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ABSTRACT

The structure of certain non-2-extendable planar graphs is studied first. In particu-
N ar, 4-connected 5-regular planar graphs which are not 2-extendable are investigated and

axamples of these are presented. It is then proved that all 5-connected even planar graphs
are 2-extendable. Finally, a certain configuration called a generalized butterfly is defined
and it is shown that 4-connected maximal planar even graphs which contain no generalized
butterfly are 2-extendable. /

1. Introduction and Terminology

Let p and n be integers with 0 < n < p/2. A graph G is said to be n-extendable
if G contains a matching of size n and every matching of size n extends to a perfect
matching. In [10] (this paper will be considered part I of this series) it was proved that no
planar graph is 3-extendable. On the other hand, many planar graphs are 1-extendable;
for example, any 3-regular 2-line-connected graph is 1-extendable by a result of Berge [1,
Theorem 13, pg. 1601 and Cruse [2] (see also [81). (Note that planarity is not a necessary
part of the hypothesis here.) Thus perhaps the most interesting task remaining along this
line is the study of 2-extendable planar graphs.

In paper II of this series [4], 2-extendability in the important class of simple 3-polytopes
(i.e., 3-regular 3-connected planar graphs) was investigated. In particular, it was shown
that any simple 3-polytope G having cyclic connectivity cA(G) at least 4 and having no
faces of size 4 must be 2-extendable. If G is a bipartite simple 3-polytope with c,(G) _ 4,
then by planar duality and Euler's theorem, G must contain faces of size 4. However,
these graphs are 2-extendable. (This is an immediate corollary of Theorem 3.2 of [5].) It
should be noted that planarity is quite crucial here. In [7] it is a corollary to a much more
general result that there are graphs which are (non-planar) 3-regular 3-connected and not
2-extendable, but have arbitrarily large cyclic connectivity!)

In paper III of this series [6], 2-extendability of r-regular r-connected planar even
graphs for r = 4 and 5 was investigatedl (A graph is said to be even if it has an even
number of points.) It was shown there that all 5-regular 5-connected planar graphs are
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2-extendable. The situation for the case when r = 4 is not so simple, but several sufficient
conditions for 2-extendability were stated and proved in [6] as well.

In the case of graphs with connectivity less than 5, the presence of certain induced
subgraphs clearly prevents 2-extendability. An important family of such subgraphs is
defined as follows. Let el = ulv1 and e2 = u2 V2 be two independent lines in a connected
graph G. Then if the graph G-ul-v 1 -u 2 -v 2 contains an odd component CI, the induced
subgraph G[V(CI) U {u1,vI,u 2 ,v 2}] is called a generalized butterfly (or gbutterfly in
short). Obviously, if such a subgraph is present, the two lines el and e2 cannot be extended
to a perfect matching and G is therefore not 2-extendable.

The absence of gbutterflies, however, is not enough to guarantee 2-extendability even
in a 4-connected planar even graph. In Section 2 of the present paper, we investigate at
some length the structure of 4-connected 5-regular planar even graphs without gbutterflies,
but which still fail to be 2-extendable. A number of examples are presented as well.

In Section 3, it is shown that 5-connected planar even graphs are 2-extendable whether
or not they are regular. Finally, it is proved that a 4-connected maximal planar even graph
containing no gbutterfly must be 2-extendable.

Note that all graphs in this paper are assumed to be connected, unless otherwise
specified. For the sake of brevity, we shall abbreviate n-regular by nR, n-connected by
nC, even by E, planar by P and maximal planar by MAXP. For example, "G is 4C5REP"
means "G is 4-connected, 5-regular, even and planar". We abbreviate "perfect matching"
by pm. Also, if S is a cutset of points in a connected graph G, denote by co(G - S) the
number of odd components of G - S. If F is a face of a plane graph we shall denote the
cycle bounding this face by aF. Finally, if points u and v of a graph are adjacent, we shall
often write u - v.

2. Properties of an Exceptional Family of Graphs

A property of graphs different from 2-extendability, but nevertheless, closely related
to it, is that of bicriticality. A graph G is bicritical if G - u - v has a pm for all pairs of
distinct points u and v. A 3-connected bicritical graph is called a brick. Bricks play an
important role in a canonical decomposition of graphs in terms of their matchings. (See
[8] for details.) The family of 2-extendable graphs partitions nicely in that such a graph
is either bipartite or bicritical (Theorem 4.2 of [9]). (That no graph can be both bipartite
and bicritical is immediate.)

Theorem 2.1. If G is 4CPE, then G is a brick.

Proof. Choose u, v E V(G). By a result of Thomassen (Corollary 2 of [11]), there is a
Hamilton path r joining u and v. (This also follows from Tutte's theorem on Hamiltonian
cycles in planar graphs [13] when used in its full generality. This theorem of Tutte is in
turn a corollary of Thomassen's main result in [11].) But path 7r has odd length and hence
so does r - u - v. Thus ir - u - v contains a pm of G - u - v. So G is bicritical and since
it is 4-connected, it is a brick. I

But, since all bicritical graphs are 1-extendable, we then have the following immediate
corollary.
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Corollary 2.2. If G is 4CPE, then G is 1-extendable. |

It is not true in general, however, that if G is 4CEP, then G is 2-extendable. If fact,
there are examples of 4CEP graphs which are 4-regular or 5-regular, have no gbutterflies
and yet are still not 2-extendable. For the 4-regular case, the reader is referred to [6]. We
will study the 5-regular case below.

At this point let us introduce the concept of an {ebe 2 }-blocker. Let G be any con-
nected even graph and let el and e2 be any two independent lines in G. A set S C V(G)
is an {e 1,e 2 -blocker if S contains both lines eI and e2 and ISI = co(G - S) + 2.

Lemma 2.3. Suppose graph G is 1-extendable, but not 2-extendable. Suppose, in
particular, that {el,e 2} does not extend. Then G contains an {e 1 ,e 2}-blocker.

Proof. Let ei = uivi, i = 1,2. Now G" = G - ut - v 1 - u2 - V2 has no pm, so by
Tutte's 1-factor theorem [12], there is a set S" C V(G") such that IS"I < co(G" - S") and
hence by parity (since G is even), I S"l c.(G" - S") - 2. But G is 1-extendable and so eI
lies in a pm of G. Thus IS"I = co(G" - S") - 2 and so if we let S = S" U {ul, v1 , u 2, v 2},
we have ISI = IS"I + 4 = c,(G" - S") + 2 = co(G - S) + 2 and S is an {el, e2 }-blocker. I

Although we make no further use of it in the present paper, we include the next result
on minimal blockers. A set S C V(G) is a minimal {el,e 2}-blocker if it is an {el e2)-
blocker, but no proper subset of S is a blocker with respect to this same pair of lines

{e 1) e 21.

Theorem 2.4. Let G be a 1-extendable graph containing the two independent lines
el= ulv and e2 = u 2v 2 and let S be a minimal {el, e2 }-blocker. Let S" = S - ul -v, -
U2- v 2. Then, if S" $ 0, each point of S" is adjacent to no odd component of G - S or
to at least three odd components of G - S.

Proof. Suppose S" # 0. Suppose u E S" and suppose u is adjacent to at least one
odd component of G - S.

Suppose now that u E S" is adjacent to exactly one odd component of G" - S", say
C1 . Then G[V(C,) U {u}] is an even component of G" - S". So co(G" - (S" - u)) =
co(G"-S")-1. So IS"-ul < IS"I -1 = co(G"-S")-2-1 = co(G"- (S"-u))-1-1 =
co(G"- (S"-u)) -2 and again since G has a pm, equality must hold. Hence the minimality .
of S is contradicted.

Now suppose that u E S" is adjacent to exactly two odd components C1 and C 2 of
G - S. Let S." = S"- u. Then G[V(C 1 ) UV(C 2) U {u}] is an odd component of G"- S", -t

so c,(G" - S"') = cO(G" - S") - 1. Thus IS'"I = S"I - 1 = co(G" - S") + 2 - 1 =
co(G" - S "') + 1 + 2 - 1 = co(G - S"') + 2, again contradicting the minimality of S. I

0
We note in passing that regardless of whether {e, e2}-blocker S is minimal or not,

each of the four points ul,V1,U2 and V2 must be adjacent to at least one of the odd
components of G - S since G is 1-extendable. Also note that for any blocker S, no pair
of independent lines contained in G[S] can extend to a pm; not just the pair {e 1 , e2} used
to define the blocker.
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For the remainder of this paper, let us call any graph G exceptional if it is 4CPE,
but not 2-extendable.

Theorem 2.5. Suppose G is exceptional, el and e2 are two independent lines in E(G)
and S is an {e 1 , e2}-blocker. Then:

(a) G - S has no even components and
(b) each odd component of G - S has exactly four points of attachment in S.

Proof. Form a new graph BG from G by contracting all components (odd or even)
to singletons and then choose, for each odd component Ci of G - S, four lines from Ci
to four different points of S. (Note that this is possible since G is 4-connected.) Finally,
delete all lines in G[S] and all singletons which correspond to even components of G - S.
Let the new bipartite graph thus formed be denoted BC. Graph BG is planar since G is
and has as its bipartition S U { I1..., , I.

Now IE(BG)[-- 4(s-2) = 4s-8. But by Euler's theorem, (E(BG)I < 2!V(BG)I-4 =

4s- 8. Thus equality must hold and it follows that BG is a maximal bipartite planar graph
so all faces of BG must be quadrilaterals. Now reinsert one of the even components of
G - S, call it R, while maintaining planarity. It follows that R must fit into the interior
of one of the quadrilateral faces of BG. But R has no lines to any odd component Ci of
G - S and hence can have lines only to the two points of the quadrilateral which belong
to S. But this contradicts the fact that G is 4-connected. Hence there can be no even
components of G - S.

To prove part (b), note that since graph BG is maximal bipartite planar, no additional
line from any point of an odd Ci to a fifth point of S can be reinserted without destroying
planarity.

$

The object of the next several results is to discuss the structure of exceptional graphs
which are, in addition, 5-regular and then to produce examples of such graphs.

Theorem 2.6. If G is a 5-regular exceptional graph and S is any {e1, e2 )-blocker in
G, then:

(a) the induced subgraph G[S] contains 2,3,4 or 5 lines,
(b) no component of G - S is a singleton, and
(c) if Ci is any odd component of G - S, then Ci is attached to S by 5,7,9 or 11 lines.

Proof. Recall from Theorem 2.5(a) that G - S has no even components. Let = IS I
and let N be the number of lines with precisely one endpoint in S.

Now viewed from S, N < 5(s-4) +16 5a -4, while viewed from the odd components
of G - S, N > 5(a - 2) = 5a - 10 and part (a) follows.

Part (b) follows immediately from 5-regularity and Theorem 2.5(b).
To prove part (c), note that 2qi = ZvECi deg Cv = ZvEC, deg Gv - Ni = 51V(Ci)I -

Ni, where Ni is the number of lines joining Ci to S and qi = JE(Ci)l. But IV(Ci)l is
odd and hence by parity, Ni is odd. Since G is 4-connected, N > 5. If Ni > 13, then
N > 13 + 5(s - 3) = 58 - 2 > 5. - 4, contradicting the inequality obtained in the proof of
part (a). I
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Next we obtain a lower bound on the size of the odd components in G - S when S is
an (el,e 2}-blocker.

Theorem 2.7. If G is a 5-regular exceptional graph, el and e2 are two independent
lines in G, S is an (eI, e2 }-blocker and if the odd components of G - S are C,... C-,

then IV(Ci)I > 11 for all i, 1 < i < ISI - 2.

Proof. From Theorem 2.6, we know that IV(C )I _ 3, for all i.
First suppose IV(Ci)I = 3. Then by 5-regularity, component Ci sends at least nine

lines to S. Since Ci is connected, it contains at least one point of degree 2 in Ci. Let ul
be such a point. Furthermore, let V(Ci) = {U1,U 2 , u3} and let {xl,X 2,X 3 , z 4} be the four
points of attachment for Ci in S. Now ul is adjacent to exactly three points of S, say,
without loss of generality, to x1 , X2 and X3 . Also u2 must be adjacent to at least three
of the four xi's and hence to at least two of X1 ,X 2 and z3 . Now permuting the labels of
Xl, X2, X 3 if necessary, without loss of generality we may assume that u2 , z1, X2, z 3 is the
clockwise order of these four points about point ul. Then if Us2 - x, and X2 , G contains a
separating triangle. Similarly, if u2  z 2 and z 3 or U2 - z and z 3 . But this contradicts
the 4-connectedness of G.

So no Ci contains precisely three points and hence jV(Ci)l > 5. Let ci = jV(Ci)l and
(as before) let Ni denote the number of lines from Ci to S.

1. Suppose Ni = 5.
Then E- ,ec, deg c v = 2qi = 5ci - 5. On the other hand, by planarity, qi _< 3ci - 6

and so 5ci - 5 = 2qi < 6ci - 12 and thus ci > 7.
1.1. Suppose ci = 7.
Then equality holds in the preceding inequality and it follows that Ci is MAXP.
We know that at least two points of Ci send no line to S and hence are of degree 5

in Ci. Let u be one such point and let y,,..., y5 be the five neighbors of u in clockwise
order. Since Ci is MAXP, the five faces at u are triangles and hence y,... YY1 is a 5-cycle
Z. If Z does not separate u from S, then triangle uy1 y2U separates y3, y4 and yls from
S, a contradiction of 4-connectedness. So Z separates u from S. Since G contains no
separating triangles, the seventh point of Ci - call it z - is separated from u by cycle Z.
If at least three lines join z to S, then component Ci must contain a point cutset of G of
size no greater than 3, a contradiction. So no more than two lines join z to S. But then at
least three lines must join z to Z and hence some two of these lines must form two sides of
a quadrilateral Q through u. But then Q separates one point on Z from two others and it
then follows that Z must contain a point of degree in G no greater than 4, a contradiction.

1.2. Suppose ci = 9.
Then ',ec, deg c, v = 5 • 9 - 5 = 40 = 2qi and hence qi = 20. On the other hand,

3ci -6 = 21, so Ci must have exactly one quadrilateral face F4 and all its remaining faces
must be triangles. Since G is 4-connected, all triangular faces of Ci must be triangular
faces in G as well. So we may suppose that OF 4 separates all of G - V(Ci) from all five
points of Ci not on OF4. Now OF4 separates the plane into two regions. Without loss of
generality, let us call the region containing the other five points of G the "interior" of OF 4
and the other (which contains all of G - V(Ci)) the "exterior" of OF 4. So OF4 contains
three points each sending one line to S and the fourth sending two lines to S, while interior
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to OF4 lie the other five points of C, each of degree 5 in C,. Let OF4 be wIw 2 w 3 w 4w1

(clockwise) where without loss of generality, we may assume deg CWl = 3. Let z be the
only neighbor of w, interior to OF4 . Then all five faces at x are triangles and hence x - W 2

and X - W 4.Moreover, X 7 w3 since G contains no separating triangle.
So let y, z be the fourth and fifth neighbors of z interior to OF4, where the neighbors of

x are (clockwise) wI, W2, y,z and W 4 . Then W 2 - Y z - W 4 . But then the remaining two
points inside pentagon W4 zyW2W 3W 4 cannot be adjacent to either W2 or W4 by 5-regularity.
Thus {z, Y,, W3} contains a cutset of G, contradicting 4-connectivity.

2. Suppose Ni = 7.
2.1. Suppose also that c, = 5.
So E-,c0 degcv = 2qi = 5-5-7 = 18 < 2(3ci-6) = 2(3.5-6) = 18. Thus

equality holds and Ci is MAXP. So when G is drawn in the plane some non-empty part
of G - V(Ci) is separated from some other points of Ci by a separating triangle, thus
contradicting 4-connectivity.

2.2. Now suppose that ci = 7.
Thus - vc, deg cv = 2qi = 7 .5 - 7 = 28, so qi = 14, while 3ci - 6 = 15. Arguing

in a manner similar to Case 1.2, we may assume that Ci contains a quadrilateral face F4
such that all faces of Ci interior to OF4 are triangles, while all of G - V(Ci) lies exterior
to aF 4 . Again label OF4 clockwise by WIW 2 W3w 4wl. By 4-connectivity, each wi has at
least one neighbor interior to OF4 and at least one exterior to aF 4 . Then by 5-regularity,
we may suppose, without loss of generality, that each of Wt1 , W 2 and W 3 sends two lines to
the exterior and W4 sends one. Hence w 1, w2 and W 3 each send one line to the interior of
OF4 and t 4 sends two.

Let w5, w6 and W7 be the remaining three points of C,. Without loss of generality,
suppose w5 "- W 2 . Then since the 2 interior faces at W2 must be triangles, w5 - w and
W5 - 3 and it follows that w6 and W 7 are interior to quadrilateral wIws3 W4W 1 . But
then {w 4, Ws} must contain a cutset of G, yet again contradicting 4-connectivity.

2.3. Suppose ci = 9.
Arguing as before, Ci is such that the addition of two more lines results in a MAXP

graph. So any imbedding of G (and hence of Ci) in the plane must result in (a) all
triangular faces for Ci , except two, which must be quadrilaterals or (b) all triangular
faces for Ci except one which must be a pentagon.

First, suppose that all faces of Ci are triangles, except for two quadrilateral faces F,
and F2 . Since G is 4-connected, at least one of F, and F 2 - say F 2 - has the property
that aF2 sends at least four lines to some component Hi of G - V(Ci). But again by
4-connectivity, all seven lines counted by Ni must join aF 2 to Hi and hence in fact Hi is
all of G - V(Ci). Let us agree to call the region of the plane determined by 4F 2 and which
contains G - V(Ci) the "exterior" of oF 2. Then all of the rest of Ci lies interior to OF 2

and OF1 bounds a quadrilateral face in this region.
Let OF2 be represented (in clockwise order) as W1u 2w 3 W4w 1 . Since Ci sends seven

lines to S and by 4-connectivity we may assume without loss of generality that wl, W 2 and
W3 send two lines each to S and W 4 sends one line to S. Hence by 5-regularity, Wt1 , W2 and
W3 each send one line to S and W 4 sends two such lines.

Suppose w, also lies on O F1 . Suppose also that W 2 lies on OF1 . In fact, let us say that
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aF 1 = lWt2 YlY2WU (clockwise). Then W4 - Y2 and triangle y2w 4wIy 2 is the boundary of
a face in G. Similarly, W3 - yi and triangle yIw 2w3yl is a face in G as well. But then
the three remaining points of Ci lie interior to the quadrilateral YIw3w 4y2yl and since
deg GW3 = 5, the set {Y1 ,Y 2 , W4} contains a cut of G. Again 4-connectivity is violated.

So we may suppose W2 does not lie on 4F1 and hence w4 lies on aF 1. Say oF1 =
W1Y1y2w 4W I (clockwise). Then W2 ,- y, and triangle W2 w 3 ylw2 is a face boundary. Thus
W3 - y and triangle w 2W3ylw2 is also a face boundary. But then the remaining three
points of Ci lie interior to the quadrilateral Y1w3 w 4y 2y1 and hence {Yj, Y2, W4} contains a
cutset of G, again a contradiction.

Hence w, does not lie on aF1 (and by symmetry, w 3 does not lie on aF either). Let
z be the neighbor of wl which lies interior to aF2. Then z - w 2 and triangle wIw2zw 1

is a face boundary. But then the four remaining points of Ci lie interior to pentagon
W1 ZW 2w 3 W4 w 1 and hence {W3 , W4 , Z} contains a cut of G, a contradiction.

So we may suppose that all faces of Ci are triangular, except one pentagonal face F5 .
Since G is 4-connected, at least four points on oF5 send lines to S. (Let us call the region
of the plane containing these lines to S the "exterior" of 49F 5 .) Let the points of 19F 5 be
wi,..., wswi in clockwise order.

2.3.1. Suppose there are exactly four points on OF sending lines to G- V(C). With-
out loss of generality, assume deg cwI = 5. Let the neighbors of wl be w2, X1, z 2,X 3 , w 5

(clockwise). Then triangles W1 W2z 1W1 , W 1XzX2W 1, W1 z 2z 3 U1 and WlX 3 W 5w I are all face
boundaries in G. Since G is 4-connected, Zl 7Z X3, W5.

2.3.1.1. Suppose x, -- W3 .
Then by 4-connectivity, triangle w 2W3 XiW2 is a face boundary. Let X4 be the fifth

neighbor of xl.
Suppose X 4 is interior to the hexagon W3 W4 W5 x 3X2XW 3 and hence is the ninth point

of Ci. So W3 -- - x 2 and triangles xIw 3 z 4z1 and z 1 X4X2z1 are face boundaries. But
then X4 - W4 and triangle X4 W3W4X4 is also a face boundary.

But now consider the fifth neighbor of X2. If X2 - W4, then deg GX4 = 4, while if
X2 ~ w5, then deg Gz 3 = 3. In either case we have a contradiction.

So we may assume that z 4 = W4. Then deg GX1 = 5 implies X2 - W4 and triangles
XlW4X 2z1 and XIw 3W4zl are face boundaries. But then the ninth point of Ci must lie
in the interior of quadrilateral W4WZSX2W 4 and hence {ws, X2, x3 } contains a cut of G, a
contradiction.

2.3.1.2. So suppose xi 7L W3. Then xl - W4 and x1 ,- x 4 where X4 is the fifth
neighbor of x, and the ninth point in Ci. Now since deg GX4 = 5, X4 is not interior to the
quadrilateral w 2w 3W4X1W2 . Thus X4 is interior to pentagon W4 WX 3X 2XiW4 and must be
adjacent to all five of these points. But then deg GX3 = 4, a contradiction.

2.3.2. So suppose all five points on OF send lines to S. Since N = 7, we may suppose
without loss of generality that w, sends exactly one line to S.

Suppose that w, - 3 3. Then if w, - W4, triangles WiW 2W3W1 , W1 W3W4W1 and
w1w 4w5wI are all face boundaries. But then Ni = 11, a contradiction. So w, 7 w4 . Then
the fifth neighbor of w, - call it x, - must lie interior to quadrilateral wsW3w 4w 5 wi and
W3 - X1- w5 and triangles WIW 2W3w1 , W1w 3XzwI and wlzxwrw are all face boundaries.
But then {x 1,w 4,W5} must contain a cutset of G, a contradiction.
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So we may suppose that w, , w 3 and by symmetry, that w, ?6 W4. Thus the fourth
and fifth neighbors of w, - call them x, and z 2 - must lie interior to 9F5 and we may
suppose that W2 X1 - X2 - w5 and all triangles at to 1 are face boundaries.

Suppose W2 sends two lines to S. Thus z - W3 and triangle W2w3zXw2 is a face
boundary.

Suppose x , t, 4 . Then the eighth and ninth points of Ci must lie interior to the
quadrilateral XlW 4 WSr2XI and hence {w 4 , WS, X2} contains a cutset of G, a contradiction.

So X1 ?6 W4 . By 4-connectivity, x, ?6 Ws, so if x3 is the fifth neighbor of xl, then X3 lies
in the interior of the pentagon XlW3W4W5X2XI and deg GX3 = 5 implies that w 3 - x 3 - X2
and the five triangles at x, are face boundaries. Also deg GW3 = 5 implies x3 - w 4 and
triangle W3W4X-3W3 is a face boundary. Thus if X4 is the ninth point of Ci, it must lie
interior to quadrilateral X2 X3 W4W5 X 2 and hence deg GX4 < 4, a contradiction.

So we may suppose that w2 sends exactly one line to S and by symmetry, that w5

sends exactly one line to S.
Suppose w2 - W4. Then W4 - x, and the remaining two points of Ci must lie interior

to quadrilateral X1 W4WX 2X1 . But deg GW4 = 5 implies that {ws,x 2 , x 1 1 contains a cutset
of G, a contradiction.

So we may assume that U'2 -/ W4 . By 4-connectivity, W2 ' X2, W5, so the fifth neighbor
X4 of W2 lies interior to hexagon w 2W3w4 wsx 2XIw 2 . Then w3 - X4 - x, and all triangles
at W2 are face boundaries. Consider the fifth neighbor of x, - call it xs. Then z 7 5 w, W3

since G contains no separating triangles.
Suppose x6 = W4. Then X4 - W4 - X2 and the ninth point of Ci lies interior to one

of the four triangles W3 W4X4w 3, X4W4wIX4 , xZw 4X2Xl or x 2w 4WSx 2 . But then G is not
4-connected, a contradiction.

Hence x5 5 tW4. Thus X5 must lie interior to hexagon XzI 4W3W4W5 X2x, and X4
X5 - X2. Suppose X2 - W4 . Then W4 - x5 and X5 - 3 . But then deg GX4 = 4, a
contradiction. So X2 ', W4 . Since there are no separating triangles, X2 - W3 . But then
deg GW3 = 5 impiies that X2 - x 4 and hence triangle X1 X4X2X 1 is a separating triangle, a
contradiction.

3. Finally, suppose Ni = 9.
At this point, we may suppose all Ci's have at least five points and at least nine lines

each to S. Thus 9(s - 2):5 N < 5(s - 4) + 4.4 or 9s - 18 < N < 5s - 4. So 4s < 14 and
a < 4, contradicting the 4-connectivity of G and completing the proof of the theorem. I

Corollary 2.8. If G is a 5-regular exceptional graph then IV(G)I _ 26 and if, in
addition, G does not contain a gbutterfly, IV(G)i _> 38.

Proof. Let S be an {ei,e 2}-blocker and let s = ISI. Then by Theorem 2.7, 11(s -
2) + s < IV(G)i; that is, 12s - 22 < lV(G)I. But s > 4, so the first result follows. If G
does not contain a gbutterfly, then s > 5 and the second result is proved. U

We make no claim that either of the bounds in the above corollary is sharp.
We now present four exceptional graphs which, in addition, are all 5-regular and

gbutterfly-free. Our examples make use of the four graphical fragments labeled A, B, C
and D and displayed in Figures 1 - 4. Note that these fragments have 5, 7, 9 and 11
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lines of attachment respectively. These four values are the only possibilities for 5-regular
exceptional graphs by the preceding theorem.

Figure 1. Fragment A

Recall from Theorem 2.6(a) that if G is a 5-regular exceptional graph and if S is any
{el,e 2}-blocker in G, then G[S] contains 2, 3, 4 or 5 lines. In Figures 5, 6, 7 and 8, we
produce examples in which G[S] contains these four allowed numbers of lines respectively.
In all four examples, the small dark points are the points of S and the rest of the points
of each graph are found in fragments of types A, B, C and D defined above. The four
graphs in Figures 5 - 8 have 194, 180, 184 and 170 points respectively. Finally, note that
none of these four graphs contains any gbutterflies.
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Figure 2. Fragment B
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Figure 3. Fragment C
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Figure 4. Fragment D
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Figure 5. An exceptional graph with 2 lines in G[S]
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Figure 6. An exceptional graph with 3 lines in G[S]
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Figure 7. An exceptional graph with 4 lines in G[S]
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Figure 8. An exceptional graph with 5 lines in G[S]
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3. Two Classes of Planar 2-extendable Graphs

We now present the first of two general classes of planar graphs which are 2-extendable.
The first result generalizes Theorem 2 of [6].

Theorem 3.1. If G is 5CPE, then G is 2-extendable.

Proof. By Corollary 2.2, G is 1-extendable. Suppose that el and e2 are two inde-
pendent lines which do not extend to a pm. Then G is exceptional and by Lemma 2.3,
graph G contains an {e 1 , e2}-blocker S. But by Theorem 2.5(b), G has a cutset of size no
greater than 4, a contradiction. I

We now turn to our second class of 2-extendable planar graphs. Recall that a plane
graph G is maximal planar (MAXP), if all faces of G are triangles.

Theorem 3.2. If G is 4CMAXPE with no gbutterflies, then G is 2-extendable.

Proof. Let G be as in the hypothesis and suppose independent lines el and e 2 do not
extend. Note that by Corollary 2.2, G is 1-extendable. So G is exceptional and by Lemma
2.3, contains an {e, e2}-blocker S. Moreover, by Theorem 2.5(a), graph G - S contains
no even component.

Form a simple maximal planar bipartite graph BG just as in the proof of Theorem
2.5.

Consider C, and its four neighbors in BG. Call these neighbors WI, W 2, W 3 , W 4 (clock-
wise about C). Let C. be the fourth point of the face the boundary of which contains
WI, W 2 and C 1. Let C, be the fourth point of the face containing points w3 ,w 4 and C1.

First suppose C, = C. (See Figure 9(a).) Now no lines of G can join C1 and C,.
Moreover, since V (BG) contains S and is maximal bipartite planar, no point of S can lie
interior to a face of BG. Thus, since G is MAXP, it follows that w I- w2 s- W3- W 4 - W 1.
But then G contains a gbutterfly; for example, the subgraph consisting of C1 , points
W 1, w 2 ,w 3 and W 4, the lines of BG joining these four points to C1 and the two lines wIw 2
and W3W 4 .

If Ci 6 Cj, (see Figure 9(b)), the argument is essentially the same. 1
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Figure 9

Several remarks are in order at this point.

Remark 1. First we note that Theorem 3.2 is not a corollary of Theorem 3.1. The
graph in Figure 10 is 4CMAXPE and has no gbutterflies, so it is 2-extendable. But the
graph is not 5-connected. Note that if the four endpoints of lines el and e2 are deleted,
two even components remain.
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Figure 10

Remark 2. There do exist graphs which are 4CMAXPE, which contain gbutterflies
and hence are not 2-extendable. The first two members J(22) and J(36) of an infinite
family J = {J(22 + 14k))}o where JJ(22 + 14k)l = 22 + 14k, are shown in Figure
11. (It should be clear to the reader how, for k > 2, to construct J(22 + 14k), given
J(22 + 14(k - 1)).) In each member of this infinite family, lines el and e2 do not extend
to a pm.
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Figure 11

Remark 3. There are graphs which are 3CMAXPE, but do not even contain a
pm! To provide an infinite family of such graphs, we use the concept of a Klectope. (See
Griinbaum [3].)

For r 3, let T(2r) denote the maximal planar graph on 2r points shown in Figure 12.
Now construct the Kleetope over T(2r), KI(T(2r)), which is the graph obtained from T(2r)
by inserting a new "red" point in the interior of each triangular face of T(2r) and joining
the red point to each of the three points bounding the face in which it lies. Since T(2r)
has 4r - 4 faces, the Kleetope KI(T(2r)) is a triangulation having 2r + (4r - 4) = 6r - 4
points and hence is even. But KI(T(2r)) has an independent set of size 4r - 4 (namely,
the set of "red" points) and 4r - 4 > IV(K1(T(2r)))J/2, so KI(T(2r)) has no pm.
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Figure 12

Remark 4. If we try to weaken the hypothesis of Theorem 3.2 in yet another way,
again we lose 2-extendability. A graph G is said to be triangular if every line of G is
a line of some triangle in G. In Figure 13 we display an example of a graph G which is
4CPE, is triangular and contains no gbutterflies, but is not 2-extendable.

Note that the large points labeled with a "B" denote fourteen instances of substituting
the 17-point subgraph shown. The resulting graph G has 17 x 14 + 16 = 254 points and
mindeg G = 5. However, no two of the four lines e1,... , e4 extend to a pm. This is easy
to see, for if one deletes the four endpoints of, say, el and e2 , there remains a graph G"
with a set S" of 12 points (i.e., the points not labeled "B") and such that G" - S" has 14
odd components (i.e., the 14 components labeled "B"). Since IS"I < co(G" - S"), G" has
no pm and hence G is not 2-extendable.

We observe that one can construct an infinite family of graphs (of which the graph in
Figure 13 is the smallest) all of which are 4CPE, triangular, have no gbutterflies and are
not 2-extendable by suitably enlarging the subgraph denoted by "B". The details are left
to the reader.
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Figure 13
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