed sequences of actions are
easily specified. It is desirable to separate such "control knowledge," from
the knowledge about how to tutor (see Lesser 84, Clancey 86A).

6.3.3 "Side effects" are used to control program flow

The action parts of rules are either propositions, as in "IF X is true THEN
Y is true", or actions, as in "IF X is true THEN do D". Concerns for clarity
would dictate that all the rule actions refer to domain related propositions
or actions. But often there are rules, or consequences of asserting the rules,
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which exist only to manage program control. For example, if we used pro-
duction rules to manage the control in figure 6.1, one might be "IF the
Decision Mechanism has decided what action to take, THEN run the Ac-
tion Mechanism." This type of information should not be put in the same
rule set with rules which quide tutoring strategies. Also, rules which on the
surface are about domain information may have additional "side effects"
which set internal system parameters, such as what the last action was, how
many times a rule was fired, etc. Tracing the flow of information in the
system is more difficult when the control and domain information is treated
identically.

6.3.4 Rule structure is opaque

Another difficulty with using rule based systems is that a uniform syntax
for all rules hides any structure which they implicitly have. It may be
that for some situations the desired flow of control is a rigid "flow chart"
like network of actions. Conditionals, looping, and "case" statements in
traditional programming languages make this structure explicit. In rule
based systems the antecedents have to be rigged, as in the example above,
to produce the desired effect, and the underlying structure is hidden to those
who need to understand or modify the set of rules.

6.3.5 Lack of focus

Since all of the rules of a vanilla rule system are at the same level of impor-
tance, the rules specify primarily low level actions, and decisions are made
on a local scale. The system is only concerned with the very next thing it
should do. As a result, it is hard to make programs proceed with a high-
level focus, and they tend to wander and meander toward their solutions,
as if they were navigating with very limited visibility. (Some production
systems, such as OPS-5, have been designed to take goal driven control into
account.)

6.4 Modifications to vanilla rule based architec-
tures

To eliminate the problems and limitations mentioned above, four modifica-
tions to the vanilla rule based architecture will be presented:
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" The grouping of rules into functional units (Tutoring Modes)

" An object-oriented data representation for rules

" A restriction on side effects

" A network formalism for representing patterns of rules and actions

6.4.1 Tutoring modes

We have already mentioned one technique which will help somewhat with
the above problems. A Tutoring Mode, which is defined as a subset of the
tutoring rules, can be specified in the Lesson Specification. This can greatly
reduce the space of rules which must be searched during each control cycle.

6.4.2 Frame and object oriented representations of tutoring
rules

Representing rules in frame-like structures provides two advantages: rules
can be grouped into hierarchical classifications, and rules can inherit prop-
erties from rules above them in the hierarchy. Defining groupings of rules
allows us to talk about entire sets of rules without specifying the members
of the set. This makes writing Tutoring Mode specifications much easier.
When we add more rules to a rule class, they automatically are included in
the modes which refer to that class. We can also have "meta-rules" which
limit the current applicable tutoring rules to one or a small number of group-
ings, without having to list all of the rules involved (Davis & Buchanan 77).
An example of a meta-rule (i.e. a rule about rules) is: "IF the discourse has
just started, do not use any rule in the rule-class Topic-Summary-rules."

The inheritance feature makes it easier to write and modify rules, be-
cause groups of rules can inherit antecedents or actions from a parent rule
class. For instance, if we had a class of rules which encode knowledge about
diagnosing misconceptions, the parent rule could have the antecedent "if the
goal is to diagnose a misconception", and we would not have to specify that
antecedent again for any rules below it in the hierarchy.

A further extension along these lines is representing rules in an object
oriented paradigm. Such an implementation would incorporate the grouping
and inheritance features listed for frames, and also have procedures called
"methods" associated with rule classes (as described in section 4.1.5, and
see Stefik & Bobrow 85). Different types of rules may require different types
of processing. For example, there may be strategy rules, discourse rules, and
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diagnostic rule. Using methods we can specify procedures such as "check
for match", "execute action", etc. such that the details of their operations
will depend on the class of rules being used.

6.4.3 No "side effects"

In this architecture we restrict the Action specified by tutoring iules to be
the name of a Tutoring Action (not a LISP expression to be evaluated).
The rule specifies which action to take, but it is not taken right away, rather
the action name is determined and the action itself is executed when the
Control Sub-system relinquishes control to the Action Sub-system. This
allows for a more uniform rule representation and easier tracing of what the
system is doing. To further improve tractability and uniformity of control
decisions, we will not let tutoring actions call other tutoring actions (they
can however, call lower level procedures), and all parameter passing between
actions must be done through one of the data bases (which are global data
objects). For an action to specify that another action follow it, it must
updeate the Control Data Base (for example: put a high priority goal on
the goal stack). This specified action may then be executed on the next
decision-action cycle.

6.4.4 Tutoring action networks

Woolf (84) and others have noted that human discourse contains certain
common patterns. Such patterns of discourse actions (or discourse goals)
are hidden when the discourse rules are represented as a large set of canon-
ical production rules. Woolf (84) developed a transition network formalism
for representing discourse patterns. This formalism has been recently re-
designed in the form of discourse action networks (DACTNs, see McDonald,
Brooks, Woolf, Werner 86). Our tutoring system architecture incorporates
TACTNs (Tutoring ACTion Networks), which are patterned after DACTNs,
but simpler. TACTNs are procedural networks which specify common or
default action patterns. See figure 6.2 for an example. They are similar to
ATN representation structures (Woods 70), which have been widely used in
parsing, but are modified to support planning discourse actions. In ATNs
the arcs represent states and the nodes represent tests. In TACTNs the arcs
are tests and the nodes are actions. TACTNs combine the antecedent-action
formalism of the production rule paradigm used in many expert systems with
a recursive procedural network formalism which has been used in planning
(Sacerdoti 74).



CHIAPTER? 6. A4 (;1NE?AL CONTROIL .41U II'I'C"J(IE

RENEDIAT ION
SCNENO

Figpre 6.2 Ap sapeTtrsCimpNewr

slip - I lp Icorr58



The nodes are Actions and the arcs between nodes are complex pred-
icates, called "Situations", which access and test information in the data
base. After finishing an action, control passes to one of the children nodes
depending on which Situation is true. The links imply rules of the form
"IF you just finished doing Action x, and (..the rest of the antecedents...)
THEN do Action y". That is, they are like rules which fire in a specific
action pattern context. Since the Decision Mechanism need only check for a
match between the data bases and few Situations leading from the current
Action node, much efficiency is gained (compared with matching with all
the rules in a vanilla rule system). Also, the structure of the action pattern
is explicit and clear. TACTNs can be graphically displayed for inspection
and modification.

In our architecture the Knowledge Sub-system distinguishes tutoring
rules from actions, and the Control Sub-system selects one rule and sends
it to the Action Sub-system to execute. Therefore, it is not obvious where
TACTNs, which combine features of both rules and actions, would fit into
the architecture. TACTNs are a subtype of Actions. That is, a TACTN
can be specified anywhere an Action can be specified, i.e. by a tutoring rule
or as a node of a TACTN. If a TACTN is called, it is "expanded" into its
component action pattern.

When a TACTN is invoked (by a tutoring rule or another TACTN), the
system continues to cycle through the Decision Sub-system and the Action
Sub-system with each Action in the network. When a TACTN is in effect
the Decision Mechanism will ignore the search through the entire rule base
and choose the Action specified in the network. The reason we continue
to cycle through the Decision and Action Sub- systems is that there may
be certain control or bookkeeping procedures which need to be done before
and after each Action is executed. This also lets us account for the fact that
there may be extenuating circumstances where the normal action pattern
specified by the TACTN should not be followed.

- TACTNs facilitate a three level prioritization of tutoring rules. The arcs
coming from the current TACTN node define the default actions in the given
context, and are the middle priority level. We can also specify some rules
in the rule base as "high priority rules" (or interrupt rules, or daemons,
or meta-rules), which get checked before the Situations in the TACTN are
checked. For example, we may always want to check that the student hasn't
pushed the "quit" button before selecting an appropriate action. If none of
the high priority rules fire, and if none of the TACTN arcs fire, then the
Decision Mechanism can revert back to looking at the entire rule base for a
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match. Thus the rest of the rule base is a third priority level.
TACTNs can have other TACTNs as nodes in their networks. This

allows for recursive and subgoal types of control behavior. It is the job of
the Control Data Base (below) to keep track of TACTN nesting. The need
for subgoal or nested discourse patterns is supported by Grosz (80), whose
theory of discourse structure incorporates a hierarchy of "discourse segment
purposes."

6.5 The Control Data Base and goal driven tu-
toring

The Control Data Base stores information relative to the internal control
mechanisms of the Control Sub-system. The types of information stored
will depend on specific design decisions. Stacks of goals and/or pending
tutoring actions will be included. Rather than specify that an action be
run, a tutoring rule might specify that a goal or action be put on the stack.
Then the Decision Mechanism may re-arrange this stack (sometimes called
an agenda) to account for iteractions between goals, or to select the highest
priority goal or most urgent action.

We have not said much in this paper about goal driven tutoring, but some
representation of tutoring goals may be needed. Gross (86) has shown that
some aspects of human discourse can be modeled using goal stacks. This
is especially applicable to tutoring discourse. Here is an example of several
levels of nested goals of sub-discourses: a goal to "teach Newton's third
law" may activate a subgoal of "teaching Newton's law in static situations"
which may active a goal to give an example. While giving this example the
tutor may diagnose a misconception, and decide to correct it with a counter-
example. While giving the counter-example the student may ask for some
information. While the tutor answers the student's question, it has all of
the above goals still active, waiting for their sub-goals to be completed.
I.E. it is simultaneously trying to teach Newton's third law, teach it for
static situations, present an example of it, correct a misconception about
the example, and answer a student's inquiry.

If the decision making is to be goal centered, then some of the tutoring
rules must match against goals. (ex: "IF the goal is to verify a misconcep-
tion, THEN..."). The Control Data Base can also keep track of the current
context, such as the current and recent topics, goals, actions, etc. Part of
the complexity of human tutoring lies in the fact that the tutor is simulta-
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neously trying to satisfy several goals, such as conveying a concept, keeping
the student interested, not offending the student, using time efficiently, etc.
It may be possible to have the Decision Mechanism choose an action which
satisfies the maximum number of several simultaneously active goals.

6.6 The Decision Mechanism

The Decision Mechanism has the functions of both matcher and planner.
The algorithms it uses may be quite complex, and are only suggested in this
paper. Matching rule conditions with the data bases must be combined with
some conflict resolution algorithm, as discussed above. Since some actions
may only add goals or sub-goals to the control data base, pending actions
and goals may accumulate. Some of these goals or actions may have higher
priority. Also there may be significant interaction amongst them. In such
cases it is the Decision Mechanism which must plan actions which most
efficiently satisfy the set of pending goals and/or actions.

Part of the job of the Decision Mechanism is to manage the updating
and use of the information in the Control Data Base. It uses current goals,
TACTN-in-progress flags, etc. in the Control Data Base to coordinate con-
trol actions.

6.7 The Action Sub-system

The main functions of the Action Sub-system are to execute the tutoring
action chosen by the Decision Sub-system, accept student input, and update
the Student and Discourse Models. Figure 6.3 shows the components of the
Action Sub-system.

6.7.1 Non-tutoring actions

This component is a catch-all for things such as upkeep of the simulation
and maintenance of other non-tutor aspects of the learning environment.
We assume that this box is essentially independent of the tutoring control
and data, or at least does not change any of the tutor's data bases. In our
general tutoring system the simulation and user interface are a components
of (or are called by) the tutor.
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6.7.2 Visible and virtual Tutoring Actions

Some tutoring actions are "virtual actions" (or "update actions"). Virtual
actions do not make any noticeable change in the student environment. An
example would be setting a goal to probe for a misconception. It would be
later, when some other action actually did something to satisfy this goal,
that the student would see any effect. Visible tutoring actions are actions
that do something the student can notice. One exception is the Null action,
a tutoring action which does nothing, leaving the student alone and passing
control back to the Control Sub-system (hopefully a popular action in most
tutoring sessions).

6.7.3 Get student response

After all visible tutoring actions, including the Null action, the computer
will check for a student response. The student response component converts
the raw information from the simulation or user interface, such as mouse
positions, menu choices, typed input, data tables, etc., into some canonical
(standardized) form acceptable by the succeeding components. Depending
on the type of tutoring action, the Get-student-response component may
wait for the student to do anything, or wait for the student to do as much
as he wants, until he pushes the "done" button, or not wait at all, and
continue on if the student has not done anything since it last checked for a
student response. After completion of some tutoring actions control passes
to the "compare with correct answer" component (see figure 6.3). This could
be as trivial as matching the answer with a string, or a complex inferene
concerning the acceptability of the student's response. Get-student-response
also looks for student interrupts such as help requests, and processes these
accordingly.

6.7.4 Compare with correct answer

This component compares the student behavior with the correct or antic-
ipated behavior and outputs a measure of this comparison. The correct
behavior can come from a "correct answer specification" for the problem
given, or from asking the expert system what the correct answer is. We
recommended designing a standardized language for the inputs and outputs
of most of the components in the Action Sub- system. For example, cor-
rect answer specs could be phrased in terms of keywords such as "MUST
have these three things", or "needs 2 OUT-OF the following 4 things:..., but
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MUST-NOT have ..." The output of the compare answer component could
be in term of "xx was INCLUDED; yy was OMITTED, and zz EXTRA
input was given" (Servi & Woolf 86).

6.7.5 Student and Discourse Model updating

Figure 6.3 shows two components which update.the Student and Discourse
Models based on the student's behavior. With these two components we
distinguish two levels of diagnostic analysis. The "local response analysis"
updates the models based upon information in the Task Specs. This informa-
tion specifies how specific student responses to specific questions contribute
to the student model. The "trend analysis" uses diagnostic rules (or, equiv-
allently here, strategies) to analyse patterns of student behavior or belief
accross the history of the student's behavior, and accross the entire student
model. For example: "if the student's beliefs in concepts X, Y, and Z are
under 30 %,.then assert that she has misconception G at 80 %"; or "if the
student asks for a hint 5 times in a row, then assert that she is Confused."

6.8 Blackboard archetectures

The architecture presented could be viewed from the perspective of the
blackboard architecture paradigm (Nil 86). Blackboard architectures are
characterized by having a global data base, opportunistic control, and mod-
ularized knowledge sources. They are most useful in situations requiring
complex control, opportunistic action execution, and uncertain or conflict-
ing data. In our architecture, the data bases are global, and the various
parts of the system share information almost exclusively through the data
bases (compared with passing information directly to each other). Control
information is contained within a separate complex data structure, as in the
Hearsay III blackboard architecture (Lesser 84). The Decision Mechanism
prioritizes and selects actions and goals in both bottom up (data driven, as
with actions that are triggered by certain patters of student behavior) and
top down (goal driven, as with actions triggered as a result of a tutoring
goal in the Lesson Specification) inference methods, as in some blackboard
systems.

These similarities with blackboard architectures suggest investigating
whether our architecture could be configured even closer to the blackboard
model. Our architecture is presented in terms of rules and actions, as op-
posed to knowledge sources. This may be because we have viewed the tu-
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toring task in terms of discourse planning, as opposed to problem solving or
classification (as would be the case if the overall focus were one of student
diagnosis). We will be investigating whether or not the architecture would
run more smoothly if represented in terms of modular knowledge sources,
each one knowing the conditions under which is was applicable, and the
types of conclusions which it could offer.
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Chapter 7

TUTORING SYSTEM
DESIGN STAGES

Up to this point we have been discussing a general control and knowledge
representation architecture for representing and using the various types of
information needed in intelligent tutoring systems. Now we will look at
the steps that might be taken in implementing this architecture to design a
tutor for some specific domain. We will assume for now that an ITS "shell"
exists, with the various components as described in previous chapters, and
our task is to determine the specific information to be entered into these
components. If such a shell does not exist, the steps outlined here can
still be used, and the architecture described in previous chapters can be
used as a guideline for organizing the information. This chapter and the
next deal with knowledge acquisition. This chapter suggests a methodology
for discovering and implementing the rules and actions in the system, and
chapter 8 suggests a methodology for analysing the domain and the tutoring
goals so as to make the ITS more flexible and perspicuous.

7.1 Tutoring rule design stages

The tutoring rules are one of the last components implemented in a tutoring
system, because their precise specification requires several other components
to be designed first. Figure 7.1 shows a sequence of design activities leading
up to the implementation of tutoring rules. In this chapter, for simplicity, we
will use the term "tutoring rules" to refer to all kinds and levels of tutoring
rules, diagnostric rules, Tutoring ACTion Networks, and tutoring Modes.
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After an analysis of the domain to organize the knowledge to be taught
and the general tutoring methods employed, sample dialogues are generated.
Sample dialogues could include transcriptions of taped interview studies,
dialogues existing in the literature from research on teaching the subject,
and/or synthetic dialogues generated by the domain expert/teacher.

Generation of the sample dialgogues is important. The less synthetic
they are, the better. Though the effort required to tape and analyse actual
or mock tutoring sessions is non-trivial, and certain aspects of the dialogue
between the proposed ITS and the student can not be faithfully measured
in a non-computer tutoring session.

They provide much design-relvant information which would not be avail-
able from a set of un-tried specifications of how the tutor should behave.
Also, the process of generating and analysing them helps to reify and shed
new light on the initial design conceptions. Sample dialogues should provide
information relevant to:

e The variety of types of questions, explanations, or prompts the tutor
will need

e The form and content of the inturruptions and questions the student
should-be able to ask

* The degree of naturalness or mechanicalness of the dialogue

* The degree of interaction (i.e. complexity) between the discourse con-
text and tutoring strategy used

The dialogues (along with annotations by the interviewer) are analyzed
in several steps (see figure 7.1). First the primitive tutoring actions are
defined. Examples are: congratulate-correct-response, give-extreme-case-
example, introduce- new-topic, give-away-correct-answer, etc. Next "vague"
tutoring rules are inferred from the dialogue. They are of the form "IF
<some condition> THEN <Action>," and are called vague because at this
stage they must refer to well-defined tutoring actions (defined in the previous
step), but can have anything in the "some condition" part. The vague rules
try to explain the conditions which motivated the instances of the tutoring
actions in the dialogue. Next we analyze the vague tutoring rules to deter-
mine parameters for the Student Model, Discourse Model, and the pedagog-
ical aspects of the Domain Model. For example, if a vague rule says "IF the
student is confused THEN give-leading-question," then we need a parameter
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in the Student Model called "confusion-state." A vague rule saying "IF the
student answered incorrectly too many times in a row, THEN change-focus"
requires a "number-of-wrong-answers-in-a- row" parameter in the Discourse
Model. A vague rule saying "IF the information being taught is of a fac-
tual nature, THEN don't ask probing questions" requires a parameter in
the Domain Model for "knowledge-type," which distinguishes factual types
of knowledge from other types. A vague rule which says "IF introducing a
new topic THEN review-previous-topic" requires a record of the previous
topic in the Discourse Model. Next, precise tutoring rules are implemented.
Their condition refers to well defined parameters in the knowledge bases,
such as "IF student-confused THEN give-leading-question." The actual im-
plementation of the rules may be quite complex, since many of them may
be interdependent. Rules may be defined hierarchically, grouped into tu-
toring Modes, and arranged in networks, as suggested in Chapter 6. The
data base parameters may have to be redefined iteratively in order to make
distinctions of fine enough grain to enable clarity of the tutoring rules.

The last item in figure 7.1 is designing diagnostic strategies (or rules).
Above we have identified parameters in the Student Model such as "is-
confused," an "has-adequate-knowledge-of-current- topic." It remains to
determine how these parameters will be measured, i.e. what student behav-
iors will provide evidence for the Student Model parameters (including the
expert knowledge "overlay" portion of the Student Model). We do not ad-
dress diagnostic strategies much in this paper, but their design will typically
be one of the more difficult aspects of tutoring system implementation (see
Sleeman & Henley 82 and Clancey 86B).

7.2 Tutoring system design phases

In figure 7.2 we elaborate on the activities shown figure 7.1, and include steps
in building the knowledge bases, as well as in designing the tutoring rules.
This design activities chart is for instruction on the order of one lesson, one
topic unit, or one chapter. Figure 7.2 outlines how information from one
activity feeds into another. The connections between activities indicate that
some of the activities can be going on in parallel. The steps are grouped
into 5 phases, roughly outlining these activities: 1. Specification of tutoring
goals and strategies, 2. sample dialogue generation and analysis, 3. putting
the rules inferred from the dialogue into a computationally precise form, 4.
implementing the components of the tutor, and 5. testing and refinement.
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Figure 7.2: Steps in designing an ITS

This activity organization is not intended as a rigid temporal scheduling of
personnel tasks. The designers of an ITSs may find that they are skipping
all over this chart. The chart gives an indication of what design tasks need
to be in progres before others can be seriously attempted.

7.3 Phase 1: Global goal and strategy specifica-
tion

In phase 1 we first outline the overall teaching goals for the topic unit (item
1a). This includes the important facts, skills, and concepts to be learned.
For example, to become familiar with contact forces in static situations, and
to be able to solve simple word problems involving static forces. At this
stage we also need some general tutoring strategies for our domain (item
ib). For example: using an environment in which the student can create
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objects of different weights and sizes and measure the forces they have on
each other; the student will be allowed to experiment in this environment,
and then the tutor will ask her questions about situations that the tutor
presents.

The above are not really planning tasks, they just represent the ideas
which motivated the designers to build a computer tutor in the first place.
These ideas are next refined. The learning goals are broken into subgoals
(item ic). The goal skills and knowledge are analyzed to produce a network
of prerequisite skills and knowledge, as is popular in classroom curriculum
design (see Joyce & Well 72, and Barr et. al.'s BIP tutor discussed in
Wenger 86). The more detailed this analysis the better. The student target
behaviors are identified (item 1d, discussed in more detail below). Key
examples and expected misconceptions are identified (item le). The tasks
or activities that will allow the learner to build her knowledge and achieve
the learning goals are specified and ordered (item 1f).

Also in this first phase, initial specifications for the domain expert sys-
tem, learning environment (including the user interface), and simulations
are drawn up (item 1g).

7.4 Phase 2: Sample dialogue generation and anal-
ysis

The simulation and/or learning environment is designed so that coding of
these can begin (item 2c). "Knowledge acquisition" of the domain knowl-
edge starts, i.e. putting the knowledge in terms appropriate for a computer
knowledge base. The knowledge hierarchy developed above is refined and
organized into knowledge units. Types of links between the knowledge units
are specified (item 2d).

Occurring simultaneously with the above, the knowledge organization
and learning tasks defined in phase 1 are used to draw up a primitive lesson
plan which can be tried on students. Sample tutorial dialogues are obtained
as described above (item 2a). These dialogues (and/or the interviewer's
comments of the tutorial sessions) are analyzed for the purpose of obtaining
the information in phase 3 (item 2b).

Once the simulation/learning environment is implemented, it should be
used to generate more sample tutorial dialogues. At this phase the computer
is used as a tool for simulating the domain, presenting examples, experiment-
ing, etc., and the interviewer does all tutoring and analysis of student actions
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(i.e. he takes the place of the Decision Sub-system described in Chapter 6).

7.5 Phase 3: Defining the tutoring rules

From the dialogues we would like to infer the tutoring rules which are be-
ing used. Referring to figure 4.3 (the Control Sub-system), we can describe
the tutoring rules as a mapping from data about the domain (the static
information) and about the current context (the dynamic information) to a
set of potential tutoring actions. (The Decision Sub-system figure 4 carries
out the mapping which the tutoring rules define.) That is, there is a corre-
spondence between all possible tutoring situations, and all possible tutoring
actions, and this correspondence is specified by the tutoring rules, which (we
assume for simplicity) are of the form "IF <condition> THEN <action>."
There are three things to define: the set of actions, the set of conditions, and
the set of rules (which are a mapping from the conditions to the actions).

In phase 3 we analyze the dialogues to define primitive tutoring actions
and the parameters for the Student Model, the Domain Model, and the
pedagogical aspects of the Domain Model, as described above and shown in
figure 9 (items 3a, 3b, and 3c in figure 9).

Also in phase 3, somewhat independent of the above, is an analysis
of the discourse to determine what kinds of knowledge and questions the
tutor should be able to ask, and what kinds of questions about the domain
knowledge the tutor should be able to answer. This information is needed
to better define what knowledge is needed in the domain knowledge base,
and how it should be represented.

7.6 Phase 4: Implementing the system compo-
nents

Phase 4 represents the point at which the code for the various components
is implemented into computer knowledge bases or LISP code. (The Student
and Discourse Models are boxed in phase 3 rather than phase 4 because
they do not contain knowledge about the student or discourse until tutoring
actually begins. Only their structure is defined.)

After a precise vocabulary for describing tutoring actions and parame-
ters is complete from phase 3, the Tutoring Rules can be implemented. As
mentioned above, this will include defining Tutoring Modes and Tutoring
ACTion Networks. Making tutoring rules precise may take many iterations.
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For example, the vague rule "IF the student is confused THEN give a hint,"
may eventually become "IF the student is confused on the current KU while
the tutor is presenting new knowledge, and she hasn't been given any hints
before, THEN give a level-one hint." We must evaluate the many possi-
ble interactions and the possibilities of rules appearing to be applicable in
situations where it should not be.

The Domain Model is implemented according to the analysis of the ex-
pert knowledge and the sample dialogues, as indicated in figure 9. Diagnos-
tic strategies can then be incorporated into the Task Specs and the Domain
Model (see section 4.2).

Phase 5 makes explicit the iterative nature of the design process, and
includes the obvious activity of analyzing what we have so far, and if we are
satisfied, trying it out on some students and repeating the whole process to
refine the system.

Again, figure 10 does not suggest a step by step sequence of activities,
but shows conceptually how the design of different components are related.
At every step along the way the designers will probably be noting ideas
about activities lower in the diagram, and be circling back to refine earlier
activities. The diagram also highlights the importance of the sample tutorial
dialogues, form which much of the information is gleaned.
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Chapter 8

KNOWLEDGE
ENGINEERING FACTORS

In the previous chapter we discussed how tutoring rules could be designed
based on an analysis of sample tutorial dialogues, which were in turn planned
according to the teaching goals of the topic to be tutored. We implicitly
assumed" that the tutoring rules implemented in a computer tutor attempt
to duplicate the behavior of human teachers. However, many of the tutoring
rules and other design decisions incorporated into tutoring systems will be
based on principles and assumptions about teaching in the domain, not
on an analysis of (real or synthesized) human tutorial dialogue. Even in
the case of tutoring rules which are patterned after discourse protocols,
there are assumptions about teaching and learning in the domain behind
the lesson plan and the dynamic decisions made by the human tutor. In
this chapter we discuss ways of evaluaating the many factors which come
into play in ITS design, some of which are usually implicit. We suggest
several perspectives for the analysis of design factors, and give examples of
how this information might effect the design of the system. We also advocate
an explicit accounting of the design decisions made by research teams.

In looking at the many tutoring systems in the literature, it is apparent
that no two of these incorporate the same rules about effective tutoring. Few
tutoring systems have both an explicit philosophy of tutoring and learning
and an explicit realization of this philosophy into tutoring rules (but see
Anderson's research). For the sake of system clarity, modification, and eval-
uation (as discussed in chapter 2), it is desirable to be explicit about both
the overall philosophy behind a tutor, the rules used to guide the tutorial
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discourse, and the assumptions behind each of the rules. Also, it is only
by being aware of the underlying assumptions behind the rules of a given
tutoring system that we can decide whether we can incorporate similar rules
into a new system.

8.1 Rules, principles and assumptions

Appendix 1 shows tutoring rules and principles from some well known tutor-
ing systems. One observation is that they don't all agree on how to tutor.
This is not surprising, considering the variety of domains being tutored,
and the variety of underlying psychological, pedagogical, and philosophi-
cal assumptions (both explicit and implicit) supporting the design of each.
Another observation about these rules and principles is that they describe
factors on many different levels. Some rules involve psychological or philo-
sophical assumptions; some rules are given without explaining why they
should work; some refer to vague strategies, and others to specific actions.
Some are more relevant to a particular domain than others. As an illustra,
tion of a continuum of specificity of tutoring rules or principles, consider the
following ("English-ized") rules'from hypothetical tutoring programs:

1. If question 12 is answered wrong, give explanation 5.
This is the type of very specific coupling of diagnosis and action found
in (non-intelligent) computer assisted instruction programs.

2. If the student gets more than three questions wrong in a row, then do
a remedial exercise for the current topic.
This type of rule is more typical of intelligent tutors. The system
must monitor the student's answers and infer which remedial exercise
to give. Note that it says nothing about the reasons why the rule is
applicable.

3. If the student is very CONFUSED, then GIVE-HINTS for the current
topic.
(Assume here that the property CONFUSED is determined by some
low level data, such as the number of wrong answers, and GIVE-
HINTS is interpreted differently for different topics.)
This rule is at a more abstract level. Abstraction makes the rules more
transparent, and allows a separation of the rules themselves from the
details of how the conditions and actions are implemented. A diag-
nostic strategy must infer the level of confusion from student behavior
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(such as number of times asking for help). The GIVE-HINTS action
is a general action which gets interpreted differently for different types
of topics.

4. If a student answers a problem incorrectly, give a series of hints, from
vague, to more specific, to giving away the answer. Give the student
several opportunities to think again about the situation, and learn from
mistakes, before giving authoritarian feedback, which the student can
accept and memorize without critical thought.
This represents the principle behind the previous rule. It states a
pedagogical bias or strategy, and is not precise enough to be part of a
computer program (with today's technology).

5. People learn through an active process of concept formation while try-
ing to account for new observations in the contezt of their previous
knowledge.
This is a theory-a psychological, or philosophical assumption. It rep-
resents the reason for the previous principle and the purpose for the
rule above it.

Note that one can (barely) conceive of a computer tutor which could
take principles and infer tutoring rules, or even take psychological assump-
tions and infer principles and' rules. This of course is stretching it, but
points out that as we progress down the list, more intelligence is needed
to translate the rule into a specific tutoring action. We suggest that ITS
rules be implemented on the level of item 3, and that all such rules (and
other design decisions involved in system design) are explicitly annotated
with the principles and/or assumptions which are behind them (as in items
3 or 4). This allows systems to be evaluated and modified on the bases of
their underlying assumptions, and allows tutoring systems to explain why
they are performing certain tutoring or discourse actions as they do so. The
ability to explain tutorial discourse is beneficial for testing the system and
for exhibiting computer "candidness" to the student.

8.2 Introduction to an analysis of the factors af-
fecting tutoring system design

In designing new tutoring systems, we would like to glean the most effective
tutoring rules from the research of our colleagues who have designed and
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tested these systems. Our question is not "what are the correct rules and
principles for tutoring?," since these will differ according to domain and
tutoring goals. Our question is not even "what are the correct rules for
my domain?," since, as discussed in Chapter 5, a variety of tutoring styles
(or Modes) should be incorporated. What we want to know is "which rules
are appropriate in each particular tutoring situation?" In order to answer
this question by looking at existing systems, and in order to organize design
decisions concerning appropriate tutoring rules for new systems, we will
present an analysis of the factors involved in describing tutoring situations
and assumptions.

The left side of figure 8.1 shows four types of factors involved in the de-
sign of tutoring systems. These factors are the (implicit or explicit) assump-
tions about the domain, the learning goals, and pedagogy, which underlie
the specific contents of the various components of the system. The behav-
ior of the tutoring system is determined by the contents of these system
components (as shown in the right side of figure 8.1): the tutoring Rules
(including meta- rules, TACTNs, diagnostic rules, etc.), the Lesson Specifi-
cation (which specifies the overall teaching goals, lesson plan, and tutoring
modes), the examples and student tasks specified in the Task Specifications,
and the simulation / leaning environment / user interface. In all tutoring
systems, regardless of their architecture and components (i.e. whether of not
they have the components shown to the right in the figure), assumptions in
the four areas show to the left of figure 8.1 underlie the design and behavior
of the system. We will discuss each of the four areas below. The categories
given are somewhat fuzzy and overlapping, but we present them as distinct
categories to provide a framework within which to do the analysis.

The "pedagogical characteristics of the target knowledge" are
determined through an analysis of the differing- needs and constraints for
learning different types of knowledge. Many of these characteristics and the
reasons why they are useful, have been discussed in the Chapter 4 (on knowl-
edge representation). For example, fact/skill/concept distinctions, and dis-
tinguishing between qualitative and quantitative knowledge. In this chapter
we will outline some finer distinctions based on pedagogical needs.

All domains seem to require a wide variety of types of target knowledge,
such as facts and skills, so rules referring to types of target knowledge (men-
tioned above) are fairly general and applicable to many domains. These rules
determine the dynamic decisions made by the tutor. Domains also have pre-
dominating characteristics which determine the overall design decisions for
tutors, such as what general tutoring strategies will be used, how the simu-
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mplicit or explicit ... are the these tutorins
assumptions about: basis for... system components:

Domain pedagogical Tutoring rules
characteristics

Target knowledge Lesson Spedficalion
characteristics

Tasks and exampleTarget behaviors siFuations

Cognitive and peda- The learning environment
gogical assumptions /user interface

Figure 8.1: Factors involved in the design of ITSs
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lation/learning environment/user interface is designed, and the contents of
the Lesson Specification.

The "pedagogical characteristics of the domain" refer to charac-
teristics which determine the overall approach for a tutor. For example,
even though tutors for electronic circuit design and LISP programming may
have similar rules about how to teach certain categories of knowledge, there
are probably significant differences in their most auspicious overall tutoring
approaches. To make clearer the distinciton between domain characteris-
tics and target knowledge characteristics: both domains use many types of
knowledge. Some types of knowldge, such as "memorized algorithms," may
be common to both domains. Even though considerations about domain
idiosyncratics determins the design of some tutoring strategies (such as how
much time should be spent in coaching environments), there may be other
strategies (such as how to teach memorized alogirthms) which depend only
on the type of knowldge, and are independent of the domain.

The "target behavior" item in figure 8.1 refers to a specification of
what student behaviors are expected as the result of successful learning. It
is not enough to specify only the target knowledge-"the laws of electricity,"
for example. This alone leaves an uncertainty concerning how we will know
when the student knows it, and to what depth we expect to teach it. Using
specific target behaviors (such as successfully solving problems, or answering
questions) aids in evaluating the effectiveness of the system, designing diag-
nostic rules, and focussing the design of the system so as to encourage these
behaviors in the student. Note that tutoring system design can be guided by
either target behaviors or target knowledge (or both). Tasks (which specify
behavioral tests in their questions for the student) can be incorporated into
the system with the goal of teaching and testing certain target knowledge
units, or, alternatively, the knowledge units incorporated can be determined
based on what knowledge the student will need to exhibit a certain target
behavior.

The last item in figure 8.1, "cognitive and pedagogical assump-
tions," refers to the biases and assumptions about learning and teaching
which the designers hold. For the most part these are taken as true, and are
difficult to verify experimentally to the satisfaction of all. These assump-
tions are the ideological foundations upon which the design of a system is
based. We do not advocate any particular philosophy, but suggest that the
assumptions be made explicit, and present some examples.

The initial design phase of a tutoring system should include considera-
tion of factors from all four of these area. Below we will enumerate a few
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factors from each area, and show how they affect the design of some common
tutoring systems.

8.3 Pedagogical characteristics of the domain

Teaching about physical systems
Domains which involve physical systems, man made ones (such as
circuits and steam boilers-SOPHIE and STEAMER) and naturally
occurring ones (meteorology and medicine, WHY and

GUIDON), may require that the tutoring system be able to generate
sophisticated explanation about causal and functional relationships
(as in WHY). Man made systems will be more focussed on the func-
tion or purpose of the components. Natural systems will focus more
on the causal relationships between components. To contrast, teach-
ing abstract (man-made) systems, such as programming (PROUST
and The LISP Tutor), geographical facts (SCHOLAR), and language
(CALLE (Xerox 85) and CALEB (Cunningham et. al. 85)) may not
need complex explanation facilities.

Domains prone to misconceptions
Misconceptions can occur as a result of non-academic experiences,
or during instruction. Misconceptions which arise during instruc-
tion can result if a concept or skill is over-generalized, over-specified,
or just mis-understood. White & Frederiksen (86) argue that these
types of misconceptions can be greatly reduced with careful sequenc-
ing in instruction. However, learning in some domains, such as physics
(Clement 85,'McDermott 84), probability/statistics (Tversky & Kal-
neman 74), and programming languages (Soloway & Johnson 84, Bonar
& Soloway 85), can be severely impeded by the influence of beliefs or
patterns of inference developed quite independent of any academic
context (see Claxton 86 and diSessa 85). In such domains tutoring
rules must incorporate detection and remediation of common anti-
productive beliefs.

Problem solving domains
In some domains (or parts of domains) the focus is predominantly on
problem solving, rather than learning new facts, skills or concepts. Ex-
amples of tutoring systems in these domains are SOPHIE, GUIDON,
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The Geometry Tutor, and Keynesville (Shute & Bonar 86). These tu-
tors pay explicit attention to the problem solving process (diagnosis,
proof, or rule induction), as well as the specific rules and heuristics
used to solve the problems. Student modelling (if done) is relatively
more illusive in these domains.

Information density
Domains such as programming (in The LISP Tutor) and medical diag-
nosis (in GUIDON) can be characterized as having many rules, each
with relatively straightforward application (here "rules" refers to the
human problem solving rules, such as those found in a textbook, not
computer program rules). Domains such as physics and electricity
have relatively fewer rules or concepts. In these domains the rules can
be easily learned, but applying them properly can be less straight-
forward. In domains of low information density, there is more need for
examples showing multiple viewpoints (as in WHY), non-examples,
and boarder cases (Rissland, Valcarce, & Ashley 84, and Tennyson &
Park 80).

8.4 Pedagogical characteristics of the target knowl-
edge

Newness of the knowledge
If the subject being taught is new to the student, tutoring rules may be
needed which introduce it, piece the new knowledge together in a sys-
tematic way (SCHOLAR, LISP, CALLE, CALEB), or allow the knowl-
edge to be discovered (Keynesville, WEST, WUMPUS, MENDEL). If
topic is not new to the learner, the tutoring may focus more on diag-
nosing misconceptions and
giving the student a chance to practice using the knowledge in a variety
of contexts (as in SOPHIE, GUIDON).

Memory intensive vs. inference intensive knowledge
When asking questions about information which requires primarily
recall or recognition of facts or patterns, the strategy of immediate
feedback may be best (Anderson 84, and The Little Lisper, a pro-
grammed learning text). When asking questions which require more
deductive or creative thought, it may be advisable to let the learner
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learn from mistakes, giving only enough information to let the learner
debug his own knowledge.

Other characteristics: Meta- and qualitative knowledge
In chapter 4 we gave reasons for distinguishing between qualitative and
quantitati-e knowledge, and between knowledge and meta-knowledge.
Appendix 2 has a detailed breakdown of types of knowledge for peda-
gogical purposes (compared with Chapter 4, which categorized knowl-
edge according to knowledge representation needs). It is included
to suggest a taxonomy which may help distinguish different types of
knowledge. We will not discuss it in detail however, since at this
point there is no clear science for tutoring methods based on different
knowledge types of this fine a breakdown.

8.5 The target behavior

Solving unfamiliar problems
Teaching such that the student can solve routine problems in a do-
main differs greatly from expecting her to solve unique problems, i.e.
problems that don't fit nicely into any previously learned pattern (Chi
et. al. 81, Larkin 83). The level of difficulty and/or depth of learning
which is expected for any given knowledge unit is best specified by list-
ing examples of the types of problems which the student is expected
to solve. Some tutoring systems, such as WUMPUS, Whites electric-
ity tutor, and WEST, pay specific attention to the various levels of
expertise in understanding a knowledge unit.

Target behavior for memory intensive learning
In specifying the target behavior for knowledge which is predominantly
memorized, such as facts, simple skills, formulas, relationships, etc.,
a distinction can be made between expecting (in order of difficulty:)
recognition ("Is this a marsupial?"), associative recall (give a hint or
strongly associated context: "are all things with hair marsupials?"),
free recall ("tell me all the kinds of marsupials"), and generation (cre-
ating a new exemplar of the knowledge type). Which of these is ex-
pected will effect how the knowledge is taught (Cofer 79). For example,
knowledge always presented in a limited context may not be retrievable
in a different context.

Target behavior for domain-independent skills
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Tutors which attempt to teach domain independent complex skills,
such as investigative/inquiry/experimental skills (Keynesville, SOPHIE),
or logical inference skills (such as WUMPUS) may have to give stu-
dents tasks from several domains before they are sure that the student
has such a skill. This is not currently done.

8.6 Cognitive and pedagogical assumptions

Using examples
Tutoring systems differ appreciably in the importance they place on
examplej and how they are presented. Rissland (83) stresses the im-
portance of presenting examples as well as definitions of concepts, and
Tennyson & Park (80) give psychological data implicating their im-
portance in the learning process. In WEST, providing examples for
the "issues" taught is key. Collins (77) and Tennyson & Park have
techniques for selecting and ordering examples, and using counter-
examples and examples which focus on specific features.

Teaching mental models
Several research groups stress the importance of assisting the student
in the construction of runable mental models of the system under study
(deKleer & Brown 82, White & Frederiksen 86, Papert 80). Tutoring
under this assumption involves asking the student to make predictions
about the behavior of the system under different conditions, and al-
lowing the student to play with a simulation of the system in order to
intuit the patterns of its behavior and a causal model of its operation.

The role of feedback
Opinions differ concerning the type and frequency of feedback needed
in tutoring. Anderson, as well as those in the behaviorist tradition,
emphasis the importance of immediate feedback. Others, of a more
constructivist bent (as mentioned above) would rather err on the side
of giving too little feedback, since too much can effect the student's
motivation and cognitive engagement. Most researchers have some
allocation for gr'ing hints before giving away an answer, but the de-
gree differs. Burton & Brown (82) and others have mentioned the
importance of positive as well as negative feedback.

Constructivist paradigms
There are many consequences resulting from a constructivist (explained
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in a previous chapter) theory of learning. Constructivism is a "paradigm"
(as is behaviorism), not a tight theory, and tutoring strategies based
on it can be quite diverse and even incongruent. Some (Clement,
McDermott, and others), focus on the importance of recognizing and
remediating "deep" misconceptions, persistent erroneous intuitions in-
ferred from common experiences. Some focus on the need for accessi-
ble learning "tools" and rich environments, giving the learner maximal
control over the learning situation. Some (White and Frederiksen and
others) stress the need for thorough analysis of prerequisite knowledge,
and careful sequencing of the topics taught. Some stress the need to
encourage in the learner a state of cognitive dissonance (or disequilib-
rium) (Lawson and others), which will motivate the learning process.
Some (Polya and others) stress the need to apply new knowledge in
realistic problem solving context. Some (such as Papert and Clement)
mention the importance of anthropomorphizing the concepts; i.e. en-
couraging the learner to put himself in the place of the gear or the ice
puck in the problem.

Theories of the mind
Anderson seems to be the only ITS designer to date who is basing
his tutors on a specific cognitive theory. The theory includes assump-
tions about the limitations of working memory (which result in design
decision to give the student a larger effective working memory), and
assumptions about the structure of knowledge in the mind. Part of An-
derson's theory (the ACT* theory of cognition (Anderson 83)) is that
human skills can be modeled using a set of production rules (if-then
rules), and this forms the basis for many design decisions (Anderson,
Boyle, Farrell, & Reiser 84). (Others have represented skill knowledge
as production rules in tutoring systems, but have not designed entire
tutors based on a cognitive science theory, as does Anderson.)
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Chapter 9

CONCLUSIONS

9.1 Review

We have given many suggestions aimed at systematizing the design of In-
telligent Tutoring Systems, and providing some common ground on which
to compare systems and share research ideas. After outlining some problem
areas in the field, and the research goals which these suggest (Chapter 2),
we presented architectures for knowledge representation (Chapter 4 and 5)
and program control (Chapter 6). We then outlined how these architectures
could be used in implementing a tutor in some domain (Chapters 7 and 8).
Along the way we have introduced terminologies and classifications to help
make the process more precise. At UMASS we have begun to implement
these ideas.

9.2 Contributions

This paper has both summarized past work in the field and offered new
suggestions. As such it serves as an introduction to the literature, an intro-
duction to the main concepts in ITS design, an analysis of previous work
in them, and a recommendation for improvements. The ideas herein come
from the literature and our experience at UMASS implementing tutors and
general components of tutors. Therefore some of the suggestions are culled
from the literature and others are original. Below we will highlight the por-
tions of the paper which are innovative or potential new contributions (these
claims are accurate only to the extent of my familiarity with the ITS litera-
ture). The claims that certain ideas are original pertains to within the ITS
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research literature only. I assume that concerns similar to ours are spawning
similar ideas elsewhere. Also, we pick and choose from several emerging Al
technologies. This paper does not contain contributions to the fields of arti-
ficial intelligence or educational psychology, but we apply research in these
fields to the field of intelligent tutoring systems in perhaps novel ways.

" The control architecture proposed in Chapter 6 (figures 6.1 and 6.3)
is original (although the individual AI methodologies, such as object-
oriented programming, meta-rules, etc. are all well established tech-
nologies.)

* The Tutoring Action Discourse Networks, as a means for describing
common or default discourse patterns is original (Woolf & Murray 86).

* The "High Level Lesson Planning Specification" Chapter (5) is pre-
dominantly original. There has been little research effort going into
designing ITS systems flexible enough to teach in a variety of di-
verse "modes" or tutoring styles, teaching different aspects of a unit
of knowledge in different ways, or at different levels. (Although the
fact that there is a spectrum of tutoring styles in ITS's has been often
discussed, for example, in Wenger 86).

" The introduction of "Tasks" (containing example situations and task
associated with them) as entities in a separate knowledge base (sepa-
rate from actions and expert knowledge) is new. The introduction of
an explicit "Lesson Specification" data structure may be new, but I
think that very similar constructs exist implicitly in some ITS systems.

" The Action Mechanism (figure 6.3), embedding the execution of each
tutoring action which the tutoring rules select within a structure which
contains ubiquitous action procedures (such as get-student-response),
may be new.

" The division of diagnostic components into local response analysis and
trend analysis (figure 6.3) is new.

" The categorization of knowledge distinguishing deep concepts and nexus
concepts is new.

" A general methodology for design and knowledge engineering for ar-
bitrary tutoring systems, such as the one given in Chapters 7 and 8,
has not been seen in the literature, though many ITS system designers
may well have similar ideas.
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* The focus on a general system architecture or authoring shell is not
unique (Bonar is working on it, and Clancey has suggested it), but it
is quite uncommon.

" The concern for a more precise terminology with which to describe
types of knowledge and actions is also uncommon (but see Clancey
86B). Our way of taxonomizing knowledge and the factors effecting
knowledge engineering may be useful.

9.3 Remarks on ITS evaluation and the effects of
ITS novelty

The art of designing Intelligent Tutoring systems is in its infancy. Though
the field has existed since approximately 1970 (Carbonell 70), reports of
systems being used successfully to teach non-trivial samples of students are
only recently being rumored (but see Suppes' EXCHECK tutor described
in Wenger 86). This is understandable. It took many years for those us-
ing new technologies such as the book or the television to agree on felicity
guidelines. The computer as a learning medium will have a similar, though
perhaps accelerated, learning curve. The design of successful ITS systems
taxes the state of the art in AI technologies such as knowledge representa-
tion, interface design, machine learning, and natural language processing.
Also, codifying the principles of good human tutoring will be difficult, con-
sidering that even for classroom or textbook teaching, it is hard to find
research evidence for teaching principles which have proven to be successful.
However, the existence of computer tutors will contribute to the analysis
of teaching and learning in general, since using computers eliminates many
uncontrollable factors involved in human-human interactions, and because
attempts to codify tutoring rules forces instructional experts to examine
what they are doing at a new level of detail and clarity.

Because of the newness of the field, we should be cautious about eval-
uating systems which present the student with many options. Learners
(school-aged and adult) are not used to being immersed in such flexible in-
structional environments. Students will now be able to manipulate these
novel learning environments in ways impossible with textbooks or lectures.
Here are some examples of the power learners can have over their computer
tutoring systems (given in informal natural language, but they could also
be menu items):
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" Effecting the rate of delivery:
"Please slow down, I'm confused" (or "speed up, I'm bored").
"Please give a more detailed explanation of that example."
"Stop here-I'll be back tomorrow."

" Exploring the space of knowledge:
"How does entropy relate to the stuff in the last chapter?"
"What concepts do I need to have before I can understand entropy?"
"Can I preview what's coming in the next chapter?"
"What does 'vectored interrupt' mean?"
"List all the formulas involving friction."

" Asking "meta-dialogue" or pedagogical questions:
"Why did you give me that example?"
"Is this topic difficult to learn?"
"What facts do you think I don't know at this point?"

" Choosing the material presented:
"I want to try the next experiment now."
"Please give me another example of convex polyhedra."
"Give me a trace of how you concluded that disease from the data."

" Choosing the teaching mode used:
"I learn better if you give quick feedback for wrong answers."
"Could you hold my hand through this one-explaining each step?"
"Don't give me hints so fast, I want to think it through myself."

" Experimenting and "playing" in rich, complex, or realistic environ-
ments or simulations:
"What if we replaced the law of gravity with a different one?"
"Now I'm approaching the third moon of Jupiter-fire left thruster
number 2 for 3 seconds."

But having all this power available does not mean it will be utilized.
Learners are, for the most part, not used to this kind of control. They are
not used to monitoring their learning or problem solving progress (Confrey
85) and/or altering their learning environments according to reflective meta-
cognitive analysis. When we evaluate the success of these powerful environ-
ments using random students, we are sure to find that they under-utilize the
system, and do not learn as much or as quickly as expected. We may need
to first instruct students in how to make full use of the -potential of such
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systems; how to explore, play, question, and summarize; how to monitor
their own progress; how to communicate with a computer tutor on a "meta-
dialogue" level. Fair evaluations of ITS's may only come with a generation
of students who have used them several times.

On a similar note, we who are in the business of designing intelligent
tutoring systems are under somewhat of a handicap. We (99.9 percent of
us) were not taught using ITS's. Our education experiences have been tra-
ditional, despite our belief in the power of alternate leaning methods. As
we design our systems we can only hypothesize about the experiences of
a novice in some domain sitting at a computer terminal and interacting
with it. Compare this with textbooks and lectures. We all have our own
guide-lines concerning how to write papers or give talks so that the audience
will be attentive and motivated, and learn most effectively. We have these
guide-lines because we have been reading books and listening to lectures for
years, making mental notes on what is effective and what doesn't work. The
vast majority of us have not even once learned a new topic in some field via
a computer (not to mention an ITS). Perhaps the next generation of ITS
designers, based on their experience using the systems we are now building,
will produce intelligent tutoring systems beyond our imagination. Of course,
if they build systems that match what we've imagined, that would be quite
a feat itself.
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Appendix A

SAMPLE TUTORING
RULES AND PRINCIPLES

Below we show tutroing rules and principles from six well known ITS re-
search projexts. (Note: Reasons for tutoring rules marked with a "*" are
reasons which I inferred based on a description of the system.)

1. Stevens & Collins (77,82, Collins 77); SCHOLAR and WHY. No rea-
sons are given for these. These rules were gleaned from analysis of So-
cratic tutoring dialogues. The main pedagogical assumption is that the
Socratic technique is effective for teaching specific exemplars, causal
dependencies, and reasoning skills.

(a) If the start of a dialogue then ask about a known case.

(b) If the student gives an explanation for a factor on a causal chain
where there are also prior factors, then ask for the prior factors.

(c) If the student gives as an explanation one or more factors that
are not necessary, then present a counter-example.

(d) If the student is missing a particular factor, then show an extreme
case of this factor.

2. Burton & Brown (82); the WEST tutor:

(a) Do not tutor until the student has a chance to discover for him-
self as much of the structure of a situation as possible. Reason*:
Constructivist paradigm-knowledge is constructed from experi-
ences according to existing knowledge; also, be conservative so as
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not to interrupt the student too often, as in when he is making
simple slip rather than exhibiting a fundamental misconception
or lack of knowledge.

(b) Provide concrete examples of, as well as descriptions of, concepts
(or "issues").

(c) Before giving advice, be sure the issue is one in which student is
weak. Reason*: Inappropriate advise or criticism inhibits moti-
vation.

(d) After giving advice, allow the student to try to use that advice
immediately. Reason: To encode the new information most ef-
fectively in "episodic memory."

(e) If a student asks for help, provide several level of hints. Reason:
Forces the student to continue to be mentally engaged and gives
repeated opportunities for him to discover.

3. Goldstein (82); the WUMPUS tutor:

(a) Assumption: Knowledge evolves along genetic links-from spec-
ification to elaboration, deviation to correction, abstraction to
refinement, and specialization to generalization.

(b) Give highest priority to teaching skills at the "frontier" of knowl-
edge. Reason*: These are not to difficult or too trivial. "...Iearn-
ing is facilitated by being able to explain a new skill in terms of
those already acquired (pg. 64)."

(c) Give multiple explanations for a topic, corresponding to the dif-
ferent links attached to it.

4. Clancey (82) GUIDON:

Clancey describes three types of tutoring rules: 1. for selecting dis-
course patterns, 2. for choosing domain knowledge, and 3. for main-
taining communication module. The rules shown in the paper are
quite specific to the domain, and we refer the reader to the article.

5. Brown, Burton & deKleer (82); SOPHIE:

(a) Teach in the context of problem solving using a simulation. Rea-
son: Experiential learning "capitalizes on episodic memory" so
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that the experience is "anchored to a personally meaningful con-
text." "The problem solving process gives rise to experience that
structure the factual knowledge" (pg. 228).

(b) First watch the expert solve a problem. Reason: Gives the stu-
dent a "graceful introduction" to the system being studied, and
the types of reasoning involved.

(c) Let the student learn form mistakes; Encourage him to "formu-
late, test, and witness the consequences of his ideas." Reason:
"Every time the student makes a wrong prediction, he has an op-
portunity to go through the "What? That can't be! Ahai' cycle
which improves the accuracy of his world view" (pg. 233).

(d) If the student produces an effect that illustrates a principle that
he has just learned, and does not notice the connection, the sys-
tem should point it out and give opportunity to change directions.

(e) Expose student to alternative ways to solve a problem. Reason:
This more correctly demonstrates how an expert solves problems,
considering several methods before choosing one.

6. Anderson (Anderson, Boyle, Farrell & Reiser 84); the LISP Tutor and
the Geometry Tutor :

(a) Tutor according to the goal structure of problem space. Reason:
"Problem solving behavior is organized around a hierarchical rep-
resentation of goals" in the mind.

(b) Provide instruction in the problem solving context. Reason: "Mem-
ories are associated with the features of the context in which they
are learned."

(c) Provide immediate feedback for errors. Reason: To make the
learning process more efficient; when feedback is delayed, it is
harder for the student to properly assign blame to the faulty
behavior.

(d) Provide tools which increase the student's effective working mem-
ory capacity. Reason: some errors in problem solving are due to
working memory overload-minimizing these errors allows the stu-
dent to focus more efficiently on the domain knowledge.
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Appendix B

A KNOWLEDGE
TAXONOMY

(A somewhat ad-hoc taxonomy of types of knowledge, showing how such a
taxonomy might be structured. Categories actually implemented in a tutor-
ing system should distinguish features of the knowledge that are relevant to
tutoring rule decisions.)

1. Primitive knowledge types:

" needed for complex skills

" little or no uncertainty

" student demonstration of knowledge or ignorance is straightfor-
ward

* can be demonstrated out of context-without being 'used'

(a) facts

" values (memorized numbers, dates, names, etc.)
* formulas, laws, rules
" definitions

(b) relationships (2-place predicates)

(c) algorithms, procedures, simple skills

2. Complex knowledge:

Schemas of primitive knowledge
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(a) deep concepts (gestalts)

(b) nexus concepts (structural combination of other knowledge)

(c) heuristic knowledge (fuzzy skills)

(d) runable mental models (with parameters)

(e) ubiquitous non-domain-dependent knowledge (concepts and skills):
logic, probability, causality/correlation, estimation, inference skills,
conservation.

3. Meta-knowledge

Ancillary knowledge about the primitive or complex knowledge units

(a) source of a knowledge unit (defined, empirical, practical)

(b) limitations and assumptions beneath a knowledge unit

(c) intended uses, purposes of a knowledge unit

(d) role within a larger context

(e) knowledge about learning, refining, verifying the knowledge unit
(how to, when to)

(f) personal limitations related to the knowledge unit - working mem-
ory limitations, uncertainty of correctness, weak pre-requisites

(g) coordination of multiple interpretations/dimensions (definition,
diagram, examples, graphical, textual)

4. Complex skills:

For non-trivial problem solving tasks

(a) analysis

e measurement skills - what (variable isolation), how (pre-
cision, accuracy, error), expected worth/relevance (possible
outcomes with implications), observation

* data collection and analysis
* classification problem solving

* fault diagnosis

9 hypothesis formation, predicting
* theory validation

(b) synthesis
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" system design
" programming/algorithm design
" repair, prescription
" theory formation
" organization/taxonomy creation - generalization, refinement
" creativity??

(c) transformation: (-of one problem or representation into another,
such as transforming a word problem into an algebraic represen-
tation.)
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